101
|
Maciel PS, Gonçalves R, Antonelli LRDV, Fonseca CT. Schistosoma mansoni Infection Is Impacted by Malnutrition. Front Microbiol 2021; 12:635843. [PMID: 33815321 PMCID: PMC8017134 DOI: 10.3389/fmicb.2021.635843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Schistosomiasis remains one of the most important neglected tropical diseases in the world. It mainly affects developing countries, where it often coexists with malnutrition. Despite this, few studies have investigated the relationship between schistosomiasis and malnutrition. Herein, we evaluate the impact of malnutrition on experimental S. mansoni infection. Mice were divided into 5 groups: Control (Ctrl) diet (14% protein and 10% lipids), low-protein 3% (LP 3%), low-protein 8% (LP 8%), low-fat 2.5% (LF 2.5%), and low-fat 5% (LF 5%). Mice were fed with their respective diets and were infected when a difference of approximately 20% in the body weight between mice from any experimental group and mice from the control group was achieved. Nutritional, parasitological, and immunological parameters were assessed either just before infection and/or approximately 50 days later before mice were perfused. Our results showed that the 3% low-protein diet was the only one capable of establishing malnutrition in mice. Mice fed with this diet showed: (i) significant reduction in body weight and serum albumin levels before infection, (ii) decreased levels of all biochemical parameters evaluated before perfusion, (iii) decreased numbers of schistosome eggs trapped in intestines and impaired parasite fecundity, (iv) a delay in the granuloma development with a smaller granuloma area, and (v) reduced levels of IL-4 and IFN-γ in the liver. Our findings demonstrate that low protein supply leads to malnutrition in mice and impacts the cytokine milieu in the liver and granuloma formation. Additionally, the establishment of our murine malnutrition model will enable future studies aiming to better understand the complex relationships between nutrition, immune responses, and infection outcome.
Collapse
Affiliation(s)
- Poliane Silva Maciel
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Ricardo Gonçalves
- Laboratório de Biologia de Monócitos e Macrófagos, Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lis Ribeiro do Valle Antonelli
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Cristina Toscano Fonseca
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| |
Collapse
|
102
|
Chou YT, Li CH, Sun ZJ, Shen WC, Yang YC, Lu FH, Chang CJ, Wu JS. A Positive Relationship between Betel Nut Chewing and Significant Liver Fibrosis in NAFLD Subjects, but Not in Non-NAFLD Ones. Nutrients 2021; 13:nu13030914. [PMID: 33799865 PMCID: PMC7998430 DOI: 10.3390/nu13030914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/27/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Betel nut chewing is associated with oral cancer, cardiovascular disease, liver cirrhosis, and hepatocellular carcinoma (HCC). The aim of this study was to explore the association of betel nut chewing with liver fibrosis in subjects with and without nonalcoholic fatty liver disease (NAFLD). Method: A total of 5967 subjects were enrolled. NAFLD was diagnosed with ultrasonography. Betel nut chewing was classified into non-chewing, ex-chewing, and current chewing, and cumulative dosages were calculated. The aspartate aminotransferase (AST)/platelet ratio index and NAFLD fibrosis scores (NFS) were calculated for evaluation of liver fibrosis. Results: NAFLD increased the associated risk of liver fibrosis in those with (odds ratio (OR): 5.51, 95% confidence interval (CI): 3.09–9.80) and without betel nut chewing (OR: 2.33, 95% CI: 1.64–3.29). In subjects without NAFLD, betel nut chewing was not associated with liver fibrosis (OR: 1.12, 95% CI: 0.44–2.86). In subjects with NAFLD, cumulative betel nut chewing and ex- and current chewing were positively associated with NFS and significant liver fibrosis. Conclusions: In subjects with NAFLD, betel nut chewing, even ex-chewing, was associated with a higher risk of liver fibrosis, where higher cumulative levels were found to increase the risk of significant liver fibrosis. However, the associated risk of liver fibrosis due to betel nut chewing was insignificant in subjects without NAFLD.
Collapse
Affiliation(s)
- Yu-Tsung Chou
- Department of Health Management Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan; (Y.-T.C.); (C.-H.L.)
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan; (Z.-J.S.); (W.-C.S.); (Y.-C.Y.); (F.-H.L.)
| | - Chung-Hao Li
- Department of Health Management Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan; (Y.-T.C.); (C.-H.L.)
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan; (Z.-J.S.); (W.-C.S.); (Y.-C.Y.); (F.-H.L.)
| | - Zih-Jie Sun
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan; (Z.-J.S.); (W.-C.S.); (Y.-C.Y.); (F.-H.L.)
- Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Family Medicine, National Cheng Kung University Hospital Dou-Liou Branch, College of Medicine, National Cheng Kung University, Yunlin 64043, Taiwan
| | - Wei-Chen Shen
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan; (Z.-J.S.); (W.-C.S.); (Y.-C.Y.); (F.-H.L.)
| | - Yi-Ching Yang
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan; (Z.-J.S.); (W.-C.S.); (Y.-C.Y.); (F.-H.L.)
- Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Feng-Hwa Lu
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan; (Z.-J.S.); (W.-C.S.); (Y.-C.Y.); (F.-H.L.)
- Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chih-Jen Chang
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan; (Z.-J.S.); (W.-C.S.); (Y.-C.Y.); (F.-H.L.)
- Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Family Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
- Correspondence: (C.-J.C.); (J.-S.W.); Tel.: +886-6-2353535 (ext. 5210) (J.-S.W.)
| | - Jin-Shang Wu
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan; (Z.-J.S.); (W.-C.S.); (Y.-C.Y.); (F.-H.L.)
- Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Family Medicine, National Cheng Kung University Hospital Dou-Liou Branch, College of Medicine, National Cheng Kung University, Yunlin 64043, Taiwan
- Correspondence: (C.-J.C.); (J.-S.W.); Tel.: +886-6-2353535 (ext. 5210) (J.-S.W.)
| |
Collapse
|
103
|
Moheimani HR, Amiriani T, Alizadeh AM, Jand Y, Shakiba D, Ensan PS, Jafarzadeh F, Rajaei M, Enayati A, Pourabouk M, Aliazadeh S, Pourkhani AH, Mazaheri Z, Zeyghami MA, Dehpour A, Khori V. Preconditioning and anti-apoptotic effects of Metformin and Cyclosporine-A in an isolated bile duct-ligated rat heart. Eur J Pharmacol 2021; 893:173807. [PMID: 33359222 DOI: 10.1016/j.ejphar.2020.173807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022]
Abstract
Despite all previous studies relating to the mechanism of cirrhotic cardiomyopathy (CCM), the role of cirrhosis on Ischemic Preconditioning (IPC) has not yet been explored. The present study strives to assess the cardioprotective role of IPC in bile duct ligated (BDL) rats as well as the cardioprotective role of Cyclosporin-A (CsA) and Metformin (Met) in CCM. Cirrhosis was induced by bile duct ligation (BDL). Rats' hearts were isolated and attached to a Langendorff Apparatus. The pharmacological preconditioning with Met and CsA was done before the main ischemia. Myocardial infarct size, hemodynamic and electrophysiological parameters, biochemical markers, and apoptotic indices were determined at the end of the experiment. Infarct size, apoptotic indices, arrhythmia score, and incidence of VF decreased significantly in the IPC group in comparison with the I/R group. These significant decreases were abolished in the IPC (BDL) group. Met significantly decreased the infarct size and apoptotic indices compared with I/R (BDL) and normal groups, while CsA led to similar decreases except in the level of caspase-3 and -8. Met and CsA decreased and increased the arrhythmia score and incidence of VF in the BDL groups, respectively. Functional recovery indices decreased in the I/R (BDL) and IPC (BDL) groups. Met improved these parameters. Therefore, the current study depicted that the cardioprotective effect of Met and CsA on BDL rats is mediated through the balance between pAMPK and apoptosis in the mitochondria.
Collapse
Key Words
- Bile duct ligation
- Caspase
- Cyclosporin-A
- Cyclosporin-A (3S,6S,9S,12R,15S,18S,21S,24S,30S,33S)-30-Ethyl-33-[(E,1R,2R)-1-Hydroxy-2-methylhex-4-enyl]-1,4,7,10,12,15,19,25,28-nonamethyl-6,9,18,24-tetrakis(2-methylpropyl)-3,21-di(propan-2-yl)-1,4,7,10,13,16,19,22,25,28,31undecazacyclotritriacontane-2,5,8,11,14,17,20,23,26,29,32-undecone, PubChemCID: 5284373
- Ischemic preconditioning
- Metformin
- Metformin 3-(diaminomethylidene)-1,1-dimethylguanidine, PubChem CID:4091
Collapse
Affiliation(s)
- Hamid Reza Moheimani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Taghi Amiriani
- Golestan Research Center of Gastroenterology and Hepatology, Gorgan, Iran
| | - Ali Mohammad Alizadeh
- Cancer Research Center of Institute Cancer, Tehran University of Medical Science, Tehran, Iran
| | - Yahya Jand
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Delaram Shakiba
- Department of Mechanical Engineering and Material Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Parham Sayyah Ensan
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Jafarzadeh
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Rajaei
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mona Pourabouk
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Shahriar Aliazadeh
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amir Hoshang Pourkhani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zohreh Mazaheri
- Basic Medical Science Research Center, Histogenotech Company, Tehran, Iran
| | - Mohammad Ali Zeyghami
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ahmadreza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
104
|
Complexation with Random Methyl-β-Cyclodextrin and (2-Hidroxypropyl)-β-Cyclodextrin Enhances In Vivo Anti-Fibrotic and Anti-Inflammatory Effects of Chrysin via the Inhibition of NF-κB and TGF-β1/Smad Signaling Pathways and Modulation of Hepatic Pro/Anti-Fibrotic miRNA. Int J Mol Sci 2021; 22:ijms22041869. [PMID: 33668543 PMCID: PMC7917810 DOI: 10.3390/ijms22041869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/24/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Chrysin (CHR) is a natural flavonoid with a wide range of pharmacological activities, including hepatoprotection, but poor water solubility. By including water-soluble hydroxypropyl (HPBCD) and randomly methylated (RAMEB) β-cyclodextrin, we aimed to increase its biodisponibility and the effectiveness of the antifibrotic effects of chrysin at oral administration. Liver fibrosis in mice was induced in 7 weeks by CCl4 i.p. administration, and afterwards treated with 50 mg/kg of CHR-HPBCD, CHR-RAMEB, and free chrysin. CCl4 administration increased hepatic inflammation (which was augmented by the upregulation of nuclear factor kappa-light-chain enhancer of activated B cells (NF-kB), tumor necrosis factor (TNF)-α, and interleukin 6 (IL-6) and induced fibrosis, as determined using histopathology and electron microscopy. These results were also confirmed by the upregulation of Collagen I (Col I) and matrix metalloproteinase (MMP) expression, which led to extracellular fibrotic matrix proliferation. Moreover, the immunopositivity of alpha-smooth muscle actin (a-SMA) in the CCl4 group was evidence of hepatic stellate cell (HSC) activation. The main profibrotic pathway was activated, as confirmed by an increase in the transforming growth factor- β1 (TGF-β1) and Smad 2/3 expression, while Smad 7 expression was decreased. Treatment with CHR–HPBCD and CHR–RAMEB considerably reduced liver injury, attenuated inflammation, and decreased extracellular liver collagen deposits. CHR–RAMEB was determined to be the most active antifibrotic complex. We conclude that both nanocomplexes exert anti-inflammatory effects and antifibrotic effects in a considerably stronger manner than for free chrysin administration.
Collapse
|
105
|
Ni W, Lin S, Bian S, Xiao M, Wang Y, Yang Y, Lu C, Zheng W, Zhou P. Biological testing of chitosan-collagen-based porous scaffolds loaded with PLGA/Triamcinolone microspheres for ameliorating endoscopic dissection-related stenosis in oesophagus. Cell Prolif 2021; 54:e13004. [PMID: 33543561 PMCID: PMC7941226 DOI: 10.1111/cpr.13004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/05/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Objectives Endoscopic submucosal dissection (ESD), a preferential approach for early oesophageal neoplasms, inevitably results in oesophageal strictures in patients. Clinical use of glucocorticoids through submucosal injection is beneficial for inhibiting oesophageal stricture following injury; however, it also has limitations, such as dose loss and perforation. Hence, alternatives to glucocorticoid therapy should be developed. Methods A novel porous composite scaffold, ChCo‐TAMS, composed of chitosan, collagen‐I and triamcinolone acetonide (TA) loaded into poly (lactic‐co‐glycolic) acid (PLGA) microspheres (TAMS), was successfully constructed and subjected to biological testing to ameliorate oesophageal ESD‐related stenosis. Results The synthesized biomaterials displayed unique properties in inhibiting the activation of macrophages, chemokine‐mediated cell recruitment and fibrogenesis of fibroblasts. Further application of the scaffolds in the rat dermal defect and porcine oesophageal ESD model showed that these novel scaffolds played a robust role in inhibiting wound contracture and oesophageal ESD strictures. Conclusions The developed composite scaffolds provide a promising clinical medical device for the prevention of post‐operative oesophageal stricture.
