101
|
Hardeland R. Sirtuins, melatonin, and the relevance of circadian oscillators. SIRTUIN BIOLOGY IN MEDICINE 2021:137-151. [DOI: 10.1016/b978-0-12-814118-2.00011-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
102
|
Bilska B, Zegar A, Slominski AT, Kleszczyński K, Cichy J, Pyza E. Expression of antimicrobial peptide genes oscillates along day/night rhythm protecting mice skin from bacteria. Exp Dermatol 2020; 30:1418-1427. [PMID: 33131146 DOI: 10.1111/exd.14229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/23/2022]
Abstract
Antimicrobial peptides (AMPs) are important components of the innate immune system and are involved in skin protection against environmental insults and in wound healing. Herein, we assessed the gene expression of chemerin (Rarres2), cathelicidin CRAMP (Camp), and three β-defensins (Defb1, Defb3, and Defb14) in mouse skin during light/dark cycle (LD 12:12) and constant darkness (DD). Next, we examined the survival of bacteria applied on the skin at specific times during the day. We found that the expression of Rarres2, Camp, and Defb1 was the highest at 4 h after the beginning of darkness, during high activity of mice. These rhythms, however, were not maintained under DD in the skin but were present in the liver. This indicated that in the case of skin, a circadian input was masked by daily changes of light in the environment. In contrast, Defb3 and Defb14 showed the highest mRNA levels when the mice slept, and these rhythmic mRNA oscillations were maintained under DD. This shows that Rarres2, Camp, and Defb1 levels in the skin are correlated with high locomotor activity in mice and they are controlled by daily changes of light and dark. Alternatively, oscillations in the mRNA levels of Defb3 and Defb14 seem to protect skin and heal wounds during sleep. These rhythms are maintained under DD, indicating that they are regulated by a circadian clock. Our study suggests that daily AMP expression affects the survival of bacteria on the surface of skin, which depends on the phase of AMP cycling.
Collapse
Affiliation(s)
- Bernadetta Bilska
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Aneta Zegar
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL, USA
| | | | - Joanna Cichy
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| |
Collapse
|
103
|
Furusawa Y, Yamamoto T, Hattori A, Suzuki N, Hirayama J, Sekiguchi T, Tabuchi Y. De novo transcriptome analysis and gene expression profiling of fish scales isolated from Carassius auratus during space flight: Impact of melatonin on gene expression in response to space radiation. Mol Med Rep 2020; 22:2627-2636. [PMID: 32945420 PMCID: PMC7466330 DOI: 10.3892/mmr.2020.11363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Astronauts are inevitably exposed to two major risks during space flight, microgravity and radiation. Exposure to microgravity has been discovered to lead to rapid and vigorous bone loss due to elevated osteoclastic activity. In addition, long‑term exposure to low‑dose‑rate space radiation was identified to promote DNA damage accumulation that triggered chronic inflammation, resulting in an increased risk for bone marrow suppression and carcinogenesis. In our previous study, melatonin, a hormone known to regulate the sleep‑wake cycle, upregulated calcitonin expression levels and downregulated receptor activator of nuclear factor‑κB ligand expression levels, leading to improved osteoclastic activity in a fish scale model. These results indicated that melatonin may represent a potential drug or lead compound for the prevention of bone loss under microgravity conditions. However, it is unclear whether melatonin affects the biological response induced by space radiation. The aim of the present study was to evaluate the effect of melatonin on the expression levels of genes responsive to space radiation. In the present study, to support the previous data regarding de novo transcriptome analysis of goldfish scales, a detailed and improved experimental method (e.g., PCR duplicate removal followed by de novo assembly, global normalization and calculation of statistical significance) was applied for the analysis. In addition, the transcriptome data were analyzed via global normalization, functional categorization and gene network construction to determine the impact of melatonin on gene expression levels in irradiated fish scales cultured in space. The results of the present study demonstrated that melatonin treatment counteracted microgravity‑ and radiation‑induced alterations in the expression levels of genes associated with DNA replication, DNA repair, proliferation, cell death and survival. Thus, it was concluded that melatonin may promote cell survival and ensure normal cell proliferation in cells exposed to space radiation.
Collapse
Affiliation(s)
- Yukihiro Furusawa
- Department of Liberal Arts and Sciences, Toyama Prefectural University, Toyama 939-0398, Japan
| | - Tatsuki Yamamoto
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa 927-0553, Japan
| | - Atsuhiko Hattori
- College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Chiba 272-0827, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa 927-0553, Japan
| | - Jun Hirayama
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Ishikawa 923-0961, Japan
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa 927-0553, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
104
|
Ramot Y, Böhm M, Paus R. Translational Neuroendocrinology of Human Skin: Concepts and Perspectives. Trends Mol Med 2020; 27:60-74. [PMID: 32981840 DOI: 10.1016/j.molmed.2020.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022]
Abstract
Human skin responds to numerous neurohormones, neuropeptides, and neurotransmitters that reach it via the vasculature or skin nerves, and/or are generated intracutaneously, thus acting in a para- and autocrine manner. This review focuses on how neurohormones impact on human skin physiology and pathology. We highlight basic concepts, major open questions, and translational research perspectives in cutaneous neuroendocrinology and argue that greater emphasis on neuroendocrine human skin research will foster the development of novel dermatological therapies. Furthermore, human skin and its appendages can be used as highly accessible and clinically relevant model systems for probing nonclassical, ancestral neurohormone functions. This calls for close interdisciplinary collaboration between dermatologists, skin biologists, neuroendocrinologists, and neuropharmacologists.
Collapse
Affiliation(s)
- Yuval Ramot
- Department of Dermatology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| | - Ralf Paus
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Monasterium Laboratory, Münster, Germany; Centre for Dermatology Research, University of Manchester, Manchester, UK.
| |
Collapse
|
105
|
Balcázar M, Cañizares S, Borja T, Pontón P, Bisiou S, Carabasse E, Bacilieri A, Canavese C, Diaz RF, Cabrera F, Caicedo A. Bases for Treating Skin Aging With Artificial Mitochondrial Transfer/Transplant (AMT/T). Front Bioeng Biotechnol 2020; 8:919. [PMID: 32903493 PMCID: PMC7438394 DOI: 10.3389/fbioe.2020.00919] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
The perception of mitochondria as only the powerhouse of the cell has dramatically changed in the last decade. It is now accepted that in addition to being essential intracellularly, mitochondria can promote cellular repair when transferred from healthy to damaged cells. The artificial mitochondria transfer/transplant (AMT/T) group of techniques emulate this naturally occurring process and have been used to develop therapies to treat a range of diseases including cardiac and neurodegenerative. Mitochondria accumulate damage with time, resulting in cellular senescence. Skin cells and its mitochondria are profoundly affected by ultraviolet radiation and other factors that induce premature and accelerated aging. In this article, we propose the basis to use AMT/T to treat skin aging by transferring healthy mitochondria to senescent cells, possibly revitalizing them. We provide insightful information about how skin structure, components, and cells could age rapidly depending on the amount of damage received. Arguments are shown in favor of the use of AMT/T to treat aging skin and its cells, among them the possibility to stop free radical production, add new genetic material, and provide an energetic boost to help cells prolong their viability over time. This article intends to present one of the many aspects in which mitochondria could be used as a universal treatment for cell and tissue damage and aging.
Collapse
Affiliation(s)
- Micaela Balcázar
- Escuela de Medicina, Colegio de Ciencias de la Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Stalin Cañizares
- Escuela de Medicina, Colegio de Ciencias de la Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Tatiana Borja
- Servicio de Patología, Hospital Voz Andes, Quito, Ecuador.,CEDIA-USFQ Research Initiative, Corporación Ecuatoriana para el Desarrollo de la Investigación y Académica CEDIA and Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Patricia Pontón
- Servicio de Patología, Hospital Voz Andes, Quito, Ecuador.,CEDIA-USFQ Research Initiative, Corporación Ecuatoriana para el Desarrollo de la Investigación y Académica CEDIA and Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Sirivanh Bisiou
- Université de Montpellier, Faculté de Medicine, Montpellier, France
| | - Eva Carabasse
- Université de Montpellier, Faculté de Medicine, Montpellier, France
| | - Angela Bacilieri
- Université de Montpellier, Faculté de Medicine, Montpellier, France
| | - Celia Canavese
- Université de Montpellier, Faculté de Medicine, Montpellier, France
| | - Ramiro F Diaz
- Escuela de Medicina Veterinaria, Colegio de Ciencias de la Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Mito-Act Research Consortium, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Francisco Cabrera
- Escuela de Medicina Veterinaria, Colegio de Ciencias de la Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Mito-Act Research Consortium, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Andrés Caicedo
- Escuela de Medicina, Colegio de Ciencias de la Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,CEDIA-USFQ Research Initiative, Corporación Ecuatoriana para el Desarrollo de la Investigación y Académica CEDIA and Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Mito-Act Research Consortium, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| |
Collapse
|
106
|
Racine PJ, Janvier X, Clabaut M, Catovic C, Souak D, Boukerb AM, Groboillot A, Konto-Ghiorghi Y, Duclairoir-Poc C, Lesouhaitier O, Orange N, Chevalier S, Feuilloley MGJ. Dialog between skin and its microbiota: Emergence of "Cutaneous Bacterial Endocrinology". Exp Dermatol 2020; 29:790-800. [PMID: 32682345 DOI: 10.1111/exd.14158] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Microbial endocrinology is studying the response of microorganisms to hormones and neurohormones and the microbiota production of hormones-like molecules. Until now, it was mainly applied to the gut and revealed that the intestinal microbiota should be considered as a real organ in constant and bilateral interactions with the whole human body. The skin harbours the second most abundant microbiome and contains an abundance of nerve terminals and capillaries, which in addition to keratinocytes, fibroblasts, melanocytes, dendritic cells and endothelial cells, release a huge diversity of hormones and neurohormones. In the present review, we will examine recent experimental data showing that, in skin, molecules such as substance P, calcitonin gene-related peptide, natriuretic peptides and catecholamines can directly affect the physiology and virulence of common skin-associated bacteria. Conversely, bacteria are able to synthesize and release compounds including histamine, glutamate and γ-aminobutyric acid or peptides showing partial homology with neurohormones such as α-melanocyte-stimulating hormone (αMSH). The more surprising is that some viruses can also encode neurohormones mimicking proteins. Taken together, these elements demonstrate that there is also a cutaneous microbial endocrinology and this emerging concept will certainly have important consequences in dermatology.
