101
|
Ramos-Dávila EM, Garza-Garza LA, Villafuerte-de la Cruz R, Aguilar-Y-Mendez D, Morales-Garza HJ, Garza-Leon M, Ruiz-Lozano RE, Ancona-Lezama D. Novel RB1 germline mutation in a healthy man. Ophthalmic Genet 2022; 43:561-566. [PMID: 35410579 DOI: 10.1080/13816810.2022.2062390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Retinoblastoma (Rb) most frequently presents as a unilateral sporadic disease up to 40% of cases, however, arise from a monoallelic germline pathogenic variant. Only 10% of the germline mutations are inherited, and high penetrance is seen in up to 90% of these cases. As an effort to optimize counseling and screening, mutations are classified according to inheritance patterns. However, RB1 spectrum is highly heterogeneous, and information for unaffected carriers remains scarce. MATERIALS AND METHODS The Mexican family of a 5-month-old patient diagnosed with Rb was studied. The family consisted of five individuals (father, mother, and three siblings). Genetic testing using a next-generation sequencing assay targeting RB1 with oligonucleotide baits designed to capture its exons and 20 bases flanking intronic sequences was performed in every family member. Clinical history and a complete ophthalmological examination (best-corrected visual acuity, slit-lamp biomicroscopy, macular optical coherence tomography, fundus autofluorescence, optical coherence tomography angiography, and electrophysiological studies) were performed in members testing positive to RB1 mutation. RESULTS The father and her five-month-old daughter tested positive for a non-synonymous RB1 mutation c.459del (p.Lys154Serfs*21). The girl presented with bilateral retinoblastoma, successfully treated with cryotherapy and intravenous chemotherapy. The father had no relevant findings on imaging studies or ophthalmologic evaluation. CONCLUSIONS This report describes a rare case of a novel low-penetrance RB1 germline mutation. Long-term follow-up of the father will include periodic evaluation of the eyes and orbits, and surveillance for systemic sarcoma and secondary malignancies. Implications for unaffected individuals need to be further studied.
Collapse
Affiliation(s)
- Eugenia M Ramos-Dávila
- Ocular Oncology Service, Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Lucas A Garza-Garza
- Ocular Oncology Service, Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Rocío Villafuerte-de la Cruz
- Ocular Oncology Service, Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Dione Aguilar-Y-Mendez
- Ocular Oncology Service, Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Héctor J Morales-Garza
- Ocular Oncology Service, Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Manuel Garza-Leon
- Departamento de Ciencias Clínicas de la División de Ciencias de la Salud, Universidad de Monterrey, San Pedro Garza García, México
| | - Raul E Ruiz-Lozano
- Ocular Oncology Service, Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - David Ancona-Lezama
- Ocular Oncology Service, Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| |
Collapse
|
102
|
Auwerx C, Lepamets M, Sadler MC, Patxot M, Stojanov M, Baud D, Mägi R, Porcu E, Reymond A, Kutalik Z. The individual and global impact of copy-number variants on complex human traits. Am J Hum Genet 2022; 109:647-668. [PMID: 35240056 PMCID: PMC9069145 DOI: 10.1016/j.ajhg.2022.02.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/09/2022] [Indexed: 12/25/2022] Open
Abstract
The impact of copy-number variations (CNVs) on complex human traits remains understudied. We called CNVs in 331,522 UK Biobank participants and performed genome-wide association studies (GWASs) between the copy number of CNV-proxy probes and 57 continuous traits, revealing 131 signals spanning 47 phenotypes. Our analysis recapitulated well-known associations (e.g., 1q21 and height), revealed the pleiotropy of recurrent CNVs (e.g., 26 and 16 traits for 16p11.2-BP4-BP5 and 22q11.21, respectively), and suggested gene functionalities (e.g., MARF1 in female reproduction). Forty-eight CNV signals (38%) overlapped with single-nucleotide polymorphism (SNP)-GWASs signals for the same trait. For instance, deletion of PDZK1, which encodes a urate transporter scaffold protein, decreased serum urate levels, while deletion of RHD, which encodes the Rhesus blood group D antigen, associated with hematological traits. Other signals overlapped Mendelian disorder regions, suggesting variable expressivity and broad impact of these loci, as illustrated by signals mapping to Rotor syndrome (SLCO1B1/3), renal cysts and diabetes syndrome (HNF1B), or Charcot-Marie-Tooth (PMP22) loci. Total CNV burden negatively impacted 35 traits, leading to increased adiposity, liver/kidney damage, and decreased intelligence and physical capacity. Thirty traits remained burden associated after correcting for CNV-GWAS signals, pointing to a polygenic CNV architecture. The burden negatively correlated with socio-economic indicators, parental lifespan, and age (survivorship proxy), suggesting a contribution to decreased longevity. Together, our results showcase how studying CNVs can expand biological insights, emphasizing the critical role of this mutational class in shaping human traits and arguing in favor of a continuum between Mendelian and complex diseases.
Collapse
Affiliation(s)
- Chiara Auwerx
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland; Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; University Center for Primary Care and Public Health, Lausanne 1010, Switzerland
| | - Maarja Lepamets
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia; Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Marie C Sadler
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; University Center for Primary Care and Public Health, Lausanne 1010, Switzerland
| | - Marion Patxot
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland
| | - Miloš Stojanov
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, CHUV, Lausanne 1011, Switzerland
| | - David Baud
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, CHUV, Lausanne 1011, Switzerland
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Eleonora Porcu
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; University Center for Primary Care and Public Health, Lausanne 1010, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland.
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland; Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; University Center for Primary Care and Public Health, Lausanne 1010, Switzerland.
| |
Collapse
|
103
|
Cătană A, Kutasi E, Cuzmici‑Barabaș Z, Militaru D, Iordănescu I, Militaru M. O'Donnel‑Luria‑Rodan Syndrome: New gene variant identified in Romania (A case report). Exp Ther Med 2022; 23:367. [PMID: 35481221 PMCID: PMC9016787 DOI: 10.3892/etm.2022.11294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/01/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Andreea Cătană
- Department of Oncogenetics, Institute of Oncology I. Chiricuță, Cluj‑Napoca, Transylvania 4000015, Romania
| | - Enikő Kutasi
- Department of Oncogenetics, Institute of Oncology I. Chiricuță, Cluj‑Napoca, Transylvania 4000015, Romania
| | - Zina Cuzmici‑Barabaș
- Department of Molecular Sciences, University of Medicine and Pharmacy, Cluj‑Napoca, Transylvania 4000012, Romania
| | - Diana Militaru
- Department of Molecular Sciences, University of Medicine and Pharmacy, Cluj‑Napoca, Transylvania 4000012, Romania
| | - Irina Iordănescu
- Department of Medical Genetics, Genetic Center Laboratory, Regina Maria, Bucharest 011376, Romania
| | - Mariela Militaru
- Department of Molecular Sciences, University of Medicine and Pharmacy, Cluj‑Napoca, Transylvania 4000012, Romania
| |
Collapse
|
104
|
Whole-genome sequencing of 1,171 elderly admixed individuals from São Paulo, Brazil. Nat Commun 2022; 13:1004. [PMID: 35246524 PMCID: PMC8897431 DOI: 10.1038/s41467-022-28648-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
As whole-genome sequencing (WGS) becomes the gold standard tool for studying population genomics and medical applications, data on diverse non-European and admixed individuals are still scarce. Here, we present a high-coverage WGS dataset of 1,171 highly admixed elderly Brazilians from a census-based cohort, providing over 76 million variants, of which ~2 million are absent from large public databases. WGS enables identification of ~2,000 previously undescribed mobile element insertions without previous description, nearly 5 Mb of genomic segments absent from the human genome reference, and over 140 alleles from HLA genes absent from public resources. We reclassify and curate pathogenicity assertions for nearly four hundred variants in genes associated with dominantly-inherited Mendelian disorders and calculate the incidence for selected recessive disorders, demonstrating the clinical usefulness of the present study. Finally, we observe that whole-genome and HLA imputation could be significantly improved compared to available datasets since rare variation represents the largest proportion of input from WGS. These results demonstrate that even smaller sample sizes of underrepresented populations bring relevant data for genomic studies, especially when exploring analyses allowed only by WGS. Whole genome sequencing (WGS) data on non-European and admixed individuals remains scarce. Here, the authors analyse WGS data from 1,171 admixed elderly Brazilians from a census cohort, characterising population-specific genetic variation and exploring the clinical utility of this expanded dataset.
Collapse
|
105
|
Deng L, Mojica-Perez SP, Azaria RD, Schultz M, Parent JM, Niu W. Loss of POGZ alters neural differentiation of human embryonic stem cells. Mol Cell Neurosci 2022; 120:103727. [PMID: 35367590 PMCID: PMC9549529 DOI: 10.1016/j.mcn.2022.103727] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022] Open
Abstract
POGZ is a pogo transposable element derived protein with multiple zinc finger domains. Many de novo loss-of-function (LoF) variants of the POGZ gene are associated with autism and other neurodevelopmental disorders. However, the role of POGZ in human cortical development remains poorly understood. Here we generated multiple POGZ LoF lines in H9 human embryonic stem cells (hESCs) using CRISPR/CAS9 genome editing. These lines were then differentiated into neural structures, similar to those found in early to mid-fetal human brain, a critical developmental stage for studying disease mechanisms of neurodevelopmental disorders. We found that the loss of POGZ reduced neural stem cell proliferation in excitatory cortex-patterned neural rosettes, structures analogous to the cortical ventricular zone in human fetal brain. As a result, fewer intermediate progenitor cells and early born neurons were generated. In addition, neuronal migration from the apical center to the basal surface of neural rosettes was perturbed due to the loss of POGZ. Furthermore, cortical-like excitatory neurons derived from multiple POGZ homozygous knockout lines exhibited a more simplified dendritic architecture compared to wild type lines. Our findings demonstrate how POGZ regulates early neurodevelopment in the context of human cells, and provide further understanding of the cellular pathogenesis of neurodevelopmental disorders associated with POGZ variants.
Collapse
|
106
|
Kolarova H, Tan J, Strom TM, Meitinger T, Wagner M, Klopstock T. Lifetime risk of autosomal recessive neurodegeneration with brain iron accumulation (NBIA) disorders calculated from genetic databases. EBioMedicine 2022; 77:103869. [PMID: 35180557 PMCID: PMC8856992 DOI: 10.1016/j.ebiom.2022.103869] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Background Neurodegeneration with brain iron accumulation (NBIA) are a group of clinically and genetically heterogeneous diseases characterized by iron overload in basal ganglia and progressive neurodegeneration. Little is known about the epidemiology of NBIA disorders. In the absence of large-scale population-based studies, obtaining reliable epidemiological data requires innovative approaches. Methods All pathogenic variants were collected from the 13 genes associated with autosomal recessive NBIA (PLA2G6, PANK2, COASY, ATP13A2, CP, AP4M1, FA2H, CRAT, SCP2, C19orf12, DCAF17, GTPBP2, REPS1). The allele frequencies of these disease-causing variants were assessed in exome/genome collections: the Genome Aggregation Database (gnomAD) and our in-house database. Lifetime risks were calculated from the sum of allele frequencies in the respective genes under assumption of Hardy-Weinberg equilibrium. Findings The combined estimated lifetime risk of all 13 investigated NBIA disorders is 0.88 (95% confidence interval 0.70–1.10) per 100,000 based on the global gnomAD dataset (n = 282,912 alleles), 0.92 (0.65–1.29) per 100,000 in the European gnomAD dataset (n = 129,206), and 0.90 (0.48–1.62) per 100,000 in our in-house database (n = 44,324). Individually, the highest lifetime risks (>0.15 per 100,000) are found for disorders caused by variants in PLA2G6, PANK2 and COASY. Interpretation This population-genetic estimation on lifetime risks of recessive NBIA disorders reveals frequencies far exceeding previous population-based numbers. Importantly, our approach represents lifetime risks from conception, thus including prenatal deaths. Understanding the true lifetime risk of NBIA disorders is important in estimating disease burden, allocating resources and targeting specific interventions.
Collapse
Affiliation(s)
- Hana Kolarova
- Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig Maximilian University of Munich, Ziemssenstraße 1a, Munich 80336, Germany; Institute of Human Genetics, Technical University of Munich, Trogerstraße 32, Munich 81675, Germany; Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 12000, Czech Republic
| | - Jing Tan
- Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig Maximilian University of Munich, Ziemssenstraße 1a, Munich 80336, Germany; Institute of Human Genetics, Technical University of Munich, Trogerstraße 32, Munich 81675, Germany; Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tim M Strom
- Institute of Human Genetics, Technical University of Munich, Trogerstraße 32, Munich 81675, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Technical University of Munich, Trogerstraße 32, Munich 81675, Germany
| | - Matias Wagner
- Institute of Human Genetics, Technical University of Munich, Trogerstraße 32, Munich 81675, Germany; Institute of Neurogenomics, Helmholtz Zentrum Munich, Ingolstädter Landstraße 1, Neuherberg 85764, Germany; LMU University Hospital, Department of Pediatrics, Dr. von Hauner Children's Hospital, Division of Pediatric Neurology, LMU Center for Development and Children with Medical Complexity, Ludwig-Maximilians-University, Munich, Germany.
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig Maximilian University of Munich, Ziemssenstraße 1a, Munich 80336, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
107
|
Corominas J, Smeekens SP, Nelen MR, Yntema HG, Kamsteeg EJ, Pfundt R, Gilissen C. Clinical exome sequencing - mistakes and caveats. Hum Mutat 2022; 43:1041-1055. [PMID: 35191116 PMCID: PMC9541396 DOI: 10.1002/humu.24360] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 01/11/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022]
Abstract
Massive parallel sequencing technology has become the predominant technique for genetic diagnostics and research. Many genetic laboratories have wrestled with the challenges of setting up genetic testing workflows based on a completely new technology. The learning curve we went through as a laboratory was accompanied by growing pains while we gained new knowledge and expertise. Here we discuss some important mistakes that have been made in our laboratory through 10 years of clinical exome sequencing but that have given us important new insights on how to adapt our working methods. We provide these examples and the lessons that we learned to help other laboratories avoid to make the same mistakes.
Collapse
Affiliation(s)
- Jordi Corominas
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sanne P Smeekens
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel R Nelen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helger G Yntema
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
108
|
Frederiksen SD, Avramović V, Maroilley T, Lehman A, Arbour L, Tarailo-Graovac M. Rare disorders have many faces: in silico characterization of rare disorder spectrum. Orphanet J Rare Dis 2022; 17:76. [PMID: 35193637 PMCID: PMC8864832 DOI: 10.1186/s13023-022-02217-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/06/2022] [Indexed: 11/18/2022] Open
Abstract
Background The diagnostic journey for many rare disease patients remains challenging despite use of latest genetic technological advancements. We hypothesize that some patients remain undiagnosed due to more complex diagnostic scenarios that are currently not considered in genome analysis pipelines. To better understand this, we characterized the rare disorder (RD) spectrum using various bioinformatics resources (e.g., Orphanet/Orphadata, Human Phenotype Ontology, Reactome pathways) combined with custom-made R scripts. Results Our in silico characterization led to identification of 145 borderline-common, 412 rare and 2967 ultra-rare disorders. Based on these findings and point prevalence, we would expect that approximately 6.53%, 0.34%, and 0.30% of individuals in a randomly selected population have a borderline-common, rare, and ultra-rare disorder, respectively (equaling to 1 RD patient in 14 people). Importantly, our analyses revealed that (1) a higher proportion of borderline-common disorders were caused by multiple gene defects and/or other factors compared with the rare and ultra-rare disorders, (2) the phenotypic expressivity was more variable for the borderline-common disorders than for the rarer disorders, and (3) unique clinical characteristics were observed across the disorder categories forming the spectrum. Conclusions Recognizing that RD patients who remain unsolved even after genome sequencing might belong to the more common end of the RD spectrum support the usage of computational pipelines that account for more complex genetic and phenotypic scenarios. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02217-9.
