101
|
Stradal TEB, Schelhaas M. Actin dynamics in host-pathogen interaction. FEBS Lett 2018; 592:3658-3669. [PMID: 29935019 PMCID: PMC6282728 DOI: 10.1002/1873-3468.13173] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023]
Abstract
The actin cytoskeleton and Rho GTPase signaling to actin assembly are prime targets of bacterial and viral pathogens, simply because actin is involved in all motile and membrane remodeling processes, such as phagocytosis, macropinocytosis, endocytosis, exocytosis, vesicular trafficking and membrane fusion events, motility, and last but not least, autophagy. This article aims at providing an overview of the most prominent pathogen‐induced or ‐hijacked actin structures, and an outlook on how future research might uncover additional, equally sophisticated interactions.
Collapse
Affiliation(s)
- Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Mario Schelhaas
- Institute of Cellular Virology, ZMBE, University of Münster, Germany
| |
Collapse
|
102
|
WIP-YAP/TAZ as A New Pro-Oncogenic Pathway in Glioma. Cancers (Basel) 2018; 10:cancers10060191. [PMID: 29890731 PMCID: PMC6024887 DOI: 10.3390/cancers10060191] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/18/2022] Open
Abstract
Wild-type p53 (wtp53) is described as a tumour suppressor gene, and mutations in p53 occur in many human cancers. Indeed, in high-grade malignant glioma, numerous molecular genetics studies have established central roles of RTK-PI3K-PTEN and ARF-MDM2-p53 INK4a-RB pathways in promoting oncogenic capacity. Deregulation of these signalling pathways, among others, drives changes in the glial/stem cell state and environment that permit autonomous growth. The initially transformed cell may undergo subsequent modifications, acquiring a more complete tumour-initiating phenotype responsible for disease advancement to stages that are more aggressive. We recently established that the oncogenic activity of mutant p53 (mtp53) is driven by the actin cytoskeleton-associated protein WIP (WASP-interacting protein), correlated with tumour growth, and more importantly that both proteins are responsible for the tumour-initiating cell phenotype. We reported that WIP knockdown in mtp53-expressing glioblastoma greatly reduced proliferation and growth capacity of cancer stem cell (CSC)-like cells and decreased CSC-like markers, such as hyaluronic acid receptor (CD44), prominin-1 (CD133), yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ). We thus propose a new CSC signalling pathway downstream of mtp53 in which Akt regulates WIP and controls YAP/TAZ stability. WIP drives a mechanism that stimulates growth signals, promoting YAP/TAZ and β-catenin stability in a Hippo-independent fashion, which allows cells to coordinate processes such as proliferation, stemness and invasiveness, which are key factors in cancer progression. Based on this multistep tumourigenic model, it is tantalizing to propose that WIP inhibitors may be applied as an effective anti-cancer therapy.
Collapse
|
103
|
Rottner K, Faix J, Bogdan S, Linder S, Kerkhoff E. Actin assembly mechanisms at a glance. J Cell Sci 2018; 130:3427-3435. [PMID: 29032357 DOI: 10.1242/jcs.206433] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The actin cytoskeleton and associated motor proteins provide the driving forces for establishing the astonishing morphological diversity and dynamics of mammalian cells. Aside from functions in protruding and contracting cell membranes for motility, differentiation or cell division, the actin cytoskeleton provides forces to shape and move intracellular membranes of organelles and vesicles. To establish the many different actin assembly functions required in time and space, actin nucleators are targeted to specific subcellular compartments, thereby restricting the generation of specific actin filament structures to those sites. Recent research has revealed that targeting and activation of actin filament nucleators, elongators and myosin motors are tightly coordinated by conserved protein complexes to orchestrate force generation. In this Cell Science at a Glance article and the accompanying poster, we summarize and discuss the current knowledge on the corresponding protein complexes and their modes of action in actin nucleation, elongation and force generation.
Collapse
Affiliation(s)
- Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Sven Bogdan
- Institute for Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Eugen Kerkhoff
- Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
104
|
Mace EM, Orange JS. Discovering the Cause of Wiskott-Aldrich Syndrome and Laying the Foundation for Understanding Immune Cell Structuring. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:3667-3670. [PMID: 29784762 PMCID: PMC8934138 DOI: 10.4049/jimmunol.1800518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Emily M Mace
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; and Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030
| | - Jordan S Orange
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; and Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030
| |
Collapse
|
105
|
Rettig MP. Get Outta Here! Addition of Mobilizing Agents to Conditioning Regimen Improves Donor Engraftment after Allogeneic Hematopoietic Stem Cell Transplantation for Wiskott-Aldrich Syndrome. Biol Blood Marrow Transplant 2018; 24:1309-1311. [PMID: 29753160 DOI: 10.1016/j.bbmt.2018.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 05/07/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Michael P Rettig
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
106
|
Abstract
We report the neuropsychological profile of a 6-year-old girl with Wiskott-Aldrich syndrome, a rare X-linked immunodeficiency disorder associated with thrombocytopenia, eczema, recurrent infections, and malignancy. Wiskott-Aldrich syndrome occurs almost exclusively in males and is extremely rare in females, with no known research focused on cognitive and academic functioning in this population. Our patient was referred due to concerns about her memory and academic functioning. She had a history of progressive thrombocytopenia and hematopoietic stem cell transplantation at age 15 months. Standardized measures of intellectual ability, language, visual-spatial and visual-motor skills, attention, memory, and academic achievement were administered. The results showed average to above-average performance in multiple areas of cognitive and academic functioning, with weaknesses in phonological awareness and rapid naming. The advent of hematopoietic stem cell transplantation has led to considerable improvement in the long-term prognosis of children with Wiskott-Aldrich syndrome. Although the impact of this syndrome and related conditions on neurocognitive development is presently unknown, this case highlights both the importance of considering base rates for commonly occurring conditions and the significant role neuropsychology can play in identifying cognitive strengths and weaknesses in the context of the developing brain.
Collapse
|
107
|
Antón IM, Gómez-Oro C, Rivas S, Wandosell F. Crosstalk between WIP and Rho family GTPases. Small GTPases 2018; 11:160-166. [PMID: 29172947 DOI: 10.1080/21541248.2017.1390522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Through actin-binding proteins such as the neural Wiskott-Aldrich syndrome protein (N-WASP) and WASP-interacting protein (WIP), the Rho family GTPases RhoA, Rac1 and Cdc42 are major modulators of the cytoskeleton. (N-)WASP and WIP control Rho GTPase activity in various cell types, either by direct WIP/(N-)WASP/Cdc42 or potential WIP/RhoA binding, or through secondary links that regulate GTPase distribution and/or transcription levels. WIP helps to regulate filopodium generation and participates in the Rac1-mediated ruffle formation that determines cell motility. In neurons, lack of WIP increases dendritic spine size and filamentous actin content in a RhoA-dependent manner. In contrast, WIP deficiency in an adenocarcinoma cell line significantly reduces RhoA levels. These data support a role for WIP in the GTPase-mediated regulation of numerous actin-related cell functions; we discuss the possibility that this WIP effect is linked to cell proliferative status.
Collapse
Affiliation(s)
- Inés M Antón
- Departamento de biología molecular y celular, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.,Departamento de neuropatología molecular, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Carla Gómez-Oro
- Departamento de biología molecular y celular, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Sergio Rivas
- Departamento de biología molecular y celular, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.,Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Departamento de neuropatología molecular, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Francisco Wandosell
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Departamento de neuropatología molecular, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
108
|
Šuštar V, Vainio M, Mattila PK. Visualization and Quantitative Analysis of the Actin Cytoskeleton Upon B Cell Activation. Methods Mol Biol 2018; 1707:243-257. [PMID: 29388113 DOI: 10.1007/978-1-4939-7474-0_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The formation of the immunological synapse upon B cell activation critically depends on the rearrangement of the submembranous actin cytoskeleton. Polymerization of actin monomers into filaments provides the force required for B cell spreading on the antigen-presenting cell (APC). Interestingly, the actin network also participates in cellular signaling at multiple levels. Fluorescence microscopy plays a critical role in furthering our understanding of the various functions of the cytoskeleton, and has become an important tool in the studies on B cell activation. The actin cytoskeleton can be tracked in live cells with various fluorescent probes binding to actin, or in fixed cells typically with phalloidin staining. Here, we present the usage of TIRF microscopy and an image analysis workflow for studying the overall density and organization of the actin network upon B cell spreading on antigen-coated glass, a widely used model system for the formation of the immunological synapse.