Collapse
Affiliation(s)
- Pierre-Jean Racine
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Xavier Janvier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Maximilien Clabaut
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Chloe Catovic
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Djouhar Souak
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Amine M Boukerb
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Anne Groboillot
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Yoan Konto-Ghiorghi
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Cécile Duclairoir-Poc
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Nicole Orange
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| |
Collapse
|
107
|
Soeberdt M, Kilic A, Abels C. Current and emerging treatments targeting the neuroendocrine system for disorders of the skin and its appendages. Exp Dermatol 2020; 29:801-813. [DOI: 10.1111/exd.14145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022]
Affiliation(s)
| | - Ana Kilic
- Dr. August Wolff GmbH & Co. KG Arzneimittel Bielefeld Germany
| | - Christoph Abels
- Dr. August Wolff GmbH & Co. KG Arzneimittel Bielefeld Germany
| |
Collapse
|
108
|
Mustafa FEZA, Abdel-Maksoud FM, Hassan AHS, Mokhtar DM. Melatonin induces a stimulatory action on the scrotal skin components of Soay ram in the non-breeding season. Sci Rep 2020; 10:10154. [PMID: 32576871 PMCID: PMC7311388 DOI: 10.1038/s41598-020-67103-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/02/2020] [Indexed: 01/16/2023] Open
Abstract
Fifteen adult Soay rams were employed in this study to investigate the effect of melatonin on the scrotal skin using histological, histochemical, and morphometrical analysis. The results revealed that the melatonin treated group showed a significant increase in the thickness of the epidermis, the cross-sectional area of blood capillaries and nerve fibers compared with the control one. In addition, obvious hypertrophy and hyperplasia were detected in the sebaceous glands in association with a significant increase in the number and diameter of apocrine sweat glands with well-developed secretory activity. S100 protein and cytokeratin-19 strongly stained the basal cells of sebaceous glands in the melatonin treated group incomparable to the control group. Moreover, the nerve fibers were intensively immunoreacted for S100 and cytokeratin proteins in the melatonin treated group in contrast to the control one. A high number of telocytes (TCs) could be identified in the treated group around the nerve fibers and blood vessels in the dermis. The number of Langerhans cells showed a significant increase in the melatonin groups that were identified by MHC II and PGP 9.5 within the epidermal layer. Furthermore, a significant increase in the number of dendritic cells was identified in the melatonin group, which were distributed within the dermis, around hair follicles, sebaceous glands, and sweat glands and were strongly expressed PGP-9.5, MHC-II, VAMP, SNAP, keratin-5, and cytokeratin-19 immunoreactivity. Notably, Merkel cells showed a significant increase in the number in the melatonin group that could be stained against nestin, SNAP, and VAMP. On the other hand, the secretory granules in sweat glands were exhibited a strong positive reactivity for synaptophysin in melatonin group. The current study showed that the administration of melatonin induced a stimulatory effect on keratinocytes, non-keratinocytes, sebaceous and sweat glands, hair follicles, as well as the vascular, neuronal, and cellular constituents of the dermis.
Collapse
Affiliation(s)
| | - Fatma M Abdel-Maksoud
- Department of Anatomy and Histology, Faculty of Vet. Medicine, Assiut University, Assiut, Egypt.
| | - A H S Hassan
- Department of Anatomy and Histology, Faculty of Vet. Medicine, Assiut University, Assiut, Egypt
| | - Doaa M Mokhtar
- Department of Anatomy and Histology, Faculty of Vet. Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
109
|
Sreedhar A, Aguilera-Aguirre L, Singh KK. Mitochondria in skin health, aging, and disease. Cell Death Dis 2020; 11:444. [PMID: 32518230 PMCID: PMC7283348 DOI: 10.1038/s41419-020-2649-z] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 02/08/2023]
Abstract
The skin is a high turnover organ, and its constant renewal depends on the rapid proliferation of its progenitor cells. The energy requirement for these metabolically active cells is met by mitochondrial respiration, an ATP generating process driven by a series of protein complexes collectively known as the electron transport chain (ETC) that is located on the inner membrane of the mitochondria. However, reactive oxygen species (ROS) like superoxide, singlet oxygen, peroxides are inevitably produced during respiration and disrupt macromolecular and cellular structures if not quenched by the antioxidant system. The oxidative damage caused by mitochondrial ROS production has been established as the molecular basis of multiple pathophysiological conditions, including aging and cancer. Not surprisingly, the mitochondria are the primary organelle affected during chronological and UV-induced skin aging, the phenotypic manifestations of which are the direct consequence of mitochondrial dysfunction. Also, deletions and other aberrations in the mitochondrial DNA (mtDNA) are frequent in photo-aged skin and skin cancer lesions. Recent studies have revealed a more innate role of the mitochondria in maintaining skin homeostasis and pigmentation, which are affected when the essential mitochondrial functions are impaired. Some common and rare skin disorders have a mitochondrial involvement and include dermal manifestations of primary mitochondrial diseases as well as congenital skin diseases caused by damaged mitochondria. With studies increasingly supporting the close association between mitochondria and skin health, its therapeutic targeting in the skin-either via an ATP production boost or free radical scavenging-has gained attention from clinicians and aestheticians alike. Numerous bioactive compounds have been identified that improve mitochondrial functions and have proved effective against aged and diseased skin. In this review, we discuss the essential role of mitochondria in regulating normal and abnormal skin physiology and the possibility of targeting this organelle in various skin disorders.
Collapse
Affiliation(s)
| | | | - Keshav K Singh
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Integartive Center For Aging Research and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
110
|
Slominski AT, Chaiprasongsuk A, Janjetovic Z, Kim TK, Stefan J, Slominski RM, Hanumanthu VS, Raman C, Qayyum S, Song Y, Song Y, Panich U, Crossman DK, Athar M, Holick MF, Jetten AM, Zmijewski MA, Zmijewski J, Tuckey RC. Photoprotective Properties of Vitamin D and Lumisterol Hydroxyderivatives. Cell Biochem Biophys 2020; 78:165-180. [PMID: 32441029 PMCID: PMC7347247 DOI: 10.1007/s12013-020-00913-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
We have previously described new pathways of vitamin D3 activation by CYP11A1 to produce a variety of metabolites including 20(OH)D3 and 20,23(OH)2D3. These can be further hydroxylated by CYP27B1 to produce their C1α-hydroxyderivatives. CYP11A1 similarly initiates the metabolism of lumisterol (L3) through sequential hydroxylation of the side chain to produce 20(OH)L3, 22(OH)L3, 20,22(OH)2L3 and 24(OH)L3. CYP11A1 also acts on 7-dehydrocholesterol (7DHC) producing 22(OH)7DHC, 20,22(OH)27DHC and 7-dehydropregnenolone (7DHP) which can be converted to the D3 and L3 configurations following exposure to UVB. These CYP11A1-derived compounds are produced in vivo and are biologically active displaying anti-proliferative, anti-inflammatory, anti-cancer and pro-differentiation properties. Since the protective role of the classical form of vitamin D3 (1,25(OH)2D3) against UVB-induced damage is recognized, we recently tested whether novel CYP11A1-derived D3- and L3-hydroxyderivatives protect against UVB-induced damage in epidermal human keratinocytes and melanocytes. We found that along with 1,25(OH)2D3, CYP11A1-derived D3-hydroxyderivatives and L3 and its hydroxyderivatives exert photoprotective effects. These included induction of intracellular free radical scavenging and attenuation and repair of DNA damage. The protection of human keratinocytes against DNA damage included the activation of the NRF2-regulated antioxidant response, p53-phosphorylation and its translocation to the nucleus, and DNA repair induction. These data indicate that novel derivatives of vitamin D3 and lumisterol are promising photoprotective agents. However, detailed mechanisms of action, and the involvement of specific nuclear receptors, other vitamin D binding proteins or mitochondria, remain to be established.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al, USA.
- Veteran Administration Medical Center, Birmingham, Al, USA.
| | - Anyamanee Chaiprasongsuk
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Joanna Stefan
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Radomir M Slominski
- Department of Medicine and Microbiology, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, USA
| | - Vidya Sagar Hanumanthu
- Department of Medicine and Microbiology, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, USA
| | - Chander Raman
- Department of Medicine and Microbiology, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, USA
| | - Shariq Qayyum
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Yuwei Song
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Yuhua Song
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al, USA
| | | | - Anton M Jetten
- Cell Biology Section, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | | | - Jaroslaw Zmijewski
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Al, USA
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
111
|
Mocayar Marón FJ, Ferder L, Reiter RJ, Manucha W. Daily and seasonal mitochondrial protection: Unraveling common possible mechanisms involving vitamin D and melatonin. J Steroid Biochem Mol Biol 2020; 199:105595. [PMID: 31954766 DOI: 10.1016/j.jsbmb.2020.105595] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022]
Abstract
From an evolutionary point of view, vitamin D and melatonin appeared very early and share functions related to defense mechanisms. In the current clinical setting, vitamin D is exclusively associated with phosphocalcic metabolism. Meanwhile, melatonin has chronobiological effects and influences the sleep-wake cycle. Scientific evidence, however, has identified new actions of both molecules in different physiological and pathological settings. The biosynthetic pathways of vitamin D and melatonin are inversely related relative to sun exposure. A deficiency of these molecules has been associated with the pathogenesis of cardiovascular diseases, including arterial hypertension, neurodegenerative diseases, sleep disorders, kidney diseases, cancer, psychiatric disorders, bone diseases, metabolic syndrome, and diabetes, among others. During aging, the intake and cutaneous synthesis of vitamin D, as well as the endogenous synthesis of melatonin are remarkably depleted, therefore, producing a state characterized by an increase of oxidative stress, inflammation, and mitochondrial dysfunction. Both molecules are involved in the homeostatic functioning of the mitochondria. Given the presence of specific receptors in the organelle, the antagonism of the renin-angiotensin-aldosterone system (RAAS), the decrease of reactive species of oxygen (ROS), in conjunction with modifications in autophagy and apoptosis, anti-inflammatory properties inter alia, mitochondria emerge as the final common target for melatonin and vitamin D. The primary purpose of this review is to elucidate the common molecular mechanisms by which vitamin D and melatonin might share a synergistic effect in the protection of proper mitochondrial functioning.
Collapse
Affiliation(s)
- Feres José Mocayar Marón
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Argentina; Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Mendoza, Argentina
| | - León Ferder
- Department of Pediatrics, Nephrology Division, Miller School of Medicine, University of Miami, FL, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science at San Antonio, San Antonio, TX, USA
| | - Walter Manucha
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Argentina; Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Mendoza, Argentina.
| |
Collapse
|
112
|
Abstract
The pineal gland is an endocrine gland whose main function is the biosynthesis and secretion of melatonin, a hormone responsible for regulating circadian rhythms, e.g., the sleep/wake cycle. Due to its exceptionally high vascularization and its location outside the blood–brain barrier, the pineal gland may accumulate significant amounts of calcium and fluoride, making it the most fluoride-saturated organ of the human body. Both the calcification and accumulation of fluoride may result in melatonin deficiency.
Collapse
|
113
|
MacDonald IJ, Huang CC, Liu SC, Tang CH. Reconsidering the Role of Melatonin in Rheumatoid Arthritis. Int J Mol Sci 2020; 21:ijms21082877. [PMID: 32326031 PMCID: PMC7215432 DOI: 10.3390/ijms21082877] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/19/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory joint disorder characterized by synovial proliferation and inflammation, with eventual joint destruction if inadequately treated. Modern therapies approved for RA target the proinflammatory cytokines or Janus kinases that mediate the initiation and progression of the disease. However, these agents fail to benefit all patients with RA, and many lose therapeutic responsiveness over time. More effective or adjuvant treatments are needed. Melatonin has shown beneficial activity in several animal models and clinical trials of inflammatory autoimmune diseases, but the role of melatonin is controversial in RA. Some research suggests that melatonin enhances proinflammatory activities and thus promotes disease activity in RA, while other work has documented substantial anti-inflammatory and immunoregulatory properties of melatonin in preclinical models of arthritis. In addition, disturbance of the circadian rhythm is associated with RA development and melatonin has been found to affect clock gene expression in joints of RA. This review summarizes current understanding about the immunopathogenic characteristics of melatonin in RA disease. Comprehensive consideration is required by clinical rheumatologists to balance the contradictory effects.
Collapse
Affiliation(s)
- Iona J. MacDonald
- School of Medicine, China Medical University, Taichung 40402, Taiwan; (I.J.M.); (C.-C.H.)
| | - Chien-Chung Huang
- School of Medicine, China Medical University, Taichung 40402, Taiwan; (I.J.M.); (C.-C.H.)