Collapse
Affiliation(s)
- Simona D Frederiksen
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Vladimir Avramović
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Tatiana Maroilley
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| | - Laura Arbour
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| | - Maja Tarailo-Graovac
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
109
|
Elsink K, Huibers MMH, Hollink IHIM, Simons A, Zonneveld-Huijssoon E, van der Veken LT, Leavis HL, Henriet SSV, van Deuren M, van de Veerdonk FL, Potjewijd J, Berghuis D, Dalm VASH, Vermont CL, van de Ven AAJM, Lambeck AJA, Abbott KM, van Hagen PM, de Bree GJ, Kuijpers TW, Frederix GWJ, van Gijn ME, van Montfrans JM. Implementation of Early Next-Generation Sequencing for Inborn Errors of Immunity: A Prospective Observational Cohort Study of Diagnostic Yield and Clinical Implications in Dutch Genome Diagnostic Centers. Front Immunol 2022; 12:780134. [PMID: 34992599 PMCID: PMC8724043 DOI: 10.3389/fimmu.2021.780134] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/01/2021] [Indexed: 01/07/2023] Open
Abstract
Objective Inborn errors of immunity (IEI) are a heterogeneous group of disorders, affecting different components of the immune system. Over 450 IEI related genes have been identified, with new genes continually being recognized. This makes the early application of next-generation sequencing (NGS) as a diagnostic method in the evaluation of IEI a promising development. We aimed to provide an overview of the diagnostic yield and time to diagnosis in a cohort of patients suspected of IEI and evaluated by an NGS based IEI panel early in the diagnostic trajectory in a multicenter setting in the Netherlands. Study Design We performed a prospective observational cohort study. We collected data of 165 patients with a clinical suspicion of IEI without prior NGS based panel evaluation that were referred for early NGS using a uniform IEI gene panel. The diagnostic yield was assessed in terms of definitive genetic diagnoses, inconclusive diagnoses and patients without abnormalities in the IEI gene panel. We also assessed time to diagnosis and clinical implications. Results For children, the median time from first consultation to diagnosis was 119 days versus 124 days for adult patients (U=2323; p=0.644). The median turn-around time (TAT) of genetic testing was 56 days in pediatric patients and 60 days in adult patients (U=1892; p=0.191). A definitive molecular diagnosis was made in 25/65 (24.6%) of pediatric patients and 9/100 (9%) of adults. Most diagnosed disorders were identified in the categories of immune dysregulation (n=10/25; 40%), antibody deficiencies (n=5/25; 20%), and phagocyte diseases (n=5/25; 20%). Inconclusive outcomes were found in 76/165 (46.1%) patients. Within the patient group with a genetic diagnosis, a change in disease management occurred in 76% of patients. Conclusion In this cohort, the highest yields of NGS based evaluation for IEI early in the diagnostic trajectory were found in pediatric patients, and in the disease categories immune dysregulation and phagocyte diseases. In cases where a definitive diagnosis was made, this led to important disease management implications in a large majority of patients. More research is needed to establish a uniform diagnostic pathway for cases with inconclusive diagnoses, including variants of unknown significance.
Collapse
Affiliation(s)
- Kim Elsink
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina's Children Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Manon M H Huibers
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Iris H I M Hollink
- Department of Clinical Genetics, Erasmus Medical Center, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Annet Simons
- Department of Human Genetics, Nijmegen Center for Molecular Life Sciences, Radboud University Medical Centre, Radboud University, Nijmegen, Netherlands.,Radboud Institute for Oncology, Radboud University Medical Center, Radboud University, Nijmegen, Netherlands
| | - Evelien Zonneveld-Huijssoon
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lars T van der Veken
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Helen L Leavis
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Stefanie S V Henriet
- Department of Pediatric Infectious Diseases and Immunology, Amalia's Children Hospital, Radboud University Nijmegen Medical Centre, Radboud University, Nijmegen, Netherlands
| | - Marcel van Deuren
- Department of Internal Medicine, Radboud University Medical Center, Radboud Center for Infectious Diseases, Nijmegen, Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Radboud Center for Infectious Diseases, Nijmegen, Netherlands
| | - Judith Potjewijd
- Department of Nephrology and Clinical Immunology, Maastricht University Medical Center, Maastricht University, Maastricht, Netherlands
| | - Dagmar Berghuis
- Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Virgil A S H Dalm
- Department of Internal Medicine, Division of Allergy & Clinical Immunology; Department of Immunology, Erasmus University Medical Center Rotterdam, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Clementien L Vermont
- Department of Pediatric Infectious Diseases, Immunology and Rheumatology, Sophia Children's Hospital, Erasmus Medical Center, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Annick A J M van de Ven
- Department of Internal Medicine and Allergology, Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen, Netherlands
| | - Annechien J A Lambeck
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Kristin M Abbott
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - P Martin van Hagen
- Department of Internal Medicine, Division of Allergy & Clinical Immunology; Department of Immunology, Erasmus University Medical Center Rotterdam, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Godelieve J de Bree
- Department of Internal Medicine, Institute for Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Geert W J Frederix
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Mariëlle E van Gijn
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joris M van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina's Children Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | | |
Collapse
|
110
|
Paulsen B, Velasco S, Kedaigle AJ, Pigoni M, Quadrato G, Deo AJ, Adiconis X, Uzquiano A, Sartore R, Yang SM, Simmons SK, Symvoulidis P, Kim K, Tsafou K, Podury A, Abbate C, Tucewicz A, Smith SN, Albanese A, Barrett L, Sanjana NE, Shi X, Chung K, Lage K, Boyden ES, Regev A, Levin JZ, Arlotta P. Autism genes converge on asynchronous development of shared neuron classes. Nature 2022; 602:268-273. [PMID: 35110736 PMCID: PMC8852827 DOI: 10.1038/s41586-021-04358-6] [Citation(s) in RCA: 228] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
Genetic risk for autism spectrum disorder (ASD) is associated with hundreds of genes spanning a wide range of biological functions1-6. The alterations in the human brain resulting from mutations in these genes remain unclear. Furthermore, their phenotypic manifestation varies across individuals7,8. Here we used organoid models of the human cerebral cortex to identify cell-type-specific developmental abnormalities that result from haploinsufficiency in three ASD risk genes-SUV420H1 (also known as KMT5B), ARID1B and CHD8-in multiple cell lines from different donors, using single-cell RNA-sequencing (scRNA-seq) analysis of more than 745,000 cells and proteomic analysis of individual organoids, to identify phenotypic convergence. Each of the three mutations confers asynchronous development of two main cortical neuronal lineages-γ-aminobutyric-acid-releasing (GABAergic) neurons and deep-layer excitatory projection neurons-but acts through largely distinct molecular pathways. Although these phenotypes are consistent across cell lines, their expressivity is influenced by the individual genomic context, in a manner that is dependent on both the risk gene and the developmental defect. Calcium imaging in intact organoids shows that these early-stage developmental changes are followed by abnormal circuit activity. This research uncovers cell-type-specific neurodevelopmental abnormalities that are shared across ASD risk genes and are finely modulated by human genomic context, finding convergence in the neurobiological basis of how different risk genes contribute to ASD pathology.
Collapse
Affiliation(s)
- Bruna Paulsen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Silvia Velasco
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia.
| | - Amanda J Kedaigle
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Martina Pigoni
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Giorgia Quadrato
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anthony J Deo
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
- Rutgers University Behavioral Health Care, Piscataway, NJ, USA
| | - Xian Adiconis
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ana Uzquiano
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rafaela Sartore
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sung Min Yang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sean K Simmons
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Panagiotis Symvoulidis
- MIT Center for Neurobiological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Kwanho Kim
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kalliopi Tsafou
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Archana Podury
- MIT Center for Neurobiological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Harvard-MIT Health Sciences & Technology Program (HST), Harvard Medical School, Boston, MA, USA
| | - Catherine Abbate
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ashley Tucewicz
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samantha N Smith
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexandre Albanese
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Lindy Barrett
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Neville E Sanjana
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Xi Shi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kwanghun Chung
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Picower Institute for Learning and Memory, Departments of Chemical Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- New York Genome Center, New York, NY, USA
| | - Kasper Lage
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery and Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Edward S Boyden
- MIT Center for Neurobiological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Harvard-MIT Health Sciences & Technology Program (HST), Harvard Medical School, Boston, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA, USA
- Department of Brain of Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Joshua Z Levin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
111
|
Chen CA, Lattier J, Zhu W, Rosenfeld J, Wang L, Scott TM, Du H, Patel V, Dang A, Magoulas P, Streff H, Sebastian J, Svihovec S, Curry K, Delgado MR, Hanchard N, Lalani S, Marom R, Madan-Khetarpal S, Saenz M, Dai H, Meng L, Xia F, Bi W, Liu P, Posey JE, Scott DA, Lupski JR, Eng CM, Xiao R, Yuan B. Retrospective analysis of a clinical exome sequencing cohort reveals the mutational spectrum and identifies candidate disease-associated loci for BAFopathies. Genet Med 2022; 24:364-373. [PMID: 34906496 PMCID: PMC8957292 DOI: 10.1016/j.gim.2021.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/19/2021] [Accepted: 06/19/2021] [Indexed: 02/03/2023] Open
Abstract
PURPOSE BRG1/BRM-associated factor (BAF) complex is a chromatin remodeling complex that plays a critical role in gene regulation. Defects in the genes encoding BAF subunits lead to BAFopathies, a group of neurodevelopmental disorders with extensive locus and phenotypic heterogeneity. METHODS We retrospectively analyzed data from 16,243 patients referred for clinical exome sequencing (ES) with a focus on the BAF complex. We applied a genotype-first approach, combining predicted genic constraints to propose candidate BAFopathy genes. RESULTS We identified 127 patients carrying pathogenic variants, likely pathogenic variants, or de novo variants of unknown clinical significance in 11 known BAFopathy genes. Those include 34 patients molecularly diagnosed using ES reanalysis with new gene-disease evidence (n = 21) or variant reclassifications in known BAFopathy genes (n = 13). We also identified de novo or predicted loss-of-function variants in 4 candidate BAFopathy genes, including ACTL6A, BICRA (implicated in Coffin-Siris syndrome during this study), PBRM1, and SMARCC1. CONCLUSION We report the mutational spectrum of BAFopathies in an ES cohort. A genotype-driven and pathway-based reanalysis of ES data identified new evidence for candidate genes involved in BAFopathies. Further mechanistic and phenotypic characterization of additional patients are warranted to confirm their roles in human disease and to delineate their associated phenotypic spectrums.
Collapse
Affiliation(s)
- Chun-An Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | | | | | - Jill Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Lei Wang
- Baylor Genetics Laboratory, Houston, TX
| | - Tiana M. Scott
- Texas Children’s Hospital, Houston, TX, Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | | | - Anh Dang
- Baylor Genetics Laboratory, Houston, TX
| | - Pilar Magoulas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Texas Children’s Hospital, Houston, TX
| | - Haley Streff
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Texas Children’s Hospital, Houston, TX
| | | | - Shayna Svihovec
- University of Colorado Anschutz Medical Campus; Children’s Hospital Colorado, Aurora, CO
| | - Kathryn Curry
- Genetics and Metabolic Department, St. Luke’s Health System
| | - Mauricio R. Delgado
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA, Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Neil Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Texas Children’s Hospital, Houston, TX
| | - Seema Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Texas Children’s Hospital, Houston, TX
| | - Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Texas Children’s Hospital, Houston, TX
| | | | - Margarita Saenz
- University of Colorado Anschutz Medical Campus; Children’s Hospital Colorado, Aurora, CO
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Baylor Genetics Laboratory, Houston, TX
| | - Linyan Meng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Baylor Genetics Laboratory, Houston, TX
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Baylor Genetics Laboratory, Houston, TX
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Baylor Genetics Laboratory, Houston, TX
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Baylor Genetics Laboratory, Houston, TX
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Texas Children’s Hospital, Houston, TX, Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Texas Children’s Hospital, Houston, TX, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Christine M. Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Baylor Genetics Laboratory, Houston, TX
| | - Rui Xiao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Baylor Genetics Laboratory, Houston, TX
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Baylor Genetics Laboratory, Houston, TX, Current address: Department of Laboratories, Seattle Children’s Hospital, Seattle, WA
| |
Collapse
|
112
|
Zou WB, Cooper DN, Masson E, Pu N, Liao Z, Férec C, Chen JM. Trypsinogen (PRSS1 and PRSS2) gene dosage correlates with pancreatitis risk across genetic and transgenic studies: a systematic review and re-analysis. Hum Genet 2022; 141:1327-1338. [PMID: 35089416 DOI: 10.1007/s00439-022-02436-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/15/2022] [Indexed: 12/22/2022]
Abstract
Trypsinogen (PRSS1, PRSS2) copy number gains and regulatory variants have both been proposed to elevate pancreatitis risk through a gene dosage effect (i.e., by increasing the expression of wild-type protein). However, to date, their impact on pancreatitis risk has not been thoroughly evaluated whilst the underlying pathogenic mechanisms remain to be explicitly investigated in mouse models. Genetic studies of the rare trypsinogen duplication and triplication copy number variants (CNVs), and the common rs10273639C variant, were collated from PubMed and/or ClinVar. Mouse studies that analyzed the influence of a transgenically expressed wild-type human PRSS1 or PRSS2 gene on the development of pancreatitis were identified from PubMed. The genetic effects of the different risk genotypes, in terms of odds ratios, were calculated wherever appropriate. The genetic effects of the rare trypsinogen duplication and triplication CNVs were also evaluated by reference to their associated disease subtypes. We demonstrate a positive correlation between increased trypsinogen gene dosage and pancreatitis risk in the context of the rare duplication and triplication CNVs, and between the level of trypsinogen expression and disease risk in the context of the heterozygous and homozygous rs10273639C-tagged genotypes. We retrospectively identify three mouse transgenic studies that are informative in relation to the pathogenic mechanism underlying the trypsinogen gene dosage effect in pancreatitis. Trypsinogen gene dosage correlates with pancreatitis risk across genetic and transgenic studies, highlighting the fundamental role of dysregulated expression of wild-type trypsinogen in the etiology of pancreatitis. Specifically downregulating trypsinogen expression in the pancreas may serve as a potential therapeutic and/or prevention strategy for pancreatitis.
Collapse
Affiliation(s)
- Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, The Secondary Military Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Emmanuelle Masson
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France
- Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, F-29200, Brest, France
| | - Na Pu
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France
- Department of Critical Care Medicine, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, The Secondary Military Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France
- Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, F-29200, Brest, France
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France.
- INSERM UMR1078, EFS, UBO, 22 avenue Camille Desmoulins, Brest, France.
| |
Collapse
|
113
|
Wang YC, Wu Y, Choi J, Allington G, Zhao S, Khanfar M, Yang K, Fu PY, Wrubel M, Yu X, Mekbib KY, Ocken J, Smith H, Shohfi J, Kahle KT, Lu Q, Jin SC. Computational Genomics in the Era of Precision Medicine: Applications to Variant Analysis and Gene Therapy. J Pers Med 2022; 12:175. [PMID: 35207663 PMCID: PMC8878256 DOI: 10.3390/jpm12020175] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Rapid methodological advances in statistical and computational genomics have enabled researchers to better identify and interpret both rare and common variants responsible for complex human diseases. As we continue to see an expansion of these advances in the field, it is now imperative for researchers to understand the resources and methodologies available for various data types and study designs. In this review, we provide an overview of recent methods for identifying rare and common variants and understanding their roles in disease etiology. Additionally, we discuss the strategy, challenge, and promise of gene therapy. As computational and statistical approaches continue to improve, we will have an opportunity to translate human genetic findings into personalized health care.
Collapse
Affiliation(s)
- Yung-Chun Wang
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA; (Y.-C.W.); (J.C.); (S.Z.); (M.K.); (K.Y.); (P.-Y.F.); (M.W.); (X.Y.)
| | - Yuchang Wu
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Julie Choi
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA; (Y.-C.W.); (J.C.); (S.Z.); (M.K.); (K.Y.); (P.-Y.F.); (M.W.); (X.Y.)
| | - Garrett Allington
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA;
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA; (H.S.); (K.T.K.)
| | - Shujuan Zhao
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA; (Y.-C.W.); (J.C.); (S.Z.); (M.K.); (K.Y.); (P.-Y.F.); (M.W.); (X.Y.)
| | - Mariam Khanfar
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA; (Y.-C.W.); (J.C.); (S.Z.); (M.K.); (K.Y.); (P.-Y.F.); (M.W.); (X.Y.)
| | - Kuangying Yang
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA; (Y.-C.W.); (J.C.); (S.Z.); (M.K.); (K.Y.); (P.-Y.F.); (M.W.); (X.Y.)
| | - Po-Ying Fu
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA; (Y.-C.W.); (J.C.); (S.Z.); (M.K.); (K.Y.); (P.-Y.F.); (M.W.); (X.Y.)
| | - Max Wrubel
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA; (Y.-C.W.); (J.C.); (S.Z.); (M.K.); (K.Y.); (P.-Y.F.); (M.W.); (X.Y.)
| | - Xiaobing Yu
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA; (Y.-C.W.); (J.C.); (S.Z.); (M.K.); (K.Y.); (P.-Y.F.); (M.W.); (X.Y.)
