101
|
Radilla-Vázquez RB, Parra-Rojas I, Martínez-Hernández NE, Márquez-Sandoval YF, Illades-Aguiar B, Castro-Alarcón N. Gut Microbiota and Metabolic Endotoxemia in Young Obese Mexican Subjects. Obes Facts 2016; 9:1-11. [PMID: 26745497 PMCID: PMC5644836 DOI: 10.1159/000442479] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 10/28/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The gut microbiota plays an important role in human metabolism; previous studies suggest that the imbalance can cause a metabolic endotoxemia that may be linked to weight gain and insulin resistance. The purpose of this study was to investigate the relationship between the gut microbiota composition, the lipopolysaccharide levels and the metabolic profile in obese and normal-weight young subjects. METHODS We studied 32 obese (BMI ≥ 30 kg/m2) and 32 normal-weight subjects (BMI = 18.5-24.9 kg/m2), aged 18-25 years. Quantification of intestinal bacteria was performed by real-time PCR. Endotoxin units were determined with the test QCL-1000, and biochemical profile was performed under a standard protocol of Spinreact. RESULTS Obese individuals had a BMI of 34.5 (32.9-36.45) kg/m2, increased triglycerides (123 vs. 70 mg/dl), total cholesterol (168 vs. 142 mg/dl), and LDL-cholesterol (114 vs. 96.5 mg/dl). In obese subjects body temperature was higher than in normal-weight subjects. We found a greater number of Clostridum leptum and Lactobacillus (p < 0.001) and lower numbers of Prevotella and Escherichia coli (p < 0.001) in the obese group. A decrease of E. coli was associated with an increased risk of lipopolysaccharide levels ranging from 1 to 1.3 EU/ml. A positive correlation was found between serum lipopolysaccharides and BMI (r = 0.46, p = 0.008), triglyceride levels (r = 0.44, p = 0.011) as well as waist circumference (r = 0.34, p = 0.040), being more evident in young obese females. CONCLUSION Subclinical metabolic endotoxemia determined by serum concentration of lipopolysaccharides was related to the smallest amount of E. coli, high triglyceride levels, and central adiposity in obese young persons.
Collapse
Affiliation(s)
| | - Isela Parra-Rojas
- Unidad Académica de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, México
| | | | - Yolanda Fabiola Márquez-Sandoval
- Cuerpo Académico 454, Laboratorio de Evaluación del Estado Nutricional, Departamento de Reproducción Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, México
| | - Berenice Illades-Aguiar
- Unidad Académica de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, México
| | - Natividad Castro-Alarcón
- Unidad Académica de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, México
- *Natividad Castro-Alarcón PhD, Laboratorio de Investigación en Microbiología, Unidad Académica de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, 39014 Chilpancingo, México,
| |
Collapse
|
102
|
Gérard P. Gut microbiota and obesity. Cell Mol Life Sci 2016; 73:147-62. [PMID: 26459447 PMCID: PMC11108539 DOI: 10.1007/s00018-015-2061-5] [Citation(s) in RCA: 331] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/29/2015] [Accepted: 10/05/2015] [Indexed: 12/14/2022]
Abstract
The human intestine harbors a complex bacterial community called the gut microbiota. This microbiota is specific to each individual despite the existence of several bacterial species shared by the majority of adults. The influence of the gut microbiota in human health and disease has been revealed in the recent years. Particularly, the use of germ-free animals and microbiota transplant showed that the gut microbiota may play a causal role in the development of obesity and associated metabolic disorders, and lead to identification of several mechanisms. In humans, differences in microbiota composition, functional genes and metabolic activities are observed between obese and lean individuals suggesting a contribution of the gut microbiota to these phenotypes. Finally, the evidence linking gut bacteria to host metabolism could allow the development of new therapeutic strategies based on gut microbiota modulation to treat or prevent obesity.
Collapse
Affiliation(s)
- Philippe Gérard
- INRA, UMR1319 MICALIS, Equipe AMIPEM, Building 442, Domaine de Vilvert, 78350, Jouy-en-Josas, France.
- AgroParisTech, UMR MICALIS, 78350, Jouy-en-Josas, France.
| |
Collapse
|
103
|
Khan S. Potential role of Escherichia coli DNA mismatch repair proteins in colon cancer. Crit Rev Oncol Hematol 2015; 96:475-482. [PMID: 26014615 DOI: 10.1016/j.critrevonc.2015.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/15/2015] [Accepted: 05/05/2015] [Indexed: 02/07/2023] Open
Abstract
The epithelium of gastrointestinal tract organizes many innate defense systems against microbial intruders such as integrity of epithelial, rapid eviction of infected cells, quick turnover of epithelial cell, intrinsic immune responses and autophagy. However, Enteropathogenic Escherichia coli (EPEC) are equipped with well developed infectious tricks that evade the host defense systems and utilize the gastrointestinal epithelium as a multiplicative foothold. During multiplication on and within the epithelium, EPEC secrete various toxins that can weaken, usurp, and use many host cellular systems. However, the possible mechanisms of pathogenesis are still poorly elusive. Recent study reveals the existence of EPEC in colorectal cancer patients and their potential role in depletion of DNA mismatch repair (MMR) proteins of host cell in colonic cell lines. The EPEC colonised intracellularly in colon mucosa of colorectal carcinoma whereas extracellular strain was detected in mucosa of normal colon cells. Interestingly, alteration in MutS, MutL complexes and MUTYH of mammalian cells may be involved in development of CRC. These data propose that MMR of E. coli may be potential therapeutic targets and early detection biomarkers for CRC. This article reviews the potential role of E. coli MutS, MutL and MutY protein in CRC aetiology.
Collapse
Affiliation(s)
- Shahanavaj Khan
- Nanomedicine & Biotechnology Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
104
|
Carotti S, Guarino MPL, Vespasiani-Gentilucci U, Morini S. Starring role of toll-like receptor-4 activation in the gut-liver axis. World J Gastrointest Pathophysiol 2015; 6:99-109. [PMID: 26600967 PMCID: PMC4644892 DOI: 10.4291/wjgp.v6.i4.99] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/21/2015] [Accepted: 10/19/2015] [Indexed: 02/06/2023] Open
Abstract
Since the introduction of the term “gut-liver axis”, many studies have focused on the functional links of intestinal microbiota, barrier function and immune responses to liver physiology. Intestinal and extra-intestinal diseases alter microbiota composition and lead to dysbiosis, which aggravates impaired intestinal barrier function via increased lipopolysaccharide translocation. The subsequent increased passage of gut-derived product from the intestinal lumen to the organ wall and bloodstream affects gut motility and liver biology. The activation of the toll-like receptor 4 (TLR-4) likely plays a key role in both cases. This review analyzed the most recent literature on the gut-liver axis, with a particular focus on the role of TLR-4 activation. Findings that linked liver disease with dysbiosis are evaluated, and links between dysbiosis and alterations of intestinal permeability and motility are discussed. We also examine the mechanisms of translocated gut bacteria and/or the bacterial product activation of liver inflammation and fibrogenesis via activity on different hepatic cell types.
Collapse
|
105
|
Ignacio A, Fernandes MR, Rodrigues VAA, Groppo FC, Cardoso AL, Avila-Campos MJ, Nakano V. Correlation between body mass index and faecal microbiota from children. Clin Microbiol Infect 2015; 22:258.e1-8. [PMID: 26551842 DOI: 10.1016/j.cmi.2015.10.031] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 01/24/2023]
Abstract
Childhood obesity is an increasing problem at the global level and considered as a risk factor for obesity development and the associated co-morbidities in adult life. In this study, the occurrence of Bacteroides fragilis group, Clostridium spp., Bifidobacterium spp. and Escherichia coli in 84 faecal samples from 30 obese, 24 overweight and 30 lean children was verified by culture technique and quantitative determination by quantitative PCR. In addition, Lactobacillus spp. and Methanobrevibacter smithii were also analysed. A correlation between the body mass index (BMI) and these bacteria was sought. Bacteroides vulgatus, Clostridium perfringens and Bifidobacterium adolescentis were most prevalent in all samples evaluated by culture-method. The B. fragilis group were found at high concentrations in obese and overweight children when compared with the lean ones (p 0.015). The obese and overweight children harboured higher numbers of Lactobacillus spp. than lean children (p 0.022). The faecal concentrations of the B. fragilis group (r = 0.24; p 0.026) and Lactobacillus spp. (r = 0.44; p 0.002) were positively correlated with BMI. Bifidobacterium spp. were found in higher numbers in the lean group than the overweight and obese ones (p 0.042). Furthermore, a negative correlation between BMI and Bifidobacterium spp. copy number (r = -0.22; p 0.039) was observed. Our findings show some difference in the intestinal microbial ecosystem of obese children compared with the lean ones and a significant association between number of Lactobacillus spp. and B. fragilis group and BMI.
