101
|
Wagner C, Kesisoglou F, Pepin XJH, Parrott N, Emami Riedmaier A. Use of Physiologically Based Pharmacokinetic Modeling for Predicting Drug-Food Interactions: Recommendations for Improving Predictive Performance of Low Confidence Food Effect Models. AAPS JOURNAL 2021; 23:85. [PMID: 34142242 DOI: 10.1208/s12248-021-00601-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/20/2021] [Indexed: 11/30/2022]
Abstract
Food can alter drug absorption and impact safety and efficacy. Besides conducting clinical studies, in vitro approaches such as biorelevant solubility and dissolution testing and in vivo dog studies are typical approaches to estimate a drug's food effect. The use of physiologically based pharmacokinetic models has gained importance and is nowadays a standard tool for food effect predictions at preclinical and clinical stages in the pharmaceutical industry. This manuscript is part of a broader publication from the IQ Consortium's food effect physiologically based pharmacokinetic model (PBPK) modeling working group and complements previous publications by focusing on cases where the food effect was predicted with low confidence. Pazopanib-HCl, trospium-Cl, and ziprasidone-HCl served as model compounds to provide insights into why several food effect predictions failed in the first instance. Furthermore, the manuscript depicts approaches whereby PBPK-based food effect predictions may be improved. These improvements should focus on the PBPK model functionality, especially better reflecting fasted- and fed-state gastric solubility, gastric re-acidification, and complex mechanisms related to gastric emptying of drugs. For improvement of in vitro methodologies, the focus should be on the development of more predictive solubility, supersaturation, and precipitation assays. With regards to the general PBPK modeling methodology, modelers should account for the full solubility profile when modeling ionizable compounds, including common ion effects, and apply a straightforward strategy to account for drug precipitation.
Collapse
Affiliation(s)
- Christian Wagner
- Pharmaceutical Technologies, Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany.
| | | | - Xavier J H Pepin
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Neil Parrott
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | | |
Collapse
|
102
|
Han Y, Liu W, Chen L, Xin X, Wang Q, Zhang X, Jin M, Gao Z, Huang W. Effective oral delivery of Exenatide-Zn 2+ complex through distal ileum-targeted double layers nanocarriers modified with deoxycholic acid and glycocholic acid in diabetes therapy. Biomaterials 2021; 275:120944. [PMID: 34153783 DOI: 10.1016/j.biomaterials.2021.120944] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/29/2022]
Abstract
The oral administration route is popular with T2DM patients because they need convenience in lifelong medication. At present, oral Exenatide is not available on the market and therefore the relevant studies are valuable. Herein, we constructed a novel dual cholic acid-functionalized nanoparticle for oral delivery of Exenatide, which was based on the functionalized materials of deoxycholic acid-low molecular weight protamine and glycocholic acid-poly (ethylene glycol)-b-polysialic acid. The hydrophobic deoxycholic acid strengthened the nanoparticles and the hydrophilic glycolic acid targeted to specific transporter. We first condensed Exenatide-Zn2+ complex with deoxycholic acid-low molecular weight protamine to prepare nanocomplexes with ζ-potentials of +8 mV and sizes of 95 nm. Then, we used glycocholic acid-poly (ethylene glycol)-b-polysialic acid copolymers masking the positive charge of nanocomplexes to prepare nanoparticles with negative charges of -22 mV and homogeneous sizes of 140 nm. As a result, this dual cholic acid-functionalized nanoparticle demonstrated enhanced uptake and transport of Exenatide, and a special targeting to apical sodium-dependent cholic acid transporter in vitro. Moreover, in vivo studies showed that the nanoparticle effectively accumulated in distal ileum, raised the plasma concentration of Exenatide, prolonged hypoglycemic effect, reduced blood lipid levels, and lightened organ lesions.
Collapse
Affiliation(s)
- Ying Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xin Xin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qiming Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xintong Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
103
|
Development of an Age-Appropriate Mini Orally Disintegrating Carvedilol Tablet with Paediatric Biopharmaceutical Considerations. Pharmaceutics 2021; 13:pharmaceutics13060831. [PMID: 34204941 PMCID: PMC8227311 DOI: 10.3390/pharmaceutics13060831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/20/2021] [Accepted: 05/30/2021] [Indexed: 11/17/2022] Open
Abstract
Owing to considerable differences observed in anatomy and physiology between paediatric subsets, it has been well established that children respond to drugs differently compared to adults. Furthermore, from a formulation perspective, there is a distinct challenge to develop a dosage form that is capable of safely, accurately, and reliably delivering the dose across the whole paediatric population. Orally disintegrating mini-tablets (ODMT) have widely been considered as an age-appropriate formulation option that possess the ability for adequate dose flexibility, avoids swallowing difficulties, and exhibits superior stability due to its solid state. Within this study, two strengths (0.5 mg and 2 mg) of carvedilol ODMT formulations were developed using an excipient composition and load that is appropriate for paediatric use. The formulations demonstrated adequate mechanical strength (>20 N) and fast disintegration times (<30 s). Dissolution profiles observed were robust and comparable to the marketed conventional tablet formulation across various parts of the gastrointestinal (GI) tract in both the fed and fasted state, signifying appropriate efficacy, quality, and performance. As such, the formulations developed in this study show potential to address the need of an 'age-appropriate' formulation of carvedilol, as highlighted by the European Medicines Agency (EMA) Inventory of the Needs for Paediatric Medicine.
Collapse
|
104
|
Juszczyk E, Kisło K, Żero P, Tratkiewicz E, Wieczorek M, Paszkowska J, Banach G, Wiater M, Hoc D, Garbacz G, Sczodrok J, Danielak D. Development and Bio-Predictive Evaluation of Biopharmaceutical Properties of Sustained-Release Tablets with a Novel GPR40 Agonist for a First-in-Human Clinical Trial. Pharmaceutics 2021; 13:804. [PMID: 34071286 PMCID: PMC8227174 DOI: 10.3390/pharmaceutics13060804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Sustained-release (SR) formulations may appear advantageous in first-in-human (FIH) study of innovative medicines. The newly developed SR matrix tablets require prolonged maintenance of API concentration in plasma and should be reliably assessed for the risk of uncontrolled release of the drug. In the present study, we describe the development of a robust SR matrix tablet with a novel G-protein-coupled receptor 40 (GPR40) agonist for first-in-human studies and introduce a general workflow for the successful development of SR formulations for innovative APIs. The hydrophilic matrix tablets containing the labeled API dose of 5, 30, or 120 mg were evaluated with several methods: standard USP II dissolution, bio-predictive dissolution tests, and the texture and matrix formation analysis. The standard dissolution tests allowed preselection of the prototypes with the targeted dissolution rate, while the subsequent studies in physiologically relevant conditions revealed unwanted and potentially harmful effects, such as dose dumping under an increased mechanical agitation. The developed formulations were exceptionally robust toward the mechanical and physicochemical conditions of the bio-predictive tests and assured a comparable drug delivery rate regardless of the prandial state and dose labeled. In conclusion, the introduced development strategy, when implemented into the development cycle of SR formulations with innovative APIs, may allow not only to reduce the risk of formulation-related failure of phase I clinical trial but also effectively and timely provide safe and reliable medicines for patients in the trial and their further therapy.
Collapse
Affiliation(s)
- Ewelina Juszczyk
- Research and Development Center, Celon Pharma S.A., Marymoncka 15, 05-052 Kazuń Nowy, Poland; (E.J.); (K.K.); (P.Ż.); (E.T.); (M.W.)
| | - Kamil Kisło
- Research and Development Center, Celon Pharma S.A., Marymoncka 15, 05-052 Kazuń Nowy, Poland; (E.J.); (K.K.); (P.Ż.); (E.T.); (M.W.)
| | - Paweł Żero
- Research and Development Center, Celon Pharma S.A., Marymoncka 15, 05-052 Kazuń Nowy, Poland; (E.J.); (K.K.); (P.Ż.); (E.T.); (M.W.)
| | - Ewa Tratkiewicz
- Research and Development Center, Celon Pharma S.A., Marymoncka 15, 05-052 Kazuń Nowy, Poland; (E.J.); (K.K.); (P.Ż.); (E.T.); (M.W.)
| | - Maciej Wieczorek
- Research and Development Center, Celon Pharma S.A., Marymoncka 15, 05-052 Kazuń Nowy, Poland; (E.J.); (K.K.); (P.Ż.); (E.T.); (M.W.)
| | - Jadwiga Paszkowska
- Physiolution Polska sp. z o.o., 74 Piłsudskiego St., 50-020 Wrocław, Poland; (J.P.); (G.B.); (M.W.); (D.H.); (G.G.)
| | - Grzegorz Banach
- Physiolution Polska sp. z o.o., 74 Piłsudskiego St., 50-020 Wrocław, Poland; (J.P.); (G.B.); (M.W.); (D.H.); (G.G.)
| | - Marcela Wiater
- Physiolution Polska sp. z o.o., 74 Piłsudskiego St., 50-020 Wrocław, Poland; (J.P.); (G.B.); (M.W.); (D.H.); (G.G.)
| | - Dagmara Hoc
- Physiolution Polska sp. z o.o., 74 Piłsudskiego St., 50-020 Wrocław, Poland; (J.P.); (G.B.); (M.W.); (D.H.); (G.G.)
| | - Grzegorz Garbacz
- Physiolution Polska sp. z o.o., 74 Piłsudskiego St., 50-020 Wrocław, Poland; (J.P.); (G.B.); (M.W.); (D.H.); (G.G.)
- Physiolution GmbH, Walther Rathenau Strasse 49a, 17489 Greifswald, Germany;
| | - Jaroslaw Sczodrok
- Physiolution GmbH, Walther Rathenau Strasse 49a, 17489 Greifswald, Germany;
| | - Dorota Danielak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznań, Poland
| |
Collapse
|
105
|
Lee HR, Park HJ, Park JS, Park DW, Ho MJ, Kim DY, Lee HC, Kim EJ, Song WH, Park JS, Choi YS, Kang MJ. Montelukast microsuspension with hypromellose for improved stability and oral absorption. Int J Biol Macromol 2021; 183:1732-1742. [PMID: 34051251 DOI: 10.1016/j.ijbiomac.2021.05.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/14/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022]
Abstract
Oral montelukast (MTK) is prescribed to treat asthma or rhinitis, and is clinically investigated as new medication in the treatment of Alzheimer's dementia. Herein, in order to better patient's compliance, microsuspensions (MSs)-based oral liquid preparations of montelukast (MTK) were formulated with polymeric suspending agents including hypromellose (HPMC), and those drug-polymer interaction, physicochemical stability, dissolution, and in vivo pharmacokinetic profile was evaluated. When amorphous MTK particle was suspended in aqueous vehicle, it was readily converted into crystalline form and grown into aggregates, drastically lowering dissolution rate. However, the addition of HPMC polymer markedly suppressed the crystal growth, providing both improved drug stability and profound dissolution profile. Raman spectrometry denoted the inter-molecular hydrogen boding between MTK particle and HPMC polymer. The crystal growth or dissolution profile of MSs was markedly affected by pharmaceutical additives (sucrose or simethicone) in the preparations or storage temperature. The optimized HPMC-based MS exhibited over 80% higher bioavailability, compared to marketed granule (Singulair®) in rats. Therefore, novel MTK-loaded MS can be a promising liquid preparation, bettering oral absorption and patient's compliance.
