101
|
Marinković P, Godinho L, Misgeld T. Generation and Screening of Transgenic Mice with Neuronal Labeling Controlled by Thy1 Regulatory Elements. Cold Spring Harb Protoc 2015; 2015:875-882. [PMID: 26430261 DOI: 10.1101/pdb.top087668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Major progress has been made using in vivo imaging in mice to study mammalian nervous system development, plasticity, and disease. This progress has depended in part on the wide availability of two-photon microscopy, which is capable of penetrating deep into scattering tissue. Equally important, however, is the generation of suitable transgenic mouse models, which provide a "Golgi staining"-like labeling of neurons that is sparse and bright enough for in vivo imaging. Particularly prominent among such transgenic mice are the so-called Thy1-XFP mice (in which XFP stands for any fluorescent protein) that are used in numerous studies, especially to visualize spine plasticity in the cortex and remodeling in peripheral synapses. New generations of Thy1-XFP mice are now being generated at a high rate, and these have allowed previously difficult experiments to become feasible. Moreover, with easy access to core facilities or commercial providers of pronuclear injections, generating simple Thy1 transgenic mice is now a possibility even for small laboratories. In this introduction, we discuss the Thy1 regulatory elements used to generate transgenic lines with neuronal labeling. We provide a brief overview of currently available Thy1 transgenic mice, including lines labeling neuronal organelles or reporting neuronal function.
Collapse
|
102
|
Hu S, Cui W, Mak S, Xu D, Hu Y, Tang J, Choi C, Lee M, Pang Y, Han Y. Substantial Neuroprotective and Neurite Outgrowth-Promoting Activities by Bis(propyl)-cognitin via the Activation of Alpha7-nAChR, a Promising Anti-Alzheimer's Dimer. ACS Chem Neurosci 2015; 6:1536-45. [PMID: 26147504 DOI: 10.1021/acschemneuro.5b00108] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cause of Alzheimer's disease (AD) could be ascribed to the progressive loss of functional neurons in the brain, and hence, agents with neuroprotection and neurite outgrowth-promoting activities that allow for the replacement of lost neurons may have significant therapeutic value. In the current study, the neuroprotective and the neurite outgrowth-promoting activities and molecular mechanisms of bis(propyl)-cognitin (B3C), a multifunctional anti-AD dimer, were investigated. Briefly, B3C (24 h pretreatment) fully protected against glutamate-induced neuronal death in primary cerebellar granule neurons with an IC50 value of 0.08 μM. The neuroprotection of B3C could be abrogated by methyllycaconitine, a specific antagonist of alpha7-nicotinic acetylcholine receptor (α7-nAChR). In addition, B3C significantly promoted neurite outgrowth in both PC12 cells and primary cortical neurons, as evidenced by the increase in the percentage of cells with extended neurites as well as the up-regulation of neuronal markers growth-associated protein-43 and β-III-tubulin. Furthermore, B3C rapidly upregulated the phosphorylation of extracellular signal-regulated kinase (ERK), a critical signaling molecule in neurite outgrowth that is downstream of the α7-nAChR signal pathway. Specific inhibitors of ERK and α7-nAChR, but not those of p38 mitogen-activated protein kinase and c-Jun NH(2)-terminal kinase, blocked the neurite outgrowth as well as ERK activation in PC12 cells induced by B3C. Most importantly, genetic depletion of α7-nAChR significantly abolished B3C-induced neurite outgrowth in PC12 cells. Taken together, our results suggest that B3C provided neuroprotection and neurite outgrowth-promoting activities through the activation of α7-nAChR, which offers a novel molecular insight into the potential application of B3C in AD treatment.