Collapse
Affiliation(s)
- A Ignacio
- Anaerobe Laboratory, Department of Microbiology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - M R Fernandes
- Anaerobe Laboratory, Department of Microbiology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - V A A Rodrigues
- Anaerobe Laboratory, Department of Microbiology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - F C Groppo
- Campinas State University, Campinas, SP, Brazil
| | - A L Cardoso
- Institute of Children, Faculty of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - M J Avila-Campos
- Anaerobe Laboratory, Department of Microbiology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - V Nakano
- Anaerobe Laboratory, Department of Microbiology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
106
|
|
107
|
Etxeberria U, Arias N, Boqué N, Macarulla MT, Portillo MP, Milagro FI, Martinez JA. Shifts in microbiota species and fermentation products in a dietary model enriched in fat and sucrose. Benef Microbes 2015; 6:97-111. [PMID: 25213025 DOI: 10.3920/bm2013.0097] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The gastrointestinal tract harbours a 'superorganism' called the gut microbiota, which is known to play a crucial role in the onset and development of diverse diseases. This internal ecosystem, far from being a static environment, can be manipulated by diet and dietary components. Feeding animals with high-fat sucrose (HFS) diets entails diet-induced obesity, a model which is usually used in research to mimic the obese phenotype of Western societies. The aim of the present study was to identify gut microbiota dysbiosis and associated metabolic changes produced in male Wistar rats fed a HFS diet for 6 weeks and compare it with the basal microbial composition. For this purpose, DNA extracted from faeces at baseline and after treatment was analysed by amplification of the V4-V6 region of the 16S ribosomal DNA (rDNA) gene using 454 pyrosequencing. Short-chain fatty acids, i.e. acetate, propionate and butyrate, were also evaluated by gas chromatography-mass spectrometry. At the end of the treatment, gut microbiota composition significantly differed at phylum level (Firmicutes, Bacteroidetes and Proteobacteria) and class level (Erisypelotrichi, Deltaproteobacteria, Bacteroidia and Bacilli). Interestingly, the class Clostridia showed a significant decrease after HFS diet treatment, which correlated with visceral adipose tissue, and is likely mediated by dietary carbohydrates. Of particular interest, Clostridium cluster XIVa species were significantly reduced and changes were identified in the relative abundance of other specific bacterial species (Mitsuokella jalaludinii, Eubacterium ventriosum, Clostridium sp. FCB90-3, Prevotella nanceiensis, Clostridium fusiformis, Clostridium sp. BNL1100 and Eubacterium cylindroides) that, in some cases, showed opposite trends to their relative families. These results highlight the relevance of characterising gut microbial population differences at species level and contribute to understand the plausible link between diet and specific gut bacterial species that are able to influence the inflammatory status, intestinal barrier function and obesity development.
Collapse
Affiliation(s)
- U Etxeberria
- Department of Nutrition, Food Science and Physiology, University of Navarra, C/Irunlarrea s/n, 31008 Pamplona, Spain Centre for Nutrition Research, University of Navarra, Irunlarrea St. E-31008 Pamplona, Spain
| | - N Arias
- Nutrition and Obesity group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria, Spain
| | - N Boqué
- Nutrition and Health Research Group. Technological Center of Nutrition and Health (CTNS), TECNIO, CEIC S. Avinguda Universitat, 1, 43204 Reus, Spain
| | - M T Macarulla
- Nutrition and Obesity group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria, Spain CIBERobn Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - M P Portillo
- Nutrition and Obesity group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria, Spain CIBERobn Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - F I Milagro
- Department of Nutrition, Food Science and Physiology, University of Navarra, C/Irunlarrea s/n, 31008 Pamplona, Spain Centre for Nutrition Research, University of Navarra, Irunlarrea St. E-31008 Pamplona, Spain CIBERobn Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - J A Martinez
- Department of Nutrition, Food Science and Physiology, University of Navarra, C/Irunlarrea s/n, 31008 Pamplona, Spain Centre for Nutrition Research, University of Navarra, Irunlarrea St. E-31008 Pamplona, Spain CIBERobn Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
108
|
Parekh PJ, Balart LA, Johnson DA. The Influence of the Gut Microbiome on Obesity, Metabolic Syndrome and Gastrointestinal Disease. Clin Transl Gastroenterol 2015; 6:e91. [PMID: 26087059 PMCID: PMC4816244 DOI: 10.1038/ctg.2015.16] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/13/2015] [Indexed: 12/11/2022] Open
Abstract
There is a fine balance in the mutual relationship between the intestinal microbiota and its mammalian host. It is thought that disruptions in this fine balance contribute/account for the pathogenesis of many diseases. Recently, the significance of the relationship between gut microbiota and its mammalian host in the pathogenesis of obesity and the metabolic syndrome has been demonstrated. Emerging data has linked intestinal dysbiosis to several gastrointestinal diseases including inflammatory bowel disease, irritable bowel syndrome, nonalcoholic fatty liver disease, and gastrointestinal malignancy. This article is intended to review the role of gut microbiota maintenance/alterations of gut microbiota as a significant factor as a significant factor discriminating between health and common diseases. Based on current available data, the role of microbial manipulation in disease management remains to be further defined and a focus for further clinical investigation.
Collapse
Affiliation(s)
- Parth J Parekh
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Tulane University, New Orleans, Louisiana, USA
| | - Luis A Balart
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Tulane University, New Orleans, Louisiana, USA
| | - David A Johnson
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| |
Collapse
|
109
|
Abstract
Gut microbiota plays critical physiological roles in the energy extraction and in the control of local or systemic immunity. Gut microbiota and its disturbance also appear to be involved in the pathogenesis of diverse diseases including metabolic disorders, gastrointestinal diseases, cancer, etc. In the metabolic point of view, gut microbiota can modulate lipid accumulation, lipopolysaccharide content and the production of short-chain fatty acids that affect food intake, inflammatory tone, or insulin signaling. Several strategies have been developed to change gut microbiota such as prebiotics, probiotics, certain antidiabetic drugs or fecal microbiota transplantation, which have diverse effects on body metabolism and on the development of metabolic disorders.
Collapse
Affiliation(s)
- Kyu Yeon Hur
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Myung-Shik Lee
- Severance Biomedical Research Institute and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
110
|
Abstract
The leaky gut hypothesis links translocating microbial products with the onset and progression of liver disease, and for a long time was considered one of its major contributors. However, a more detailed picture of the intestinal microbiota contributing to liver disease started to evolve. The gut is colonized by trillions of microbes that aid in digestion, modulate immune response, and generate a variety of products that result from microbial metabolic activities. These products together with host-bacteria interactions influence both normal physiology and disease susceptibility. A disruption of the symbiosis between microbiota and host is known as dysbiosis and can have profound effects on health. Qualitative changes such as increased proportions of harmful bacteria and reduced levels of beneficial bacteria, and also quantitative changes in the total amount of bacteria (overgrowth) have been associated with liver disease. Understanding the link between the pathophysiology of liver diseases and compositional and functional changes of the microbiota will help in the design of innovative therapies. In this review, we focus on factors resulting in dysbiosis, and discuss how dysbiosis can disrupt intestinal homeostasis and contribute to liver disease.
Collapse
Key Words
- dysbiosis
- leaky gut
- alcoholic liver disease
- nash
- nafld
- cirrhosis
- microbiome
- pamps
- ald, alcoholic liver disease
- amp, antimicrobial peptides and proteins
- fiaf, fasting-induced adipocyte factor
- hfd, high-fat diet
- ibd, inflammatory bowel disease
- il, interleukin
- lcfa, long-chain fatty acid
- lps, lipopolysaccharide
- nafld, nonalcoholic fatty liver disease
- nash, nonalcoholic steatohepatitis
- nlrp, nucleotide-binding domain and leucine rich repeat-containing protein
- nod2, nucleotide-binding oligomerization domain 2
- pamps, pathogen-associated molecular patterns
- reg3, regenerating islet-derived 3
- tlr, toll-like receptor
- tnf, tumor necrosis factor
- tnfr, tumor necrosis factor receptor
Collapse
Affiliation(s)
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, and Department of Medicine, VA San Diego Healthcare System, San Diego, California
| |
Collapse
|
111
|
Aguirre M, Venema K. Does the Gut Microbiota Contribute to Obesity? Going beyond the Gut Feeling. Microorganisms 2015; 3:213-35. [PMID: 27682087 PMCID: PMC5023237 DOI: 10.3390/microorganisms3020213] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/05/2015] [Accepted: 04/17/2015] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence suggests that gut microbiota is an environmental factor that plays a crucial role in obesity. However, the aetiology of obesity is rather complex and depends on different factors. Furthermore, there is a lack of consensus about the exact role that this microbial community plays in the host. The aim of this review is to present evidence about what has been characterized, compositionally and functionally, as obese gut microbiota. In addition, the different reasons explaining the so-far unclear role are discussed considering evidence from in vitro, animal and human studies.
Collapse
Affiliation(s)
- Marisol Aguirre
- Top Institute of Food and Nutrition, P.O. Box 557, 6700 AA Wageningen, The Netherlands.
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Department of Human Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
- The Netherlands Organization for Applied Scientific Research (TNO), P.O. Box 360, 3700 AJ Zeist, The Netherlands.
| | - Koen Venema
- Top Institute of Food and Nutrition, P.O. Box 557, 6700 AA Wageningen, The Netherlands.
- Beneficial Microbes Consultancy, Johan Karschstraat 3, 6709 TN Wageningen, The Netherlands.
| |
Collapse
|
112
|
Drosos I, Tavridou A, Kolios G. New aspects on the metabolic role of intestinal microbiota in the development of atherosclerosis. Metabolism 2015; 64:476-81. [PMID: 25676802 DOI: 10.1016/j.metabol.2015.01.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/13/2015] [Accepted: 01/16/2015] [Indexed: 12/21/2022]
Abstract
Gut microbiota remains a very interesting, yet largely unexplored ecosystem inside the human organism. The importance of this ecosystem for the physiology and the pathophysiology of the organism is being slowly unraveled. Recent studies reveal a connection between intestinal microbiota and atherosclerosis development. It seems that alterations in the function and composition of this bacterial population lead through complex mechanisms to a high risk for atherosclerosis. Although these mechanisms remain largely unknown, published studies show that microbiota can lead to atherosclerosis either by augmenting known risk factors or via other, more "direct" mechanisms. This review article summarizes the available literature regarding this matter.
