101
|
Gallic Acid Content in Taiwanese Teas at Different Degrees of Fermentation and Its Antioxidant Activity by Inhibiting PKCδ Activation: In Vitro and in Silico Studies. Molecules 2016; 21:molecules21101346. [PMID: 27754346 PMCID: PMC6273586 DOI: 10.3390/molecules21101346] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/28/2016] [Accepted: 10/06/2016] [Indexed: 12/16/2022] Open
Abstract
Teas can be classified according to their degree of fermentation, which has been reported to affect both the bioactive components in the teas and their antioxidative activity. In this study, four kinds of commercial Taiwanese tea at different degrees of fermentation, which include green (non-fermented), oolong (semi-fermented), black (fully fermented), and Pu-erh (post-fermented) tea, were profiled for catechin levels by using high performance liquid chromatography (HPLC). The result indicated that the gallic acid content in tea was directly proportional to the degree of fermentation in which the lowest and highest gallic acid content were 1.67 and 21.98 mg/g from green and Pu-erh tea, respectively. The antioxidative mechanism of the gallic acid was further determined by in vitro and in silico analyses. In vitro assays included the use of phorbol ester-induced macrophage RAW264.7 cell model for determining the inhibition of reactive oxygen species (ROS) production, and PKCδ and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit (p47) activations. The results showed that only at a concentration of 5.00 μM could gallic acid significantly (p < 0.05) reduce ROS levels in phorbol ester-activated macrophages. Moreover, protein immunoblotting expressed similar results in which activations of PKCδ and p47 were only significantly (p < 0.05) attenuated by 5.00 μM treatment. Lastly, in silico experiments further revealed that gallic acid could block PKCδ activation by occupying the phorbol ester binding sites of the protein.
Collapse
|
102
|
Aicart-Ramos C, He SDQ, Land M, Rubin CS. A Novel Conserved Domain Mediates Dimerization of Protein Kinase D (PKD) Isoforms: DIMERIZATION IS ESSENTIAL FOR PKD-DEPENDENT REGULATION OF SECRETION AND INNATE IMMUNITY. J Biol Chem 2016; 291:23516-23531. [PMID: 27662904 DOI: 10.1074/jbc.m116.735399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Indexed: 01/22/2023] Open
Abstract
Protein kinase D (PKD) isoforms are protein kinase C effectors in signaling pathways regulated by diacylglycerol. Important physiological processes (including secretion, immune responses, motility, and transcription) are placed under diacylglycerol control by the distinctive substrate specificity and subcellular distribution of PKDs. Potentially, broadly co-expressed PKD polypeptides may interact to generate homo- or heteromultimeric regulatory complexes. However, the frequency, molecular basis, regulatory significance, and physiological relevance of stable PKD-PKD interactions are largely unknown. Here, we demonstrate that mammalian PKDs 1-3 and the prototypical Caenorhabditis elegans PKD, DKF-2A, are exclusively (homo- or hetero-) dimers in cell extracts and intact cells. We discovered and characterized a novel, highly conserved N-terminal domain, comprising 92 amino acids, which mediates dimerization of PKD1, PKD2, and PKD3 monomers. A similar domain directs DKF-2A homodimerization. Dimerization occurred independently of properties of the regulatory and kinase domains of PKDs. Disruption of PKD dimerization abrogates secretion of PAUF, a protein carried in small trans-Golgi network-derived vesicles. In addition, disruption of DKF-2A homodimerization in C. elegans intestine impaired and degraded the immune defense of the intact animal against an ingested bacterial pathogen. Finally, dimerization was indispensable for the strong, dominant negative effect of catalytically inactive PKDs. Overall, the structural integrity and function of the novel dimerization domain are essential for PKD-mediated regulation of a key aspect of cell physiology, secretion, and innate immunity in vivo.
Collapse
Affiliation(s)
- Clara Aicart-Ramos
- From the Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Sophia Dan Qing He
- From the Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Marianne Land
- From the Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Charles S Rubin
- From the Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
103
|
Baumann DO, McGowan KM, Kedei N, Peach ML, Blumberg PM, Keck GE. Synthesis and Biological Evaluation of Several Bryostatin Analogues Bearing a Diacylglycerol Lactone C-Ring. J Org Chem 2016; 81:7862-83. [PMID: 27494208 PMCID: PMC6957265 DOI: 10.1021/acs.joc.6b01516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As an initial step in designing a simplified bryostatin hybrid molecule, three bryostatin analogues bearing a diacylglycerol lactone-based C-ring, which possessed the requisite pharmacophores for binding to protein kinase C (PKC) together with a modified bryostatin-like A- and B-ring region, were synthesized and evaluated. Merle 46 and Merle 47 exhibited binding affinity to PKC alpha with Ki values of 7000 ± 990 and 4940 ± 470 nM, respectively. Reinstallation of the trans-olefin and gem-dimethyl group present in bryostatin 1 in Merle 48 resulted in improved binding affinity, 363 ± 42 nM. While Merle 46 and 47 were only marginally active biologically, Merle 48 showed sufficient activity on the U937 cells to confirm that it was PMA-like for growth and attachment, as predicted by the substitution pattern of its A- and B-rings.
Collapse
Affiliation(s)
- David O. Baumann
- Department of Chemistry, University of Utah, 315 S 1300 E, RM 2020, Salt Lake City, Utah 84112, United States
| | - Kevin M. McGowan
- Department of Chemistry, University of Utah, 315 S 1300 E, RM 2020, Salt Lake City, Utah 84112, United States
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-4255, United States
| | - Megan L. Peach
- Basic Science Program, Leidos Biomedical Research, Inc., Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Peter M. Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-4255, United States
| | - Gary E. Keck
- Department of Chemistry, University of Utah, 315 S 1300 E, RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
104
|
Binding mode prediction of aplysiatoxin, a potent agonist of protein kinase C, through molecular simulation and structure–activity study on simplified analogs of the receptor-recognition domain. Bioorg Med Chem 2016; 24:4218-4227. [DOI: 10.1016/j.bmc.2016.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 01/27/2023]
|
105
|
Liu M, Chen F, Yu R, Zhang W, Han M, Liu F, Wu J, Zhao X, Miao J. Synthesis and Cytotoxicity against K562 Cells of 3-O-Angeloyl-20-O-acetyl Ingenol, a Derivative of Ingenol Mebutate. Int J Mol Sci 2016; 17:ijms17081348. [PMID: 27548156 PMCID: PMC5000744 DOI: 10.3390/ijms17081348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 01/18/2023] Open
Abstract
Ingenol mebutate possesses significant cytotoxicity and is clinically used to treat actinic keratosis. However, ingenol mebutate undergoes acyl migration which affects its bioactivity. Compound 3-O-angeloyl-20-O-acetyl ingenol (AAI, also known as 20-O-acetyl-ingenol-3-angelate or PEP008) is a synthetic derivative of ingenol mebutate. In this work, we report the AAI synthesis details and demonstrate AAI has higher cytotoxicity than ingenol mebutate in a chronic myeloid leukemia K562 cell line. Our data indicate that the increased activity of AAI originates from the improved intracellular stability of AAI rather than the increased binding affinity between AAI and the target protein protein kinase Cδ (PKCδ). AAI inhibits cell proliferation, induces G2/M phase arrest, disrupts the mitochondrial membrane potential, and stimulates apoptosis, as well as necrosis in K562 cells. Similar to ingenol mebutate, AAI activates PKCδ and extracellular signal regulated kinase (ERK), and inactivates protein kinase B (AKT). Furthermore, AAI also inhibits JAK/STAT3 pathway. Altogether, our studies show that ingenol derivative AAI is cytotoxic to K562 cells and modulates PKCδ/ERK, JAK/STAT3, and AKT signaling pathways. Our work suggests that AAI may be a new candidate of chemotherapeutic agent.
Collapse
Affiliation(s)
- Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Fangling Chen
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Weiyi Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Mei Han
- Department of Pharmacology, Medical College Qingdao University, Qingdao 266071, China.
| | - Fei Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem Sun Yat-sen), Nanjing 210014, China.
| | - Jing Wu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Xingzeng Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem Sun Yat-sen), Nanjing 210014, China.
| | - Jinlai Miao
- Key Laboratory of Marine Bioactive Substance, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China.
| |
Collapse
|
106
|
Ringvold HC, Khalil RA. Protein Kinase C as Regulator of Vascular Smooth Muscle Function and Potential Target in Vascular Disorders. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:203-301. [PMID: 28212798 PMCID: PMC5319769 DOI: 10.1016/bs.apha.2016.06.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vascular smooth muscle (VSM) plays an important role in maintaining vascular tone. In addition to Ca2+-dependent myosin light chain (MLC) phosphorylation, protein kinase C (PKC) is a major regulator of VSM function. PKC is a family of conventional Ca2+-dependent α, β, and γ, novel Ca2+-independent δ, ɛ, θ, and η, and atypical ξ, and ι/λ isoforms. Inactive PKC is mainly cytosolic, and upon activation it undergoes phosphorylation, maturation, and translocation to the surface membrane, the nucleus, endoplasmic reticulum, and other cell organelles; a process facilitated by scaffold proteins such as RACKs. Activated PKC phosphorylates different substrates including ion channels, pumps, and nuclear proteins. PKC also phosphorylates CPI-17 leading to inhibition of MLC phosphatase, increased MLC phosphorylation, and enhanced VSM contraction. PKC could also initiate a cascade of protein kinases leading to phosphorylation of the actin-binding proteins calponin and caldesmon, increased actin-myosin interaction, and VSM contraction. Increased PKC activity has been associated with vascular disorders including ischemia-reperfusion injury, coronary artery disease, hypertension, and diabetic vasculopathy. PKC inhibitors could test the role of PKC in different systems and could reduce PKC hyperactivity in vascular disorders. First-generation PKC inhibitors such as staurosporine and chelerythrine are not very specific. Isoform-specific PKC inhibitors such as ruboxistaurin have been tested in clinical trials. Target delivery of PKC pseudosubstrate inhibitory peptides and PKC siRNA may be useful in localized vascular disease. Further studies of PKC and its role in VSM should help design isoform-specific PKC modulators that are experimentally potent and clinically safe to target PKC in vascular disease.