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin 65152, Taiwan;
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung 40402, Taiwan; (I.J.M.); (C.-C.H.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung 41354, Taiwan
- Correspondence: ; Tel.: +(886)-2205-2121 (ext. 7726)
| |
Collapse
|
114
|
Samotij D, Nedoszytko B, Bartosińska J, Batycka-Baran A, Czajkowski R, Dobrucki IT, Dobrucki LW, Górecka-Sokołowska M, Janaszak-Jasienicka A, Krasowska D, Kalinowski L, Macieja-Stawczyk M, Nowicki RJ, Owczarczyk-Saczonek A, Płoska A, Purzycka-Bohdan D, Radulska A, Reszka E, Siekierzycka A, Słomiński A, Słomiński R, Sobalska-Kwapis M, Strapagiel D, Szczerkowska-Dobosz A, Szczęch J, Żmijewski M, Reich A. Pathogenesis of psoriasis in the "omic" era. Part I. Epidemiology, clinical manifestation, immunological and neuroendocrine disturbances. Postepy Dermatol Alergol 2020; 37:135-153. [PMID: 32489346 PMCID: PMC7262814 DOI: 10.5114/ada.2020.94832] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Psoriasis is a common, chronic, inflammatory, immune-mediated skin disease affecting about 2% of the world's population. According to current knowledge, psoriasis is a complex disease that involves various genes and environmental factors, such as stress, injuries, infections and certain medications. The chronic inflammation of psoriasis lesions develops upon epidermal infiltration, activation, and expansion of type 1 and type 17 Th cells. Despite the enormous progress in understanding the mechanisms that cause psoriasis, the target cells and antigens that drive pathogenic T cell responses in psoriatic lesions are still unproven and the autoimmune basis of psoriasis still remains hypothetical. However, since the identification of the Th17 cell subset, the IL-23/Th17 immune axis has been considered a key driver of psoriatic inflammation, which has led to the development of biologic agents that target crucial elements of this pathway. Here we present the current understanding of various aspects in psoriasis pathogenesis.
Collapse
Affiliation(s)
- Dominik Samotij
- Department of Dermatology, University of Rzeszow, Rzeszow, Poland
| | - Bogusław Nedoszytko
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Joanna Bartosińska
- Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Batycka-Baran
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland
| | - Rafał Czajkowski
- Department of Dermatology and Venereology, Faculty of Medicine, Ludwik Rydygier Medical College in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Iwona T. Dobrucki
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Lawrence W. Dobrucki
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure, (BBMRI.PL), Gdansk, Poland
| | - Magdalena Górecka-Sokołowska
- Department of Dermatology, Sexually Transmitted Disorders and Immunodermatology, Jurasz University Hospital No. 1, Bydgoszcz, Poland
| | - Anna Janaszak-Jasienicka
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure, (BBMRI.PL), Gdansk, Poland
| | - Dorota Krasowska
- Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure, (BBMRI.PL), Gdansk, Poland
| | - Marta Macieja-Stawczyk
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Roman J. Nowicki
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Agnieszka Owczarczyk-Saczonek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, University of Warmia and Mazury, Olsztyn, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure, (BBMRI.PL), Gdansk, Poland
| | - Dorota Purzycka-Bohdan
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Adrianna Radulska
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure, (BBMRI.PL), Gdansk, Poland
| | - Edyta Reszka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Anna Siekierzycka
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure, (BBMRI.PL), Gdansk, Poland
| | - Andrzej Słomiński
- Department of Dermatology, Birmingham, AL, USA
- Comprehensive Cancer Center, Cancer Chemoprevention Program, Birmingham, AL, USA
- VA Medical Center, Birmingham, AL, USA
| | - Radomir Słomiński
- Department of Medicine, Division of Rheumatology, University of Alabama, Birmingham, AL, USA
| | - Marta Sobalska-Kwapis
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Dominik Strapagiel
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Aneta Szczerkowska-Dobosz
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Justyna Szczęch
- Department of Dermatology, University of Rzeszow, Rzeszow, Poland
| | - Michał Żmijewski
- Department of Histology, Medical University of Gdansk, Gdansk, Poland
| | - Adam Reich
- Department of Dermatology, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
115
|
Gelatin-Based Hydrogels for the Controlled Release of 5,6-Dihydroxyindole-2-Carboxylic Acid, a Melanin-Related Metabolite with Potent Antioxidant Activity. Antioxidants (Basel) 2020; 9:antiox9030245. [PMID: 32197438 PMCID: PMC7139803 DOI: 10.3390/antiox9030245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
The ability of gelatin-based hydrogels of incorporating and releasing under controlled conditions 5,6-dihydroxyindole-2-carboxylic acid (DHICA), a melanin-related metabolite endowed with marked antioxidant properties was investigated. The methyl ester of DHICA, MeDHICA, was also tested in view of its higher stability, and different solubility profile. Three types of gelatin-based hydrogels were prepared: pristine porcine skin type A gelatin (HGel-A), a pristine gelatin cross-linked by amide coupling of lysines and glutamic/aspartic acids (HGel-B), and a gelatin/chitosan blend (HGel-C). HGel-B and HGel-C differed in the swelling behavior, showed satisfactorily high mechanical strength at physiological temperatures and well-defined morphology. The extent of incorporation into all the gelatins tested using a 10% w/w indole to gelatin ratio was very satisfactory ranging from 60 to 90% for either indoles. The kinetics of indole release under conditions of physiological relevance was evaluated up to 72 h. The highest values were obtained with HGel-B and HGel-C for MeDHICA (90% after 6 h), and an appreciable release was observed for DHICA reaching 30% and 40% at 6 h for HGel-B and HGel-C, respectively. At 72 h, DHICA and MeDHICA were released at around 30% from HGel-A at pH 7.4, with an increase up to 40% at pH 5.5 in the case of DHICA. DHICA incorporated into HGel-B proved fairly stable over 6 h whereas the free compound at the same concentration was almost completely oxidized. The antioxidant power of the indole loaded gelatins was monitored by chemical assays and proved unaltered even after prolonged storage in air, suggesting that the materials could be prepared in advance with respect to their use without alteration of their efficacy.
Collapse
|
116
|
Pomianowski K, Gozdowska M, Burzyński A, Kalamarz-Kubiak H, Sokołowska E, Kijewska A, Kulczykowska E. A study of aanat and asmt expression in the three-spined stickleback eye and skin: Not only “on the way to melatonin”. Comp Biochem Physiol A Mol Integr Physiol 2020; 241:110635. [DOI: 10.1016/j.cbpa.2019.110635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/22/2019] [Accepted: 12/06/2019] [Indexed: 02/05/2023]
|
117
|
Xie S, Fan W, He H, Huang F. Role of Melatonin in the Regulation of Pain. J Pain Res 2020; 13:331-343. [PMID: 32104055 PMCID: PMC7012243 DOI: 10.2147/jpr.s228577] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Melatonin is a pleiotropic hormone synthesized and secreted mainly by the pineal gland in vertebrates. Melatonin is an endogenous regulator of circadian and seasonal rhythms. Melatonin is involved in many physiological and pathophysiological processes demonstrating antioxidant, antineoplastic, anti-inflammatory, and immunomodulatory properties. Accumulating evidence has revealed that melatonin plays an important role in pain modulation through multiple mechanisms. In this review, we examine recent evidence for melatonin on pain regulation in various animal models and patients with pain syndromes, and the potential cellular mechanisms.
Collapse
Affiliation(s)
- Shanshan Xie
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China.,Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China.,Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Fang Huang
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| |
Collapse
|
118
|
Age Associated Decrease of MT-1 Melatonin Receptor in Human Dermal Skin Fibroblasts Impairs Protection Against UV-Induced DNA Damage. Int J Mol Sci 2020; 21:ijms21010326. [PMID: 31947744 PMCID: PMC6982064 DOI: 10.3390/ijms21010326] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 12/14/2022] Open
Abstract
The human body follows a physiological rhythm in response to the day/night cycle which is synchronized with the circadian rhythm through internal clocks. Most cells in the human body, including skin cells, express autonomous clocks and the genes responsible for running those clocks. Melatonin, a ubiquitous small molecular weight hormone, is critical in regulating the sleep cycle and other functions in the body. Melatonin is present in the skin and, in this study, we showed that it has the ability to dose-dependently stimulate PER1 clock gene expression in normal human dermal fibroblasts and normal human epidermal keratinocytes. Then we further evaluated the role of MT-1 melatonin receptor in mediating melatonin actions on human skin using fibroblasts derived from young and old subjects. Using immunocytochemistry, Western blotting and RT-PCR, we confirmed the expression of MT-1 receptor in human skin fibroblasts and demonstrated a dramatic age-dependent decrease in its level in mature fibroblasts. We used siRNA technology to transiently knockdown MT-1 receptor in fibroblasts. In these MT-1 knockdown cells, UV-dependent oxidative stress (H2O2 production) was enhanced and DNA damage was also increased, suggesting a critical role of MT-1 receptor in protecting skin cells from UV-induced DNA damage. These studies demonstrate that the melatonin pathway plays a pivotal role in skin aging and damage. Moreover, its correlation with skin circadian rhythm may offer new approaches for decelerating skin aging by modulating the expression of melatonin receptors in human skin.
Collapse
|
119
|
Damiani G, Bragazzi N, Garbarino S, Chattu VK, Shapiro CM, Pacifico A, Malagoli P, Pigatto PDM, Conic RR, Tiodorovic D, Watad A, Adawi M. Psoriatic and psoriatic arthritis patients with and without jet-lag: does it matter for disease severity scores? Insights and implications from a pilot, prospective study. Chronobiol Int 2019; 36:1733-1740. [PMID: 31645138 PMCID: PMC6832868 DOI: 10.1080/07420528.2019.1678629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
Abstract
Background: Jet-lag may affect air-travelers crossing at least two time-zones and has several health-care implications. It occurs when the human biological rhythms are out of synch with respect to the day-night cycle at the country destination. Its effect in psoriasis is missing. We aimed to evaluate the effect of Jet-lag in psoriatic patients' management. Methods: This is a prospective observational study that enrolled psoriatic patients that underwent a flight: patients who experienced jet-lag were compared to patients who did not experience jet-lag. Before the flight, a dermatologist recorded clinical and demographical data with particular attention to Psoriasis Area Severity Index (PASI) and Disease Activity in Psoriatic Arthritis (DAPSA). Patients performed Self-Administered Psoriasis Area Severity Index (SAPASI), the Dermatology Life Quality Index (DLQI) and the pruritus Visual Analog Scale (VAS) scores. After the flight, patients completed the SAPASI, DLQI and pruritus-VAS scores. Results: The sample recruited comprised of 70 psoriatic patients aged 42.4 ± 9.7 years (median 42.5 years). Thirty (42.9%) were males, mean BMI was 25.5 ± 2.2 kg/m2. Average disease duration was 15.2 ± 7.1 years, and 20 (28.6%) subjects had developed PsA. Average hours of flight were 5.4 ± 3.5 (median 3.5 h), with 34 (48.6%) subjects reporting jet-lag. At the multivariate regression analysis, the change in the SAPASI score resulted correlated with jet-lag (regression coefficient 1.63, p = .0092), as well the change in the DLQI score (regression coefficient = 1.73, p = .0009), but no change on the pruritus VAS scale was found. Conclusions: The present study suggests that jet-lag may influence disease severity and DLQI scores, but not itch in psoriatic patients.