Collapse
Affiliation(s)
- Ioannis Drosos
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Anna Tavridou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece.
| | - George Kolios
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
113
|
Jurgoński A, Fotschki B, Juśkiewicz J. Dietary strawberry seed oil affects metabolite formation in the distal intestine and ameliorates lipid metabolism in rats fed an obesogenic diet. Food Nutr Res 2015; 59:26104. [PMID: 25636326 PMCID: PMC4312358 DOI: 10.3402/fnr.v59.26104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/27/2014] [Accepted: 11/29/2014] [Indexed: 12/11/2022] Open
Abstract
Objective To answer the question whether dietary strawberry seed oil rich in α-linolenic acid and linoleic acid (29.3 and 47.2% of total fatty acids, respectively) can beneficially affect disorders induced by the consumption of an obesogenic diet. Design Thirty-two male Wistar rats were randomly assigned to four groups of eight animals each and fed with a basal or obesogenic (high in fat and low in fiber) diet that contained either strawberry seed oil or an edible rapeseed oil. A two-way analysis of variance was then applied to assess the effects of diet and oil and the interaction between them. Results After 8 weeks of feeding, the obesogenic diet increased the body weight and the liver mass and fat content, whereas decreased the cecal acetate and butyrate concentration. This diet also altered the plasma lipid profile and decreased the liver sterol regulatory element-binding protein 1c (SREBP-1c) content. However, the lowest liver SREBP-1c content was observed in rats fed an obesogenic diet containing strawberry seed oil. Moreover, dietary strawberry seed oil decreased the cecal short-chain fatty acid concentrations (acetate, propionate, and butyrate) regardless of the diet type, whereas the cecal β-glucuronidase activity was considerably increased only in rats fed an obesogenic diet containing strawberry seed oil. Dietary strawberry seed oil also lowered the liver fat content, the plasma triglyceride level and the atherogenic index of plasma. Conclusions Strawberry seed oil has a potent lipid-lowering activity but can unfavorably affect microbial metabolism in the distal intestine. The observed effects are partly due to the synergistic action of the oil and the obesogenic diet.
Collapse
Affiliation(s)
- Adam Jurgoński
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland;
| | - Bartosz Fotschki
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
114
|
Belcheva A, Irrazabal T, Martin A. Gut microbial metabolism and colon cancer: Can manipulations of the microbiota be useful in the management of gastrointestinal health? Bioessays 2015; 37:403-12. [DOI: 10.1002/bies.201400204] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Alberto Martin
- Department of Immunology; University of Toronto; ON Canada
| |
Collapse
|
115
|
Olli K, Salli K, Alhoniemi E, Saarinen M, Ibarra A, Vasankari T, Rautonen N, Tiihonen K. Postprandial effects of polydextrose on satiety hormone responses and subjective feelings of appetite in obese participants. Nutr J 2015; 14:2. [PMID: 25555562 PMCID: PMC4320494 DOI: 10.1186/1475-2891-14-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 12/23/2014] [Indexed: 12/25/2022] Open
Abstract
Background Dietary fibers are associated with enhanced satiety. However, the mechanism of different dietary fibers contributing to satiety-related gastrointestinal (GI) peptide release, especially in an obese population, is still poorly understood. Polydextrose (PDX), a water-soluble glucose polymer, has demonstrated its ability to reduce energy intake at a subsequent meal, but its mechanism of action requires further research. Also, there is limited evidence on its capacity to regulate subjective feelings of appetite. This study examines the effects of PDX on postprandial secretion of satiety-related GI peptides, short chain fatty acids (SCFAs), lactic acid, and subjective appetite ratings in obese participants. Methods 18 non-diabetic, obese participants (42.0 y, 33.6 kg/m2) consumed a high-fat meal (4293 kJ, 36% from fat) with or without PDX (15 g) in an acute, multicenter, randomized, double-blind, placebo-controlled and crossover trial. Postprandial plasma concentrations of satiety-related peptides, namely ghrelin, cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1), and peptide YY (PYY), as well as SCFAs and lactic acid were assessed. GI peptide, SCFA and lactate concentrations were then modeled using a linear mixed-effects model. The subjective feelings of hunger, satisfaction, and desire to eat were evaluated using visual analogue scales (VAS), which were analyzed as incremental areas under the curve (iAUC) during the satiation and satiety periods. Results We found that PDX supplementation increased plasma GLP-1 levels more than the placebo treatment (P = 0.02). In the whole group, GLP-1 concentrations found in participants older than 40 years old were significantly lower (P = 0.01) as compared to those aged 40 years or less. There were no statistically significant differences in postprandial ghrelin, CCK, or PYY responses. The lactic acid concentrations were significantly (P = 0.01) decreased in the PDX group, while no significant changes in SCFAs were found. PDX reduced iAUC for hunger by 40% (P = 0.03) and marginally increased satisfaction by 22.5% (P = 0.08) during the post-meal satiety period. Conclusion Polydextrose increased the postprandial secretion of the satiety hormone GLP-1 and reduced hunger after a high-fat meal. PDX also reduced the elevated postprandial lactic acid levels in plasma. Therefore, PDX may offer an additional means to regulate inter-meal satiety and improve postprandial metabolism in obese participants.
Collapse
Affiliation(s)
- Kaisa Olli
- DuPont Nutrition and Health, Active Nutrition, Sokeritehtaantie 20, FI-02460 Kantvik, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Valdés L, Cuervo A, Salazar N, Ruas-Madiedo P, Gueimonde M, González S. The relationship between phenolic compounds from diet and microbiota: impact on human health. Food Funct 2015; 6:2424-39. [DOI: 10.1039/c5fo00322a] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The human intestinal tract is home to a complex microbial community called microbiota.
Collapse
Affiliation(s)
- L. Valdés
- Department of Microbiology and Biochemistry of Dairy Products
- Instituto de Productos Lácteos de Asturias – Consejo Superior de Investigaciones Científicas (IPLA-CSIC)
- Pase Río Linares s/n
- 33300 Villaviciosa
- Spain
| | - A. Cuervo
- Department of Functional Biology
- University of Oviedo
- Facultad de Medicina
- Oviedo
- Spain
| | - N. Salazar
- Department of Microbiology and Biochemistry of Dairy Products
- Instituto de Productos Lácteos de Asturias – Consejo Superior de Investigaciones Científicas (IPLA-CSIC)
- Pase Río Linares s/n
- 33300 Villaviciosa
- Spain
| | - P. Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products
- Instituto de Productos Lácteos de Asturias – Consejo Superior de Investigaciones Científicas (IPLA-CSIC)
- Pase Río Linares s/n
- 33300 Villaviciosa
- Spain
| | - M. Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products
- Instituto de Productos Lácteos de Asturias – Consejo Superior de Investigaciones Científicas (IPLA-CSIC)
- Pase Río Linares s/n
- 33300 Villaviciosa
- Spain
| | - S. González
- Department of Functional Biology
- University of Oviedo
- Facultad de Medicina
- Oviedo
- Spain
| |
Collapse
|
117
|
Abstract
Complications of pregnancy are associated with adverse outcomes for mother and baby in the short and long term. The gut microbiome has been identified as a key factor for maintaining health outside of pregnancy and could contribute to pregnancy complications. In addition, the vaginal and the recently revealed placental microbiome are altered in pregnancy and may play a role in pregnancy complications. Probiotic supplementation could help to regulate the unbalanced microflora composition observed in obesity and diabetes. Here, the impact of probiotic supplementation during pregnancy and infancy is reviewed. There are indications for a protective role in preeclampsia, gestational diabetes mellitus, vaginal infections, maternal and infant weight gain and allergic diseases. Large, well-designed randomised controlled clinical trials along with metagenomic analysis are needed to establish the role of probiotics in adverse pregnancy and infancy outcomes.
Collapse
Affiliation(s)
- Luisa F Gomez Arango
- School of Medicine, The University of Queensland, Butterfield Street, Herston, QLD, 4029, Australia,
| | | | | | | |
Collapse
|
118
|
Shen Q, Maitin V. Obesity-Associated Gut Microbiota. DIET-MICROBE INTERACTIONS IN THE GUT 2015:149-171. [DOI: 10.1016/b978-0-12-407825-3.00011-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
119
|
Loftus JP, Wakshlag JJ. Canine and feline obesity: a review of pathophysiology, epidemiology, and clinical management. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2014; 6:49-60. [PMID: 30101096 PMCID: PMC6067794 DOI: 10.2147/vmrr.s40868] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Canine and feline obesity rates have reached pandemic proportions and are similar to those in humans, with approximately 30%-40% of dogs and cats being overweight to obese. Obesity has been associated with other health problems, including osteoarthritis, renal disease, skin disease, insulin resistance, and neoplasia in dogs, while in cats obesity is associated with dermatological issues, diabetes mellitus, neoplasia, and urolithiasis. The health issues appear to be slightly different across the two species, which may be due to some inherent differences in the hormonal milieu involved in obesity that differs between the dog and the cat. In this review, we discuss the complicated nature of the pathogenesis of obesity, the hormonal stimulus for orexigenic and anorexigenic behavior, adipose tissue as an endocrine organ, and most importantly, clinical management of the number one disease in canine and feline medicine.