Collapse
Affiliation(s)
- Vid Šuštar
- Institute of Biomedicine, Unit of Pathology, and MediCity Research Laboratories, University of Turku, Turku, Finland
| | - Marika Vainio
- Institute of Biomedicine, Unit of Pathology, and MediCity Research Laboratories, University of Turku, Turku, Finland
| | - Pieta K Mattila
- Institute of Biomedicine, Unit of Pathology, and MediCity Research Laboratories, University of Turku, Turku, Finland.
| |
Collapse
|
109
|
Pai SY, Notarangelo LD. Congenital Disorders of Lymphocyte Function. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00051-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
110
|
Sarkar K, Han SS, Wen KK, Ochs HD, Dupré L, Seidman MM, Vyas YM. R-loops cause genomic instability in T helper lymphocytes from patients with Wiskott-Aldrich syndrome. J Allergy Clin Immunol 2017; 142:219-234. [PMID: 29248492 DOI: 10.1016/j.jaci.2017.11.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Wiskott-Aldrich syndrome (WAS), X-linked thrombocytopenia (XLT), and X-linked neutropenia, which are caused by WAS mutations affecting Wiskott-Aldrich syndrome protein (WASp) expression or activity, manifest in immunodeficiency, autoimmunity, genomic instability, and lymphoid and other cancers. WASp supports filamentous actin formation in the cytoplasm and gene transcription in the nucleus. Although the genetic basis for XLT/WAS has been clarified, the relationships between mutant forms of WASp and the diverse features of these disorders remain ill-defined. OBJECTIVE We sought to define how dysfunctional gene transcription is causally linked to the degree of TH cell deficiency and genomic instability in the XLT/WAS clinical spectrum. METHODS In human TH1- or TH2-skewing cell culture systems, cotranscriptional R-loops (RNA/DNA duplex and displaced single-stranded DNA) and DNA double-strand breaks (DSBs) were monitored in multiple samples from patients with XLT and WAS and in normal T cells depleted of WASp. RESULTS WASp deficiency provokes increased R-loops and R-loop-mediated DSBs in TH1 cells relative to TH2 cells. Mechanistically, chromatin occupancy of serine 2-unphosphorylated RNA polymerase II is increased, and that of topoisomerase 1, an R-loop preventing factor, is decreased at R-loop-enriched regions of IFNG and TBX21 (TH1 genes) in TH1 cells. These aberrations accompany increased unspliced (intron-retained) and decreased spliced mRNA of IFNG and TBX21 but not IL13 (TH2 gene). Significantly, increased cellular load of R-loops and DSBs, which are normalized on RNaseH1-mediated suppression of ectopic R-loops, inversely correlates with disease severity scores. CONCLUSION Transcriptional R-loop imbalance is a novel molecular defect causative in TH1 immunodeficiency and genomic instability in patients with WAS. The study proposes that cellular R-loop load could be used as a potential biomarker for monitoring symptom severity and prognostic outcome in the XLT-WAS clinical spectrum and could be targeted therapeutically.
Collapse
Affiliation(s)
- Koustav Sarkar
- Division of Pediatric Hematology-Oncology, Carver College of Medicine and the University of Iowa Stead Family Children's Hospital, Iowa City, Md
| | - Seong-Su Han
- Division of Pediatric Hematology-Oncology, Carver College of Medicine and the University of Iowa Stead Family Children's Hospital, Iowa City, Md
| | - Kuo-Kuang Wen
- Division of Pediatric Hematology-Oncology, Carver College of Medicine and the University of Iowa Stead Family Children's Hospital, Iowa City, Md
| | - Hans D Ochs
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, University of Washington, Seattle, Md
| | - Loïc Dupré
- INSERM, UMR1043, Centre de Physiopathologie de Toulouse Purpan, Toulouse, Md; Université Toulouse III Paul-Sabatier, Toulouse, Md; CNRS, UMR5282, Toulouse, Md; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Md; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Md
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health (NIH), NIH Biomedical Research Center, Baltimore, Md
| | - Yatin M Vyas
- Division of Pediatric Hematology-Oncology, Carver College of Medicine and the University of Iowa Stead Family Children's Hospital, Iowa City, Md.
| |
Collapse
|
111
|
Bieling P, Hansen SD, Akin O, Li TD, Hayden CC, Fletcher DA, Mullins RD. WH2 and proline-rich domains of WASP-family proteins collaborate to accelerate actin filament elongation. EMBO J 2017; 37:102-121. [PMID: 29141912 PMCID: PMC5753033 DOI: 10.15252/embj.201797039] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 02/04/2023] Open
Abstract
WASP‐family proteins are known to promote assembly of branched actin networks by stimulating the filament‐nucleating activity of the Arp2/3 complex. Here, we show that WASP‐family proteins also function as polymerases that accelerate elongation of uncapped actin filaments. When clustered on a surface, WASP‐family proteins can drive branched actin networks to grow much faster than they could by direct incorporation of soluble monomers. This polymerase activity arises from the coordinated action of two regulatory sequences: (i) a WASP homology 2 (WH2) domain that binds actin, and (ii) a proline‐rich sequence that binds profilin–actin complexes. In the absence of profilin, WH2 domains are sufficient to accelerate filament elongation, but in the presence of profilin, proline‐rich sequences are required to support polymerase activity by (i) bringing polymerization‐competent actin monomers in proximity to growing filament ends, and (ii) promoting shuttling of actin monomers from profilin–actin complexes onto nearby WH2 domains. Unoccupied WH2 domains transiently associate with free filament ends, preventing their growth and dynamically tethering the branched actin network to the WASP‐family proteins that create it. Collaboration between WH2 and proline‐rich sequences thus strikes a balance between filament growth and tethering. Our work expands the number of critical roles that WASP‐family proteins play in the assembly of branched actin networks to at least three: (i) promoting dendritic nucleation; (ii) linking actin networks to membranes; and (iii) accelerating filament elongation.
Collapse
Affiliation(s)
- Peter Bieling
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA, USA .,Department of Bioengineering & Biophysics Program, University of California, Berkeley, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Scott D Hansen
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Orkun Akin
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Tai-De Li
- Department of Bioengineering & Biophysics Program, University of California, Berkeley, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Daniel A Fletcher
- Department of Bioengineering & Biophysics Program, University of California, Berkeley, CA, USA .,Chan Zuckerberg Biohub, San Francisco, CA, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - R Dyche Mullins
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| |
Collapse
|
112
|
Somech R, Lev A, Lee YN, Simon AJ, Barel O, Schiby G, Avivi C, Barshack I, Rhodes M, Yin J, Wang M, Yang Y, Rhodes J, Marcus N, Garty BZ, Stein J, Amariglio N, Rechavi G, Wiest DL, Zhang Y. Disruption of Thrombocyte and T Lymphocyte Development by a Mutation in ARPC1B. THE JOURNAL OF IMMUNOLOGY 2017; 199:4036-4045. [PMID: 29127144 DOI: 10.4049/jimmunol.1700460] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/06/2017] [Indexed: 01/21/2023]
Abstract
Regulation of the actin cytoskeleton is crucial for normal development and function of the immune system, as evidenced by the severe immune abnormalities exhibited by patients bearing inactivating mutations in the Wiskott-Aldrich syndrome protein (WASP), a key regulator of actin dynamics. WASP exerts its effects on actin dynamics through a multisubunit complex termed Arp2/3. Despite the critical role played by Arp2/3 as an effector of WASP-mediated control over actin polymerization, mutations in protein components of the Arp2/3 complex had not previously been identified as a cause of immunodeficiency. Here, we describe two brothers with hematopoietic and immunologic symptoms reminiscent of Wiskott-Aldrich syndrome (WAS). However, these patients lacked mutations in any of the genes previously associated with WAS. Whole-exome sequencing revealed a homozygous 2 bp deletion, n.c.G623DEL-TC (p.V208VfsX20), in Arp2/3 complex component ARPC1B that causes a frame shift resulting in premature termination. Modeling of the disease in zebrafish revealed that ARPC1B plays a critical role in supporting T cell and thrombocyte development. Moreover, the defects in development caused by ARPC1B loss could be rescued by the intact human ARPC1B ortholog, but not by the p.V208VfsX20 variant identified in the patients. Moreover, we found that the expression of ARPC1B is restricted to hematopoietic cells, potentially explaining why a mutation in ARPC1B has now been observed as a cause of WAS, whereas mutations in other, more widely expressed, components of the Arp2/3 complex have not been observed.
Collapse
Affiliation(s)
- Raz Somech
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel.,The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel
| | - Atar Lev
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel.,The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel
| | - Yu Nee Lee
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel.,The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel
| | - Amos J Simon
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel.,The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel.,Hematology Laboratory, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel
| | - Ortal Barel
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel.,Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel
| | - Ginette Schiby
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel
| | - Camila Avivi
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel
| | - Iris Barshack
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel
| | - Michele Rhodes
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Jiejing Yin
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Minshi Wang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Yibin Yang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Jennifer Rhodes
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Nufar Marcus
- Allergy and Immunology Unit, Schneider Children's Medical Center of Israel, Felsenstein Medical Research Center, Kipper Institute of Immunology, Petach Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 4920235, Israel
| | - Ben-Zion Garty
- Allergy and Immunology Unit, Schneider Children's Medical Center of Israel, Felsenstein Medical Research Center, Kipper Institute of Immunology, Petach Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 4920235, Israel
| | - Jerry Stein
- Bone Marrow Transplantation Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 4920235, Israel; and
| | - Ninette Amariglio
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel.,Hematology Laboratory, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel.,Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel.,The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Gideon Rechavi
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel.,Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 52621, Israel
| | - David L Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111;
| | - Yong Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111;
| |
Collapse
|
113
|
He X, Zou R, Zhang B, You Y, Yang Y, Tian X. Whole Wiskott‑Aldrich syndrome protein gene deletion identified by high throughput sequencing. Mol Med Rep 2017; 16:6526-6531. [PMID: 28901403 PMCID: PMC5865821 DOI: 10.3892/mmr.2017.7416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 05/03/2017] [Indexed: 12/18/2022] Open
Abstract
Wiskott‑Aldrich syndrome (WAS) is a rare X‑linked recessive immunodeficiency disorder, characterized by thrombocytopenia, small platelets, eczema and recurrent infections associated with increased risk of autoimmunity and malignancy disorders. Mutations in the WAS protein (WASP) gene are responsible for WAS. To date, WASP mutations, including missense/nonsense, splicing, small deletions, small insertions, gross deletions, and gross insertions have been identified in patients with WAS. In addition, WASP‑interacting proteins are suspected in patients with clinical features of WAS, in whom the WASP gene sequence and mRNA levels are normal. The present study aimed to investigate the application of next generation sequencing in definitive diagnosis and clinical therapy for WAS. A 5 month‑old child with WAS who displayed symptoms of thrombocytopenia was examined. Whole exome sequence analysis of genomic DNA showed that the coverage and depth of WASP were extremely low. Quantitative polymerase chain reaction indicated total WASP gene deletion in the proband. In conclusion, high throughput sequencing is useful for the verification of WAS on the genetic profile, and has implications for family planning guidance and establishment of clinical programs.