- Department of Computer Science & Engineering, Washington University, St. Louis, MO 63130, USA
| | - Kedous Y. Mekbib
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA; (K.Y.M.); (J.O.); (J.S.)
| | - Jack Ocken
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA; (K.Y.M.); (J.O.); (J.S.)
| | - Hannah Smith
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA; (H.S.); (K.T.K.)
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA; (K.Y.M.); (J.O.); (J.S.)
| | - John Shohfi
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA; (K.Y.M.); (J.O.); (J.S.)
| | - Kristopher T. Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA; (H.S.); (K.T.K.)
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Qiongshi Lu
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Sheng Chih Jin
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA; (Y.-C.W.); (J.C.); (S.Z.); (M.K.); (K.Y.); (P.-Y.F.); (M.W.); (X.Y.)
- Department of Pediatrics, School of Medicine, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
114
|
Forrest IS, Chaudhary K, Vy HMT, Petrazzini BO, Bafna S, Jordan DM, Rocheleau G, Loos RJF, Nadkarni GN, Cho JH, Do R. Population-Based Penetrance of Deleterious Clinical Variants. JAMA 2022; 327:350-359. [PMID: 35076666 PMCID: PMC8790667 DOI: 10.1001/jama.2021.23686] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IMPORTANCE Population-based assessment of disease risk associated with gene variants informs clinical decisions and risk stratification approaches. OBJECTIVE To evaluate the population-based disease risk of clinical variants in known disease predisposition genes. DESIGN, SETTING, AND PARTICIPANTS This cohort study included 72 434 individuals with 37 780 clinical variants who were enrolled in the BioMe Biobank from 2007 onwards with follow-up until December 2020 and the UK Biobank from 2006 to 2010 with follow-up until June 2020. Participants had linked exome and electronic health record data, were older than 20 years, and were of diverse ancestral backgrounds. EXPOSURES Variants previously reported as pathogenic or predicted to cause a loss of protein function by bioinformatic algorithms (pathogenic/loss-of-function variants). MAIN OUTCOMES AND MEASURES The primary outcome was the disease risk associated with clinical variants. The risk difference (RD) between the prevalence of disease in individuals with a variant allele (penetrance) vs in individuals with a normal allele was measured. RESULTS Among 72 434 study participants, 43 395 were from the UK Biobank (mean [SD] age, 57 [8.0] years; 24 065 [55%] women; 2948 [7%] non-European) and 29 039 were from the BioMe Biobank (mean [SD] age, 56 [16] years; 17 355 [60%] women; 19 663 [68%] non-European). Of 5360 pathogenic/loss-of-function variants, 4795 (89%) were associated with an RD less than or equal to 0.05. Mean penetrance was 6.9% (95% CI, 6.0%-7.8%) for pathogenic variants and 0.85% (95% CI, 0.76%-0.95%) for benign variants reported in ClinVar (difference, 6.0 [95% CI, 5.6-6.4] percentage points), with a median of 0% for both groups due to large numbers of nonpenetrant variants. Penetrance of pathogenic/loss-of-function variants for late-onset diseases was modified by age: mean penetrance was 10.3% (95% CI, 9.0%-11.6%) in individuals 70 years or older and 8.5% (95% CI, 7.9%-9.1%) in individuals 20 years or older (difference, 1.8 [95% CI, 0.40-3.3] percentage points). Penetrance of pathogenic/loss-of-function variants was heterogeneous even in known disease predisposition genes, including BRCA1 (mean [range], 38% [0%-100%]), BRCA2 (mean [range], 38% [0%-100%]), and PALB2 (mean [range], 26% [0%-100%]). CONCLUSIONS AND RELEVANCE In 2 large biobank cohorts, the estimated penetrance of pathogenic/loss-of-function variants was variable but generally low. Further research of population-based penetrance is needed to refine variant interpretation and clinical evaluation of individuals with these variant alleles.
Collapse
Affiliation(s)
- Iain S. Forrest
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, New York
- The BioMe Phenomics Center, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kumardeep Chaudhary
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- The BioMe Phenomics Center, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- The Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ha My T. Vy
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ben O. Petrazzini
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Shantanu Bafna
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniel M. Jordan
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ghislain Rocheleau
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ruth J. F. Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Girish N. Nadkarni
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- The BioMe Phenomics Center, Icahn School of Medicine at Mount Sinai, New York, New York
- The Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Judy H. Cho
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- The BioMe Phenomics Center, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- The BioMe Phenomics Center, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
115
|
Mintoff D, Pace NP, Al‐Kawlani B, Bauer P, Borg I. Co‐Morbid Palmoplantar Keratoderma Type 1A and Loeys‐Dietz Syndrome Type 3 in a Patient with a Chromosome 15 Microdeletion. J Eur Acad Dermatol Venereol 2022; 36:e448-e451. [DOI: 10.1111/jdv.17942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Dillon Mintoff
- Department of Pathology Faculty of Medicine and Surgery University of Malta
- Department of Dermatology Mater Dei Hospital Malta
| | - Nikolai P Pace
- Centre for Molecular Medicine and Biobanking Faculty of Medicine and Surgery University of Malta
| | | | | | - Isabella Borg
- Department of Pathology Faculty of Medicine and Surgery University of Malta
- Centre for Molecular Medicine and Biobanking Faculty of Medicine and Surgery University of Malta
- Medical Genetics Unit Department of Pathology Mater Dei Hospital Malta
| |
Collapse
|
116
|
Zug R. Developmental disorders caused by haploinsufficiency of transcriptional regulators: a perspective based on cell fate determination. Biol Open 2022; 11:bio058896. [PMID: 35089335 PMCID: PMC8801891 DOI: 10.1242/bio.058896] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many human birth defects and neurodevelopmental disorders are caused by loss-of-function mutations in a single copy of transcription factor (TF) and chromatin regulator genes. Although this dosage sensitivity has long been known, how and why haploinsufficiency (HI) of transcriptional regulators leads to developmental disorders (DDs) is unclear. Here I propose the hypothesis that such DDs result from defects in cell fate determination that are based on disrupted bistability in the underlying gene regulatory network (GRN). Bistability, a crucial systems biology concept to model binary choices such as cell fate decisions, requires both positive feedback and ultrasensitivity, the latter often achieved through TF cooperativity. The hypothesis explains why dosage sensitivity of transcriptional regulators is an inherent property of fate decisions, and why disruption of either positive feedback or cooperativity in the underlying GRN is sufficient to cause disease. I present empirical and theoretical evidence in support of this hypothesis and discuss several issues for which it increases our understanding of disease, such as incomplete penetrance. The proposed framework provides a mechanistic, systems-level explanation of HI of transcriptional regulators, thus unifying existing theories, and offers new insights into outstanding issues of human disease. This article has an associated Future Leader to Watch interview with the author of the paper.
Collapse
Affiliation(s)
- Roman Zug
- Department of Biology, Lund University, 22362 Lund, Sweden
| |
Collapse
|
117
|
Analysis of the Frequency of 10 Polymorphic Markers of CDKN2A and RB1 Genes in Russian Populations. Bull Exp Biol Med 2022; 172:352-358. [PMID: 35001307 DOI: 10.1007/s10517-022-05391-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Indexed: 10/19/2022]
Abstract
The study of population frequencies of rare clinically significant alleles is a prerequisite of the development of personalized medicine. We performed genotyping of 1785 DNA samples from representatives of Russian populations according to 10 benign polymorphic markers of two genes involved in oncogenesis: 3 variants of the CDKN2A gene (rs3731249, rs116150891, and rs6413464) and 7 markers of the RB1 gene (rs149800437, rs147754935, rs183898408, rs146897002, rs4151539, rs187912365, and rs144668210). Genotyping was performed using the Illumina biochip test system. The sample covered 28 populations of the Russian Federation and neighboring countries, which were later combined into 3 groups (Asian, European, and Caucasian). The information from the ALFA (NCBI) project was used as reference for the frequencies of these polymorphisms in the Asian and European populations. It was shown that rare alleles in 8 of 10 studied polymorphic markers are presented in Russian populations of European and Caucasian origin with frequencies that are tens and hundreds of times higher than the available data for Western European populations, and in Russian Asian populations, alternative alleles of 5 markers absent in the Asian population of the ALFA project were found. In the subpopulation of Astrakhan Tatars, exceptionally high frequencies of rare alleles were identified; this requires further study.
Collapse
|
118
|
Geffroy B, Besson M, Sánchez-Baizán N, Clota F, Goikoetxea A, Sadoul B, Ruelle F, Blanc MO, Parrinello H, Hermet S, Blondeau-Bidet E, Pratlong M, Piferrer F, Vandeputte M, Allal F. Unraveling the genotype by environment interaction in a thermosensitive fish with a polygenic sex determination system. Proc Natl Acad Sci U S A 2021; 118:e2112660118. [PMID: 34880131 PMCID: PMC8685686 DOI: 10.1073/pnas.2112660118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 01/03/2023] Open
Abstract
In most animals, sex determination occurs at conception, when sex chromosomes are segregated following Mendelian laws. However, in multiple reptiles and fishes, this genetic sex can be overridden by external factors after fertilization or birth. In some species, the genetic sex may also be governed by multiple genes, further limiting our understanding of sex determination in such species. We used the European sea bass (Dicentrarchus labrax) as a model and combined genomic (using a single nucleotide polymorphism chip) and transcriptomic (RNA-Sequencing) approaches to thoroughly depict this polygenic sex determination system and its interaction with temperature. We estimated genetic sex tendency (eGST), defined as the estimated genetic liability to become a given sex under a liability threshold model for sex determination, which accurately predicts the future phenotypic sex. We found evidence that energetic pathways, concerning the regulation of lipids and glucose, are involved in sex determination and could explain why females tend to exhibit higher energy levels and improved growth compared to males. Besides, early exposure to high-temperature up-regulated sox3, followed by sox9a in individuals with intermediate eGST, but not in individuals showing highly female-biased eGST, providing the most parsimonious explanation for temperature-induced masculinization. This gonadal state was maintained likely by DNA methylation and the up-regulation of several genes involved in histone modifications, including jmjd1c Overall, we describe a sex determination system resulting from continuous genetic and environmental influences in an animal. Our results provide significant progress in our understanding of the mechanisms underlying temperature-induced masculinization in fish.
Collapse
Affiliation(s)
- Benjamin Geffroy
- MARBEC Université de Montpellier, CNRS, Ifremer, IRD, Palavas-les-Flots, France;
| | - Mathieu Besson
- SYSAAF, Station LPGP/INRAE, 35042 Rennes, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - Núria Sánchez-Baizán
- Institut de Ciències del Mar, Spanish National Research Council, Barcelona, Spain
| | - Frederic Clota
- MARBEC Université de Montpellier, CNRS, Ifremer, IRD, Palavas-les-Flots, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | | | - Bastien Sadoul
- MARBEC Université de Montpellier, CNRS, Ifremer, IRD, Palavas-les-Flots, France
- ESE, Ecology and Ecosystem Health, Institut Agro, INRAE, Rennes, France
| | - François Ruelle
- Laboratoire Service d'Expérimentations Aquacoles, Ifremer, Palavas-les-Flots, France
| | - Marie-Odile Blanc
- Laboratoire Service d'Expérimentations Aquacoles, Ifremer, Palavas-les-Flots, France
| | - Hugues Parrinello
- MGX, BCM, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Sophie Hermet
- MARBEC Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Eva Blondeau-Bidet
- MARBEC Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Marine Pratlong
- MGX, BCM, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Francesc Piferrer
- Institut de Ciències del Mar, Spanish National Research Council, Barcelona, Spain
| | - Marc Vandeputte
- MARBEC Université de Montpellier, CNRS, Ifremer, IRD, Palavas-les-Flots, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - François Allal
- MARBEC Université de Montpellier, CNRS, Ifremer, IRD, Palavas-les-Flots, France
| |
Collapse
|
119
|
Garcia-Pelaez J, Barbosa-Matos R, São José C, Sousa S, Gullo I, Hoogerbrugge N, Carneiro F, Oliveira C. Gastric cancer genetic predisposition and clinical presentations: Established heritable causes and potential candidate genes. Eur J Med Genet 2021; 65:104401. [PMID: 34871783 DOI: 10.1016/j.ejmg.2021.104401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/10/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022]
Abstract
Tumour risk syndromes (TRS) are characterized by an increased risk of early-onset cancers in a familial context. High cancer risk is mostly driven by loss-of-function variants in a single cancer-associated gene. Presently, predisposition to diffuse gastric cancer (DGC) is explained by CDH1 and CTNNA1 pathogenic and likely pathogenic variants (P/LP), causing Hereditary Diffuse Gastric Cancer (HDGC); while APC promoter 1B single nucleotide variants predispose to Gastric Adenocarcinoma and Proximal Polyposis of the Stomach (GAPPS). Familial Intestinal Gastric Cancer (FIGC), recognized as a GC-predisposing disease, remains understudied and genetically unsolved. GC can also occur in the spectrum of other TRS. Identification of heritable causes allows defining diagnostic testing criteria, helps to clinically classify GC families into the appropriate TRS, and allows performing pre-symptomatic testing identifying at-risk individuals for downstream surveillance, risk reduction and/or treatment. However, most of HDGC, some GAPPS, and most FIGC patients/families remain unsolved, expecting a heritable factor to be discovered. The missing heritability in GC-associated tumour risk syndromes (GC-TRS) is likely explained not by a single major gene, but by a diversity of genes, some, predisposing to other TRS. This would gain support if GC-enriched small families or apparently isolated early-onset GC cases were hiding a family history compatible with another TRS. Herein, we revisited current knowledge on GC-TRS, and searched in the literature for individuals/families bearing P/LP variants predisposing for other TRS, but whose probands display a clinical presentation and/or family history also fitting GC-TRS criteria. We found 27 families with family history compatible with HDGC or FIGC, harbouring 28 P/LP variants in 16 TRS-associated genes, mainly associated with DNA repair. PALB2 or BRCA2 were the most frequently mutated candidate genes in individuals with family history compatible with HDGC and FIGC, respectively. Consolidation of PALB2 and BRCA2 as HDGC- or FIGC-associated genes, respectively, holds promise and worth additional research. This analysis further highlighted the influence, that proband's choice and small or unreported family history have, for a correct TRS diagnosis, genetic screening, and disease management. In this review, we provide a rational for identification of particularly relevant candidate genes in GC-TRS.
Collapse
Affiliation(s)
- José Garcia-Pelaez
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; Doctoral Programme in Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rita Barbosa-Matos
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; International Doctoral Programme in Molecular and Cellular Biotechnology Applied to Health Sciences from Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Celina São José
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; Doctoral Programme in Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Sónia Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Irene Gullo
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; FMUP - Faculty of Medicine of the University of Porto, Porto, Portugal; Centro Hospitalar e Universitário S. João, Porto, Portugal
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Fátima Carneiro
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; FMUP - Faculty of Medicine of the University of Porto, Porto, Portugal; Centro Hospitalar e Universitário S. João, Porto, Portugal
| | - Carla Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; FMUP - Faculty of Medicine of the University of Porto, Porto, Portugal.
| |
Collapse
|
120
|
Abstract
Bilirubin is a tetrapyrrolic compound originating from heme catabolism. Although originally considered only a potentially dangerous waste product, it has become increasingly evident that this molecule represents an important modulator of various biological functions in the human body. Bilirubin appears to have versatile functions, from cell signaling (behaving almost like a "real" hormonal substance), modulation of metabolism, to immune regulation, affecting biological activities with apparent clinical and even therapeutic consequences. These activities may be the reason for the lower incidence of diseases of civilisation (cardiovascular diseases, arterial hypertension, diabetes, obesity, metabolic syndrome, certain cancers, autoimmune, and neurodegenerative diseases) observed in individuals with a chronic mild unconjugated hyperbilirubinemia, a typical sign of Gilbert's syndrome. While higher serum concentrations of unconjugated bilirubin may serve as an important protective factor against these diseases, low levels of bilirubin are associated with the opposite effect.