Collapse
Affiliation(s)
- Wenkai Ni
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Shengli Lin
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Saiyan Bian
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China.,Medical College, Nantong University, Nantong, China
| | - Mingbing Xiao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Cuihua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Pinghong Zhou
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
106
|
Amato F, Castaldo A, Castaldo G, Cernera G, Corso G, Ferrari E, Gelzo M, Monzani R, Villella VR, Raia V. Impaired cholesterol metabolism in the mouse model of cystic fibrosis. A preliminary study. PLoS One 2021; 16:e0245302. [PMID: 33412572 PMCID: PMC7790534 DOI: 10.1371/journal.pone.0245302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/24/2020] [Indexed: 11/19/2022] Open
Abstract
This study aims to investigate cholesterol metabolism in a mouse model with cystic fibrosis (CF) by the comparison of affected homozygous versus wild type (WT) mice. In particular, we evaluated the effects of a diet enriched with cholesterol in both mice groups in comparison with the normal diet. To this purpose, beyond serum and liver cholesterol, we analyzed serum phytosterols as indirect markers of intestinal absorption of cholesterol, liver lathosterol as indirect marker of de novo cholesterol synthesis, liver cholestanol (a catabolite of bile salts synthesis) and the liver mRNA levels of LDL receptor (LDLR), 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoAR), acyl CoA:cholesterol acyl transferase 2 (ACAT2), cytochrome P450 7A1 (CYP7A1) and tumor necrosis factor alpha (TNFα). CF mice showed lower intestinal absorption and higher liver synthesis of cholesterol than WT mice. In WT mice, the cholesterol supplementation inhibits the synthesis of liver cholesterol and enhances its catabolism, while in CF mice we did not observe a reduction of LDLR and HMG-CoAR expression (probably due to an altered feed-back), causing an increase of intracellular cholesterol. In addition, we observed a further increase (5-fold) in TNFα mRNA levels. This preliminary study suggests that in CF mice there is a vicious circle in which the altered synthesis/secretion of bile salts may reduce the digestion/absorption of cholesterol. As a result, the liver increases the biosynthesis of cholesterol that accumulates in the cells, triggering inflammation and further compromising the metabolism of bile salts.
Collapse
Affiliation(s)
- Felice Amato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate, Scarl, Naples, Italy
| | - Alice Castaldo
- Dipartimento di Scienze Mediche Traslazionali, University of Naples Federico II, Naples, Italy
| | - Giuseppe Castaldo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate, Scarl, Naples, Italy
| | - Gustavo Cernera
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate, Scarl, Naples, Italy
| | - Gaetano Corso
- Dipartimento di Medicina Clinica e Sperimentale, University of Foggia, Foggia, Italy
| | - Eleonora Ferrari
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
- Dipartimento di Scienze della Salute, University of Eastern Piedmont, Novara, Italy
| | - Monica Gelzo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate, Scarl, Naples, Italy
| | - Romina Monzani
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
- Dipartimento di Scienze della Salute, University of Eastern Piedmont, Novara, Italy
| | - Valeria Rachela Villella
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Raia
- Dipartimento di Scienze Mediche Traslazionali, University of Naples Federico II, Naples, Italy
| |
Collapse
|
107
|
Buyco DG, Martin J, Jeon S, Hooks R, Lin C, Carr R. Experimental models of metabolic and alcoholic fatty liver disease. World J Gastroenterol 2021; 27:1-18. [PMID: 33505147 PMCID: PMC7789066 DOI: 10.3748/wjg.v27.i1.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/01/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multi-systemic disease that is considered the hepatic manifestation of metabolic syndrome (MetS). Because alcohol consumption in NAFLD patients is common, there is a significant overlap in the pathogenesis of NAFLD and alcoholic liver disease (ALD). Indeed, MetS also significantly contributes to liver injury in ALD patients. This “syndrome of metabolic and alcoholic steatohepatitis” (SMASH) is thus expected to be a more prevalent presentation in liver patients, as the obesity epidemic continues. Several pre-clinical experimental models that couple alcohol consumption with NAFLD-inducing diet or genetic obesity have been developed to better understand the pathogenic mechanisms of SMASH. These models indicate that concomitant MetS and alcohol contribute to lipid dysregulation, oxidative stress, and the induction of innate immune response. There are significant limitations in the applicability of these models to human disease, such as the ability to induce advanced liver injury or replicate patterns in human food/alcohol consumption. Thus, there remains a need to develop models that accurately replicate patterns of obesogenic diet and alcohol consumption in SMASH patients.
Collapse
Affiliation(s)
- Delfin Gerard Buyco
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jasmin Martin
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Sookyoung Jeon
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Royce Hooks
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Chelsea Lin
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Rotonya Carr
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
108
|
Danoy M, Tauran Y, Poulain S, Jellali R, Bruce J, Leduc M, Le Gall M, Gilard F, Kido T, Arakawa H, Araya K, Mori D, Kato Y, Kusuhara H, Plessy C, Miyajima A, Sakai Y, Leclerc E. Multi-omics analysis of hiPSCs-derived HLCs matured on-chip revealed patterns typical of liver regeneration. Biotechnol Bioeng 2021; 118:3716-3732. [PMID: 33404112 DOI: 10.1002/bit.27667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/13/2020] [Accepted: 12/20/2020] [Indexed: 12/17/2022]
Abstract
Maturation of human-induced pluripotent stem cells (hiPSCs)-derived hepatocytes-like cells (HLCs) toward a complete hepatocyte phenotype remains a challenge as primitiveness patterns are still commonly observed. In this study, we propose a modified differentiation protocol for those cells which includes a prematuration in Petri dishes and a maturation in microfluidic biochip. For the first time, a large range of biomolecular families has been extracted from the same sample to combine transcriptomic, proteomic, and metabolomic analysis. After integration, these datasets revealed specific molecular patterns and highlighted the hepatic regeneration profile in biochips. Overall, biochips exhibited processes of cell proliferation and inflammation (via TGFB1) coupled with anti-fibrotic signaling (via angiotensin 1-7, ATR-2, and MASR). Moreover, cultures in this condition displayed physiological lipid-carbohydrate homeostasis (notably via PPAR, cholesterol metabolism, and bile synthesis) coupled with cell respiration through advanced oxidative phosphorylation (through the overexpression of proteins from the third and fourth complex). The results presented provide an original overview of the complex mechanisms involved in liver regeneration using an advanced in vitro organ-on-chip technology.
Collapse
Affiliation(s)
- Mathieu Danoy
- CNRS UMI 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, Tokyo, Japan.,Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yannick Tauran
- CNRS UMI 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, Tokyo, Japan.,Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Stéphane Poulain
- RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, Japan.,Biomedical Microsystems Lab, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Rachid Jellali
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319-60203 Compiègne Cedex, Compiègne, France
| | - Johanna Bruce
- Plateforme 3P5 Proteomi'ic, Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, 22 rue Méchain, Paris, France
| | - Marjorie Leduc
- Plateforme 3P5 Proteomi'ic, Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, 22 rue Méchain, Paris, France
| | - Morgane Le Gall
- Plateforme 3P5 Proteomi'ic, Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, 22 rue Méchain, Paris, France
| | - Francoise Gilard
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Univ. Paris-Diderot, Univ. Paris Saclay, Gif-sur-Yvette Cedex, France
| | - Taketomo Kido
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Arakawa
- Laboratory of Molecular Pharmacokinetics, Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City, Ishikawa, Japan
| | - Karin Araya
- Laboratory of Molecular Pharmacokinetics, Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City, Ishikawa, Japan
| | - Daiki Mori
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukio Kato
- Laboratory of Molecular Pharmacokinetics, Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City, Ishikawa, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Charles Plessy
- RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, Japan
| | - Atsushi Miyajima
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Eric Leclerc
- CNRS UMI 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, Tokyo, Japan.,Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319-60203 Compiègne Cedex, Compiègne, France
| |
Collapse
|
109
|
Duseja A, Chahal GS, Jain A, Mehta M, Ranjan A, Grover V. Association between nonalcoholic fatty liver disease and inflammatory periodontal disease: A case‑control study. J Indian Soc Periodontol 2021; 25:47-54. [PMID: 33642741 PMCID: PMC7904021 DOI: 10.4103/jisp.jisp_45_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/17/2020] [Accepted: 04/28/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent evidence suggests an interconnection between chronic periodontal disease and systemic diseases. AIM The aim of this study is to evaluate the possible association between nonalcoholic fatty liver disease (NAFLD) and inflammatory periodontal disease among north Indian population. SETTINGS AND DESIGN Tertiary health care center, cross-sectional case-control observational study. MATERIALS AND METHODS A total of 40 cases, i.e., patients with NAFLD and 40 healthy volunteers were included over a period of 8 months and their periodontal status was compared. The status of their hepatic health was ascertained by anthropometric, imaging, and biochemical evaluation including ultrasound examination of abdomen and transient elastography. STATISTICAL DATA ANALYSIS Paired t-test, multivariate logistic regression analysis using IBM SPSS STATISTICS (version 22.0, Armonk, NY: IBM Corp). RESULTS The study revealed that only 11.9% and 20% of participants had periodontitis, in healthy controls and hepatic disease patients, respectively. A statistically significant difference was observed in clinical parameters of periodontal status, except for malocclusion. Comparative analysis of tumor necrosis factor-α (TNF-α), interleukin-6, C-reactive protein, and cytokeratin-18 revealed differences in mean scores, though statistically nonsignificant. Only aspartate transaminase, number of missing teeth, and bleeding on probing (BOP) were observed with higher odds ratios for hepatic disease patients. Spearman correlation analysis revealed significant positive correlations between TNF-α and BOP, for cases. CONCLUSION Patients with hepatic disease showed a higher prevalence of periodontal disease, worse oral hygiene and periodontal health status compared to healthy individuals.
Collapse
Affiliation(s)
- Ajay Duseja
- Department of Hepatology, PGIMER, Panjab University, Chandigarh, India
| | - Gurparkash Singh Chahal
- Department of Periodontology, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Ashish Jain
- Department of Periodontology, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Manu Mehta
- Department of Hepatology, PGIMER, Panjab University, Chandigarh, India
| | - Aditya Ranjan
- Department of Periodontology, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Vishakha Grover
- Department of Periodontology, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| |
Collapse
|
110
|
Cousins MM, Morris E, Maurino C, Devasia TP, Karnak D, Ray D, Parikh ND, Owen D, Ten Haken RK, Schipper MJ, Lawrence TS, Cuneo KC. TNFR1 and the TNFα axis as a targetable mediator of liver injury from stereotactic body radiation therapy. Transl Oncol 2020; 14:100950. [PMID: 33395747 PMCID: PMC7744766 DOI: 10.1016/j.tranon.2020.100950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 02/08/2023] Open
Abstract
Elevated soluble TNFR1 levels are predictive of liver toxicity among patients receiving radiation. Soluble TNFR1 levels do not independently predict liver toxicity when included in models with ALBI and mean liver dose. Data suggest that liver inflammation mediates toxicity after liver irradiation and that the TNFα axis is associated with this inflammation. Future studies of should evaluate approaches that target pre-treatment inflammation to reduce the risk of toxicity.
Introduction Radiation therapy for the management of intrahepatic malignancies can adversely affect liver function. Liver damage has been associated with increased levels of inflammatory cytokines, including tumor necrosis factor alpha (TNFα). We hypothesized that an inflammatory state, characterized by increased soluble TNFα receptor (sTNFR1), mediates sensitivity of the liver to radiation. Materials/Methods Plasma samples collected during 3 trials of liver radiation for liver malignancies were assayed for sTNFR1 level via enzyme-linked immunosorbent assay (ELISA). Univariate and multivariate logistic regression and longitudinal models were used to characterize associations between liver toxicity (defined as a ≥2-point increase in Child-Pugh [CP] score within 6 months of radiation treatment) and sTNFR1 levels, ALBI score, biocorrected mean liver dose (MLD), age, and baseline laboratory values. Results Samples from 78 patients given liver stereotactic body radiation therapy [SBRT] (92%) or hypofractionated radiation were examined. There was a significant association between liver toxicity and sTNFR1 levels, and higher values were associated with increased toxicity over a range of mean liver doses. When ALBI score and biocorrected dose were included in the model with sTNFR1, baseline ALBI score and change in ALBI (ΔALBI) were significantly associated with toxicity, but sTNFR1 was not. Baseline aminotransferase levels also predicted toxicity but not independently of ALBI score. Conclusions Elevated plasma sTNFR1 levels are associated with liver injury after liver radiation, suggesting that elevated inflammatory cytokine activity is a predictor of radiation-induced liver dysfunction. Future studies should determine whether administration of agents that decrease inflammation prior to treatment is warranted.