Collapse
Affiliation(s)
- John P Loftus
- Cornell University College of Veterinary Medicine, Veterinary Medical Center, Ithaca, NY, USA,
| | - Joseph J Wakshlag
- Cornell University College of Veterinary Medicine, Veterinary Medical Center, Ithaca, NY, USA,
| |
Collapse
|
120
|
Schaafsma G, Slavin JL. Significance of Inulin Fructans in the Human Diet. Compr Rev Food Sci Food Saf 2014; 14:37-47. [DOI: 10.1111/1541-4337.12119] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/27/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Gertjan Schaafsma
- Advisory Services in Food; Health and Safety; Rembrandtlaan 12, 3925 VD Scherpenzeel The Netherlands
| | - Joanne L. Slavin
- Dept. of Food Science and Nutrition; Univ. of Minnesota; 1334 Eckles Avenue St. Paul MN 55108 U.S.A
| |
Collapse
|
121
|
Trovato FM, Catalano D, Musumeci G, Trovato GM. 4Ps medicine of the fatty liver: the research model of predictive, preventive, personalized and participatory medicine-recommendations for facing obesity, fatty liver and fibrosis epidemics. EPMA J 2014; 5:21. [PMID: 25937854 PMCID: PMC4417534 DOI: 10.1186/1878-5085-5-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/24/2014] [Indexed: 12/13/2022]
Abstract
Relationship between adipose tissue and fatty liver, and its possible evolution in fibrosis, is supported by clinical and research experience. Given the multifactorial pathogenesis of non-alcoholic fatty liver disease (NAFLD), treatments for various contributory risk factors have been proposed; however, there is no single validated therapy or drug association recommended for all cases which can stand alone. Mechanisms, diagnostics, prevention and treatment of obesity, fatty liver and insulin resistance are displayed along with recommendations and position points. Evidences and practice can get sustainable and cost-benefit valuable outcomes by participatory interventions. These recommendations can be enhanced by comprehensive research projects, addressed to societal issues and innovation, market appeal and industry development, cultural acceptance and sustainability. The basis of participatory medicine is a greater widespread awareness of a condition which is both a disease and an easy documented and inclusive clue for associated diseases and unhealthy lifestyle. This model is suitable for addressing prevention and useful for monitoring improvement, worsening and adherence with non-invasive imaging tools which allow targeted approaches. The latter include health psychology and nutritional and physical exercise prescription expertise disseminated by continuous medical education but, more important, by concrete curricula for training undergraduate and postgraduate students. It is possible and recommended to do it by early formal teaching of ultrasound imaging procedures and of practical lifestyle intervention strategies, including approaches aimed to healthier fashion suggestions. Guidelines and requirements of research project funding calls should be addressed also to NAFLD and allied conditions and should encompass the goal of training by research and the inclusion of participatory medicine topics. A deeper awareness of ethics of competences in health professionals and the articulation of knowledge, expertise and skills of medical doctors, dieticians, health psychologists and sport and physical exercise graduates are the necessary strategy for detectin a suboptimal health status and achieving realistically beneficial lifestyle changes. “The devil has put a penalty on all things we enjoy in life. Either we suffer in health or we suffer in soul or we get fat” (Albert Einstein); the task of medical research and intervention is to make possible to enjoy life also without things that make sufferance in health and souls and which excessively increase body fat.
Collapse
Affiliation(s)
- Francesca Maria Trovato
- Department of Clinical and Experimental Medicine, Internal Medicine Division, School of Medicine, University of Catania, Via S. Sofia, 78-95123 Catania, Italy
| | - Daniela Catalano
- Department of Clinical and Experimental Medicine, Internal Medicine Division, School of Medicine, University of Catania, Via S. Sofia, 78-95123 Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia, 87-95123 Catania, Italy
| | - Guglielmo M Trovato
- Department of Clinical and Experimental Medicine, Internal Medicine Division, School of Medicine, University of Catania, Via S. Sofia, 78-95123 Catania, Italy
| |
Collapse
|
122
|
Li G, Yao W, Jiang H. Short-chain fatty acids enhance adipocyte differentiation in the stromal vascular fraction of porcine adipose tissue. J Nutr 2014; 144:1887-95. [PMID: 25320182 DOI: 10.3945/jn.114.198531] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate, are the main products of microbial fermentation in the gut and might mediate some of the effects of gut microbiota and nutrition on development, metabolism, and pathogenesis of obesity and other diseases. OBJECTIVE The objective of this study was to determine the effects of SCFAs on adipocyte differentiation and the underlying mechanism. METHODS The stromal vascular fraction (SVF) of the porcine subcutaneous fat was used as the preadipocyte model. Adipocyte differentiation was assessed by Oil Red O staining and gene expression analysis of adipocyte markers. Chromatin immunoprecipitation was used to assess the histone acetylation amounts at the peroxisome proliferator-activated receptor γ (PPARG) and CCAAT/enhancer binding protein α (CEBPA) promoters. RESULTS Compared with control, propionate and butyrate enhanced the formation of adipocytes by 10-20% and mRNA expression of adipocyte markers by 20-200% in porcine SVF undergoing adipocyte differentiation. Compared with control, short-term treatment of propionate and butyrate enhanced PPARG and CEBPA mRNA expression in porcine SVF by 50-100%. Neither free fatty acid receptor (FFAR) 2 nor FFAR3 mRNA was detectable in porcine SVF before or during differentiation. Neither a cAMP analogue nor an activator of AMP-activated protein kinase (AMPK) affected propionate- or butyrate-enhanced expression of PPARG or CEBPA mRNA. Trichostatin A, a specific inhibitor of histone deacetylases (HDACs), enhanced the formation of adipocytes in porcine SVF by nearly 100% and the expression of PPARG and CEBPA mRNAs by 150% and 50%, respectively. Butyrate increased whereas propionate had no significant effect on histone H3 acetylation at the CEBPA promoter in porcine SVF. CONCLUSIONS Propionate and butyrate enhance adipocyte differentiation in porcine SVF. These effects are unlikely mediated through FFAR2, FFAR3, cAMP, or AMPK. The effect of butyrate may be partially mediated by its HDAC inhibitory activity, whereas that of propionate is independent of its HDAC inhibitory activity.
Collapse
Affiliation(s)
- Genlai Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China; and
| | - Wen Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China; and
| | - Honglin Jiang
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| |
Collapse
|
123
|
Harris JK, El Kasmi KC, Anderson AL, Devereaux MW, Fillon SA, Robertson CE, Wagner BD, Stevens MJ, Pace NR, Sokol RJ. Specific microbiome changes in a mouse model of parenteral nutrition associated liver injury and intestinal inflammation. PLoS One 2014; 9:e110396. [PMID: 25329595 PMCID: PMC4203793 DOI: 10.1371/journal.pone.0110396] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/12/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Parenteral nutrition (PN) has been a life-saving treatment in infants intolerant of enteral feedings. However, PN is associated with liver injury (PN Associated Liver Injury: PNALI) in a significant number of PN-dependent infants. We have previously reported a novel PNALI mouse model in which PN infusion combined with intestinal injury results in liver injury. In this model, lipopolysaccharide activation of toll-like receptor 4 signaling, soy oil-derived plant sterols, and pro-inflammatory activation of Kupffer cells (KCs) played key roles. The objective of this study was to explore changes in the intestinal microbiome associated with PNALI. METHODOLOGY AND PRINCIPAL FINDINGS Microbiome analysis in the PNALI mouse identified specific alterations within colonic microbiota associated with PNALI and further association of these communities with the lipid composition of the PN solution. Intestinal inflammation or soy oil-based PN infusion alone (in the absence of enteral feeds) caused shifts within the gut microbiota. However, the combination resulted in accumulation of a specific taxon, Erysipelotrichaceae (23.8% vs. 1.7% in saline infused controls), in PNALI mice. Moreover, PNALI was markedly attenuated by enteral antibiotic treatment, which also was associated with significant reduction of Erysipelotrichaceae (0.6%) and a Gram-negative constituent, the S24-7 lineage of Bacteroidetes (53.5% in PNALI vs. 0.8%). Importantly, removal of soy oil based-lipid emulsion from the PN solution resulted in significant reduction of Erysipelotrichaceae as well as attenuation of PNALI. Finally, addition of soy-derived plant sterol (stigmasterol) to fish oil-based PN restored Erysipelotrichaceae abundance and PNALI. CONCLUSIONS Soy oil-derived plant sterols and the associated specific bacterial groups in the colonic microbiota are associated with PNALI. Products from these bacteria may directly trigger activation of KCs and promote PNALI. Furthermore, the results indicate that lipid modification of PN solutions may alter specific intestinal bacterial species associated with PNALI, and thus suggest strategies for management of PNALI.
Collapse
Affiliation(s)
- J. Kirk Harris
- Department of Pediatrics, Section of Pulmonary Medicine, University of Colorado, Aurora, Colorado, United States of America
| | - Karim C. El Kasmi
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Aimee L. Anderson
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Michael W. Devereaux
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Sophie A. Fillon
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Charles E. Robertson
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Brandie D. Wagner
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Mark J. Stevens
- Department of Pediatrics, Section of Pulmonary Medicine, University of Colorado, Aurora, Colorado, United States of America
| | - Norman R. Pace
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Ronald J. Sokol
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
124
|
Disparate metabolic effects of blackcurrant seed oil in rats fed a basal and obesogenic diet. Eur J Nutr 2014; 54:991-9. [PMID: 25311060 PMCID: PMC4540767 DOI: 10.1007/s00394-014-0775-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/23/2014] [Indexed: 01/06/2023]
Abstract
PURPOSE It was hypothesised that blackcurrant seed oil beneficially modulates metabolic disorders related to obesity and its complications. The study also aimed to investigate the potentially adverse effects of an unbalanced diet on the distal intestine. METHODS Male Wistar rats were randomly assigned to four groups of eight animals each and were fed a basal or obesogenic (high in fat and low in fibre) diet that contained either rapeseed oil (Canola) or blackcurrant seed oil. A two-way analysis of variance was then applied to assess the effects of diet and oil and the interaction between them. RESULTS After 8 weeks, the obesogenic dietary regimen increased the body weight, altered the plasma lipid profile and increased the liver fat content and the plasma transaminase activities. In addition, the obesogenic diet decreased bacterial glycolytic activity and short-chain fatty acid formation in the distal intestine. Dietary blackcurrant seed oil improved the lipid metabolism by lowering liver fat accumulation and the plasma triglyceride concentration and atherogenicity as well by increasing the plasma HDL-cholesterol concentration. However, in rats fed an obesogenic diet containing blackcurrant seed oil, the plasma HDL-cholesterol concentration was comparable with both rapeseed oil-containing diets, and a significant elevation of the plasma transaminase activities was noted instead. CONCLUSIONS The obesogenic dietary regimen causes a number of metabolic disorders, including alterations in the hindgut microbial metabolism. Dietary blackcurrant seed oil ameliorates the lipid metabolism; however, the beneficial effect is restricted when it is provided together with the obesogenic diet, and a risk of liver injury may occur.