Collapse
Affiliation(s)
- H C Ringvold
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - R A Khalil
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
107
|
Extended Abstracts. Toxicol Pathol 2016. [DOI: 10.1177/019262339702500633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
108
|
HDInsight4PSi: Boosting performance of 3D protein structure similarity searching with HDInsight clusters in Microsoft Azure cloud. Inf Sci (N Y) 2016. [DOI: 10.1016/j.ins.2016.02.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
109
|
Das J, Ramani R, Suraju MO. Polyphenol compounds and PKC signaling. Biochim Biophys Acta Gen Subj 2016; 1860:2107-21. [PMID: 27369735 DOI: 10.1016/j.bbagen.2016.06.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/01/2016] [Accepted: 06/26/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Naturally occurring polyphenols found in food sources provide huge health benefits. Several polyphenolic compounds are implicated in the prevention of disease states, such as cancer. One of the mechanisms by which polyphenols exert their biological actions is by interfering in the protein kinase C (PKC) signaling pathways. PKC belongs to a superfamily of serine-threonine kinase and are primarily involved in phosphorylation of target proteins controlling activation and inhibition of many cellular processes directly or indirectly. SCOPE OF REVIEW Despite the availability of substantial literature data on polyphenols' regulation of PKC, no comprehensive review article is currently available on this subject. This article reviews PKC-polyphenol interactions and its relevance to various disease states. In particular, salient features of polyphenols, PKC, interactions of naturally occurring polyphenols with PKC, and future perspective of research on this subject are discussed. MAJOR CONCLUSIONS Some polyphenols exert their antioxidant properties by regulating the transcription of the antioxidant enzyme genes through PKC signaling. Regulation of PKC by polyphenols is isoform dependent. The activation or inhibition of PKC by polyphenols has been found to be dependent on the presence of membrane, Ca(2+) ion, cofactors, cell and tissue types etc. Two polyphenols, curcumin and resveratrol are in clinical trials for the treatment of colon cancer. GENERAL SIGNIFICANCE The fact that 74% of the cancer drugs are derived from natural sources, naturally occurring polyphenols or its simple analogs with improved bioavailability may have the potential to be cancer drugs in the future.
Collapse
Affiliation(s)
- Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States.
| | - Rashmi Ramani
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - M Olufemi Suraju
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| |
Collapse
|
110
|
Holmgren C, Cornmark L, Lønne GK, Masoumi KC, Larsson C. Molecular characterization of protein kinase C delta (PKCδ)-Smac interactions. BMC BIOCHEMISTRY 2016; 17:11. [PMID: 27216037 PMCID: PMC4877760 DOI: 10.1186/s12858-016-0065-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/17/2016] [Indexed: 12/12/2022]
Abstract
Background Protein kinase C δ (PKCδ) is known to be an important regulator of apoptosis, having mainly pro- but also anti-apoptotic effects depending on context. In a previous study, we found that PKCδ interacts with the pro-apoptotic protein Smac. Smac facilitates apoptosis by suppressing inhibitor of apoptosis proteins (IAPs). We previously established that the PKCδ-Smac complex dissociates during induction of apoptosis indicating a functional importance. Because the knowledge on the molecular determinants of the interaction is limited, we aimed at characterizing the interactions between PKCδ and Smac. Results We found that PKCδ binds directly to Smac through its regulatory domain. The interaction is enhanced by the PKC activator TPA and seems to be independent of PKCδ catalytic activity since the PKC kinase inhibitor GF109203X did not inhibit the interaction. In addition, we found that C1 and C2 domains from several PKC isoforms have Smac-binding capacity. Conclusions Our data demonstrate that the Smac-PKCδ interaction is direct and that it is facilitated by an open conformation of PKCδ. The binding is mediated via the PKCδ regulatory domain and both the C1 and C2 domains have Smac-binding capacity. With this study we thereby provide molecular information on an interaction between two apoptosis-regulating proteins.
Collapse
Affiliation(s)
- Christian Holmgren
- Lund University, Translational Cancer Research, Medicon Village, Building 404:C3, SE-22363, Lund, Sweden
| | - Louise Cornmark
- Lund University, Translational Cancer Research, Medicon Village, Building 404:C3, SE-22363, Lund, Sweden
| | - Gry Kalstad Lønne
- Lund University, Translational Cancer Research, Medicon Village, Building 404:C3, SE-22363, Lund, Sweden
| | | | - Christer Larsson
- Lund University, Translational Cancer Research, Medicon Village, Building 404:C3, SE-22363, Lund, Sweden.
| |
Collapse
|
111
|
Czikora A, Lundberg DJ, Abramovitz A, Lewin NE, Kedei N, Peach ML, Zhou X, Merritt RC, Craft EA, Braun DC, Blumberg PM. Structural Basis for the Failure of the C1 Domain of Ras Guanine Nucleotide Releasing Protein 2 (RasGRP2) to Bind Phorbol Ester with High Affinity. J Biol Chem 2016; 291:11133-47. [PMID: 27022025 PMCID: PMC4900263 DOI: 10.1074/jbc.m116.725333] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/28/2016] [Indexed: 11/06/2022] Open
Abstract
The C1 domain represents the recognition module for diacylglycerol and phorbol esters in protein kinase C, Ras guanine nucleotide releasing protein (RasGRP), and related proteins. RasGRP2 is exceptional in that its C1 domain has very weak binding affinity (Kd = 2890 ± 240 nm for [(3)H]phorbol 12,13-dibutyrate. We have identified four amino acid residues responsible for this lack of sensitivity. Replacing Asn(7), Ser(8), Ala(19), and Ile(21) with the corresponding residues from RasGRP1/3 (Thr(7), Tyr(8), Gly(19), and Leu(21), respectively) conferred potent binding affinity (Kd = 1.47 ± 0.03 nm) in vitro and membrane translocation in response to phorbol 12-myristate 13-acetate in LNCaP cells. Mutant C1 domains incorporating one to three of the four residues showed intermediate behavior with S8Y making the greatest contribution. Binding activity for diacylglycerol was restored in parallel. The requirement for anionic phospholipid for [(3)H]phorbol 12,13-dibutyrate binding was determined; it decreased in going from the single S8Y mutant to the quadruple mutant. The full-length RasGRP2 protein with the mutated C1 domains also showed strong phorbol ester binding, albeit modestly weaker than that of the C1 domain alone (Kd = 8.2 ± 1.1 nm for the full-length protein containing all four mutations), and displayed translocation in response to phorbol ester. RasGRP2 is a guanyl exchange factor for Rap1. Consistent with the ability of phorbol ester to induce translocation of the full-length RasGRP2 with the mutated C1 domain, phorbol ester enhanced the ability of the mutated RasGRP2 to activate Rap1. Modeling confirmed that the four mutations helped the binding cleft maintain a stable conformation.
Collapse
Affiliation(s)
- Agnes Czikora
- From the Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Daniel J Lundberg
- Department of Science, Technology, and Mathematics, Gallaudet University, Washington, D. C. 20002, and
| | - Adelle Abramovitz
- From the Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Nancy E Lewin
- From the Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Noemi Kedei
- From the Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Megan L Peach
- Basic Science Program, Leidos Biomedical Research, Inc., Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Xiaoling Zhou
- From the Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Raymond C Merritt
- Department of Science, Technology, and Mathematics, Gallaudet University, Washington, D. C. 20002, and
| | - Elizabeth A Craft
- Department of Science, Technology, and Mathematics, Gallaudet University, Washington, D. C. 20002, and
| | - Derek C Braun
- Department of Science, Technology, and Mathematics, Gallaudet University, Washington, D. C. 20002, and
| | - Peter M Blumberg
- From the Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892,
| |
Collapse
|
112
|
Ganesan S, Shabits BN, Zaremberg V. Tracking Diacylglycerol and Phosphatidic Acid Pools in Budding Yeast. Lipid Insights 2016; 8:75-85. [PMID: 27081314 PMCID: PMC4824325 DOI: 10.4137/lpi.s31781] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/24/2016] [Accepted: 03/05/2016] [Indexed: 02/07/2023] Open
Abstract
Phosphatidic acid (PA) and diacylglycerol (DAG) are key signaling molecules and important precursors for the biosynthesis of all glycerolipids found in eukaryotes. Research conducted in the model organism Saccharomyces cerevisiae has been at the forefront of the identification of the enzymes involved in the metabolism and transport of PA and DAG. Both these lipids can alter the local physical properties of membranes by introducing negative curvature, but the anionic nature of the phosphomonoester headgroup in PA sets it apart from DAG. As a result, the mechanisms underlying PA and DAG interaction with other lipids and proteins are notoriously different. This is apparent from the analysis of the protein domains responsible for recognition and binding to each of these lipids. We review the current evidence obtained using the PA-binding proteins and domains fused to fluorescent proteins for in vivo tracking of PA pools in yeast. In addition, we present original results for visualization of DAG pools in yeast using the C1 domain from mammalian PKCδ. An emerging first cellular map of the distribution of PA and DAG pools in actively growing yeast is discussed.
Collapse
Affiliation(s)
| | - Brittney N Shabits
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Vanina Zaremberg
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
113
|
Hammerling U. Retinol as electron carrier in redox signaling, a new frontier in vitamin A research. Hepatobiliary Surg Nutr 2016; 5:15-28. [PMID: 26904553 PMCID: PMC4739943 DOI: 10.3978/j.issn.2304-3881.2016.01.02] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/06/2015] [Indexed: 01/26/2023]
Abstract
Nature uses carotenoids and retinoids as chromophores for diverse energy conversion processes. The key structural feature enabling the interaction with light and other manifestations of electro-magnetism is the conjugated double-bond system that all members of this superfamily share in common. Among retinoids, retinaldehyde alone was long known as the active chromophore of vision in vertebrates and invertebrates, as well of various light-driven proton and ion pumps in Archaea. Until now, vitamin A (retinol) was solely regarded as a biochemical precursor for bioactive retinoids such as retinaldehyde and retinoic acid (RA), but recent results indicate that this compound has its own physiology. It functions as an electron carrier in mitochondria. By electronically coupling protein kinase Cδ (PCKδ) with cytochrome c, vitamin A enables the redox activation of this enzyme. This review focuses on the biochemistry and biology of the PCKδ signaling system, comprising PKCδ, the adapter protein p66Shc, cytochrome c and retinol. This complex positively regulates the conversion of pyruvate to acetyl-coenzyme A (CoA) by the pyruvate dehydrogenase enzyme. Vitamin A therefore plays a key role in glycolytic energy generation. The emerging paradigm of retinol as electron-transfer agent is potentially transformative, opening new frontiers in retinoid research.