Collapse
Affiliation(s)
- Matthew M Cousins
- Department of Radiation Oncology, University of Michigan, UH B2C490, 1500 E Medical Center Dr, Ann Arbor, MI 48109-5010, USA
| | - Emily Morris
- Department of Radiation Oncology, University of Michigan, UH B2C490, 1500 E Medical Center Dr, Ann Arbor, MI 48109-5010, USA
| | - Christopher Maurino
- Department of Radiation Oncology, University of Michigan, UH B2C490, 1500 E Medical Center Dr, Ann Arbor, MI 48109-5010, USA
| | - Theresa P Devasia
- Department of Radiation Oncology, University of Michigan, UH B2C490, 1500 E Medical Center Dr, Ann Arbor, MI 48109-5010, USA
| | - David Karnak
- Department of Radiation Oncology, University of Michigan, UH B2C490, 1500 E Medical Center Dr, Ann Arbor, MI 48109-5010, USA
| | - Dipankar Ray
- Department of Radiation Oncology, University of Michigan, UH B2C490, 1500 E Medical Center Dr, Ann Arbor, MI 48109-5010, USA
| | - Neehar D Parikh
- Department of Internal Medicine, University of Michigan, 3110 Taubman Center, SPC 5368, 1500 E Medical Center Dr, Ann Arbor, MI 48109-5368, USA
| | - Dawn Owen
- Department of Radiation Oncology, University of Michigan, UH B2C490, 1500 E Medical Center Dr, Ann Arbor, MI 48109-5010, USA
| | - Randall K Ten Haken
- Department of Radiation Oncology, University of Michigan, UH B2C490, 1500 E Medical Center Dr, Ann Arbor, MI 48109-5010, USA
| | - Matthew J Schipper
- Department of Radiation Oncology, University of Michigan, UH B2C490, 1500 E Medical Center Dr, Ann Arbor, MI 48109-5010, USA
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, UH B2C490, 1500 E Medical Center Dr, Ann Arbor, MI 48109-5010, USA
| | - Kyle C Cuneo
- Department of Radiation Oncology, University of Michigan, UH B2C490, 1500 E Medical Center Dr, Ann Arbor, MI 48109-5010, USA.
| |
Collapse
|
111
|
Romualdo GR, de Souza IP, de Souza LV, Prata GB, Fraga-Silva TFDC, Sartori A, Borguini RG, Santiago MCPDA, Fernandes AAH, Cogliati B, Barbisan LF. Beneficial effects of anthocyanin-rich peels of Myrtaceae fruits on chemically-induced liver fibrosis and carcinogenesis in mice. Food Res Int 2020; 139:109964. [PMID: 33509514 DOI: 10.1016/j.foodres.2020.109964] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/07/2020] [Accepted: 11/28/2020] [Indexed: 12/18/2022]
Abstract
Hepatocellular carcinoma (HCC) arising from fibrosis/cirrhosis is the most common type of primary liver cancer. Conversely, a higher intake of fruits and vegetables might play a protective role in HCC risk. Recently, Myrtaceae family tropical fruits have raised great interest due to the high levels of anthocyanins especially in their peels, which are usually discarded upon consumption. Anthocyanins are antioxidant pigments known to have beneficial effects in vivo/in vitro cancer bioassays. Thus, we evaluated whether dietary Myrciaria jaboticaba, Syzygium cumini, and Syzygium malaccense fruit peel powders reduce fibrosis and hepatocarcinogenesis in mice. Female C3H/HeJ mice were submitted to the model of diethylnitrosamine/carbon tetrachloride-induced liver fibrosis and carcinogenesis. Concomitantly, mice received a basal diet containing 2% of M. jaboticaba, S. cumini, or S. malaccense fruit peel powders, obtained by convective drying, for 10 weeks. M. jaboticaba peel powder showed the highest levels of total anthocyanins, while S. cumini peel powder displayed the greatest diversity of these pigments. All Myrtaceae family peel powders reduced the serum levels of the liver injury marker alanine aminotransferase. M. jaboticaba peel feeding reduced the incidence of liver preneoplastic foci, hepatocyte proliferation (Ki-67), and the protein levels of hepato-mitogen tumor necrosis factor-alpha (TNF-α). M. jaboticaba peel feeding also diminished liver lipid peroxidation and increased total glutathione levels. S. cumini peel feeding reduced hepatic collagen, lipid peroxidation, and TNF-α levels while increased catalase activity. Although S. malaccense peel powder, which displayed the lowest anthocyanin levels, decreased oxidative stress, and cytokine levels, no effects were observed on liver fibrosis or preneoplastic lesion outcomes. Findings indicate a protective effect of anthocyanin-rich M. jaboticaba and S. cumini peel powder feeding on preneoplastic lesion development and fibrosis, respectively. Results indicate that differential biological responses may be attributed to distinct anthocyanin profiles and levels, assigning a functional/market value to the underutilized peel fraction.
Collapse
Affiliation(s)
- Guilherme Ribeiro Romualdo
- São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Botucatu, SP, Brazil
| | - Isadora Penedo de Souza
- São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Botucatu, SP, Brazil
| | - Lucas Vilhegas de Souza
- São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Botucatu, SP, Brazil
| | - Gabriel Bacil Prata
- São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Botucatu, SP, Brazil
| | | | - Alexandrina Sartori
- São Paulo State University (UNESP), Biosciences Institute, Department of Chemical and Biological Sciences, Botucatu, SP, Brazil
| | | | | | - Ana Angélica Henrique Fernandes
- São Paulo State University (UNESP), Biosciences Institute, Department of Chemical and Biological Sciences, Botucatu, SP, Brazil
| | - Bruno Cogliati
- University of São Paulo (USP), School of Veterinary Medicine and Animal Science, Department of Pathology, São Paulo, SP, Brazil
| | - Luís Fernando Barbisan
- São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Botucatu, SP, Brazil.
| |
Collapse
|
112
|
Odagiri N, Matsubara T, Sato-Matsubara M, Fujii H, Enomoto M, Kawada N. Anti-fibrotic treatments for chronic liver diseases: The present and the future. Clin Mol Hepatol 2020; 27:413-424. [PMID: 33317250 PMCID: PMC8273638 DOI: 10.3350/cmh.2020.0187] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis reflects tissue scarring in the liver due to the accumulation of excessive extracellular matrix in response to chronically persistent liver injury. Hepatocyte cell death can trigger capillarization of liver sinusoidal endothelial cells, stimulation of immune cells including macrophages and Kupffer cells, and activation of hepatic stellate cells (HSCs), resulting in progression of liver fibrosis. Liver cirrhosis is the terminal state of liver fibrosis and is associated with severe complications, such as liver failure, portal hypertension, and liver cancer. Nevertheless, effective therapy for cirrhosis has not yet been established, and liver transplantation is the only radical treatment for severe cases. Studies investigating HSC activation and regulation of collagen production in the liver have made breakthroughs in recent decades that have advanced the knowledge regarding liver fibrosis pathophysiology. In this review, we summarize molecular mechanisms of liver fibrosis and discuss the development of novel anti-fibrotic therapies.
Collapse
Affiliation(s)
- Naoshi Odagiri
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Misako Sato-Matsubara
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan.,Department of Endowed Laboratory of Synthetic Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hideki Fujii
- Department of Premier Preventive Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Masaru Enomoto
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
113
|
Pierantonelli I, Lioci G, Gurrado F, Giordano DM, Rychlicki C, Bocca C, Trozzi L, Novo E, Panera N, De Stefanis C, D'Oria V, Marzioni M, Maroni L, Parola M, Alisi A, Svegliati-Baroni G. HDL cholesterol protects from liver injury in mice with intestinal specific LXRα activation. Liver Int 2020; 40:3127-3139. [PMID: 33098723 DOI: 10.1111/liv.14712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Liver X receptors (LXRs) exert anti-inflammatory effects even though their hepatic activation is associated with hypertriglyceridemia and hepatic steatosis. Selective induction of LXRs in the gut might provide protective signal(s) in the aberrant wound healing response that induces fibrosis during chronic liver injury, without hypertriglyceridemic and steatogenic effects. METHODS Mice with intestinal constitutive LXRα activation (iVP16-LXRα) were exposed to intraperitoneal injection of carbon tetrachloride (CCl4 ) for 8 weeks, and in vitro cell models were used to evaluate the beneficial effect of high-density lipoproteins (HDL). RESULTS After CCl4 treatment, the iVP16-LXRα phenotype showed reduced M1 macrophage infiltration, increased expression M2 macrophage markers, and lower expression of hepatic pro-inflammatory genes. This anti-inflammatory effect in the liver was also associated with decreased expression of hepatic oxidative stress genes and reduced expression of fibrosis markers. iVP16-LXRα exhibited increased reverse cholesterol transport in the gut by ABCA1 expression and consequent enhancement of the levels of circulating HDL and their receptor SRB1 in the liver. No hepatic steatosis development was observed in iVP16-LXRα. In vitro, HDL induced a shift from M1 to M2 phenotype of LPS-stimulated Kupffer cells, decreased TNFα-induced oxidative stress in hepatocytes and reduced NF-kB activity in both cells. SRB1 silencing reduced TNFα gene expression in LPS-stimulated KCs, and NOX-1 and IL-6 in HepG2. CONCLUSIONS Intestinal activation of LXRα modulates hepatic response to injury by increasing circulating HDL levels and SRB1 expression in the liver, thus suggesting this circuit as potential actionable pathway for therapy.
Collapse
Affiliation(s)
| | - Gessica Lioci
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy
| | - Fabio Gurrado
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy
| | - Debora M Giordano
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy
| | - Chiara Rychlicki
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy
| | - Claudia Bocca
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Luciano Trozzi
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy
| | - Erica Novo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Nadia Panera
- Research Area for Multifactorial Diseases, Molecular Genetics of Complex Phenotypes Research Unit, Bambino Gesù Hospital, IRCCS, Rome, Italy
| | - Cristiano De Stefanis
- Research Area for Multifactorial Diseases, Molecular Genetics of Complex Phenotypes Research Unit, Bambino Gesù Hospital, IRCCS, Rome, Italy
| | - Valentina D'Oria
- Research Area for Multifactorial Diseases, Molecular Genetics of Complex Phenotypes Research Unit, Bambino Gesù Hospital, IRCCS, Rome, Italy
| | - Marco Marzioni
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy
| | - Luca Maroni
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy
| | - Maurizio Parola
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Anna Alisi
- Research Area for Multifactorial Diseases, Molecular Genetics of Complex Phenotypes Research Unit, Bambino Gesù Hospital, IRCCS, Rome, Italy
| | - Gianluca Svegliati-Baroni
- Obesity Center, Marche Polytechnic University, Ancona, Italy.,Liver Injury and Transplant Unit, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
114
|
de Oliveira CM, Martins LAM, de Sousa AC, Moraes KDS, Costa BP, Vieira MQ, Coelho BP, Borojevic R, de Oliveira JR, Guma FCR. Resveratrol increases the activation markers and changes the release of inflammatory cytokines of hepatic stellate cells. Mol Cell Biochem 2020; 476:649-661. [PMID: 33073314 DOI: 10.1007/s11010-020-03933-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
The phytoalexin Resveratrol (3,5,4'-trihydroxystilbene; RSV) has been related to numerous beneficial effects on health by its cytoprotection and chemoprevention activities. Liver fibrosis is characterized by the extracellular matrix accumulation after hepatic injury and can lead to cirrhosis. Hepatic stellate cells (HSC) play a crucial role during fibrogenesis and liver wound healing by changing their quiescent phenotype to an activated phenotype for protecting healthy areas from damaged areas. Strategies on promoting the activated HSC death, the quiescence return or the cellular activation stimuli decrease play an important role on reducing liver fibrosis. Here, we evaluated the RSV effects on some markers of activation in GRX, an HSC model. We further evaluated the RSV influence in the ability of GRX on releasing inflammatory mediators. RSV at 1 and 10 µM did not alter the protein content of α-SMA, collagen I and GFAP; but 50 µM increased the content of these activation-related proteins. Also, RSV did not change the myofibroblast-like morphology of GRX. Interestingly, RSV at 10 and 50 µM decreased the GRX migration and collagen-I gel contraction. Finally, we showed that RSV triggered the increase in the TNF-α and IL-10 content in culture media of GRX while the opposite occurred for the IL-6 content. Altogether, these results suggested that RSV did not decrease the activation state of GRX and oppositely, triggered a pro-activation effect at the 50 µM concentration. However, despite the increase of TNF- α in culture media, these results on IL-6 and IL-10 secretion were in accordance with the anti-inflammatory role of RSV in our model.
Collapse
Affiliation(s)
- Cleverson Moraes de Oliveira
- Departmento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo I, Porto Alegre, RS, CEP, 90035-003, Brazil.
| | - Leo Anderson Meira Martins
- Departmento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo I, Porto Alegre, RS, CEP, 90035-003, Brazil.,Departamento de Fisiologia, ICBS, Universidade Federal Do Rio Grande Do Sul, Rua Sarmento Leite, Porto Alegre, RS, CEP, 500, Brazil
| | - Arieli Cruz de Sousa
- Departmento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo I, Porto Alegre, RS, CEP, 90035-003, Brazil
| | - Ketlen da Silveira Moraes
- Departmento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo I, Porto Alegre, RS, CEP, 90035-003, Brazil
| | - Bruna Pasqualotto Costa
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Moema Queiroz Vieira
- Departmento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo I, Porto Alegre, RS, CEP, 90035-003, Brazil
| | - Bárbara Paranhos Coelho
- Departmento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo I, Porto Alegre, RS, CEP, 90035-003, Brazil
| | - Radovan Borojevic
- Centro de Medicina Regenerativa, Faculdade de Medicina de Petrópolis, Petrópolis, RJ, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Fátima Costa Rodrigues Guma
- Departmento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo I, Porto Alegre, RS, CEP, 90035-003, Brazil.,Centro de Microscopia E Microanálise (CMM), Universidade Federal Do Rio Grande Do Sul, Av. Bento Gonçalves, 9500 - Prédio 43.177 - Bl 1Campus do Vale, Porto Alegre, RS, CEP, 91501-970, Brazil
| |
Collapse
|
115
|
Dominici FP, Veiras LC, Shen JZY, Bernstein EA, Quiroga DT, Steckelings UM, Bernstein KE, Giani JF. Activation of AT 2 receptors prevents diabetic complications in female db/db mice by NO-mediated mechanisms. Br J Pharmacol 2020; 177:4766-4781. [PMID: 32851652 DOI: 10.1111/bph.15241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/08/2020] [Accepted: 08/16/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE The AT2 receptor plays a role in metabolism by opposing the actions triggered by the AT1 receptors. Activation of AT2 receptors has been shown to enhance insulin sensitivity in both normal and insulin resistance animal models. In this study, we investigated the mechanism by which AT2 receptors activation improves metabolism in diabetic mice. EXPERIMENTAL APPROACH Female diabetic (db/db) and non-diabetic (db/+) mice were treated for 1 month with the selective AT2 agonist, compound 21 (C21, 0.3 mg·kg-1 ·day-1 , s.c.). To evaluate whether the effects of C21 depend on NO production, a subgroup of mice was treated with C21 plus a sub-pressor dose of the NOS inhibitor l-NAME (0.1 mg·ml-1 , drinking water). KEY RESULTS C21-treated db/db mice displayed improved glucose and pyruvate tolerance compared with saline-treated db/db mice. Also, C21-treated db/db mice showed reduced liver weight and decreased hepatic lipid accumulation compared with saline-treated db/db mice. Insulin signalling analysis showed increased phosphorylation of the insulin receptor, Akt and FOXO1 in the livers of C21-treated db/db mice compared with saline-treated counterparts. These findings were associated with increased adiponectin levels in plasma and adipose tissue and reduced adipocyte size in inguinal fat. The beneficial effects of AT2 receptors activation were associated with increased eNOS phosphorylation and higher levels of NO metabolites and were abolished by l-NAME. CONCLUSION AND IMPLICATIONS Chronic C21 infusion exerts beneficial metabolic effects in female diabetic db/db mice, alleviating type 2 diabetes complications, through a mechanism that involves NO production.