Collapse
Affiliation(s)
- Libor Vítek
- Faculty General Hospital and 1(st) Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | | |
Collapse
|
121
|
Chen Y, Chen D, Zhao S, Liu G, Li H, Wu ZY. Penetrance estimation of PRRT2 variants in paroxysmal kinesigenic dyskinesia and infantile convulsions. Front Med 2021; 15:877-886. [PMID: 34825340 DOI: 10.1007/s11684-021-0863-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/25/2021] [Indexed: 11/30/2022]
Abstract
Proline-rich transmembrane protein 2 (PRRT2) is the leading cause of paroxysmal kinesigenic dyskinesia (PKD), benign familial infantile epilepsy (BFIE), and infantile convulsions with choreoathetosis (ICCA). Reduced penetrance of PRRT2 has been observed in previous studies, whereas the exact penetrance has not been evaluated well. The objective of this study was to estimate the penetrance of PRRT2 and determine its influencing factors. We screened 222 PKD index patients and their available relatives, identified 39 families with pathogenic or likely pathogenic (P/LP) PRRT2 variants via Sanger sequencing, and obtained 184 PKD/BFIE/ICCA families with P/LP PRRT2 variants from the literature. Penetrance was estimated as the proportion of affected variant carriers. PRRT2 penetrance estimate was 77.6% (95% confidence interval (CI) 74.5%-80.7%) in relatives and 74.5% (95% CI 70.2%-78.8%) in obligate carriers. In addition, we first observed that penetrance was higher in truncated than in non-truncated variants (75.8% versus 50.0%, P = 0.01), higher in Asian than in Caucasian carriers (81.5% versus 68.5%, P = 0.004), and exhibited no difference in gender or parental transmission. Our results are meaningful for genetic counseling, implying that approximately three-quarters of PRRT2 variant carriers will develop PRRT2-related disorders, with patients from Asia or carrying truncated variants at a higher risk.
Collapse
Affiliation(s)
- Yulan Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Dianfu Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Shaoyun Zhao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Gonglu Liu
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Hongfu Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
122
|
Jeyaraj R, Bounford KM, Ruth N, Lloyd C, MacDonald F, Hendriksz CJ, Baumann U, Gissen P, Kelly D. The Genetics of Inherited Cholestatic Disorders in Neonates and Infants: Evolving Challenges. Genes (Basel) 2021; 12:1837. [PMID: 34828443 PMCID: PMC8621872 DOI: 10.3390/genes12111837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/26/2022] Open
Abstract
Many inherited conditions cause cholestasis in the neonate or infant. Next-generation sequencing methods can facilitate a prompt diagnosis in some of these cases; application of these methods in patients with liver diseases of unknown cause has also uncovered novel gene-disease associations and improved our understanding of physiological bile secretion and flow. By helping to define the molecular basis of certain cholestatic disorders, these methods have also identified new targets for therapy as well patient subgroups more likely to benefit from specific therapies. At the same time, sequencing methods have presented new diagnostic challenges, such as the interpretation of single heterozygous genetic variants. This article discusses those challenges in the context of neonatal and infantile cholestasis, focusing on difficulties in predicting variant pathogenicity, the possibility of other causal variants not identified by the genetic screen used, and phenotypic variability among patients with variants in the same genes. A prospective, observational study performed between 2010-2013, which sequenced six important genes (ATP8B1, ABCB11, ABCB4, NPC1, NPC2 and SLC25A13) in an international cohort of 222 patients with infantile liver disease, is given as an example of potential benefits and challenges that clinicians could face having received a complex genetic result. Further studies including large cohorts of patients with paediatric liver disease are needed to clarify the spectrum of phenotypes associated with, as well as appropriate clinical response to, single heterozygous variants in cholestasis-associated genes.
Collapse
Affiliation(s)
- Rebecca Jeyaraj
- National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK;
| | - Kirsten McKay Bounford
- West of Scotland Centre for Genomic Medicine, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK;
| | - Nicola Ruth
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK; (N.R.); (U.B.); (D.K.)
- Liver Unit, Birmingham Women’s and Children’s Hospital, Birmingham B4 6NH, UK;
| | - Carla Lloyd
- Liver Unit, Birmingham Women’s and Children’s Hospital, Birmingham B4 6NH, UK;
| | - Fiona MacDonald
- West Midlands Regional Genetics Service, Birmingham Women’s and Children’s Hospital, Birmingham B15 2TG, UK;
| | - Christian J. Hendriksz
- Steve Biko Academic Unit, Level D3 New Pretoria Academic Hospital, Malherbe Street, Pretoria 0002, South Africa;
| | - Ulrich Baumann
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK; (N.R.); (U.B.); (D.K.)
- Paediatric Gastroenterology and Hepatology, Hannover Medical School, 30625 Hannover, Germany
| | - Paul Gissen
- National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Deirdre Kelly
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK; (N.R.); (U.B.); (D.K.)
- Liver Unit, Birmingham Women’s and Children’s Hospital, Birmingham B4 6NH, UK;
| |
Collapse
|
123
|
Lago J, Groot H, Navas D, Lago P, Gamboa M, Calderón D, Polanía-Villanueva DC. Genetic and Bioinformatic Strategies to Improve Diagnosis in Three Inherited Bleeding Disorders in Bogotá, Colombia. Genes (Basel) 2021; 12:genes12111807. [PMID: 34828413 PMCID: PMC8625804 DOI: 10.3390/genes12111807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/03/2022] Open
Abstract
Inherited bleeding disorders (IBDs) are the most frequent congenital diseases in the Colombian population; three of them are hemophilia A (HA), hemophilia B (HB), and von Willebrand Disease (VWD). Currently, diagnosis relies on multiple clinical laboratory assays to assign a phenotype. Due to the lack of accessibility to these tests, patients can receive an incomplete diagnosis. In these cases, genetic studies reinforce the clinical diagnosis. The present study characterized the molecular genetic basis of 11 HA, three HB, and five VWD patients by sequencing the F8, F9, or the VWF gene. Twelve variations were found in HA patients, four in HB patients, and 19 in WVD patients. From these variations a total of 25 novel variations were found. Disease-causing variations were used as positive controls for validation of the high-resolution melting (HRM) variant-scanning technique. This approach is a low-cost genetic diagnostic method proposed to be incorporated in developing countries. For the data analysis, we developed an accessible open-source code in Python that improves HRM data analysis with better sensitivity of 95% and without bias when using different HRM equipment and software. Analysis of amplicons with a length greater than 300 bp can be performed by implementing an analysis by denaturation domains.
Collapse
Affiliation(s)
- Juliana Lago
- Laboratorio de Genética Humana, Universidad de Los Andes, Bogotá 111711, Colombia; (J.L.); (H.G.); (D.N.)
| | - Helena Groot
- Laboratorio de Genética Humana, Universidad de Los Andes, Bogotá 111711, Colombia; (J.L.); (H.G.); (D.N.)
| | - Diego Navas
- Laboratorio de Genética Humana, Universidad de Los Andes, Bogotá 111711, Colombia; (J.L.); (H.G.); (D.N.)
| | - Paula Lago
- Department of Basic Sciences, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan;
| | - María Gamboa
- Laboratorio de Referencia en Hemostasia, Bogotá 110231, Colombia;
| | - Dayana Calderón
- Corporación Corpogen, Universidad Central, Bogotá 110311, Colombia;
| | - Diana C. Polanía-Villanueva
- Laboratorio de Genética Humana, Universidad de Los Andes, Bogotá 111711, Colombia; (J.L.); (H.G.); (D.N.)
- Correspondence:
| |
Collapse
|
124
|
Dos Santos CMDA, Heller AH, Pena HB, Pena SDJ. A Protocol for Preconceptional Screening of Consanguineous Couples Using Whole Exome Sequencing. Front Genet 2021; 12:685123. [PMID: 34759951 PMCID: PMC8573158 DOI: 10.3389/fgene.2021.685123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Genetic studies performed in consanguineous couples suggest that the reproductive risk that distinguish them from other couples in the general population is related to autosomal recessive (AR) diseases. This risk is scattered among the thousands of known and potential AR diseases. Thus, for effective preconceptional screening of consanguineous couples it is necessary a test that encompasses the largest number of genes possible. For that reason, we decided to create a protocol based on whole exome sequencing (WES). We sequenced completely the exomes of 39 consanguineous couples at high coverage (∼100×). Applying bioinformatics filters, we could detect genetic variants that were simultaneously present in both members of the couple in all genes listed in the Clinical Genomics Database as causally related to AR diseases. Shared variants were then assessed for pathogenicity. For non-truncating variants (missense and in-frame indels) we considered as pathogenic or likely pathogenic only the variants included as such in the ClinVar database. Shared truncating variants (frameshift, non-sense, and canonical splice variants) were considered likely pathogenic when loss-of-function was a known mechanism of disease. The 39 consanguineous cases included two couples with a coefficient of genetic relationship (CGR) of 0.25, 26 couples with a CGR of 0.125, three couples with a CGR of 0.0625 and eight couples with a CGR of 0.03125. In 21 of the 39 couples (53.8%) we ascertained sharing of heterozygosity for at least one variant considered pathogenic or likely pathogenic for an AR disease. In eight couples we found sharing of heterozygosity for at least two pathogenic variants. Once the specific pathogenic variant was identified, it became possible for the couple to undergo prenatal diagnosis or, if desired, preimplantation genetic diagnosis (PGD) involving in vitro fertilization and embryo screening. In conclusion, our results demonstrate that preconceptional screening by WES is a useful new procedure that should be incorporated in the genetic counseling of all consanguineous couples.
Collapse
Affiliation(s)
| | | | | | - Sérgio Danilo Junho Pena
- GENE - Núcleo de Genética Médica, Belo Horizonte, Brazil.,Laboratório de Genômica Clínica, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
125
|
Bettio C, Salsi V, Orsini M, Calanchi E, Magnotta L, Gagliardelli L, Kinoshita J, Bergamaschi S, Tupler R. The Italian National Registry for FSHD: an enhanced data integration and an analytics framework towards Smart Health Care and Precision Medicine for a rare disease. Orphanet J Rare Dis 2021; 16:470. [PMID: 34736505 PMCID: PMC8567605 DOI: 10.1186/s13023-021-02100-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/24/2021] [Indexed: 11/30/2022] Open
Abstract
Background The Italian Clinical network for FSHD (ICNF) has established the Italian National Registry for FSHD (INRF), collecting data from patients affected by Facioscapulohumeral dystrophy (FSHD) and their relatives. The INRF has gathered data from molecular analysis, clinical evaluation, anamnestic information, and family history from more than 3500 participants. Methods A data management framework, called Mediator Environment for Multiple Information Sources (MOMIS) FSHD Web Platform, has been developed to provide charts, maps and search tools customized for specific needs. Patients’ samples and their clinical information derives from the Italian Clinical network for FSHD (ICNF), a consortium consisting of fourteen neuromuscular clinics distributed across Italy. The tools used to collect, integrate, and visualize clinical, molecular and natural history information about patients affected by FSHD and their relatives are described. Results The INRF collected the molecular data regarding FSHD diagnosis conducted on 7197 subjects and identified 3362 individuals carrying a D4Z4 Reduced Allele (DRA): 1634 were unrelated index cases. In 1032 cases the molecular testing has been extended to 3747 relatives, 1728 carrying a DRA. Since 2009 molecular analysis has been accompanied by clinical evaluation based standardized evaluation protocols. In the period 2009–2020, 3577 clinical forms have been collected, 2059 follow the Comprehensive Clinical Evaluation form (CCEF). The integration of standardized clinical information and molecular data has made possible to demonstrate the wide phenotypic variability of FSHD. The MOMIS (Mediator Environment for Multiple Information Sources) data integration framework allowed performing genotype–phenotype correlation studies, and generated information of medical importance either for clinical practice or genetic counseling. Conclusion The platform implemented for the FSHD Registry data collection based on OpenClinica meets the requirement to integrate patient/disease information, as well as the need to adapt dynamically to security and privacy concerns. Our results indicate that the quality of data collection in a multi-integrated approach is fundamental for clinical and epidemiological research in a rare disease and may have great value in allowing us to redefine diagnostic criteria and disease markers for FSHD. By extending the use of the MOMIS data integration framework to other countries and the longitudinal systematic collection of standardized clinical data will facilitate the understanding of disease natural history and offer valuable inputs towards trial readiness. This approach is of high significance to FSHD medical community and also to rare disease research in general. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-02100-z.
Collapse
Affiliation(s)
- Cinzia Bettio
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Salsi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | - Luca Gagliardelli
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | | | - Sonia Bergamaschi
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | - Rossella Tupler
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy. .,Department of Molecular Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, USA.
| |
Collapse
|
126
|
Ramensky VE, Ershova AI, Zaicenoka M, Kiseleva AV, Zharikova AA, Vyatkin YV, Sotnikova EA, Efimova IA, Divashuk MG, Kurilova OV, Skirko OP, Muromtseva GA, Belova OA, Rachkova SA, Pokrovskaya MS, Shalnova SA, Meshkov AN, Drapkina OM. Targeted Sequencing of 242 Clinically Important Genes in the Russian Population From the Ivanovo Region. Front Genet 2021; 12:709419. [PMID: 34691145 PMCID: PMC8529250 DOI: 10.3389/fgene.2021.709419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
We performed a targeted sequencing of 242 clinically important genes mostly associated with cardiovascular diseases in a representative population sample of 1,658 individuals from the Ivanovo region northeast of Moscow. Approximately 11% of 11,876 detected variants were not found in the Single Nucleotide Polymorphism Database (dbSNP) or reported earlier in the Russian population. Most novel variants were singletons and doubletons in our sample, and virtually no novel alleles presumably specific for the Russian population were able to reach the frequencies above 0.1-0.2%. The overwhelming majority (99.3%) of variants detected in this study in three or more copies were shared with other populations. We found two dominant and seven recessive known pathogenic variants with allele frequencies significantly increased compared to those in the gnomAD non-Finnish Europeans. Of the 242 targeted genes, 28 were in the list of 59 genes for which the American College of Medical Genetics and Genomics (ACMG) recommended the reporting of incidental findings. Based on the number of variants detected in the sequenced subset of ACMG59 genes, we approximated the prevalence of known pathogenic and novel or rare protein-truncating variants in the complete set of ACMG59 genes in the Ivanovo population at 1.4 and 2.8%, respectively. We analyzed the available clinical data and observed the incomplete penetrance of known pathogenic variants in the 28 ACMG59 genes: only 1 individual out of 12 with such variants had the phenotype most likely related to the variant. When known pathogenic and novel or rare protein-truncating variants were considered together, the overall rate of confirmed phenotypes was about 19%, with maximum in the subset of novel protein-truncating variants. We report three novel protein truncating variants in APOB and one in MYH7 observed in individuals with hypobetalipoproteinemia and hypertrophic cardiomyopathy, respectively. Our results provide a valuable reference for the clinical interpretation of gene sequencing in Russian and other populations.
Collapse
Affiliation(s)
- Vasily E Ramensky
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Alexandra I Ershova
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Marija Zaicenoka
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow, Russia
| | - Anna V Kiseleva
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Anastasia A Zharikova
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri V Vyatkin
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Evgeniia A Sotnikova
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Irina A Efimova
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Mikhail G Divashuk
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia.,All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Olga V Kurilova
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Olga P Skirko
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Galina A Muromtseva
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | | | | | - Maria S Pokrovskaya
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Svetlana A Shalnova
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Alexey N Meshkov
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Oxana M Drapkina
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| |
Collapse
|
127
|
AML with germline DDX41 variants is a clinicopathologically distinct entity with an indolent clinical course and favorable outcome. Leukemia 2021; 36:664-674. [PMID: 34671111 DOI: 10.1038/s41375-021-01404-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 12/17/2022]
Abstract
Germline DDX41 variants in myeloid neoplasms (MNs) are not uncommon, and we explored the prevalence and characterized the clinical and pathologic features in a cohort of 3132 unrelated adult MN patients. By targeted next-generation sequencing, we identified 28 patients (20 men and 8 women) with pathogenic germline DDX41 variants who developed acute myeloid leukemia (AML), in which only 3 (11%) had a family history (FH) of MNs. A subacute clinical course of cytopenia (mean duration of 11.2 months, range 0-72 months) prior to the initial AML diagnosis was accompanied by a low blast count (median at 30%, range 20-70%) in hypocellular marrows (93% of all patients), in vast contrast to the typical proliferative subtypes of AML in the elderly. Most patients had a normal karyotype (75%) and acquired a second DDX41 variant (69%). A favorable overall survival (OS) was observed in comparison to that of common subtypes of AML with wild-type DDX41 in age-matched patients. Our study demonstrated that the frequent germline pathogenic DDX41 variants characterized a clinically distinct AML entity. Features characteristic of DDX41-mutated AML include male predominance, often lack of FH, indolent course, low proliferative potential, frequent somatic DDX41 variants, and a favorable OS.