Collapse
|
114
|
Ohyoshi T, Tamura Y, Hayakawa I, Hirai G, Miyazawa Y, Funakubo S, Sodeoka M, Kigoshi H. Total synthesis of natural derivatives and artificial analogs of 13-oxyingenol and their biological evaluation. Org Biomol Chem 2016; 14:11426-11437. [DOI: 10.1039/c6ob02268e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Natural derivatives and artificial analogs of 13-oxyingenol were synthesized, and these analogs induced HL-60 differentiation and apoptosis.
Collapse
Affiliation(s)
- Takayuki Ohyoshi
- Department of Chemistry
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba 305-8571
- Japan
| | - Yuki Tamura
- Synthetic Organic Chemistry Laboratory
- Wako
- Japan
| | - Ichiro Hayakawa
- Division of Applied Chemistry
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama 700-8530
- Japan
| | - Go Hirai
- Synthetic Organic Chemistry Laboratory
- Wako
- Japan
- RIKEN Center for Sustainable Resource Science
- Wako
| | - Yamato Miyazawa
- Department of Chemistry
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba 305-8571
- Japan
| | - Shota Funakubo
- Department of Chemistry
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba 305-8571
- Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory
- Wako
- Japan
- RIKEN Center for Sustainable Resource Science
- Wako
| | - Hideo Kigoshi
- Department of Chemistry
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba 305-8571
- Japan
| |
Collapse
|
115
|
Abstract
Despite a more recent isolation and chemical characterization when compared to phorbol, along with its chemical instability, limited distribution in Nature, and scarce availability, ingenol is the only Euphorbia diterpenoid that has undergone successful pharmaceutical development, with ingenol 3-angelate (ingenol mebutate, Picato(®)) entering the pharmaceutical market in 2012 for the treatment of actinic keratosis. The phytochemical, chemical, and biological literature on members of the ingenane class of diterpenoids is reviewed from their first isolation in 1968 through 2015, highlighting unresolved issues both common to phorboids (biogenesis, relationship between molecular targets, and in vivo activity) and specific to ingenol derivatives (two-dimensional representation, in-out stereoisomerism, versatility of binding mode to PKC, and inconsistencies in the structural elucidation of some classes of derivatives). The biogenesis of ingenol is discussed in the light of the Jakupovic proposal of a dissection between the formation of the macrocyclic Euphorbia diterpenoids and the phorboids, and the clinical development of ingenol mebutate is chronicled in the light of its "reverse-pharmacology" focus.
Collapse
Affiliation(s)
- Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Largo Donegani 2, 28100, Novara, Italy.
| |
Collapse
|
116
|
Abstract
For the past century, vitamin A has been considered to serve as a precursor for retinoids that facilitate vision or as a precursor for retinoic acid (RA), a signaling molecule that modulates gene expression. However, vitamin A circulates in plasma at levels that far exceed the amount needed for vision or the synthesis of nanomolar levels of RA, and this suggests that vitamin A alcohol (i.e. retinol) may possess additional biological activity. We have pursued this question for the last 20 years, and in this chapter, we unfold the story of our quest and the data that support a novel and distinct role for vitamin A (alcohol) action. Our current model supports direct binding of vitamin A to the activation domains of serine/threonine kinases, such as protein kinase C (PKC) and Raf isoforms, where it is involved in redox activation of these proteins. Redox activation of PKCs was first described by the founders of the PKC field, but several hurdles needed to be overcome before a detailed understanding of the biochemistry could be provided. Two discoveries moved the field forward. First, was the discovery that the PKCδ isoform was activated by cytochrome c, a protein with oxidoreduction activity in mitochondria. Second, was the revelation that both PKCδ and cytochrome c are tethered to p66Shc, an adapter protein that brings the PKC zinc-finger substrate into close proximity with its oxidizing partner. Detailed characterization of the PKCδ signalosome complex was made possible by the work of many investigators. Our contribution was determining that vitamin A is a vital co-factor required to support an unprecedented redox-activation mechanism. This unique function of vitamin A is the first example of a general system that connects the one-electron redox chemistry of a heme protein (cytochrome c) with the two-electron chemistry of a classical phosphoprotein (PKCδ). Furthermore, contributions to the regulation of mitochondrial energetics attest to biological significance of vitamin A alcohol action.
Collapse
Affiliation(s)
- Ulrich Hammerling
- Member Emeritus, Immunology Program, Sloan-Kettering Institute for Cancer Research, 10065, New York, NY, USA.
| |
Collapse
|
117
|
Lin YH, Swanson ER, Li J, Mkrtschjan MA, Russell B. Cyclic mechanical strain of myocytes modifies CapZβ1 post translationally via PKCε. J Muscle Res Cell Motil 2015; 36:329-37. [PMID: 26429793 DOI: 10.1007/s10974-015-9420-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/07/2015] [Indexed: 11/27/2022]
Abstract
The heart is exquisitely sensitive to mechanical stimuli and adapts to increased demands for work by enlarging the cardiomyocytes. In order to determine links between mechano-transduction mechanisms and hypertrophy, neonatal rat ventricular myocytes (NRVM) were subjected to physiologic strain for analysis of the dynamics of the actin capping protein, CapZ, and its post-translational modifications (PTM). CapZ binding rates were assessed after strain by fluorescence recovery after photobleaching (FRAP) of green fluorescent protein (GFP) expressed by a GFP-CapZβ1 adenovirus. To assess the role of the protein kinase C epsilon isoform (PKCε), rest or cyclic strain were combined with specific PKCε activation by constitutively active PKCε, or by inhibition with dominant negative PKCε (dnPKCε) expression. Significant increases of CapZ FRAP kinetics with strain were blunted by dnPKCε, suggesting that PKCε is involved in mechano-transduction signaling. Similar combinations of strain and PKC regulation in NRVMs were studied by PTM profiles of CapZβ1 using quantitative two-dimensional gel electrophoresis. The significantly increased charge on CapZ seen with mechanical strain was reversed by the addition of dnPKCε. Potential clinical relevance was confirmed in vivo by PTMs of CapZ in the failing heart of one-year old transgenic mice over-expressing PKCε. Furthermore, with strain there was significant PKCε translocation to the Z-disc and co-localization with CapZβ1 or α-actinin, which was quantified on confocal images. A hypothetical model is presented proposing that one destination of the mechanotransduction signaling pathways might be for PTMs of CapZ thereby regulating actin capping and filament assembly.
Collapse
Affiliation(s)
- Ying-Hsi Lin
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, MC 901, 835 S. Wolcott, Chicago, IL, 60612, USA
| | - Erik R Swanson
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, MC 901, 835 S. Wolcott, Chicago, IL, 60612, USA
| | - Jieli Li
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, MC 901, 835 S. Wolcott, Chicago, IL, 60612, USA
| | - Michael A Mkrtschjan
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, MC 901, 835 S. Wolcott, Chicago, IL, 60612, USA.,Department of Bioengineering, College of Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Brenda Russell
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, MC 901, 835 S. Wolcott, Chicago, IL, 60612, USA. .,Department of Bioengineering, College of Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
118
|
Thangsunan P, Tateing S, Hannongbua S, Suree N. Structural insights into the interactions of phorbol ester and bryostatin complexed with protein kinase C: a comparative molecular dynamics simulation study. J Biomol Struct Dyn 2015; 34:1561-75. [PMID: 26292580 DOI: 10.1080/07391102.2015.1084479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Protein kinase C (PKC) isozymes are important regulatory enzymes that have been implicated in many diseases, including cancer, Alzheimer's disease, and in the eradication of HIV/AIDS. Given their potential clinical ramifications, PKC modulators, e.g. phorbol esters and bryostatin, are also of great interest in the drug development. However, structural details on the binding between PKC and its modulators, especially bryostatin - the highly potent and non-tumor promoting activator for PKCs, are still lacking. Here, we report the first comparative molecular dynamics study aimed at gaining structural insight into the mechanisms by which the PKC delta cys2 activator domain is used in its binding to phorbol ester and bryostatin-1. As anticipated in the phorbol ester binding, hydrogen bonds are formed through the backbone atoms of Thr242, Leu251, and Gly253 of PKC. However, the opposition of H-bond formation between Thr242 and Gly253 may cause the phorbol ester complex to become less stable when compared with the bryostatin binding. For the PKC delta-bryostatin complex, hydrogen bonds are formed between the Gly253 backbone carbonyl and the C30 carbomethoxy substituent of the ligand. Additionally, the indole Nε1 of the highly homologous Trp252 also forms an H-bond to the C20 ester group on bryostatin. Backbone fluctuations also suggest that this latter H-bond formation may abrogate the transient interaction between Trp252 and His269, thus dampening the fluctuations observed on the nearby Zn(2+)-coordinating residues. This new dynamic fluctuation dampening model can potentially benefit future design of new PKC modulators.