Collapse
Affiliation(s)
- Shengquan Hu
- Department
of Applied Biology and Chemical Technology, Institute of Modern Chinese
Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- Institute of New Drug Research, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangdong, China
- The Hong Kong Polytechnic University Shenzhen
Research Institute, Shenzhen, China
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University of Macau, Macau, China
| | - Wei Cui
- Department
of Applied Biology and Chemical Technology, Institute of Modern Chinese
Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen
Research Institute, Shenzhen, China
| | - Shinghung Mak
- Department
of Applied Biology and Chemical Technology, Institute of Modern Chinese
Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen
Research Institute, Shenzhen, China
| | - Daping Xu
- Department
of Applied Biology and Chemical Technology, Institute of Modern Chinese
Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen
Research Institute, Shenzhen, China
| | - Yuanjia Hu
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jing Tang
- Mayo
Cancer Center, Department of Pharmacology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Chunglit Choi
- Department
of Applied Biology and Chemical Technology, Institute of Modern Chinese
Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Mingyuen Lee
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yuanping Pang
- Mayo
Cancer Center, Department of Pharmacology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Yifan Han
- Department
of Applied Biology and Chemical Technology, Institute of Modern Chinese
Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen
Research Institute, Shenzhen, China
| |
Collapse
|
103
|
DeFrancesco-Lisowitz A, Lindborg JA, Niemi JP, Zigmond RE. The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience 2015; 302:174-203. [PMID: 25242643 PMCID: PMC4366367 DOI: 10.1016/j.neuroscience.2014.09.027] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 12/25/2022]
Abstract
Peripheral nerves regenerate following injury due to the effective activation of the intrinsic growth capacity of the neurons and the formation of a permissive pathway for outgrowth due to Wallerian degeneration (WD). WD and subsequent regeneration are significantly influenced by various immune cells and the cytokines they secrete. Although macrophages have long been known to play a vital role in the degenerative process, recent work has pointed to their importance in influencing the regenerative capacity of peripheral neurons. In this review, we focus on the various immune cells, cytokines, and chemokines that make regeneration possible in the peripheral nervous system, with specific attention placed on the role macrophages play in this process.
Collapse
Affiliation(s)
| | - J A Lindborg
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| | - J P Niemi
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| | - R E Zigmond
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| |
Collapse
|
104
|
Gondard E, Chau HN, Mann A, Tierney TS, Hamani C, Kalia SK, Lozano AM. Rapid Modulation of Protein Expression in the Rat Hippocampus Following Deep Brain Stimulation of the Fornix. Brain Stimul 2015; 8:1058-64. [PMID: 26321354 DOI: 10.1016/j.brs.2015.07.044] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/24/2015] [Accepted: 07/29/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The forniceal area is currently being evaluated as a target for deep brain stimulation (DBS) to improve cognitive function in patients with Alzheimer's disease. The molecular changes at downstream targets within the stimulated circuit are unknown. OBJECTIVE To analyze the modulation of hippocampal protein expression following 1 h of fornix DBS in the rat. METHODS Animals underwent bilateral forniceal DBS for 1 h and sacrificed at different time-points after the initiation of the stimulation (1 h, 2.5 h, 5 h, 25 h). Bilateral hippocampi were isolated for western blot analyses. RESULTS Forniceal DBS led to a dramatic elevation of cFos post-stimulation, suggesting that forniceal DBS activates the hippocampus. There was also a significant increase in candidate proteins including several trophic factors, such as brain derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) but not glial cell-derived neurotrophic factor (GDNF). There was in addition, increased expression of the synaptic markers growth associated protein 43 (GAP-43), synaptophysin and α-synuclein. No changes were observed at the studied time-points in Alzheimer's-related proteins including amyloid precursor protein (APP), tau, phosphorylated tau (ptau), or selected chaperone proteins (HSP40, HSP70 and CHIP). CONCLUSIONS Forniceal DBS triggers hippocampal activity and rapidly modulate the expression of neurotrophic factors and markers of synaptic plasticity known to play key roles in memory processing. The clinical effects of DBS of the fornix may, in part, be mediated by producing changes in the expression of these proteins.
Collapse
Affiliation(s)
- Elise Gondard
- Toronto Western Research Institute, Krembil Discovery Tower, University Health Network, 60 Leonard Street, Toronto, ON, M5T 2S8, Canada
| | - Hien N Chau
- Toronto Western Research Institute, Krembil Discovery Tower, University Health Network, 60 Leonard Street, Toronto, ON, M5T 2S8, Canada
| | - Amandeep Mann
- Toronto Western Research Institute, Krembil Discovery Tower, University Health Network, 60 Leonard Street, Toronto, ON, M5T 2S8, Canada
| | - Travis S Tierney
- Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Clement Hamani
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| | - Suneil K Kalia
- Toronto Western Research Institute, Krembil Discovery Tower, University Health Network, 60 Leonard Street, Toronto, ON, M5T 2S8, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| | - Andres M Lozano
- Toronto Western Research Institute, Krembil Discovery Tower, University Health Network, 60 Leonard Street, Toronto, ON, M5T 2S8, Canada; Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada.