Collapse
Affiliation(s)
- G. Damiani
- Clinical Dermatology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA
- Young Dermatologists Italian Network, Centro Studi GISED, Bergamo, Italy
| | - N.L. Bragazzi
- Young Dermatologists Italian Network, Centro Studi GISED, Bergamo, Italy
- Postgraduate School of Public Health, Department of Health Sciences, University of Genoa, Genoa, Italy
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - S. Garbarino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - V. K. Chattu
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Youthdale Child and Adolescent Sleep Centre, Toronto, Ontario, Canada
| | - C. M. Shapiro
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Youthdale Child and Adolescent Sleep Centre, Toronto, Ontario, Canada
| | - A. Pacifico
- San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - P. Malagoli
- Dermatology Unit, Azienda Ospedaliera San Donato Milanese, Milan, Italy
| | - P. D. M. Pigatto
- Clinical Dermatology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - R. R.Z. Conic
- Department of Surgery, University of Maryland, Baltimore, MD, USA
| | - D. Tiodorovic
- Dermatology Clinic, Medical Faculty, Nis University, Nis, Serbia
| | - A. Watad
- Department of Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - M. Adawi
- Padeh and Ziv Hospitals, Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
120
|
Lu H, Martí J. Binding and dynamics of melatonin at the interface of phosphatidylcholine-cholesterol membranes. PLoS One 2019; 14:e0224624. [PMID: 31697738 PMCID: PMC6837308 DOI: 10.1371/journal.pone.0224624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022] Open
Abstract
The characterization of interactions between melatonin, one main ingredient of medicines regulating sleeping rhythms, and basic components of cellular plasma membranes (phospholipids, cholesterol, metal ions and water) is very important to elucidate the main mechanisms for the introduction of melatonin into cells and also to identify its local structure and microscopic dynamics. Molecular dynamics simulations of melatonin inside mixtures of dimyristoylphosphatidylcholine and cholesterol in NaCl solution at physiological concentration have been performed at 303.15 K to systematically explore melatonin-cholesterol, melatonin-lipid and melatonin-water interactions. Properties such as the area per lipid and thickness of the membrane as well as selected radial distribution functions, binding free energies, angular distributions, atomic spectral densities and translational diffusion of melatonin are reported. The presence of cholesterol significantly affects the behavior of melatonin, which is mainly buried into the interfaces of membranes. Introducing cholesterol into the system helps melatonin change from folded to extended configurations more easily. Our results suggest that there exists a competition between the binding of melatonin to phospholipids and to cholesterol by means of hydrogen-bonds. Spectral densities of melatonin reported in this work, in overall good agreement with experimental data, revealed the participation of each atom of melatonin to its complete spectrum. Melatonin self-diffusion coefficients are of the order of 10-7 cm2/s and they significantly increase when cholesterol is addeed to the membrane.
Collapse
Affiliation(s)
- Huixia Lu
- Department of Physics, Technical University of Catalonia-Barcelona Tech. Barcelona, Catalonia, Spain
| | - Jordi Martí
- Department of Physics, Technical University of Catalonia-Barcelona Tech. Barcelona, Catalonia, Spain
| |
Collapse
|
121
|
Kleszczyński K, Kim TK, Bilska B, Sarna M, Mokrzynski K, Stegemann A, Pyza E, Reiter RJ, Steinbrink K, Böhm M, Slominski AT. Melatonin exerts oncostatic capacity and decreases melanogenesis in human MNT-1 melanoma cells. J Pineal Res 2019; 67:e12610. [PMID: 31532834 PMCID: PMC7924888 DOI: 10.1111/jpi.12610] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022]
Abstract
Melanogenesis is a key parameter of differentiation in melanocytes and melanoma cells; therefore, search for factors regulating this pathway are strongly desired. Herein, we investigated the effects of melatonin, a ubiquitous physiological mediator that is found throughout animals and plants. In mammals, the pineal gland secretes this indoleamine into the blood circulation to exert an extensive repertoire of biological activities. Our in vitro assessment indicates an oncostatic capacity of melatonin in time-dependent manner (24, 48, 72 hours) in highly pigmented MNT-1 melanoma cells. The similar pattern of regulation regarding cell viability was observed in amelanotic Sk-Mel-28 cells. Subsequently, MNT-1 cells were tested for the first time for evaluation of melanin/melatonin interaction. Thus primary, electron paramagnetic resonance (EPR) spectroscopy demonstrated that melatonin reduced melanin content. Artificially induced disturbances of melanogenesis by selected inhibitors (N-phenylthiourea or kojic acid) were slightly antagonized by melatonin. Additionally, analysis using transmission electron microscopy has shown that melatonin, particularly at higher dose of 10-3 mol/L, triggered the appearance of premelanosomes (stage I-II of melanosome) and MNT-1 cells synthesize de novo endogenous melatonin shown by LC-MS. In conclusion, these studies show a melanogenic-like function of melatonin suggesting it as an advantageous agent for treatment of pigmentary disorders.
Collapse
Affiliation(s)
| | - Tae-Kang Kim
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bernadetta Bilska
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Michal Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Krystian Mokrzynski
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Agatha Stegemann
- Department of Dermatology, University of Münster, Münster, Germany
| | - Elżbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health, San Antonio, TX, USA
| | | | - Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL, USA
| |
Collapse
|
122
|
Rusanova I, Martínez-Ruiz L, Florido J, Rodríguez-Santana C, Guerra-Librero A, Acuña-Castroviejo D, Escames G. Protective Effects of Melatonin on the Skin: Future Perspectives. Int J Mol Sci 2019; 20:ijms20194948. [PMID: 31597233 PMCID: PMC6802208 DOI: 10.3390/ijms20194948] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 12/20/2022] Open
Abstract
When exposed to hostile environments such as radiation, physical injuries, chemicals, pollution, and microorganisms, the skin requires protective chemical molecules and pathways. Melatonin, a highly conserved ancient molecule, plays a crucial role in the maintenance of skin. As human skin has functional melatonin receptors and also acts as a complete system that is capable of producing and regulating melatonin synthesis, melatonin is a promising candidate for its maintenance and protection. Below, we review the studies of new metabolic pathways involved in the protective functions of melatonin in dermal cells. We also discuss the advantages of the topical use of melatonin for therapeutic purposes and skin protection. In our view, endogenous intracutaneous melatonin production, together with topically-applied exogenous melatonin and its metabolites, represent two of the most potent defense systems against external damage to the skin.
Collapse
Affiliation(s)
- Iryna Rusanova
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain.
- Department of Physiology, University of Granada, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Investigación Biosanitaria CIBERFES, IBS. Granada, Granada Hospital Complex, 18016 Granada, Spain.
| | - Laura Martínez-Ruiz
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain.
| | - Javier Florido
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain.
| | - César Rodríguez-Santana
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain.
| | - Ana Guerra-Librero
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Investigación Biosanitaria CIBERFES, IBS. Granada, Granada Hospital Complex, 18016 Granada, Spain.
| | - Darío Acuña-Castroviejo
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain.
- Department of Physiology, University of Granada, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Investigación Biosanitaria CIBERFES, IBS. Granada, Granada Hospital Complex, 18016 Granada, Spain.
| | - Germaine Escames
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain.
- Department of Physiology, University of Granada, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Investigación Biosanitaria CIBERFES, IBS. Granada, Granada Hospital Complex, 18016 Granada, Spain.
| |
Collapse
|
123
|
de Assis LVM, Moraes MN, Castrucci AMDL. The molecular clock in the skin, its functionality, and how it is disrupted in cutaneous melanoma: a new pharmacological target? Cell Mol Life Sci 2019; 76:3801-3826. [PMID: 31222374 PMCID: PMC11105295 DOI: 10.1007/s00018-019-03183-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/13/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
The skin is the interface between the organism and the external environment, acting as its first barrier. Thus, this organ is constantly challenged by physical stimuli such as UV and infrared radiation, visible light, and temperature as well as chemicals and pathogens. To counteract the deleterious effects of the above-mentioned stimuli, the skin has complex defense mechanisms such as: immune and neuroendocrine systems; shedding of epidermal squamous layers and apoptosis of damaged cells; DNA repair; and pigmentary system. Here we have reviewed the current knowledge regarding which stimuli affect the molecular clock of the skin, the consequences to skin-related biological processes and, based on such knowledge, we suggest some therapeutic targets. We also explored the recent advances regarding the molecular clock disruption in melanoma, its impact on the carcinogenic process, and its therapeutic value in melanoma treatment.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil
| | - Maria Nathalia Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil
- School of Health Science, University Anhembi Morumbi, São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil.
| |
Collapse
|
124
|
Nanzadsuren T, Myatav T, Dorjkhuu A, Byamba K. Association between serum melatonin and skin aging in an urban population of Mongolia. J Cosmet Dermatol 2019; 19:1501-1507. [PMID: 31566872 DOI: 10.1111/jocd.13166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Melatonin has been implicated in skin functions such as hair growth cycling and skin pigmentation. Furthermore, melatonin receptors are expressed in several skin cells. AIMS To study the association between serum melatonin levels and skin aging grades among people aged 20-69 years in Ulaanbaatar city. PATIENTS/METHODS We performed an analytical cross-sectional study that used parametric testing through analyses to test the relationship between melatonin levels and skin aging grades. A total of 946 people were assessed for skin aging using a moisture checker, sebum tape, and a digital camera. Blood samples were collected between 8:00 am and 10:00 am, and melatonin was measured using an enzyme-linked immunosorbent assay analyzer. RESULTS There was a statistically significant association between age and skin aging grade (P < .001). A multiple factor analysis revealed that lower levels of melatonin in the serum increased with skin aging grade 4 (odds ratio [OR], 1.9; 95% confidence interval [CI], 0.4-8.0), (OR, 2.4; 95% CI, 0.5-9.5), grade 5 (OR, 3.8; 95% CI, 0.8-15.7), and grade 6. There were weak associations between melatonin levels and potential covariates (skin pigmentation and skin hydration) taken from the correlation matrix. There was a weak positive correlation between skin pigmentation and age (r = .28), a weak negative correlation between skin pigmentation and sleep status (r = -.20), and a weak negative correlation between skin hydration and age (r = -.27). CONCLUSIONS Serum melatonin decreases with age, indicating that its loss may stimulate the process of earlier skin aging.
Collapse
Affiliation(s)
- Tuya Nanzadsuren
- Department of Anatomy and Department of Dermatology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Tuul Myatav
- Department of Anthropology, "Avicenna" Center of Sciences and Technology, Ulaanbaatar, Mongolia
| | - Amgalanbaatar Dorjkhuu
- Department of Anatomy and Department of Dermatology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Khandsuren Byamba
- Department of Anatomy and Department of Dermatology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| |
Collapse
|
125
|
Han B, Li S, Lv Y, Yang D, Li J, Yang Q, Wu P, Lv Z, Zhang Z. Dietary melatonin attenuates chromium-induced lung injury via activating the Sirt1/Pgc-1α/Nrf2 pathway. Food Funct 2019; 10:5555-5565. [PMID: 31429458 DOI: 10.1039/c9fo01152h] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Exposure to chromium (Cr) causes a number of respiratory diseases, including lung cancer and pulmonary fibrosis. However, there is currently no safe treatment for Cr-induced lung damage. Here, we used in vivo and in vitro approaches to examine the protective effects of melatonin (MEL) on Cr-induced lung injury and to identify the underlying molecular mechanisms. We found that treatment of rats or a mouse lung epithelial cell MLE-12 with MEL attenuated K2Cr2O7-induced lung injury by reducing the production of oxidative stress and inflammatory mediators and inhibiting cell apoptosis. MEL treatment upregulated the expression of silent information regulator 1 (Sirt1), which deacetylated the transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator-1α (Pgc-1α). In turn, this increased the expression of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and key anti-oxidant target genes. These results suggest that melatonin attenuates chromium-induced lung injury via activating the Sirt1/Pgc-1α/Nrf2 pathway. Dietary MEL supplement may be a potential new strategy for the treatment of Cr poisoning.