Collapse
Affiliation(s)
- Patcharapong Thangsunan
- a Graduate Program in Biotechnology , The Graduate School, Chiang Mai University , 239 Huay Kaew Rd, Suthep, Muang, Chiang Mai 50200 , Thailand.,b Faculty of Science, Department of Chemistry, Division of Biochemistry and Biochemical Technology , Chiang Mai University , 239 Huay Kaew Rd, Suthep, Muang, Chiang Mai 50200 , Thailand
| | - Suriya Tateing
- a Graduate Program in Biotechnology , The Graduate School, Chiang Mai University , 239 Huay Kaew Rd, Suthep, Muang, Chiang Mai 50200 , Thailand.,b Faculty of Science, Department of Chemistry, Division of Biochemistry and Biochemical Technology , Chiang Mai University , 239 Huay Kaew Rd, Suthep, Muang, Chiang Mai 50200 , Thailand
| | - Supa Hannongbua
- c Faculty of Science, Department of Chemistry , Kasetsart University , Bangkok 10900 , Thailand
| | - Nuttee Suree
- b Faculty of Science, Department of Chemistry, Division of Biochemistry and Biochemical Technology , Chiang Mai University , 239 Huay Kaew Rd, Suthep, Muang, Chiang Mai 50200 , Thailand
| |
Collapse
|
119
|
Abstract
Protein kinase C (PKC) is a family of Ser/Thr kinases that regulate a multitude of cellular processes through participation in the phosphoinositide signaling pathway. Significant research efforts have been directed at understanding the structure, function, and regulatory modes of the enzyme since its discovery and identification as the first receptor for tumor-promoting phorbol esters. The activation of PKC involves a transition from the cytosolic autoinhibited latent form to the membrane-associated active form. The membrane recruitment step is accompanied by the conformational rearrangement of the enzyme, which relieves autoinhibitory interactions and thereby allows PKC to phosphorylate its targets. The multidomain structure and intrinsic flexibility of PKC present remarkable challenges and opportunities for the biophysical and structural biology studies of this class of enzymes and their interactions with membranes, the major focus of this Current Topic. I will highlight the recent advances in the field, outline the current challenges, and identify areas where biophysics and structural biology approaches can provide insight into the isoenzyme-specific regulation of PKC activity.
Collapse
|
120
|
Abstract
BACKGROUND Alcohol regulates the expression and function of protein kinase C epsilon (PKCε). In a previous study we identified an alcohol binding site in the C1B, one of the twin C1 subdomains of PKCε (Das et al., Biochem. J., 421, 405-13, 2009). METHODS In this study, we investigated alcohol binding in the entire C1 domain (combined C1A and C1B) of PKCε. Fluorescent phorbol ester, SAPD and fluorescent diacylglycerol (DAG) analog, dansyl-DAG were used to study the effect of ethanol, butanol, and octanol on the ligand binding using fluorescence resonance energy transfer (FRET). To identify alcohol binding site(s), PKCεC1 was photolabeled with 3-azibutanol and 3-azioctanol, and analyzed by mass spectrometry. The effects of alcohols and the azialcohols on PKCε were studied in NG108-15 cells. RESULTS In the presence of alcohol, SAPD and dansyl-DAG showed different extent of FRET, indicating differential effects of alcohol on the C1A and C1B subdomains. Effects of alcohols and azialcohols on PKCε in NG108-15 cells were comparable. Azialcohols labeled Tyr-176 of C1A and Tyr-250 of C1B. Inspection of the model structure of PKCεC1 reveals that these residues are 40Å apart from each other indicating that these residues form two different alcohol binding sites. CONCLUSIONS The present results provide evidence for the presence of multiple alcohol-binding sites on PKCε and underscore the importance of targeting this PKC isoform in developing alcohol antagonists.
Collapse
Affiliation(s)
- Satyabrata Pany
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States.
| |
Collapse
|
121
|
Kongpichitchoke T, Hsu JL, Huang TC. Number of Hydroxyl Groups on the B-Ring of Flavonoids Affects Their Antioxidant Activity and Interaction with Phorbol Ester Binding Site of PKCδ C1B Domain: In Vitro and in Silico Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4580-6. [PMID: 25907027 DOI: 10.1021/acs.jafc.5b00312] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although flavonoids have been reported for their benefits and nutraceutical potential use, the importance of their structure on their beneficial effects, especially on signal transduction mechanisms, has not been well clarified. In this study, three flavonoids, pinocembrin, naringenin, and eriodictyol, were chosen to determine the effect of hydroxyl groups on the B-ring of flavonoid structure on their antioxidant activity. In vitro assays, including DPPH scavenging activity, ROS quantification by flow cytometer, and proteins immunoblotting, and in silico analysis by molecular docking between the flavonoids and C1B domain of PKCδ phorbol ester binding site were both used to complete this study. Eriodictyol (10 μM), containing two hydroxyl groups on the B-ring, exhibited significantly higher (p < 0.05) antioxidant activity than pinocembrin and naringenin. The IC50 values of eriodictyol, naringenin, and pinocembrin were 17.4 ± 0.40, 30.2 ± 0.61, and 44.9 ± 0.57 μM, respectively. In addition, eriodictyol at 10 μM remarkably inhibited the phosphorylation of PKCδ at 63.4% compared with PMA-activated RAW264.7, whereas pinocembrin and naringenin performed inhibition activity at 76.8 and 72.6%, respectively. According to the molecular docking analysis, pinocembrin, naringenin, and eriodictyol showed -CDOCKER_energy values of 15.22, 16.95, and 21.49, respectively, reflecting that eriodictyol could bind with the binding site better than the other two flavonoids. Interestingly, eriodictyol had a remarkably different pose to bind with the kinase as a result of the two hydroxyl groups on its B-ring, which consequently contributed to greater antioxidant activity over pinocembrin and naringenin.
Collapse
Affiliation(s)
- Teeradate Kongpichitchoke
- †Department of Tropical Agriculture and International Cooperation and ‡Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Jue-Liang Hsu
- †Department of Tropical Agriculture and International Cooperation and ‡Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Tzou-Chi Huang
- †Department of Tropical Agriculture and International Cooperation and ‡Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
122
|
Kedei N, Kraft MB, Keck GE, Herald CL, Melody N, Pettit GR, Blumberg PM. Neristatin 1 provides critical insight into bryostatin 1 structure-function relationships. JOURNAL OF NATURAL PRODUCTS 2015; 78:896-900. [PMID: 25808573 PMCID: PMC4415049 DOI: 10.1021/acs.jnatprod.5b00094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 06/04/2023]
Abstract
Bryostatin 1, a complex macrocyclic lactone isolated from Bugula neritina, has been the subject of multiple clinical trials for cancer. Although it functions as an activator of protein kinase C (PKC) in vitro, bryostatin 1 paradoxically antagonizes most responses to the prototypical PKC activator, the phorbol esters. The bottom half of the bryostatin 1 structure has been shown to be sufficient to confer binding to PKC. In contrast, we have previously shown that the top half of the bryostatin 1 structure is necessary for its unique biological behavior to antagonize phorbol ester responses. Neristatin 1 comprises a top half similar to that of bryostatin 1 together with a distinct bottom half that confers PKC binding. We report here that neristatin 1 is bryostatin 1-like, not phorbol ester-like, in its biological activity on U937 promyelocytic leukemia cells. We conclude that the top half of the bryostatin 1 structure is largely sufficient for bryostatin 1-like activity, provided the molecule also possesses an appropriate PKC binding domain.
Collapse
Affiliation(s)
- Noemi Kedei
- Laboratory
of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-4255, United States
| | - Matthew B. Kraft
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Gary E. Keck
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Cherry L. Herald
- Department of Chemistry and Biochemistry, Arizona State University, P.O. Box 871604, Tempe, Arizona 85287-1604, United States
| | - Noeleen Melody
- Department of Chemistry and Biochemistry, Arizona State University, P.O. Box 871604, Tempe, Arizona 85287-1604, United States
| | - George R. Pettit
- Department of Chemistry and Biochemistry, Arizona State University, P.O. Box 871604, Tempe, Arizona 85287-1604, United States
| | - Peter M. Blumberg
- Laboratory
of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-4255, United States
| |
Collapse
|
123
|
Borah R, Mamidi N, Panda S, Gorai S, Pathak SK, Manna D. Elucidating the interaction of γ-hydroxymethyl-γ-butyrolactone substituents with model membranes and protein kinase C-C1 domains. MOLECULAR BIOSYSTEMS 2015; 11:1389-99. [PMID: 25820877 DOI: 10.1039/c5mb00100e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The protein kinase C (PKC) family of proteins is an attractive drug target. Dysregulation of PKC-dependent signalling pathways is related to several human diseases like cancer, immunological and other diseases. We approached the problem of altering PKC activities by developing C1 domain-based PKC ligands. In this report γ-hydroxymethyl-γ-butyrolactone (HGL) substituents were investigated in an effort to develop small molecule-based PKC regulators with higher specificity for C1 domain than the endogenous diacylglycerols (DAGs). Extensive analysis of membrane-ligands interaction measurements revealed that the membrane-active compounds strongly interact with the lipid bilayers and the hydrophilic parts of compounds localize at the bilayer/water interface. The pharmacophores like hydroxymethyl, carbonyl groups and acyl-chain length of the compounds are crucial for their interaction with the C1 domain proteins. The potent compounds showed more than 17-fold stronger binding affinity for the C1 domains than DAG under similar experimental conditions. Nonradioactive kinase assay confirmed that these potent compounds have similar or better PKC dependent phosphorylation capabilities than DAG under similar experimental conditions. Hence, our findings reveal that these HGL analogues represent an attractive group of structurally simple C1 domain ligands that can be further structurally altered to improve their potencies.
Collapse
Affiliation(s)
- Rituparna Borah
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | | | | | | | | | | |
Collapse
|
124
|
Loy BA, Lesser AB, Staveness D, Billingsley KL, Cegelski L, Wender PA. Toward a biorelevant structure of protein kinase C bound modulators: design, synthesis, and evaluation of labeled bryostatin analogues for analysis with rotational echo double resonance NMR spectroscopy. J Am Chem Soc 2015; 137:3678-85. [PMID: 25710634 DOI: 10.1021/jacs.5b00886] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein kinase C (PKC) modulators are currently of great importance in preclinical and clinical studies directed at cancer, immunotherapy, HIV eradication, and Alzheimer's disease. However, the bound conformation of PKC modulators in a membrane environment is not known. Rotational echo double resonance (REDOR) NMR spectroscopy could uniquely address this challenge. However, REDOR NMR requires strategically labeled, high affinity ligands to determine interlabel distances from which the conformation of the bound ligand in the PKC-ligand complex could be identified. Here we report the first computer-guided design and syntheses of three bryostatin analogues strategically labeled for REDOR NMR analysis. Extensive computer analyses of energetically accessible analogue conformations suggested preferred labeling sites for the identification of the PKC-bound conformers. Significantly, three labeled analogues were synthesized, and, as required for REDOR analysis, all proved highly potent with PKC affinities (∼1 nM) on par with bryostatin. These potent and strategically labeled bryostatin analogues are new structural leads and provide the necessary starting point for projected efforts to determine the PKC-bound conformation of such analogues in a membrane environment, as needed to design new PKC modulators and understand PKC-ligand-membrane structure and dynamics.