| |
Collapse
|
105
|
Nakato M, Matsuo M, Kono N, Arita M, Arai H, Ogawa J, Kioka N, Ueda K. Neurite outgrowth stimulation by n-3 and n-6 PUFAs of phospholipids in apoE-containing lipoproteins secreted from glial cells. J Lipid Res 2015; 56:1880-90. [PMID: 26239183 DOI: 10.1194/jlr.m058164] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Indexed: 01/06/2023] Open
Abstract
PUFAs, which account for 25-30% of the total fatty acids in the human brain, are important for normal brain development and cognitive function. However, it remains unclear how PUFAs are delivered to neurons and exert their effects. In this study, we demonstrated that n-3 and n-6 PUFAs added to the medium are incorporated into membrane phospholipids of primary glial cells from rat cortices, and then secreted as the fatty acid moiety of phospholipids in apoE-containing lipoproteins (LpEs). Tandem mass spectrometry analysis further showed that LpEs secreted from glial cells contain a variety of metabolites of PUFAs produced in glial cells by elongation and unsaturation. LpEs are absorbed by endocytosis into neurons via LDL receptor-related protein 1. LpE-containing n-3 and n-6 PUFAs exhibit a strong effect on neurite outgrowth of hippocampal neurons by increasing the number of branches. This study sheds light on the novel role of LpEs in the central nervous system and also a novel pathway in which PUFAs act on neurons.
Collapse
Affiliation(s)
- Mitsuhiro Nakato
- Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto 606-8502, Japan
| | - Michinori Matsuo
- Department of Food and Nutrition, Faculty of Home Economics, Kyoto Women's University, Kyoto 605-8501, Japan
| | - Nozomu Kono
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Hiroyuki Arai
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto 606-8502, Japan
| | - Noriyuki Kioka
- Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto 606-8502, Japan
| | - Kazumitsu Ueda
- Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto 606-8502, Japan Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
106
|
Vicente-Rodríguez M, Herradón G, Ferrer-Alcón M, Uribarri M, Pérez-García C. Chronic Cocaine Use Causes Changes in the Striatal Proteome Depending on the Endogenous Expression of Pleiotrophin. Chem Res Toxicol 2015; 28:1443-54. [DOI: 10.1021/acs.chemrestox.5b00130] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marta Vicente-Rodríguez
- Pharmacology Laboratory, Department of
Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - Gonzalo Herradón
- Pharmacology Laboratory, Department of
Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | | | - María Uribarri
- BRAINco Biopharma, S.L., Bizkaia Technology Park, Vizcaya, Spain
| | - Carmen Pérez-García
- Pharmacology Laboratory, Department of
Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| |
Collapse
|
107
|
Peng J, Wang P, Ge H, Qu X, Jin X. Effects of cordycepin on the microglia-overactivation-induced impairments of growth and development of hippocampal cultured neurons. PLoS One 2015; 10:e0125902. [PMID: 25932642 PMCID: PMC4416906 DOI: 10.1371/journal.pone.0125902] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/20/2015] [Indexed: 12/24/2022] Open
Abstract
Microglial cells are normally activated in response to brain injury or immunological stimuli to protect central nervous system (CNS). However, over-activation of microglia conversely amplifies the inflammatory effects and mediates cellular degeneration, leading to the death of neurons. Recently, cordycepin, an active component found in Cordyceps militarisa known as a rare Chinese caterpillar fungus, has been reported as an effective drug for treating inflammatory diseases and cancer via unclear mechanisms. In this study, we attempted to identify the anti-inflammatory role of cordycepin and its protective effects on the impairments of neural growth and development induced by microglial over-activation. The results indicate that cordycepin could attenuate the lipopolysaccharide (LPS)-induced microglial activation, evidenced by the dramatically reduced release of TNF-α and IL-1β, as well as the down-regulation of mRNA levels of iNOS and COX-2 after cordycepin treatment. Besides, cordycepin reversed the LPS-induced activation of NF-κB pathway, resulting in anti-inflammatory effects. Furthermore, by employing the conditioned medium (CM), we found cordycepin was able to recover the impairments of neural growth and development in the primary hippocampal neurons cultured in LPS-CM, including cell viability, growth cone extension, neurite sprouting and outgrowth as well as spinogenesis. This study expands our knowledge of the anti-inflammatory function of cordycepin and paves the way for the biomedical applications of cordycepin in the therapies of neural injuries.