Collapse
Affiliation(s)
- Fernando P Dominici
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, IQUIFIB (UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luciana C Veiras
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Justin Z Y Shen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ellen A Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Diego T Quiroga
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, IQUIFIB (UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ulrike M Steckelings
- IMM-Department of Cardiovascular & Renal Research, University of Southern Denmark, Odense, Denmark
| | - Kenneth E Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jorge F Giani
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
116
|
Sunda F, Arowolo A. A molecular basis for the anti-inflammatory and anti-fibrosis properties of cannabidiol. FASEB J 2020; 34:14083-14092. [PMID: 32885502 DOI: 10.1096/fj.202000975r] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/25/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022]
Abstract
Cannabidiol (CBD) is considered a non-psychoactive, antioxidant, and anti-inflammatory compound derived from the Cannabis sativa plant. There are various reports on the versatile function of CBD, including ameliorating chronic inflammation and fibrosis formation in several tissue types. However, only a hand full of studies have proposed or provided a molecular justification for the beneficial properties of this Phyto-compound. This review focused on the anti-inflammation and anti-fibrotic effects of CBD based on modulating the associated chemokines/cytokines and receptor-mediated pathways. We also highlighted the regulatory impact of CBD on reactive oxygen species (ROS) producing-NADPH oxidase (Nox), and ROS scavenging-superoxide dismutase (SOD) enzymes. Although CBD has a low affinity to Cannabinoid receptors 1 and 2 (CB1 and CB2 ), we reported on the activation of these receptors by other CBD analogs, and CBD on non-CBD receptors. CBD downregulates pro-inflammatory and pro-fibrotic chemokines/cytokines by acting as direct or indirect agonists of Adenosine A2A /equilibrative nucleoside transporter receptors, Peroxisome proliferator-activated receptor gamma, and Transient receptor potential vanilloid receptors or channels, and as an antagonist of GPR55 receptors. CBD also caused the reduction and enhancement of the ROS producing, Nox and ROS-scavenging, SOD enzyme activities, respectively. This review thus recommends the continued study of CBD's molecular mechanism in treating established and emerging inflammatory and fibrosis-related diseases.
Collapse
Affiliation(s)
- Falone Sunda
- Hair and Skin Research Laboratory, Division of Medical Biochemistry and Dermatology, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Afolake Arowolo
- Hair and Skin Research Laboratory, Division of Medical Biochemistry and Dermatology, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
117
|
Maresh MM, Abdelaziz RR, Ibrahim TM. Febuxostat mitigates concanavalin A-induced acute liver injury via modulation of MCP-1, IL-1β, TNF-α, neutrophil infiltration, and apoptosis in mice. Life Sci 2020; 260:118307. [PMID: 32841665 DOI: 10.1016/j.lfs.2020.118307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
AIM Liver plays a crucial role in innate immunity reactions. This role predisposes the liver to innate-mediated liver injury when uncontrolled inflammation occurs. In this study, the effect of febuxostat administration on acute liver injury induced by concanavalin A (Con A) injection into mouse eye orbital sinus was studied. MATERIALS AND METHODS Two doses of febuxostat (10 and 20 mg/kg, orally) were administered either 1 h before or 30 min after the administration of Con A. Febuxostat at a low dose (10 mg/kg) before and after Con A modulated the elevation of serum ALT, liver uric acid, liver myeloperoxidase (MPO), and interleukin-1β (IL-1β) induced by Con A. The same dose of febuxostat before Con A also decreased serum total bilirubin and neutrophil infiltration, as evidenced by flow cytometry and histopathological analysis. KEY FINDINGS Febuxostat at a high dose (20 mg/kg) significantly improved serum ALT, AST, albumin, total bilirubin, liver uric acid, MPO, monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), interleukin-4 (IL-4), IL-1β, and neutrophil infiltration induced by Con A administration. The results of histopathological examination of liver cells paralleled the observed biochemical improvements. Hepatocyte apoptosis as evidenced by immunohistochemical examination of cleaved caspase-3 was markedly decreased in the febuxostat protection and treatment groups, in a dose-dependent manner SIGNIFICANCE: These results indicate that febuxostat, especially at the higher dose, may be an effective inhibitor of immune reactions evoked by Con A administration.
Collapse
Affiliation(s)
- Mohammed M Maresh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt..
| | - Tarek M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| |
Collapse
|
118
|
Nie L, Liu Y, Zhang B, Zhao J. Application of Histone Deacetylase Inhibitors in Renal Interstitial Fibrosis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2020; 6:226-235. [PMID: 32903948 DOI: 10.1159/000505295] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Renal interstitial fibrosis is characterized by the accumulation of extracellular matrix proteins, which is a common feature of chronic kidney diseases. SUMMARY Increasing evidence has shown the aberrant expression of histone deacetylases (HDACs) in the development and progression of renal fibrosis, suggesting the possibility of utilizing HDAC inhibitor (HDACi) as therapeutics for renal fibrosis. Recent studies have successfully demonstrated the antifibrotic effects of HDACis in various animal models, which are associated with multiple signaling pathways including TGF-β signaling, EGRF signaling, signal transducer and activator of transcription 3 pathway, and JNK/Notch2 signaling. This review will focus on the utilization of HDACi as antifibrotic agents and its relative molecular mechanisms. KEY MESSAGES HDACis have shown promising results in antifibrotic therapy, and it is rational to anticipate that HDACis will improve clinical outcomes of renal fibrosis in the future.
Collapse
Affiliation(s)
- Ling Nie
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Yong Liu
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Bo Zhang
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Jinghong Zhao
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| |
Collapse
|
119
|
Mariqueo TA, Zúñiga-Hernández J. Omega-3 derivatives, specialized pro-resolving mediators: Promising therapeutic tools for the treatment of pain in chronic liver disease. Prostaglandins Leukot Essent Fatty Acids 2020; 158:102095. [PMID: 32450460 DOI: 10.1016/j.plefa.2020.102095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/02/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
The main causes of liver injury are associated with inflammation and permanent damage. They can cause chronic liver disease (CLD), which is mainly related to viral hepatitis, alcohol consumption and non-alcoholic steatohepatitis, leading to fibrosis, cirrhosis and hepatocellular carcinoma. These conditions prevent the liver from working normally and make it begin to fail, which in turn may prompt a liver transplant. CLD and cirrhosis are the eleventh cause of death worldwide. At present, there are no approved pharmacological treatments to prevent, treat or resolve liver fibrosis. The prevalence of pain in the hepatic disease is elevated with ranges between 30% and 40%. Most of the pain drugs require hepatic function; therefore, the suitable control of pain is still a clinical challenge. Specialized pro-resolving mediators (SPM): lipoxins, resolvins, protectins and maresins, are potent endogenous molecules (nM concentrations) that modulate inflammatory body responses by reducing neutrophil infiltration, macrophage activity and pain sensitization. SPM have anti-inflammatory properties, stimulate tissue resolution, repair and regeneration, and exhibit anti-nociceptive actions. Furthermore, SPM were tried on different cellular, animal models and human observational data of liver injury, improving the pathogenesis of inflammation and fibrosis. In the present work, we will describe recent evidence that suggests that SPM can be used as a therapeutic option for CLD. Additionally, we will examine the role of SPM in the control of pain in pathologies associated with liver injury.
Collapse
Affiliation(s)
- T A Mariqueo
- Centro de Investigaciones Medicas, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - J Zúñiga-Hernández
- Centro de Investigaciones Medicas, Escuela de Medicina, Universidad de Talca, Talca, Chile.
| |
Collapse
|
120
|
Lambrecht J, van Grunsven LA, Tacke F. Current and emerging pharmacotherapeutic interventions for the treatment of liver fibrosis. Expert Opin Pharmacother 2020; 21:1637-1650. [PMID: 32543284 DOI: 10.1080/14656566.2020.1774553] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Chronic liver disease is due to various causes of persistent liver damage and will eventually lead to the development of liver fibrosis. If no treatment is initiated, this condition may progress to cirrhosis and hepatocellular carcinoma. Current treatments comprise the elimination of the cause of injury, such as by lifestyle changes, alcohol abstinence, and antiviral agents. However, such etiology-driven therapy is often insufficient in patients with late-stage fibrosis/cirrhosis, therefore maintaining the need for efficient antifibrotic pharmacotherapeutic interventions. AREAS COVERED The authors discuss the recent advances in the development of antifibrotic drugs, which target various pathways of the fibrogenesis process, including cell death, inflammation, gut-liver axis, and myofibroblast activation. Due to the significant burden of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH), various agents which specifically target metabolic pathways and their related receptors/ligands have been developed. For some of them, e.g., obeticholic acid, advanced stage clinical trials indicate antifibrotic efficacy in NAFLD and NASH. EXPERT OPINION Significant advances have been made in the development of novel antifibrotic pharmacotherapeutics. The authors expect that the development of combinatorial therapies, which combine compounds that target various pathways of fibrosis progression, will have a major impact as future etiology-independent therapies.
Collapse
Affiliation(s)
- Joeri Lambrecht
- Liver Cell Biology Research Group, Vrije Universiteit Brussel , Brussels, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology Research Group, Vrije Universiteit Brussel , Brussels, Belgium
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medical Center , Berlin, Germany
| |
Collapse
|
121
|
Gene expression in human liver fibrosis associated with Echinococcus granulosus sensu lato. Parasitol Res 2020; 119:2177-2187. [PMID: 32377911 DOI: 10.1007/s00436-020-06700-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
Liver fibrosis is a dynamic process that occurs in response to chronic liver disease resulting from factors such as chronic infections, autoimmune reactions, allergic responses, toxins, radiation, and infectious agents. Among the infectious agents, multicellular parasites cause chronic inflammation and fibrosis. Twenty-five patients with different stages of cystic echinococcosis (CE) were enrolled in the study. The expression of ACTA2, COL3A1, IFN-γ, MMP2, MMP9, TGF-β1, and TNF-α genes was determined by qRT-PCR in healthy and fibrotic liver tissue of the CE patients. TGF-β1 expression was evaluated by immunohistochemistry, and histology was conducted to assess the development of liver fibrosis. Expression of MMP9, ACTA2, COL3A1, and MMP2 was found significantly higher in the fibrotic tissue compared to healthy tissue. We observed a significant correlation between TGF-β1 and TNF-α gene expressions and liver fibrosis. The mRNA level of IFN-γ was lower in the fibrotic than in the healthy hepatic tissue. Immunohistochemistry analysis revealed TGF-β1 upregulation in the fibrotic tissue. Histology showed inflammation and fibrosis to be significantly higher in the fibrotic tissue. The findings of this study suggest that Echinococcus granulosussensu lato can promotes fibrosis through the overexpression of TGF-β1, MMP9, ACTA2, COL3A1, and MMP2. The downregulation of IFN-γ mRNA in fibrotic samples is probably due to the increased production of TGF-β1 and the suppression of potential anti-fibrotic role of IFN-γ during advanced liver injury caused by E. granulosussensu lato.