Collapse
Affiliation(s)
- Ha Ryeong Lee
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Hyun Jin Park
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Jun Soo Park
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Dong Woo Park
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Myoung Jin Ho
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Dong Yoon Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Hyo Chun Lee
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Eun Jeong Kim
- GL Pharm Tech Corp., 137, Sagimakgol-ro, Jungwon-gu, Seongnam, Republic of Korea
| | - Woo Heon Song
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Jun Sang Park
- GL Pharm Tech Corp., 137, Sagimakgol-ro, Jungwon-gu, Seongnam, Republic of Korea
| | - Yong Seok Choi
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Myung Joo Kang
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea.
| |
Collapse
|
106
|
Freerks L, Zielke C, Tarnow MJ, Arien T, Mackie C, Inghelbrecht S, Klein S. A Toolbox for Mimicking Gastrointestinal Conditions in Children: Simulated Paediatric Breakfast Media (SPBM) for Addressing the Variability of Gastric Contents After Typical Paediatric Breakfasts. J Pharm Sci 2021; 111:51-61. [PMID: 34019904 DOI: 10.1016/j.xphs.2021.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022]
Abstract
Since co-administration of dosage forms with food can impact drug exposure, food effect studies became an integral part of oral drug product development. Studies are usually performed in healthy adults and the dosage form is co-administered with a high-fat high-calorie standard breakfast meal to mimic worst-case dosing conditions. A corresponding study design for children is lacking but would be essential for a proper risk-assessment in this vulnerable patient group. To protect healthy children from unnecessary in vivo studies, it would be even more desirable to predict food effects based on other than in vivo studies in the target age group. In the present study, typical children's breakfasts in different parts of the world were identified, prepared and physicochemical properties were assessed. Subsequently, Simulated Paediatric Breakfast Media (SPBM) resembling breakfast composition and properties were designed and applied in in vitro dissolution experiments mimicking the initial composition of the postprandial stomach after breakfast ingestion. Study results indicate the impact of different simulated gastric conditions on drug release. SPBM enabled to better estimate the variability of in vivo drug release in fed dosing conditions and their use will aid in better assessing food effects in children in different parts of the world.
Collapse
Affiliation(s)
- Lisa Freerks
- Department of Pharmacy, University of Greifswald, Institute of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, 3 Felix Hausdorff Street, Greifswald 17489, Germany
| | - Carolin Zielke
- Department of Pharmacy, University of Greifswald, Institute of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, 3 Felix Hausdorff Street, Greifswald 17489, Germany
| | - Marie-Josefin Tarnow
- Department of Pharmacy, University of Greifswald, Institute of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, 3 Felix Hausdorff Street, Greifswald 17489, Germany
| | - Tina Arien
- Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Claire Mackie
- Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | | | - Sandra Klein
- Department of Pharmacy, University of Greifswald, Institute of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, 3 Felix Hausdorff Street, Greifswald 17489, Germany.
| |
Collapse
|
107
|
Martinez MN, Mochel JP, Neuhoff S, Pade D. Comparison of Canine and Human Physiological Factors: Understanding Interspecies Differences that Impact Drug Pharmacokinetics. AAPS JOURNAL 2021; 23:59. [PMID: 33907906 DOI: 10.1208/s12248-021-00590-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
This review is a summary of factors affecting the drug pharmacokinetics (PK) of dogs versus humans. Identifying these interspecies differences can facilitate canine-human PK extrapolations while providing mechanistic insights into species-specific drug in vivo behavior. Such a cross-cutting perspective can be particularly useful when developing therapeutics targeting diseases shared between the two species such as cancer, diabetes, cognitive dysfunction, and inflammatory bowel disease. Furthermore, recognizing these differences also supports a reverse PK extrapolations from humans to dogs. To appreciate the canine-human differences that can affect drug absorption, distribution, metabolism, and elimination, this review provides a comparison of the physiology, drug transporter/enzyme location, abundance, activity, and specificity between dogs and humans. Supplemental material provides an in-depth discussion of certain topics, offering additional critical points to consider. Based upon an assessment of available state-of-the-art information, data gaps were identified. The hope is that this manuscript will encourage the research needed to support an understanding of similarities and differences in human versus canine drug PK.
Collapse
Affiliation(s)
- Marilyn N Martinez
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, Food and Drug Administration, Rockville, Maryland, 20855, USA.
| | - Jonathan P Mochel
- SMART Pharmacology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, 50011, USA
| | - Sibylle Neuhoff
- Certara UK Limited, Simcyp Division, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Devendra Pade
- Certara UK Limited, Simcyp Division, 1 Concourse Way, Sheffield, S1 2BJ, UK
| |
Collapse
|
108
|
Dahlgren D, Venczel M, Ridoux JP, Skjöld C, Müllertz A, Holm R, Augustijns P, Hellström PM, Lennernäs H. Fasted and fed state human duodenal fluids: Characterization, drug solubility, and comparison to simulated fluids and with human bioavailability. Eur J Pharm Biopharm 2021; 163:240-251. [PMID: 33872761 DOI: 10.1016/j.ejpb.2021.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/16/2022]
Abstract
Accurate in vivo predictions of intestinal absorption of low solubility drugs require knowing their solubility in physiologically relevant dissolution media. Aspirated human intestinal fluids (HIF) are the gold standard, followed by simulated intestinal HIF in the fasted and fed state (FaSSIF/FeSSIF). However, current HIF characterization data vary, and there is also some controversy regarding the accuracy of FaSSIF and FeSSIF for predicting drug solubility in HIF. This study aimed at characterizing fasted and fed state duodenal HIF from 16 human volunteers with respect to pH, buffer capacity, osmolarity, surface tension, as well as protein, phospholipid, and bile salt content. The fasted and fed state HIF samples were further used to investigate the equilibrium solubility of 17 representative low-solubility small-molecule drugs, six of which were confidential industry compounds and 11 were known and characterized regarding chemical diversity. These solubility values were then compared to reported solubility values in fasted and fed state HIF, FaSSIF and FeSSIF, as well as with their human bioavailability for both states. The HIF compositions corresponded well to previously reported values and current FaSSIF and FeSSIF compositions. The drug solubility values in HIF (both fasted and fed states) were also well in line with reported solubility data for HIF, as well as simulated FaSSIF and FeSSIF. This indicates that the in vivo conditions in the proximal small intestine are well represented by simulated intestinal fluids in both composition and drug equilibrium solubility. However, increased drug solubility in the fed vs. fasted states in HIF did not correlate with the human bioavailability changes of the same drugs following oral administration in either state.
Collapse
Affiliation(s)
- D Dahlgren
- Department of Pharmaceutical Biosciences, Biopharmaceutics, Uppsala University, Sweden
| | - M Venczel
- Global CMC Development Sanofi, Frankfurt, Germany; Global CMC Development Sanofi, Vitry, France
| | - J-P Ridoux
- Global CMC Development Sanofi, Frankfurt, Germany; Global CMC Development Sanofi, Vitry, France
| | - C Skjöld
- Department of Pharmaceutical Biosciences, Biopharmaceutics, Uppsala University, Sweden
| | - A Müllertz
- Physiological Pharmaceutics, University of Copenhagen, Copenhagen, Denmark
| | - R Holm
- Drug Product Development, Janssen R&D, Johnson & Johnson, Beerse, Belgium
| | - P Augustijns
- Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - P M Hellström
- Department of Medical Sciences, Gastroenterology/Hepatology, Uppsala University, Sweden
| | - H Lennernäs
- Department of Pharmaceutical Biosciences, Biopharmaceutics, Uppsala University, Sweden.
| |
Collapse
|
109
|
Henze LJ, Koehl NJ, O'Shea JP, Holm R, Vertzoni M, Griffin BT. Combining species specific in vitro & in silico models to predict in vivo food effect in a preclinical stage - case study of Venetoclax. Eur J Pharm Sci 2021; 162:105840. [PMID: 33845120 DOI: 10.1016/j.ejps.2021.105840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 03/19/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022]
Abstract
The pig has been increasingly used as a reliable preclinical model for assessing and predicting the in vivo bioavailability of different formulation strategies. Nevertheless, differences in the composition between porcine and human intestinal fluids, may impact on the solubility and dissolution behaviour of drugs, in particular BCS II/IV drugs. Recently, a porcine fasted simulated intestinal fluid (FaSSIFp) was developed to mimic the composition in the lumen of landrace pigs under fasted state conditions. In this work, we present the utilization of FaSSIFp to compare solubility against human FaSSIF & FeSSIF and further combine species specific in vitro testing with in silico predictive modelling. Venetoclax was chosen as a model drug, representing a BCS class IV drug, with a reported clinically significant positive food effect, where bioavailability is increased up to approximately five-fold when administered with a high-fat meal. Biorelevant species specific in vitro testing was a promising tool for integrating in vitro data into in silico models, using FaSSIFp resulted in reliable predictions of the plasma concentration profile in fasted pigs, based on a porcine physiologically based absorption model. The porcine physiologically based absorption model was used to prospectively simulate the impact of food on the bioavailability of venetoclax. The use of luminal solubility estimates in combination with dissolution data for venetoclax, measured in species specific simulated fluids, correctly predict the observed pig plasma concentration profile and food effect. Overall, integrating species specific in vitro - in silico models led to accurate prediction of in vivo absorption of venetoclax in a preclinical stage, which can support guidance in early decisions of drug product development. In addition, the study further demonstrated the utility of the pig model to predict the food effects of venetoclax in humans.
Collapse
Affiliation(s)
- Laura J Henze
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Niklas J Koehl
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium; Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Maria Vertzoni
- Department of Pharmacy, School of Health Science, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
110
|
Guo M, Tao W, Flavell RA, Zhu S. Potential intestinal infection and faecal-oral transmission of SARS-CoV-2. Nat Rev Gastroenterol Hepatol 2021; 18:269-283. [PMID: 33589829 PMCID: PMC7883337 DOI: 10.1038/s41575-021-00416-6] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to more than 200 countries and regions globally. SARS-CoV-2 is thought to spread mainly through respiratory droplets and close contact. However, reports have shown that a notable proportion of patients with coronavirus disease 2019 (COVID-19) develop gastrointestinal symptoms and nearly half of patients confirmed to have COVID-19 have shown detectable SARS-CoV-2 RNA in their faecal samples. Moreover, SARS-CoV-2 infection reportedly alters intestinal microbiota, which correlated with the expression of inflammatory factors. Furthermore, multiple in vitro and in vivo animal studies have provided direct evidence of intestinal infection by SARS-CoV-2. These lines of evidence highlight the nature of SARS-CoV-2 gastrointestinal infection and its potential faecal-oral transmission. Here, we summarize the current findings on the gastrointestinal manifestations of COVID-19 and its possible mechanisms. We also discuss how SARS-CoV-2 gastrointestinal infection might occur and the current evidence and future studies needed to establish the occurrence of faecal-oral transmission.
Collapse
Affiliation(s)
- Meng Guo
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wanyin Tao
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Shu Zhu
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- School of Data Science, University of Science and Technology of China, Hefei, China.
- CAS Centre for Excellence in Cell and Molecular Biology, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
111
|
Plaza-Oliver M, Santander-Ortega MJ, Lozano MV. Current approaches in lipid-based nanocarriers for oral drug delivery. Drug Deliv Transl Res 2021; 11:471-497. [PMID: 33528830 PMCID: PMC7852471 DOI: 10.1007/s13346-021-00908-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 02/06/2023]
Abstract
Lipid-based nanocarriers have gained much interest as carriers of drugs with poor oral bioavailability because of their remarkable advantages like low toxicity, affordable scale-up manufacture, strong biocompatibility or high drug loading efficiency. The potential of these nanocarriers lies in their ability to improve the gastrointestinal stability, solubility and permeability of their cargo drugs. However, achieving efficient oral drug delivery through lipid-based nanocarriers is a challenging task, since they encounter multiple physicochemical barriers along the gastrointestinal tract, e.g. the gastric acidic content, the intestinal mucus layer or the enzymatic degradation, that they must surmount to reach their target. These limitations may be turned into opportunities through a rational design of lipid-based nanocarriers. For that purpose, this review focuses on the main challenges of the oral route indicating the strategies undertaken for lipid-based nanocarriers in order to overcome them. Understanding their shortcomings and identifying their strengths will determine the future clinical success of lipid-based nanocarriers.
Collapse
Affiliation(s)
- María Plaza-Oliver
- Faculty of Pharmacy, Cellular Neurobiology and Molecular Chemistry of the Central Nervous System Group, 02008, Albacete, Spain
- Regional Centre of Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), 02008, Albacete, Spain
| | - Manuel Jesús Santander-Ortega
- Faculty of Pharmacy, Cellular Neurobiology and Molecular Chemistry of the Central Nervous System Group, 02008, Albacete, Spain
- Regional Centre of Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), 02008, Albacete, Spain
| | - María Victoria Lozano
- Faculty of Pharmacy, Cellular Neurobiology and Molecular Chemistry of the Central Nervous System Group, 02008, Albacete, Spain.