Collapse
Affiliation(s)
- Brian A Loy
- †Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Adam B Lesser
- †Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Daryl Staveness
- †Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Kelvin L Billingsley
- †Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Lynette Cegelski
- †Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Paul A Wender
- †Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
125
|
Diabetes and Alzheimer disease, two overlapping pathologies with the same background: oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:985845. [PMID: 25815110 PMCID: PMC4357132 DOI: 10.1155/2015/985845] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/10/2015] [Indexed: 01/06/2023]
Abstract
There are several oxidative stress-related pathways interconnecting Alzheimer's disease and type II diabetes, two public health problems worldwide. Coincidences are so compelling that it is attractive to speculate they are the same disorder. However, some pathological mechanisms as observed in diabetes are not necessarily the same mechanisms related to Alzheimer's or the only ones related to Alzheimer's pathology. Oxidative stress is inherent to Alzheimer's and feeds a vicious cycle with other key pathological features, such as inflammation and Ca2+ dysregulation. Alzheimer's pathology by itself may lead to insulin resistance in brain, insulin resistance being an intervening variable in the neurodegenerative disorder. Hyperglycemia and insulin resistance from diabetes, overlapping with the Alzheimer's pathology, aggravate the progression of the neurodegenerative processes, indeed. But the same pathophysiological background is behind the consequences, oxidative stress. We emphasize oxidative stress and its detrimental role in some key regulatory enzymes.
Collapse
|
126
|
Rossi D, Talman V, Gennäs GBA, Marra A, Picconi P, Nasti R, Serra M, Ann J, Amadio M, Pascale A, Tuominen RK, Yli-Kauhaluoma J, Lee J, Collina S. Beyond the affinity for protein kinase C: exploring 2-phenyl-3-hydroxypropyl pivalate analogues as C1 domain-targeting ligands. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00564c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the past fifteen years, we reported the design and synthesis of different series of compounds targeting the C1 domain of protein kinase C (PKC) that were based on various templates.
Collapse
|
127
|
Nakagawa Y. Structural Simplification of Natural Products Toward the Generation of Biologically and Therapeutically Valuable Molecules: Analog Design of Naturally-Occurring Protein Kinase C Activators. J SYN ORG CHEM JPN 2015. [DOI: 10.5059/yukigoseikyokaishi.73.316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Nakagawa
- Graduate School of Bioagricultural Sciences, Nagoya University
| |
Collapse
|
128
|
C1 domain-targeted isophthalates as protein kinase C modulators: structure-based design, structure–activity relationships and biological activities. Biochem Soc Trans 2014; 42:1543-9. [DOI: 10.1042/bst20140181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein kinase C (PKC) is a serine/threonine kinase belonging to the AGC family. PKC isoenzymes are activated by phospholipid-derived second messengers, transmit their signal by phosphorylating specific substrates and play a pivotal role in the regulation of various cell functions, including metabolism, growth, differentiation and apoptosis. Therefore they represent an interesting molecular target for the treatment of several diseases, such as cancer and Alzheimer's disease. Adopting a structure-based approach on the crystal structure of the PKCδ C1B domain, our team has developed isophthalic acid derivatives that are able to modify PKC functions by binding to the C1 domain of the enzyme. Bis[3-(trifluoromethyl)benzyl] 5-(hydroxymethyl)isophthalate (HMI-1a3) and bis(1-ethylpentyl) 5-(hydroxymethyl)isophthalate (HMI-1b11) were selected from a set of compounds for further studies due to their high affinity for the C1 domains of PKCα and PKCδ. HMI-1a3 showed marked antiproliferative activity in HeLa cells whereas HMI-1b11 induced differentiation and supported neurite growth in SH-SY5Y cells. Our aim in the future is to improve the selectivity and potency of isophthalate derivatives, to clarify their mechanism of action in the cellular environment and to assess their efficacy in cell-based and in vivo disease models. HMI-1a3 has already been selected for a further project and redesigned to function as a probe immobilized on an affinity chromatography column. It will be used to identify cellular target proteins from cell lysates, providing new insights into the mechanism of action of HMI-1a3.
Collapse
|
129
|
Differential targeting of cPKC and nPKC decodes and regulates Ca2+ and lipid signalling. Biochem Soc Trans 2014; 42:1538-42. [DOI: 10.1042/bst20140239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Protein kinases C (PKCs) are ubiquitously expressed and play critical roles in a plethora of physiological and pathophysiological processes. Owing to PKCs’ highly conserved phosphorylation consensus sequence, it has been difficult to distinguish the role of individual PKC isoforms. Recently, the identification of novel membrane targeting via subcellularly targeted diacylglycerol production found for novel PKCs (nPKCs), together with a characterization of their putative functions, has shed new light on the specific roles of individual PKCs in cellular processes.
Collapse
|
130
|
Affiliation(s)
- Joydip Das
- Department of Pharmacological
and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 521 Science and Research Building 2, Houston, Texas 77204, United States
| | - Ghazi M. Rahman
- Department of Pharmacological
and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 521 Science and Research Building 2, Houston, Texas 77204, United States
| |
Collapse
|
131
|
Andrews IP, Ketcham JM, Blumberg PM, Kedei N, Lewin N, Peach ML, Krische MJ. Synthesis of seco-B-ring bryostatin analogue WN-1 via C-C bond-forming hydrogenation: critical contribution of the B-ring in determining bryostatin-like and phorbol 12-myristate 13-acetate-like properties. J Am Chem Soc 2014; 136:13209-16. [PMID: 25207655 PMCID: PMC4183601 DOI: 10.1021/ja507825s] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Indexed: 01/31/2023]
Abstract
The seco-B-ring bryostatin analogue, macrodiolide WN-1, was prepared in 17 steps (longest linear sequence) and 30 total steps with three bonds formed via hydrogen-mediated C-C coupling. This synthetic route features a palladium-catalyzed alkoxycarbonylation of a C2-symmetric diol to form the C9-deoxygenated bryostatin A-ring. WN-1 binds to PKCα (Ki = 16.1 nM) and inhibits the growth of multiple leukemia cell lines. Although structural features of the WN-1 A-ring and C-ring are shared by analogues that display bryostatin-like behavior, WN-1 displays PMA-like behavior in U937 cell attachment and proliferation assays, as well as in K562 and MV-4-11 proliferation assays. Molecular modeling studies suggest the pattern of internal hydrogen bonds evident in bryostatin 1 is preserved in WN-1, and that upon docking WN-1 into the crystal structure of the C1b domain of PKCδ, the binding mode of bryostatin 1 is reproduced. The collective data emphasize the critical contribution of the B-ring to the function of the upper portion of the molecule in conferring a bryostatin-like pattern of biological activity.
Collapse
Affiliation(s)
- Ian P. Andrews
- Department
of Chemistry and Biochemistry, University
of Texas at Austin, Austin, Texas 78712, United States
| | - John M. Ketcham
- Department
of Chemistry and Biochemistry, University
of Texas at Austin, Austin, Texas 78712, United States
| | - Peter M. Blumberg
- Laboratory
of Cancer Biology and Genetics, National
Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, United States
| | - Noemi Kedei
- Laboratory
of Cancer Biology and Genetics, National
Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, United States
| | - Nancy
E. Lewin
- Laboratory
of Cancer Biology and Genetics, National
Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, United States
| | - Megan L. Peach
- Basic Science Program,
Leidos Biomedical Research, Inc., Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Michael J. Krische
- Department
of Chemistry and Biochemistry, University
of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
132
|
Shen Y, Maupetit J, Derreumaux P, Tufféry P. Improved PEP-FOLD Approach for Peptide and Miniprotein Structure Prediction. J Chem Theory Comput 2014; 10:4745-58. [DOI: 10.1021/ct500592m] [Citation(s) in RCA: 416] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yimin Shen
- INSERM U973, MTi, F-75205 Paris, France
- Univ Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Julien Maupetit
- Laboratoire
de Biochimie Théorique, UPR 9080 CNRS, Institut de Biologie Physico-Chimique, F-75005 Paris, France
- Univ Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Philippe Derreumaux
- Laboratoire
de Biochimie Théorique, UPR 9080 CNRS, Institut de Biologie Physico-Chimique, F-75005 Paris, France
- Institut Universitaire de France, 103 Boulevard Saint-Michel, 75005, Paris, France
- Univ Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Pierre Tufféry
- INSERM U973, MTi, F-75205 Paris, France
- Univ Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| |
Collapse
|
133
|
Li J, Ziemba BP, Falke J, Voth GA. Interactions of protein kinase C-α C1A and C1B domains with membranes: a combined computational and experimental study. J Am Chem Soc 2014; 136:11757-66. [PMID: 25075641 PMCID: PMC4140453 DOI: 10.1021/ja505369r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Indexed: 02/01/2023]
Abstract
Protein kinase C-α (PKCα) has been studied widely as a paradigm for conventional PKCs, with two C1 domains (C1A and C1B) being important for the regulation and function of the kinase. However, it is challenging to explore these domains in membrane-bound environments with either simulations or experiments alone. In this work, we have combined modeling, simulations, and experiments to understand the molecular basis of the PKCα C1A and C1B domain interactions with membranes. Our atomistic simulations of the PKCα C1 domains reveal the dynamic interactions of the proteins with anionic lipids, as well as the conserved hydrogen bonds and the distinct nonpolar contacts formed with lipid activators. Corroborating evidence is obtained from additional simulations and experiments in terms of lipid binding and protein diffusion. Overall, our study, for the first time, explains with atomistic detail how the PKCα C1A and C1B domains interact differently with various lipids. On the molecular level, the information provided by our study helps to shed light on PKCα regulation and activation mechanism. The combined computational/experimental approach demonstrated in this work is anticipated to enable further studies to explore the roles of C1 domains in many signaling proteins and to better understand their molecular mechanisms in normal cellular function and disease development.