Collapse
|
122
|
Gole L, Yeong J, Lim JCT, Ong KH, Han H, Thike AA, Poh YC, Yee S, Iqbal J, Hong W, Lee B, Yu W, Tan PH. Quantitative stain-free imaging and digital profiling of collagen structure reveal diverse survival of triple negative breast cancer patients. Breast Cancer Res 2020; 22:42. [PMID: 32375854 PMCID: PMC7204022 DOI: 10.1186/s13058-020-01282-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 04/17/2020] [Indexed: 12/31/2022] Open
Abstract
Background Stromal and collagen biology has a significant impact on tumorigenesis and metastasis. Collagen is a major structural extracellular matrix component in breast cancer, but its role in cancer progression is the subject of historical debate. Collagen may represent a protective layer that prevents cancer cell migration, while increased stromal collagen has been demonstrated to facilitate breast cancer metastasis. Methods Stromal remodeling is characterized by collagen fiber restructuring and realignment in stromal and tumoral areas. The patients in our study were diagnosed with triple-negative breast cancer in Singapore General Hospital from 2003 to 2015. We designed novel image processing and quantification pipelines to profile collagen structures using numerical imaging parameters. Our solution differentiated the collagen into two distinct modes: aggregated thick collagen (ATC) and dispersed thin collagen (DTC). Results Extracted parameters were significantly associated with bigger tumor size and DCIS association. Of numerical parameters, ATC collagen fiber density (CFD) and DTC collagen fiber length (CFL) were of significant prognostic value for disease-free survival and overall survival for the TNBC patient cohort. Using these two parameters, we built a predictive model to stratify the patients into four groups. Conclusions Our study provides a novel insight for the quantitation of collagen in the tumor microenvironment and will help predict clinical outcomes for TNBC patients. The identified collagen parameters, ATC CFD and DTC CFL, represent a new direction for clinical prognosis and precision medicine. We also compared our result with benign samples and DICS samples to get novel insight about the TNBC heterogeneity. The improved understanding of collagen compartment of TNBC may provide insights into novel targets for better patient stratification and treatment.
Collapse
Affiliation(s)
- Laurent Gole
- Institute of Molecule and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Building, Singapore, 138673, Singapore
| | - Joe Yeong
- Institute of Molecule and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Building, Singapore, 138673, Singapore.,Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore.,Singapore Immunology Network, A*STAR, 8A Biomedical Grove, Immunos Building, Biopolis, Singapore, 138648, Singapore
| | - Jeffrey Chun Tatt Lim
- Institute of Molecule and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Building, Singapore, 138673, Singapore.,Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Kok Haur Ong
- Institute of Molecule and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Building, Singapore, 138673, Singapore
| | - Hao Han
- Institute of Molecule and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Building, Singapore, 138673, Singapore.,Department of Pathology, National University Hospital, Singapore, Singapore
| | - Aye Aye Thike
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Yong Cheng Poh
- Diagnostic Development Hub (DxD), A*STAR, Singapore, Singapore
| | - Sidney Yee
- Diagnostic Development Hub (DxD), A*STAR, Singapore, Singapore
| | - Jabed Iqbal
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Wanjin Hong
- Institute of Molecule and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Building, Singapore, 138673, Singapore.
| | - Bernett Lee
- Singapore Immunology Network, A*STAR, 8A Biomedical Grove, Immunos Building, Biopolis, Singapore, 138648, Singapore.
| | - Weimiao Yu
- Institute of Molecule and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Building, Singapore, 138673, Singapore.
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, 20 College Road, Academia, Level 7, Diagnostics Tower, Singapore, 169856, Singapore.
| |
Collapse
|
123
|
Li HN, Zhao LL, Zhou DY, Chen DQ. Ganoderma Lucidum Polysaccharides Ameliorates Hepatic Steatosis and Oxidative Stress in db/db Mice via Targeting Nuclear Factor E2 (Erythroid-Derived 2)-Related Factor-2/Heme Oxygenase-1 (HO-1) Pathway. Med Sci Monit 2020; 26:e921905. [PMID: 32245940 PMCID: PMC7154563 DOI: 10.12659/msm.921905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) and its comorbidities, including obesity, hypertension, and hyperlipidemia, are commonly associated with non-alcoholic fatty liver disease (NAFLD). Ganoderma lucidum polysaccharide (GDLP) is one of the central bioactive components in Ganoderma lucidum with anti-inflammatory, antioxidant, and hepatoprotective properties. However, the effect and mechanisms of GDLP in hepatic steatosis remain largely unknown. In the present study, we aimed to investigate the function of GDLP in hepatic steatosis and the underlying mechanism. Material/Methods In this study, male db/db mice were received with a high-fat diet (HFD) to investigate the effect of GDLP in T2DM-induced hepatic steatosis. The biological characteristics of the hepatic steatosis were evaluated through the detection of clinical indicators, including biochemical parameters, histopathology, and related cytokine levels. Additionally, the protein expression levels of Nrf2 (nuclear factor E2 (erythroid-derived 2)-related factor-2) signaling pathway were investigated by using western blotting and immunohistochemical staining. Results The levels of food/water intake, body weight, fasting blood glucose, plasma lipids, urinary biomarkers, hepatic lipid accumulation, and tumor necrosis factor (TNF)-α were observably decreased in GDLP-treated db/db mice. Additionally, administration of GDLP increased the expression of various antioxidases, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), whereas it reduced the level of malonaldehyde (MDA). Furthermore, GDLP was significantly promoted protein expression level of Nrf2 and its downstream target gene HO-1 (heme oxygenase-1) while decreased TNF-α expression. Conclusions These results indicate that GDLP against T2DM-induced hepatic steatosis, oxidative stress, and inflammation by improving the Nrf2/HO-1 signaling pathway in db/db mice, suggesting the GDLP may serve as an effective strategy for in fatty liver treatment.
Collapse
Affiliation(s)
- Hong Ning Li
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Ling Li Zhao
- Hangzhou AIMA Maternity Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Di Yi Zhou
- Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Dan Qing Chen
- Women Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
124
|
Shoieb SM, El-Ghiaty MA, Alqahtani MA, El-Kadi AO. Cytochrome P450-derived eicosanoids and inflammation in liver diseases. Prostaglandins Other Lipid Mediat 2020; 147:106400. [DOI: 10.1016/j.prostaglandins.2019.106400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/08/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023]
|
125
|
Abo-Zaid MA, Shaheen ES, Ismail AH. Immunomodulatory effect of curcumin on hepatic cirrhosis in experimental rats. J Food Biochem 2020; 44:e13219. [PMID: 32215945 DOI: 10.1111/jfbc.13219] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 12/20/2022]
Abstract
Cirrhosis is a chronic liver disease. The present work aimed to evaluate the regulatory immune effect of curcumin in hepatic cirrhosis induced by carbon tetrachloride (CCl4) injections in experimental rats' model. Chronic liver fibrosis was induced in experiment animals by recurrent injections of CCl4 for more than 5 weeks. They were divided into five groups: first group was injected with normal saline, second group with CCl4, third, fourth, and fifth groups were injected with CCl4 (intraperitoneal injection) at dose 3 ml/kg, two times weekly for 6 weeks supplemented with the administration of curcumin with concentrations 250, 200, and 150 mg/kg. Immune response was analyzed to different treatments. Interleukin 10 (IL-10), pro-inflammatory cytokines TNF-α, TGF-1β, and liver histopathological examinations were conducted. The results showed that estimations of IL-10 concentrations were significantly increased in curcumin groups compared with CCl4 group, whereas TNF-α and TGF-1β levels were significantly decreased comparing with CCl4 group. The histopathological examinations for liver tissues showed that curcumin treated groups have almost retained the normal structure of liver tissues. In conclusion, curcumin inhibited hepatic fibrosis and liver fibrogenesis with regulation of the immune system mechanism against invader chemical toxicity. PRACTICAL APPLICATIONS: Curcumin is well documented for its medicinal properties, commonly used as a spice. Our work has thus demonstrated its effectiveness as an immunomodulatory agent. Practically, clinical studies have suggested that curcumin displays a diverse and powerful array of pharmacological effects in nearly all of the human body's major organ systems. These are: antidiabetes, anti-inflammatory, anticancer, antiaging, antioxidant, antibacterial infection, hepatoprotective, neurodegenerative, and cardiovascular effects.
Collapse
Affiliation(s)
- Mabrouk A Abo-Zaid
- Department of Biology, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Emad S Shaheen
- Medical Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Ahmed H Ismail
- Department of Biology, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
126
|
Zhang M, Haughey M, Wang NY, Blease K, Kapoun AM, Couto S, Belka I, Hoey T, Groza M, Hartke J, Bennett B, Cain J, Gurney A, Benish B, Castiglioni P, Drew C, Lachowicz J, Carayannopoulos L, Nathan SD, Distler J, Brenner DA, Hariharan K, Cho H, Xie W. Targeting the Wnt signaling pathway through R-spondin 3 identifies an anti-fibrosis treatment strategy for multiple organs. PLoS One 2020; 15:e0229445. [PMID: 32160239 PMCID: PMC7065809 DOI: 10.1371/journal.pone.0229445] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
The Wnt/β-catenin signaling pathway has been implicated in human proliferative diseases such as cancer and fibrosis. The functions of β-catenin and several other components of this pathway have been investigated in fibrosis. However, the potential role of R-spondin proteins (RSPOs), enhancers of the Wnt/β-catenin signaling, has not been described. A specific interventional strategy targeting this pathway for fibrosis remains to be defined. We developed monoclonal antibodies against members of the RSPO family (RSPO1, 2, and 3) and probed their potential function in fibrosis in vivo. We demonstrated that RSPO3 plays a critical role in the development of fibrosis in multiple organs. Specifically, an anti-RSPO3 antibody, OMP-131R10, when dosed therapeutically, attenuated fibrosis in carbon tetrachloride (CCl4)-induced liver fibrosis, bleomycin-induced pulmonary and skin fibrosis models. Mechanistically, we showed that RSPO3 induces multiple pro-fibrotic chemokines and cytokines in Kupffer cells and hepatocytes. We found that the anti-fibrotic activity of OMP-131R10 is associated with its inhibition of β-catenin activation in vivo. Finally, RSPO3 was found to be highly elevated in the active lesions of fibrotic tissues in mouse models of fibrosis and in patients with idiopathic pulmonary fibrosis (IPF) and nonalcoholic steatohepatitis (NASH). Together these data provide an anti-fibrotic strategy for targeting the Wnt/β-catenin pathway through RSPO3 blockade and support that OMP-131R10 could be an important therapeutic agent for fibrosis.