- Regional Centre of Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), 02008, Albacete, Spain.
| |
Collapse
|
112
|
Shawahna R, Zyoud A, Haj-Yahia A, Taya R. Evaluating Solubility of Celecoxib in Age-Appropriate Fasted- and Fed-State Gastric and Intestinal Biorelevant Media Representative of Adult and Pediatric Patients: Implications on Future Pediatric Biopharmaceutical Classification System. AAPS PharmSciTech 2021; 22:84. [PMID: 33649887 DOI: 10.1208/s12249-021-01958-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/08/2021] [Indexed: 12/22/2022] Open
Abstract
Prediction of performance of traditional, reformulated, and novel oral formulations in adults and pediatrics is of great importance. This study was conducted to assess solubility of celecoxib in age-appropriate fasted- and fed-state gastric and intestinal biorelevant media, classify celecoxib into biopharmaceutical classification system (BCS), and assess the effects of age-related developmental changes in the composition and volume of gastrointestinal fluids on the solubility and performance of oral formulations containing celecoxib. Solubility of celecoxib was assessed at 37°C in the pH range specified by the BCS-based criteria in 13 age-appropriate biorelevant media reflective of the gastric and proximal small intestinal environment in both fasted and fed states in adults and different pediatric subpopulations. A validated HPLC-UV method was used to quantify celecoxib. Experimental and computational molecular descriptors and in vivo pharmacokinetic data were used to assign the permeability class of celecoxib. Celecoxib belonged to BCS class 2. The pediatric to adult solubility ratios were outside the 80-125% boundaries in 3 and borderline in 1 biorelevant media. Significant age-related variability could be predicted for oral formulations containing celecoxib intended for pediatric use. Findings of this study indicated that the criteria used in the adult BCS might not be directly applied to pediatric subpopulations.
Collapse
|
113
|
Li Y, Jiang K, Cao H, Yuan M, Ye T, Xu F. Establishment of a standardized dietary model for nanoparticles oral exposure studies. Food Sci Nutr 2021; 9:1441-1451. [PMID: 33747458 PMCID: PMC7958543 DOI: 10.1002/fsn3.2112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/27/2020] [Accepted: 12/26/2020] [Indexed: 01/24/2023] Open
Abstract
Food matrices could affect the physicochemical properties of nanoparticles (NPs) and define the biological effects of NPs via oral exposure compared with the pristine NPs. We established a standardized dietary model based on Chinese dietary reference intakes and Chinese dietary guidelines to mimic the exposure of NPs in real life and to evaluate further the biological effect and toxicity of NPs via oral exposure compared with current models. The standardized dietary model prepared from the primary emulsion was dried into powder using spray drying compared with commercial food powder and then was reconstituted compared with the fresh sample. The average particle size (295.59 nm), potential (-23.78 mV), viscosity (0.04 pa s), and colors (L*, a*, b* = 84.13, -0.116, 8.908) were measured and characterized of the fresh sample. The flowability (repose angle = 37.28° and slide angle = 36.75°), moisture (2.68%), colors (L*, a*, b* = 94.16, -0.27, 3.01), and bulk density (0.45 g/ml) were compared with commercial food powder. The size (310.75 nm), potential (-23.98 mV), and viscosity (0.04 pa s) of reconstituted model were similar to the fresh sample. Results demonstrated that the model was satisfy the characterizations of easy to fabrication, good stability, small particle size, narrow particle size distribution, strong practicability, and good reproducibility similar to most physiological food state and will be used to evaluate NPs' safety.
Collapse
Affiliation(s)
- Yan Li
- School of Medical Instrument and Food EngineeringShanghai Engineering Research Center for Food Rapid DetectionUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Kun Jiang
- School of Medical Instrument and Food EngineeringShanghai Engineering Research Center for Food Rapid DetectionUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Hui Cao
- School of Medical Instrument and Food EngineeringShanghai Engineering Research Center for Food Rapid DetectionUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Min Yuan
- School of Medical Instrument and Food EngineeringShanghai Engineering Research Center for Food Rapid DetectionUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Tai Ye
- School of Medical Instrument and Food EngineeringShanghai Engineering Research Center for Food Rapid DetectionUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Fei Xu
- School of Medical Instrument and Food EngineeringShanghai Engineering Research Center for Food Rapid DetectionUniversity of Shanghai for Science and TechnologyShanghaiChina
| |
Collapse
|
114
|
Shankar VK, Police A, Pandey P, Cuny ZG, Repka MA, Doerksen RJ, Murthy SN. Optimization of sulfobutyl-ether-β-cyclodextrin levels in oral formulations to enhance progesterone bioavailability. Int J Pharm 2021; 596:120212. [PMID: 33493605 DOI: 10.1016/j.ijpharm.2021.120212] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/07/2020] [Accepted: 12/19/2020] [Indexed: 01/28/2023]
Abstract
Progesterone oral dose regimens are indicated for the treatment of luteal phase deficiency and estrogen dominance. The poor aqueous solubility of progesterone leads to erratic oral absorption, resulting in suboptimal or excessive plasma levels. Developing a formulation to enhance the solubility of progesterone in the gastrointestinal tract would be beneficial to decrease drug absorption variability and increase bioavailability. The solubility of progesterone at 400 mM sulfobutyl-ether-β-cyclodextrin (SBE-β-CD) concentration was ~7000-fold greater than its intrinsic solubility, aided by the formation of SBE-β-CD-progesterone complex. The complex was characterized using differential scanning colorimeter, Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy techniques. FTIR and NMR studies of the complex confirm the interaction between functional groups of SBE-β-CD and progesterone to form an inclusion complex. Molecular modeling studies demonstrated progesterone binding poses with four probable SBE-β-CD isomers and these results matched with NMR and FTIR data. The progesterone oral formulations were optimized by increasing the levels of SBE-β-CD in the formulation to prevent the displacement of progesterone from the complex by gastrointestinal contents. The oral bioavailability of progesterone in rats was increased 5-fold when administered with the optimized formulation compared to administration with progesterone API capsules. Studies demonstrated that the optimized formulation prevents precipitation of progesterone in the intestinal tract and increases progesterone oral bioavailability in rats.
Collapse
Affiliation(s)
- Vijay Kumar Shankar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| | - Anitha Police
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| | - Pankaj Pandey
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| | - Zachary G Cuny
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| | - Robert J Doerksen
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| | - S Narasimha Murthy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Institute for Drug Delivery and Biomedical Research, Bangalore, India.
| |
Collapse
|
115
|
Denninger A, Westedt U, Wagner KG. Shared IVIVR for Five Commercial Enabling Formulations Using the BiPHa+ Biphasic Dissolution Assay. Pharmaceutics 2021; 13:pharmaceutics13020285. [PMID: 33671597 PMCID: PMC7927064 DOI: 10.3390/pharmaceutics13020285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 01/04/2023] Open
Abstract
The present study intended to confirm the in vivo relevance of the BiPHa+ biphasic dissolution assay using a single set of assay parameters. Herein, we evaluated five commercial drug products formulated by various enabling formulation principles under fasted conditions using the BiPHa+ assay. The in vitro partitioning profiles in the organic phase were compared with human pharmacokinetic data obtained from literature. In the first part, a meaningful in vitro dose of the formulations was assessed by determining the maximum drug concentration in the artificial absorption sink during dissolution (organic 1-decanol layer, Cdec,max). Then, the maximum concentration of the partitioned drug in the organic layer was correlated with the in vivo fraction absorbed, which was derived from published human pharmacokinetic data. Fraction absorbed represents the percentage, which is absorbed from the intestine without considering first pass. It was found that the maximum drug concentration in the organic phase obtained from an in vitro dose of ten milligrams, which is equivalent to 15–25 µmol of the respective drug, led to the highest congruency with the fraction absorbed in vivo. In the second part, the in vivo relevance of the BiPHa+ dissolution data was verified by establishing a shared in vitro/in vivo relationship including all formulations. Based on the in vitro kinetics of the BiPHa+ experiments human in vivo plasma profiles were predicted using convolutional modelling approach. Subsequently, the calculated pharmacokinetic profiles were compared with in vivo performance of the studied drug products to assess the predictive power of the BiPHa+ assay. The BiPHa+ assay demonstrated biorelevance for the investigated in vitro partitioning profiles using a single set of assay parameters, which was verified based on human pharmacokinetic data of the five drug products.
Collapse
Affiliation(s)
- Alexander Denninger
- Department of Pharmaceutical Technology, University of Bonn, Gerhard-Domagk-Straße 3, 53121 Bonn, Germany;
| | - Ulrich Westedt
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, D-67061 Ludwigshafen, Germany;
| | - Karl G. Wagner
- Department of Pharmaceutical Technology, University of Bonn, Gerhard-Domagk-Straße 3, 53121 Bonn, Germany;
- Correspondence:
| |
Collapse
|
116
|
Selecting an anti-malarial clinical candidate from two potent dihydroisoquinolones. Malar J 2021; 20:107. [PMID: 33608015 PMCID: PMC7893776 DOI: 10.1186/s12936-021-03617-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/02/2021] [Indexed: 11/21/2022] Open
Abstract
Background The ongoing global malaria eradication campaign requires development of potent, safe, and cost-effective drugs lacking cross-resistance with existing chemotherapies. One critical step in drug development is selecting a suitable clinical candidate from late leads. The process used to select the clinical candidate SJ733 from two potent dihydroisoquinolone (DHIQ) late leads, SJ733 and SJ311, based on their physicochemical, pharmacokinetic (PK), and toxicity profiles is described. Methods The compounds were tested to define their physicochemical properties including kinetic and thermodynamic solubility, partition coefficient, permeability, ionization constant, and binding to plasma proteins. Metabolic stability was assessed in both microsomes and hepatocytes derived from mice, rats, dogs, and humans. Cytochrome P450 inhibition was assessed using recombinant human cytochrome enzymes. The pharmacokinetic profiles of single intravenous or oral doses were investigated in mice, rats, and dogs. Results Although both compounds displayed similar physicochemical properties, SJ733 was more permeable but metabolically less stable than SJ311 in vitro. Single dose PK studies of SJ733 in mice, rats, and dogs demonstrated appreciable oral bioavailability (60–100%), whereas SJ311 had lower oral bioavailability (mice 23%, rats 40%) and higher renal clearance (10–30 fold higher than SJ733 in rats and dogs), suggesting less favorable exposure in humans. SJ311 also displayed a narrower range of dose-proportional exposure, with plasma exposure flattening at doses above 200 mg/kg. Conclusion SJ733 was chosen as the candidate based on a more favorable dose proportionality of exposure and stronger expectation of the ability to justify a strong therapeutic index to regulators.
Collapse
|
117
|
A nanoemulsion/micelles mixed nanosystem for the oral administration of hydrophobically modified insulin. Drug Deliv Transl Res 2021; 11:524-545. [PMID: 33575972 PMCID: PMC7987602 DOI: 10.1007/s13346-021-00920-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2021] [Indexed: 01/07/2023]
Abstract
The potential of nanoemulsions for the oral administration of peptides is still in its early stage. The aim of the present work was to rationally design, develop, and fully characterize a new nanoemulsion (NE) intended for the oral administration of hydrophobically modified insulin (HM-insulin). Specific components of the NE were selected based on their enhancing permeation properties as well as their ability to improve insulin association efficiency (Miglyol 812, sodium taurocholate), stability in the intestinal fluids, and mucodiffusion (PEGylated phospholipids and poloxamer 407). The results showed that the NE co-existed with a population of micelles, forming a mixed system that exhibited a 100% of HM-insulin association efficiency. The nanosystem showed good stability and miscibility in different bio-relevant media and displayed an acceptable mucodiffusive behavior in porcine mucus. In addition, it exhibited a high interaction with cell mono-cultures (Caco -2 and C2BBe1 human colon carcinoma Caco-2 clone cells) and co-cultures (C2BBe1 human colon carcinoma Caco-2 clone/HT29-MTX cells). The internalization in Caco-2 monolayers was also confirmed by confocal microscopy. Finally, the promising in vitro behavior of the nanosystem in terms of overcoming the biological barriers of the intestinal tract was translated into a moderate, although significant, hypoglycemic response (≈ 20–30%), following intestinal administration to both healthy and diabetic rat models. Overall, this information underlines the crucial steps to address when designing peptide-based nanoformulations to successfully overcome the intestinal barriers associated to the oral modality of administration. ![]()
Collapse
|
118
|
O'Dwyer PJ, Box KJ, Dressman J, Griffin BT, Henze LJ, Litou C, Pentafragka C, Statelova M, Vertzoni M, Reppas C. Oral biopharmaceutics tools: recent progress from partnership through the Pharmaceutical Education and Research with Regulatory Links collaboration. J Pharm Pharmacol 2021; 73:437-446. [PMID: 33793836 DOI: 10.1093/jpp/rgaa055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To summarise key contributions of the Pharmaceutical Education and Research with Regulatory Links (PEARRL) project (2016-2020) to the optimisation of existing and the development of new biopharmaceutics tools for evaluating the in vivo performance of oral drug products during the development of new drugs and at the regulatory level. KEY FINDINGS Optimised biopharmaceutics tools: Based on new clinical data, the composition of biorelevant media for simulating the fed state conditions in the stomach was simplified. Strategies on how to incorporate biorelevant in vitro data of bio-enabling drug products into physiologically based pharmacokinetic (PBPK) modelling were proposed. Novel in vitro biopharmaceutics tools: Small-scale two-stage biphasic dissolution and dissolution-permeation setups were developed to facilitate understanding of the supersaturation effects and precipitation risks of orally administered drugs. A porcine fasted state simulated intestinal fluid was developed to improve predictions and interpretation of preclinical results using in vitro dissolution studies. Based on new clinical data, recommendations on the design of in vitro methodologies for evaluating the GI drug transfer process in the fed state were suggested. The optimized design of in vivo studies for investigating food effects: A food effect study protocol in the pig model was established which successfully predicted the food-dependent bioavailability of two model compounds. The effect of simulated infant fed state conditions in healthy adults on the oral absorption of model drugs was evaluated versus the fasted state and the fed state conditions, as defined by regulatory agencies for adults. Using PBPK modelling, the extrapolated fasted and infant fed conditions data appeared to be more useful to describe early drug exposure in infants, while extrapolation of data collected under fed state conditions, as defined by regulators for adults, failed to capture in vivo infant drug absorption. SUMMARY Substantial progress has been made in developing an advanced suite of biopharmaceutics tools for streamlining drug formulation screening and supporting regulatory applications. These advances in biopharmaceutics were achieved through networking opportunities and research collaborations provided under the H2020 funded PEARRL project.