Collapse
Affiliation(s)
- Xiangling He
- Department of Hematology and Oncology of Children's Medical Center, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Runying Zou
- Department of Hematology and Oncology of Children's Medical Center, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Bing Zhang
- Department of Hematology and Oncology of Children's Medical Center, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Yalan You
- Department of Hematology and Oncology of Children's Medical Center, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Yang Yang
- Department of Hematology and Oncology of Children's Medical Center, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Xin Tian
- Department of Hematology and Oncology of Children's Medical Center, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
114
|
Clinical Manifestations and Pathophysiological Mechanisms of the Wiskott-Aldrich Syndrome. J Clin Immunol 2017; 38:13-27. [PMID: 29086100 DOI: 10.1007/s10875-017-0453-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023]
Abstract
The Wiskott-Aldrich syndrome (WAS) is a rare X-linked disorder originally described by Dr. Alfred Wiskott in 1937 and Dr. Robert Aldrich in 1954 as a familial disease characterized by infections, bleeding tendency, and eczema. Today, it is well recognized that the syndrome has a wide clinical spectrum ranging from mild, isolated thrombocytopenia to full-blown presentation that can be complicated by life-threatening hemorrhages, immunodeficiency, atopy, autoimmunity, and cancer. The pathophysiology of classic and emerging features is being elucidated by clinical studies, but remains incompletely defined, which hinders the application of targeted therapies. At the same time, progress of hematopoietic stem cell transplantation and gene therapy offer optimistic prospects for treatment options aimed at the replacement of the defective lymphohematopoietic system that have the potential to provide a cure for this rare and polymorphic disease.
Collapse
|
115
|
Ochs HD, Petroni D. From clinical observations and molecular dissection to novel therapeutic strategies for primary immunodeficiency disorders. Am J Med Genet A 2017; 176:784-803. [DOI: 10.1002/ajmg.a.38480] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Hans D. Ochs
- Department of Pediatrics and Seattle Children's Research Institute; University of Washington; Seattle Washington
| | - Daniel Petroni
- Department of Pediatrics and Seattle Children's Research Institute; University of Washington; Seattle Washington
| |
Collapse
|
116
|
Rivers E, Thrasher AJ. Wiskott-Aldrich syndrome protein: Emerging mechanisms in immunity. Eur J Immunol 2017; 47:1857-1866. [DOI: 10.1002/eji.201646715] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/10/2017] [Accepted: 08/09/2017] [Indexed: 12/22/2022]
|
117
|
Rotty JD, Brighton HE, Craig SL, Asokan SB, Cheng N, Ting JP, Bear JE. Arp2/3 Complex Is Required for Macrophage Integrin Functions but Is Dispensable for FcR Phagocytosis and In Vivo Motility. Dev Cell 2017; 42:498-513.e6. [PMID: 28867487 DOI: 10.1016/j.devcel.2017.08.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/19/2017] [Accepted: 08/02/2017] [Indexed: 11/18/2022]
Abstract
The Arp2/3 complex nucleates branched actin, forming networks involved in lamellipodial protrusion, phagocytosis, and cell adhesion. We derived primary bone marrow macrophages lacking Arp2/3 complex (Arpc2-/-) and directly tested its role in macrophage functions. Despite protrusion and actin assembly defects, Arpc2-/- macrophages competently phagocytose via FcR and chemotax toward CSF and CX3CL1. However, CR3 phagocytosis and fibronectin haptotaxis, both integrin-dependent processes, are disrupted. Integrin-responsive actin assembly and αM/β2 integrin localization are compromised in Arpc2-/- cells. Using an in vivo system to observe endogenous monocytes migrating toward full-thickness ear wounds we found that Arpc2-/- monocytes maintain cell speeds and directionality similar to control. Our work reveals that the Arp2/3 complex is not a general requirement for phagocytosis or chemotaxis but is a critical driver of integrin-dependent processes. We demonstrate further that cells lacking Arp2/3 complex function in vivo remain capable of executing important physiological responses that require rapid directional motility.
Collapse
Affiliation(s)
- Jeremy D Rotty
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hailey E Brighton
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie L Craig
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sreeja B Asokan
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ning Cheng
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral Biology Curriculum, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenny P Ting
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral Biology Curriculum, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James E Bear
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
118
|
Mathiowetz AJ, Baple E, Russo AJ, Coulter AM, Carrano E, Brown JD, Jinks RN, Crosby AH, Campellone KG. An Amish founder mutation disrupts a PI(3)P-WHAMM-Arp2/3 complex-driven autophagosomal remodeling pathway. Mol Biol Cell 2017; 28:2492-2507. [PMID: 28720660 PMCID: PMC5597322 DOI: 10.1091/mbc.e17-01-0022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 06/19/2017] [Accepted: 07/14/2017] [Indexed: 12/27/2022] Open
Abstract
Actin nucleation factors function to organize, shape, and move membrane-bound organelles, yet they remain poorly defined in relation to disease. Galloway-Mowat syndrome (GMS) is an inherited disorder characterized by microcephaly and nephrosis resulting from mutations in the WDR73 gene. This core clinical phenotype appears frequently in the Amish, where virtually all affected individuals harbor homozygous founder mutations in WDR73 as well as the closely linked WHAMM gene, which encodes a nucleation factor. Here we show that patient cells with both mutations exhibit cytoskeletal irregularities and severe defects in autophagy. Reintroduction of wild-type WHAMM restored autophagosomal biogenesis to patient cells, while inactivation of WHAMM in healthy cell lines inhibited lipidation of the autophagosomal protein LC3 and clearance of ubiquitinated protein aggregates. Normal WHAMM function involved binding to the phospholipid PI(3)P and promoting actin nucleation at nascent autophagosomes. These results reveal a cytoskeletal pathway controlling autophagosomal remodeling and illustrate several molecular processes that are perturbed in Amish GMS patients.
Collapse
Affiliation(s)
- Alyssa J Mathiowetz
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | - Emma Baple
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Wellcome Wolfson Centre, Exeter EX2 5DW, UK
| | - Ashley J Russo
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | - Alyssa M Coulter
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | - Eric Carrano
- Department of Allied Health Sciences, Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | - Judith D Brown
- Department of Allied Health Sciences, Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | - Robert N Jinks
- Department of Biology and Biological Foundations of Behavior Program, Franklin and Marshall College, Lancaster, PA 17604
| | - Andrew H Crosby
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Wellcome Wolfson Centre, Exeter EX2 5DW, UK
| | - Kenneth G Campellone
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Wellcome Wolfson Centre, Exeter EX2 5DW, UK
| |
Collapse
|
119
|
|
120
|
Abstract
During an innate immune response, myeloid cells undergo complex morphological adaptations in response to inflammatory cues, which allow them to exit the vasculature, enter the tissues, and destroy invading pathogens. The actin and microtubule cytoskeletons are central to many of the most essential cellular functions including cell division, cell morphology, migration, intracellular trafficking, and signaling. Cytoskeletal structure and regulation are crucial for many myeloid cell functions, which require rapid and dynamic responses to extracellular signals. In this chapter, we review the roles of the actin and microtubule cytoskeletons in myeloid cells, focusing primarily on their roles in chemotaxis and phagocytosis. The role of myeloid cell cytoskeletal defects in hematological disorders is highlighted throughout.
Collapse
|
121
|
Abstract
Proteins of the Wiskott-Aldrich syndrome protein (WASP) family function as nucleation-promoting factors for the ubiquitously expressed Arp2/3 complex, which drives the generation of branched actin filaments. Arp2/3-generated actin regulates diverse cellular processes, including the formation of lamellipodia and filopodia, endocytosis and/or phagocytosis at the plasma membrane, and the generation of cargo-laden vesicles from organelles including the Golgi, endoplasmic reticulum (ER) and the endo-lysosomal network. Recent studies have also identified roles for WASP family members in promoting actin dynamics at the centrosome, influencing nuclear shape and membrane remodeling events leading to the generation of autophagosomes. Interestingly, several WASP family members have also been observed in the nucleus where they directly influence gene expression by serving as molecular platforms for the assembly of epigenetic and transcriptional machinery. In this Cell Science at a Glance article and accompanying poster, we provide an update on the subcellular roles of WHAMM, JMY and WASH (also known as WASHC1), as well as their mechanisms of regulation and emerging functions within the cell.