Collapse
Affiliation(s)
- Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Yueying Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Daqian Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China. and Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China. and Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, China
| |
Collapse
|
126
|
Yang CH, Xu JH, Ren QC, Duan T, Mo F, Zhang W. Melatonin promotes secondary hair follicle development of early postnatal cashmere goat and improves cashmere quantity and quality by enhancing antioxidant capacity and suppressing apoptosis. J Pineal Res 2019; 67:e12569. [PMID: 30861591 DOI: 10.1111/jpi.12569] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/20/2019] [Accepted: 03/02/2019] [Indexed: 12/13/2022]
Abstract
Development of secondary hair follicles in early postnatal cashmere goats may be adversely affected by reactive oxygen species which cause oxidative stress. Because melatonin is a potent antioxidant and scavenger of free radicals, this study explored the effects of melatonin on secondary hair follicle development and subsequent cashmere production. It was found that the initiation of new secondary follicles in early postnatal Inner Mongolian cashmere goats of both melatonin-treated and control goats occurred in the first 10 weeks of age. Melatonin promoted the initiation and maturation of secondary follicles and increased their population. Importantly, the beneficial effect of melatonin on secondary follicle population remained throughout life. As a result, melatonin increased cashmere production and improved its quality in terms of reduced fiber diameter. The mechanisms underlying the role of melatonin on secondary follicle development included the enhancement of activities of antioxidant enzymes, for example, superoxide dismutase and glutathione peroxidase (GSH-Px), elevated total antioxidant capacity, and upregulated anti-apoptotic Bcl-2 expression and downregulated expression of the pro-apoptotic proteins, Bax and caspase-3. These results reveal that melatonin serves to promote secondary hair follicle development in early postnatal cashmere goats and expands our understanding of melatonin application in cashmere production. Melatonin treatment led to an increase in both the quantity and quality of cashmere fiber. This increased the textile value of the fibers and provided economic benefit.
Collapse
Affiliation(s)
- Chun-He Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian-Hai Xu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qing-Chang Ren
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Tao Duan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fang Mo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
127
|
Salehi B, Sharopov F, Fokou PVT, Kobylinska A, Jonge LD, Tadio K, Sharifi-Rad J, Posmyk MM, Martorell M, Martins N, Iriti M. Melatonin in Medicinal and Food Plants: Occurrence, Bioavailability, and Health Potential for Humans. Cells 2019; 8:cells8070681. [PMID: 31284489 PMCID: PMC6678868 DOI: 10.3390/cells8070681] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/25/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Melatonin is a widespread molecule among living organisms involved in multiple biological, hormonal, and physiological processes at cellular, tissue, and organic levels. It is well-known for its ability to cross the blood–brain barrier, and renowned antioxidant effects, acting as a free radical scavenger, up-regulating antioxidant enzymes, reducing mitochondrial electron leakage, and interfering with proinflammatory signaling pathways. Detected in various medicinal and food plants, its concentration is widely variable. Plant generative organs (e.g., flowers, fruits), and especially seeds, have been proposed as having the highest melatonin concentrations, markedly higher than those found in vertebrate tissues. In addition, seeds are also rich in other substances (lipids, sugars, and proteins), constituting the energetic reserve for a potentially growing seedling and beneficial for the human diet. Thus, given that dietary melatonin is absorbed in the gastrointestinal tract and transported into the bloodstream, the ingestion of medicinal and plant foods by mammals as a source of melatonin may be conceived as a key step in serum melatonin modulation and, consequently, health promotion.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, 73400 Dushanbe, Tajikistan
| | | | - Agnieszka Kobylinska
- Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Lilian de Jonge
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA
| | - Kathryn Tadio
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| | - Malgorzata M Posmyk
- Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile
| | - Natália Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, 20133 Milan, Italy.
| |
Collapse
|
128
|
Neuroendocrine Aspects of Skin Aging. Int J Mol Sci 2019; 20:ijms20112798. [PMID: 31181682 PMCID: PMC6600459 DOI: 10.3390/ijms20112798] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 12/21/2022] Open
Abstract
Skin aging is accompanied by a gradual loss of function, physiological integrity and the ability to cope with internal and external stressors. This is secondary to a combination of complex biological processes influenced by constitutive and environmental factors or by local and systemic pathologies. Skin aging and its phenotypic presentation are dependent on constitutive (genetic) and systemic factors. It can be accelerated by environmental stressors, such as ultraviolet radiation, pollutants and microbial insults. The skin’s functions and its abilities to cope with external stressors are regulated by the cutaneous neuroendocrine systems encompassing the regulated and coordinated production of neuropeptides, neurohormones, neurotransmitters and hormones, including steroids and secosteroids. These will induce/stimulate downstream signaling through activation of corresponding receptors. These pathways and corresponding coordinated responses to the stressors decay with age or undergo pathological malfunctions. This affects the overall skin phenotype and epidermal, dermal, hypodermal and adnexal functions. We propose that skin aging can be attenuated or its phenotypic presentation reversed by the topical use of selected factors with local neurohormonal activities targeting specific receptors or enzymes. Some of our favorite factors include melatonin and its metabolites, noncalcemic secosteroids and lumisterol derivatives, because of their low toxicity and their desirable local phenotypic effects.
Collapse
|
129
|
Amin N, Shafabakhsh R, Reiter RJ, Asemi Z. Melatonin is an appropriate candidate for breast cancer treatment: Based on known molecular mechanisms. J Cell Biochem 2019; 120:12208-12215. [PMID: 31041825 DOI: 10.1002/jcb.28832] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022]
Abstract
Breast cancer is the most prevalent cancer and one of the most important causes of death in women throughout the world. Breast cancer risk factors include smoking, alcohol consumption, personal and family history, hypertension, and hormone therapy, long-term use of nonsteroidal anti-inflammatory drugs and tobacco usage. Surgery, chemotherapy, radiotherapy, immunotherapy, and neoadjuvant therapy are the current means for breast cancer treatment. Despite hormonal agents and chemotherapy, which have beneficial effects on lowering breast cancer death rate, the reaction of different people to these treatments is still a challenging point. Melatonin (N-acetyl-5-methoxy tryptamine) is a methoxy indole compound that is mainly secreted by the pineal gland at night; it is as an antioxidant, anti-inflammatory, and oncostatic agent. On the basis of recent studies, melatonin has antitumor properties on different cancer types and it may suppress cancer development in vitro and as well as in animal models. It is suggested that melatonin inhibits the development of breast cancer by various mechanisms. This paper summarizes the roles of melatonin in breast cancer treatment from the aspect of its molecular actions.
Collapse
Affiliation(s)
- Negin Amin
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
130
|
Nishimon S, Nishimon M, Nishino S. Tasimelteon for treating non-24-h sleep-wake rhythm disorder. Expert Opin Pharmacother 2019; 20:1065-1073. [DOI: 10.1080/14656566.2019.1603293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Shohei Nishimon
- Sleep and Circadian Neurobiology Laboratory, Psychiatry and Behavior Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mari Nishimon
- Sleep and Circadian Neurobiology Laboratory, Psychiatry and Behavior Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Seiji Nishino
- Sleep and Circadian Neurobiology Laboratory, Psychiatry and Behavior Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
131
|
Hardeland R. Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks. Int J Mol Sci 2019; 20:ijms20051223. [PMID: 30862067 PMCID: PMC6429360 DOI: 10.3390/ijms20051223] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Aging and various age-related diseases are associated with reductions in melatonin secretion, proinflammatory changes in the immune system, a deteriorating circadian system, and reductions in sirtuin-1 (SIRT1) activity. In non-tumor cells, several effects of melatonin are abolished by inhibiting SIRT1, indicating mediation by SIRT1. Melatonin is, in addition to its circadian and antioxidant roles, an immune stimulatory agent. However, it can act as either a pro- or anti-inflammatory regulator in a context-dependent way. Melatonin can stimulate the release of proinflammatory cytokines and other mediators, but also, under different conditions, it can suppress inflammation-promoting processes such as NO release, activation of cyclooxygenase-2, inflammasome NLRP3, gasdermin D, toll-like receptor-4 and mTOR signaling, and cytokine release by SASP (senescence-associated secretory phenotype), and amyloid-β toxicity. It also activates processes in an anti-inflammatory network, in which SIRT1 activation, upregulation of Nrf2 and downregulation of NF-κB, and release of the anti-inflammatory cytokines IL-4 and IL-10 are involved. A perhaps crucial action may be the promotion of macrophage or microglia polarization in favor of the anti-inflammatory phenotype M2. In addition, many factors of the pro- and anti-inflammatory networks are subject to regulation by microRNAs that either target mRNAs of the respective factors or upregulate them by targeting mRNAs of their inhibitor proteins.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
132
|
Xu XH, Kou LC, Wang HM, Bo CM, Song XC. Genetic polymorphisms of melatonin receptors 1A and 1B may result in disordered lipid metabolism in obese patients with polycystic ovary syndrome. Mol Med Rep 2019; 19:2220-2230. [PMID: 30664204 PMCID: PMC6390034 DOI: 10.3892/mmr.2019.9872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a condition in which a woman's levels of the sex hormones (estrogen and progesterone) are out of balance, leading to the growth of ovarian cysts. PCOS can affect the menstrual cycle, fertility, cardiac function and even appearance of women. Therefore, we aimed to explore the genetic polymorphism of the melatonin receptors 1A and 1B in obese patients with PCOS to identify a new theoretical basis for its treatment. Patients presenting with PCOS (n=359) were enrolled and classified into an obese OB-PCOS group [body mass index (BMI) of PCOS patients ≥25 kg/m2] or a nonobese NOB-PCOS group, and 215 oviduct infertile patients who experienced normal ovulation were used as the control group. All baseline characteristics, endocrine hormone levels, lipid and glucose metabolism, and insulin indices were measured. The genotypes of rs2119882 within the MTNR1A gene and of rs10830963 within the MTNR1B gene were determined by PCR-RFLP; the genotype frequency and the difference in the distribution of allele frequency were compared. For rs2119882, C allele carriers who were not diagnosed with PCOS had an increased risk of developing PCOS, and C allele carriers with PCOS had an increased risk of developing OB-PCOS. For rs10830963, G allele carriers who were not diagnosed with PCOS had an increased risk of developing PCOS. The TT genotype in rs2119882 and the CC genotype in rs10830963 were protective factors for OB-PCOS, and increased levels of LH, testosterone, and estradiol and abnormal menstruation were key risk factors for PCOS. Furthermore, the TT genotype at the rs2119882 site was the key protective factor for OB-PCOS patients. Our study found that MTNR1A rs2119882 and MTNR1B rs10830963 could increase the risk for PCOS and cause glycolipid metabolism disorder in PCOS patients.
Collapse
Affiliation(s)
- Xiu-Hua Xu
- Obstetrics and Gynecology Clinic, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Lian-Cui Kou
- Department of Blood Rheumatism, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Hai-Mei Wang
- Marketing and Customer Service, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Chun-Mei Bo
- Obstetrics and Gynecology Clinic, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Xiao-Cui Song
- Department of Reproductive Medicine, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| |
Collapse
|
133
|
Kleszczyński K, Bilska B, Stegemann A, Flis DJ, Ziolkowski W, Pyza E, Luger TA, Reiter RJ, Böhm M, Slominski AT. Melatonin and Its Metabolites Ameliorate UVR-Induced Mitochondrial Oxidative Stress in Human MNT-1 Melanoma Cells. Int J Mol Sci 2018; 19:ijms19123786. [PMID: 30487387 PMCID: PMC6320988 DOI: 10.3390/ijms19123786] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022] Open
Abstract
Melatonin (Mel) is the major biologically active molecule secreted by the pineal gland. Mel and its metabolites, 6-hydroxymelatonin (6(OH)Mel) and 5-methoxytryptamine (5-MT), possess a variety of functions, including the scavenging of free radicals and the induction of protective or reparative mechanisms in the cell. Their amphiphilic character allows them to cross cellular membranes and reach subcellular organelles, including the mitochondria. Herein, the action of Mel, 6(OH)Mel, and 5-MT in human MNT-1 melanoma cells against ultraviolet B (UVB) radiation was investigated. The dose of 50 mJ/cm2 caused a significant reduction of cell viability up to 48%, while investigated compounds counteracted this deleterious effect. UVB exposure increased catalase activity and led to a simultaneous Ca++ influx (16%), while tested compounds prevented these disturbances. Additional analysis focused on mitochondrial respiration performed in isolated mitochondria from the liver of BALB/cJ mice where Mel, 6(OH)Mel, and 5-MT significantly enhanced the oxidative phosphorylation at the dose of 10−6 M with lower effects seen at 10−9 or 10−4 M. In conclusion, Mel, 6(OH)Mel and 5-MT protect MNT-1 cells, which express melatonin receptors (MT1 and MT2) against UVB-induced oxidative stress and mitochondrial dysfunction, including the uncoupling of oxidative phosphorylation.