Collapse
Affiliation(s)
- Patrick J O'Dwyer
- School of Pharmacy, University College Cork, Cork, Ireland.,Pion Inc. (UK) Ltd., Forest Row, East Sussex, UK.,Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece
| | - Karl J Box
- Pion Inc. (UK) Ltd., Forest Row, East Sussex, UK
| | - Jennifer Dressman
- Institute of Translational Medicine and Pharmacology (ITMP), Fraunhofer Gesellschaft, Frankfurt am Main, Germany
| | | | - Laura J Henze
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Chara Litou
- Institute of Translational Medicine and Pharmacology (ITMP), Fraunhofer Gesellschaft, Frankfurt am Main, Germany
| | - Christina Pentafragka
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece
| | - Marina Statelova
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece
| | - Maria Vertzoni
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece
| | - Christos Reppas
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece
| |
Collapse
|
119
|
Effinger A, O'Driscoll CM, McAllister M, Fotaki N. Predicting budesonide performance in healthy subjects and patients with Crohn's disease using biorelevant in vitro dissolution testing and PBPK modeling. Eur J Pharm Sci 2021; 157:105617. [PMID: 33164838 DOI: 10.1016/j.ejps.2020.105617] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/02/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Drug product performance might be affected in Crohn's disease (CD) patients compared to healthy subjects due to pathophysiological changes. Since a low number of clinical studies is performed in this patient population, physiologically-based pharmacokinetic (PBPK) models with integrated results from biorelevant in vitro dissolution studies could be used to assess differences in the bioavailability of drugs. Using this approach, budesonide was used as model drug and its performance in healthy subjects and CD patients was predicted and compared against observed pharmacokinetic data. The in vitro release tests, under healthy versus CD conditions, revealed a similar extent of drug release from a controlled-release budesonide formulation in the fasted state, whereas in the fed state a lower extent was observed with CD. Differences in the physiology of CD patients were identified in literature and their impact on budesonide performance was investigated with a PBPK model, revealing the highest impact on the simulated bioavailability for the reduced hepatic CYP3A4 enzyme abundance and lower human serum albumin concentration. For CD patients, a higher budesonide exposure compared to healthy subjects was predicted with a PBPK population adapted to CD physiology and in agreement with observed pharmacokinetic data. Budesonide performance in the fasted and fed state was successfully predicted in healthy subjects and CD patients using PBPK modeling and in vitro release testing. Following this approach, predictions of the direction and magnitude of changes in bioavailability due to CD could be made for other drugs and guide prescribers to adjust dosage regimens for CD patients accordingly.
Collapse
Affiliation(s)
- Angela Effinger
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | | | | | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK.
| |
Collapse
|
120
|
Verma R, Kaushik D. Role of Biorelevant Media in the Estimation of In Vitro Lipolysis and Food Impact on Self-emulsifying Drug Delivery Systems. CURRENT DRUG THERAPY 2021. [DOI: 10.2174/1574885515999200727121540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Self-emulsifying drug delivery systems (SEDDS) include self-microemulsifying drug
delivery system (SMEDDS) and self-nanoemulsifying drug delivery system (SNEDDS) whose
major benefits are reduction of inter/intrasubject variability and food effect that results in a better
pharmacological response of the drug. Oral intake of these formulations triggers the digestion process
because of pancreatic lipase which emulsifies/digests the lipidic ingredients of the formulation
leading to precipitation of the drug. As a tool to foresee in vivo medicament precipitation, in vitro
lipolysis models are established. Biorelevant media play an important role to study the effect of in
vitro lipolysis and food impact on the bioavailability of SEDDS formulations. It is vital to generate
the composition of fluids for both fed and fasting conditions of gastric, small intestine and colon to
investigate the impact of in vitro lipolysis and food on drug’s release behavior from the formulation.
Fed/Fasted state simulated gastric fluid (Fe/FaSSGF), and Fed/Fasted state simulated gastric
fluid (Fe/FaSSIF) (Phosphate buffers) are first-generation. While Fa/FeSSIF-V2 (maleate) are second-
generation biorelevant media utilized for these studies. FaSSIF-V3 belongs to the thirdgeneration
which differs from other generations in the composition and source of bile salts. With
updates in physiological data, it is vital to incorporate changes in dissolution media composition to
make it more biorelevant. This review paper mainly emphasized the compositions of biorelevant
media of gastric and small intestine for both fed and fasting conditions. Besides, applications of
biorelevant media to investigate the effect of in vitro lipolysis and food on SEDDS are discussed
with some recent research reports.
Collapse
Affiliation(s)
- Ravinder Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak,India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak,India
| |
Collapse
|
121
|
pH-Dependent Molecular Gate Mesoporous Microparticles for Biological Control of Giardia intestinalis. Pharmaceutics 2021; 13:pharmaceutics13010094. [PMID: 33451061 PMCID: PMC7828499 DOI: 10.3390/pharmaceutics13010094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 11/17/2022] Open
Abstract
Giardiasis is a parasitism produced by the protozoa Giardia intestinalis that lives as trophozoite in the small intestine (mainly in the duodenum) attached to the intestinal villus by means of billed discs. The first line treatment is metronidazole, a drug with high bioavailability, which is why to obtain therapeutic concentrations in duodenum, it is necessary to administer high doses of drug to patients with the consequent occurrence of side effects. It is necessary to developed new therapeutical approaches to achieve a local delivery of the drug. In this sense, we have developed gated mesoporous silica microparticles loaded with metronidazole and with a molecular gate pH dependent. In vitro assays demonstrated that the metronidazole release is practically insignificant at acidic pHs, but in duodenum conditions, the metronidazole delivery from the microparticles is effective enough to produce an important parasite destruction. In vivo assays indicate that this microparticulate system allows to increase the concentration of the drug in duodenum and reduce the concentration in plasma avoiding systemic effects. This system could be useful for other intestinal local treatments in order to reduce doses and increase drug availability in target tissues.
Collapse
|
122
|
Thomson CG, Le Grand D, Dowling M, Beattie D, Elphick L, Faller M, Freeman M, Hardaker E, Head V, Hemmig R, Hill J, Lister A, Pascoe D, Rieffel S, Shrestha B, Steward O, Zink F. Development of autotaxin inhibitors: A series of tetrazole cinnamides. Bioorg Med Chem Lett 2021; 31:127663. [PMID: 33160025 DOI: 10.1016/j.bmcl.2020.127663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/28/2020] [Indexed: 11/28/2022]
Abstract
A series of inhibitors of Autotaxin (ATX) have been developed from a high throughput screening hit, 1a, which shows an alternative binding mode to known catalytic site inhibitors. Selectivity over the hERG channel and microsomal clearance were dependent on the lipophilicity of the compounds, and this was optimised by reduction of clogD whilst maintaining high affinity ATX inhibition. Compound 15a shows good oral exposure, and concentration dependent inhibition of formation of LPA in vivo, as shown in pharmacokinetic-pharmacodynamic (PK/PD) experiments.
Collapse
Affiliation(s)
- Christopher G Thomson
- Global Discovery Chemistry, Novartis Institutes For Biomedical Research, Horsham, UK.
| | - Darren Le Grand
- Global Discovery Chemistry, Novartis Institutes For Biomedical Research, Horsham, UK
| | - Mark Dowling
- Respiratory Disease Area, Novartis Institutes For Biomedical Research, Horsham, UK
| | - David Beattie
- Global Discovery Chemistry, Novartis Institutes For Biomedical Research, Horsham, UK
| | - Lucy Elphick
- Respiratory Disease Area, Novartis Institutes For Biomedical Research, Horsham, UK
| | - Michael Faller
- Department of Chemical Biology and Therapeutics, Novartis Institutes For Biomedical Research, Basel, Switzerland
| | - Mark Freeman
- Respiratory Disease Area, Novartis Institutes For Biomedical Research, Horsham, UK
| | - Elizabeth Hardaker
- Respiratory Disease Area, Novartis Institutes For Biomedical Research, Horsham, UK
| | - Victoria Head
- Metabolism and Pharmacokinetics, Novartis Institutes For Biomedical Research, Horsham, UK
| | - Rene Hemmig
- Department of Chemical Biology and Therapeutics, Novartis Institutes For Biomedical Research, Basel, Switzerland
| | - Johan Hill
- Respiratory Disease Area, Novartis Institutes For Biomedical Research, Horsham, UK
| | - Andrew Lister
- Global Discovery Chemistry, Novartis Institutes For Biomedical Research, Horsham, UK
| | - David Pascoe
- Global Discovery Chemistry, Novartis Institutes For Biomedical Research, Horsham, UK
| | - Sebastien Rieffel
- Department of Chemical Biology and Therapeutics, Novartis Institutes For Biomedical Research, Basel, Switzerland
| | - Binesh Shrestha
- Department of Chemical Biology and Therapeutics, Novartis Institutes For Biomedical Research, Basel, Switzerland
| | - Oliver Steward
- Global Discovery Chemistry, Novartis Institutes For Biomedical Research, Horsham, UK
| | - Florence Zink
- Department of Chemical Biology and Therapeutics, Novartis Institutes For Biomedical Research, Basel, Switzerland
| |
Collapse
|
123
|
Buya AB, Beloqui A, Memvanga PB, Préat V. Self-Nano-Emulsifying Drug-Delivery Systems: From the Development to the Current Applications and Challenges in Oral Drug Delivery. Pharmaceutics 2020; 12:E1194. [PMID: 33317067 PMCID: PMC7764143 DOI: 10.3390/pharmaceutics12121194] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/31/2022] Open
Abstract
Approximately one third of newly discovered drug molecules show insufficient water solubility and therefore low oral bio-availability. Self-nano-emulsifying drug-delivery systems (SNEDDSs) are one of the emerging strategies developed to tackle the issues associated with their oral delivery. SNEDDSs are composed of an oil phase, surfactant, and cosurfactant or cosolvent. SNEDDSs characteristics, their ability to dissolve a drug, and in vivo considerations are determinant factors in the choice of SNEDDSs excipients. A SNEDDS formulation can be optimized through phase diagram approach or statistical design of experiments. The characterization of SNEDDSs includes multiple orthogonal methods required to fully control SNEDDS manufacture, stability, and biological fate. Encapsulating a drug in SNEDDSs can lead to increased solubilization, stability in the gastro-intestinal tract, and absorption, resulting in enhanced bio-availability. The transformation of liquid SNEDDSs into solid dosage forms has been shown to increase the stability and patient compliance. Supersaturated, mucus-permeating, and targeted SNEDDSs can be developed to increase efficacy and patient compliance. Self-emulsification approach has been successful in oral drug delivery. The present review gives an insight of SNEDDSs for the oral administration of both lipophilic and hydrophilic compounds from the experimental bench to marketed products.