Collapse
Affiliation(s)
- Olga Alekhina
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Ezra Burstein
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390-9151, USA.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390-9151, USA
| | - Daniel D Billadeau
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA .,Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
122
|
Heikamp EB. 50 Years Ago in The Journal of Pediatrics: Wiskott-Aldrich Syndrome: Clinical, Immunologic, and Pathologic Observations. J Pediatr 2017; 181:101. [PMID: 28129868 DOI: 10.1016/j.jpeds.2016.08.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Emily B Heikamp
- Department of Pediatrics Baylor College of Medicine Houston, Texas
| |
Collapse
|
123
|
Gratzinger D, Jaffe ES, Chadburn A, Chan JKC, de Jong D, Goodlad JR, Said J, Natkunam Y. Primary/Congenital Immunodeficiency: 2015 SH/EAHP Workshop Report-Part 5. Am J Clin Pathol 2017; 147:204-216. [PMID: 28395106 PMCID: PMC6248572 DOI: 10.1093/ajcp/aqw215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The 2015 Workshop of the Society for Hematopathology/European Association for Haematopathology aimed to review primary immunodeficiency and related lymphoproliferations. METHODS Primary immunodeficiencies were divided into immune dysregulation, DNA repair defects, low immunoglobulins, and combined immunodeficiencies. RESULTS Autoimmune lymphoproliferative syndrome (ALPS) is a prototypical immune dysregulation-type immunodeficiency, with defects in T-cell signaling or apoptosis, expansion of T-cell subsets, and predisposition to hemophagocytic lymphohistiocytosis. DNA repair defects directly predispose to malignancy. Low immunoglobulin immunodeficiencies such as common variable immunodeficiency (CVID) have underlying T-cell repertoire abnormalities predisposing to autoimmunity and B-cell lymphoproliferations. The full spectrum of B-cell lymphoproliferative disorders occurs in primary immunodeficiency. CONCLUSIONS Lymphoproliferations in primary immunodeficiency mirror those in other immunodeficiency settings, with monomorphic B- and sometimes T lymphoproliferative disorders enriched in DNA repair defects. Distinctive T-cell subset expansions in ALPS, CVID, and related entities can mimic lymphoma, and recognition of double-negative T-cell or cytotoxic T-cell expansions is key to avoid overdiagnosis.
Collapse
Affiliation(s)
- Dita Gratzinger
- From the Stanford University School of Medicine, Stanford, CA
| | | | - Amy Chadburn
- Weill Medical College of Cornell University, New York, NY
| | | | - Daphne de Jong
- VU University Medical Center, Amsterdam, the Netherlands
| | | | - Jonathan Said
- University of California Los Angeles Medical Center, Los Angeles
| | | |
Collapse
|
124
|
Abstract
Eczema and urticaria are common disorders encountered in pediatric patients, but they may occasionally be the presenting complaint in a child with an underlying rare disease. Immunodeficiency syndromes should be suspected when eczema is associated with neonatal onset, recurrent infections, chronic lymphadenopathy, or failure to thrive. Nutritional deficiencies and mycosis fungoides are in the differential diagnosis for a child with a recalcitrant eczematous eruption. Autoinflammatory syndromes should be suspected in a child with chronic urticaria, fever, and other systemic signs of inflammation. Although these disorders are rare, early recognition allows for appropriate treatment and decreased morbidity for the child.
Collapse
Affiliation(s)
- Molly J Youssef
- Department of Dermatology, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA
| | - Yvonne E Chiu
- Section of Pediatric Dermatology, Department of Dermatology, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
125
|
Niewolik D, Peter I, Butscher C, Schwarz K. Autoinhibition of the Nuclease ARTEMIS Is Mediated by a Physical Interaction between Its Catalytic and C-terminal Domains. J Biol Chem 2017; 292:3351-3365. [PMID: 28082683 DOI: 10.1074/jbc.m116.770461] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/12/2017] [Indexed: 12/13/2022] Open
Abstract
The nuclease ARTEMIS is essential for the development of B and T lymphocytes. It is required for opening DNA hairpins generated during antigen receptor gene assembly from variable (V), diversity (D), and joining (J) subgenic elements (V(D)J recombination). As a member of the non-homologous end-joining pathway, it is also involved in repairing a subset of pathological DNA double strand breaks. Loss of ARTEMIS function therefore results in radiosensitive severe combined immunodeficiency (RS-SCID). The hairpin opening activity is dependent on the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), which can bind to and phosphorylate ARTEMIS. The ARTEMIS C terminus is dispensable for cellular V(D)J recombination and in vitro nuclease assays with C-terminally truncated ARTEMIS showing DNA-PKcs-independent hairpin opening activity. Therefore, it has been postulated that ARTEMIS is regulated via autoinhibition by its C terminus. To obtain evidence for the autoinhibition model, we performed co-immunoprecipitation experiments with combinations of ARTEMIS mutants. We show that an N-terminal fragment comprising the catalytic domain can interact both with itself and with a C-terminal fragment. Amino acid exchanges N456A+S457A+E458Q in the C terminus of full-length ARTEMIS resulted in unmasking of the N terminus and in increased ARTEMIS activity in cellular V(D)J recombination assays. Mutations in ARTEMIS-deficient patients impaired the interaction with the C terminus and also affected protein stability. The interaction between the N- and C-terminal domains was not DNA-PKcs-dependent, and phosphomimetic mutations in the C-terminal domain did not result in unmasking of the catalytic domain. Our experiments provide strong evidence that a physical interaction between the C-terminal and catalytic domains mediates ARTEMIS autoinhibition.
Collapse
Affiliation(s)
| | - Ingrid Peter
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg-Hessen, Ulm, Germany 89081
| | - Carmen Butscher
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg-Hessen, Ulm, Germany 89081
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg-Hessen, Ulm, Germany 89081
| |
Collapse
|
126
|
Zhan J, Johnson IM, Wielgosz M, Nienhuis AW. The identification of hematopoietic-specific regulatory elements for WASp gene expression. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16077. [PMID: 28035317 PMCID: PMC5155633 DOI: 10.1038/mtm.2016.77] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/26/2022]
Abstract
Chromosome Conformation Capture (3C) technology was used to identify physical interactions between the proximal Wiskott-Aldrich Syndrome protein (WASp) promoter and its distant DNA segments in Jurkat-T cells. We found that two hematopoietic specific DNase I hypersensitive (DHS) sites (proximal DHS-A, and distal DHS-B) which had high interaction frequencies with the proximal WASp promoter indicating potential regulatory activity for these DHS sites. Subsequently, we cloned several DNA fragments around the proximal DHS-A site into a luciferase reporter vector. Interestingly, no fragments showed enhancer activity, but two fragments exhibited strong silencing activity in Jurkat-T cells. After aligning the chromatin state profiling for hematopoietic and nonhematopoietic cells using the human genome browser (UCSC), we found a 5 kb putative hematopoietic specific enhancer region located 250 kb downstream of the WAS gene. This putative enhancer region contains two hematopoietic cell specific DHS sites. Subsequently, the hematopoietic specific DHS sites enhanced luciferase expression from the proximal WASp promoter in all hematopoietic cells we tested. Finally, using a lentiviral vector stable expression system, the hematopoietic specific-enhancer(s) increased GFP reporter gene expression in hematopoietic cells, and increased WASp gene expression in WASp deficient cells. This enhancer may have the potential to be used in gene therapy for hematological diseases.
Collapse
Affiliation(s)
- Jun Zhan
- Department of Hematology, Division of Experimental Hematology , St. Jude Children's Research Hospital , Memphis, Tennessee, USA
| | - Irudayam Maria Johnson
- Department of Hematology, Division of Experimental Hematology , St. Jude Children's Research Hospital , Memphis, Tennessee, USA
| | - Matthew Wielgosz
- Department of Hematology, Division of Experimental Hematology , St. Jude Children's Research Hospital , Memphis, Tennessee, USA
| | - Arthur W Nienhuis
- Department of Hematology, Division of Experimental Hematology , St. Jude Children's Research Hospital , Memphis, Tennessee, USA
| |
Collapse
|
127
|
Lymphoma Secondary to Congenital and Acquired Immunodeficiency Syndromes at a Turkish Pediatric Oncology Center. J Clin Immunol 2016; 36:667-76. [PMID: 27492260 DOI: 10.1007/s10875-016-0324-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/26/2016] [Indexed: 12/19/2022]
Abstract
The prevalence of lymphoma in primary immunodeficiency cases and autoimmune diseases, as well as on a background of immunodeficiency following organ transplants, is increasing. The lymphoma treatment success rate is known to be a low prognosis. Our study aimed to emphasize the low survival rates in immunodeficient vs. immunocompetent lymphoma patients and also to investigate the effect of rituximab in patients with ataxia telangiectasia and other immunodeficiencies. We summarized the clinical characteristics and treatment results of 17 cases with primary immunodeficiency that developed non-Hodgkin lymphoma (NHL) and Hodgkin lymphoma (HL) retrospectively. Seven patients were diagnosed with ataxia-telangiectasia, two with common variable immunodeficiency, two with selective IgA deficiency, one with X-related lymphoproliferative syndrome, one with Wiskott-Aldrich syndrome, one with Epstein-Barr virus-related lymphoproliferative syndrome, one with interleukin-2-inducible T-cell kinase (ITK) deficiency, and one with lymphoma developing after autoimmune lymphoproliferative syndrome (ALPS). One patient underwent a renal transplant. Of the nine males and eight females (aged 3-12 years, median = 7) that developed lymphoma, seven were diagnosed with HL and ten with NHL (seven B-cell, three T-cell). The NHL patients were started on the Berlin-Frankfurt-Münster, POG9317, LMB-96, or R-CHOP treatment protocols with reduced chemotherapy dosages. HL cases were started on the doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD) and/or cyclophosphamide, vincristine, procarbazine, and prednisone (COPP) protocol, also with modified dosages. Importantly, all seven cases of HL are alive and in remission, while six of the ten NHL patients have died. Primary immunodeficiency is a strong predisposing factor for developing lymphoma. Low treatment success rates relative to other lymphomas and difficulties encountered during treatment indicate that new treatment agents are needed. While some success has been achieved by combining rituximab with lymphoma treatment protocols in B-NHL cases with primary immunodeficiency, the need for new treatment approaches for these patients remains critical.