Collapse
Affiliation(s)
- Mingjun Zhang
- Celgene Corporation, San Diego, CA, United States of America
| | - Michael Haughey
- Celgene Corporation, San Diego, CA, United States of America
| | - Nai-Yu Wang
- Celgene Corporation, San Diego, CA, United States of America
| | - Kate Blease
- Celgene Corporation, San Diego, CA, United States of America
| | - Ann M. Kapoun
- OncoMed Pharmaceuticals, Redwood City, CA, United States of America
| | - Suzana Couto
- Celgene Corporation, San Diego, CA, United States of America
| | - Igor Belka
- Celgene Corporation, San Diego, CA, United States of America
| | - Timothy Hoey
- OncoMed Pharmaceuticals, Redwood City, CA, United States of America
| | - Matthew Groza
- Celgene Corporation, San Diego, CA, United States of America
| | - James Hartke
- Celgene Corporation, San Diego, CA, United States of America
| | - Brydon Bennett
- Celgene Corporation, San Diego, CA, United States of America
| | - Jennifer Cain
- OncoMed Pharmaceuticals, Redwood City, CA, United States of America
| | - Austin Gurney
- OncoMed Pharmaceuticals, Redwood City, CA, United States of America
| | - Brent Benish
- Celgene Corporation, San Diego, CA, United States of America
| | | | - Clifton Drew
- Celgene Corporation, San Diego, CA, United States of America
| | - Jean Lachowicz
- Celgene Corporation, Summit, NJ, United States of America
| | | | - Steven D. Nathan
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA, United States of America
| | - Jorg Distler
- Department of Internal Medicine, University of Erlangen-Nuremberg, Erlangen, Germany
| | - David A. Brenner
- Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | | | - Ho Cho
- Celgene Corporation, San Diego, CA, United States of America
| | - Weilin Xie
- Celgene Corporation, San Diego, CA, United States of America
- * E-mail:
| |
Collapse
|
127
|
Higashiyama M, Tomita K, Sugihara N, Nakashima H, Furuhashi H, Nishikawa M, Inaba K, Wada A, Horiuchi K, Hanawa Y, Shibuya N, Kurihara C, Okada Y, Nishii S, Mizoguchi A, Hozumi H, Watanabe C, Komoto S, Yamamoto J, Seki S, Miura S, Hokari R. Chitinase 3-like 1 deficiency ameliorates liver fibrosis by promoting hepatic macrophage apoptosis. Hepatol Res 2019; 49:1316-1328. [PMID: 31250532 PMCID: PMC6916176 DOI: 10.1111/hepr.13396] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/14/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
Abstract
AIM Chitinase 3-like 1 (CHI3L1), an 18-glycosyl hydrolase-related molecule, is a member of the enzymatically inactive chitinase-like protein family. Serum levels of CHI3L1 are strongly correlated with hepatic fibrosis progression during many liver diseases. Therefore, this protein could be involved in the development of hepatic fibrosis pathology; however, its role has not been elucidated. We aimed to elucidate its role in the pathophysiology of liver fibrosis. METHODS Chitinase 3-like 1-deficient (Chi3l1-/- ) mice were given carbon tetrachloride twice per week for 4 weeks or fed a methionine choline-deficient diet for 12 weeks to generate mouse liver fibrosis models. Human fibrotic liver tissues were also examined immunohistochemically. RESULTS In human and mouse fibrotic livers, CHI3L1 expression was mainly localized to hepatic macrophages, and the intrahepatic accumulation of CHI3L1+ macrophages was significantly enhanced compared to that in control livers. In the two mouse models, hepatic fibrosis was significantly ameliorated in Chi3l1-/- mice compared to that in wild-type mice, which was dependent on hepatic macrophages. The accumulation and activation of hepatic macrophages was also significantly suppressed in Chi3l1-/- mice compared to that in wild-type mice. Furthermore, apoptotic hepatic macrophages were significantly increased in Chi3l1-/- mice. Chitinase 3-like 1 was found to inhibit hepatic macrophage apoptosis by suppressing Fas expression and activating Akt signaling in an autocrine manner, which resulted in hepatic macrophage accumulation and activation, exaggerating liver fibrosis. CONCLUSIONS Chitinase 3-like 1 exacerbates liver fibrosis progression by suppressing apoptosis in hepatic macrophages. Therefore, this might be a potential therapeutic target for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Masaaki Higashiyama
- Division of Gastroenterology and Hepatology, Department of Internal MedicineTokorozawa
| | - Kengo Tomita
- Division of Gastroenterology and Hepatology, Department of Internal MedicineTokorozawa
| | - Nao Sugihara
- Division of Gastroenterology and Hepatology, Department of Internal MedicineTokorozawa
| | | | - Hirotaka Furuhashi
- Division of Gastroenterology and Hepatology, Department of Internal MedicineTokorozawa
| | - Makoto Nishikawa
- Departments of SurgeryNational Defense Medical CollegeTokorozawa
| | - Kenichi Inaba
- Division of Gastroenterology and Hepatology, Department of Internal MedicineTokorozawa
| | - Akinori Wada
- Division of Gastroenterology and Hepatology, Department of Internal MedicineTokorozawa
| | - Kazuki Horiuchi
- Division of Gastroenterology and Hepatology, Department of Internal MedicineTokorozawa
| | - Yoshinori Hanawa
- Division of Gastroenterology and Hepatology, Department of Internal MedicineTokorozawa
| | - Naoki Shibuya
- Division of Gastroenterology and Hepatology, Department of Internal MedicineTokorozawa
| | - Chie Kurihara
- Division of Gastroenterology and Hepatology, Department of Internal MedicineTokorozawa
| | - Yoshikiyo Okada
- Division of Gastroenterology and Hepatology, Department of Internal MedicineTokorozawa
| | - Shin Nishii
- Division of Gastroenterology and Hepatology, Department of Internal MedicineTokorozawa
| | - Akinori Mizoguchi
- Division of Gastroenterology and Hepatology, Department of Internal MedicineTokorozawa
| | - Hideaki Hozumi
- Division of Gastroenterology and Hepatology, Department of Internal MedicineTokorozawa
| | - Chikako Watanabe
- Division of Gastroenterology and Hepatology, Department of Internal MedicineTokorozawa
| | - Shunsuke Komoto
- Division of Gastroenterology and Hepatology, Department of Internal MedicineTokorozawa
| | - Junji Yamamoto
- Departments of SurgeryNational Defense Medical CollegeTokorozawa
| | - Shuhji Seki
- Departments of Immunology and MicrobiologyTokorozawa
| | - Soichiro Miura
- Division of Gastroenterology and Hepatology, Department of Internal MedicineTokorozawa
- International University of Health and Welfare Graduate SchoolTokyoJapan
| | - Ryota Hokari
- Division of Gastroenterology and Hepatology, Department of Internal MedicineTokorozawa
| |
Collapse
|
128
|
Abd El-Rahman SS, Fayed HM. Targeting AngII/AT1R signaling pathway by perindopril inhibits ongoing liver fibrosis in rat. J Tissue Eng Regen Med 2019; 13:2131-2141. [PMID: 31348596 DOI: 10.1002/term.2940] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/09/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022]
Abstract
The renin-angiotensin system (RAS) has a substantial role in liver fibrosis, cirrhosis, and portal hypertension. Hence, targeting RAS through angiotensin-converting enzyme (ACE) inhibitors can mend hepatic fibrosis; the current study was designed to examine the potential fibrosis inhibition activity of perindopril using a rat model of liver fibrosis induced by thioacetamide (TAA). Four groups of rats were used throughout this study, Group I (control group); rats received the vehicle. TAA was used for inducing liver fibrosis in rats by intraperitoneal injection of 200-mg/kg body weight twice a week for 6 weeks. Group II served as (TAA group). Rats of Groups III and IV were given perindopril at doses of 2 and 8 mg/kg 2 weeks after TAA administration and continued concomitantly with TAA till the end of the experiment. Injection of TAA resulted in a significant increase in aminotransferases' activities and bilirubin with a significant decrease in serum albumin and total protein and a significant decrease in hepatic content of GSH and SOD. Additionally, TAA injection raised the hepatic content of TGF-β1, α-SMA, TNF-α, and level of MDA. Histological and immunohistochemical data presented marked fibrosis in liver sections of TAA-administrated rats with increased collagen deposition, elevated METAVIR scoring, and increased expression of α-SMA, caspase-3, and AT1R. Oral dosing of perindopril for 4 weeks concomitant with TAA could mend the altered parameters near to normal values and abolished the ongoing fibrosis extension. In conclusion, these results demonstrated that perindopril, as ACE inhibitor, could grant a superior remedial nominee in preventing liver fibrosis progression through targeting angiotensin II formation.
Collapse
Affiliation(s)
| | - Hany M Fayed
- Pharmacology Department, Medical Division, National Research Centre, Giza, Egypt
| |
Collapse
|
129
|
Salah MM, Ashour AA, Abdelghany TM, Abdel-Aziz AAH, Salama SA. Pirfenidone alleviates concanavalin A-induced liver fibrosis in mice. Life Sci 2019; 239:116982. [PMID: 31639402 DOI: 10.1016/j.lfs.2019.116982] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/29/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
Abstract
AIMS Liver fibrosis (LF) is a life-threatening complication of most chronic liver diseases resulting from a variety of injurious agents and hepatotoxic insults. To date, there are no specific therapies for LF, and all the currently available drugs have been developed for other indications. Thus, there is a pressing need to develop new drugs for treatment of LF. Therefore, the current study aimed to elucidate the potential antifibrotic effect of Pirfenidone (PFD) against concanavalin A (ConA)-induced immunological model of liver fibrosis in mice. MAIN METHODS Hepatic fibrosis was induced in mice by injecting ConA (10 mg/kg/wk./i.v) for 4 weeks. Then, the mice were treated with or without PFD (125 mg/kg/ip/day) for 2 weeks. Hepatic fibrosis was determined by Masson Trichrome staining; Haematoxylin & eosin (H&E) staining, immunohistochemistry staining of type II and IV collagens, and colorimetric assessment of hydroxyprolline (HP) content in the liver tissues. In addition, the expression of α-SMA mRNA was determined by real time RT-PCR. The serum levels of TGF-β, TNF-α, TIMP-1 and MMP-2 were measured by ELISA. KEY FINDINGS Treatment with PFD significantly reduced ConA-induced expression of type II and IV collagens, α-SMA mRNA expression, and HP content and decreased inflammatory cells infiltration in hepatic tissues. Furthermore, serum levels of TGF-β, TNF-α, and TIMP-1 were significantly reduced with concomitant increase in MMP-2 expression. SIGNIFICANCE Treatment with PFD ameliorates concanavalin A-induced hepatic inflammation and fibrosis in mice. Thus, PFD may represent a promising therapeutic option for hepatic fibrosis and its related complications.
Collapse
Affiliation(s)
- Mostafa M Salah
- Clinical Research Department, Triclinium Clinical Development, (TCD MENA), Cairo, Egypt
| | - Ahmed A Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Abdel-Aziz H Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Salama A Salama
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
130
|
Kalmykova ZA, Kononenko IV, Mayorov AY. [Diabetes mellitus and chronic liver diseases. Part 1: general mechanisms of etiology and pathogenesis]. TERAPEVT ARKH 2019; 91:106-111. [PMID: 32598639 DOI: 10.26442/00403660.2019.10.000165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 12/12/2022]
Abstract
In recent years there has been an active discussion about the relationship between diabetes mellitus (DM) and chronic liver diseases (CLD). On the one hand, patients with diabetes have an increased risk of developing CLD. On the other hand, patients with CLD very often identify abnormal glucose metabolism which ultimately leads to impaired glucose tolerance and the development of diabetes. This review outlines potential causal relationships between some CLD and DM. Common mechanisms that provoke metabolic and autoimmune disorders in the development of various nosologies of the CKD group, leading to steatosis, insulin resistance, impaired glucose tolerance and the development of diabetes are described. Certain features of the assessment of carbohydrate metabolism compensation in patients with hepatic dysfunction, anemia and protein metabolism disorders are described.
Collapse
|
131
|
Valadão PAC, Oliveira BDS, Joviano-Santos JV, Vieira ÉLM, Rocha NP, Teixeira AL, Guatimosim C, de Miranda AS. Inflammatory changes in peripheral organs in the BACHD murine model of Huntington's disease. Life Sci 2019; 232:116653. [DOI: 10.1016/j.lfs.2019.116653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022]
|
132
|
Human Amnion Epithelial Cell Therapy for Chronic Liver Disease. Stem Cells Int 2019; 2019:8106482. [PMID: 31485235 PMCID: PMC6702811 DOI: 10.1155/2019/8106482] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/24/2019] [Indexed: 12/15/2022] Open
Abstract
Liver fibrosis is a common consequence of chronic liver disease. Over time, liver fibrosis can develop into liver cirrhosis. Current therapies for liver fibrosis are limited, and liver transplant is the only curative therapy for patients who progress to end-stage disease. A potential approach to treat chronic liver disease with increasing interest is cell-based therapy. Among the multiple cell types which have been proposed for therapeutic uses, human amnion epithelial cells and amniotic fluid-derived mesenchymal cells are promising. These cells are highly abundant, and their use poses no ethical concern. Furthermore, they exert potent anti-inflammatory and antifibrotic effects in animal models of liver injury. This review highlights the therapeutic characteristics and discusses how human amnion epithelial cells can be utilised as a therapeutic tool for chronic liver disease.
Collapse
|
133
|
Kasagi Y, Dods K, Wang JX, Chandramouleeswaran PM, Benitez AJ, Gambanga F, Kluger J, Ashorobi T, Gross J, Tobias JW, Klein-Szanto AJ, Spergel JM, Cianferoni A, Falk GW, Whelan KA, Nakagawa H, Muir AB. Fibrostenotic eosinophilic esophagitis might reflect epithelial lysyl oxidase induction by fibroblast-derived TNF-α. J Allergy Clin Immunol 2019; 144:171-182. [PMID: 30578874 PMCID: PMC6586527 DOI: 10.1016/j.jaci.2018.10.067] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 10/16/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Fibrosis and stricture are major comorbidities in patients with eosinophilic esophagitis (EoE). Lysyl oxidase (LOX), a collagen cross-linking enzyme, has not been investigated in the context of EoE. OBJECTIVE We investigated regulation of epithelial LOX expression as a novel biomarker and functional effector of fibrostenotic disease conditions associated with EoE. METHODS LOX expression was analyzed by using RNA-sequencing, PCR assays, and immunostaining in patients with EoE; cytokine-stimulated esophageal 3-dimensional organoids; and fibroblast-epithelial cell coculture, the latter coupled with fluorescence-activated cell sorting. RESULTS Gene ontology and pathway analyses linked TNF-α and LOX expression in patients with EoE, which was validated in independent sets of patients with fibrostenotic conditions. TNF-α-mediated epithelial LOX upregulation was recapitulated in 3-dimensional organoids and coculture experiments. We find that fibroblast-derived TNF-α stimulates epithelial LOX expression through activation of nuclear factor κB and TGF-β-mediated signaling. In patients receiver operating characteristic analyses suggested that LOX upregulation indicates disease complications and fibrostenotic conditions in patients with EoE. CONCLUSIONS There is a novel positive feedback mechanism in epithelial LOX induction through fibroblast-derived TNF-α secretion. Esophageal epithelial LOX might have a role in the development of fibrosis with substantial translational implications.
Collapse
Affiliation(s)
- Yuta Kasagi
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Philadelphia, Pa
| | - Kara Dods
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Philadelphia, Pa
| | - Joshua X Wang
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Philadelphia, Pa
| | - Prasanna M Chandramouleeswaran
- Division of Gastroenterology, Department of Medicine, Philadelphia, Pa; University of Pennsylvania Abramson Cancer Center, Philadelphia, Pa
| | - Alain J Benitez
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Philadelphia, Pa
| | - Fiona Gambanga
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Philadelphia, Pa
| | - Jonathan Kluger
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Philadelphia, Pa
| | - Tokunbo Ashorobi
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Philadelphia, Pa
| | - Jonathan Gross
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Philadelphia, Pa
| | | | - Andres J Klein-Szanto
- Histopathology Facility and Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pa
| | - Jonathan M Spergel
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Antonella Cianferoni
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Gary W Falk
- Division of Gastroenterology, Department of Medicine, Philadelphia, Pa
| | - Kelly A Whelan
- Department of Pathology & Laboratory Medicine, Philadelphia, Pa; Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pa
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, Philadelphia, Pa; University of Pennsylvania Abramson Cancer Center, Philadelphia, Pa
| | - Amanda B Muir
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Philadelphia, Pa; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa.
| |
Collapse
|
134
|
Two phase kinetics of the inflammatory response from hepatocyte-peripheral blood mononuclear cell interactions. Sci Rep 2019; 9:8378. [PMID: 31182764 PMCID: PMC6557861 DOI: 10.1038/s41598-019-44840-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/25/2019] [Indexed: 12/19/2022] Open
Abstract
Active liver diseases are characterized by an infiltration of inflammatory immune cells, which interact locally with hepatocytes. Co-cultures between non- and -activated human peripheral blood mononuclear cells (PBMCs) and human hepatoma HepaRG cells were used to determine the role of these cell interactions in the inflammatory response. At the early stage, PBMC-HepaRG cell interactions increased mRNA expression and/or secretion of IL-6, IL-8, CCL-20 and MCP-1, in part through direct cell contact and the induction was higher in PHA-activated conditions. The pro-inflammatory cytokines IL-17 and/or TNFα contributed to the increase of IL-6 and IL-8 secretion. HepaRG cells modulated T cell polarization by increasing Th1 cell transcription factor expression and by reducing CD3+ CD4+ IL-17+ cell frequency when PBMCs were activated with PHA. At a later stage, the presence of HepaRG cells inhibited PHA-induced HLA-DR expression on PBMCs, and PBMC proliferation. In contrast, the presence of skin fibroblasts had no effect of PBMC proliferation induced by PHA. After a first pro-inflammatory phase, PBMC-HepaRG cell interactions may down-regulate the immune response. The PBMC-hepatocyte interactions can thus participate first to the initiation of hepatitis and later to the maintenance of immune tolerance in liver, possibly contributing to chronicity.