Collapse
|
128
|
Parental Origin of the RB1 Gene Mutations in Families with Low Penetrance Hereditary Retinoblastoma. Cancers (Basel) 2021; 13:cancers13205068. [PMID: 34680218 PMCID: PMC8534066 DOI: 10.3390/cancers13205068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/26/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Some families with hereditary retinoblastoma exhibit mild phenotype with low penetrance and variable expressivity, including complete absence of clinical signs of the disease in some carriers of the germline RB1 mutation. The identification of low-penetrance mutations in the RB1 gene and the study of their inheritance in pedigrees is contributing to understanding the mechanisms underlying the development of retinoblastoma with low penetrance. It is important both for further expansion of knowledge in the field of molecular genetics of retinoblastoma, and for competent genetic counseling and subsequent clinical management of families with this form of the disease. Our results support an assumption that parental origin of an RB1 mutation influences the likelihood of developing retinoblastoma. We also revealed a relatively high frequency of asymptomatic carriage of the RB1 mutations among the parents of retinoblastoma patients, highlighting the utmost necessity for molecular analysis among the probands’ relatives irrespective of their clinical status and family history of retinoblastoma. Abstract Our aim was to identify RB1 alterations causing hereditary low penetrance retinoblastoma and to evaluate how the parental origin of an RB1 mutation affects its phenotypic expression. By NGS and MLPA, RB1 mutations were found in 191 from 332 unrelated retinoblastoma patients. Among patients with identified RB1 mutations but without clinical family history of retinoblastoma, 7% (12/175) were found to have hereditary disease with one of the parents being an asymptomatic carrier of an RB1 mutation. Additionally, in two families with retinoblastoma history, mutations were inherited by probands from unaffected parents. Overall, nine probands inherited RB1 mutations from clinically unaffected fathers and five, from mothers. Yet, we gained explanations of maternal “unaffectedness” in most cases, either as somatic mosaicism or as clinical presentation of retinomas in involution, rendering the proportion of paternal to maternal truly asymptomatic mutation carriers as 9:1 (p = 0.005). This observation supports an assumption that parental origin of an RB1 mutation influences the likelihood of developing retinoblastoma. Additionally, our study revealed a relatively high frequency of asymptomatic carriage of the RB1 mutations among the parents of retinoblastoma patients, highlighting the utmost necessity of molecular analysis among the probands’ relatives irrespective of their clinical status and family history of retinoblastoma.
Collapse
|
129
|
Muñoz L, Donaire C, Salazar T, Ortiz R, Cruces J, Briones M. Heritability of Locomotor Stereotypies in Chilean Horses. J Equine Vet Sci 2021; 105:103702. [PMID: 34607683 DOI: 10.1016/j.jevs.2021.103702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
The Chilean horse is a breed of closed registry. Stall-walking and weaving are locomotor stereotypies that affect this breed, and genetic predisposition has been suggested for both conditions. The objective of the present study was to estimate heritability of stall-walking and weaving in Chilean horses. Owners of 2,098 horses registered in the Chilean horse Stud Book, which were or had been stabled for at least 1 year, were asked to provide for identification data of the animal and presence or absence of stall-walking and/or weaving. The Chilean Horse Stud Book was accessed online, to collect information on name and registration number of the sire and dam of each horse. The prevalence of stall-walking and weaving was calculated from the sample (n = 2,098). The database to estimate the heritability (h2) included all the sample horses (n = 2,098) and their sires and dams. Additionally, all the ancestors available in the Chilean Horse Stud Book were included in the database for 297 sampled horses including those with locomotor stereotypies. The genealogical database consisted of 7,187 individuals. The prevalence of stall-walking was 2.05% and prevalence of weaving was 1.43%, being more frequent in males (P < .05) for stall-walking. Heritability of stall-walking was low (h2 = 0.213 ± 0.08) and moderate for weaving (h2 = 0.435 ± 0.06). Heritability and prevalence of locomotor stereotypies found in the Chilean horse suggest that they are hereditary disorders, highly influenced by environmental factors.
Collapse
Affiliation(s)
- Lisandro Muñoz
- Departamento de Ciencias Clínicas, Universidad de Concepción, Victoria, Concepción, Chile.
| | - Camila Donaire
- Departamento de Ciencias Clínicas, Universidad de Concepción, Victoria, Concepción, Chile
| | - Tomás Salazar
- Departamento de Ciencias Clínicas, Universidad de Concepción, Victoria, Concepción, Chile
| | - Reinaldo Ortiz
- Departamento de Ciencias Clínicas, Universidad de Concepción, Victoria, Concepción, Chile
| | - Jaime Cruces
- Departamento de Ciencias Clínicas, Universidad de Concepción, Victoria, Concepción, Chile
| | - Mario Briones
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinaria, Chillán, Chile
| |
Collapse
|
130
|
Bensimon-Brito A, Boezio GLM, Cardeira-da-Silva J, Wietelmann A, Ramkumar S, Lundegaard PR, Helker CSM, Ramadass R, Piesker J, Nauerth A, Mueller C, Stainier DYR. Integration of multiple imaging platforms to uncover cardiovascular defects in adult zebrafish. Cardiovasc Res 2021; 118:2665-2687. [PMID: 34609500 PMCID: PMC9491864 DOI: 10.1093/cvr/cvab310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/29/2021] [Indexed: 11/29/2022] Open
Abstract
Aims Mammalian models have been instrumental in investigating adult heart function and human disease. However, electrophysiological differences with human hearts and high costs motivate the need for non-mammalian models. The zebrafish is a well-established genetic model to study cardiovascular development and function; however, analysis of cardiovascular phenotypes in adult specimens is particularly challenging as they are opaque. Methods and results Here, we optimized and combined multiple imaging techniques including echocardiography, magnetic resonance imaging, and micro-computed tomography to identify and analyse cardiovascular phenotypes in adult zebrafish. Using alk5a/tgfbr1a mutants as a case study, we observed morphological and functional cardiovascular defects that were undetected with conventional approaches. Correlation analysis of multiple parameters revealed an association between haemodynamic defects and structural alterations of the heart, as observed clinically. Conclusion We report a new, comprehensive, and sensitive platform to identify otherwise indiscernible cardiovascular phenotypes in adult zebrafish.
Collapse
Affiliation(s)
- Anabela Bensimon-Brito
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Giulia L M Boezio
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - João Cardeira-da-Silva
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Astrid Wietelmann
- Scientific Service Group MRI and µ-CT, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Srinath Ramkumar
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Pia R Lundegaard
- Laboratory for Molecular Cardiology, Department of Cardiology, Vascular, Pulmonary and Infectious Diseases, University Hospital of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian S M Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Radhan Ramadass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Janett Piesker
- Scientific Service Group Microscopy, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | | | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| |
Collapse
|
131
|
Singh RS. Decoding 'Unnecessary Complexity': A Law of Complexity and a Concept of Hidden Variation Behind "Missing Heritability" in Precision Medicine. J Mol Evol 2021; 89:513-526. [PMID: 34341835 PMCID: PMC8327892 DOI: 10.1007/s00239-021-10023-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/20/2021] [Indexed: 01/06/2023]
Abstract
The high hopes for the Human Genome Project and personalized medicine were not met because the relationship between genotypes and phenotypes turned out to be more complex than expected. In a previous study we laid the foundation of a theory of complexity and showed that because of the blind nature of evolution, and molecular and historical contingency, cells have accumulated unnecessary complexity, complexity beyond what is necessary and sufficient to describe an organism. Here we provide empirical evidence and show that unnecessary complexity has become integrated into the genome in the form of redundancy and is relevant to molecular evolution of phenotypic complexity. Unnecessary complexity creates uncertainty between molecular and phenotypic complexity, such that phenotypic complexity (CP) is higher than molecular complexity (CM), which is higher than DNA complexity (CD). The qualitative inequality in complexity is based on the following hierarchy: CP > CM > CD. This law-like relationship holds true for all complex traits, including complex diseases. We present a hypothesis of two types of variation, namely open and closed (hidden) systems, show that hidden variation provides a hitherto undiscovered "third source" of phenotypic variation, beside genotype and environment, and argue that "missing heritability" for some complex diseases is likely to be a case of "diluted heritability". There is a need for radically new ways of thinking about the principles of genotype-phenotype relationship. Understanding how cells use hidden, pathway variation to respond to stress can shed light on why two individuals who share the same risk factors may not develop the same disease, or how cancer cells escape death.
Collapse
Affiliation(s)
- Rama S Singh
- Department of Biology, and Origins Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S4K1, Canada.
| |
Collapse
|
132
|
Souweine JS, Pasquier G, Kuster N, Rodriguez A, Patrier L, Morena M, Badia E, Raynaud F, Chalabi L, Raynal N, Ohresser I, Hayot M, Mercier J, Quintrec ML, Gouzi F, Cristol JP. Dynapaenia and sarcopaenia in chronic haemodialysis patients: do muscle weakness and atrophy similarly influence poor outcome? Nephrol Dial Transplant 2021; 36:1908-1918. [PMID: 33306128 DOI: 10.1093/ndt/gfaa353] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Sarcopaenia, defined as a decline in both muscle mass and function, has been recognized as a major determinant of poor outcome in haemodialysis (HD) patients. It is generally assumed that sarcopaenia is driven by muscle atrophy related to protein-energy wasting. However, dynapaenia, defined as weakness without atrophy, has been characterized by a different disease phenotype from sarcopaenia. The aim of this study was to compare the characteristics and prognosis of sarcopaenic and dynapaenic patients among a prospective cohort of chronic HD (CHD) patients. METHODS Two hundred and thirty-two CHD patients were enrolled from January to July 2016 and then followed prospectively until December 2018. At inclusion, weakness and atrophy were, respectively, evaluated by maximal voluntary force (MVF) and creatinine index (CI). Sarcopaenia was defined as the association of weakness and atrophy (MVF and CI below the median) while dynapaenia was defined as weakness not related to atrophy (MVF below the median, and CI above the median). RESULTS From a total of 187 prevalent CHD patients [65% of men, age 65.3 (49.7-82.0) years], 44 died during the follow-up period of 23.7 (12.4-34.9) months. Sarcopaenia and dynapaenia were observed in 33.7 and 16% of the patients, respectively. Compared with patients with sarcopaenia, patients with dynapaenia were younger and with a lower Charlson score. In contrast, mortality rate was similar in both groups (38 and 27%, respectively). After adjustment for age, sex, lean tissue index, serum albumin, high-sensitivity C-reactive protein (hs-CRP), haemoglobin (Hb), normalized protein catabolic rate (nPCR), dialysis vintage and Charlson score, only patients with dynapaenia were at increased risk of death [hazard ratio (HR) = 2.99, confidence interval 1.18-7.61; P = 0.02]. CONCLUSIONS Screening for muscle functionality is highly warranted to identify patients with muscle functional impairment without muscle atrophy. In contrast to sarcopaenia, dynapaenia should appear as a phenotype induced by uraemic milieu, characterized by young patients with low Charlson score and poor prognosis outcome independently of serum albumin, hs-CRP, Hb, nPCR and dialysis vintage.
Collapse
Affiliation(s)
- Jean-Sébastien Souweine
- Department of Biochemistry, University Hospital of Montpellier, University of Montpellier, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Grégoire Pasquier
- Department of Biochemistry, University Hospital of Montpellier, University of Montpellier, Montpellier, France
| | - Nils Kuster
- Department of Biochemistry, University Hospital of Montpellier, University of Montpellier, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | | | | | - Marion Morena
- Department of Biochemistry, University Hospital of Montpellier, University of Montpellier, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Eric Badia
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Fabrice Raynaud
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | | | | | | | - Maurice Hayot
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France.,Department of Physiology, University Hospital of Montpellier, University of Montpellier, Montpellier, France
| | - Jacques Mercier
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France.,Department of Physiology, University Hospital of Montpellier, University of Montpellier, Montpellier, France
| | - Moglie Le Quintrec
- Department of Nephrology, University Hospital of Montpellier, University of Montpellier, Montpellier, France
| | - Fares Gouzi
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France.,Department of Physiology, University Hospital of Montpellier, University of Montpellier, Montpellier, France
| | - Jean-Paul Cristol
- Department of Biochemistry, University Hospital of Montpellier, University of Montpellier, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|
133
|
de Nys R, Kumar R, Gecz J. Protocadherin 19 Clustering Epilepsy and Neurosteroids: Opportunities for Intervention. Int J Mol Sci 2021; 22:9769. [PMID: 34575929 PMCID: PMC8469663 DOI: 10.3390/ijms22189769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 01/23/2023] Open
Abstract
Steroids yield great influence on neurological development through nuclear hormone receptor (NHR)-mediated gene regulation. We recently reported that cell adhesion molecule protocadherin 19 (encoded by the PCDH19 gene) is involved in the coregulation of steroid receptor activity on gene expression. PCDH19 variants cause early-onset developmental epileptic encephalopathy clustering epilepsy (CE), with altered steroidogenesis and NHR-related gene expression being identified in these individuals. The implication of hormonal pathways in CE pathogenesis has led to the investigation of various steroid-based antiepileptic drugs in the treatment of this disorder, with mixed results so far. Therefore, there are many unmet challenges in assessing the antiseizure targets and efficiency of steroid-based therapeutics for CE. We review and assess the evidence for and against the implication of neurosteroids in the pathogenesis of CE and in view of their possible clinical benefit.
Collapse
Affiliation(s)
- Rebekah de Nys
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia; (R.d.N.); (R.K.)
- Robinson Research Institute, The University of Adelaide, Adelaide, SA 5006, Australia
| | - Raman Kumar
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia; (R.d.N.); (R.K.)
- Robinson Research Institute, The University of Adelaide, Adelaide, SA 5006, Australia
| | - Jozef Gecz
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia; (R.d.N.); (R.K.)
- Robinson Research Institute, The University of Adelaide, Adelaide, SA 5006, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| |
Collapse
|
134
|
The genetic structure of the Turkish population reveals high levels of variation and admixture. Proc Natl Acad Sci U S A 2021; 118:2026076118. [PMID: 34426522 DOI: 10.1073/pnas.2026076118] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The construction of population-based variomes has contributed substantially to our understanding of the genetic basis of human inherited disease. Here, we investigated the genetic structure of Turkey from 3,362 unrelated subjects whose whole exomes (n = 2,589) or whole genomes (n = 773) were sequenced to generate a Turkish (TR) Variome that should serve to facilitate disease gene discovery in Turkey. Consistent with the history of present-day Turkey as a crossroads between Europe and Asia, we found extensive admixture between Balkan, Caucasus, Middle Eastern, and European populations with a closer genetic relationship of the TR population to Europeans than hitherto appreciated. We determined that 50% of TR individuals had high inbreeding coefficients (≥0.0156) with runs of homozygosity longer than 4 Mb being found exclusively in the TR population when compared to 1000 Genomes Project populations. We also found that 28% of exome and 49% of genome variants in the very rare range (allele frequency < 0.005) are unique to the modern TR population. We annotated these variants based on their functional consequences to establish a TR Variome containing alleles of potential medical relevance, a repository of homozygous loss-of-function variants and a TR reference panel for genotype imputation using high-quality haplotypes, to facilitate genome-wide association studies. In addition to providing information on the genetic structure of the modern TR population, these data provide an invaluable resource for future studies to identify variants that are associated with specific phenotypes as well as establishing the phenotypic consequences of mutations in specific genes.
Collapse
|
135
|
Tak YE, Horng JE, Perry NT, Schultz HT, Iyer S, Yao Q, Zou LS, Aryee MJ, Pinello L, Joung JK. Augmenting and directing long-range CRISPR-mediated activation in human cells. Nat Methods 2021; 18:1075-1081. [PMID: 34354266 PMCID: PMC8446310 DOI: 10.1038/s41592-021-01224-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
Epigenetic editing is an emerging technology that uses artificial transcription factors (aTFs) to regulate expression of a target gene. Although human genes can be robustly upregulated by targeting aTFs to promoters, the activation induced by directing aTFs to distal transcriptional enhancers is substantially less robust and consistent. Here we show that long-range activation using CRISPR-based aTFs in human cells can be made more efficient and reliable by concurrently targeting an aTF to the target gene promoter. We used this strategy to direct target gene choice for enhancers capable of regulating more than one promoter and to achieve allele-selective activation of human genes by targeting aTFs to single-nucleotide polymorphisms embedded in distally located sequences. Our results broaden the potential applications of the epigenetic editing toolbox for research and therapeutics.