Collapse
|
128
|
Inherited platelet disorders: toward DNA-based diagnosis. Blood 2016; 127:2814-23. [PMID: 27095789 DOI: 10.1182/blood-2016-03-378588] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/13/2016] [Indexed: 12/11/2022] Open
Abstract
Variations in platelet number, volume, and function are largely genetically controlled, and many loci associated with platelet traits have been identified by genome-wide association studies (GWASs).(1) The genome also contains a large number of rare variants, of which a tiny fraction underlies the inherited diseases of humans. Research over the last 3 decades has led to the discovery of 51 genes harboring variants responsible for inherited platelet disorders (IPDs). However, the majority of patients with an IPD still do not receive a molecular diagnosis. Alongside the scientific interest, molecular or genetic diagnosis is important for patients. There is increasing recognition that a number of IPDs are associated with severe pathologies, including an increased risk of malignancy, and a definitive diagnosis can inform prognosis and care. In this review, we give an overview of these disorders grouped according to their effect on platelet biology and their clinical characteristics. We also discuss the challenge of identifying candidate genes and causal variants therein, how IPDs have been historically diagnosed, and how this is changing with the introduction of high-throughput sequencing. Finally, we describe how integration of large genomic, epigenomic, and phenotypic datasets, including whole genome sequencing data, GWASs, epigenomic profiling, protein-protein interaction networks, and standardized clinical phenotype coding, will drive the discovery of novel mechanisms of disease in the near future to improve patient diagnosis and management.
Collapse
|
129
|
A high-throughput sequencing test for diagnosing inherited bleeding, thrombotic, and platelet disorders. Blood 2016; 127:2791-803. [PMID: 27084890 DOI: 10.1182/blood-2015-12-688267] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/07/2016] [Indexed: 12/17/2022] Open
Abstract
Inherited bleeding, thrombotic, and platelet disorders (BPDs) are diseases that affect ∼300 individuals per million births. With the exception of hemophilia and von Willebrand disease patients, a molecular analysis for patients with a BPD is often unavailable. Many specialized tests are usually required to reach a putative diagnosis and they are typically performed in a step-wise manner to control costs. This approach causes delays and a conclusive molecular diagnosis is often never reached, which can compromise treatment and impede rapid identification of affected relatives. To address this unmet diagnostic need, we designed a high-throughput sequencing platform targeting 63 genes relevant for BPDs. The platform can call single nucleotide variants, short insertions/deletions, and large copy number variants (though not inversions) which are subjected to automated filtering for diagnostic prioritization, resulting in an average of 5.34 candidate variants per individual. We sequenced 159 and 137 samples, respectively, from cases with and without previously known causal variants. Among the latter group, 61 cases had clinical and laboratory phenotypes indicative of a particular molecular etiology, whereas the remainder had an a priori highly uncertain etiology. All previously detected variants were recapitulated and, when the etiology was suspected but unknown or uncertain, a molecular diagnosis was reached in 56 of 61 and only 8 of 76 cases, respectively. The latter category highlights the need for further research into novel causes of BPDs. The ThromboGenomics platform thus provides an affordable DNA-based test to diagnose patients suspected of having a known inherited BPD.
Collapse
|
130
|
Johnson B, Fletcher SJ, Morgan NV. Inherited thrombocytopenia: novel insights into megakaryocyte maturation, proplatelet formation and platelet lifespan. Platelets 2016; 27:519-25. [PMID: 27025194 PMCID: PMC5000870 DOI: 10.3109/09537104.2016.1148806] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The study of patients with inherited bleeding problems is a powerful approach in determining the function and regulation of important proteins in human platelets and their precursor, the megakaryocyte. The normal range of platelet counts in the bloodstream ranges from 150 000 to 400 000 platelets per microliter and is normally maintained within a narrow range for each individual. This requires a constant balance between thrombopoiesis, which is primarily controlled by the cytokine thrombopoietin (TPO), and platelet senescence and consumption. Thrombocytopenia can be defined as a platelet count of less than 150 000 per microliter and can be acquired or inherited. Heritable forms of thrombocytopenia are caused by mutations in genes involved in megakaryocyte differentiation, platelet production and platelet removal. In this review, we will discuss the main causative genes known for inherited thrombocytopenia and highlight their diverse functions and whether these give clues on the processes of platelet production, platelet function and platelet lifespan. Additionally, we will highlight the recent advances in novel genes identified for inherited thrombocytopenia and their suggested function.
Collapse
Affiliation(s)
- Ben Johnson
- a Institute of Cardiovascular Sciences, College of Medical and Dental Sciences , University of Birmingham , UK
| | - Sarah J Fletcher
- a Institute of Cardiovascular Sciences, College of Medical and Dental Sciences , University of Birmingham , UK
| | - Neil V Morgan
- a Institute of Cardiovascular Sciences, College of Medical and Dental Sciences , University of Birmingham , UK
| |
Collapse
|
131
|
Martin F, Gutierrez-Guerrero A, Sánchez S, Galvani G, Benabdellah K. Genome editing: An alternative to retroviral vectors for Wiskott-Aldrich Syndrome (WAS) Gene Therapy? Expert Opin Orphan Drugs 2016. [DOI: 10.1517/21678707.2016.1142870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
132
|
Randon M, Michot JM, Lambotte O, Labetoulle M, Rousseau A. Local treatment for scleritis secondary to Wiskott-Aldrich syndrome. J Fr Ophtalmol 2016; 39:e63-4. [DOI: 10.1016/j.jfo.2014.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 11/15/2022]
|
133
|
Chemokines, their receptors and human disease: the good, the bad and the itchy. Immunol Cell Biol 2016; 93:364-71. [PMID: 25895814 DOI: 10.1038/icb.2015.23] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 01/30/2015] [Indexed: 02/04/2023]
Abstract
Chemokines are a highly specialized group of cytokines that coordinate trafficking and homing of leucocytes between bone marrow, lymphoid organs and sites of infection or inflammation. They are also responsible for structural organization within lymphoid organs. Aberrant expression or function of these molecules, or their receptors, has been linked to protection or susceptibility to specific infectious diseases, as well as the risk of autoimmune disease and malignancy, revealing critical roles of chemokines and their receptors in human health, disease and therapeutics. In this review, we focus on human diseases that provide lessons regarding the critical role of these specialized and complex cytokines.
Collapse
|
134
|
Brüser L, Bogdan S. Molecular Control of Actin Dynamics In Vivo: Insights from Drosophila. Handb Exp Pharmacol 2016; 235:285-310. [PMID: 27757759 DOI: 10.1007/164_2016_33] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The actin cytoskeleton provides mechanical support for cells and generates forces to drive cell shape changes and cell migration in morphogenesis. Molecular understanding of actin dynamics requires a genetically traceable model system that allows interdisciplinary experimental approaches to elucidate the regulatory network of cytoskeletal proteins in vivo. Here, we will discuss some examples of how advances in Drosophila genetics and high-resolution imaging techniques contribute to the discovery of new actin functions, signaling pathways, and mechanisms of actin regulation in vivo.
Collapse
Affiliation(s)
- Lena Brüser
- Institute for Neurobiology, University of Muenster, Badestrasse 9, 48149, Muenster, Germany
| | - Sven Bogdan
- Institute for Neurobiology, University of Muenster, Badestrasse 9, 48149, Muenster, Germany.
| |
Collapse
|
135
|
Brinkmann K, Winterhoff M, Önel SF, Schultz J, Faix J, Bogdan S. WHAMY is a novel actin polymerase promoting myoblast fusion, macrophage cell motility and sensory organ development in Drosophila. J Cell Sci 2015; 129:604-20. [PMID: 26675239 DOI: 10.1242/jcs.179325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/09/2015] [Indexed: 01/06/2023] Open
Abstract
Wiskott-Aldrich syndrome proteins (WASPs) are nucleation-promoting factors (NPF) that differentially control the Arp2/3 complex. In Drosophila, three different family members, SCAR (also known as WAVE), WASP and WASH (also known as CG13176), have been analyzed so far. Here, we characterized WHAMY, the fourth Drosophila WASP family member. whamy originated from a wasp gene duplication and underwent a sub-neofunctionalization. Unlike WASP, we found that WHAMY specifically interacted with activated Rac1 through its two CRIB domains, which were sufficient for targeting WHAMY to lamellipodial and filopodial tips. Biochemical analyses showed that WHAMY promoted exceptionally fast actin filament elongation, although it did not activate the Arp2/3 complex. Loss- and gain-of-function studies revealed an important function of WHAMY in membrane protrusions and cell migration in macrophages. Genetic data further implied synergistic functions between WHAMY and WASP during morphogenesis. Double mutants were late-embryonic lethal and showed severe defects in myoblast fusion. Trans-heterozygous mutant animals showed strongly increased defects in sensory cell fate specification. Thus, WHAMY is a novel actin polymerase with an initial partitioning of ancestral WASP functions in development and subsequent acquisition of a new function in cell motility during evolution.