Collapse
Affiliation(s)
- Jianing Li
- Department
of Chemistry, Institute for Biophysical Dynamics, James Franck Institute
and Computation Institute, The University
of Chicago, 5735 South
Ellis Avenue, Chicago, Illinois 60637, United States
| | - Brian P. Ziemba
- Department
of Chemistry and Biochemistry and the Molecular Biophysics Program, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Joseph
J. Falke
- Department
of Chemistry and Biochemistry and the Molecular Biophysics Program, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Gregory A. Voth
- Department
of Chemistry, Institute for Biophysical Dynamics, James Franck Institute
and Computation Institute, The University
of Chicago, 5735 South
Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
134
|
Stewart MD, Cole TR, Igumenova TI. Interfacial partitioning of a loop hinge residue contributes to diacylglycerol affinity of conserved region 1 domains. J Biol Chem 2014; 289:27653-64. [PMID: 25124034 DOI: 10.1074/jbc.m114.585570] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conventional and novel isoenzymes of PKC are activated by the membrane-embedded second messenger diacylglycerol (DAG) through its interactions with the C1 regulatory domain. The affinity of C1 domains to DAG varies considerably among PKCs. To gain insight into the origin of differential DAG affinities, we conducted high-resolution NMR studies of C1B domain from PKCδ (C1Bδ) and its W252Y variant. The W252Y mutation was previously shown to render C1Bδ less responsive to DAG (Dries, D. R., Gallegos, L. L., and Newton, A. C. (2007) A single residue in the C1 domain sensitizes novel protein kinase C isoforms to cellular diacylglycerol production. J. Biol. Chem. 282, 826-830) and thereby emulate the behavior of C1B domains from conventional PKCs that have a conserved Tyr at the equivalent position. Our data revealed that W252Y mutation did not perturb the conformation of C1Bδ in solution but significantly reduced its propensity to partition into a membrane-mimicking environment in the absence of DAG. Using detergent micelles doped with a paramagnetic lipid, we determined that both the residue identity at position 252 and complexation with diacylglycerol influence the geometry of C1Bδ-micelle interactions. In addition, we identified the C-terminal helix α1 of C1Bδ as an interaction site with the head groups of phosphatidylserine, a known activator of PKCδ. Taken together, our studies (i) reveal the identities of C1Bδ residues involved in interactions with membrane-mimicking environment, DAG, and phosphatidylserine, as well as the affinities associated with each event and (ii) suggest that the initial ligand-independent membrane recruitment of C1B domains, which is greatly facilitated by the interfacial partitioning of Trp-252, is responsible, at least in part, for the differential DAG affinities.
Collapse
Affiliation(s)
- Mikaela D Stewart
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Taylor R Cole
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Tatyana I Igumenova
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
135
|
Talukdar D, Panda S, Borah R, Manna D. Membrane Interaction and Protein Kinase C-C1 Domain Binding Properties of 4-Hydroxy-3-(hydroxymethyl) Phenyl Ester Analogues. J Phys Chem B 2014; 118:7541-7553. [PMID: 24936745 DOI: 10.1021/jp5044305] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein kinase C (PKC)-C1 domain targeted regulator development is considered as a potential therapeutic strategy for the treatment of cancer and immunological and other diseases. Efforts are underway to synthesize small molecules to achieve higher specificity for the C1-domain than the natural activator, diacylglycerols (DAGs). In this regard, we conveniently synthesized 4-hydroxy-3-(hydroxymethyl) phenyl ester analogues and measured in vitro C1-domain binding properties. We also investigated different physicochemical properties of the synthesized molecules, including aggregation behavior in aqueous solution and interaction with lipid bilayers, and others with an aim for better understanding of their C1-domain binding properties. The results showed that the membrane-active compounds aggregate in aqueous solution at a reasonably lower concentration and strongly interact with the lipid bilayer. The hydrophilic part of the compounds localize at the bilayer/water interface and accessible for C1-domain binding. Biophysical studies revealed that the hydroxyl, hydroxymethyl, and carbonyl groups and acyl chain length are important for their interaction with the C1-domain. The potent compound showed more than 10-fold stronger binding affinity for the C1-domains than DAG under similar experimental conditions. Therefore, our findings reveal that these ester analogues represent an attractive group of C1-domain ligands that can be further structurally modified to improve their binding and activity.
Collapse
Affiliation(s)
- Dipjyoti Talukdar
- Department of Chemistry, Indian Institute of Technology , Guwahati, Assam 781039, India
| | - Subhankar Panda
- Department of Chemistry, Indian Institute of Technology , Guwahati, Assam 781039, India
| | - Rituparna Borah
- Department of Chemistry, Indian Institute of Technology , Guwahati, Assam 781039, India
| | - Debasis Manna
- Department of Chemistry, Indian Institute of Technology , Guwahati, Assam 781039, India
| |
Collapse
|
136
|
Egea-Jiménez AL, Corbalán-García S, Gómez-Fernández JC. The C1B domains of novel PKCε and PKCη have a higher membrane binding affinity than those of the also novel PKCδ and PKCθ. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1898-909. [DOI: 10.1016/j.bbamem.2014.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/28/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
|
137
|
Kedei N, Chen JQ, Herrmann MA, Telek A, Goldsmith PK, Petersen ME, Keck GE, Blumberg PM. Molecular systems pharmacology: isoelectric focusing signature of protein kinase Cδ provides an integrated measure of its modulation in response to ligands. J Med Chem 2014; 57:5356-69. [PMID: 24906106 PMCID: PMC4216220 DOI: 10.1021/jm500417b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Protein
kinase C (PKC), a validated therapeutic target for cancer
chemotherapy, provides a paradigm for assessing structure–activity
relations, where ligand binding has multiple consequences for a target.
For PKC, ligand binding controls not only PKC activation and multiple
phosphorylations but also subcellular localization, affecting subsequent
signaling. Using a capillary isoelectric focusing immunoassay system,
we could visualize a high resolution isoelectric focusing signature
of PKCδ upon stimulation by ligands of the phorbol ester and
bryostatin classes. Derivatives that possessed different physicochemical
characteristics and induced different patterns of biological response
generated different signatures. Consistent with different patterns
of PKCδ localization as one factor linked to these different
signatures, we found different signatures for activated PKCδ
from the nuclear and non-nuclear fractions. We conclude that the capillary
isoelectric focusing immunoassay system may provide a window into
the integrated consequences of ligand binding and thus afford a powerful
platform for compound development.
Collapse
Affiliation(s)
- Noemi Kedei
- Laboratory of Cancer Biology and Genetics, ‡Collaborative Protein Technology Resource, Laboratory of Cell Biology, and §Office of Science and Technology Partnerships, Center for Cancer Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Pu Y, Kang JH, Sigano DM, Peach M, Lewin NE, Marquez VE, Blumberg PM. Diacylglycerol lactones targeting the structural features that distinguish the atypical C1 domains of protein kinase C ζ and ι from typical C1 domains. J Med Chem 2014; 57:3835-44. [PMID: 24684293 PMCID: PMC4310642 DOI: 10.1021/jm500165n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Indexed: 01/25/2023]
Abstract
To explore the feasibility of developing ligands targeted to the atypical C1 domains of protein kinase C ζ and ι, we have prepared diacylglycerol lactones substituted with hydrophilic groups on their side chains, which potentially could interact with the arginine residues that distinguish the atypical C1 domains of PKCζ and PKCι from typical C1 domains, and we have measured their binding to mutated versions of the C1b domain of PKCδ that incorporate one or more of these arginine residues. The most selective of the diacylglycerol lactones showed only a 10-fold reduction in binding affinity with the triple arginine mutant (N7R/S10R/L20R) compared to the wild-type, whereas phorbol 12,13-dibutyrate showed a 6000-fold loss of affinity. Molecular modeling confirms that these ligands are indeed able to interact with the arginine residues. Our results show that dramatic changes in selectivity can be obtained through appropriate substitution of diacylglycerol lactones.
Collapse
Affiliation(s)
- Yongmei Pu
- Laboratory
of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of
Health, Bethesda, Maryland 20892, United
States
| | - Ji-Hye Kang
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Dina M. Sigano
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Megan
L. Peach
- Chemical
Biology Laboratory, Basic Science Program, Frederick National Laboratory
for Cancer Research, Leidos Biomedical,
Inc., Frederick, Maryland 21702, United
States
| | - Nancy E. Lewin
- Laboratory
of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of
Health, Bethesda, Maryland 20892, United
States
| | - Victor E. Marquez
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Peter M. Blumberg
- Laboratory
of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of
Health, Bethesda, Maryland 20892, United
States
| |
Collapse
|
139
|
Joshi S, Singh AR, Zulcic M, Durden DL. A PKC-SHP1 signaling axis desensitizes Fcγ receptor signaling by reducing the tyrosine phosphorylation of CBL and regulates FcγR mediated phagocytosis. BMC Immunol 2014; 15:18. [PMID: 24886428 PMCID: PMC4017086 DOI: 10.1186/1471-2172-15-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fcγ receptors mediate important biological signals in myeloid cells including the ingestion of microorganisms through a process of phagocytosis. It is well-known that Fcγ receptor (FcγR) crosslinking induces the tyrosine phosphorylation of CBL which is associated with FcγR mediated phagocytosis, however how signaling molecules coordinate to desensitize these receptors is unclear. An investigation of the mechanisms involved in receptor desensitization will provide new insight into potential mechanisms by which signaling molecules may downregulate tyrosine phosphorylation dependent signaling events to terminate important signaling processes. RESULTS Using the U937IF cell line, we observed that FcγR1 crosslinking induces the tyrosine phosphorylation of CBL, which is maximal at 5 min. followed by a kinetic pattern of dephosphorylation. An investigation of the mechanisms involved in receptor desensitization revealed that pretreatment of U937IF or J774 cells with PMA followed by Fcγ receptor crosslinking results in the reduced tyrosine phosphorylation of CBL and the abrogation of downstream signals, such as CBL-CRKL binding, Rac-GTP activation and the phagocytic response. Pretreatment of J774 cells with GF109203X, a PKC inhibitor was observed to block dephosphorylation of CBL and rescued the phagocytic response. We demonstrate that the PKC induced desensitization of FcγR/ phagocytosis is associated with the inactivation of Rac-GTP, which is deactivated in a hematopoietic specific phosphatase SHP1 dependent manner following ITAM stimulation. The effect of PKC on FcγR signaling is augmented by the transfection of catalytically active SHP1 and not by the transfection of catalytic dead SHP1 (C124S). CONCLUSIONS Our results suggest a functional model by which PKC interacts with SHP1 to affect the phosphorylation state of CBL, the activation state of Rac and the negative regulation of ITAM signaling i.e. Fcγ receptor mediated phagocytosis. These findings suggest a mechanism for Fcγ receptor desensitization by which a serine-threonine kinase e.g. PKC downregulates tyrosine phosphorylation dependent signaling events via the reduced tyrosine phosphorylation of the complex adapter protein, CBL.