Collapse
Affiliation(s)
- Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany.
| | - Bernadetta Bilska
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Agatha Stegemann
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany.
| | - Damian Jozef Flis
- Department of Bioenergetics and Nutrition, Gdańsk University of Physical Education and Sport, Górski Str. 1, 80-336 Gdańsk, Poland.
| | - Wieslaw Ziolkowski
- Department of Bioenergetics and Nutrition, Gdańsk University of Physical Education and Sport, Górski Str. 1, 80-336 Gdańsk, Poland.
| | - Elżbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Thomas A Luger
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany.
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA.
| | - Markus Böhm
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany.
| | - Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35249, USA.
| |
Collapse
|
134
|
Kanwar MK, Yu J, Zhou J. Phytomelatonin: Recent advances and future prospects. J Pineal Res 2018; 65:e12526. [PMID: 30256447 DOI: 10.1111/jpi.12526] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
Abstract
Melatonin (MEL) has been revealed as a phylogenetically conserved molecule with a ubiquitous distribution from primitive photosynthetic bacteria to higher plants, including algae and fungi. Since MEL is implicated in numerous plant developmental processes and stress responses, the exploration of its functions in plant has become a rapidly progressing field with the new paradigm of involvement in plants growth and development. The pleiotropic involvement of MEL in regulating the transcripts of numerous genes confirms its vital involvement as a multi-regulatory molecule that architects many aspects of plant development. However, the cumulative research in plants is still preliminary and fragmentary in terms of its established functions compared to what is known about MEL physiology in animals. This supports the need for a comprehensive review that summarizes the new aspects pertaining to its functional role in photosynthesis, phytohormonal interactions under stress, cellular redox signaling, along with other regulatory roles in plant immunity, phytoremediation, and plant microbial interactions. The present review covers the latest advances on the mechanistic roles of phytomelatonin. While phytomelatonin is a sovereign plant growth regulator that can interact with the functions of other plant growth regulators or hormones, its qualifications as a complete phytohormone are still to be established. This review also showcases the yet to be identified potentials of phytomelatonin that will surely encourage the plant scientists to uncover new functional aspects of phytomelatonin in plant growth and development, subsequently improving its status as a potential new phytohormone.
Collapse
Affiliation(s)
- Mukesh Kumar Kanwar
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| |
Collapse
|
135
|
Park G, Jung YS, Park MK, Yang CH, Kim YU. Melatonin inhibits attention-deficit/hyperactivity disorder caused by atopic dermatitis-induced psychological stress in an NC/Nga atopic-like mouse model. Sci Rep 2018; 8:14981. [PMID: 30297827 PMCID: PMC6175954 DOI: 10.1038/s41598-018-33317-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/27/2018] [Indexed: 12/28/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease with the hallmark characteristics of pruritus, psychological stress, and sleep disturbance, all possibly associated with an increased risk of attention-deficit/hyperactivity disorder (ADHD). However, the etiology of the possible association between AD and ADHD is still not well understood. 2,4-dinitrochlorobenzene or corticosterone was used to evaluate the atopic symptom and its psychologic stress in the atopic mice model. Melatonin, corticotropin-releasing hormone, corticotropin-releasing hormone receptor, urocortin, proopiomelanocortin, adrenocorticotropic hormone, corticosterone, cAMP, cAMP response element-binding protein, dopamine and noradrenaline were analyzed spectrophotometrically, and the expression of dopamine beta-hydroxylase and tyrosine hydroxylase were measured by Western blotting or immunohistochemistry. AD-related psychological stress caused an increase in the levels of dopamine beta-hydroxylase and tyrosine hydroxylase, degradation of melatonin, hyper-activity of the hypothalamic-pituitary-adrenal axis, and dysregulation of dopamine and noradrenaline levels (ADHD phenomena) in the locus coeruleus, prefrontal cortex, and striatum of the AD mouse brain. Notably, melatonin administration inhibited the development of ADHD phenomena and their-related response in the mouse model. This study demonstrated that AD-related psychological stress increased catecholamine dysfunction and accelerated the development of psychiatric comorbidities, such as ADHD.
Collapse
MESH Headings
- Animals
- Attention Deficit Disorder with Hyperactivity/chemically induced
- Attention Deficit Disorder with Hyperactivity/drug therapy
- Attention Deficit Disorder with Hyperactivity/metabolism
- Attention Deficit Disorder with Hyperactivity/pathology
- Brain/metabolism
- Brain/pathology
- Cell Line, Transformed
- Dermatitis, Atopic/chemically induced
- Dermatitis, Atopic/drug therapy
- Dermatitis, Atopic/metabolism
- Dermatitis, Atopic/pathology
- Disease Models, Animal
- Humans
- Melatonin/pharmacology
- Mice
- Stress, Psychological/chemically induced
- Stress, Psychological/drug therapy
- Stress, Psychological/metabolism
- Stress, Psychological/pathology
Collapse
Affiliation(s)
- Gunhyuk Park
- The K-herb Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea.
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Moon-Ki Park
- Department of Pharmaceutical Engineering, College of Biomedical Science, Daegu Haany University, 290 Yugok-dong, Gyeongsan-si, Gyeongsangbuk-do, 38610, Republic of Korea
| | - Chae Ha Yang
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
| | - Yong-Ung Kim
- Department of Pharmaceutical Engineering, College of Biomedical Science, Daegu Haany University, 290 Yugok-dong, Gyeongsan-si, Gyeongsangbuk-do, 38610, Republic of Korea.
| |
Collapse
|
136
|
Skobowiat C, Brożyna AA, Janjetovic Z, Saowanee J, Oak AS, Kim TK, Panich U, Reiter RJ, Slominski AT. Melatonin and its derivatives counteract the ultraviolet B radiation-induced damage in human and porcine skin ex vivo. J Pineal Res 2018; 65:e12501. [PMID: 29702749 PMCID: PMC6105533 DOI: 10.1111/jpi.12501] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/23/2018] [Indexed: 12/30/2022]
Abstract
Melatonin and its derivatives (N1 -acetyl-N2 -formyl-5-methoxykynurenine [AFMK] and N-acetyl serotonin [NAS]) have broad-spectrum protective effects against photocarcinogenesis, including both direct and indirect antioxidative actions, regulation of apoptosis and DNA damage repair; these data were primarily derived from in vitro models. This study evaluates possible beneficial effects of melatonin and its active derivatives against ultraviolet B (UVB)-induced harm to human and porcine skin ex vivo and to cultured HaCaT cells. The topical application of melatonin, AFMK, or NAS protected epidermal cells against UVB-induced 8-OHdG formation and apoptosis with a further increase in p53ser15 expression, especially after application of melatonin or AFMK but not after NAS use. The photoprotective action was observed in pre- and post-UVB treatment in both human and porcine models. Melatonin along with its derivatives upregulated also the expression of antioxidative enzymes after UVB radiation of HaCaT cells. The exogenous application of melatonin or its derivatives represents a potent and promising tool for preventing UVB-induced oxidative stress and DNA damage. This protection results in improved genomic, cellular, and tissue integrity against UVB-induced carcinogenesis, especially when applied prior to UV exposure. In addition, our ex vivo experiments provide fundamental justification for further testing the clinical utility of melatonin and metabolites as protectors again UVB in human subjects. Our ex vivo data constitute the bridge between vitro to vivo translation and thus justifies the pursue for further clinical utility of melatonin in maintaining skin homeostasis.
Collapse
Affiliation(s)
- Cezary Skobowiat
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty
of Pharmacy, Collegium Medicum, Nicolaus Copernicus University in Torun,
Poland
- Department of Dermatology, Comprehensive Cancer Center Cancer
Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL,
USA
| | - Anna A. Brożyna
- Department of Tumor Pathology and Pathomorphology, Oncology Centre -
Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
- Department of Tumor Pathology and Pathomorphology, Faculty of Health
Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
- Department of Dermatology, Comprehensive Cancer Center Cancer
Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL,
USA
| | - Zorica Janjetovic
- Department of Dermatology, Comprehensive Cancer Center Cancer
Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL,
USA
| | - Jeayeng Saowanee
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital,
Mahidol University, Bangkok, Thailand
| | - Allen S.W. Oak
- Department of Dermatology, Comprehensive Cancer Center Cancer
Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL,
USA
| | - Tae-Kang Kim
- Department of Dermatology, Comprehensive Cancer Center Cancer
Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL,
USA
| | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital,
Mahidol University, Bangkok, Thailand
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health, San
Antonio, Texas, USA
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center Cancer
Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL,
USA
- Laboratory Service of the VA Medical Center, Birmingham, AL,
USA
- Corresponding author: Andrzej T. Slominski MD, PhD;
Department of Dermatology, University of Alabama at Birmingham, 1720 2nd Avenue
S. VH 476C, Birmingham, AL 35294, USA; Phone: 205.934.5245; Fax: 205.934.5766;
| |
Collapse
|
137
|
Brand RM, Wipf P, Durham A, Epperly MW, Greenberger JS, Falo LD. Targeting Mitochondrial Oxidative Stress to Mitigate UV-Induced Skin Damage. Front Pharmacol 2018; 9:920. [PMID: 30177881 PMCID: PMC6110189 DOI: 10.3389/fphar.2018.00920] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/26/2018] [Indexed: 12/16/2022] Open
Abstract
Unmitigated UV radiation (UVR) induces skin photoaging and multiple forms of cutaneous carcinoma by complex pathways that include those mediated by UV-induced reactive oxygen species (ROS). Upon UVR exposure, a cascade of events is induced that overwhelms the skin’s natural antioxidant defenses and results in DNA damage, intracellular lipid and protein peroxidation, and the dysregulation of pathways that modulate inflammatory and apoptotic responses. To this end, natural products with potent antioxidant properties have been developed to prevent, mitigate, or reverse this damage with varying degrees of success. Mitochondria are particularly susceptible to ROS and subsequent DNA damage as they are a major intracellular source of oxidants. Therefore, the development of mitochondrially targeted agents to mitigate mitochondrial oxidative stress and resulting DNA damage is a logical approach to prevent and treat UV-induced skin damage. We summarize evidence that some existing natural products may reduce mitochondrial oxidative stress and support for synthetically generated mitochondrial targeted cyclic nitroxides as potential alternatives for the prevention and mitigation of UVR-induced skin damage.