Collapse
Affiliation(s)
- Klaus Brinkmann
- Institut für Neurobiologie, Universität Münster, Badestr. 9, Münster 48149, Germany
| | - Moritz Winterhoff
- Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg Strasse 1, Hannover 30625, Germany
| | - Susanne-Filiz Önel
- Fachbereich Biologie, Entwicklungsbiologie, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, Marburg 35043, Germany
| | - Jörg Schultz
- Center for Computational and Theoretical Biology, Campus Nord and Bioinformatik, Biozentrum, Am Hubland, Universität Würzburg, Würzburg 97074, Germany
| | - Jan Faix
- Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg Strasse 1, Hannover 30625, Germany
| | - Sven Bogdan
- Institut für Neurobiologie, Universität Münster, Badestr. 9, Münster 48149, Germany
| |
Collapse
|
136
|
Voss M, Bryceson YT. Natural killer cell biology illuminated by primary immunodeficiency syndromes in humans. Clin Immunol 2015; 177:29-42. [PMID: 26592356 DOI: 10.1016/j.clim.2015.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/22/2015] [Accepted: 11/14/2015] [Indexed: 12/21/2022]
Abstract
Natural killer (NK) cells are innate immune cytotoxic effector cells well known for their role in antiviral immunity and tumor immunosurveillance. In parts, this knowledge stems from rare inherited immunodeficiency disorders in humans that abrogate NK cell function leading to immune impairments, most notably associated with a high susceptibility to viral infections. Phenotypically, these disorders range from deficiencies selectively affecting NK cells to complex general immune defects that affect NK cells but also other immune cell subsets. Moreover, deficiencies may be associated with reduced NK cell numbers or rather impair specific NK cell effector functions. In recent years, genetic defects underlying the various NK cell deficiencies have been uncovered and have triggered investigative efforts to decipher the molecular mechanisms underlying these disorders. Here we review the associations between inherited human diseases and NK cell development as well as function, with a particular focus on defects in NK cell exocytosis and cytotoxicity. Furthermore we outline how reports of diverse genetic defects have shaped our understanding of NK cell biology.
Collapse
Affiliation(s)
- Matthias Voss
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Yenan T Bryceson
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden; Broegelmann Research Laboratory, Institute of Clinical Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
137
|
Mace EM, Orange JS. Insights into primary immune deficiency from quantitative microscopy. J Allergy Clin Immunol 2015; 136:1150-62. [PMID: 26078103 PMCID: PMC4641025 DOI: 10.1016/j.jaci.2015.03.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/30/2015] [Indexed: 12/22/2022]
Abstract
Recent advances in genomics-based technology have resulted in an increase in our understanding of the molecular basis of many primary immune deficiencies. Along with this increased knowledge comes an increased responsibility to understand the underlying mechanism of disease, and thus increasingly sophisticated technologies are being used to investigate the cell biology of human immune deficiencies. One such technology, which has itself undergone a recent explosion in innovation, is that of high-resolution microscopy and image analysis. These advances complement innovative studies that have previously shed light on critical cell biological processes that are perturbed by single-gene mutations in primary immune deficiency. Here we highlight advances made specifically in the following cell biological processes: (1) cytoskeletal-related processes; (2) cell signaling; (3) intercellular trafficking; and (4) cellular host defense.
Collapse
Affiliation(s)
- Emily M Mace
- Center for Human Immunobiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Tex
| | - Jordan S Orange
- Center for Human Immunobiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Tex.
| |
Collapse
|
138
|
Toscano MG, Muñoz P, Sánchez-Gilabert A, Cobo M, Benabdellah K, Anderson P, Ramos-Mejía V, Real PJ, Neth O, Molinos-Quintana A, Gregory PD, Holmes MC, Martin F. Absence of WASp Enhances Hematopoietic and Megakaryocytic Differentiation in a Human Embryonic Stem Cell Model. Mol Ther 2015; 24:342-353. [PMID: 26502776 PMCID: PMC4817813 DOI: 10.1038/mt.2015.196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/14/2015] [Indexed: 12/15/2022] Open
Abstract
The Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency caused by mutations in the WAS gene and characterized by severe thrombocytopenia. Although the role of WASp in terminally differentiated lymphocytes and myeloid cells is well characterized, its role in early hematopoietic differentiation and in platelets (Plts) biology is poorly understood. In the present manuscript, we have used zinc finger nucleases targeted to the WAS locus for the development of two isogenic WAS knockout (WASKO) human embryonic stem cell lines (hESCs). Upon hematopoietic differentiation, hESCs-WASKO generated increased ratios of CD34+CD45+ progenitors with altered responses to stem cell factor compared to hESCs-WT. When differentiated toward the megakaryocytic linage, hESCs-WASKO produced increased numbers of CD34+CD41+ progenitors, megakaryocytes (MKs), and Plts. hESCs-WASKO-derived MKs and Plts showed altered phenotype as well as defective responses to agonist, mimicking WAS patients MKs and Plts defects. Interestingly, the defects were more evident in WASp-deficient MKs than in WASp-deficient Plts. Importantly, ectopic WAS expression using lentiviral vectors restored normal Plts development and MKs responses. These data validate the AND-1_WASKO cell lines as a human cellular model for basic research and for preclinical studies for WAS.
Collapse
Affiliation(s)
- Miguel G Toscano
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain; Current address: Amarna Therapeutics S.L., Instituto Cartuja, C/ Leonardo da Vinci 19ª, Seville, Spain
| | - Pilar Muñoz
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain; Current address: University College London-Institute of Child Health, London, UK
| | - Almudena Sánchez-Gilabert
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Marién Cobo
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Karim Benabdellah
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Per Anderson
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Verónica Ramos-Mejía
- Genomic Oncology Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Pedro J Real
- Genomic Oncology Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Olaf Neth
- Unidad de Enfermedades Infecciosas e Inmunopatologías Pediátricas, Hospitales Universitarios Virgen del Rocío, Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - Agueda Molinos-Quintana
- UGC Hematología y Hemoterapia, Hospital Infantil Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla, Seville, Spain
| | - Philip D Gregory
- Sangamo BioSciences, Inc., Pt. Richmond Tech Center, Richmond, California, USA
| | - Michael C Holmes
- Sangamo BioSciences, Inc., Pt. Richmond Tech Center, Richmond, California, USA
| | - Francisco Martin
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain.
| |
Collapse
|
139
|
Harvie EA, Huttenlocher A. Neutrophils in host defense: new insights from zebrafish. J Leukoc Biol 2015; 98:523-37. [PMID: 25717145 PMCID: PMC4569048 DOI: 10.1189/jlb.4mr1114-524r] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 12/11/2022] Open
Abstract
Neutrophils are highly motile phagocytic cells that play a critical role in the immune response to infection. Zebrafish (Danio rerio) are increasingly used to study neutrophil function and host-pathogen interactions. The generation of transgenic zebrafish lines with fluorescently labeled leukocytes has made it possible to visualize the neutrophil response to infection in real time by use of optically transparent zebrafish larvae. In addition, the genetic tractability of zebrafish has allowed for the generation of models of inherited neutrophil disorders. In this review, we discuss several zebrafish models of infectious disease, both in the context of immunocompetent, as well as neutrophil-deficient hosts and how these models have shed light on neutrophil behavior during infection.
Collapse
Affiliation(s)
- Elizabeth A Harvie
- *Microbiology Doctoral Training Program, Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anna Huttenlocher
- *Microbiology Doctoral Training Program, Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
140
|
Gerrits AJ, Leven EA, Frelinger AL, Brigstocke SL, Berny-Lang MA, Mitchell WB, Revel-Vilk S, Tamary H, Carmichael SL, Barnard MR, Michelson AD, Bussel JB. Effects of eltrombopag on platelet count and platelet activation in Wiskott-Aldrich syndrome/X-linked thrombocytopenia. Blood 2015; 126:1367-78. [PMID: 26224646 PMCID: PMC4729539 DOI: 10.1182/blood-2014-09-602573] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 07/15/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Because Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia (XLT) patients have microthrombocytopenia, hemorrhage is a major problem. We asked whether eltrombopag, a thrombopoietic agent, would increase platelet counts, improve platelet activation, and/or reduce bleeding in WAS/XLT patients. In 9 WAS/XLT patients and 8 age-matched healthy controls, platelet activation was assessed by whole blood flow cytometry. Agonist-induced platelet surface activated glycoprotein (GP) IIb-IIIa and P-selectin in WAS/XLT patients were proportional to platelet size and therefore decreased compared with controls. In contrast, annexin V binding showed no differences between WAS/XLT and controls. Eltrombopag treatment resulted in an increased platelet count in 5 out of 8 patients. Among responders to eltrombopag, immature platelet fraction in 3 WAS/XLT patients was significantly less increased compared with 7 pediatric chronic immune thrombocytopenia (ITP) patients. Platelet activation did not improve in 3 WAS/XLT patients whose platelet count improved on eltrombopag. IN CONCLUSION (1) the reduced platelet activation observed in WAS/XLT is primarily due to the microthrombocytopenia; and (2) although the eltrombopag-induced increase in platelet production in WAS/XLT is less than in ITP, eltrombopag has beneficial effects on platelet count but not platelet activation in the majority of WAS/XLT patients. This trial was registered at www.clinicaltrials.gov as #NCT00909363.