Collapse
Affiliation(s)
- Aristote B. Buya
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; (A.B.B.); (A.B.)
- Pharmaceutics and Phytopharmaceutical Drug Development Research Group, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI BP 212, Democratic Republic of the Congo;
| | - Ana Beloqui
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; (A.B.B.); (A.B.)
| | - Patrick B. Memvanga
- Pharmaceutics and Phytopharmaceutical Drug Development Research Group, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI BP 212, Democratic Republic of the Congo;
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; (A.B.B.); (A.B.)
| |
Collapse
|
124
|
Pawar G, Papadatou-Soulou E, Mason J, Muhammed R, Watson A, Cotter C, Abdallah M, Harrad S, Mackie C, Arien T, Inghelbrecht S, Batchelor H. Characterisation of fasted state gastric and intestinal fluids collected from children. Eur J Pharm Biopharm 2020; 158:156-165. [PMID: 33259897 DOI: 10.1016/j.ejpb.2020.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 10/22/2022]
Abstract
Fundamental knowledge about the composition of intestinal fluids in paediatric populations is currently unavailable. This study aimed to characterise gastric and intestinal fluid from paediatric populations. Gastric and intestinal fluid samples were obtained during routine clinical endoscopy from paediatric patients at a large teaching hospital. These fluids were characterised to measure the pH; buffer capacity; osmolality; bile acid concentration and composition. A total of 55 children were recruited to the study aged from 11 months to 15 years of age where 53 gastric fluid samples and 40 intestinal fluid samples were obtained. pH values recorded ranged from pH 0.57 to 11.05 (median: 2.50) in gastric fluids and from 0.89 to 8.97 (median: 3.27) in intestinal fluids. The buffer capacity did not change significantly between gastric and intestinal fluids with median values of 12 mM/L/ΔpH for both fluids. Gastric fluid osmolality values ranged from 1 to 615 mOsm/kg, while intestinal fluid values ranged from 35 to 631 mOsm/kg. Gastric fluid bile acid concentrations ranged from 0.002 to 2.3 mM with a median value of 0.017 mM whilst intestinal fluid bile acid concentrations ranged from 0.0008 to 3.3 mM with a median value of 0.178 mM. Glycocholate; taurocholic acid; glycochenodeoxycholate and taurochenodeoxycholate were the most commonly identified bile acids within paediatric intestinal fluids. All compositional components were associated with large inter-individual variability. Further work is required to develop simulated paediatric media and to explore the impact of these media on drug solubility and dissolution.
Collapse
Affiliation(s)
- Gopal Pawar
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Eleni Papadatou-Soulou
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Julie Mason
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Rafeeq Muhammed
- Birmingham Children's Hospital, Steelhouse Lane, Birmingham B4 6NH, United Kingdom
| | - Alison Watson
- Birmingham Children's Hospital, Steelhouse Lane, Birmingham B4 6NH, United Kingdom
| | - Catherine Cotter
- Birmingham Children's Hospital, Steelhouse Lane, Birmingham B4 6NH, United Kingdom
| | - Mohamed Abdallah
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Analytical Chemistry, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Claire Mackie
- Janssen Research and Development, Turnhoutseweg 34, 2340 Beerse, Belgium
| | - Tina Arien
- Janssen Research and Development, Turnhoutseweg 34, 2340 Beerse, Belgium
| | | | - Hannah Batchelor
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom.
| |
Collapse
|
125
|
Pentafragka C, Vertzoni M, Dressman J, Symillides M, Goumas K, Reppas C. Characteristics of contents in the upper gastrointestinal lumen after a standard high-calorie high-fat meal and implications for the in vitro drug product performance testing conditions. Eur J Pharm Sci 2020; 155:105535. [DOI: 10.1016/j.ejps.2020.105535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/30/2022]
|
126
|
Priya Dharshini K, Fang H, Ramya Devi D, Yang JX, Luo RH, Zheng YT, Brzeziński M, Vedha Hari BN. pH-sensitive chitosan nanoparticles loaded with dolutegravir as milk and food admixture for paediatric anti-HIV therapy. Carbohydr Polym 2020; 256:117440. [PMID: 33483020 DOI: 10.1016/j.carbpol.2020.117440] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/28/2020] [Accepted: 11/19/2020] [Indexed: 11/17/2022]
Abstract
The present study aims to develop Chitosan-based polymeric nanoparticles of anti-HIV drug Dolutegravir, to aid appropriate dose adjustment and ease of oral administration as milk and food admixture for children. The isolated Chitosan from the crab shell species Portunus Sanguinolentus has been characterized for their physicochemical properties. Nanoparticles were developed with varying ratio of drug: Chitosan and assessed for particle size (140-548 nm), zeta potential (+26.1 mV) with a maximum of 75 % drug content. Nanoparticles exhibited improved stability and drug release in the 0.1 N HCl medium compared to pure drug. The MTT assay and the Syncytia inhibition assay in C8166 (T-lymphatic cell line) infected with HIVIIIB viral strain, which showed better therapeutic efficiency and lesser cytotoxicity compared to the pure drug. In consonance with the data obtained, the use of chitosan from a novel source for drug delivery carrier has opened exceptional prospects for delivering drugs efficiently to paediatrics.
Collapse
Affiliation(s)
- K Priya Dharshini
- Pharmaceutical Technology Laboratory, ASK-II, Lab No: 214, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Hao Fang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - D Ramya Devi
- Pharmaceutical Technology Laboratory, ASK-II, Lab No: 214, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Jin-Xuan Yang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Rong-Hua Luo
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yong-Tang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Marek Brzeziński
- Centre of Molecular and Macromolecular Studies in Łódź, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - B N Vedha Hari
- Pharmaceutical Technology Laboratory, ASK-II, Lab No: 214, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India.
| |
Collapse
|
127
|
Joyce P, Dening TJ, Meola TR, Wignall A, Ulmefors H, Kovalainen M, Prestidge CA. Contrasting Anti-obesity Effects of Smectite Clays and Mesoporous Silica in Sprague-Dawley Rats. ACS APPLIED BIO MATERIALS 2020; 3:7779-7788. [PMID: 35019518 DOI: 10.1021/acsabm.0c00969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Porous colloids have been shown to exert unique bioactivities for mediating lipid (fat) metabolism and thereby offer significant potential as anti-obesity therapies. In this study, we compare the capacity for two classes of colloids, that is, smectite clays (Laponite XLG, LAP; montmorillonite, MMT) and mesoporous silica (SBA-15 ordered silica; MPS), to impede intestinal lipid hydrolysis and provoke lipid and carbohydrate excretion through adsorption within their particle matrices. A two-stage in vitro gastrointestinal lipolysis model revealed the capacity for both smectite clays and MPS to inhibit the rate and extent of lipase-mediated digestion under simulated fed state conditions. Each system adsorbed more than its own weight of organic media (i.e., lipid and carbohydrates) after 60 min lipolysis, with MMT adsorbing >10% of all available organics through the indiscriminate adsorption of fatty acids and glycerides. When co-administered with a high-fat diet (HFD) to Sprague-Dawley rats, treatment with MMT and MPS significantly reduced normalized rodent weight gain compared to a negative control, validating their potential to restrict energy intake and serve as anti-obesity therapies. However, in vitro-in vivo correlations revealed poor associations between in vitro digestion parameters and normalized weight gain, indicating that additional/alternate anti-obesity mechanisms may exist in vivo, while also highlighting the need for improved in vitro assessment methodologies. Despite this, the current findings emphasize the potential for porous colloids to restrict weight gain and promote anti-obesity effects to subjects exposed to a HFD and should therefore drive the development of next-generation food-grade biomaterials for the treatment and prevention of obesity.
Collapse
Affiliation(s)
- Paul Joyce
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, South Australia, Australia
| | - Tahnee J Dening
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, South Australia, Australia
| | - Tahlia R Meola
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, South Australia, Australia
| | - Anthony Wignall
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, South Australia, Australia
| | - Hanna Ulmefors
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, South Australia, Australia
| | - Miia Kovalainen
- Research Unit of Biomedicine and Biocenter of Oulu, Faculty of Medicine, University of Oulu, P.O. Box 5000, Oulu FI-90014, Finland
| | - Clive A Prestidge
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, South Australia, Australia
| |
Collapse
|
128
|
Characterization of Affitin proteolytic digestion in biorelevant media and improvement of their stabilities via protein engineering. Sci Rep 2020; 10:19703. [PMID: 33184451 PMCID: PMC7661517 DOI: 10.1038/s41598-020-76855-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Affitins are a novel class of small 7 kDa artificial proteins which can be used as antibody substitutes in therapeutic, diagnostic and biotechnological applications. One challenge for this type of protein agent is their behaviour in the context of oral administration. The digestive system is central, and biorelevant media have fast emerged as relevant and reliable tools for evaluating the bioavailability of drugs. This study describes, for the first time, the stability of Affitins under simulated gastric and intestinal digestion conditions. Affitins appear to be degraded into stable fragments in in vitro gastric medium. We identified cleavage sites generated by pepsin that were silenced by site-directed mutagenesis. This protein engineering allowed us to enhance Affitin properties. We showed that a mutant M1 containing a double mutation of amino acid residues 6 and 7 in H4 and C3 Affitins acquired a resistance against proteolytic digestion. In addition, these mutations were beneficial for target affinity, as well as for production yield. Finally, we found that the mutated residues kept or increased the important pH and temperature stabilities of Affitins. These improvements are particularly sought after in the development of engineered binding proteins for research tools, preclinical studies and clinical applications.
Collapse
|
129
|
Park SY, Jin CH, Goo YT, Chae BR, Yoon HY, Kim CH, Song SH, Han SB, Choi YW. Supersaturable self-microemulsifying drug delivery system enhances dissolution and bioavailability of telmisartan. Pharm Dev Technol 2020; 26:60-68. [PMID: 33032496 DOI: 10.1080/10837450.2020.1834580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
To enhance the dissolution and oral bioavailability of telmisartan (TMS), a poorly water-soluble anti-hypertensive drug, a supersaturable self-microemulsifying drug delivery system (SuSMEDDS) was developed. Amorphous alkalinized TMS (AAT) was formulated into a SMEDDS, composed of Capmul® MCM (oil), Cremophor® RH40 (surfactant), and tetraglycol (co-surfactant). Although the SMEDDS was rapidly dissolved (>80% within 5 min) in a limited condition (500 mL, pH 6.8), drug precipitation was observed over time, resulting in a decrease in dissolution levels. The precipitation was due to drug recrystallization, as determined by differential scanning calorimetry and powder X-ray diffraction analyses. Several polymers, including Soluplus® (SOL), were screened as precipitation inhibitors; ultimately, SuSMEDDS-SOL was prepared by admixing SOL and the SMEDDS at a 5:100 (w/w) ratio. SuSMEDDS-SOL was superior in terms of dissolution efficiency (>90% over 2 h) and dissolution-retaining time (no precipitation over 2 h). An in vivo pharmacokinetic study in rats revealed that the oral bioavailability of SuSMEDDS-SOL was 4.8-, 1.3-, and 1.2-fold greater than those of the TMS suspension, AAT solution, and SMEDDS, respectively. Therefore, SuSMEDDS-SOL is a promising candidate to enhance the dissolution and oral bioavailability of TMS.
Collapse
Affiliation(s)
- Sun Young Park
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Chang Hwa Jin
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Yoon Tae Goo
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea.,Department of Pharmaceutical Industry, Graduate school, Chung-Ang University, Seoul, Republic of Korea
| | - Bo Ram Chae
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Ho Yub Yoon
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Chang Hyun Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea.,Department of Pharmaceutical Industry, Graduate school, Chung-Ang University, Seoul, Republic of Korea
| | - Seh Hyon Song
- College of Pharmacy, Kyungsung University, Busan, Republic of Korea
| | - Sang Beom Han
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Young Wook Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea.,Department of Pharmaceutical Industry, Graduate school, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
130
|
Vo AQ, Zhang J, Nyavanandi D, Bandari S, Repka MA. Hot melt extrusion paired fused deposition modeling 3D printing to develop hydroxypropyl cellulose based floating tablets of cinnarizine. Carbohydr Polym 2020; 246:116519. [PMID: 32747229 PMCID: PMC7403534 DOI: 10.1016/j.carbpol.2020.116519] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 11/25/2022]
Abstract
Three-dimensional printing could serve as a platform to fabricate individualized medicines and complex-structured solid dosage forms. Herein, hot melt extrusion was coupled with 3D printing to develop a unique gastro retentive dosage form to personalize treatment of cinnarizine or other narrow absorption window drugs. The mechanical strength of the extruded strands was optimized for printing by combining two polymers, hydroxypropyl cellulose and vinylpyrrolidone vinyl acetate copolymer. The unit dose, floating force, and release profile were controlled by the printing parameters and object design. The tablets floated immediately within the FaSSGF, and floating force was relatively constant up to 12 h. Drug release followed zero-order kinetics and could be controlled from 6 h to ≥ 12 h. Input variables had a good correlation (R > 0.95) with unit dose, floating force, and dissolution profile (p < 0.05). Authors successfully proposed and tested a new paradigm of individualized medicine fabrication to meet individual patient needs.