Collapse
|
135
|
Usher KM, Zhu S, Mavropalias G, Carrino JA, Zhao J, Xu J. Pathological mechanisms and therapeutic outlooks for arthrofibrosis. Bone Res 2019; 7:9. [PMID: 30937213 PMCID: PMC6433953 DOI: 10.1038/s41413-019-0047-x] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/17/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023] Open
Abstract
Arthrofibrosis is a fibrotic joint disorder that begins with an inflammatory reaction to insults such as injury, surgery and infection. Excessive extracellular matrix and adhesions contract pouches, bursae and tendons, cause pain and prevent a normal range of joint motion, with devastating consequences for patient quality of life. Arthrofibrosis affects people of all ages, with published rates varying. The risk factors and best management strategies are largely unknown due to a poor understanding of the pathology and lack of diagnostic biomarkers. However, current research into the pathogenesis of fibrosis in organs now informs the understanding of arthrofibrosis. The process begins when stress signals stimulate immune cells. The resulting cascade of cytokines and mediators drives fibroblasts to differentiate into myofibroblasts, which secrete fibrillar collagens and transforming growth factor-β (TGF-β). Positive feedback networks then dysregulate processes that normally terminate healing processes. We propose two subtypes of arthrofibrosis occur: active arthrofibrosis and residual arthrofibrosis. In the latter the fibrogenic processes have resolved but the joint remains stiff. The best therapeutic approach for each subtype may differ significantly. Treatment typically involves surgery, however, a pharmacological approach to correct dysregulated cell signalling could be more effective. Recent research shows that myofibroblasts are capable of reversing differentiation, and understanding the mechanisms of pathogenesis and resolution will be essential for the development of cell-based treatments. Therapies with significant promise are currently available, with more in development, including those that inhibit TGF-β signalling and epigenetic modifications. This review focuses on pathogenesis of sterile arthrofibrosis and therapeutic treatments.
Collapse
Affiliation(s)
- Kayley M. Usher
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia Australia
| | - Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Georgios Mavropalias
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia Australia
| | | | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia Australia
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi China
| |
Collapse
|
136
|
HDAC Inhibitors: Therapeutic Potential in Fibrosis-Associated Human Diseases. Int J Mol Sci 2019; 20:ijms20061329. [PMID: 30884785 PMCID: PMC6471162 DOI: 10.3390/ijms20061329] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is characterized by excessive deposition of the extracellular matrix and develops because of fibroblast differentiation during the process of inflammation. Various cytokines stimulate resident fibroblasts, which differentiate into myofibroblasts. Myofibroblasts actively synthesize an excessive amount of extracellular matrix, which indicates pathologic fibrosis. Although initial fibrosis is a physiologic response, the accumulated fibrous material causes failure of normal organ function. Cardiac fibrosis interferes with proper diastole, whereas pulmonary fibrosis results in chronic hypoxia; liver cirrhosis induces portal hypertension, and overgrowth of fibroblasts in the conjunctiva is a major cause of glaucoma surgical failure. Recently, several reports have clearly demonstrated the functional relevance of certain types of histone deacetylases (HDACs) in various kinds of fibrosis and the successful alleviation of the condition in animal models using HDAC inhibitors. In this review, we discuss the therapeutic potential of HDAC inhibitors in fibrosis-associated human diseases using results obtained from animal models.
Collapse
|
137
|
Hashem MM, Salama MM, Mohammed FF, Tohamy AF, El Deeb KS. Metabolic profile and hepatoprotective effect of Aeschynomene elaphroxylon (Guill. & Perr.). PLoS One 2019; 14:e0210576. [PMID: 30629685 PMCID: PMC6328266 DOI: 10.1371/journal.pone.0210576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/26/2018] [Indexed: 12/12/2022] Open
Abstract
Liver diseases are life-threatening and need urgent medical treatments. Conventional treatment is expensive and toxic, so the urge for nutraceutical hepatoprotective agents is crucial. This study is considered the first metabolic profile of Aeschynomene elaphroxylon (Guill. & Perr.) extracts of; flowers, leaves & bark adopting UPLC-Orbitrap HRMS analysis to determine their bioactive metabolites, and it was designed to investigate the potential hepatoprotective activity of A. elaphroxylon flowers and bark extracts against CCl4-induced hepatic fibrosis in rats. Forty-nine compounds of various classes were detected in the three extracts, with triterpenoid saponins as the major detected metabolite. Flowers and bark extracts presented similar chemical profile while leaves extract was quite different. The antioxidant activities of the flowers, leaves & bark extracts were measured by in vitro assays as Fe+3 reducing antioxidant power and Oxygen radical absorbance capacity. It revealed that flowers and bark extracts had relatively high antioxidant activity as compared to leaves extract. Based on the metabolic profile and in vitro antioxidant activity, flowers and bark ethanolic extracts were chosen for alleviation of hepatotoxicity induced by CCl4 in rats. The hepatoprotective activity was studied through measuring hepatotoxicity biomarkers in serum (ALT, AST, and Albumin). Liver tissues were examined histopathologically and their homogenates were used in determining the intracellular levels of oxidative stress biomarkers (MDA, GSH), inflammatory markers (TNF-α). Flowers and bark ethanolic extracts exerted a significant hepatoprotective effect through reduction in the activities of ALT, AST and Albumin, the tested extracts reduced oxidative stress by increasing GSH content and reducing the MDA level. Furthermore, the extracts decreased levels of pro-inflammatory TNF-α. Moreover, the present study revealed the potentiality of A. elaphroxylon in ameliorating the CCl4-induced hepatic fibrosis in rats. In this aspect, A. elaphroxylon can be used with other agents as a complementary drug.
Collapse
Affiliation(s)
- Mona M. Hashem
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, Egypt
- * E-mail:
| | - Maha M. Salama
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Faten F. Mohammed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Adel F. Tohamy
- Department of Toxicology and Forensic medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Institute of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kadriya S. El Deeb
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, Egypt
| |
Collapse
|
138
|
Parvaresh Anbar A, Piran T, Farhadi M, Karimi P. Iranian crack induces hepatic injury through mitogen-activated protein kinase pathway in the liver of Wistar rat. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:1179-1185. [PMID: 30483393 PMCID: PMC6251400 DOI: 10.22038/ijbms.2018.23543.5930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objectives Iranian crack (IC) is a heroin-based substance manifesting various pathologic side effects. Herein, we aimed to investigate the mechanism of IC-induced liver injuries in Wistar rats. Materials and Methods Twenty male Wistar rats were randomly divided into two groups: control, and IC (0.9 mg/kg/day/IP, for 30 days). Mitochondrial reactive oxygen species (ROS) production was measured by DCF fluorescence staining. The expression of tumor necrosis factor-alpha (TNF-α), interleukin 1β (IL-1β), and phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (c-JNK) were assessed by immunoblotting assay. The intensity of collagen fiber in the liver was also determined by Trichrome-Masson staining. Furthermore, serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) activities were measured using colorimetric methods. Results Our results showed that ROS production, p38 MAPK, c-JNK phosphorylation levels, and expression of TNF-α and IL-1β were significantly elevated in the liver tissue of IC group as compared to the control group. Moreover, collagen fiber and ALT activity were increased in the liver tissue of IC group compared to the control group. However, there was no statistically significant difference in the levels of ALP between two groups. In addition, there was a positive correlation between the intensity of collagen fiber and the ALT activity, and the levels of TNF-α and IL-1β and liver enzymes activities including ALP, ALT, and AST. Conclusion Our findings revealed that IC-induced liver cells injury is partially mediated by MAPK stress kinases. Therefore, regular liver examination in substance abuse is strongly recommended.
Collapse
Affiliation(s)
| | - Tayyebeh Piran
- Higher Academic Education Institute of Rab-e Rashid, Tabriz, Iran
| | - Mehrdad Farhadi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
139
|
Boeijen LL, van Oord GW, Hou J, van der Heide-Mulder M, Gaggar A, Li L, Fletcher SP, de Knegt RJ, Boonstra A. Gene expression profiling of human tissue-resident immune cells: Comparing blood and liver. J Leukoc Biol 2018; 105:603-608. [PMID: 30480838 PMCID: PMC6924273 DOI: 10.1002/jlb.6ab0718-278r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/06/2018] [Accepted: 11/01/2018] [Indexed: 12/17/2022] Open
Abstract
In this study, we describe a method to reliably characterize intrahepatic leukocyte populations using flow cytometry and next‐generation RNA sequencing on fresh human liver biopsies. Over the last decades, immune responses of viral hepatitis patients, and of other liver diseases, have been incompletely characterized. Most studies include peripheral blood samples only, foregoing the possibility to investigate the site of inflammation directly. Here, we show that with an optimized protocol that combines cell sorting and RNA sequencing, we can perform a side by side comparison of both intrahepatic and peripheral immune cells. Using core liver biopsies from chronic hepatitis B virus patients, we show that the expression levels of IFN‐stimulated genes and leukocyte‐specific genes are markedly different in the liver compartment as compared to the peripheral blood. These observations emphasize the need to sample the liver directly. The variation of gene expression profiles in these chronic hepatitis B patients was considerable, despite the uniform treatment with nucleotide analogs and absence of liver inflammation in these patients. Finally, we show that this method can provide a detailed characterization of previously undetected liver‐specific effects of novel candidate therapeutic compounds.
Collapse
Affiliation(s)
- Lauke L Boeijen
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gertine W van Oord
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jun Hou
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marieke van der Heide-Mulder
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Anuj Gaggar
- Gilead Sciences, Foster City, California, USA
| | - Li Li
- Gilead Sciences, Foster City, California, USA
| | | | - Robert J de Knegt
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - André Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
140
|
Sayiner M, Lam B, Golabi P, Younossi ZM. Advances and challenges in the management of advanced fibrosis in nonalcoholic steatohepatitis. Therap Adv Gastroenterol 2018; 11:1756284818811508. [PMID: 30479664 PMCID: PMC6243399 DOI: 10.1177/1756284818811508] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/16/2018] [Indexed: 02/04/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is rapidly becoming the most common type of chronic liver disease worldwide. From the spectrum of NAFLD, it is nonalcoholic steatohepatitis (NASH) that predominantly predisposes patients to higher risk for development of cirrhosis and hepatocellular carcinoma. There is growing evidence that the risk of progression to cirrhosis and hepatocellular carcinoma is not uniform among all patients with NASH. In fact, NASH patients with increasing numbers of metabolic diseases such as diabetes, hypertension, visceral obesity and dyslipidemia are at a higher risk of mortality. Additionally, patients with higher stage of liver fibrosis are also at increased risk of mortality. In this context, NASH patients with fibrosis are in the most urgent need of treatment. Also, the first line of treatment for NASH is lifestyle modification with diet and exercise. Nevertheless, the efficacy of lifestyle modification is quite limited. Additionally, vitamin E and pioglitazone may be considered for subset of patients with NASH. There are various medications targeting one or more steps in the pathogenesis of NASH being developed. These drug regimens either alone or in combination, may provide potential treatment option for patients with NASH.
Collapse
Affiliation(s)
- Mehmet Sayiner
- Department of Medicine, Inova Fairfax Hospital, Falls Church, VA,Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA
| | - Brian Lam
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA
| | - Pegah Golabi
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA
| | | |
Collapse
|
141
|
Hou W, Syn WK. Role of Metabolism in Hepatic Stellate Cell Activation and Fibrogenesis. Front Cell Dev Biol 2018; 6:150. [PMID: 30483502 PMCID: PMC6240744 DOI: 10.3389/fcell.2018.00150] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Activation of hepatic stellate cell (HSC) involves the transition from a quiescent to a proliferative, migratory, and fibrogenic phenotype (i.e., myofibroblast), which is characteristic of liver fibrogenesis. Multiple cellular and molecular signals which contribute to HSC activation have been identified. This review specially focuses on the metabolic changes which impact on HSC activation and fibrogenesis.