Collapse
Affiliation(s)
- Anja J Gerrits
- Center for Platelet Research Studies, Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Emily A Leven
- Division of Pediatric Hematology/Oncology, New York Presbyterian Hospital/Weill Cornell Medical College, New York, NY
| | - Andrew L Frelinger
- Center for Platelet Research Studies, Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Sophie L Brigstocke
- Division of Pediatric Hematology/Oncology, New York Presbyterian Hospital/Weill Cornell Medical College, New York, NY
| | - Michelle A Berny-Lang
- Center for Platelet Research Studies, Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - W Beau Mitchell
- Division of Pediatric Hematology/Oncology, New York Presbyterian Hospital/Weill Cornell Medical College, New York, NY; Platelet Biology Laboratory, New York Blood Center, New York, NY
| | - Shoshana Revel-Vilk
- Department of Pediatric Hematology/Oncology, Hadassah Hebrew University Hospital, Jerusalem, Israel; and
| | - Hannah Tamary
- Pediatric Hematology Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Sabrina L Carmichael
- Center for Platelet Research Studies, Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Marc R Barnard
- Center for Platelet Research Studies, Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Alan D Michelson
- Center for Platelet Research Studies, Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - James B Bussel
- Division of Pediatric Hematology/Oncology, New York Presbyterian Hospital/Weill Cornell Medical College, New York, NY
| |
Collapse
|
141
|
Kim MO, Ryu JM, Suh HN, Park SH, Oh YM, Lee SH, Han HJ. cAMP Promotes Cell Migration Through Cell Junctional Complex Dynamics and Actin Cytoskeleton Remodeling: Implications in Skin Wound Healing. Stem Cells Dev 2015; 24:2513-24. [PMID: 26192163 DOI: 10.1089/scd.2015.0130] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Stem cells have attracted great interest for their therapeutic capacity in tissue regeneration. Cyclic adenosine 3',5'-monophosphate (cAMP), existing in high concentration at wound sites, mediated various signaling pathways such as cytoskeleton dynamics, cell adhesion, and cell migration in stem cells, which suggest the critical roles of cAMP in the wound healing process through functional regulation of stem cells. However, the mechanisms behind the effect of cAMP on mouse embryonic stem cell (mESC) motility and its roles on skin wound healing remain to be fully elucidated. In the present study, 8-Bromo cAMP-treated mESCs showed significant wound closure and improved neovascularization. Moreover, 8-Bromo cAMP stimulated mESC migration into the wound bed. 8-Bromo cAMP also increased ESC motility in in vitro migration assay. 8-Bromo cAMP induced myosin light chain phosphorylation through Rac1 and Cdc42 signaling, which were involved in 8-Bromo cAMP-induced decrease in expression of junction proteins (connexin 43, E-cadherin, and occludin) at the plasma membrane. Subsequently, 8-Bromo cAMP induced the disruption of cell junctions (including gap junctions, adherens junctions, and tight junctions), which reduced the function of the gap junctions and cell adhesion. In addition, 8-Bromo cAMP-induced Rac1 and Cdc42 activation increased Arp3, TOCA, PAK, and N-WASP expression, but decreased cofilin phosphorylation level, which elicited actin cytoskeleton remodeling. In contrast to the control, 8-Bromo cAMP evoked a substantial migration of cells into the denuded area, which was blocked by the small interfering RNAs of the signaling pathway-related molecules or by inhibitors. In conclusion, cAMP enhanced the migration of mESCs through effective coordination of junctional disruption and actin cytoskeleton remodeling, which increased the wound healing capacity of ESCs.
Collapse
Affiliation(s)
- Mi Ok Kim
- 1 Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University , Seoul, Republic of Korea.,2 BK21 PLUS Creative Veterinary Research Center, Seoul National University , Seoul, Republic of Korea
| | - Jung Min Ryu
- 1 Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University , Seoul, Republic of Korea.,2 BK21 PLUS Creative Veterinary Research Center, Seoul National University , Seoul, Republic of Korea
| | - Han Na Suh
- 1 Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University , Seoul, Republic of Korea.,2 BK21 PLUS Creative Veterinary Research Center, Seoul National University , Seoul, Republic of Korea
| | - Soo Hyun Park
- 3 College of Veterinary Medicine, Chonnam National University , Gwangju, Republic of Korea
| | - Yeon-Mok Oh
- 4 Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Republic of Korea
| | - Sang Hun Lee
- 5 Medical Science Research Institute, Soonchunhyang University Seoul Hospital , Seoul, Republic of Korea
| | - Ho Jae Han
- 1 Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University , Seoul, Republic of Korea.,2 BK21 PLUS Creative Veterinary Research Center, Seoul National University , Seoul, Republic of Korea
| |
Collapse
|
142
|
Liu DW, Zhang ZY, Zhao Q, Jiang LP, Liu W, Tu WW, Song WX, Zhao XD. Wiskott-Aldrich syndrome/X-linked thrombocytopenia in China: Clinical characteristic and genotype-phenotype correlation. Pediatr Blood Cancer 2015; 62:1601-8. [PMID: 25931402 DOI: 10.1002/pbc.25559] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/19/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia (XLT) are caused by mutations of the WAS gene. The genotype-phenotype association of WAS and XLT have not been fully elucidated. Here, we established the largest database of WAS in China to further determine the potential correlation between genotype and phenotype and long-term outcome. PROCEDURES We collected clinical data of 81 WAS/XLT patients, analyzed mutations of WAS gene at the genomic DNA and transcriptional/translational levels, and quantified three different patterns of WAS protein (WASp) expression in PBMCs by flow cytometry. RESULTS There were 60 unique mutations identified, including 20 novel mutations and eight hotspots, from 75 unrelated families with a total of 81 affected members. Nearly all the patients with XLT had missense mutations and were WASp-positive in the peripheral cells, while only half of the patients with missense mutations exhibited the XLT phenotype and detectable WASp. In contrast, patients with nonsense mutations, deletions, insertions, and complex mutations were WASp-negative and developed the classic WAS phenotype. An equal number of patients with splice anomalies were either WASp-positive or WASp-negative. Long-term survival rates were lower in WASp-negative patients compared to WASp-positive patients. CONCLUSIONS The clinical phenotype of classic WAS or milder XLT and long-term outcome are potentially influenced by the effect of these defects on gene transcription and translation. Patients with missense mutations allowing expression of mutated WASp and those with splice anomalies, which result in generation of multiple products, including normal WASp, present the attenuated XLT phenotype and show better prognosis.
Collapse
Affiliation(s)
- Da-Wei Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Zhi-Yong Zhang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Qin Zhao
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Li-Ping Jiang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Wei Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Wen-Wei Tu
- Department of Paediatrics & Adolescent Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Wen-Xia Song
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland
| | - Xiao-Dong Zhao
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
143
|
Worth AJJ, Thrasher AJ. Current and emerging treatment options for Wiskott–Aldrich syndrome. Expert Rev Clin Immunol 2015; 11:1015-32. [DOI: 10.1586/1744666x.2015.1062366] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
144
|
Abstract
Inflammatory bowel disease (IBD) is a multifactoral disease caused by dysregulated immune responses to commensal or pathogenic microbes in the intestine, resulting in chronic intestinal inflammation. An emerging population of patients with IBD occurring before the age of 5 represent a unique form of disease, termed Very Early Onset (VEO)-IBD, which is phenotypically- and genetically-distinct from older-onset IBD. VEO-IBD is associated with increased disease severity, aggressive progression and poor responsiveness to most conventional therapies. Further investigation into the causes and pathogenesis of VEO-IBD will help improve treatment strategies, and may lead to a better understanding of the mechanisms that are essential to maintain intestinal health or provoke the development of targeted therapeutic strategies to limit intestinal disease. Here we discuss the phenotypic nature of VEO-IBD, the recent identification of novel gene variants associated with disease, and functional immunologic studies interrogating the contribution of specific genetic variants to the development of chronic intestinal inflammation.
Collapse
Key Words
- inflammatory bowel disease
- very early onset inflammatory bowel disease
- whole exome sequencing
- mucosal immunology
- adam17, a disintegrin and metalloproteinase domain 17
- cgd, chronic granulomatous disease
- col7a1, collagen, type vii, α1
- cvid, common variable immunodeficiency
- foxp3, forkhead box protein 3
- gucy2, guanylate cyclase 2
- gwas, genomewide association studies
- ibd, inflammatory bowel disease
- il, interleukin
- ilc, innate lymphoid cells
- ilc3, group 3 innate lymphoid cells
- iga, immunoglobulin a
- ikbkg, inhibitor of κ light polypeptide gene enhancer in b cells, kinase of, γ
- ipex, immunodysregulation, polyendocrinopathy, and enteropathy, x-linked
- mhcii, major histocompatibility complex class ii
- nemo, nuclear factor-κb essential modulator
- rag, recombination-activating gene
- stat, signal transducer and activator of transcription
- tnf, tumor necrosis factor
- treg, regulatory t cell
- ttc7a, tetratricopeptide repeat domain-containing protein 7a
- veo-ibd, very early onset inflammatory bowel disease
- wasp, wiskott-aldrich syndrome protein
- wes, whole exome sequencing
- xiap, x-linked inhibitor of apoptosis protein
Collapse
|
145
|
Frugtniet B, Jiang WG, Martin TA. Role of the WASP and WAVE family proteins in breast cancer invasion and metastasis. BREAST CANCER-TARGETS AND THERAPY 2015; 7:99-109. [PMID: 25941446 PMCID: PMC4416637 DOI: 10.2147/bctt.s59006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Wiskott–Aldrich syndrome protein (WASP) and WASP family verprolin-homologous protein (WAVE) family are a group of molecules that form a key link between GTPases and the actin cytoskeleton. The role of WASP/WAVE family proteins in the control of actin polymerization through activation of the actin-related protein 2/3 complex is critical in the formation of the actin-based membrane protrusions seen in cell migration and invasion. For this reason, the activity of the WASP/WAVE family in cancer cell invasion and migration has been of great interest in recent years. Many reports have highlighted the potential of targeting the WASP/WAVE family as a therapy for the prevention of cancer progression, in particular breast cancer. This review focuses on the role of the WASP/WAVE family in breast cancer cell invasion and migration and how this relates to the molecular mechanisms of WASP/WAVE activity, their exact contributions to the stages of cancer progression, and how this can lead to the development of anticancer drugs that target the WASP/WAVE family and related pathways.