Collapse
Affiliation(s)
- Anh Q Vo
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS 38677, USA.
| | - Jiaxiang Zhang
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS 38677, USA.
| | - Dinesh Nyavanandi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS 38677, USA.
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS 38677, USA.
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS 38677, USA; Pii Center for Pharmaceutical Technology, The University of Mississippi, MS 38677, USA.
| |
Collapse
|
131
|
Fagerberg JH, Zarmpi P, Jabbar H, Fotaki N. Affinity of Lipophilic Drugs to Mixed Lipid Aggregates in Simulated Gastrointestinal Fluids. J Pharm Sci 2020; 110:186-197. [PMID: 33065126 DOI: 10.1016/j.xphs.2020.09.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022]
Abstract
Mixed lipid aggregates, comprising of bile salts and phospholipids, present in the small intestine assist in drug solubilization and subsequent drug dissolution and absorption through the intestinal epithelium. The increased variability in their levels, observed physiologically, may create challenges not only for in vivo bioavailability and bioequivalence studies, but also for in vitro bio-predictive studies as correlations between in vitro and in vivo data are not always successful. The current study investigated the impact of biorelevant dissolution media, with physiologically relevant sodium taurocholate and lecithin levels, on the apparent solubility and affinity of lipophilic compounds with a wide range of physicochemical properties (drug ionization, drug lipophilicity, molecular weight) to mixed lipid aggregates. Apparent solubility data in biorelevant dissolution media for the studied neutral drugs, weak bases and weak acids were compared against a phosphate buffer pH 6.5 in the absence of these lipidic components. Presence of mixed lipid aggregates enhanced the apparent solubility of the majority of compounds and the use of multivariate data analysis identified the significant parameters affecting drug affinity to mixed lipid aggregates based on the chemical class of the drug. For neutral drugs, increasing bile salt concentrations and/or drug lipophilicity resulted in greater enhancement in apparent solubility at 24-hr. For weak bases and weak acids, the effect of increasing bile salt levels on apparent solubility depended mostly on an interplay between drug lipophilicity and drug ionization.
Collapse
Affiliation(s)
| | - Panagiota Zarmpi
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| | - Hasnaa Jabbar
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
132
|
Wattamwar T, Mungantiwar A, Gujar S, Pandita N. Development of LC-MS/MS method for simultaneous determination of Canagliflozin and Metformin in human plasma and its pharmacokinetic application in Indian population under fast and fed conditions. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1154:122281. [PMID: 32763846 DOI: 10.1016/j.jchromb.2020.122281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 01/19/2023]
Abstract
A novel, selective and sensitive method is developed for simultaneous estimation of canagliflozin and metformin and successfully applied to fast and fed pharmacokinetic studies in healthy Indian volunteers. The current study reports the development, optimization, and validation of liquid chromatography-mass spectrometry (LC-MS/MS) method for simultaneous quantification of canagliflozin and metformin in human plasma using deuterated canagliflozin D4 and metformin D6 as an internal standard (IS). The solid-phase extraction technique was employed where strata X polymeric reverse phase (30 mg-1 cc) SPE cartridges were used for the extraction of analytes and IS from plasma. The ACE 5 C18 column (50 × 4.6 mm, 5µ) was used to chromatograph the prepared samples. The mobile phase consisted of methanol and 5 mM ammonium trifluoroacetate in water, pH 5 (50:50, v/v) at a flow rate of 0.8 mL/min. Detection was performed by positive ion Turbo ion spray in Multiple reaction monitoring (MRM) mode, monitoring the transitions m/z 461.9 → m/z 191.1 and m/z 461.9 → m/z 267.2, for quantification of canagliflozin. The response of canagliflozin fragments m/z 461.9 → m/z 191.1 and m/z 461.9 → m/z 267.2 was combined. Also, for metformin transitions were monitored at m/z 130.0 → m/z 71.1. Full validation of the method was performed according to the United States Food and Drugs Administration (USFDA) guidelines. Linearity was in the range of 24.95-2806.55 ng/mL for canagliflozin and 24.99-3400.72 ng/mL for metformin. The mean extraction recovery of canagliflozin, canagliflozin D4, metformin, and metformin D6 was 77.240, 84.663, 66.747, and 67.449, respectively across four QC levels. This rapid method with the run time of 2.80 min allows the analysis of more than 400 plasma samples per day.
Collapse
Affiliation(s)
- Tejas Wattamwar
- Bioequivalence Department, Macleods Pharmaceuticals Ltd., Mumbai 400093, India; Department of Chemistry, Sunandan Divatia School of Science, NMIMS, Mumbai 400056, India.
| | - Ashish Mungantiwar
- Bioequivalence Department, Macleods Pharmaceuticals Ltd., Mumbai 400093, India
| | - Supriya Gujar
- Bioequivalence Department, Macleods Pharmaceuticals Ltd., Mumbai 400093, India
| | - Nancy Pandita
- Department of Chemistry, Sunandan Divatia School of Science, NMIMS, Mumbai 400056, India
| |
Collapse
|
133
|
Silva M, Zisu B, Chandrapala J. INFLUENCE OF MILK PROTEIN COMPOSITION ON PHYSICOCHEMICAL AND MICROSTRUCTURAL CHANGES OF SONO-EMULSIONS DURING IN VITRO DIGESTION. FOOD STRUCTURE 2020. [DOI: 10.1016/j.foostr.2020.100157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
134
|
Riedmaier AE, DeMent K, Huckle J, Bransford P, Stillhart C, Lloyd R, Alluri R, Basu S, Chen Y, Dhamankar V, Dodd S, Kulkarni P, Olivares-Morales A, Peng CC, Pepin X, Ren X, Tran T, Tistaert C, Heimbach T, Kesisoglou F, Wagner C, Parrott N. Use of Physiologically Based Pharmacokinetic (PBPK) Modeling for Predicting Drug-Food Interactions: an Industry Perspective. AAPS JOURNAL 2020; 22:123. [PMID: 32981010 PMCID: PMC7520419 DOI: 10.1208/s12248-020-00508-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022]
Abstract
The effect of food on pharmacokinetic properties of drugs is a commonly observed occurrence affecting about 40% of orally administered drugs. Within the pharmaceutical industry, significant resources are invested to predict and characterize a clinically relevant food effect. Here, the predictive performance of physiologically based pharmacokinetic (PBPK) food effect models was assessed via de novo mechanistic absorption models for 30 compounds using controlled, pre-defined in vitro, and modeling methodology. Compounds for which absorption was known to be limited by intestinal transporters were excluded in this analysis. A decision tree for model verification and optimization was followed, leading to high, moderate, or low food effect prediction confidence. High (within 0.8- to 1.25-fold) to moderate confidence (within 0.5- to 2-fold) was achieved for most of the compounds (15 and 8, respectively). While for 7 compounds, prediction confidence was found to be low (> 2-fold). There was no clear difference in prediction success for positive or negative food effects and no clear relationship to the BCS category of tested drug molecules. However, an association could be demonstrated when the food effect was mainly related to changes in the gastrointestinal luminal fluids or physiology, including fluid volume, motility, pH, micellar entrapment, and bile salts. Considering these findings, it is recommended that appropriately verified mechanistic PBPK modeling can be leveraged with high to moderate confidence as a key approach to predicting potential food effect, especially related to mechanisms highlighted here.
Collapse
Affiliation(s)
| | - Kevin DeMent
- Global DMPK, Takeda Pharmaceutical Co., Ltd., San Diego, California, USA
| | - James Huckle
- Drug Product Technology, Amgen, Thousand Oaks, California, USA
| | - Phil Bransford
- Modeling & Informatics, Vertex Pharmaceuticals, Boston, Massachusetts, USA
| | - Cordula Stillhart
- Pharmaceutical R&D, Formulation & Process Sciences, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Richard Lloyd
- Computational & Modelling Sciences, Platform Technology Sciences, GlaxoSmithKline R&D, Ware, Hertfordshire, UK
| | - Ravindra Alluri
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Sumit Basu
- Pharmacokinetic, Pharmacodynamic and Drug Metabolism-Quantitative Pharmacology and Pharmacometrics (PPDM-QP2), Merck & Co, Inc., West Point, Pennsylvania, USA
| | - Yuan Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California, USA
| | - Varsha Dhamankar
- Formulation Development, Vertex Pharmaceuticals, Boston, Massachusetts, USA.,Formulation Development, Cyclerion Therapeutics Inc., Cambridge, Massachusetts, USA
| | - Stephanie Dodd
- Chemical & Pharmaceutical Profiling, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Priyanka Kulkarni
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts, USA
| | - Andrés Olivares-Morales
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Chi-Chi Peng
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts, USA.,Drug Metabolism and Pharmacokinetics, Theravance Biopharma, South San Francisco, California, USA
| | - Xavier Pepin
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Xiaojun Ren
- Modeling & Simulation, PK Sciences, Novartis Institutes of Biomedical Research, East Hanover, New Jersey, USA
| | - Thuy Tran
- Computational & Modelling Sciences, Platform Technology Sciences, GlaxoSmithKline R&D, Collegeville, Pennsylvania, USA
| | | | - Tycho Heimbach
- PBPK & Biopharmaceutics, Novartis Institutes of Biomedical Research, Wayne, New Jersey, USA
| | | | - Christian Wagner
- Pharmaceutical Technologies, Chemical and Pharmaceutical Development, Merck Healthcare KGaA, Darmstadt, Germany
| | - Neil Parrott
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland
| |
Collapse
|
135
|
Jamil R, Xu T, Shah HS, Adhikari A, Sardhara R, Nahar K, Morris KR, Polli JE. Similarity of dissolution profiles from biorelevant media: Assessment of interday repeatability, interanalyst repeatability, and interlaboratory reproducibility using ibuprofen and ketoconazole tablets. Eur J Pharm Sci 2020; 156:105573. [PMID: 32987114 DOI: 10.1016/j.ejps.2020.105573] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/01/2020] [Accepted: 09/22/2020] [Indexed: 11/26/2022]
Abstract
Biorelevant media are increasingly being employed as dissolution media in drug development, including in smaller volumes than 900ml and under non-sink conditions. The objectives were to assess interday repeatability, interanalyst repeatability, and interlaboratory reproducibility of dissolution profiles from biorelevant media, as well as to assess the impacts of biorelevant media production method and biorelevant medium volume on dissolution profiles. Ibuprofen and ketoconazole tablets were subjected to dissolution testing in 500ml, 300ml, and 40ml of fasted state simulated gastric fluid (FaSSGF), fed state simulated gastric fluid (FeSSGF), fasted state simulated intestinal fluid version 2 (FaSSIF-V2), and fed state simulated intestinal fluid version 2 (FeSSIF-V2). f2 was used to assess repeatability and reproducibility of dissolution profiles. Results indicate favorable interday repeatability (83 of 88 comparisons were similar), favorable interanalyst repeatability (19 of 21 comparisons were similar), and favorable interlaboratory reproducibility (10 of 14 comparisons were similar) of dissolution profiles from biorelevant media, with commercial media showing greater interlaboratory reproducibility than 'from scratch' media. However, biorelevant medium production had low impact on profiles when one analyst conducted all medium preparations and study procedures at one location. Additionally, biorelevant media detected differences when products were not similar. Overall, biorelevant media showed favorable repeatability and reproducibility performance.