Collapse
Affiliation(s)
- Rhonda M Brand
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Austin Durham
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joel S Greenberger
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, United States.,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
138
|
The Mechanism of Melatonin and Its Receptor MT2 Involved in the Development of Bovine Granulosa Cells. Int J Mol Sci 2018; 19:ijms19072028. [PMID: 30002300 PMCID: PMC6073438 DOI: 10.3390/ijms19072028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/28/2018] [Accepted: 07/07/2018] [Indexed: 01/20/2023] Open
Abstract
Ovarian granulosa cells (GCs) are a critical approach to investigate the mechanism of gene regulation during folliculogenesis. The objective of this study was to investigate the role of MT2 in bovine GCs, and assess whether MT2 silencing affected GCs response to melatonin. We found that MT2 silencing significantly decreased the secretion of progesterone and estradiol, and increased the concentration of inhibin B and activin B. To further reveal the regulatory mechanism of MT2 silencing on steroids synthesis, it was found that the expression of CYP19A1 and CYP11A1 enzymes (steroid hormone synthesis) were down-regulated, while genes related to hormonal synthesis (StAR, RUNX2, INHA and INHBB) were up-regulated without affecting the expression of INHBA, suggesting that MT2 silencing may regulate hormone abundance. Furthermore, MT2 silencing significantly increased the expression of TGFBR3 and BMP6, and decreased the expression of LHR and DNMT1A without significant difference in the expression of FSHR and EGFR. In addition, MT2 silencing didn’t affect the effect of melatonin on increasing the expression of DNMT1A, EGFR, INHBA and LHR, and progesterone level, or decreasing INHA, TGFBR3 and StAR expression, and production of inhibin B. Moreover, MT2 silencing could disrupt the role of melatonin in decreasing the FSHR, INHBB and BMP6 expression, and activin B secretion. In conclusion, these results reveal that melatonin and MT2 are essential regulator of bovine GCs function by modulating reproduction-related genes expression, hormones secretion and other regulators of folliculogenesis.
Collapse
|
139
|
The influence of ageing on the extrapineal melatonin synthetic pathway. Exp Gerontol 2018; 110:151-157. [PMID: 29906492 DOI: 10.1016/j.exger.2018.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 02/05/2023]
Abstract
Ageing affects various physiological and metabolic processes in a body and a progressive accumulation of oxidative damage stands out as often used explanation. One of the most powerful scavenger of reactive oxygen species (ROS) in all organs is melatonin. A majority of melatonin supplied to the body via blood originates from the pineal gland. However, we have been interested in a locally produced melatonin. We have used 2.5- and 36-months-old Wistar rats. Tissues were collected and gene expression of AA-NAT and ASMT, the two key enzymes in a synthesis of melatonin, was determined in brain, liver, kidney, heart, skin, and intestine. Since melatonin can influence antioxidant enzymes, the activity of superoxide dismutase (SOD) and catalase (CAT), and the level of GSH were measured in liver. In addition, Copper (Cu), Zinc (Zn), and Manganese (Mn) were also determined in liver since these microelements might affect the activity of antioxidant enzymes. The expression of AA-NAT and ASMT was increased in liver and skin of old animals. A positive correlation in AA-NAT and ASMT expression was observed in liver, intestine and kidney. Moreover, the activity of CAT enzyme in liver was increased while SOD activity was decreased. SOD and CAT were probably affected by the observed decreased amount of Cu, Zn, and Mn in liver of old animals. In our model, extrapineal melatonin pathway in ageing consisted of complex interplay of locally produced melatonin, activities of SOD and CAT, and adequate presence of Cu, Zn and Mn microelements in order to defend organs against oxidative damage.
Collapse
|
140
|
Slominski AT, Zmijewski MA, Plonka PM, Szaflarski JP, Paus R. How UV Light Touches the Brain and Endocrine System Through Skin, and Why. Endocrinology 2018; 159:1992-2007. [PMID: 29546369 PMCID: PMC5905393 DOI: 10.1210/en.2017-03230] [Citation(s) in RCA: 324] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/16/2018] [Indexed: 12/15/2022]
Abstract
The skin, a self-regulating protective barrier organ, is empowered with sensory and computing capabilities to counteract the environmental stressors to maintain and restore disrupted cutaneous homeostasis. These complex functions are coordinated by a cutaneous neuro-endocrine system that also communicates in a bidirectional fashion with the central nervous, endocrine, and immune systems, all acting in concert to control body homeostasis. Although UV energy has played an important role in the origin and evolution of life, UV absorption by the skin not only triggers mechanisms that defend skin integrity and regulate global homeostasis but also induces skin pathology (e.g., cancer, aging, autoimmune responses). These effects are secondary to the transduction of UV electromagnetic energy into chemical, hormonal, and neural signals, defined by the nature of the chromophores and tissue compartments receiving specific UV wavelength. UV radiation can upregulate local neuroendocrine axes, with UVB being markedly more efficient than UVA. The locally induced cytokines, corticotropin-releasing hormone, urocortins, proopiomelanocortin-peptides, enkephalins, or others can be released into circulation to exert systemic effects, including activation of the central hypothalamic-pituitary-adrenal axis, opioidogenic effects, and immunosuppression, independent of vitamin D synthesis. Similar effects are seen after exposure of the eyes and skin to UV, through which UVB activates hypothalamic paraventricular and arcuate nuclei and exerts very rapid stimulatory effects on the brain. Thus, UV touches the brain and central neuroendocrine system to reset body homeostasis. This invites multiple therapeutic applications of UV radiation, for example, in the management of autoimmune and mood disorders, addiction, and obesity.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
- Correspondence: Andrzej T. Slominski, MD, PhD, Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294. E-mail:
| | | | - Przemyslaw M Plonka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jerzy P Szaflarski
- Departments of Neurology and Neurobiology and the UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ralf Paus
- Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
141
|
Dunaway S, Odin R, Zhou L, Ji L, Zhang Y, Kadekaro AL. Natural Antioxidants: Multiple Mechanisms to Protect Skin From Solar Radiation. Front Pharmacol 2018; 9:392. [PMID: 29740318 PMCID: PMC5928335 DOI: 10.3389/fphar.2018.00392] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/05/2018] [Indexed: 12/13/2022] Open
Abstract
Human skin exposed to solar ultraviolet radiation (UVR) results in a dramatic increase in the production of reactive oxygen species (ROS). The sudden increase in ROS shifts the natural balance toward a pro-oxidative state, resulting in oxidative stress. The detrimental effects of oxidative stress occur through multiple mechanisms that involve alterations to proteins and lipids, induction of inflammation, immunosuppression, DNA damage, and activation of signaling pathways that affect gene transcription, cell cycle, proliferation, and apoptosis. All of these alterations promote carcinogenesis and therefore, regulation of ROS levels is critical to the maintenance of normal skin homeostasis. Several botanical products have been found to exhibit potent antioxidant capacity and the ability to counteract UV-induced insults to the skin. These natural products exert their beneficial effects through multiple pathways, including some known to be negatively affected by solar UVR. Aging of the skin is also accelerated by UVR exposure, in particular UVA rays that penetrate deep into the epidermis and the dermis where it causes the degradation of collagen and elastin fibers via oxidative stress and activation of matrix metalloproteinases (MMPs). Because natural compounds are capable of attenuating some of the UV-induced aging effects in the skin, increased attention has been generated in the area of cosmetic sciences. The focus of this review is to cover the most prominent phytoproducts with potential to mitigate the deleterious effects of solar UVR and suitability for use in topical application.
Collapse
Affiliation(s)
- Spencer Dunaway
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Rachel Odin
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Linli Zhou
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Pharmaceutical Sciences, University of Cincinnati College of Pharmacy, Cincinnati, OH, United States
| | - Liyuan Ji
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Pharmaceutical Sciences, University of Cincinnati College of Pharmacy, Cincinnati, OH, United States
| | - Yuhang Zhang
- Division of Pharmaceutical Sciences, University of Cincinnati College of Pharmacy, Cincinnati, OH, United States
| | - Ana L Kadekaro
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
142
|
Onkoksoong T, Jeayeng S, Poungvarin N, Limsaengurai S, Thamsermsang O, Tripatara P, Akarasereenont P, Panich U. Thai herbal antipyretic 22 formula (APF22) inhibits UVA-mediated melanogenesis through activation of Nrf2-regulated antioxidant defense. Phytother Res 2018; 32:1546-1554. [PMID: 29672960 DOI: 10.1002/ptr.6083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 12/29/2022]
Abstract
Thai herbal antipyretic 22 formula (APF22), a polyherbal formula, has been traditionally used to treat dermatologic problems including hyperpigmentation. Exposure of the skin to ultraviolet A (UVA) causes abnormal melanin production induced by photooxidative stress. This study thus aimed to investigate the protective effects of APF22 extracts and phenolic compounds, ferulic acid (FA), and gallic acid (GA; used as positive control and reference compounds), on melanogenesis through modulation of nuclear factor E2-related factor 2 (Nrf2) signaling and antioxidant defenses in mouse melanoma (B16F10) cells exposed to UVA. Our results revealed that the APF22 extracts, FA, and GA reduced melanin synthesis as well as activity and protein levels of tyrosinase in UVA-irradiated B16F10 cells. Moreover, APF22 extracts and both FA and GA were able to activate Nrf2-antioxidant response element signaling and promote antioxidant defenses including glutathione, catalase, glutathione peroxidase, and the glutathione-S-transferase at both mRNA and enzyme activity levels in irradiated cells. In conclusion, APF22 extracts suppressed UVA-mediated melanogenesis in B16F10 cells possibly via redox mechanisms involving activation of Nrf2 signaling and upregulation of antioxidant defenses. Moreover, pharmacological action of the APF22 extracts may be attributed to the phenolic compounds, FA, and GA, probably serving as the APF22's active compounds.
Collapse
Affiliation(s)
- Tasanee Onkoksoong
- Department of Pharmacology, Mahidol University, Bangkok, 10700, Thailand
| | - Saowanee Jeayeng
- Department of Pharmacology, Mahidol University, Bangkok, 10700, Thailand
| | - Naravat Poungvarin
- Department of Clinical Pathology, Mahidol University, Bangkok, 10700, Thailand
| | | | - Onusa Thamsermsang
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pinpat Tripatara
- Department of Pharmacology, Mahidol University, Bangkok, 10700, Thailand
| | - Pravit Akarasereenont
- Department of Pharmacology, Mahidol University, Bangkok, 10700, Thailand.,Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Uraiwan Panich
- Department of Pharmacology, Mahidol University, Bangkok, 10700, Thailand
| |
Collapse
|
143
|
Rojo de la Vega M, Zhang DD, Wondrak GT. Topical Bixin Confers NRF2-Dependent Protection Against Photodamage and Hair Graying in Mouse Skin. Front Pharmacol 2018; 9:287. [PMID: 29636694 PMCID: PMC5880955 DOI: 10.3389/fphar.2018.00287] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/13/2018] [Indexed: 01/10/2023] Open
Abstract
Environmental exposure to solar ultraviolet (UV) radiation causes acute photodamage, premature aging, and skin cancer, attributable to UV-induced genotoxic, oxidative, and inflammatory stress. The transcription factor NRF2 [nuclear factor erythroid 2 (E2)-related factor 2] is the master regulator of the cellular antioxidant response protecting skin against various environmental stressors including UV radiation and electrophilic pollutants. NRF2 in epidermal keratinocytes can be activated using natural chemopreventive compounds such as the apocarotenoid bixin, an FDA-approved food additive and cosmetic ingredient from the seeds of the achiote tree (Bixa orellana). Here, we tested the feasibility of topical use of bixin for NRF2-dependent skin photoprotection in two genetically modified mouse models [SKH1 and C57BL/6J (Nrf2+/+ versus Nrf2-/- )]. First, we observed that a bixin formulation optimized for topical NRF2 activation suppresses acute UV-induced photodamage in Nrf2+/+ but not Nrf2-/- SKH1 mice, a photoprotective effect indicated by reduced epidermal hyperproliferation and oxidative DNA damage. Secondly, it was demonstrated that topical bixin suppresses PUVA (psoralen + UVA)-induced hair graying in Nrf2+/+ but not Nrf2-/- C57BL/6J mice. Collectively, this research provides the first in vivo evidence that topical application of bixin can protect against UV-induced photodamage and PUVA-induced loss of hair pigmentation through NRF2 activation. Topical NRF2 activation using bixin may represent a novel strategy for human skin photoprotection, potentially complementing conventional sunscreen-based approaches.