Collapse
Affiliation(s)
- Jie Peng
- Wuzhong Hospital, Suzhou, Jiangsu, China
| | - Ping Wang
- Wuzhong Hospital, Suzhou, Jiangsu, China
| | - Hongshan Ge
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xianqin Qu
- School of Medical and Molecular Biosciences, University of Technology Sydney, Sydney, NSW, Australia
- * E-mail: (XJ); (XQ)
| | - Xingliang Jin
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Sydney Centre for Regenerative and Developmental Medicine, Kolling Institute for Medical Research, Sydney Medical School, University of Sydney, NSW, Australia
- * E-mail: (XJ); (XQ)
| |
Collapse
|
108
|
Hu SQ, Cui W, Mak SH, Choi CL, Hu YJ, Li G, Tsim KWK, Pang YP, Han YF. Robust Neuritogenesis-Promoting Activity by Bis(heptyl)-Cognitin Through the Activation of alpha7-Nicotinic Acetylcholine Receptor/ERK Pathway. CNS Neurosci Ther 2015; 21:520-9. [PMID: 25917415 DOI: 10.1111/cns.12401] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 12/14/2022] Open
Abstract
AIMS Neurodegenerative disorders are caused by progressive neuronal loss in the brain, and hence, compounds that could promote neuritogenesis may have therapeutic values. In this study, the effects of bis(heptyl)-cognitin (B7C), a multifunctional dimer, on neurite outgrowth were investigated in both PC12 cells and primary cortical neurons. METHODS Immunocytochemical staining was used to evaluate the proneuritogenesis effects, and Western blot and short hairpin RNA assays were applied to explore the underlying mechanisms. RESULTS B7C (0.1-0.5 μM) induced robust neurite outgrowth in PC12 cells, as evidenced by the neurite-bearing morphology and upregulation of growth-associated protein-43 expression. In addition, B7C markedly promoted neurite outgrowth in primary cortical neurons as shown by the increase in the length of β-III-tubulin-positive neurites. Furthermore, B7C rapidly increased ERK phosphorylation. Specific inhibitors of alpha7-nicotinic acetylcholine receptor (α7-nAChR) and MEK, but not those of p38 or JNK, blocked the neurite outgrowth as well as ERK phosphorylation induced by B7C. Most importantly, genetic depletion of α7-nAChR significantly abolished B7C-induced neurite outgrowth in PC12 cells. CONCLUSION B7C promoted neurite outgrowth through the activation of α7-nAChR/ERK pathway, which offers novel insight into the potential application of B7C in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Sheng-Quan Hu
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,Institute of New Drug Research, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangdong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Wei Cui
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Shing-Hung Mak
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Chung-Lit Choi
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yuan-Jia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Karl Wah-Keung Tsim
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yuan-Ping Pang
- Mayo Cancer Center, Department of Pharmacology, Mayo Clinic, Rochester, MN, USA
| | - Yi-Fan Han
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
109
|
Du J, Zhao Q, Zhang Y, Wang Y, Ma M. 7, 8-dihydroxycoumarin improves neurological function in a mouse model of sciatic nerve injury. Neural Regen Res 2015; 7:445-50. [PMID: 25774187 PMCID: PMC4350131 DOI: 10.3969/j.issn.1673-5374.2012.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 12/22/2011] [Indexed: 01/24/2023] Open
Abstract
In the present study, a mouse model of sciatic nerve injury was treated with intraperitoneal injection of 7, 8-dihydroxycoumarin (10, 5, or 2.5 mg/kg per day). Western blot and real-time PCR results showed that growth associated protein 43 expression was significantly increased in the L4-6 segments of the spinal cord. The amplitude and velocity of motor nerve conduction in the sciatic nerve were significantly increased in model mice. In addition, the appearance of the myelin sheath in the injured sciatic nerve was regular, with an even thickness and clear outline, and the surrounding fibroplasia was not obvious. Our results indicate that 7, 8-dihydroxycoumarin can promote the repair of injured nerve by upregulating growth associated protein 43 expression in the corresponding spinal cord segments of mice with sciatic nerve injury.
Collapse
Affiliation(s)
- Jianshi Du
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Qing Zhao
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Yingli Zhang
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Yu Wang
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Ming Ma
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
110
|
Xie JX, Feng Y, Yuan JM, You ZD, Lin HY, Lu CL, Xu JJ. Positive effects of bFGF modified rat amniotic epithelial cells transplantation on transected rat optic nerve. PLoS One 2015; 10:e0119119. [PMID: 25734497 PMCID: PMC4347977 DOI: 10.1371/journal.pone.0119119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 01/22/2015] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Effective therapy for visual loss caused by optic nerve injury or diseases has not been achieved even though the optic nerve has the regeneration potential after injury. This study was designed to modify amniotic epithelial cells (AECs) with basic fibroblast growth factor (bFGF) gene, preliminarily investigating its effect on transected optic nerve. METHODS A human bFGF gene segment was delivered into rat AECs (AECs/hbFGF) by lentiviral vector, and the gene expression was examined by RT-PCR and ELISA. The AECs/hbFGF and untransfected rat AECs were transplanted into the transected site of the rat optic nerve. At 28 days post transplantation, the survival and migration of the transplanted cells was observed by tracking labeled cells; meanwhile retinal ganglion cells (RGCs) were observed and counted by employing biotin dextran amine (BDA) and Nissl staining. Furthermore, the expression of growth associated protein 43 (GAP-43) within the injury site was examined with immunohistochemical staining. RESULTS The AECs/hbFGF was proven to express bFGF gene and secrete bFGF peptide. Both AECs/hbFGF and AECs could survive and migrate after transplantation. RGCs counting implicated that RGCs numbers of the cell transplantation groups were significantly higher than that of the control group, and the AECs/hbFGF group was significantly higher than that of the AECs group. Moreover GAP-43 integral optical density value in the control group was significantly lower than that of the cell transplantation groups, and the value in the AECs/hbFGF group was significantly higher than that of the AECs group. CONCLUSIONS AECs modified with bFGF could reduce RGCs loss and promote expression of GAP-43 in the rat optic nerve transected model, facilitating the process of neural restoration following injury.