Collapse
|
125
|
Li HB, Jin C, Chen Y, Flavell RA. Inflammasome activation and metabolic disease progression. Cytokine Growth Factor Rev 2014; 25:699-706. [PMID: 25156419 DOI: 10.1016/j.cytogfr.2014.07.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Innate pattern recognition receptors NLRs are cytosolic sensors that detect endogenous metabolic stress and form a multiprotein complex called the inflammasome, that recruits and activates caspase enzymes mediating the activation of the cytokines IL-1β and IL-18. The innate immune system and metabolic system are evolutionarily conserved, intimately integrated, and functionally dependent. In recent decades, obesity-associated metabolic diseases have been become a worldwide epidemic. Here we review recent evidence that demonstrates the important roles of NLRs and inflammasomes in response to metabolic stress in different tissues.
Collapse
Affiliation(s)
- Hua-Bing Li
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chengcheng Jin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yuanyuan Chen
- Institute of Surgical Research, Daping Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, USA.
| |
Collapse
|
126
|
Miura K, Ohnishi H. Role of gut microbiota and Toll-like receptors in nonalcoholic fatty liver disease. World J Gastroenterol 2014; 20:7381-7391. [PMID: 24966608 PMCID: PMC4064083 DOI: 10.3748/wjg.v20.i23.7381] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/07/2014] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
Emerging data have shown a close association between compositional changes in gut microbiota and the development of nonalcoholic fatty liver disease (NAFLD). The change in gut microbiota may alter nutritional absorption and storage. In addition, gut microbiota are a source of Toll-like receptor (TLR) ligands, and their compositional change can also increase the amount of TLR ligands delivered to the liver. TLR ligands can stimulate liver cells to produce proinflammatory cytokines. Therefore, the gut-liver axis has attracted much interest, particularly regarding the pathogenesis of NAFLD. The abundance of the major gut microbiota, including Firmicutes and Bacteroidetes, has been considered a potential underlying mechanism of obesity and NAFLD, but the role of these microbiota in NAFLD remains unknown. Several reports have demonstrated that certain gut microbiota are associated with the development of obesity and NAFLD. For instance, a decrease in Akkermansia muciniphila causes a thinner intestinal mucus layer and promotes gut permeability, which allows the leakage of bacterial components. Interventions to increase Akkermansia muciniphila improve the metabolic parameters in obesity and NAFLD. In children, the levels of Escherichia were significantly increased in nonalcoholic steatohepatitis (NASH) compared with those in obese control. Escherichia can produce ethanol, which promotes gut permeability. Thus, normalization of gut microbiota using probiotics or prebiotics is a promising treatment option for NAFLD. In addition, TLR signaling in the liver is activated, and its downstream molecules, such as proinflammatory cytokines, are increased in NAFLD. To data, TLR2, TLR4, TLR5, and TLR9 have been shown to be associated with the pathogenesis of NAFLD. Therefore, gut microbiota and TLRs are targets for NAFLD treatment.
Collapse
|
127
|
Salazar N, Dewulf EM, Neyrinck AM, Bindels LB, Cani PD, Mahillon J, de Vos WM, Thissen JP, Gueimonde M, de Los Reyes-Gavilán CG, Delzenne NM. Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clin Nutr 2014; 34:501-7. [PMID: 24969566 DOI: 10.1016/j.clnu.2014.06.001] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND & AIMS Inulin-type fructans (ITF) prebiotics promote changes in the composition and activity of the gut microbiota. The aim of this study was to determine variations on fecal short chain fatty acids (SCFA) concentration in obese women treated with ITF and to explore associations between Bifidobacterium species, SCFA and host biological markers of metabolism. METHODS Samples were obtained in a randomized, double blind, parallel, placebo-controlled trial, with 30 obese women randomly assigned to groups that received either 16 g/day ITF (n = 15) or maltodextrin (n = 15) for 3 months. The qualitative and quantitative analysis of Bifidobacterium spp. was performed in feces by PCR-DGGE and q-PCR, and SCFA profile was analyzed by gas chromatography. Spearman correlation analysis was performed between the different variables analyzed. RESULTS The species Bifidobacterium longum, Bifidobacterium pseudocatenulatum and Bifidobacterium adolescentis were significantly increased at the end of the treatment in the prebiotic group (p < 0.01) with being B. longum negatively correlated with serum lipopolysaccharide (LPS) endotoxin (p < 0.01). Total SCFA, acetate and propionate, that positively correlated with BMI, fasting insulinemia and homeostasis model assessment (HOMA) (p < 0.05), were significantly lower in prebiotic than in placebo group after the treatment period. CONCLUSIONS ITF consumption selectively modulates Bifidobacterium spp. and decreases fecal SCFA concentration in obese women. ITF could lessen metabolic risk factors associated with higher fecal SCFA concentration in obese individuals.
Collapse
Affiliation(s)
- Nuria Salazar
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Evelyne M Dewulf
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands; Department of Bacteriology & Immunology, University of Helsinki, Helsinki, Finland
| | - Jean-Paul Thissen
- Pole of Endocrinology, Diabetology and Nutrition, Université Catholique de Louvain, Brussels, Belgium
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Clara G de Los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
128
|
A rosemary extract rich in carnosic acid selectively modulates caecum microbiota and inhibits β-glucosidase activity, altering fiber and short chain fatty acids fecal excretion in lean and obese female rats. PLoS One 2014; 9:e94687. [PMID: 24733124 PMCID: PMC3986085 DOI: 10.1371/journal.pone.0094687] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/17/2014] [Indexed: 12/16/2022] Open
Abstract
Background Carnosic acid (CA) and rosemary extracts (RE) show body-weight, energy metabolism and inflammation regulatory properties in animal models but the mechanisms are not yet understood. Gut microbiota plays an important role in the host metabolism and inflammatory status and is modulated by the diet. The aim of this research was to investigate whether a RE enriched in CA affected caecum microbiota composition and activity in a rat model of genetic obesity. Methods and Principal Findings A RE (40% CA) was administered with the diet (0.5% w/w) to lean (fa/+) and obese (fa/fa) female Zucker rats for 64 days. Changes in the microbiota composition and β-glucosidase activity in the caecum and in the levels of macronutrients and short chain fatty acids (SCFA) in feces were examined. The RE increased the Blautia coccoides and Bacteroides/Prevotella groups and reduced the Lactobacillus/Leuconostoc/Pediococccus group in both types of animals. Clostridium leptum was significantly decreased and Bifidobacterium increased only in the lean rats. β-Glucosidase activity was significantly reduced and fecal fiber excretion increased in the two genotypes. The RE also increased the main SCFA excreted in the feces of the obese rats but decreased them in the lean rats reflecting important differences in the uptake and metabolism of these molecules between the two genotypes. Conclusions Our results indicate that the consumption of a RE enriched in CA modifies microbiota composition and decreases β-glucosidase activity in the caecum of female Zucker rats while it increases fiber fecal elimination. These results may contribute to explain the body weight gain reducing effects of the RE. The mutated leptin receptor of the obese animals significantly affects the microbiota composition, the SCFA fecal excretion and the host response to the RE intake.
Collapse
|
129
|
Parekh PJ, Arusi E, Vinik AI, Johnson DA. The role and influence of gut microbiota in pathogenesis and management of obesity and metabolic syndrome. Front Endocrinol (Lausanne) 2014; 5:47. [PMID: 24778627 PMCID: PMC3984999 DOI: 10.3389/fendo.2014.00047] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/23/2014] [Indexed: 12/15/2022] Open
Abstract
The obesity epidemic has drastically impacted the state of health care in the United States. Aside from poor diet hygiene and genetics, there are many other factors thought to play a role in the emergence of obesity and the metabolic syndrome. There has been a paradigm shift toward further investigating the gut microbiota and its implications in the pathogenesis of a variety of disease states, including inflammatory bowel disease, Clostridium difficile, and most recently obesity and the metabolic syndrome. This article is intended to evaluate the role of gut microbiota in the pathogenesis of obesity and metabolic syndrome and its influence in future management.
Collapse
Affiliation(s)
- Parth J. Parekh
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Eli Arusi
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Aaron I. Vinik
- Endocrinology Division, Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - David A. Johnson
- Gastroenterology Division, Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
130
|
Paliy O, Piyathilake CJ, Kozyrskyj A, Celep G, Marotta F, Rastmanesh R. Excess body weight during pregnancy and offspring obesity: potential mechanisms. Nutrition 2014; 30:245-251. [PMID: 24103493 DOI: 10.1016/j.nut.2013.05.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 05/02/2013] [Accepted: 05/14/2013] [Indexed: 02/07/2023]
Abstract
The rates of child and adult obesity have increased in most developed countries over the past several decades. The health consequences of obesity affect both physical and mental health, and the excess body weight can be linked to an elevated risk for developing type 2 diabetes, cardiovascular problems, and depression. Among the factors that can influence the development of obesity are higher infant weights and increased weight gain, which are associated with higher risk for excess body weight later in life. In turn, mother's excess body weight during and after pregnancy can be linked to the risk for offspring overweight and obesity through dietary habits, mode of delivery and feeding, breast milk composition, and through the influence on infant gut microbiota. This review considers current knowledge of these potential mechanisms that threaten to create an intergenerational cycle of obesity.