Collapse
Affiliation(s)
- Montserrat Rojo de la Vega
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States.,The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States.,The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
144
|
Li G, Zhang Y, Ni Y, Wang Y, Xu B, Guo X. Identification of a melatonin receptor type 1A gene (AccMTNR1A) in Apis cerana cerana and its possible involvement in the response to low temperature stress. Naturwissenschaften 2018; 105:24. [DOI: 10.1007/s00114-018-1546-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/18/2018] [Accepted: 02/20/2018] [Indexed: 12/20/2022]
|
145
|
Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Zhou XJ, Xu B. Mitochondria: Central Organelles for Melatonin's Antioxidant and Anti-Aging Actions. Molecules 2018; 23:E509. [PMID: 29495303 PMCID: PMC6017324 DOI: 10.3390/molecules23020509] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 02/07/2023] Open
Abstract
Melatonin, along with its metabolites, have long been known to significantly reduce the oxidative stress burden of aging cells or cells exposed to toxins. Oxidative damage is a result of free radicals produced in cells, especially in mitochondria. When measured, melatonin, a potent antioxidant, was found to be in higher concentrations in mitochondria than in other organelles or subcellular locations. Recent evidence indicates that mitochondrial membranes possess transporters that aid in the rapid uptake of melatonin by these organelles against a gradient. Moreover, we predicted several years ago that, because of their origin from melatonin-producing bacteria, mitochondria likely also synthesize melatonin. Data accumulated within the last year supports this prediction. A high content of melatonin in mitochondria would be fortuitous, since these organelles produce an abundance of free radicals. Thus, melatonin is optimally positioned to scavenge the radicals and reduce the degree of oxidative damage. In light of the "free radical theory of aging", including all of its iterations, high melatonin levels in mitochondria would be expected to protect against age-related organismal decline. Also, there are many age-associated diseases that have, as a contributing factor, free radical damage. These multiple diseases may likely be deferred in their onset or progression if mitochondrial levels of melatonin can be maintained into advanced age.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology UT Health San Antonio, San Antonio, SD 78229, USA.
| | - Dun Xian Tan
- Department of Cellular and Structural Biology UT Health San Antonio, San Antonio, SD 78229, USA.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituo Mexicana del Seguro Social, Guadalajara 44346, Mexico.
| | - Annia Galano
- Departamento de Quimica, Universidad Autonoma Metropolitana-Iztapatapa, Mexico D.F. 09340, Mexico.
| | - Xin Jia Zhou
- Department of Cellular and Structural Biology UT Health San Antonio, San Antonio, SD 78229, USA.
| | - Bing Xu
- Department of Cellular and Structural Biology UT Health San Antonio, San Antonio, SD 78229, USA.
| |
Collapse
|
146
|
Melatonin: A Cutaneous Perspective on its Production, Metabolism, and Functions. J Invest Dermatol 2018; 138:490-499. [PMID: 29428440 DOI: 10.1016/j.jid.2017.10.025] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/05/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023]
Abstract
Melatonin, an evolutionarily ancient derivative of serotonin with hormonal properties, is the main neuroendocrine secretory product of the pineal gland. Although melatonin is best known to regulate circadian rhythmicity and lower vertebrate skin pigmentation, the full spectrum of functional activities of this free radical-scavenging molecule, which also induces/promotes complex antioxidative and DNA repair systems, includes immunomodulatory, thermoregulatory, and antitumor properties. Because this plethora of functional melatonin properties still awaits to be fully appreciated by dermatologists, the current review synthesizes the main features that render melatonin a promising candidate for the management of several dermatoses associated with substantial oxidative damage. We also review why melatonin promises to be useful in skin cancer prevention, skin photo- and radioprotection, and as an inducer of repair mechanisms that facilitate the recovery of human skin from environmental damage. The fact that human skin and hair follicles not only express functional melatonin receptors but also engage in substantial, extrapineal melatonin synthesis further encourages one to systematically explore how the skin's melatonin system can be therapeutically targeted in future clinical dermatology and enrolled for preventive medicine strategies.
Collapse
|
147
|
Tan DX, Xu B, Zhou X, Reiter RJ. Pineal Calcification, Melatonin Production, Aging, Associated Health Consequences and Rejuvenation of the Pineal Gland. Molecules 2018; 23:E301. [PMID: 29385085 PMCID: PMC6017004 DOI: 10.3390/molecules23020301] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 01/26/2023] Open
Abstract
The pineal gland is a unique organ that synthesizes melatonin as the signaling molecule of natural photoperiodic environment and as a potent neuronal protective antioxidant. An intact and functional pineal gland is necessary for preserving optimal human health. Unfortunately, this gland has the highest calcification rate among all organs and tissues of the human body. Pineal calcification jeopardizes melatonin's synthetic capacity and is associated with a variety of neuronal diseases. In the current review, we summarized the potential mechanisms of how this process may occur under pathological conditions or during aging. We hypothesized that pineal calcification is an active process and resembles in some respects of bone formation. The mesenchymal stem cells and melatonin participate in this process. Finally, we suggest that preservation of pineal health can be achieved by retarding its premature calcification or even rejuvenating the calcified gland.
Collapse
Affiliation(s)
- Dun Xian Tan
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Bing Xu
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Xinjia Zhou
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Russel J Reiter
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
148
|
Milani M, Sparavigna A. Antiaging efficacy of melatonin-based day and night creams: a randomized, split-face, assessor-blinded proof-of-concept trial. Clin Cosmet Investig Dermatol 2018; 11:51-57. [PMID: 29416368 PMCID: PMC5788993 DOI: 10.2147/ccid.s153905] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Skin is a complete and independent melatoninergic system. At the skin level, melatonin (Mel) acts as a relevant antioxidant and cytoprotective substance. Topical application of Mel is considered meaningful, since it can easily penetrate the stratum corneum. Exogenous Mel can be expected to represent a potent antioxidative defense system against skin aging mechanisms. Day and night creams containing Mel, carried in lipospheres (Melatosphere™), have been developed (Nutriage SPF 30 day cream and Nutriage night cream). STUDY AIM The aim of this study was to evaluate the efficacy of a Mel-based cream as antiaging treatment. SUBJECTS AND METHODS In a randomized, split-face, assessor-blinded, prospective 3-month study, 22 women (mean age 55 years) with moderate-severe skin aging were enrolled (clinical trial registration number: NCT03276897). Study products were applied in the morning (Nutriage day cream) and evening (Nutriage night cream) on the right or left side of the face. Primary outcomes were: 1) clinical evaluation of wrinkles' grade (crow's feet and nasolabial folds), surface microrelief, skin tonicity (resistance to pinching and traction, recovery after pinching) and skin dryness and 2) instrumental evaluation of skin roughness and 3D photographic documentation (Vectra H1 images system). Assessments of both clinical and instrumental evaluations were performed at baseline and after 1, 2 and 3 months of treatment by an investigator unaware of treatment allocation. RESULTS All the subjects completed the study. Crow's feet was reduced significantly (p=0.05) by -15% with the creams in comparison with the non-treated side after 3 months. At the end of the study, surface microrelief (-26.5%), skin profilometry (-13%), skin tonicity (+30%) and skin dryness (-59.5%) significantly improved with active treatment. Both products were well tolerated. CONCLUSION In women with skin aging, Mel-based creams improved significantly skin tonicity and skin hydration with a significant reduction in skin roughness, supporting the skin antiaging effect of this molecule applied topically.
Collapse
Affiliation(s)
- Massimo Milani
- Medical Department, Cantabria Labs Difa Cooper, Caronno Pertusella
| | - Adele Sparavigna
- Derming, Clinical Research and Bioengineering Institute, Milan, Italy
| |
Collapse
|
149
|
Pharmacological activation of TRPV4 produces immediate cell damage and induction of apoptosis in human melanoma cells and HaCaT keratinocytes. PLoS One 2018; 13:e0190307. [PMID: 29293584 PMCID: PMC5749757 DOI: 10.1371/journal.pone.0190307] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/12/2017] [Indexed: 12/11/2022] Open
Abstract
Background TRPV4 channels are calcium-permeable cation channels that are activated by several physicochemical stimuli. Accordingly, TRPV4 channels have been implicated in the regulation of osmosensing, mechanotransduction, thermosensation, and epithelial/endothelial barrier functions. Whether TRPV4 is also mechanistically implicated in melanoma cell proliferation is not clear. Here, we hypothesized that TRPV4 is expressed in human melanoma and that pharmacological activation interferes with cell proliferation. Methodology/Principal findings TRPV4 functions were studied in melanoma cell lines (A375, SK-MEL-28, MKTBR), immortalized non-cancer keratinocytes (HaCaT), and murine 3T3 fibroblasts by patch-clamp, qRT-PCR, intracellular calcium measurements, cell proliferation, and flow cytometric assays of apoptosis and cell cycle. The selective TRPV4-activator, GSK1016790A, elicited non-selective cation currents with TRPV4-typical current-voltage-relationship in all cell lines. GSK1016790A-induced currents were blocked by the TRPV4-blocker, HC067047. TRPV4 mRNA expression was demonstrated by qRT-PCR. In A375 cells, TRPV4 activation was frequently paralleled by co-activation of calcium/calmodulin-regulated KCa3.1 channels. Light microscopy showed that TRPV4-activation produced rapid cellular disarrangement, nuclear densification, and detachment of a large fraction of all melanoma cell lines and HaCaT cells. TRPV4-activation induced apoptosis and drastically inhibited A375 and HaCaT proliferation that could be partially prevented by HC067047. Conclusions/Significance Our study showed that TRPV4 channels were functionally expressed in human melanoma cell lines and in human keratinocytes. Pharmacological TRPV4 activation in human melanoma cells and keratinocytes caused severe cellular disarrangement, necrosis and apoptosis. Pharmacological targeting of TRPV4 could be an alternative or adjuvant therapeutic strategy to treat melanoma progression and other proliferative skin disorders.
Collapse
|
150
|
Melatonin Improves the Quality of Inferior Bovine Oocytes and Promoted Their Subsequent IVF Embryo Development: Mechanisms and Results. Molecules 2017; 22:molecules22122059. [PMID: 29186876 PMCID: PMC6149663 DOI: 10.3390/molecules22122059] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 02/02/2023] Open
Abstract
The inferior oocytes (IOs), which are not suitable for embryo development, occupy roughly one-third or more of the collected immature bovine oocytes. The IOs are usually discarded from the in vitro bovine embryo production process. Improving the quality of the inferior oocytes (IOs) and make them available in in vitro embryo production would have important biological, as well as commercial, value. This study was designed to investigate whether melatonin could improve the quality of IOs and make them usable in the in vitro maturation (IVM) and subsequent (in vitro fertilization) IVF embryo development. The results indicated that: the maturation rate of IOs and their subsequent IVF embryo developments were impaired compared to cumulus-oocyte complexes and melatonin treatment significantly improved the quality of IOs, as well as their IVF and embryo developments. The potential mechanisms are that: (1) melatonin reduced reactive oxygen species (ROS) and enhanced glutathione (GSH) levels in the IOs, thereby protecting them from oxidative stress; (2) melatonin improved mitochondrial normal distribution and function to increase ATP level in IOs; and (3) melatonin upregulated the expression of ATPase 6, BMP-15, GDF-9, SOD-1, Gpx-4, and Bcl-2, which are critical genes for oocyte maturation and embryo development and downregulated apoptotic gene expression of caspase-3.
Collapse
|