Collapse
Affiliation(s)
- Raqeeb Jamil
- University of Maryland, Department of Pharmaceutical Sciences, 20 Penn Street, Baltimore, MD21201, United States
| | - Ting Xu
- Long Island University, Lachman Institute for Pharmaceutical Analysis, 1 University Plaza, Brooklyn, New York, NY11201, United States
| | - Harsh S Shah
- Long Island University, Lachman Institute for Pharmaceutical Analysis, 1 University Plaza, Brooklyn, New York, NY11201, United States
| | - Asmita Adhikari
- University of Maryland, Department of Pharmaceutical Sciences, 20 Penn Street, Baltimore, MD21201, United States
| | - Rusha Sardhara
- Long Island University, Lachman Institute for Pharmaceutical Analysis, 1 University Plaza, Brooklyn, New York, NY11201, United States
| | - Kajal Nahar
- Long Island University, Lachman Institute for Pharmaceutical Analysis, 1 University Plaza, Brooklyn, New York, NY11201, United States
| | - Kenneth R Morris
- Long Island University, Lachman Institute for Pharmaceutical Analysis, 1 University Plaza, Brooklyn, New York, NY11201, United States
| | - James E Polli
- University of Maryland, Department of Pharmaceutical Sciences, 20 Penn Street, Baltimore, MD21201, United States.
| |
Collapse
|
136
|
Matsumura N, Ono A, Akiyama Y, Fujita T, Sugano K. Bottom-Up Physiologically Based Oral Absorption Modeling of Free Weak Base Drugs. Pharmaceutics 2020; 12:E844. [PMID: 32899235 PMCID: PMC7558956 DOI: 10.3390/pharmaceutics12090844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022] Open
Abstract
In this study, we systematically evaluated "bottom-up" physiologically based oral absorption modeling, focusing on free weak base drugs. The gastrointestinal unified theoretical framework (the GUT framework) was employed as a simple and transparent model. The oral absorption of poorly soluble free weak base drugs is affected by gastric pH. Alternation of bulk and solid surface pH by dissolving drug substances was considered in the model. Simple physicochemical properties such as pKa, the intrinsic solubility, and the bile micelle partition coefficient were used as input parameters. The fraction of a dose absorbed (Fa) in vivo was obtained by reanalyzing the pharmacokinetic data in the literature (15 drugs, a total of 85 Fa data). The AUC ratio with/without a gastric acid-reducing agent (AUCr) was collected from the literature (22 data). When gastric dissolution was neglected, Fa was underestimated (absolute average fold error (AAFE) = 1.85, average fold error (AFE) = 0.64). By considering gastric dissolution, predictability was improved (AAFE = 1.40, AFE = 1.04). AUCr was also appropriately predicted (AAFE = 1.54, AFE = 1.04). The Fa values of several drugs were slightly overestimated (less than 1.7-fold), probably due to neglecting particle growth in the small intestine. This modeling strategy will be of great importance for drug discovery and development.
Collapse
Affiliation(s)
- Naoya Matsumura
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Asami Ono
- Laboratory for Chemistry, Manufacturing, and Control, Pharmaceuticals Production & Technology Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan;
| | - Yoshiyuki Akiyama
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan;
| | - Takuya Fujita
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan;
| | - Kiyohiko Sugano
- Molecular Pharmaceutics Lab., College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan;
| |
Collapse
|
137
|
Response surface optimization of self nano-emulsifying drug delivery system of rosuvastatin calcium for hepatocellular carcinoma. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00497-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
138
|
Gastrointestinal diseases and their impact on drug solubility: Celiac disease. Eur J Pharm Sci 2020; 152:105460. [DOI: 10.1016/j.ejps.2020.105460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/12/2020] [Accepted: 07/05/2020] [Indexed: 11/22/2022]
|
139
|
Development and evaluation of a biorelevant medium simulating porcine gastrointestinal fluids. Eur J Pharm Biopharm 2020; 154:116-126. [DOI: 10.1016/j.ejpb.2020.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/08/2020] [Accepted: 06/14/2020] [Indexed: 12/23/2022]
|
140
|
Aqueous Dissolution and Dispersion Behavior of Polyvinylpyrrolidone Vinyl Acetate-based Amorphous Solid Dispersion of Ritonavir Prepared by Hot-Melt Extrusion with and without Added Surfactants. J Pharm Sci 2020; 110:1480-1494. [PMID: 32827493 DOI: 10.1016/j.xphs.2020.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/25/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023]
Abstract
In this study, the lack of complete drug release from amorphous solid dispersions (ASDs), as observed in most published reports, was investigated. ASDs with 20% ritonavir were prepared by HME using polyvinylpyrrolidone vinyl acetate (PVPVA) alone and in combination with 10% poloxamer 407 or Span 20 as carriers. It was established by the film casting technique that ritonavir was molecularly dispersed in formulations, and accelerated stability testing confirmed that extrudates were physically stable. Dissolution of ASDs (100-mg ritonavir equivalent) was performed in 250 mL 0.01 N HCl (pH 2), pH 6.8 phosphate buffer and FeSSIF-V2. Drug concentrations were measured by filtration through 0.45-μm pores and in unfiltered media; the latter gave total amounts of drug present in dissolution media, both as solution and dispersion. Because of low solubility, ritonavir did not dissolve completely in aqueous media. Rather, it formed supersaturated solutions, and the excess drug dispersed in the oily amorphous form with low particle sizes that could crystallize with time. Due to higher drug solubility, the dissolved drug in FeSSIF-V2 was much higher than that in the phosphate buffer. Complete drug release could be observed by accounting for drug both in solution and as phase-separated dispersion. Thus, the present study provides a complete picture of in vitro drug dissolution and dispersion from ASDs.
Collapse
|
141
|
Fattah S, Ismaiel M, Murphy B, Rulikowska A, Frias JM, Winter DC, Brayden DJ. Salcaprozate sodium (SNAC) enhances permeability of octreotide across isolated rat and human intestinal epithelial mucosae in Ussing chambers. Eur J Pharm Sci 2020; 154:105509. [PMID: 32777258 DOI: 10.1016/j.ejps.2020.105509] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022]
Abstract
Octreotide is approved as a one-month injectable for treatment of acromegaly and neuroendocrine tumours. Oral delivery of the octapeptide is a challenge due mainly to low intestinal epithelial permeability. The intestinal permeation enhancer (PE) salcaprozate sodium (SNAC) has Generally Regarded As Safe (GRAS) status and is a component of an approved oral peptide formulation. The purpose of the study was to examine the capacity of salcaprozate sodium (SNAC), to increase its permeability across isolated rat intestinal mucosae from five regions and across human colonic mucosae mounted in Ussing chambers. Apical-side buffers were Kreb's-Henseleit (KH), fasted simulated intestinal fluid (FaSSIF-V2), rat simulated intestinal fluid (rSIF), and colonic simulated intestinal fluid (FaSSCoF). The basal apparent permeability coefficient (Papp) of [3H]-octreotide was equally low across rat intestinal regional mucosae in KH, rSIF, and FaSSIF-V2. Apical addition of 20 mM SNAC increased the Papp across rat tissue in KH: colon (by 3.2-fold) > ileum (3.4-fold) > upper jejunum (2.3-fold) > duodenum (1.4-fold) > stomach (1.4-fold). 20 mM and 40 mM SNAC also increased the Papp by 1.5-fold and 2.1-fold respectively across human colonic mucosae in KH. Transepithelial electrical resistance (TEER) values were reduced in the presence in SNAC especially in colonic regions. LC-MS/MS analysis of permeated unlabelled octreotide across human colonic mucosae in the presence of SNAC indicated that [3H]-octreotide remained intact. No gross damage was caused to rat or human mucosae by SNAC. Attenuation of the effects of SNAC was seen in rat jejunal mucosae incubated with FaSSIF-V2 and rSIF, and also to some extent in human colonic mucosae using FaSSCoF, suggesting interaction between SNAC with buffer components. In conclusion, SNAC showed potential as an intestinal permeation enhancer for octreotide, but in vivo efficacy may be attenuated by interactions with GI luminal fluid contents.
Collapse
Affiliation(s)
- Sarinj Fattah
- School of Veterinary Medicine, Conway Institute, and Science Foundation Ireland CÚRAM Centre for Medical Devices, University College Dublin (UCD), Belfield, Dublin 4, Ireland.
| | - Mohamed Ismaiel
- Department of Surgery, St. Vincent's University Hospital, Dublin 4, Ireland; School of Medicine and Medical Science, UCD, Belfield, Dublin 4, Ireland
| | - Brenda Murphy
- Department of Surgery, St. Vincent's University Hospital, Dublin 4, Ireland; School of Medicine and Medical Science, UCD, Belfield, Dublin 4, Ireland
| | - Aleksandra Rulikowska
- Environmental Sustainability and Health Institute. Technological University of Dublin, Dublin 7, Ireland
| | - Jesus M Frias
- Environmental Sustainability and Health Institute. Technological University of Dublin, Dublin 7, Ireland
| | - Desmond C Winter
- Department of Surgery, St. Vincent's University Hospital, Dublin 4, Ireland; School of Medicine and Medical Science, UCD, Belfield, Dublin 4, Ireland
| | - David J Brayden
- School of Veterinary Medicine, Conway Institute, and Science Foundation Ireland CÚRAM Centre for Medical Devices, University College Dublin (UCD), Belfield, Dublin 4, Ireland.
| |
Collapse
|
142
|
Klumpp L, Dressman J. Physiologically based pharmacokinetic model outputs depend on dissolution data and their input: Case examples glibenclamide and dipyridamole. Eur J Pharm Sci 2020; 151:105380. [PMID: 32442630 DOI: 10.1016/j.ejps.2020.105380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/05/2020] [Accepted: 05/13/2020] [Indexed: 01/22/2023]
Abstract
A plethora of dissolution tests exists for oral dosage forms, with variations in selection of the dissolution medium, the hydrodynamics and the dissolution equipment. This work aimed at determining the influence of media composition, the type of dissolution test and the method for entering the data into a PBPK model on the ability to simulate the in vivo plasma profile of an immediate release formulation. Using two rDCS IIa substances, glibenclamide and dipyridamole, housed in immediate-release formulations as model dosage forms, dissolution tests were performed in USP apparatus II with the biorelevant media FaSSGF, FaSSIF V1, V2 and V3 using both single-stage and two-stage test designs. The results were then integrated into the PBPK software SimcypⓇ either as the observed release profile (dissolution rate model, DRM) or using a semi-mechanistic model (diffusion layer model, DLM) and compared with in vivo plasma profiles. The selection of the FaSSIF version did not appear to have any relevant influence on the dissolution of the weakly basic dipyridamole, while the weakly acidic glibenclamide was sensitive to the difference in pH between FaSSIF V1, V2 and FaSSIF V3. Since both compounds have pKa values close to the pH of biorelevant media representing conditions in the small intestine, these results may be specific to compounds with similar ionization behavior. Single-stage and two-stage testing led to equivalent simulations for glibenclamide. Only results from the single-stage test in FaSSGF led to a close simulation of the pharmacokinetic profile of dipyridamole when data were inputted using the DRM, while simulations from two-stage testing were most similar to the observed pharmacokinetic profile when DLM with selection of a dynamic pH profile in the small intestine was selected as the data input method. These results emphasize the importance of data input to the simulation results.
Collapse
Affiliation(s)
- Lukas Klumpp
- Institute of Pharmaceutical Technology, Goethe University and Fraunhofer Institute of Molecular Biology and Applied Ecology (IME) Division of Translational Medicine and Pharmacology (TMP), Frankfurt am Main, Germany
| | - Jennifer Dressman
- Institute of Pharmaceutical Technology, Goethe University and Fraunhofer Institute of Molecular Biology and Applied Ecology (IME) Division of Translational Medicine and Pharmacology (TMP), Frankfurt am Main, Germany.
| |
Collapse
|
143
|
Ruiz-Picazo A, Colón-Useche S, Gonzalez-Alvarez M, Gonzalez-Alvarez I, Bermejo M, Langguth P. Effect of thickener on disintegration, dissolution and permeability of common drug products for elderly patients. Eur J Pharm Biopharm 2020; 153:168-176. [PMID: 32561342 DOI: 10.1016/j.ejpb.2020.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/30/2020] [Accepted: 06/08/2020] [Indexed: 11/28/2022]
Abstract
Dysphagia is a very common problem suffered by elderly patients. The use of thickeners during administration in these patients helps to prevent difficulties with swallowing larger solid dosage forms. However, there are several indications when the thickeners may influence disintegration and dissolution processes of solid dosage forms, potentially affecting therapeutic efficacy. In this paper the effects of a commonly used thickener on tablet disintegration, dissolution and subsequent absorption of 6 formulated drugs frequently used in elderly patients (Aspirin, Atenolol, Acenocumarol, Candesartan, Ramipril and Valsartan) in two different administration conditions (intact tablet and crushed tablet) are reported. Disintegration times were determined using a modified disintegration test device. The presence of thickener leads to a pseudoplastic behavior with clearly increased viscosity values. The thickener was also shown to significantly affect the release processes (dissolution and disintegration), but not the permeability of the studied drugs. When tablets are crushed the effect of the thickener on drug dissolution is avoided. Consequently, crushing the tablets would be a recommendation for these drugs if the use of a thickener is necessary in patients with dysphagia.