Collapse
Affiliation(s)
- Oleg Paliy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, USA
| | | | - Anita Kozyrskyj
- Department of Pediatrics, Women and Children's Health Research Institute, Edmonton, Canada
| | - Gulcin Celep
- Nutrition and Food Technology Division, Family and Consumer Sciences Department, Gazi University, Turkey
| | | | - Reza Rastmanesh
- Clinical Nutrition and Dietetics Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
131
|
Iron supplementation promotes gut microbiota metabolic activity but not colitis markers in human gut microbiota-associated rats. Br J Nutr 2014; 111:2135-45. [DOI: 10.1017/s000711451400021x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The global prevalence of Fe deficiency is high and a common corrective strategy is oral Fe supplementation, which may affect the commensal gut microbiota and gastrointestinal health. The aim of the present study was to investigate the impact of different dietary Fe concentrations on the gut microbiota and gut health of rats inoculated with human faecal microbiota. Rats (8 weeks old, n 40) were divided into five (n 8 each) groups and fed diets differing only in Fe concentration during an Fe-depletion period (12 weeks) and an Fe-repletion period (4 weeks) as follows: (1) Fe-sufficient diet throughout the study period; (2) Fe-sufficient diet followed by 70 mg Fe/kg diet; (3) Fe-depleted diet throughout the study period; (4) Fe-depleted diet followed by 35 mg Fe/kg diet; (5) Fe-depleted diet followed by 70 mg Fe/kg diet. Faecal and caecal samples were analysed for gut microbiota composition (quantitative PCR and pyrosequencing) and bacterial metabolites (HPLC), and intestinal tissue samples were investigated histologically. Fe depletion did not significantly alter dominant populations of the gut microbiota and did not induce Fe-deficiency anaemia in the studied rats. Provision of the 35 mg Fe/kg diet after feeding an Fe-deficient diet significantly increased the abundance of dominant bacterial groups such as Bacteroides spp. and Clostridium cluster IV members compared with that of an Fe-deficient diet. Fe supplementation increased gut microbial butyrate concentration 6-fold compared with Fe depletion and did not affect histological colitis scores. The present results suggest that Fe supplementation enhances the concentration of beneficial gut microbiota metabolites and thus may contribute to gut health.
Collapse
|
132
|
Impact of dietary fatty acids on metabolic activity and host intestinal microbiota composition in C57BL/6J mice. Br J Nutr 2014; 111:1905-17. [PMID: 24555449 DOI: 10.1017/s0007114514000117] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Different dietary fat and energy subtypes have an impact on both the metabolic health and the intestinal microbiota population of the host. The present study assessed the impact of dietary fat quality, with a focus on dietary fatty acid compositions of varying saturation, on the metabolic health status and the intestinal microbiota composition of the host. C57BL/6J mice (n 9-10 mice per group) were fed high-fat (HF) diets containing either (1) palm oil, (2) olive oil, (3) safflower oil or (4) flaxseed/fish oil for 16 weeks and compared with mice fed low-fat (LF) diets supplemented with either high maize starch or high sucrose. Tissue fatty acid compositions were assessed by GLC, and the impact of the diet on host intestinal microbiota populations was investigated using high-throughput 16S rRNA sequencing. Compositional sequencing analysis revealed that dietary palm oil supplementation resulted in significantly lower populations of Bacteroidetes at the phylum level compared with dietary olive oil supplementation (P< 0·05). Dietary supplementation with olive oil was associated with an increase in the population of the family Bacteroidaceae compared with dietary supplementation of palm oil, flaxseed/fish oil and high sucrose (P< 0·05). Ingestion of the HF-flaxseed/fish oil diet for 16 weeks led to significantly increased tissue concentrations of EPA, docosapentaenoic acid and DHA compared with ingestion of all the other diets (P< 0·05); furthermore, the diet significantly increased the intestinal population of Bifidobacterium at the genus level compared with the LF-high-maize starch diet (P< 0·05). These data indicate that both the quantity and quality of fat have an impact on host physiology with further downstream alterations to the intestinal microbiota population, with a HF diet supplemented with flaxseed/fish oil positively shaping the host microbial ecosystem.
Collapse
|
133
|
'The way to a man's heart is through his gut microbiota'--dietary pro- and prebiotics for the management of cardiovascular risk. Proc Nutr Soc 2014; 73:172-85. [PMID: 24495527 DOI: 10.1017/s0029665113003911] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human gut microbiota has been identified as a possible novel CVD risk factor. This review aims to summarise recent insights connecting human gut microbiome activities with CVD and how such activities may be modulated by diet. Aberrant gut microbiota profiles have been associated with obesity, type 1 and type 2 diabetes and non-alcoholic fatty liver disease. Transfer of microbiota from obese animals induces metabolic disease and obesity in germ-free animals. Conversely, transfer of pathogen-free microbiota from lean healthy human donors to patients with metabolic disease can increase insulin sensitivity. Not only are aberrant microbiota profiles associated with metabolic disease, but the flux of metabolites derived from gut microbial metabolism of choline, phosphatidylcholine and l-carnitine has been shown to contribute directly to CVD pathology, providing one explanation for increased disease risk of eating too much red meat. Diet, especially high intake of fermentable fibres and plant polyphenols, appears to regulate microbial activities within the gut, supporting regulatory guidelines encouraging increased consumption of whole-plant foods (fruit, vegetables and whole-grain cereals), and providing the scientific rationale for the design of efficacious prebiotics. Similarly, recent human studies with carefully selected probiotic strains show that ingestion of viable microorganisms with the ability to hydrolyse bile salts can lower blood cholesterol, a recognised risk factor in CVD. Taken together such observations raise the intriguing possibility that gut microbiome modulation by whole-plant foods, probiotics and prebiotics may be at the base of healthy eating pyramids advised by regulatory agencies across the globe. In conclusion, dietary strategies which modulate the gut microbiota or their metabolic activities are emerging as efficacious tools for reducing CVD risk and indicate that indeed, the way to a healthy heart may be through a healthy gut microbiota.
Collapse
|
134
|
Santangelo C, Varì R, Scazzocchio B, Filesi C, Masella R. Management of reproduction and pregnancy complications in maternal obesity: which role for dietary polyphenols? Biofactors 2014; 40:79-102. [PMID: 23983164 DOI: 10.1002/biof.1126] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/28/2013] [Accepted: 07/02/2013] [Indexed: 02/06/2023]
Abstract
Obesity is a global and dramatic public health problem; maternal obesity represents one of the main risk factors of infertility and pregnancy complications as it is associated with adverse maternal and offspring outcomes. In the last few years, adipose tissue dysfunction associated with altered adipocytokine secretion has been suggested to play a critical role in all the phases of reproductive process. Obesity is a nutrition-related disorder. In this regard, dietary intervention strategies, such as high intake of fruit and vegetables, have shown significant effects in both preserving health and counteracting obesity-associated diseases. Evidence has been provided that polyphenols, important constituents of plant-derived food, can influence developmental program of oocyte and embryo, as well as pregnancy progression by modulating several cellular pathways. This review will examine the controversial results so far obtained on adipocytokine involvement in fertility impairment and pregnancy complications. Furthermore, the different effects exerted by polyphenols on oocyte, embryo, and pregnancy development will be also taken in account.
Collapse
Affiliation(s)
- Carmela Santangelo
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | | | | | | | | |
Collapse
|
135
|
Abstract
An expanding body of evidence supports a role for gut microbes in the etiology of cancer. Previously, the focus was on identifying individual bacterial species that directly initiate or promote gastrointestinal malignancies; however, the capacity of gut microbes to influence systemic inflammation and other downstream pathways suggests that the gut microbial community may also affect risk of cancer in tissues outside of the gastrointestinal tract. Functional contributions of the gut microbiota that may influence cancer susceptibility in the broad sense include (1) harvesting otherwise inaccessible nutrients and/or sources of energy from the diet (i.e., fermentation of dietary fibers and resistant starch); (2) metabolism of xenobiotics, both potentially beneficial or detrimental (i.e., dietary constituents, drugs, carcinogens, etc.); (3) renewal of gut epithelial cells and maintenance of mucosal integrity; and (4) affecting immune system development and activity. Understanding the complex and dynamic interplay between the gut microbiome, host immune system, and dietary exposures may help elucidate mechanisms for carcinogenesis and guide future cancer prevention and treatment strategies.
Collapse
Affiliation(s)
- Meredith A J Hullar
- Cancer Prevention Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, M4-B402, PO Box 19024, Seattle, WA, 98109, USA
| | | | | |
Collapse
|
136
|
Tamura M, Hori S, Nakagawa H. Intestinal Bacterium TM-30: an S-equol-producing Bacterium Isolated from Human Feces is Involved in Estrogen Metabolism in vitro. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2014. [DOI: 10.3136/fstr.20.309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
137
|
Laing B, Han DY, Ferguson LR. Candidate genes involved in beneficial or adverse responses to commonly eaten brassica vegetables in a New Zealand Crohn's disease cohort. Nutrients 2013; 5:5046-64. [PMID: 24352087 PMCID: PMC3875924 DOI: 10.3390/nu5125046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/22/2013] [Accepted: 11/29/2013] [Indexed: 12/20/2022] Open
Abstract
Crohn’s disease (CD) is one of the two manifestations of inflammatory bowel disease. Particular foods are thought with CD to exacerbate their illness. Vegetables, especially Brassicaceae, are often shunned by people with CD because of the negative effects they are alleged to have on their symptoms. Brassicaceae supply key nutrients which are necessary to meet recommended daily intakes. We sought to identify the candidate genes involved in the beneficial or adverse effects of Brassicaceae most commonly eaten, as reported by the New Zealand adults from the “Genes and Diet in Inflammatory Bowel disease Study” based in Auckland. An analysis of associations between the single nucleotide polymorphisms (SNPs) and the beneficial or adverse effects of the ten most commonly eaten Brassicaceae was carried out. A total of 37 SNPs were significantly associated with beneficial effects (p = 0.00097 to 0.0497) and 64 SNPs were identified with adverse effects (p = 0.0000751 to 0.049). After correcting for multiple testing, rs7515322 (DIO1) and rs9469220 (HLA) remained significant. Our findings show that the tolerance of some varieties of Brassicaceae may be shown by analysis of a person’s genotype.