Collapse
Affiliation(s)
- Jia-Xin Xie
- Department of Anatomy, The Second Military Medical University, Shanghai, P. R. China
- Department of Orthopaedics, Changzheng Hospital, The Second Military Medical University, Shanghai, P. R. China
- People's Liberation Army Clinical Center for Spinal Cord Injury, Kunming General Hospital of Chengdu Military Command, Kunming, P. R. China
| | - Yu Feng
- People's Liberation Army Clinical Center for Spinal Cord Injury, Kunming General Hospital of Chengdu Military Command, Kunming, P. R. China
| | - Jian-Min Yuan
- Department of Anatomy, The Second Military Medical University, Shanghai, P. R. China
| | - Zhen-Dong You
- Department of Neurobiology, The Second Military Medical University, Shanghai, P. R. China
| | - Hai-Yan Lin
- Department of Anatomy, The Second Military Medical University, Shanghai, P. R. China
| | - Chang-Lin Lu
- Department of Neurobiology, The Second Military Medical University, Shanghai, P. R. China
| | - Jia-Jun Xu
- Department of Anatomy, The Second Military Medical University, Shanghai, P. R. China
| |
Collapse
|
111
|
Yang LC, Guo H, Zhou H, Suo DQ, Li WJ, Zhou Y, Zhao Y, Yang WS, Jin X. Chronic oleoylethanolamide treatment improves spatial cognitive deficits through enhancing hippocampal neurogenesis after transient focal cerebral ischemia. Biochem Pharmacol 2015; 94:270-81. [PMID: 25748831 DOI: 10.1016/j.bcp.2015.02.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/24/2015] [Indexed: 11/28/2022]
Abstract
Oleoylethanolamide (OEA) has been shown to have neuroprotective effects after acute cerebral ischemic injury. The aim of this study was to investigate the effects of chronic OEA treatment on ischemia-induced spatial cognitive impairments, electrophysiology behavior and hippocampal neurogenesis. Daily treatments of 30 mg/kg OEA significantly ameliorated spatial cognitive deficits and attenuated the inhibition of long-term potentiation (LTP) in the middle cerebral artery occlusion (MCAO) rat model. Moreover, OEA administration improved cognitive function in a manner associated with enhanced neurogenesis in the hippocampus. Further study demonstrated that treatment with OEA markedly increased the expressions of brain-derived neurotrophic factor (BDNF) and peroxisome proliferator-activated receptors α (PPARα). Our data suggest that chronic OEA treatment can exert functional recovery of cognitive impairments and neuroprotective effects against cerebral ischemic insult in rats via triggering of neurogenesis in the hippocampus, which supports the therapeutic use of OEA for cerebral ischemia.
Collapse
Affiliation(s)
- Li-Chao Yang
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiang'an District, Xiamen 361102, China
| | - Han Guo
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiang'an District, Xiamen 361102, China
| | - Hao Zhou
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiang'an District, Xiamen 361102, China
| | - Da-Qin Suo
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiang'an District, Xiamen 361102, China
| | - Wen-Jun Li
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiang'an District, Xiamen 361102, China
| | - Yu Zhou
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiang'an District, Xiamen 361102, China
| | - Yun Zhao
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiang'an District, Xiamen 361102, China
| | - Wu-Shuang Yang
- Department of Neurosurgery, Xiamen Traditional Chinese Medicine Hospital, Xiamen 361005, China
| | - Xin Jin
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiang'an District, Xiamen 361102, China.