Collapse
Affiliation(s)
- Wei Hou
- Tianjin Second People's Hospital and Tianjin Institute of Hepatology, Tianjin, China.,Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Wing-Kin Syn
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States.,Section of Gastroenterology, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, United States
| |
Collapse
|
142
|
Lee CH, Choi SH, Chung GE, Park B, Kwak MS. Nonalcoholic fatty liver disease is associated with decreased lung function. Liver Int 2018; 38:2091-2100. [PMID: 29660233 DOI: 10.1111/liv.13860] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/07/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS The association between nonalcoholic fatty liver disease and lung function has not been fully examined. The aim of this study was to clarify the association between nonalcoholic fatty liver disease and lung function in general population by performing cross-sectional and longitudinal analysis. METHODS Participants without hepatic and respiratory disease who underwent regular health exams including hepatic sonography and spirometry with at least 3 years' follow-up were included. In cross-sectional analysis, the association between nonalcoholic fatty liver disease and lung function at baseline was examined with multiple regression models. The longitudinal analysis was performed by mixed linear regression models with propensity score matching. RESULTS Of 11 892 eligible participants (mean age, 47.7 years; male, 47.2%), 3815(32.1%) had nonalcoholic fatty liver disease based on sonography. In cross-sectional analysis, the nonalcoholic fatty liver disease group had lower adjusted forced expiratory volume in 1-second (men, 3.52 vs 3.44 L, P < .001; women, 2.62 vs 2.45 L, P < .001) and forced vital capacity (men, 4.33 vs 4.24 L, P < .001; women, 3.11 vs 2.97 L, P < .001) than the control group. In longitudinal analysis, during the mean follow-up period of 6.6 years, there were no significant differences in forced expiratory volume in 1-second or forced vital capacity decline rates between two groups in the propensity score-matched cohorts (n = 4558). However, those with high nonalcoholic fatty liver disease fibrosis score and fibrosis-4 (men, -21.7 vs -27.4 mL/y, P = .001; women, -22.4 vs -27.9 mL/y, P = .016) showed significantly faster decline in forced vital capacity compared to those with low scores. CONCLUSIONS Nonalcoholic fatty liver disease was associated with decreased lung function at baseline but was not associated with accelerated lung function decline in the propensity score-matched cohort. However, hepatic fibrosis was significantly associated with rapid forced vital capacity decline.
Collapse
Affiliation(s)
- Chang-Hoon Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Seung Ho Choi
- Department of Internal Medicine, Healthcare System Gangnam Center, Healthcare Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Goh Eun Chung
- Department of Internal Medicine, Healthcare System Gangnam Center, Healthcare Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Boram Park
- Department of Public Health Science, Seoul National University, Seoul, Korea
| | - Min-Sun Kwak
- Department of Internal Medicine, Healthcare System Gangnam Center, Healthcare Research Institute, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
143
|
Aziz NM, Ragy MM, Ahmed SM. Somatostatin analogue, Octreotide, improves restraint stress-induced liver injury by ameliorating oxidative stress, inflammatory response, and activation of hepatic stellate cells. Cell Stress Chaperones 2018; 23:1237-1245. [PMID: 30109542 PMCID: PMC6237684 DOI: 10.1007/s12192-018-0929-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/06/2018] [Accepted: 08/02/2018] [Indexed: 12/17/2022] Open
Abstract
The aim of this study is to investigate the effect of somatostatin (SST) analogue, Octreotide, on some features of liver injury induced by immobilization stress (IS) in adult male albino rats. Eighteen adult male albino rats were randomly divided into three equal groups: control, IS, and Octreotide-treated stressed groups. Octreotide (40 μg/kg body weight, subcutaneously) was administrated twice daily for 8 days during the exposure to IS. Octreotide was found to reduce the IS significantly and induce elevations in the plasma level of corticosterone, liver transaminases, and tumor necrosis factor α (TNF-α) as compared with IS group. Furthermore, Octreotide administration has significantly elevated the decline in the total antioxidant capacities (TAC) and lowered the elevated malondialdehyde (MDA) levels observed with IS in the hepatic tissue. Additionally, Octreotide treatment provided protection against the histopathological changes in the stressed liver in the form of significant reduction in the mean number of degenerated hepatocytes, the area % of collagen fibers, and glial fibrillary acid protein (GFAP) immunostaining with a significant increase in the mean number of normal hepatocytes. In conclusion, stressed rats showed disturbed liver functions and its oxidant-antioxidant status with highly expression hepatic stellate cells (HSCs), which were all improved by Octreotide administration, SST analogue.
Collapse
Affiliation(s)
- Neven Makram Aziz
- Department of Physiology, Faculty of Medicine, Minia University, Minia, 61111, Egypt
- Deraya University, New Minia, Egypt
| | - Merhan Mamdouh Ragy
- Department of Physiology, Faculty of Medicine, Minia University, Minia, 61111, Egypt.
| | - Sabreen Mahmoud Ahmed
- Department of Physiology, Faculty of Medicine, Minia University, Minia, 61111, Egypt
- Department of Anatomy, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
144
|
Wu N, McDaniel K, Zhou T, Ramos-Lorenzo S, Wu C, Huang L, Chen D, Annable T, Francis H, Glaser S, Alpini G, Meng F. Knockout of microRNA-21 attenuates alcoholic hepatitis through the VHL/NF-κB signaling pathway in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2018; 315:G385-G398. [PMID: 29848019 PMCID: PMC6415712 DOI: 10.1152/ajpgi.00111.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/21/2018] [Accepted: 05/27/2018] [Indexed: 01/31/2023]
Abstract
microRNA-21 (miRNA) is one of the most abundant miRNAs in chronic liver injuries including alcoholic liver injury. Previous studies have demonstrated that miR-21 plays a role in inflammation in the liver and functions in hepatic stellate cells (HSCs), which reside in the perisinusoidal space between sinusoidal endothelial cells and hepatocytes and regulate sinusoidal circulation. HSCs integrate cytokine-mediated inflammatory responses in the sinusoids and relay them to the liver parenchyma. Here, we showed that the activation of Von Hippel-Lindau (VHL) expression, by miR-21 knockout in vivo and anti-miR-21 or VHL overexpression in vitro, suppressed the production of proinflammatory cytokines, such as interleukin (IL)-6, monocyte chemoattractant protein-1, and IL-1β, in human HSCs during alcoholic liver injury. Sequence and functional analyses confirmed that miR-21 directly targeted the 3'-untranslated region of VHL. Immunofluorescence and real-time PCR analysis revealed that miR-21 depletion blocked NF-κB activation in human HSCs both in cultured HSCs as well as HSCs isolated from alcohol-related liver disease mice liver by laser capture microdissection. We also showed that conditioned medium from anti-miR-21-transfected HSCs suppressed human monocyte-derived THP-1 cell migration. Taken together, our study indicates that depletion of miR-21 may downregulate cytokine production in HSCs and macrophage chemotaxis during alcoholic liver injury and that the targeting of miR-21 may have therapeutic potential for preventing the progression of alcoholic liver diseases. NEW & NOTEWORTHY This study demonstrates that silencing microRNA-21 can inhibit cytokine production and inflammatory responses in human hepatic stellate cells during alcoholic liver injury and that the targeting of microR-21 in hepatic stellate cells may have therapeutic potential for prevention and treatment of alcoholic liver diseases.
Collapse
Affiliation(s)
- Nan Wu
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Department of Medicine and Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Sciences Center and Scott & White Hospital, Temple, Texas
| | - Kelly McDaniel
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Department of Medicine and Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Sciences Center and Scott & White Hospital, Temple, Texas
- Research Institute, Baylor Scott & White Health, Temple, Texas
| | - Tianhao Zhou
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Department of Medicine and Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Sciences Center and Scott & White Hospital, Temple, Texas
| | - Sugeily Ramos-Lorenzo
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Department of Medicine and Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Sciences Center and Scott & White Hospital, Temple, Texas
- Research Institute, Baylor Scott & White Health, Temple, Texas
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University , College Station, Texas
| | - Li Huang
- Department of Hepatobiliary Surgery and Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University , Guangdong , China
| | - Demeng Chen
- Department of Hepatobiliary Surgery and Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University , Guangdong , China
| | - Tami Annable
- Research Institute, Baylor Scott & White Health, Temple, Texas
- Texas Bioscience District, Temple, Texas
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Department of Medicine and Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Sciences Center and Scott & White Hospital, Temple, Texas
- Research Institute, Baylor Scott & White Health, Temple, Texas
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Department of Medicine and Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Sciences Center and Scott & White Hospital, Temple, Texas
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Department of Medicine and Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Sciences Center and Scott & White Hospital, Temple, Texas
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Department of Medicine and Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Sciences Center and Scott & White Hospital, Temple, Texas
- Research Institute, Baylor Scott & White Health, Temple, Texas
| |
Collapse
|
145
|
Association Between Tumor Necrosis Factor-α and the Risk of Hepatic Events: A Median 3 Years Follow-Up Study. HEPATITIS MONTHLY 2018. [DOI: 10.5812/hepatmon.65537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
146
|
Ramadan A, Afifi N, Yassin NZ, Abdel-Rahman RF, Abd El-Rahman SS, Fayed HM. Mesalazine, an osteopontin inhibitor: The potential prophylactic and remedial roles in induced liver fibrosis in rats. Chem Biol Interact 2018; 289:109-118. [PMID: 29738702 DOI: 10.1016/j.cbi.2018.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/24/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023]
Abstract
Liver fibrosis is a major health issue leading to high morbidity and mortality. The potential anti-fibrotic activity and the effect of mesalazine on osteopontin (OPN), an extra cellular matrix (ECM) component were evaluated in TAA-induced liver fibrosis in rats. For this purpose, forty-two adult male Wistar rats were divided into six groups. All animals, except the normal control, were intraperitoneally injected with TAA (200 mg/kg) twice per week for 6 weeks. In the hepato-protective study, animals were administered mesalazine (50 and 100 mg/kg, orally) for 4 weeks before induction of liver fibrosis then concomitantly with TAA injection. In the hepato-therapeutic study, animals were administered mesalazine for 6 weeks after TAA discontinuation with the same doses. In both studies, mesalazine administration improved liver biomarkers through decreasing serum levels of AST, ALT and total bilirubin when compared to fibrotic group with significant increase in total protein and albumin levels. Mesalazine significantly decreased hepatic MDA level and counteracted the depletion of hepatic GSH content and SOD activity. Additionally, it limits the elevation of OPN and TGF-β1 concentrations and suppressed TNF-α as well as α-SMA levels in hepatic tissue homogenate. Histopathologically, mesalazine as a treatment showed a good restoration of the hepatic parenchymal cells with an obvious decreased intensity and retraction of fibrous proliferation, while as a prophylaxis it didn't achieve enough protection against the harmful effect of TAA, although it decreased the intensity of portal to portal fibrosis and pseudolobulation. Furthermore, mesalazine could suppress the expression of both α-SMA and caspase-3 in immunohistochemical sections. In conclusion, mesalazine could have a potential new indication as anti-fibrotic agent through limiting the oxidative damage and altering TNF-ɑ pathway as an anti-inflammatory drug with down-regulating TGF-β1, OPN, α-SMA and caspase-3 signaling pathways.
Collapse
Affiliation(s)
- A Ramadan
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Nehal Afifi
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Nemat Z Yassin
- Pharmacology Department, National Research Centre, Giza, Egypt
| | | | - Sahar S Abd El-Rahman
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Hany M Fayed
- Pharmacology Department, National Research Centre, Giza, Egypt
| |
Collapse
|
147
|
Tung HC, Hsu SJ, Tsai MH, Lin TY, Hsin IF, Huo TI, Lee FY, Huang HC, Ho HL, Lin HC, Lee SD. Homocysteine deteriorates intrahepatic derangement and portal-systemic collaterals in cirrhotic rats. Clin Sci (Lond) 2017; 131:69-86. [DOI: 10.1042/cs20160470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
In liver cirrhosis, the altered levels of vasoactive substances, especially endothelin-1 (ET-1) and nitric oxide (NO) lead to elevated intrahepatic resistance, increased portal-systemic collaterals and abnormal intra- and extra-hepatic vascular responsiveness. These derangements aggravate portal hypertension-related complications such as gastro-oesophageal variceal bleeding. Homocysteine, a substance implicated in cardiovascular diseases, has been found with influences on vasoresponsiveness and angiogenesis. However, their relevant effects in liver cirrhosis have not been investigated. In the present study, liver cirrhosis was induced by common bile duct ligation (BDL) in Sprague–Dawley rats. In acute study, the results showed that homocysteine enhanced hepatic vasoconstriction to ET-1 but decreased portal-systemic collateral vasocontractility to arginine vasopressin (AVP). Homocysteine down-regulated hepatic phosphorylated endothelial NO synthase (p-eNOS) and p-Akt protein expressions. Inducible NOS (iNOS) and cyclooxygenase (COX)-2 expressions were up-regulated by homocysteine in splenorenal shunt (SRS), the most prominent intra-abdominal collateral vessel. In chronic study, BDL or thioacetamide (TAA) rats received homocysteine or vehicle for 14 days. The results revealed that homocysteine increased hepatic collagen fibre deposition and fibrotic factors expressions in both BDL- and TAA-induced liver fibrotic rats. Portal-systemic shunting and expressions of mesenteric angiogenetic factors [vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), PDGF receptor β (PDGFRβ) and p-eNOS] were also increased in BDL rats. In conclusion, homocysteine is harmful to vascular derangements and liver fibrosis in cirrhosis.
Collapse
Affiliation(s)
- Hung-Chun Tung
- Institute of Pharmacology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Shao-Jung Hsu
- Institute of Pharmacology, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Ming-Hung Tsai
- Chang Gung University College of Medicine and Division of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Te-Yueh Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - I-Fang Hsin
- Institute of Pharmacology, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of Endoscopy Center for Diagnosis and Treatment, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Te-Ia Huo
- Institute of Pharmacology, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fa-Yauh Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Hui-Chun Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Ling Ho
- Institute of Pharmacology, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Shou-Dong Lee
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of Gastroenterology, Department of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| |
Collapse
|