Collapse
Affiliation(s)
- Alejandro Ruiz-Picazo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Spain
| | - Sarin Colón-Useche
- Analysis and Control Department, University of Los Andes, Mérida 5101, Venezuela
| | - Marta Gonzalez-Alvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Spain
| | - Isabel Gonzalez-Alvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Spain.
| | - Marival Bermejo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Spain
| | - Peter Langguth
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
144
|
Easy to Swallow “Instant” Jelly Formulations for Sustained Release Gliclazide Delivery. J Pharm Sci 2020; 109:2474-2484. [DOI: 10.1016/j.xphs.2020.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 11/19/2022]
|
145
|
Pyper K, Brouwers J, Augustijns P, Khadra I, Dunn C, Wilson CG, Halbert GW. Multidimensional analysis of human intestinal fluid composition. Eur J Pharm Biopharm 2020; 153:226-240. [PMID: 32585351 DOI: 10.1016/j.ejpb.2020.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022]
Abstract
The oral administration of solid dosage forms is the commonest method to achieve systemic therapy and relies on the drug's solubility in human intestinal fluid (HIF), a key factor that influences bioavailability and biopharmaceutical classification. However, HIF is difficult to obtain and is known to be variable, which has led to the development of a range of simulated intestinal fluid (SIF) systems to determine drug solubility in vitro. In this study we have applied a novel multidimensional approach to analyse and characterise HIF composition using a published data set in both fasted and fed states with a view to refining the existing SIF approaches. The data set provided 152 and 172 measurements of five variables (total bile salt, phospholipid, total free fatty acid, cholesterol and pH) in time-dependent HIF samples from 20 volunteers in the fasted and fed state, respectively. The variable data sets for both fasted state and fed state are complex, do not follow normal distributions but the amphiphilic variable concentrations are correlated. When plotted 2-dimensionally a generally ellipsoid shaped data cloud with a positive slope is revealed with boundaries that enclose published fasted or fed HIF compositions. The data cloud also encloses the majority of fasted state and fed state SIF recipes and illustrates that the structured nature of design of experiment (DoE) approaches does not optimally cover the variable space and may examine media compositions that are not biorelevant. A principal component analysis in either fasted or fed state in combination with fitting an ellipsoid shape to enclose the data results in 8 points that capture over 95% of the compositional variability of HIF. The variable's average rate of concentration change in both fasted state and fed state over a short time scale (10 min) is zero and a Euclidean analysis highlights differences between the fasted and fed states and among individual volunteers. The results indicate that a 9-point DoE (8 + 1 central point) could be applied to investigate drug solubility in vitro and provide statistical solubility limits. In addition, a single point could provide a worst-case solubility measurement to define the lowest biopharmaceutical classification boundary or for use during drug development. This study has provided a novel description of HIF composition. The approach could be expanded in multiple ways by incorporation of further data sets to improve the statistical coverage or to cover specific patient groups (e.g., paediatric). Further development might also be possible to analyse information on the time dependent behaviour of HIF and to guide HIF sampling and analysis protocols.
Collapse
Affiliation(s)
- Kate Pyper
- Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH, United Kingdom
| | - Joachim Brouwers
- Drug Delivery and Disposition, KU Leuven, ON2, Herestraat 49 Box 921, 3000 Leuven, Belgium
| | - Patrick Augustijns
- Drug Delivery and Disposition, KU Leuven, ON2, Herestraat 49 Box 921, 3000 Leuven, Belgium
| | - I Khadra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - C Dunn
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - C G Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | - G W Halbert
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom.
| |
Collapse
|
146
|
Cheng L, Wong H. Food Effects on Oral Drug Absorption: Application of Physiologically-Based Pharmacokinetic Modeling as a Predictive Tool. Pharmaceutics 2020; 12:pharmaceutics12070672. [PMID: 32708881 PMCID: PMC7408216 DOI: 10.3390/pharmaceutics12070672] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
The bioavailability of an orally administered small molecule is often dictated by drug-specific physicochemical characteristics and is influenced by many biological processes. For example, in fed or fasted conditions, the transit time within the gastrointestinal tract can vary, confounding the ability to predict the oral absorption. As such, the effects of food on the pharmacokinetics of compounds in the various biopharmaceutics classification system (BCS) classes need to be assessed. The consumption of food leads to physiological changes, including fluctuations in the gastric and intestinal pH, a delay in gastric emptying, an increased bile secretion, and an increased splanchnic and hepatic blood flow. Despite the significant impact of a drug's absorption and dissolution, food effects have not been fully studied and are often overlooked. Physiologically-based pharmacokinetic (PBPK) models can be used to mechanistically simulate a compound's pharmacokinetics under fed or fasted conditions, while integrating drug properties such as solubility and permeability. This review discusses the PBPK models published in the literature predicting the food effects, the models' strengths and shortcomings, as well as future steps to mitigate the current knowledge gap. We observed gaps in knowledge which limits the ability of PBPK models to predict the negative food effects and food effects in the pediatric population. Overall, the further development of PBPK models to predict food effects will provide a mechanistic basis to understand a drug's behavior in fed and fasted conditions, and will help enable the drug development process.
Collapse
|
147
|
Zarmpi P, Flanagan T, Meehan E, Mann J, Østergaard J, Fotaki N. Biopharmaceutical implications of excipient variability on drug dissolution from immediate release products. Eur J Pharm Biopharm 2020; 154:195-209. [PMID: 32681966 DOI: 10.1016/j.ejpb.2020.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Elucidating the impact of excipient variability on oral product performance in a biopharmaceutical perspective would be beneficial and allow excipient implementation on Quality by Design (QbD) approaches. The current study investigated the impact of varying viscosity of binders (hypromellose (HPMC)) and superdisintegrants (sodium starch glycolate (SSG)) and particle size distribution of lubricants (magnesium stearate (MgSt)) on the in vitro dissolution of a highly and a poorly soluble drug from immediate release formulations. Compendial (pharmacopoeia buffers) and biorelevant (media simulating the gastrointestinal fluids) media and the USP 2 and USP 4 apparatuses were used to assess the exerted excipient effects on drug dissolution. Real-time dissolution UV imaging provided mechanistic insights into disintegration and dissolution of the immediate release formulations. Varying the viscosity type of HPMC or SSG did not significantly affect drug dissolution irrespective of the compound used. Faster drug dissolution was observed when decreasing the particle size of MgSt for the highly soluble drug. The use of real-time dissolution UV Imaging revealed the influential role of excipient variability on tablet disintegration, as for the highly soluble drug, tablets containing high viscosity HPMC or low particle size MgSt disintegrated faster as compared to the control tablets while for the poorly soluble drug, slower tablet disintegration was observed when increasing the viscosity of the HPMC as compared to the control tablets. Changes in drug dissolution when varying excipients may be anticipated if the excipient change has previously affected drug solubility. The use of multivariate data analysis revealed the influential biopharmaceutical factors such as critical excipient types/properties, drug aqueous solubility, medium/hydrodynamic characteristics affecting the impact of excipient variability on in vitro drug dissolution.
Collapse
Affiliation(s)
- P Zarmpi
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - T Flanagan
- Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, United Kingdom; Currently at UCB Pharma, Chemin du Foriest, B - 1420 Braine-l'Alleud, Belgium
| | - E Meehan
- Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, United Kingdom
| | - J Mann
- Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, United Kingdom
| | - J Østergaard
- Department of Pharmacy, Faculty of Health and Medicinal Sciences, University of Copenhagen, Denmark
| | - N Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom.
| |
Collapse
|
148
|
Taha NF, Emam MF, Emara LH. A novel combination of Soluplus®/Poloxamer for Meloxicam solid dispersions via hot melt extrusion for rapid onset of action. Part 2: comparative bioavailability and IVIVC. Drug Dev Ind Pharm 2020; 46:1362-1372. [DOI: 10.1080/03639045.2020.1791164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Nesrin F. Taha
- Medicinal and Pharmaceutical Chemistry Department, Division of Pharmaceutical and Drug Industries Research, Industrial Pharmacy Laboratory, National Research Centre, Giza, Egypt
| | - Maha F. Emam
- Medicinal and Pharmaceutical Chemistry Department, Division of Pharmaceutical and Drug Industries Research, Industrial Pharmacy Laboratory, National Research Centre, Giza, Egypt
| | - Laila H. Emara
- Medicinal and Pharmaceutical Chemistry Department, Division of Pharmaceutical and Drug Industries Research, Industrial Pharmacy Laboratory, National Research Centre, Giza, Egypt
| |
Collapse
|
149
|
Gastrointestinal diseases and their impact on drug solubility: Crohn's disease. Eur J Pharm Sci 2020; 152:105459. [PMID: 32649984 DOI: 10.1016/j.ejps.2020.105459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/12/2020] [Accepted: 07/05/2020] [Indexed: 12/12/2022]
Abstract
In order to investigate differences in drug solubilisation and dissolution in luminal fluids of Crohn's disease (CD) patients and healthy subjects, biorelevant media representative of CD patients were developed using information from literature and a Design of Experiment (DoE) approach. The CD media were characterised in terms of surface tension, osmolality, dynamic viscosity and buffer capacity and compared to healthy biorelevant media. To identify which drug characteristics are likely to present a high risk of altered drug solubility in CD, the solubility of six drugs was assessed in CD media and solubility differences were related to drug properties. Identified differences in CD patients compared to healthy subjects were a reduced concentration of bile salts, a higher gastric pH and a higher colonic osmolality. Differences in the properties of CD compared to healthy biorelevant media were mainly observed for surface tension and osmolality. Drug solubility of ionisable compounds was altered in gastric CD media compared to healthy biorelevant media. For drugs with moderate to high lipophilicity, a high risk of altered drug solubilisation in CD is expected, since a significant negative effect of log P and a positive effect of bile salts on drug solubility in colonic and fasted state intestinal CD media was observed. Simulating the conditions in CD patients in vitro offers the possibility to identify relevant differences in drug solubilisation without conducting expensive clinical trials.
Collapse
|
150
|
Effinger A, M O'Driscoll C, McAllister M, Fotaki N. Gastrointestinal diseases and their impact on drug solubility: Ulcerative Colitis. Eur J Pharm Sci 2020; 152:105458. [PMID: 32645424 DOI: 10.1016/j.ejps.2020.105458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/12/2020] [Accepted: 07/05/2020] [Indexed: 12/11/2022]
Abstract
For poorly soluble compounds, drug product performance in patients with Ulcerative Colitis (UC) compared to healthy subjects can be affected due to differences in drug solubility in GI fluids. A risk assessment tool was developed to identify compounds with a high risk of altered solubility in the GI fluids of UC patients. Pathophysiological changes impacting on the composition of GI fluids in UC patients were considered and UC biorelevant media representative of the stomach, intestine and colon were developed based on biorelevant media based on healthy subjects and literature data using a Design of Experiment approach. The UC media were characterised and revealed differences in surface tension, osmolality and buffer capacity compared to media based on healthy subjects. The solubility of six drugs was investigated in UC biorelevant media and results were related to media- and drug-dependent factors. A lower drug solubility in UC intestinal media was observed for compounds with a high lipophilicity. In UC simulated colonic fluids, drug solubility was altered for ionisable compounds. Additionally, a higher solubility of neutral lipophilic drugs was observed in UC fasted state colonic media with increased concentrations of soluble proteins. The developed UC biorelevant media offer the possibility to identify the risk of altered drug solubilisation in UC patients without conducting expensive clinical trials. A high risk was related to drug ionization properties and lipophilicity in the current study with all investigated drugs showing differences in solubility in biorelevant media based on UC patients compared to healthy subjects.
Collapse
Affiliation(s)
- Angela Effinger
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | | | | | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK.
| |
Collapse
|