| |
Collapse
|
112
|
Rosskothen-Kuhl N, Illing RB. Nutzung der Plastizität des Gehirns durch Cochleaimplantate. HNO 2015; 63:94-103. [DOI: 10.1007/s00106-014-2976-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
113
|
Pelletier SJ, Lagacé M, St-Amour I, Arsenault D, Cisbani G, Chabrat A, Fecteau S, Lévesque M, Cicchetti F. The morphological and molecular changes of brain cells exposed to direct current electric field stimulation. Int J Neuropsychopharmacol 2015; 18:pyu090. [PMID: 25522422 PMCID: PMC4376545 DOI: 10.1093/ijnp/pyu090] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. METHODS Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. RESULTS In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. CONCLUSION We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Axe Neuroscience, Québec, QC, Canada (Mr Pelletier, Ms Lagacé, Drs St-Amour, Arsenault, Cisbani, and Cicchetti); Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada (Drs Lévesque and Cicchetti); Centre de recherche de l'Institut Universitaire en Santé Mentale de Québec, Québec, QC, Canada (Ms Chabrat and Dr Lévesque); Laboratory of Canada Research Chair in Cognitive Neuroscience, Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Université Laval, Canada (Dr Fecteau); Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Cambridge, MA (Dr Fecteau).
| |
Collapse
|
114
|
Gordon T, You S, Cassar SL, Tetzlaff W. Reduced expression of regeneration associated genes in chronically axotomized facial motoneurons. Exp Neurol 2014; 264:26-32. [PMID: 25446720 DOI: 10.1016/j.expneurol.2014.10.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/15/2014] [Accepted: 10/29/2014] [Indexed: 12/24/2022]
Abstract
Chronically axotomized motoneurons progressively fail to regenerate their axons. Since axonal regeneration is associated with the increased expression of tubulin, actin and GAP-43, we examined whether the regenerative failure is due to failure of chronically axotomized motoneurons to express and sustain the expression of these regeneration associated genes (RAGs). Chronically axotomized facial motoneurons were subjected to a second axotomy to mimic the clinical surgical procedure of refreshing the proximal nerve stump prior to nerve repair. Expression of α1-tubulin, actin and GAP-43 was analyzed in axotomized motoneurons using in situ hybridization followed by autoradiography and silver grain quantification. The expression of these RAGs by acutely axotomized motoneurons declined over several months. The chronically injured motoneurons responded to a refreshment axotomy with a re-increase in RAG expression. However, this response to a refreshment axotomy of chronically injured facial motoneurons was less than that seen in acutely axotomized facial motoneurons. These data demonstrate that the neuronal RAG expression can be induced by injury-related signals and does not require acute deprivation of target derived factors. The transient expression is consistent with a transient inflammatory response to the injury. We conclude that transient RAG expression in chronically axotomized motoneurons and the weak response of the chronically axotomized motoneurons to a refreshment axotomy provides a plausible explanation for the progressive decline in regenerative capacity of chronically axotomized motoneurons.
Collapse
Affiliation(s)
- T Gordon
- Department of Neuroscience, University of Alberta, Edmonton, AB T6G 2S2, Canada; ICORD (International Collaboration on Repair Discoveries), Canada; Department Zoology, University of British Columbia, Vancouver, V5Z 1M9, BC, Canada; Department Surgery, University of British Columbia, Vancouver, BC, Canada.
| | - S You
- Department of Neuroscience, University of Alberta, Edmonton, AB T6G 2S2, Canada; ICORD (International Collaboration on Repair Discoveries), Canada; Department Zoology, University of British Columbia, Vancouver, V5Z 1M9, BC, Canada; Department Surgery, University of British Columbia, Vancouver, BC, Canada
| | - S L Cassar
- Department of Neuroscience, University of Alberta, Edmonton, AB T6G 2S2, Canada; ICORD (International Collaboration on Repair Discoveries), Canada; Department Zoology, University of British Columbia, Vancouver, V5Z 1M9, BC, Canada; Department Surgery, University of British Columbia, Vancouver, BC, Canada
| | - W Tetzlaff
- Department of Neuroscience, University of Alberta, Edmonton, AB T6G 2S2, Canada; ICORD (International Collaboration on Repair Discoveries), Canada; Department Zoology, University of British Columbia, Vancouver, V5Z 1M9, BC, Canada; Department Surgery, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
115
|
Fagoe ND, van Heest J, Verhaagen J. Spinal cord injury and the neuron-intrinsic regeneration-associated gene program. Neuromolecular Med 2014; 16:799-813. [PMID: 25269879 DOI: 10.1007/s12017-014-8329-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/20/2014] [Indexed: 12/14/2022]
Abstract
Spinal cord injury (SCI) affects millions of people worldwide and causes a significant physical, emotional, social and economic burden. The main clinical hallmark of SCI is the permanent loss of motor, sensory and autonomic function below the level of injury. In general, neurons of the central nervous system (CNS) are incapable of regeneration, whereas injury to the peripheral nervous system is followed by axonal regeneration and usually results in some degree of functional recovery. The weak neuron-intrinsic regeneration-associated gene (RAG) response upon injury is an important reason for the failure of neurons in the CNS to regenerate an axon. This response consists of the expression of many RAGs, including regeneration-associated transcription factors (TFs). Regeneration-associated TFs are potential key regulators of the RAG program. The function of some regeneration-associated TFs has been studied in transgenic and knock-out mice and by adeno-associated viral vector-mediated overexpression in injured neurons. Here, we review these studies and propose that AAV-mediated gene delivery of combinations of regeneration-associated TFs is a potential strategy to activate the RAG program in injured CNS neurons and achieve long-distance axon regeneration.