Collapse
Affiliation(s)
- Bobbi Laing
- Discipline of Nutrition, School of Medical Sciences, Auckland University, 85 Park Road, Grafton Campus, Auckland 1142, New Zealand.
| | | | | |
Collapse
|
138
|
Khan AA, Cash P. E. coli and colon cancer: is mutY a culprit? Cancer Lett 2013; 341:127-131. [PMID: 23933175 DOI: 10.1016/j.canlet.2013.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/24/2013] [Accepted: 08/02/2013] [Indexed: 12/13/2022]
Abstract
The recent demonstration of a role of Escherichia coli in the development of invasive carcinoma in mice ushers a new era of bacterial involvement in cancer etiology. It has been shown previously that the colonic mucosa of colorectal carcinoma (CRC) is exclusively colonized by intracellular E. coli instead of extracellular form found in normal colonic mucosa. Surprisingly, the DNA repair gene MUTYH, which is a homologue of the E. coli gene mutY, is responsible for CRC. The current paper discusses the potential role of mutY in CRC etiology and concludes that research in this area can bring together the diverse threads of the CRC etiology puzzle.
Collapse
Affiliation(s)
- Abdul Arif Khan
- Department of Microbiology, College of Life Sciences, Cancer Hospital & Research Institute, Gwalior, MP, India; Department of Pharmaceutics, College of Pharmacy, PO Box 2457, King Saud University, Riyadh 11451, Saudi Arabia.
| | | |
Collapse
|
139
|
Hursel R, Westerterp-Plantenga MS. Catechin- and caffeine-rich teas for control of body weight in humans. Am J Clin Nutr 2013; 98:1682S-1693S. [PMID: 24172301 DOI: 10.3945/ajcn.113.058396] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Maintaining the level of daily energy expenditure during weight loss and weight maintenance is as important as maintaining satiety while decreasing energy intake. In this context, different catechin- and caffeine-rich teas (CCRTs), such as green, oolong, and white teas, as well as caffeine have been proposed as tools for maintaining or enhancing energy expenditure and for increasing fat oxidation. Tea polyphenols have been proposed to counteract the decrease in metabolic rate that is usually present during weight loss. Their effects may be of particular importance during weight maintenance after weight loss. Although the thermogenic effect of CCRT has the potential to produce significant effects on these metabolic targets as well as on fat absorption and energy intake, possibly via its impact on the gut microbiota and gene expression, a clinically meaningful outcome also depends on compliance by the subjects. Limitations to this approach require further examination, including moderating factors such as genetic predisposition, habitual caffeine intake, and catechin composition and dose. Nevertheless, CCRTs may be useful agents that could help in preventing a positive energy balance and obesity.
Collapse
Affiliation(s)
- Rick Hursel
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University, Maastricht, Netherlands
| | | |
Collapse
|
140
|
Abstract
The gut microbiota has been linked with chronic diseases such as obesity in humans. However, the demonstration of causality between constituents of the microbiota and specific diseases remains an important challenge in the field. In this Opinion article, using Koch's postulates as a conceptual framework, I explore the chain of causation from alterations in the gut microbiota, particularly of the endotoxin-producing members, to the development of obesity in both rodents and humans. I then propose a strategy for identifying the causative agents of obesity in the human microbiota through a combination of microbiome-wide association studies, mechanistic analysis of host responses and the reproduction of diseases in gnotobiotic animals.
Collapse
|
141
|
Lacombe A, Li RW, Klimis-Zacas D, Kristo AS, Tadepalli S, Krauss E, Young R, Wu VCH. Lowbush wild blueberries have the potential to modify gut microbiota and xenobiotic metabolism in the rat colon. PLoS One 2013; 8:e67497. [PMID: 23840722 PMCID: PMC3696070 DOI: 10.1371/journal.pone.0067497] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/19/2013] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract is populated by an array of microbial species that play an important role in metabolic and immune functions. The composition of microorganisms is influenced by the components of the host's diet and can impact health. In the present study, dietary enrichment of lowbush wild blueberries (LWB) was examined to determine their effect on colon microbial composition and their potential in promoting gut health. The microbial composition and functional potential of the colon microbiota from Sprague Dawley rats fed control diets (AIN93) and LWB-enriched diets (AIN93+8% LWB powder substituting for dextrose) for 6 weeks were assessed using Illumina shotgun sequencing and bioinformatics tools. Our analysis revealed an alteration in the relative abundance of 3 phyla and 22 genera as representing approximately 14 and 8% of all phyla and genera identified, respectively. The LWB-enriched diet resulted in a significant reduction in the relative abundance of the genera Lactobacillus and Enterococcus. In addition, hierarchal analysis revealed a significant increase in the relative abundance of the phylum Actinobacteria, the order Actinomycetales, and several novel genera under the family Bifidobacteriaceae and Coriobacteriaceae, in the LWB group. Functional annotation of the shotgun sequences suggested that approximately 9% of the 4709 Kyoto Encyclopaedia of Gene and Genome (KEGG) hits identified were impacted by the LWB-diet. Open Reading Frames (ORFs) assigned to KEGG category xenobiotics biodegradation and metabolism were significantly greater in the LWB-enriched diet compared to the control and included the pathway for benzoate degradation [PATH:ko00362] and glycosaminoglycan degradation [PATH:ko00531]. Moreover, the number of ORFs assigned to the bacterial invasion of epithelial cells [PATH:ko05100] pathway was approximately 8 fold lower in the LWB group compared to controls. This study demonstrated that LWBs have the potential to promote gut health and can aid in the development of optimal diets.
Collapse
Affiliation(s)
- Alison Lacombe
- Department of Food Science and Human Nutrition, The University of Maine, Orono, Maine, United States of America
| | - Robert W. Li
- United States Department of Agriculture ARS, BARC, Bovine Functional Genomics Laboratory, Beltsville, Maryland, United States of America
| | - Dorothy Klimis-Zacas
- Department of Food Science and Human Nutrition, The University of Maine, Orono, Maine, United States of America
| | - Aleksandra S. Kristo
- Department of Food Science and Human Nutrition, The University of Maine, Orono, Maine, United States of America
| | - Shravani Tadepalli
- Department of Food Science and Human Nutrition, The University of Maine, Orono, Maine, United States of America
| | - Emily Krauss
- Department of Food Science and Human Nutrition, The University of Maine, Orono, Maine, United States of America
| | - Ryan Young
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, Maine, United States of America
| | - Vivian C. H. Wu
- Department of Food Science and Human Nutrition, The University of Maine, Orono, Maine, United States of America
| |
Collapse
|
142
|
Effect of Lactobacillus gasseri SBT2055 in fermented milk on abdominal adiposity in adults in a randomised controlled trial. Br J Nutr 2013; 110:1696-703. [PMID: 23614897 DOI: 10.1017/s0007114513001037] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Consumption of fermented milk (FM) containing a probiotic, Lactobacillus gasseri SBT2055 (LG2055), previously showed a reduction in abdominal adiposity in a randomised controlled trial (RCT) using FM with 10(8) colony-forming units (cfu) of LG2055/g. However, whether the effectiveness is observed at lower concentrations, the recommended minimum or intermediate levels of probiotics (10(6) or 10(7) cfu/g, respectively), remains to be examined. A multi-centre, double-blind, parallel-group RCT was conducted using 210 healthy Japanese adults with large visceral fat areas (80·2 - 187·8 cm(2)). They were balanced for their baseline characteristics and randomly assigned to three groups receiving FM containing 10(7), 10(6) or 0 (control) cfu LG2055/g of FM, and were asked to consume 200 g FM/d for 12 weeks. Abdominal visceral fat areas, which were determined by computed tomography, at week 12, changed from baseline by an average of -8·5 % (95 % CI -11·9, -5·1; P< 0·01) in the 10(7) dose group, and by -8·2 % (95 % CI -10·8, -5·7; P< 0·01) in the 10(6) dose group. Other measures including BMI, waist and hip circumferences, and body fat mass were also significantly decreased from baseline at week 12 in both groups; interestingly, the cessation of taking FM for 4 weeks attenuated these effects. In the control group, none of these parameters significantly decreased from baseline. These findings demonstrate that consumption of LG2055 at doses as low as the order of 10(8) cfu/d exhibited a significant lowering effect on abdominal adiposity, and suggest that constant consumption might be needed to maintain the effect.
Collapse
|
143
|
Park JS, Seo JH, Youn HS. Gut microbiota and clinical disease: obesity and nonalcoholic Fatty liver disease. Pediatr Gastroenterol Hepatol Nutr 2013; 16:22-7. [PMID: 24010102 PMCID: PMC3746040 DOI: 10.5223/pghn.2013.16.1.22] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 03/06/2013] [Accepted: 03/08/2013] [Indexed: 12/14/2022] Open
Abstract
The prevalence of obesity is increasing worldwide. Obesity can cause hyperlipidemia, hypertension, cardiovascular diseases, metabolic syndrome and non-alcoholic fatty liver disease (NAFLD). Many environmental or genetic factors have been suggested to contribute to the development of obesity, but there is no satisfactory explanation for its increased prevalence. This review discusses the latest updates on the role of the gut microbiota in obesity and NAFLD.