Collapse
Affiliation(s)
| | | | | | - Donald L Durden
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California School of Medicine, San Diego, CA 92093, USA.
| |
Collapse
|
140
|
Kelsey JS, Geczy T, Lewin NE, Kedei N, Hill CS, Selezneva JS, Valle CJ, Woo W, Gorshkova I, Blumberg PM. Charge density influences C1 domain ligand affinity and membrane interactions. Chembiochem 2014; 15:1131-1144. [PMID: 24777910 DOI: 10.1002/cbic.201400041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Indexed: 12/25/2022]
Abstract
The C1 domain, which represents the recognition motif on protein kinase C for the lipophilic second messenger diacylglycerol and its ultrapotent analogues, the phorbol esters, has emerged as a promising therapeutic target for cancer and other indications. Potential target selectivity is markedly enhanced both because binding reflects ternary complex formation between the ligand, C1 domain, and phospholipid, and because binding drives membrane insertion of the C1 domain, permitting aspects of the C1 domain surface outside the binding site, per se, to influence binding energetics. Here, focusing on charged residues identified in atypical C1 domains which contribute to their loss of ligand binding activity, we showed that increasing charge along the rim of the binding cleft of the protein kinase C δ C1 b domain raises the requirement for anionic phospholipids. Correspondingly, it shifts the selectivity of C1 domain translocation to the plasma membrane, which is more negatively charged than internal membranes. This change in localization is most pronounced in the case of more hydrophilic ligands, which provide weaker membrane stabilization than do the more hydrophobic ligands and thus contributes an element to the structure-activity relations for C1 domain ligands. Coexpressing pairs of C1-containing constructs with differing charges each expressing a distinct fluorescent tag provided a powerful tool to demonstrate the effect of increasing charge in the C1 domain.
Collapse
Affiliation(s)
- Jessica S Kelsey
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute Building 37, Room 4048, 37 Convent Drive MSC 4255, Bethesda, MD 20892-4255, U.S.A
| | - Tamas Geczy
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute Building 37, Room 4048, 37 Convent Drive MSC 4255, Bethesda, MD 20892-4255, U.S.A
| | - Nancy E Lewin
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute Building 37, Room 4048, 37 Convent Drive MSC 4255, Bethesda, MD 20892-4255, U.S.A
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute Building 37, Room 4048, 37 Convent Drive MSC 4255, Bethesda, MD 20892-4255, U.S.A
| | - Colin S Hill
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute Building 37, Room 4048, 37 Convent Drive MSC 4255, Bethesda, MD 20892-4255, U.S.A
| | - Julia S Selezneva
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute Building 37, Room 4048, 37 Convent Drive MSC 4255, Bethesda, MD 20892-4255, U.S.A
| | - Christopher J Valle
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute Building 37, Room 4048, 37 Convent Drive MSC 4255, Bethesda, MD 20892-4255, U.S.A
| | - Wonhee Woo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute Building 37, Room 4048, 37 Convent Drive MSC 4255, Bethesda, MD 20892-4255, U.S.A
| | - Inna Gorshkova
- Biomedical Engineering and Physical Science Share Resource Program, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, U.S.A
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute Building 37, Room 4048, 37 Convent Drive MSC 4255, Bethesda, MD 20892-4255, U.S.A
| |
Collapse
|
141
|
Jain K, Basu A. The Multifunctional Protein Kinase C-ε in Cancer Development and Progression. Cancers (Basel) 2014; 6:860-78. [PMID: 24727247 PMCID: PMC4074807 DOI: 10.3390/cancers6020860] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/27/2014] [Accepted: 04/01/2014] [Indexed: 12/31/2022] Open
Abstract
The protein kinase C (PKC) family proteins are important signal transducers and have long been the focus of cancer research. PKCɛ, a member of this family, is overexpressed in most solid tumors and plays critical roles in different processes that lead to cancer development. Studies using cell lines and animal models demonstrated the transforming potential of PKCɛ. While earlier research established the survival functions of PKCɛ, recent studies revealed its role in cell migration, invasion and cancer metastasis. PKCɛ has also been implicated in epithelial to mesenchymal transition (EMT), which may be the underlying mechanism by which it contributes to cell motility. In addition, PKCɛ affects cell-extracellular matrix (ECM) interactions by direct regulation of the cytoskeletal elements. Recent studies have also linked PKCɛ signaling to cancer stem cell functioning. This review focuses on the role of PKCɛ in different processes that lead to cancer development and progression. We also discussed current literatures on the pursuit of PKCɛ as a target for cancer therapy.
Collapse
Affiliation(s)
- Kirti Jain
- Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Institute for Cancer Research, and Focused on Resources for her Health Education and Research, Fort Worth, TX 76107, USA.
| | - Alakananda Basu
- Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Institute for Cancer Research, and Focused on Resources for her Health Education and Research, Fort Worth, TX 76107, USA.
| |
Collapse
|
142
|
Rahman GM, Das J. Modeling studies on the structural determinants for the DAG/phorbol ester binding to C1 domain. J Biomol Struct Dyn 2014; 33:219-32. [DOI: 10.1080/07391102.2014.895679] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
143
|
Ziemba BP, Li J, Landgraf KE, Knight JD, Voth GA, Falke JJ. Single-molecule studies reveal a hidden key step in the activation mechanism of membrane-bound protein kinase C-α. Biochemistry 2014; 53:1697-713. [PMID: 24559055 PMCID: PMC3971957 DOI: 10.1021/bi4016082] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
Protein
kinase C-α (PKCα) is a member of the conventional
family of protein kinase C isoforms (cPKCs) that regulate diverse
cellular signaling pathways, share a common activation mechanism,
and are linked to multiple pathologies. The cPKC domain structure
is modular, consisting of an N-terminal pseudosubstrate peptide, two
inhibitory domains (C1A and C1B), a targeting domain (C2), and a kinase
domain. Mature, cytoplasmic cPKCs are inactive until they are switched
on by a multistep activation reaction that occurs largely on the plasma
membrane surface. Often, this activation begins with a cytoplasmic
Ca2+ signal that triggers C2 domain targeting to the plasma
membrane where it binds phosphatidylserine (PS) and phosphatidylinositol
4,5-bisphosphate (PIP2). Subsequently, the appearance of
the signaling lipid diacylglycerol (DAG) activates the membrane-bound
enzyme by recruiting the inhibitory pseudosubstrate and one or both
C1 domains away from the kinase domain. To further investigate this
mechanism, this study has utilized single-molecule total internal
reflection fluorescence microscopy (TIRFM) to quantitate the binding
and lateral diffusion of full-length PKCα and fragments missing
specific domain(s) on supported lipid bilayers. Lipid binding events,
and events during which additional protein is inserted into the bilayer,
were detected by their effects on the equilibrium bound particle density
and the two-dimensional diffusion rate. In addition to the previously
proposed activation steps, the findings reveal a major, undescribed,
kinase-inactive intermediate. On bilayers containing PS or PS and
PIP2, full-length PKCα first docks to the membrane
via its C2 domain, and then its C1A domain embeds itself in the bilayer
even before DAG appears. The resulting pre-DAG intermediate with membrane-bound
C1A and C2 domains is the predominant state of PKCα while it
awaits the DAG signal. The newly detected, membrane-embedded C1A domain
of this pre-DAG intermediate confers multiple useful features, including
enhanced membrane affinity and longer bound state lifetime. The findings
also identify the key molecular step in kinase activation: because
C1A is already membrane-embedded in the kinase off state, recruitment
of C1B to the bilayer by DAG or phorbol ester is the key regulatory
event that stabilizes the kinase on state. More broadly, this study
illustrates the power of single-molecule methods in elucidating the
activation mechanisms and hidden regulatory states of membrane-bound
signaling proteins.
Collapse
Affiliation(s)
- Brian P Ziemba
- Department of Chemistry and Biochemistry and Molecular Biophysics Program, University of Colorado , Boulder, Colorado 80309-0596, United States
| | | | | | | | | | | |
Collapse
|
144
|
Andrade-Vieira LF, Botelho CM, Laviola BG, Palmieri MJ, Praça-Fontes MM. Effects of Jatropha curcas oil in Lactuca sativa root tip bioassays. AN ACAD BRAS CIENC 2014; 86:373-82. [PMID: 24676174 DOI: 10.1590/0001-3765201420130041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 07/05/2013] [Indexed: 11/21/2022] Open
Abstract
Jatropha curcas L. (Euphorbiaceae) is important for biofuel production and as a feed ingredient for animal. However, the presence of phorbol esters in the oil and cake renders the seeds toxic. The toxicity of J. curcas oil is currently assessed by testing in animals, leading to their death. The identification of toxic and nontoxic improved varieties is important for the safe use of J. curcas seeds and byproducts to avoid their environmental toxicity. Hence, the aim of this study was to propose a short-term bioassay using a plant as a model to screen the toxicity of J. curcas oil without the need to sacrifice any animals. The toxicity of J. curcas oil was evident in germination, root elongation and chromosomal aberration tests in Lactuca sativa. It was demonstrated that J. curcas seeds contain natural compounds that exert phyto-, cyto- and genotoxic effects on lettuce, and that phorbol esters act as aneugenic agents, leading to the formation of sticky chromosomes and c-metaphase cells. In conclusion, the tests applied have shown reproducibility, which is important to verify the extent of detoxification and to determine toxic doses, thus reducing the numbers of animals that would be used for toxicity tests.