Collapse
Affiliation(s)
- Y. Esther Tak
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA,Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Joy E. Horng
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA,Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA,These authors contributed equally
| | - Nicholas T. Perry
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA,Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA,These authors contributed equally
| | - Hayley T. Schultz
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA,Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Sowmya Iyer
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
| | - Qiuming Yao
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA,Department of Pathology, Harvard Medical School, Boston, MA, USA,Cell Circuits and Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Luli S. Zou
- Cell Circuits and Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Martin J. Aryee
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA,Department of Pathology, Harvard Medical School, Boston, MA, USA,Cell Circuits and Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Luca Pinello
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA,Department of Pathology, Harvard Medical School, Boston, MA, USA,Cell Circuits and Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - J. Keith Joung
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA,Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA,Department of Pathology, Harvard Medical School, Boston, MA, USA,Correspondence and requests for materials should be addressed to J. Keith Joung.
| |
Collapse
|
136
|
Toh M, Ngeow J. Homologous Recombination Deficiency: Cancer Predispositions and Treatment Implications. Oncologist 2021; 26:e1526-e1537. [PMID: 34021944 PMCID: PMC8417864 DOI: 10.1002/onco.13829] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022] Open
Abstract
Homologous recombination (HR) is a highly accurate DNA repair mechanism. Several HR genes are established cancer susceptibility genes with clinically actionable pathogenic variants (PVs). Classically, BRCA1 and BRCA2 germline PVs are associated with significant breast and ovarian cancer risks. Patients with BRCA1 or BRCA2 PVs display worse clinical outcomes but respond better to platinum-based chemotherapies and poly-ADP ribose polymerase inhibitors, a trait termed "BRCAness." With the advent of whole-exome sequencing and multigene panels, PVs in other HR genes are increasingly identified among familial cancers. As such, several genes such as PALB2 are reclassified as cancer predisposition genes. But evidence for cancer risks remains unclear for many others. In this review, we will discuss cancer predispositions and treatment implications beyond BRCA1 and BRCA2, with a focus on 24 HR genes: 53BP1, ATM, ATR, ATRIP, BARD1, BLM, BRIP1, DMC1, MRE11A, NBN, PALB2, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RIF1, RMI1, RMI2, RPA1, TOP3A, TOPBP1, XRCC2, and XRCC3. IMPLICATIONS FOR PRACTICE: This review provides a comprehensive reference for readers to quickly identify potential cancer predisposing homologous recombination (HR) genes, and to generate research questions for genes with inconclusive evidence. This review also evaluates the "BRCAness" of each HR member. Clinicians can refer to these discussions to identify potential candidates for future clinical trials.
Collapse
Affiliation(s)
- MingRen Toh
- Duke–National University of Singapore Medical SchoolSingapore
| | - Joanne Ngeow
- Cancer Genetics Service, Division of Medical Oncology, National Cancer CenterSingapore
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingapore
| |
Collapse
|
137
|
Fogh S, Dipace G, Bie A, Veiga‐da‐Cunha M, Hansen J, Kjeldsen M, Mosegaard S, Ribes A, Gregersen N, Aagaard L, Van Schaftingen E, Olsen RKJ. Variants in the ethylmalonyl-CoA decarboxylase (ECHDC1) gene: a novel player in ethylmalonic aciduria? J Inherit Metab Dis 2021; 44:1215-1225. [PMID: 33973257 PMCID: PMC8518634 DOI: 10.1002/jimd.12394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
Ethylmalonic acid (EMA) is a major and potentially cytotoxic metabolite associated with short-chain acyl-CoA dehydrogenase (SCAD) deficiency, a condition whose status as a disease is uncertain. Unexplained high EMA is observed in some individuals with complex neurological symptoms, who carry the SCAD gene (ACADS) variants, c.625G>A and c.511C>T. The variants have a high allele frequency in the general population, but are significantly overrepresented in individuals with elevated EMA. This has led to the idea that these variants need to be associated with variants in other genes to cause hyperexcretion of ethylmalonic acid and possibly a diseased state. Ethylmalonyl-CoA decarboxylase (ECHDC1) has been described and characterized as an EMA metabolite repair enzyme, however, its clinical relevance has never been investigated. In this study, we sequenced the ECHDC1 gene (ECHDC1) in 82 individuals, who were reported with unexplained high EMA levels due to the presence of the common ACADS variants only. Three individuals with ACADS c.625G>A variants were found to be heterozygous for ECHDC1 loss-of-function variants. Knockdown experiments of ECHDC1, in healthy human cells with different ACADS c.625G>A genotypes, showed that ECHDC1 haploinsufficiency and homozygosity for the ACADS c.625G>A variant had a synergistic effect on cellular EMA excretion. This study reports the first cases of ECHDC1 gene defects in humans and suggests that ECHDC1 may be involved in elevated EMA excretion in only a small group of individuals with the common ACADS variants. However, a direct link between ECHDC1/ACADS deficiency, EMA and disease could not be proven.
Collapse
Affiliation(s)
- Sarah Fogh
- Research Unit for Molecular Medicine, Department for Clinical MedicineAarhus University and Aarhus University HospitalAarhusDenmark
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | - Graziana Dipace
- Research Unit for Molecular Medicine, Department for Clinical MedicineAarhus University and Aarhus University HospitalAarhusDenmark
| | - Anne Bie
- Research Unit for Molecular Medicine, Department for Clinical MedicineAarhus University and Aarhus University HospitalAarhusDenmark
| | | | - Jakob Hansen
- Department of Forensic MedicineAarhus University HospitalAarhusDenmark
| | - Margrethe Kjeldsen
- Research Unit for Molecular Medicine, Department for Clinical MedicineAarhus University and Aarhus University HospitalAarhusDenmark
| | - Signe Mosegaard
- Research Unit for Molecular Medicine, Department for Clinical MedicineAarhus University and Aarhus University HospitalAarhusDenmark
| | - Antonia Ribes
- Secció d'Errors Congènits del Metabolisme‐IBC, Servei de Bioquímica i Genètica MolecularHospital Clínic, IDIBAPS, CIBERERBarcelonaSpain
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Department for Clinical MedicineAarhus University and Aarhus University HospitalAarhusDenmark
| | - Lars Aagaard
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | | | - Rikke K. J. Olsen
- Research Unit for Molecular Medicine, Department for Clinical MedicineAarhus University and Aarhus University HospitalAarhusDenmark
| |
Collapse
|
138
|
Natarajan K, Eisfeldt J, Hammond M, Laffita-Mesa JM, Patra K, Khoshnood B, Öijerstedt L, Graff C. Single-cell multimodal analysis in a case with reduced penetrance of Progranulin-Frontotemporal Dementia. Acta Neuropathol Commun 2021; 9:132. [PMID: 34344473 PMCID: PMC8336016 DOI: 10.1186/s40478-021-01234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/23/2021] [Indexed: 11/10/2022] Open
Abstract
We identified an autosomal dominant progranulin mutation carrier without symptoms of dementia in her lifetime (Reduced Penetrance Mutation Carrier, RedPenMC). This resistance to develop expected pathology presents a unique opportunity to interrogate neurodegenerative mechanisms. We performed multimodal single-nuclei analyses of post-mortem frontal cortex from RedPenMC, including transcriptomics and global levels of chromatin marks. RedPenMC had an increased ratio of GRN-expressing microglia, higher levels of activating histone mark H3k4me3 in microglia and lower levels of the repressive chromatin marks H3k9me1 and H3k9me3 in the frontal cortex than her affected mutation carrier son and evidence of higher protein levels of progranulin in both plasma and brain homogenates. Although the study is limited to one case, the results support that restoring brain progranulin levels may be sufficient to escape neurodegeneration and FTD. In addition to previously identified modifier genes, it is possible that epigenetic marks may contribute to the increased progranulin expression in cases of reduced penetrance. These findings may stimulate similar follow-up studies and new therapeutic approaches.
Collapse
|
139
|
Kozek K, Wada Y, Sala L, Denjoy I, Egly C, O'Neill MJ, Aiba T, Shimizu W, Makita N, Ishikawa T, Crotti L, Spazzolini C, Kotta MC, Dagradi F, Castelletti S, Pedrazzini M, Gnecchi M, Leenhardt A, Salem JE, Ohno S, Zuo Y, Glazer AM, Mosley JD, Roden DM, Knollmann BC, Blume JD, Extramiana F, Schwartz PJ, Horie M, Kroncke BM. Estimating the Posttest Probability of Long QT Syndrome Diagnosis for Rare KCNH2 Variants. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2021; 14:e003289. [PMID: 34309407 PMCID: PMC8373797 DOI: 10.1161/circgen.120.003289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/09/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND The proliferation of genetic profiling has revealed many associations between genetic variations and disease. However, large-scale phenotyping efforts in largely healthy populations, coupled with DNA sequencing, suggest variants currently annotated as pathogenic are more common in healthy populations than previously thought. In addition, novel and rare variants are frequently observed in genes associated with disease both in healthy individuals and those under suspicion of disease. This raises the question of whether these variants can be useful predictors of disease. To answer this question, we assessed the degree to which the presence of a variant in the cardiac potassium channel gene KCNH2 was diagnostically predictive for the autosomal dominant long QT syndrome. METHODS We estimated the probability of a long QT diagnosis given the presence of each KCNH2 variant using Bayesian methods that incorporated variant features such as changes in variant function, protein structure, and in silico predictions. We call this estimate the posttest probability of disease. Our method was applied to over 4000 individuals heterozygous for 871 missense or in-frame insertion/deletion variants in KCNH2 and validated against a separate international cohort of 933 individuals heterozygous for 266 missense or in-frame insertion/deletion variants. RESULTS Our method was well-calibrated for the observed fraction of heterozygotes diagnosed with long QT syndrome. Heuristically, we found that the innate diagnostic information one learns about a variant from 3-dimensional variant location, in vitro functional data, and in silico predictors is equivalent to the diagnostic information one learns about that same variant by clinically phenotyping 10 heterozygotes. Most importantly, these data can be obtained in the absence of any clinical observations. CONCLUSIONS We show how variant-specific features can inform a prior probability of disease for rare variants even in the absence of clinically phenotyped heterozygotes.
Collapse
Affiliation(s)
- Krystian Kozek
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Departments of Medicine & Pharmacology (K.K., Y.W., C.E., M.J.O., A.M.G., J.D.M., D.M.R., B.C.K., B.M.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Yuko Wada
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Departments of Medicine & Pharmacology (K.K., Y.W., C.E., M.J.O., A.M.G., J.D.M., D.M.R., B.C.K., B.M.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan (Y.W., S.O., M.H.)
| | - Luca Sala
- Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy (L.S., L.C., C.K., M.P., P.J.S.)
| | - Isabelle Denjoy
- CNMR Maladies Cardiaques Héréditaires Rares, AP-HP, Hôpital Bichat, Paris, France (I.D., A.L., F.E.)
| | - Christian Egly
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Departments of Medicine & Pharmacology (K.K., Y.W., C.E., M.J.O., A.M.G., J.D.M., D.M.R., B.C.K., B.M.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Matthew J O'Neill
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Departments of Medicine & Pharmacology (K.K., Y.W., C.E., M.J.O., A.M.G., J.D.M., D.M.R., B.C.K., B.M.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Takeshi Aiba
- Department of Cardiovascular Medicine (T.A., N.M., S.O.), National Cerebral and Cardiovascular Center, Suita
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan (W.S.)
| | - Naomasa Makita
- Department of Cardiovascular Medicine (T.A., N.M., S.O.), National Cerebral and Cardiovascular Center, Suita
- 7Omics Research Center (N.M., T.I.), National Cerebral and Cardiovascular Center, Suita
| | - Taisuke Ishikawa
- 7Omics Research Center (N.M., T.I.), National Cerebral and Cardiovascular Center, Suita
| | - Lia Crotti
- Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy (L.S., L.C., C.K., M.P., P.J.S.)
- Department of Cardiovascular, Neural & Metabolic Sciences, San Luca Hospital (L.C.), Istituto Auxologico Italiano IRCCS
- Center for Cardiac Arrhythmias of Genetic Origin (L.C., C.S., F.D., S.C., P.J.S.), Istituto Auxologico Italiano IRCCS
- Department of Medicine and Surgery, University Milano Bicocca, Milan (L.C.)
| | - Carla Spazzolini
- Center for Cardiac Arrhythmias of Genetic Origin (L.C., C.S., F.D., S.C., P.J.S.), Istituto Auxologico Italiano IRCCS
| | | | - Federica Dagradi
- Center for Cardiac Arrhythmias of Genetic Origin (L.C., C.S., F.D., S.C., P.J.S.), Istituto Auxologico Italiano IRCCS
| | - Silvia Castelletti
- Center for Cardiac Arrhythmias of Genetic Origin (L.C., C.S., F.D., S.C., P.J.S.), Istituto Auxologico Italiano IRCCS
| | - Matteo Pedrazzini
- Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy (L.S., L.C., C.K., M.P., P.J.S.)
| | - Massimiliano Gnecchi
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia (M.G.)
- Intensive Cardiac Care Unit and Lab of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy (M.G.)
| | - Antoine Leenhardt
- CNMR Maladies Cardiaques Héréditaires Rares, AP-HP, Hôpital Bichat, Paris, France (I.D., A.L., F.E.)
- University de Paris (A.L., F.E.)
| | - Joe-Elie Salem
- Division of Cardiovascular Medicine, Cardio-oncology Program (J.-E.S.), Vanderbilt University Medical Center, Nashville, TN
- Sorbonne Université, INSERM CIC-1901, AP-HP, Department of Pharmacology, Regional Pharmacovigilance Center, Pitié-Salpêtrière Hospital, Paris, France (J.-E.S.)
| | - Seiko Ohno
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan (Y.W., S.O., M.H.)
- Department of Cardiovascular Medicine (T.A., N.M., S.O.), National Cerebral and Cardiovascular Center, Suita
| | - Yi Zuo
- Department of Biostatistics (Y.Z., J.D.M., D.M.R.), Vanderbilt University, Nashville, TN
| | - Andrew M Glazer
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Departments of Medicine & Pharmacology (K.K., Y.W., C.E., M.J.O., A.M.G., J.D.M., D.M.R., B.C.K., B.M.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Jonathan D Mosley
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Departments of Medicine & Pharmacology (K.K., Y.W., C.E., M.J.O., A.M.G., J.D.M., D.M.R., B.C.K., B.M.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Biostatistics (Y.Z., J.D.M., D.M.R.), Vanderbilt University, Nashville, TN
- Biomedical Informatics (J.D.M.), Vanderbilt University, Nashville, TN
| | - Dan M Roden
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Departments of Medicine & Pharmacology (K.K., Y.W., C.E., M.J.O., A.M.G., J.D.M., D.M.R., B.C.K., B.M.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Biostatistics (Y.Z., J.D.M., D.M.R.), Vanderbilt University, Nashville, TN
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Departments of Medicine & Pharmacology (K.K., Y.W., C.E., M.J.O., A.M.G., J.D.M., D.M.R., B.C.K., B.M.K.), Vanderbilt University Medical Center, Nashville, TN
| | | | - Fabrice Extramiana
- CNMR Maladies Cardiaques Héréditaires Rares, AP-HP, Hôpital Bichat, Paris, France (I.D., A.L., F.E.)
- University de Paris (A.L., F.E.)
| | - Peter J Schwartz
- Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy (L.S., L.C., C.K., M.P., P.J.S.)