Collapse
Affiliation(s)
- Nitish D Fagoe
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, an Institute of the Royal Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands,
| | | | | |
Collapse
|
116
|
Cell type-specific Nogo-A gene ablation promotes axonal regeneration in the injured adult optic nerve. Cell Death Differ 2014; 22:323-35. [PMID: 25257170 DOI: 10.1038/cdd.2014.147] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 01/23/2023] Open
Abstract
Nogo-A is a well-known myelin-enriched inhibitory protein for axonal growth and regeneration in the central nervous system (CNS). Besides oligodendrocytes, our previous data revealed that Nogo-A is also expressed in subpopulations of neurons including retinal ganglion cells, in which it can have a positive role in the neuronal growth response after injury, through an unclear mechanism. In the present study, we analyzed the opposite roles of glial versus neuronal Nogo-A in the injured visual system. To this aim, we created oligodendrocyte (Cnp-Cre(+/-)xRtn4/Nogo-A(flox/flox)) and neuron-specific (Thy1-Cre(tg+)xRtn4(flox/flox)) conditional Nogo-A knock-out (KO) mouse lines. Following complete intraorbital optic nerve crush, both spontaneous and inflammation-mediated axonal outgrowth was increased in the optic nerves of the glia-specific Nogo-A KO mice. In contrast, neuron-specific deletion of Nogo-A in a KO mouse line or after acute gene recombination in retinal ganglion cells mediated by adeno-associated virus serotype 2.Cre virus injection in Rtn4(flox/flox) animals decreased axon sprouting in the injured optic nerve. These results therefore show that selective ablation of Nogo-A in oligodendrocytes and myelin in the optic nerve is more effective at enhancing regrowth of injured axons than what has previously been observed in conventional, complete Nogo-A KO mice. Our data also suggest that neuronal Nogo-A in retinal ganglion cells could participate in enhancing axonal sprouting, possibly by cis-interaction with Nogo receptors at the cell membrane that may counteract trans-Nogo-A signaling. We propose that inactivating Nogo-A in glia while preserving neuronal Nogo-A expression may be a successful strategy to promote axonal regeneration in the CNS.
Collapse
|
117
|
Li Z, Wang M, Zhang Y, Zheng S, Wang X, Hou Y. The effect of the left stellate ganglion on sympathetic neural remodeling of the left atrium in rats following myocardial infarction. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2014; 38:107-14. [PMID: 25224585 DOI: 10.1111/pace.12513] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/09/2014] [Accepted: 08/07/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND The neural remodeling of the atrium plays an important role in the initiation of atrial fibrillation after myocardial infarction (MI); however, the effects of the left stellate ganglion (LSG) on the neural remodeling of the atrium remain incompletely understood. Thus, this study investigated the mechanism by which the LSG mediates sympathetic neural remodeling of the left atrium (LA) in rats after MI. METHODS Sixty rats were randomly divided into a Sham group and an MI group. The expression levels of growth-associated protein-43 (GAP43) and nerve growth factor (NGF) messenger ribonucleic acid (mRNA) were measured by reverse transcription polymerase chain reaction. Immunohistochemistry was used to detect the distribution and density of GAP43- and NGF-positive nerves. The expression levels of the proteins were quantified by Western blotting. RESULTS Compared with the Sham group, GAP43 mRNA expression in the LSG was increased in the MI group (P < 0.01), but not significantly increased in the LA. Immunohistochemical analysis demonstrated that in both the LSG and the LA, the mean densities of GAP43- and NGF-positive nerves in the MI group were increased (P < 0.01). In both the LSG and the LA, the protein levels of GAP43 and NGF in the MI group were increased relative to the Sham group (P < 0.01). CONCLUSIONS The increased levels of NGF and GAP43 proteins can induce sympathetic nerve hyperinnervation in the LSG and the LA after MI. The increased GAP43 proteins in the LA, which may have been transported from the LSG, accelerated LA sympathetic neural remodeling in rats.