Collapse
Affiliation(s)
- Bethan Frugtniet
- Cardiff-China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| | - Wen G Jiang
- Cardiff-China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| | - Tracey A Martin
- Cardiff-China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
146
|
Cotta-de-Almeida V, Dupré L, Guipouy D, Vasconcelos Z. Signal Integration during T Lymphocyte Activation and Function: Lessons from the Wiskott-Aldrich Syndrome. Front Immunol 2015; 6:47. [PMID: 25709608 PMCID: PMC4321635 DOI: 10.3389/fimmu.2015.00047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/26/2015] [Indexed: 11/18/2022] Open
Abstract
Over the last decades, research dedicated to the molecular and cellular mechanisms underlying primary immunodeficiencies (PID) has helped to understand the etiology of many of these diseases and to develop novel therapeutic approaches. Beyond these aspects, PID are also studied because they offer invaluable natural genetic tools to dissect the human immune system. In this review, we highlight the research that has focused over the last 20 years on T lymphocytes from Wiskott–Aldrich syndrome (WAS) patients. WAS T lymphocytes are defective for the WAS protein (WASP), a regulator of actin cytoskeleton remodeling. Therefore, study of WAS T lymphocytes has helped to grasp that many steps of T lymphocyte activation and function depend on the crosstalk between membrane receptors and the actin cytoskeleton. These steps include motility, immunological synapse assembly, and signaling, as well as the implementation of helper, regulatory, or cytotoxic effector functions. The recent concept that WASP also works as a regulator of transcription within the nucleus is an illustration of the complexity of signal integration in T lymphocytes. Finally, this review will discuss how further study of WAS may contribute to solve novel challenges of T lymphocyte biology.
Collapse
Affiliation(s)
| | - Loïc Dupré
- UMR 1043, Centre de Physiopathologie de Toulouse Purpan, INSERM , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; UMR 5282, CNRS , Toulouse , France
| | - Delphine Guipouy
- UMR 1043, Centre de Physiopathologie de Toulouse Purpan, INSERM , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; UMR 5282, CNRS , Toulouse , France
| | | |
Collapse
|
147
|
Specific binding of the WASP N-terminal domain to Btk is critical for TLR2 signaling in macrophages. Mol Immunol 2015; 63:328-36. [DOI: 10.1016/j.molimm.2014.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 02/06/2023]
|
148
|
Sakuma C, Sato M, Oshima T, Takenouchi T, Chiba J, Kitani H. Anti-WASP intrabodies inhibit inflammatory responses induced by Toll-like receptors 3, 7, and 9, in macrophages. Biochem Biophys Res Commun 2015; 458:28-33. [PMID: 25634698 DOI: 10.1016/j.bbrc.2015.01.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 01/13/2015] [Indexed: 02/06/2023]
Abstract
Wiskott-Aldrich syndrome protein (WASP) is an adaptor molecule in immune cells. Recently, we showed that the WASP N-terminal domain interacted with the SH3 domain of Bruton's tyrosine kinase (Btk), and that the complex formed by WASP and Btk was important for TLR2 and TLR4 signaling in macrophages. Several other studies have shown that Btk played important roles in modulating innate immune responses through TLRs in immune cells. Here, we evaluated the significance of the interaction between WASP and Btk in TLR3, TLR7, and TLR9 signaling. We established bone marrow-derived macrophage cell lines from transgenic (Tg) mice that expressed intracellular antibodies (intrabodies) that specifically targeted the WASP N-terminal domain. One intrabody comprised the single-chain variable fragment and the other comprised the light-chain variable region single domain of an anti-WASP N-terminal monoclonal antibody. Both intrabodies inhibited the specific interaction between WASP and Btk, which impaired the expression of TNF-α, IL-6, and IL-1β in response to TLR3, TLR7, or TLR9 stimulation. Furthermore, the intrabodies inhibited the phosphorylation of both nuclear factor (NF)-κB and WASP in response to TLR3, TLR7, or TLR9 stimulation, in the Tg bone marrow-derived macrophages. These results suggested that WASP plays important roles in TLR3, TLR7, and TLR9 signaling by associating with Btk in macrophages.
Collapse
Affiliation(s)
- Chisato Sakuma
- Animal Immune and Cell Biology Research Unit, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Mitsuru Sato
- Animal Immune and Cell Biology Research Unit, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan.
| | - Takuma Oshima
- Department of Biological Science and Technology, Graduate School of Faculty of Industrial Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Takato Takenouchi
- Animal Immune and Cell Biology Research Unit, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Joe Chiba
- Department of Biological Science and Technology, Graduate School of Faculty of Industrial Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Hiroshi Kitani
- Animal Immune and Cell Biology Research Unit, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| |
Collapse
|
149
|
Wielgosz MM, Kim YS, Carney GG, Zhan J, Reddivari M, Coop T, Heath RJ, Brown SA, Nienhuis AW. Generation of a lentiviral vector producer cell clone for human Wiskott-Aldrich syndrome gene therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:14063. [PMID: 26052531 PMCID: PMC4449020 DOI: 10.1038/mtm.2014.63] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/16/2014] [Accepted: 11/19/2014] [Indexed: 01/28/2023]
Abstract
We have developed a producer cell line that generates lentiviral vector particles of high titer. The vector encodes the Wiskott-Aldrich syndrome (WAS) protein. An insulator element has been added to the long terminal repeats of the integrated vector to limit proto-oncogene activation. The vector provides high-level, stable expression of WAS protein in transduced murine and human hematopoietic cells. We have also developed a monoclonal antibody specific for intracellular WAS protein. This antibody has been used to monitor expression in blood and bone marrow cells after transfer into lineage negative bone marrow cells from WAS mice and in a WAS negative human B-cell line. Persistent expression of the transgene has been observed in transduced murine cells 12–20 weeks following transplantation. The producer cell line and the specific monoclonal antibody will facilitate the development of a clinical protocol for gene transfer into WAS protein deficient stem cells.
Collapse
Affiliation(s)
- Matthew M Wielgosz
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital , Memphis, Tennessee, USA
| | - Yoon-Sang Kim
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital , Memphis, Tennessee, USA
| | - Gael G Carney
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital , Memphis, Tennessee, USA
| | - Jun Zhan
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital , Memphis, Tennessee, USA
| | - Muralidhar Reddivari
- Department of Infectious Diseases, St. Jude Children's Research Hospital , Memphis, Tennessee, USA
| | - Terry Coop
- Department of Infectious Diseases, St. Jude Children's Research Hospital , Memphis, Tennessee, USA
| | - Richard J Heath
- Department of Infectious Diseases, St. Jude Children's Research Hospital , Memphis, Tennessee, USA
| | - Scott A Brown
- Immunology Department, St. Jude Children's Research Hospital , Memphis, Tennessee, USA
| | - Arthur W Nienhuis
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital , Memphis, Tennessee, USA
| |
Collapse
|
150
|
Vijayakumar V, Monypenny J, Chen XJ, Machesky LM, Lilla S, Thrasher AJ, Antón IM, Calle Y, Jones GE. Tyrosine phosphorylation of WIP releases bound WASP and impairs podosome assembly in macrophages. J Cell Sci 2015; 128:251-65. [PMID: 25413351 PMCID: PMC4294773 DOI: 10.1242/jcs.154880] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 11/07/2014] [Indexed: 01/18/2023] Open
Abstract
Podosomes are integrin-containing adhesion structures commonly found in migrating leukocytes of the monocytic lineage. The actin cytoskeletal organisation of podosomes is based on a WASP- and Arp2/3-mediated mechanism. WASP also associates with a second protein, WIP (also known as WIPF1), and they co-localise in podosome cores. Here, we report for the first time that WIP can be phosphorylated on tyrosine residues and that tyrosine phosphorylation of WIP is a trigger for release of WASP from the WIP-WASP complex. Using a knockdown approach together with expression of WIP phosphomimics, we show that in the absence of WIP-WASP binding, cellular WASP is rapidly degraded, leading to disruption of podosomes and a failure of cells to degrade an underlying matrix. In the absence of tyrosine phosphorylation, the WIP-WASP complex remains intact and podosome lifetimes are extended. A screen of candidate kinases and inhibitor-based assays identified Bruton's tyrosine kinase (Btk) as a regulator of WIP tyrosine phosphorylation. We conclude that tyrosine phosphorylation of WIP is a crucial regulator of WASP stability and function as an actin-nucleation-promoting factor.
Collapse
Affiliation(s)
- Vineetha Vijayakumar
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - James Monypenny
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Xing Judy Chen
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | | | - Sergio Lilla
- The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Adrian J Thrasher
- Section of Molecular and Cellular Immunology, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Inés M Antón
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Yolanda Calle
- Department of Haematological & Molecular Medicine, King's College London, London SE5 9NU, UK
| | - Gareth E Jones
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| |
Collapse
|