- Center for Cardiac Arrhythmias of Genetic Origin (L.C., C.S., F.D., S.C., P.J.S.), Istituto Auxologico Italiano IRCCS
| | - Minoru Horie
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan (Y.W., S.O., M.H.)
| | - Brett M Kroncke
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Departments of Medicine & Pharmacology (K.K., Y.W., C.E., M.J.O., A.M.G., J.D.M., D.M.R., B.C.K., B.M.K.), Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
140
|
Roman-Naranjo P, Gallego-Martinez A, Soto-Varela A, Aran I, Moleon MDC, Espinosa-Sanchez JM, Amor-Dorado JC, Batuecas-Caletrio A, Perez-Vazquez P, Lopez-Escamez JA. Burden of Rare Variants in the OTOG Gene in Familial Meniere's Disease. Ear Hear 2021; 41:1598-1605. [PMID: 33136635 DOI: 10.1097/aud.0000000000000878] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Meniere's disease (MD) is a rare inner ear disorder characterized by sensorineural hearing loss, episodic vertigo, and tinnitus. Familial MD has been reported in 6 to 9% of sporadic cases, and few genes including FAM136A, DTNA, PRKCB, SEMA3D, and DPT have been involved in single families, suggesting genetic heterogeneity. In this study, the authors recruited 46 families with MD to search for relevant candidate genes for hearing loss in familial MD. DESIGN Exome sequencing data from MD patients were analyzed to search for rare variants in hearing loss genes in a case-control study. A total of 109 patients with MD (73 familial cases and 36 early-onset sporadic patients) diagnosed according to the diagnostic criteria defined by the Barany Society were recruited in 11 hospitals. The allelic frequencies of rare variants in hearing loss genes were calculated in individuals with familial MD. A single rare variant analysis and a gene burden analysis (GBA) were conducted in the dataset selecting 1 patient from each family. Allelic frequencies from European and Spanish reference datasets were used as controls. RESULTS A total of 5136 single-nucleotide variants in hearing loss genes were considered for single rare variant analysis in familial MD cases, but only 1 heterozygous likely pathogenic variant in the OTOG gene (rs552304627) was found in 2 unrelated families. The gene burden analysis found an enrichment of rare missense variants in the OTOG gene in familial MD. So, 15 of 46 families (33%) showed at least 1 rare missense variant in the OTOG gene, suggesting a key role in familial MD. CONCLUSIONS The authors found an enrichment of multiplex rare missense variants in the OTOG gene in familial MD. This finding supports OTOG as a relevant gene in familial MD and set the groundwork for genetic testing in MD.
Collapse
Affiliation(s)
- Pablo Roman-Naranjo
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, Granada, Spain
| | - Alvaro Gallego-Martinez
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, Granada, Spain
| | - Andrés Soto-Varela
- Division of Otoneurology, Department of Otorhinolaryngology, Complexo Hospitalario Universitario, Santiago de Compostela, Spain
| | - Ismael Aran
- Department of Otolaryngology, Complexo Hospitalario de Pontevedra, Pontevedra, Spain
| | - Maria Del Carmen Moleon
- Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Juan Manuel Espinosa-Sanchez
- Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | | | - Angel Batuecas-Caletrio
- Department of Otolaryngology, Hospital Universitario Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Paz Perez-Vazquez
- Department of Otorhinolaryngology, Hospital Universitario de Cabueñes, Gijón, Spain
| | - Jose Antonio Lopez-Escamez
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, Granada, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Granada, Spain
- Department of Surgery, Division of Otolaryngology, Universidad de Granada, Granada, Spain
| |
Collapse
|
141
|
Teng EL, Masutani EM, Yeoman B, Fung J, Lian R, Ngo B, Kumar A, Placone JK, Lo Sardo V, Engler AJ. High shear stress enhances endothelial permeability in the presence of the risk haplotype at 9p21.3. APL Bioeng 2021; 5:036102. [PMID: 34327295 PMCID: PMC8315817 DOI: 10.1063/5.0054639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/09/2021] [Indexed: 11/15/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) are exceedingly common in non-coding loci, and while they are significantly associated with a myriad of diseases, their specific impact on cellular dysfunction remains unclear. Here, we show that when exposed to external stressors, the presence of risk SNPs in the 9p21.3 coronary artery disease (CAD) risk locus increases endothelial monolayer and microvessel dysfunction. Endothelial cells (ECs) derived from induced pluripotent stem cells of patients carrying the risk haplotype (R/R WT) differentiated similarly to their non-risk and isogenic knockout (R/R KO) counterparts. Monolayers exhibited greater permeability and reactive oxygen species signaling when the risk haplotype was present. Addition of the inflammatory cytokine TNFα further enhanced EC monolayer permeability but independent of risk haplotype; TNFα also did not substantially alter haplotype transcriptomes. Conversely, when wall shear stress was applied to ECs in a microfluidic vessel, R/R WT vessels were more permeable at lower shear stresses than R/R KO vessels. Transcriptomes of sheared cells clustered more by risk haplotype than by patient or clone, resulting in significant differential regulation of EC adhesion and extracellular matrix genes vs static conditions. A subset of previously identified CAD risk genes invert expression patterns in the presence of high shear concomitant with altered cell adhesion genes, vessel permeability, and endothelial erosion in the presence of the risk haplotype, suggesting that shear stress could be a regulator of non-coding loci with a key impact on CAD.
Collapse
Affiliation(s)
- Evan L Teng
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Evan M Masutani
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Benjamin Yeoman
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Jessica Fung
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Rachel Lian
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Brenda Ngo
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Aditya Kumar
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Jesse K Placone
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Valentina Lo Sardo
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
142
|
Salnikova LE, Kolobkov DS, Sviridova DA, Abilev SK. An overview of germline variations in genes of primary immunodeficiences through integrative analysis of ClinVar, HGMD ® and dbSNP databases. Hum Genet 2021; 140:1379-1393. [PMID: 34272616 DOI: 10.1007/s00439-021-02316-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/10/2021] [Indexed: 12/20/2022]
Abstract
Primary immunodeficiencies (PID) are a diverse group of genetic disorders caused by inadequate development and function of immune system. Identifying genetic etiology is important for genetic counselling and treatment decisions. Clinical relevance of genetic variants is a complex problem depending on gene-specific and variant specific genotype-phenotype interactions. To address this challenge, we aimed to characterize the pathogenic landscape of PID genes by combining the analysis of germline variations reported in ClinVar and HGMD® and identification of damaging variations available in dbSNP. We generated a joint ClinVar/HGMD database, which included 111,940 variants, among them 32,452 were classified as pathogenic/likely pathogenic. From a total of 5,415,794 bi- or multiallelic variants in PID genes recorded in dbSNP, we retrieved 38,291 high impact (HI) biallelic variants with presumably disruptive impact in the protein, of them 25,500 variants were not present in ClinVar/HGMD. Using a functional prediction algorithm, we additionally identified 28,507 deleterious and 56,016 neutral missense variants among dbSNP variants and created a collection of damaging and neutral variations in PID genes, not currently present in ClinVar/HGMD, with their allele frequencies and mappings to protein domains. The distribution of pathogenic variants from ClinVar/HGMD, HI variants and deleterious missense variants from dbSNP was analyzed in the context of hereditary pattern and gene specific metrics, such as pLI and haploinsufficiency. Our report summarized data on complex gene-specific variability in PID genes and might be useful for the identification of the most promising variants and gene regions for further study.
Collapse
Affiliation(s)
- Lyubov E Salnikova
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkin Street, Moscow, 117971, Russia. .,The Laboratory of Molecular Immunology, Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia. .,The Laboratory of Clinical Pathophysiology of Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia.
| | - Dmitry S Kolobkov
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkin Street, Moscow, 117971, Russia.,Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Darya A Sviridova
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkin Street, Moscow, 117971, Russia
| | - Serikbai K Abilev
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkin Street, Moscow, 117971, Russia
| |
Collapse
|
143
|
Pierrache LHM, Ghafaryasl B, Khan MI, Yzer S, van Genderen MM, Schuil J, Boonstra FN, Pott JWR, de Faber JTHN, Tjon-Fo-Sang MJH, Vermeer KA, Cremers FPM, Klaver CCW, van den Born LI. LONGITUDINAL STUDY OF RPE65-ASSOCIATED INHERITED RETINAL DEGENERATIONS. Retina 2021; 40:1812-1828. [PMID: 32032261 DOI: 10.1097/iae.0000000000002681] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To study the disease course of RPE65-associated inherited retinal degenerations (IRDs) as a function of the genotype, define a critical age for blindness, and identify potential modifiers. METHODS Forty-five patients with IRD from 33 families with biallelic RPE65 mutations, 28 stemming from a genetic isolate. We collected retrospective data from medical charts. Coexisting variants in 108 IRD-associated genes were identified with Molecular Inversion Probe analysis. RESULTS Most patients were diagnosed within the first years of life. Daytime visual function ranged from near-normal to blindness in the first four decades and met WHO criteria for blindness for visual acuity and visual field in the fifth decade. p.(Thr368His) was the most common variant (54%). Intrafamilial variability and interfamilial variability in disease severity and progression were observed. Molecular Inversion Probe analysis confirmed all RPE65 variants and identified one additional variant in LRAT and one in EYS in two separate patients. CONCLUSION All patients with RPE65-associated IRDs developed symptoms within the first year of life. Visual function in childhood and adolescence varied but deteriorated inevitably toward blindness after age 40. In this study, genotype was not predictive of clinical course. The variance in severity of disease could not be explained by double hits in other IRD genes.
Collapse
Affiliation(s)
- Laurence H M Pierrache
- The Rotterdam Eye Hospital, Rotterdam, the Netherlands.,Rotterdam Ophthalmic Institute, Rotterdam, the Netherlands.,Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands.,Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Babak Ghafaryasl
- Rotterdam Ophthalmic Institute, Rotterdam, the Netherlands.,Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| | - Muhammad I Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Cognitive Neuroscience, Radboud University Medical Centre Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Susanne Yzer
- The Rotterdam Eye Hospital, Rotterdam, the Netherlands
| | - Maria M van Genderen
- Bartiméus Diagnostic Centre for Complex Visual Disorders, Zeist, the Netherlands.,Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - José Schuil
- Bartiméus Diagnostic Centre for Complex Visual Disorders, Zeist, the Netherlands
| | - F Nienke Boonstra
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands.,Royal Dutch Visio, National Foundation for the Visually Impaired and Blind, Huizen, the Netherlands; and
| | - Jan W R Pott
- Department of Ophthalmology, University Medical Center Groningen, Groningen, the Netherlands
| | | | | | | | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Cognitive Neuroscience, Radboud University Medical Centre Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands.,Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands.,Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - L Ingeborgh van den Born
- The Rotterdam Eye Hospital, Rotterdam, the Netherlands.,Rotterdam Ophthalmic Institute, Rotterdam, the Netherlands
| |
Collapse
|
144
|
Zhu F, Zhang F, Hu L, Liu H, Li Y. Integrated Genome and Transcriptome Sequencing to Solve a Neuromuscular Puzzle: Miyoshi Muscular Dystrophy and Early Onset Primary Dystonia in Siblings of the Same Family. Front Genet 2021; 12:672906. [PMID: 34276779 PMCID: PMC8283672 DOI: 10.3389/fgene.2021.672906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/23/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Neuromuscular disorders (NMD), many of which are hereditary, affect muscular function. Due to advances in high-throughput sequencing technologies, the diagnosis of hereditary NMDs has dramatically improved in recent years. METHODS AND RESULTS In this study, we report an family with two siblings exhibiting two different NMD, Miyoshi muscular dystrophy (MMD) and early onset primary dystonia (EOPD). Whole exome sequencing (WES) identified a novel monoallelic frameshift deletion mutation (dysferlin: c.4404delC/p.I1469Sfs∗17) in the Dysferlin gene in the index patient who suffered from MMD. This deletion was inherited from his unaffected father and was carried by his younger sister with EOPD. However, immunostaining staining revealed an absence of dysferlin expression in the proband's muscle tissue and thus suggested the presence of the second underlying mutant allele in dysferlin. Using integrated RNA sequencing (RNA-seq) and whole genome sequencing (WGS) of muscle tissue, a novel deep intronic mutation in dysferlin (dysferlin: c.5341-415A > G) was discovered in the index patient. This mutation caused aberrant mRNA splicing and inclusion of an additional pseudoexon (PE) which we termed PE48.1. This PE was inherited from his unaffected mother. PE48.1 inclusion altered the Dysferlin sequence, causing premature termination of translation. CONCLUSION Using integrated genome and transcriptome sequencing, we discovered hereditary MMD and EOPD affecting two siblings of same family. Our results added further weight to the combined use of RNA-seq and WGS as an important method for detection of deep intronic gene mutations, and suggest that integrated sequencing assays are an effective strategy for the diagnosis of hereditary NMDs.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengxiao Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lizhi Hu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haowen Liu
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yahua Li
- Department of Respiratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
145
|
Shifting landscapes of human MTHFR missense-variant effects. Am J Hum Genet 2021; 108:1283-1300. [PMID: 34214447 PMCID: PMC8322931 DOI: 10.1016/j.ajhg.2021.05.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022] Open
Abstract
Most rare clinical missense variants cannot currently be classified as pathogenic or benign. Deficiency in human 5,10-methylenetetrahydrofolate reductase (MTHFR), the most common inherited disorder of folate metabolism, is caused primarily by rare missense variants. Further complicating variant interpretation, variant impacts often depend on environment. An important example of this phenomenon is the MTHFR variant p.Ala222Val (c.665C>T), which is carried by half of all humans and has a phenotypic impact that depends on dietary folate. Here we describe the results of 98,336 variant functional-impact assays, covering nearly all possible MTHFR amino acid substitutions in four folinate environments, each in the presence and absence of p.Ala222Val. The resulting atlas of MTHFR variant effects reveals many complex dependencies on both folinate and p.Ala222Val. MTHFR atlas scores can distinguish pathogenic from benign variants and, among individuals with severe MTHFR deficiency, correlate with age of disease onset. Providing a powerful tool for understanding structure-function relationships, the atlas suggests a role for a disordered loop in retaining cofactor at the active site and identifies variants that enable escape of inhibition by S-adenosylmethionine. Thus, a model based on eight MTHFR variant effect maps illustrates how shifting landscapes of environment- and genetic-background-dependent missense variation can inform our clinical, structural, and functional understanding of MTHFR deficiency.
Collapse
|
146
|
Cao L, Zhang R, Yong L, Chen S, Zhang H, Chen W, Xu Q, Ge H, Mao Y, Zhen Q, Yu Y, Hu X, Sun L. Novel missense mutation of SASH1 in a Chinese family with dyschromatosis universalis hereditaria. BMC Med Genomics 2021; 14:168. [PMID: 34174894 PMCID: PMC8236144 DOI: 10.1186/s12920-021-01014-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dyschromatosis universalis hereditaria (DUH) is a pigmentary dermatosis characterized by generalized mottled macules with hypopigmention and hyperpigmention. ABCB6 and SASH1 are recently reported pathogenic genes related to DUH, and the aim of this study was to identify the causative mutations in a Chinese family with DUH. METHODS Sanger sequencing was performed to investigate the clinical manifestation and molecular genetic basis of these familial cases of DUH, bioinformatics tools and multiple sequence alignment were used to analyse the pathogenicity of mutations. RESULTS A novel missense mutation, c.1529G>A, in the SASH1 gene was identified, and this mutation was not found in the National Center for Biotechnology Information Database of Short Genetic Variation, Online Mendelian Inheritance in Man, ClinVar, or 1000 Genomes Project databases. All in silico predictors suggested that the observed substitution mutation was deleterious. Furthermore, multiple sequence alignment of SASH1 revealed that the p.S510N mutation was highly conserved during evolution. In addition, we reviewed the previously reported DUH-related gene mutations in SASH1 and ABCB6. CONCLUSION Although the affected family members had identical mutations, differences in the clinical manifestations of these family members were observed, which reveals the complexity of the phenotype-influencing factors in DUH. Our findings reveal the mutation responsible for DUH in this family and broaden the mutational spectrum of the SASH1 gene.
Collapse
Affiliation(s)
- Lu Cao
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Dermatology, Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Ruixue Zhang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Dermatology, Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Liang Yong
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Dermatology, Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Shirui Chen
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Dermatology, Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Hui Zhang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Dermatology, Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Weiwei Chen
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Dermatology, Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Qiongqiong Xu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Dermatology, Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Huiyao Ge
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Dermatology, Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Yiwen Mao
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Dermatology, Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Qi Zhen
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Dermatology, Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Yafen Yu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Dermatology, Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Xia Hu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Dermatology, Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Liangdan Sun
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
- Institute of Dermatology, Anhui Medical University, Hefei, China.