Collapse
Affiliation(s)
- Larissa F Andrade-Vieira
- Departamento de Biologia, Centro de Ciencias Agrarias, Universidade Federal do Espirito Santo, Alto Universitario, Alegre, ES, Brasil
| | - Carolina M Botelho
- Departamento de Biologia, Centro de Ciencias Agrarias, Universidade Federal do Espirito Santo, Alto Universitario, Alegre, ES, Brasil
| | - Bruno G Laviola
- Empresa Brasileira de Pesquisa Agropecuaria/EMBRAPA Agroenergia, Parque Estacao Biologica/PqEB, Brasilia, DF, Brasil
| | - Marcel J Palmieri
- Departamento de Biologia, Universidade Federal de Lavras, Campus Universitario, Lavras, MG, Brasil
| | - Milene M Praça-Fontes
- Departamento de Biologia, Centro de Ciencias Agrarias, Universidade Federal do Espirito Santo, Alto Universitario, Alegre, ES, Brasil
| |
Collapse
|
145
|
Talman V, Gateva G, Ahti M, Ekokoski E, Lappalainen P, Tuominen RK. Evidence for a role of MRCK in mediating HeLa cell elongation induced by the C1 domain ligand HMI-1a3. Eur J Pharm Sci 2014; 55:46-57. [PMID: 24486483 DOI: 10.1016/j.ejps.2014.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/03/2014] [Accepted: 01/12/2014] [Indexed: 12/13/2022]
Abstract
Diacylglycerol (DAG) is a central mediator of signaling pathways that regulate cell proliferation, survival and apoptosis. Therefore, C1 domain, the DAG binding site within protein kinase C (PKC) and other DAG effector proteins, is considered a potential cancer drug target. Derivatives of 5-(hydroxymethyl)isophthalic acid are a novel group of C1 domain ligands with antiproliferative and differentiation-inducing effects. Our previous work showed that these isophthalate derivatives exhibit antiproliferative and elongation-inducing effects in HeLa human cervical cancer cells. In this study we further characterized the effects of bis(3-trifluoromethylbenzyl) 5-(hydroxymethyl)isophthalate (HMI-1a3) on HeLa cell proliferation and morphology. HMI-1a3-induced cell elongation was accompanied with loss of focal adhesions and actin stress fibers, and exposure to HMI-1a3 induced a prominent relocation of cofilin-1 into the nucleus regardless of cell phenotype. The antiproliferative and morphological responses to HMI-1a3 were not modified by pharmacological inhibition or activation of PKC, or by RNAi knock-down of specific PKC isoforms, suggesting that the effects of HMI-1a3 were not mediated by PKC. Genome-wide gene expression microarray and gene set enrichment analysis suggested that, among others, HMI-1a3 induces changes in small GTPase-mediated signaling pathways. Our experiments revealed that the isophthalates bind also to the C1 domains of β2-chimaerin, protein kinase D (PKD) and myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK), which are potential mediators of small GTPase signaling and cytoskeletal reorganization. Pharmacological inhibition of MRCK, but not that of PKD attenuated HMI-1a3-induced cell elongation, suggesting that MRCK participates in mediating the effects of HMI-1a3 on HeLa cell morphology.
Collapse
Affiliation(s)
- Virpi Talman
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Gergana Gateva
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Marja Ahti
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Elina Ekokoski
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Raimo K Tuominen
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
146
|
Marchal C, Delorme-Hinoux V, Bariat L, Siala W, Belin C, Saez-Vasquez J, Riondet C, Reichheld JP. NTR/NRX define a new thioredoxin system in the nucleus of Arabidopsis thaliana cells. MOLECULAR PLANT 2014; 7:30-44. [PMID: 24253198 DOI: 10.1093/mp/sst162] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Thioredoxins (TRX) are key components of cellular redox balance, regulating many target proteins through thiol/disulfide exchange reactions. In higher plants, TRX constitute a complex multigenic family whose members have been found in almost all cellular compartments. Although chloroplastic and cytosolic TRX systems have been largely studied, the presence of a nuclear TRX system has been elusive for a long time. Nucleoredoxins (NRX) are potential nuclear TRX found in most eukaryotic organisms. In contrast to mammals, which harbor a unique NRX, angiosperms generally possess multiple NRX organized in three subfamilies. Here, we show that Arabidopsis thaliana has two NRX genes (AtNRX1 and AtNRX2), respectively, belonging to subgroups I and III. While NRX1 harbors typical TRX active sites (WCG/PPC), NRX2 has atypical active sites (WCRPC and WCPPF). Nevertheless, both NRX1 and NRX2 have disulfide reduction capacities, although NRX1 alone can be reduced by the thioredoxin reductase NTRA. We also show that both NRX1 and NRX2 have a dual nuclear/cytosolic localization. Interestingly, we found that NTRA, previously identified as a cytosolic protein, is also partially localized in the nucleus, suggesting that a complete TRX system is functional in the nucleus. We show that NRX1 is mainly found as a dimer in vivo. nrx1 and nrx2 knockout mutant plants exhibit no phenotypic perturbations under standard growth conditions. However, the nrx1 mutant shows a reduced pollen fertility phenotype, suggesting a specific role of NRX1 at the haploid phase.
Collapse
Affiliation(s)
- Corinne Marchal
- Université Perpignan Via Domitia, CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 58 Avenue Paul Alduy-Bat T, F-66860, Perpignan, France
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Mamidi N, Panda S, Borah R, Manna D. Synthesis and protein kinase C (PKC)-C1 domain binding properties of diacyltetrol based anionic lipids. MOL. BIOSYST. 2014; 10:3002-13. [DOI: 10.1039/c4mb00382a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein kinase C-C1 domain binding specificity of the anionic hybrid lipids.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Assam 781039, India
| | - Subhankar Panda
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Assam 781039, India
| | - Rituparna Borah
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Assam 781039, India
| | - Debasis Manna
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Assam 781039, India
| |
Collapse
|
148
|
Borah R, Talukdar D, Gorai S, Bain D, Manna D. Bilayer interaction and protein kinase C-C1 domain binding studies of kojic acid esters. RSC Adv 2014. [DOI: 10.1039/c4ra02352h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesis of kojic acid ester analogues and their lipid bilayer interaction and PKC-C1 domain binding properties have been demonstrated in this present work.
Collapse
Affiliation(s)
- Rituparna Borah
- Department of Chemistry
- Indian Institute of Technology Guwahati
- , India
| | - Dipjyoti Talukdar
- Department of Chemistry
- Indian Institute of Technology Guwahati
- , India
| | - Sukhamoy Gorai
- Department of Chemistry
- Indian Institute of Technology Guwahati
- , India
| | - Dipankar Bain
- Department of Chemistry
- Indian Institute of Technology Guwahati
- , India
| | - Debasis Manna
- Department of Chemistry
- Indian Institute of Technology Guwahati
- , India
| |
Collapse
|
149
|
Song X, Lopez-Campistrous A, Sun L, Dower NA, Kedei N, Yang J, Kelsey JS, Lewin NE, Esch TE, Blumberg PM, Stone JC. RasGRPs are targets of the anti-cancer agent ingenol-3-angelate. PLoS One 2013; 8:e72331. [PMID: 23991094 PMCID: PMC3749120 DOI: 10.1371/journal.pone.0072331] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 07/08/2013] [Indexed: 11/26/2022] Open
Abstract
Ingenol-3–angelate (I3A) is a non-tumor promoting phorbol ester-like compound identified in the sap of Euphoria peplus. Similar to tumor promoting phorbol esters, I3A is a diacylglycerol (DAG) analogue that binds with high affinity to the C1 domains of PKCs, recruits PKCs to cellular membranes and promotes enzyme activation. Numerous anti-cancer activities have been attributed to I3A and ascribed to I3A’s effects on PKCs. We show here that I3A also binds to and activates members of the RasGRP family of Ras activators leading to robust elevation of Ras-GTP and engagement of the Raf-Mek-Erk kinase cascade. In response to I3A, recombinant proteins consisting of GFP fused separately to full-length RasGRP1 and RasGRP3 were rapidly recruited to cell membranes, consistent with direct binding of the compound to RasGRP’s C1 domain. In the case of RasGRP3, IA3 treatment led to positive regulatory phosphorylation on T133 and activation of the candidate regulatory kinase PKCδ. I3A treatment of select B non-Hodgkin’s lymphoma cell lines resulted in quantitative and qualitative changes in Bcl-2 family member proteins and induction of apoptosis, as previously demonstrated with the DAG analogue bryostatin 1 and its synthetic analogue pico. Our results offer further insights into the anticancer properties of I3A, support the idea that RasGRPs represent potential cancer therapeutic targets along with PKC, and expand the known range of ligands for RasGRP regulation.
Collapse
Affiliation(s)
- Xiaohua Song
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Lucy Sun
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nancy A. Dower
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jing Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jessica S. Kelsey
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nancy E. Lewin
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tim E. Esch
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter M. Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James C. Stone
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
150
|
Ohashi N, Nomura W, Narumi T, Tamamura H. Peptide-based ligand screening and functional analysis of protein kinase C. Biopolymers 2013; 100:613-20. [PMID: 23897302 DOI: 10.1002/bip.22324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 04/11/2013] [Accepted: 06/04/2013] [Indexed: 11/06/2022]
Abstract
Protein kinase C (PKC) plays an important role in cell signaling pathways and is implicated in disorders ranging from cancer to Alzheimer's disease. Highly potent PKC ligands as therapeutic drugs have not been developed to date and useful methodologies for controlling PKC activation in defined areas are necessary to analyze precise PKC functions in cells. Studies focused on the development of PKC ligand screening systems and methods for regulation of PKC activation have been performed in our laboratory. In this review, our ligand screening methods involving synthetic peptides and solvatochromic fluorescent dye-labeled small compounds are summarized and the technique of spatio-temporal manipulation of PKC activation by caging strategies is introduced.
Collapse
Affiliation(s)
- Nami Ohashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, 101-0062, Japan
| | | | | | | |
Collapse
|