Collapse
Affiliation(s)
- Ji Sook Park
- Department of Pediatrics, Gyeongsang National University School of Medicine, Jinju, Korea
| | | | | |
Collapse
|
144
|
|
145
|
Souza da Silva C, Bolhuis JE, Gerrits WJJ, Kemp B, van den Borne JJGC. Effects of dietary fibers with different fermentation characteristics on feeding motivation in adult female pigs. Physiol Behav 2013; 110-111:148-57. [PMID: 23313406 DOI: 10.1016/j.physbeh.2013.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/11/2012] [Accepted: 01/06/2013] [Indexed: 01/10/2023]
Abstract
Dietary fibers can be fermented in the colon, resulting in production of short-chain fatty acids (SCFA) and secretion of satiety-related peptides. Fermentation characteristics (fermentation kinetics and SCFA-profile) differ between fibers and could impact their satiating potential. We investigated the effects of fibers with varying fermentation characteristics on feeding motivation in adult female pigs. Sixteen pair-housed pigs received four diets in four periods in a Latin square design. Starch from a control (C) diet was exchanged, based on gross energy, for inulin (INU), guar gum (GG), or retrograded tapioca starch (RS), each at a low (L) and a high (H) inclusion level. This resulted in a decreased metabolizable energy intake when feeding fiber diets as compared with the C diet. According to in vitro fermentation measurements, INU is rapidly fermentable and yields relatively high amounts of propionate, GG is moderately rapidly fermentable and yields relatively high amounts of acetate, and RS is slowly fermentable and yields relatively high amounts of butyrate. Feeding motivation was assessed using behavioral tests at 1h, 3h and 7h after the morning meal, and home pen behavioral observations throughout the day. The number of wheel turns paid for a food reward in an operant test was unaffected by diet. Pigs on H-diets ran 25% slower for a food reward in a runway test than pigs on L-diets, and showed less spontaneous physical activity and less stereotypic behavior in the hours before the afternoon meal, reflecting increased interprandial satiety. Reduced feeding motivation with increasing inclusion level was most pronounced for RS, as pigs decreased speed in the runway test and tended to have a lower voluntary food intake in an ad libitum food intake test when fed RS-H. In conclusion, increasing levels of fermentable fibers in the diet seemed to enhance satiety in adult pigs, despite a reduction in metabolizable energy supply. RS was the most satiating fiber, possibly due to its slow rate of fermentation and high production of butyrate.
Collapse
Affiliation(s)
- Carol Souza da Silva
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
146
|
Xu X, Xu P, Ma C, Tang J, Zhang X. Gut microbiota, host health, and polysaccharides. Biotechnol Adv 2012; 31:318-37. [PMID: 23280014 DOI: 10.1016/j.biotechadv.2012.12.009] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 02/07/2023]
Abstract
The intestinal microbiota is a complicated ecosystem that influences many aspects of host physiology (i.e. diet, disease development, drug metabolism, and regulation of the immune system). It also exhibits spatial patterning and temporal dynamics. In this review, the effects of internal and external (environmental) factors on intestinal microbiota are discussed. We describe the roles of the gut microbiota in maintaining intestinal and immune system homeostasis and the relationship between gut microbiota and diseases. In particular, the contributions of polysaccharides, as the most abundant diet components in intestinal microbiota and host health are presented. Finally, perspectives for research avenues relating to gut microbiota are also discussed.
Collapse
Affiliation(s)
- Xiaofei Xu
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, China
| | | | | | | | | |
Collapse
|
147
|
Costa GT, Guimarães SB, Sampaio HADC. Fructo-oligosaccharide effects on blood glucose: an overview. Acta Cir Bras 2012; 27:279-82. [PMID: 22460261 DOI: 10.1590/s0102-86502012000300013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/11/2012] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To identify the current status of scientific knowledge in fructo-oligosaccharides (FOS), non-conventional sugars that play an important role in glycemia control. METHODS We performed a search for scientific articles in MEDLINE and LILACS databases, from January 1962 to December 2011, using English/Portuguese key words: "blood glucose/glicemia", "prebiotics/prebióticos" and "dietary fiber/fibras na dieta". From an initial number of 434 references, some repeated, 43 references published from 1962 to 2011 were included in this study. The selected texts were distributed in three topics: (1) metabolism of FOS, (2) FOS and experimental studies involving glucose and (3) human studies involving glucose and FOS. RESULTS Five studies have shown that the use of FOS reduces the fecal content and increases intestinal transit time. Experimental studies have shown that dietary supplementation with high doses (60 g/Kg) of propionate, a short-chain fatty acid decreased glycemia. The use of lower doses (3 g/kg) did not produce the same results. Study in subjects with diabetes type II showed that the addition of 8 grams of FOS in the diet for 14 days, caused a reduction in serum glucose. In another study with healthy subjects, there were no changes in glycemic control. CONCLUSIONS This review demonstrates that consumption of FOS has a beneficial influence on glucose metabolism. The controversies appear to be due to inadequate methodological designs and/or the small number of individuals included in some studies.
Collapse
|
148
|
Liquori GE, Mastrodonato M, Mentino D, Scillitani G, Desantis S, Portincasa P, Ferri D. In situ characterization of O-linked glycans of Muc2 in mouse colon. Acta Histochem 2012; 114:723-732. [PMID: 22261557 DOI: 10.1016/j.acthis.2011.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 12/16/2011] [Accepted: 12/18/2011] [Indexed: 01/02/2023]
Abstract
The characterization of mucus O-linked glycans in the proximal and distal mouse colon was performed by conventional histochemical methods and by lectin histochemistry in combination with enzymatic treatment (PNGase, α1,2 fucosidase, sialidase digestion), with and without prior desulfation. We demonstrated the presence of sialo- and sulfomucins in both the proximal and distal colon of the mouse. In the distal colon the sulfomucins were clearly prevalent, although there were always sialomucins with sialyl residues linked α2,6 to the subterminal galactose. Sialic acid was poorly O-acetylated, especially in the distal colon. The lectin binding pattern indicates a massive presence of fucose α1,2 linked to galactose in O-glycans and smaller quantities of fucose linked α1,6 to N-acetylglucosamine in the core of N-linked glycans. Lectin histochemistry also demonstrated the presence of glycosidic residues of N-acetylglucosamine, N-acetylgalactosamine, and galactose in oligosaccharide chains of highly sulfated mucins.
Collapse
|
149
|
Bengmark S. Gut microbiota, immune development and function. Pharmacol Res 2012; 69:87-113. [PMID: 22989504 DOI: 10.1016/j.phrs.2012.09.002] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 09/01/2012] [Indexed: 02/08/2023]
Abstract
The microbiota of Westerners is significantly reduced in comparison to rural individuals living a similar lifestyle to our Paleolithic forefathers but also to that of other free-living primates such as the chimpanzee. The great majority of ingredients in the industrially produced foods consumed in the West are absorbed in the upper part of small intestine and thus of limited benefit to the microbiota. Lack of proper nutrition for microbiota is a major factor under-pinning dysfunctional microbiota, dysbiosis, chronically elevated inflammation, and the production and leakage of endotoxins through the various tissue barriers. Furthermore, the over-comsumption of insulinogenic foods and proteotoxins, such as advanced glycation and lipoxidation molecules, gluten and zein, and a reduced intake of fruit and vegetables, are key factors behind the commonly observed elevated inflammation and the endemic of obesity and chronic diseases, factors which are also likely to be detrimental to microbiota. As a consequence of this lifestyle and the associated eating habits, most barriers, including the gut, the airways, the skin, the oral cavity, the vagina, the placenta, the blood-brain barrier, etc., are increasingly permeable. Attempts to recondition these barriers through the use of so called 'probiotics', normally applied to the gut, are rarely successful, and sometimes fail, as they are usually applied as adjunctive treatments, e.g. in parallel with heavy pharmaceutical treatment, not rarely consisting in antibiotics and chemotherapy. It is increasingly observed that the majority of pharmaceutical drugs, even those believed to have minimal adverse effects, such as proton pump inhibitors and anti-hypertensives, in fact adversely affect immune development and functions and are most likely also deleterious to microbiota. Equally, it appears that probiotic treatment is not compatible with pharmacological treatments. Eco-biological treatments, with plant-derived substances, or phytochemicals, e.g. curcumin and resveratrol, and pre-, pro- and syn-biotics offers similar effects as use of biologicals, although milder but also free from adverse effects. Such treatments should be tried as alternative therapies; mainly, to begin with, for disease prevention but also in early cases of chronic diseases. Pharmaceutical treatment has, thus far, failed to inhibit the tsunami of endemic diseases spreading around the world, and no new tools are in sight. Dramatic alterations, in direction of a paleolithic-like lifestyle and food habits, seem to be the only alternatives with the potential to control the present escalating crisis. The present review focuses on human studies, especially those of clinical relevance.
Collapse
Affiliation(s)
- Stig Bengmark
- Division of Surgery & Interventional Science, University College London, 4th floor, 74 Huntley Street, London WC1E 6AU, United Kingdom.
| |
Collapse
|
150
|
Tuohy KM, Conterno L, Gasperotti M, Viola R. Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:8776-82. [PMID: 22607578 DOI: 10.1021/jf2053959] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Whole plant foods, including fruit, vegetables, and whole grain cereals, protect against chronic human diseases such as heart disease and cancer, with fiber and polyphenols thought to contribute significantly. These bioactive food components interact with the gut microbiota, with gut bacteria modifying polyphenol bioavailability and activity, and with fiber, constituting the main energy source for colonic fermentation. This paper discusses the consequences of increasing the consumption of whole plant foods on the gut microbiota and subsequent implications for human health. In humans, whole grain cereals can modify fecal bacterial profiles, increasing relative numbers of bifidobacteria and lactobacilli. Polyphenol-rich chocolate and certain fruits have also been shown to increase fecal bifidobacteria. The recent FLAVURS study provides novel information on the impact of high fruit and vegetable diets on the gut microbiota. Increasing whole plant food consumption appears to up-regulate beneficial commensal bacteria and may contribute toward the health effects of these foods.
Collapse
Affiliation(s)
- Kieran M Tuohy
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, IASMA Research and Innovation Centre, Via E. Mach 1, 38010 S. Michele (TN), Italy.
| | | | | | | |
Collapse
|