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, China.
| |
Collapse
|
147
|
Seaby EG, Ennis S. Challenges in the diagnosis and discovery of rare genetic disorders using contemporary sequencing technologies. Brief Funct Genomics 2021; 19:243-258. [PMID: 32393978 DOI: 10.1093/bfgp/elaa009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Next generation sequencing (NGS) has revolutionised rare disease diagnostics. Concomitant with advancing technologies has been a rise in the number of new gene disorders discovered and diagnoses made for patients and their families. However, despite the trend towards whole exome and whole genome sequencing, diagnostic rates remain suboptimal. On average, only ~30% of patients receive a molecular diagnosis. National sequencing projects launched in the last 5 years are integrating clinical diagnostic testing with research avenues to widen the spectrum of known genetic disorders. Consequently, efforts to diagnose genetic disorders in a clinical setting are now often shared with efforts to prioritise candidate variants for the detection of new disease genes. Herein we discuss some of the biggest obstacles precluding molecular diagnosis and discovery of new gene disorders. We consider bioinformatic and analytical challenges faced when interpreting next generation sequencing data and showcase some of the newest tools available to mitigate these issues. We consider how incomplete penetrance, non-coding variation and structural variants are likely to impact diagnostic rates, and we further discuss methods for uplifting novel gene discovery by adopting a gene-to-patient-based approach.
Collapse
|
148
|
Unraveling the genetic complexities of combined retinal dystrophy and hearing impairment. Hum Genet 2021; 141:785-803. [PMID: 34148116 PMCID: PMC9035000 DOI: 10.1007/s00439-021-02303-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Usher syndrome, the most prevalent cause of combined hereditary vision and hearing impairment, is clinically and genetically heterogeneous. Moreover, several conditions with phenotypes overlapping Usher syndrome have been described. This makes the molecular diagnosis of hereditary deaf–blindness challenging. Here, we performed exome sequencing and analysis on 7 Mexican and 52 Iranian probands with combined retinal degeneration and hearing impairment (without intellectual disability). Clinical assessment involved ophthalmological examination and hearing loss questionnaire. Usher syndrome, most frequently due to biallelic variants in MYO7A (USH1B in 16 probands), USH2A (17 probands), and ADGRV1 (USH2C in 7 probands), was diagnosed in 44 of 59 (75%) unrelated probands. Almost half of the identified variants were novel. Nine of 59 (15%) probands displayed other genetic entities with dual sensory impairment, including Alström syndrome (3 patients), cone-rod dystrophy and hearing loss 1 (2 probands), and Heimler syndrome (1 patient). Unexpected findings included one proband each with Scheie syndrome, coenzyme Q10 deficiency, and pseudoxanthoma elasticum. In four probands, including three Usher cases, dual sensory impairment was either modified/aggravated or caused by variants in distinct genes associated with retinal degeneration and/or hearing loss. The overall diagnostic yield of whole exome analysis in our deaf–blind cohort was 92%. Two (3%) probands were partially solved and only 3 (5%) remained without any molecular diagnosis. In many cases, the molecular diagnosis is important to guide genetic counseling, to support prognostic outcomes and decisions with currently available and evolving treatment modalities.
Collapse
|
149
|
Lemire G, Zheng B, Ediae GU, Zou R, Bhola PT, Chisholm C, de Nanassy J, Lo B, Wang C, Shril S, El Desoky S, Shalaby M, Kari JA, Wang X, Kernohan KD, Boycott KM, Hildebrandt F, Sawyer SL. Homozygous WNT9B variants in two families with bilateral renal agenesis/hypoplasia/dysplasia. Am J Med Genet A 2021; 185:3005-3011. [PMID: 34145744 DOI: 10.1002/ajmg.a.62398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/09/2021] [Accepted: 06/05/2021] [Indexed: 11/06/2022]
Abstract
WNT9B plays a key role in the development of the mammalian urogenital system. It is essential for the induction of mesonephric and metanephric tubules, the regulation of renal tubule morphogenesis, and the regulation of renal progenitor cell expansion and differentiation. To our knowledge, WNT9B has not been associated with renal defects in humans; however, WNT9B-/- mice have renal agenesis/hypoplasia and reproductive tract abnormalities. We report four individuals from two unrelated consanguineous families with bilateral renal agenesis/hypoplasia/dysplasia and homozygous variants in WNT9B. The proband from Family 1 has bilateral renal cystic dysplasia and chronic kidney disease. He has two deceased siblings who presented with bilateral renal hypoplasia/agenesis. The three affected family members were homozygous for a missense variant in WNT9B (NM_003396.2: c.949G>A/p.(Gly317Arg)). The proband from Family 2 has renal hypoplasia/dysplasia, chronic kidney disease, and is homozygous for a nonsense variant in WNT9B (NM_003396.2: c.11dupC/p.(Pro5Alafs*52)). Two of her siblings died in the neonatal period, one confirmed to be in the context of oligohydramnios. The proband's unaffected brother is also homozygous for the nonsense variant in WNT9B, suggesting nonpenetrance. We propose a novel association of WNT9B and renal anomalies in humans. Further study is needed to delineate the contribution of WNT9B to genitourinary anomalies in humans.
Collapse
Affiliation(s)
- Gabrielle Lemire
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, University of Ottawa, Ottawa, Canada.,Department of Genetics, Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada
| | - Bixia Zheng
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Grace U Ediae
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, University of Ottawa, Ottawa, Canada
| | - Ruobing Zou
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, University of Ottawa, Ottawa, Canada
| | - Priya T Bhola
- Department of Genetics, Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada
| | - Caitlin Chisholm
- Department of Genetics, Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada
| | - Joseph de Nanassy
- Department of Pathology, Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada
| | - Bryan Lo
- Department of Pathology, The Ottawa Hospital, Ottawa, Canada
| | - Chunyan Wang
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shirlee Shril
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sherif El Desoky
- Pediatric Nephrology Center of Excellence and Pediatric Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Shalaby
- Pediatric Nephrology Center of Excellence and Pediatric Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jameela A Kari
- Pediatric Nephrology Center of Excellence and Pediatric Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Xueqi Wang
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, University of Ottawa, Ottawa, Canada
| | | | - Kristin D Kernohan
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, University of Ottawa, Ottawa, Canada.,Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, University of Ottawa, Ottawa, Canada.,Department of Genetics, Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah L Sawyer
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, University of Ottawa, Ottawa, Canada.,Department of Genetics, Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada
| |
Collapse
|
150
|
Goodrich JK, Singer-Berk M, Son R, Sveden A, Wood J, England E, Cole JB, Weisburd B, Watts N, Caulkins L, Dornbos P, Koesterer R, Zappala Z, Zhang H, Maloney KA, Dahl A, Aguilar-Salinas CA, Atzmon G, Barajas-Olmos F, Barzilai N, Blangero J, Boerwinkle E, Bonnycastle LL, Bottinger E, Bowden DW, Centeno-Cruz F, Chambers JC, Chami N, Chan E, Chan J, Cheng CY, Cho YS, Contreras-Cubas C, Córdova E, Correa A, DeFronzo RA, Duggirala R, Dupuis J, Garay-Sevilla ME, García-Ortiz H, Gieger C, Glaser B, González-Villalpando C, Gonzalez ME, Grarup N, Groop L, Gross M, Haiman C, Han S, Hanis CL, Hansen T, Heard-Costa NL, Henderson BE, Hernandez JMM, Hwang MY, Islas-Andrade S, Jørgensen ME, Kang HM, Kim BJ, Kim YJ, Koistinen HA, Kooner JS, Kuusisto J, Kwak SH, Laakso M, Lange L, Lee JY, Lee J, Lehman DM, Linneberg A, Liu J, Loos RJF, Lyssenko V, Ma RCW, Martínez-Hernández A, Meigs JB, Meitinger T, Mendoza-Caamal E, Mohlke KL, Morris AD, Morrison AC, Ng MCY, Nilsson PM, O'Donnell CJ, Orozco L, Palmer CNA, Park KS, Post WS, Pedersen O, Preuss M, Psaty BM, Reiner AP, Revilla-Monsalve C, Rich SS, Rotter JI, Saleheen D, Schurmann C, Sim X, Sladek R, Small KS, et alGoodrich JK, Singer-Berk M, Son R, Sveden A, Wood J, England E, Cole JB, Weisburd B, Watts N, Caulkins L, Dornbos P, Koesterer R, Zappala Z, Zhang H, Maloney KA, Dahl A, Aguilar-Salinas CA, Atzmon G, Barajas-Olmos F, Barzilai N, Blangero J, Boerwinkle E, Bonnycastle LL, Bottinger E, Bowden DW, Centeno-Cruz F, Chambers JC, Chami N, Chan E, Chan J, Cheng CY, Cho YS, Contreras-Cubas C, Córdova E, Correa A, DeFronzo RA, Duggirala R, Dupuis J, Garay-Sevilla ME, García-Ortiz H, Gieger C, Glaser B, González-Villalpando C, Gonzalez ME, Grarup N, Groop L, Gross M, Haiman C, Han S, Hanis CL, Hansen T, Heard-Costa NL, Henderson BE, Hernandez JMM, Hwang MY, Islas-Andrade S, Jørgensen ME, Kang HM, Kim BJ, Kim YJ, Koistinen HA, Kooner JS, Kuusisto J, Kwak SH, Laakso M, Lange L, Lee JY, Lee J, Lehman DM, Linneberg A, Liu J, Loos RJF, Lyssenko V, Ma RCW, Martínez-Hernández A, Meigs JB, Meitinger T, Mendoza-Caamal E, Mohlke KL, Morris AD, Morrison AC, Ng MCY, Nilsson PM, O'Donnell CJ, Orozco L, Palmer CNA, Park KS, Post WS, Pedersen O, Preuss M, Psaty BM, Reiner AP, Revilla-Monsalve C, Rich SS, Rotter JI, Saleheen D, Schurmann C, Sim X, Sladek R, Small KS, So WY, Spector TD, Strauch K, Strom TM, Tai ES, Tam CHT, Teo YY, Thameem F, Tomlinson B, Tracy RP, Tuomi T, Tuomilehto J, Tusié-Luna T, van Dam RM, Vasan RS, Wilson JG, Witte DR, Wong TY, Burtt NP, Zaitlen N, McCarthy MI, Boehnke M, Pollin TI, Flannick J, Mercader JM, O'Donnell-Luria A, Baxter S, Florez JC, MacArthur DG, Udler MS. Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes. Nat Commun 2021; 12:3505. [PMID: 34108472 PMCID: PMC8190084 DOI: 10.1038/s41467-021-23556-4] [Show More Authors] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
Hundreds of thousands of genetic variants have been reported to cause severe monogenic diseases, but the probability that a variant carrier develops the disease (termed penetrance) is unknown for virtually all of them. Additionally, the clinical utility of common polygenetic variation remains uncertain. Using exome sequencing from 77,184 adult individuals (38,618 multi-ancestral individuals from a type 2 diabetes case-control study and 38,566 participants from the UK Biobank, for whom genotype array data were also available), we apply clinical standard-of-care gene variant curation for eight monogenic metabolic conditions. Rare variants causing monogenic diabetes and dyslipidemias display effect sizes significantly larger than the top 1% of the corresponding polygenic scores. Nevertheless, penetrance estimates for monogenic variant carriers average 60% or lower for most conditions. We assess epidemiologic and genetic factors contributing to risk prediction in monogenic variant carriers, demonstrating that inclusion of polygenic variation significantly improves biomarker estimation for two monogenic dyslipidemias.
Collapse
Affiliation(s)
- Julia K Goodrich
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Moriel Singer-Berk
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rachel Son
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Abigail Sveden
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jordan Wood
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eleina England
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joanne B Cole
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ben Weisburd
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nick Watts
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lizz Caulkins
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Peter Dornbos
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ryan Koesterer
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zachary Zappala
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Haichen Zhang
- School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Kristin A Maloney
- School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Andy Dahl
- Department of Neurology, UCLA, Los Angeles, CA, USA
| | | | - Gil Atzmon
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Faculty of Natural Science, University of Haifa, Haifa, Israel
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | | | - Nir Barzilai
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville and Edinburg, TX, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Lori L Bonnycastle
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erwin Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donald W Bowden
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - John C Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Nathalie Chami
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - Edmund Chan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Juliana Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Yoon Shin Cho
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | | | - Emilio Córdova
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ralph A DeFronzo
- Department of Medicine, University of Texas Health San Antonio (aka University of Texas Health Science Center at San Antonio), San Antonio, TX, USA
| | - Ravindranath Duggirala
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville and Edinburg, TX, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Ma Eugenia Garay-Sevilla
- Department of Medical Science, División of Health Science, University of Guanjuato. Campus León. León, Guanjuato, Mexico
| | | | - Christian Gieger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Clicerio González-Villalpando
- Unidad de Investigacion en Diabetes y Riesgo Cardiovascular, Instituto Nacional de Salud Publica, Cuernavaca, Mexico
| | | | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
- Institute for Molecular Genetics Finland, University of Helsinki, Helsinki, Finland
| | - Myron Gross
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Christopher Haiman
- Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Sohee Han
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, South Korea
| | - Craig L Hanis
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nancy L Heard-Costa
- Boston University and National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Brian E Henderson
- Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Juan Manuel Malacara Hernandez
- Department of Medical Science, División of Health Science, University of Guanjuato. Campus León. León, Guanjuato, Mexico
| | - Mi Yeong Hwang
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, South Korea
| | | | - Marit E Jørgensen
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
- Greenland Centre for Health Research, University of Greenland, Nuuk, Greenland
| | - Hyun Min Kang
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Bong-Jo Kim
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, South Korea
| | - Young Jin Kim
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, South Korea
| | - Heikki A Koistinen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- University of Helsinki and Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Jaspal Singh Kooner
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Soo-Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Leslie Lange
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Jong-Young Lee
- Oneomics Soonchunhyang Mirae Medical Center, Bucheon-si Gyeonggi-do, Republic of Korea
| | - Juyoung Lee
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, South Korea
| | - Donna M Lehman
- Department of Medicine, University of Texas Health San Antonio (aka University of Texas Health Science Center at San Antonio), San Antonio, TX, USA
| | - Allan Linneberg
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Experimental Research, Rigshospitalet, Copenhagen, Denmark
| | - Jianjun Liu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - Valeriya Lyssenko
- Centro de Estudios en Diabetes, Mexico City, Mexico
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | - James B Meigs
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas Meitinger
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | | | - Karen L Mohlke
- Department of Genetics, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Andrew D Morris
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Alanna C Morrison
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Maggie C Y Ng
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Peter M Nilsson
- Department of Clinical Sciences, Medicine, Lund University, Malmö, Sweden
| | - Christopher J O'Donnell
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Section of Cardiology, Department of Medicine, VA Boston Healthcare, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
- Intramural Administration Management Branch, National Heart Lung and Blood Institute, NIH, Framingham, MA, USA
| | - Lorena Orozco
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Colin N A Palmer
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, University of Dundee, Dundee, UK
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Wendy S Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Research Institute, Seattle, WA, USA
| | | | | | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Danish Saleheen
- Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | - Claudia Schurmann
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Digital Health Center, Hasso Plattner Institute, University of Potsdam, Prof.-Dr.-Helmert-Str. 2-3, Potsdam, Germany
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Rob Sladek
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, QC, Canada
- McGill University and Génome Québec Innovation Centre, Montreal, QC, Canada
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Wing Yee So
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Informatics Biometry and Epidemiology, Ludwig-Maximilians University, Munich, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - E Shyong Tai
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Claudia H T Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China
| | - Yik Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
| | - Farook Thameem
- Department of Biochemistry, Faculty of Medicine, Health Science Center, Kuwait University, Safat, Kuwait
| | - Brian Tomlinson
- Faculty of Medicine, Macau University of Science & Technology, Macau, China
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, The Robert Larner M.D. College of Medicine, University of Vermont, Burlington, VT, USA
- Department of Biochemistry, The Robert Larner M.D. College of Medicine, University of Vermont, Burlington, VT, USA
| | - Tiinamaija Tuomi
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
- Institute for Molecular Genetics Finland, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Centre, Helsinki, Finland
- Department of Endocrinology, Abdominal Centre, Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Clinical and Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Jaakko Tuomilehto
- Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Saudi Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of International Health, National School of Public Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Teresa Tusié-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Departamento de Medicina Genómica y Toxiología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Rob M van Dam
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| | - Ramachandran S Vasan
- Boston University and National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Preventive Medicine & Epidemiology, and Cardiovascular Medicine, Medicine, Boston University School of Medicine, and Epidemiology, Boston University School of Public health, Boston, MA, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Daniel R Witte
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Danish Diabetes Academy, Odense, Denmark
| | - Tien-Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Noël P Burtt
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Noah Zaitlen
- Department of Neurology, UCLA, Los Angeles, CA, USA
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Toni I Pollin
- School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Jason Flannick
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Josep M Mercader
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Samantha Baxter
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jose C Florez
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Daniel G MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Centre for Population Genomics, Garvan Institute of Medical Research, UNSW Sydney, Sydney, NSW, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Miriam S Udler
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|