Collapse
Affiliation(s)
- Zhiyuan Li
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China; Department of Cardiology, Shandong Provincial Taishan Hospital, Tai'an, Shandong, China
| | | | | | | | | | | |
Collapse
|
118
|
Zhang X, Chen J. The mechanism of astragaloside IV promoting sciatic nerve regeneration. Neural Regen Res 2014; 8:2256-65. [PMID: 25206535 PMCID: PMC4146037 DOI: 10.3969/j.issn.1673-5374.2013.24.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/26/2013] [Indexed: 11/18/2022] Open
Abstract
3-O-beta-D-xylopyranosyl-6-O-beta-D-glucopyranosyl-cycloastragenol (astragaloside IV), the main active component of the traditional Chinese medicine astragalus membranaceus, has been shown to be neuroprotective. This study investigated whether astragaloside IV could promote the repair of injured sciatic nerve. Denervated sciatic nerve of mice was subjected to anastomosis. The mice were intraperitoneally injected with 10, 5, 2.5 mg/kg astragaloside IV per day for 8 consecutive days. Western blot assay and real-time PCR results demonstrated that growth-associated protein-43 expression was upregulated in mouse spinal cord segments L4–6 after intervention with 10, 5, 2.5 mg/kg astragaloside IV per day in a dose-dependent manner. Luxol fast blue staining and electrophysiological detection suggested that astragaloside IV elevated the number and diameter of myelinated nerve fibers, and simultaneously increased motor nerve conduction velocity and action potential amplitude in the sciatic nerve of mice. These results indicated that astragaloside IV contributed to sciatic nerve regeneration and functional recovery in mice. The mechanism underlying this effect may be associated with the upregulation of growth-associated protein-43 expression.
Collapse
Affiliation(s)
- Xiaohong Zhang
- School of Pharmacutical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Jiajun Chen
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
119
|
Liu B, Cai G, Yi J, Chen X. Buyang Huanwu Decoction regulates neural stem cell behavior in ischemic brain. Neural Regen Res 2014; 8:2336-42. [PMID: 25206543 PMCID: PMC4146048 DOI: 10.3969/j.issn.1673-5374.2013.25.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/25/2013] [Indexed: 01/19/2023] Open
Abstract
The traditional Chinese medicine Buyang Huanwu Decoction has been shown to improve the neu-rological function of patients with stroke. However, the precise mechanisms underlying its effect remain poorly understood. In this study, we established a rat model of cerebral ischemia by middle cerebral artery occlusion and intragastrically administered 5 g/kg Buyang Huanwu Decoction, once per day, for 1, 7, 14 and 28 days after cerebral ischemia. Immunohistochemical staining revealed a number of cells positive for the neural stem cell marker nestin in the cerebral cortex, the subven-tricular zone and the ipsilateral hippocampal dentate gyrus in rat models of cerebral ischemia. Buyang Huanwu Decoction significantly increased the number of cells positive for 5-bromodeoxyuridine (BrdU), a cell proliferation-related marker, microtubule-associated protein-2, a marker of neuronal differentiation, and growth-associated protein 43, a marker of synaptic plasticity in the ischemic rat cerebral regions. The number of positive cells peaked at 14 and 28 days after intragastric administration of Buyang Huanwu Decoction. These findings suggest that Buyang Huanwu Decoction can promote the proliferation and differentiation of neural stem cells and hance synaptic plasticity in ischemic rat brain tissue.
Collapse
Affiliation(s)
- Baiyan Liu
- Key Laboratory of Internal Medicine, Hunan University of Traditional Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Guangxian Cai
- Key Laboratory of Internal Medicine, Hunan University of Traditional Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Jian Yi
- Key Laboratory of Internal Medicine, Hunan University of Traditional Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Xuemei Chen
- Key Laboratory of Internal Medicine, Hunan University of Traditional Chinese Medicine, Changsha 410007, Hunan Province, China
| |
Collapse
|
120
|
Wang Y, Qiu B, Liu J, Zhu WG, Zhu S. Cocaine- and amphetamine-regulated transcript facilitates the neurite outgrowth in cortical neurons after oxygen and glucose deprivation through PTN-dependent pathway. Neuroscience 2014; 277:103-10. [DOI: 10.1016/j.neuroscience.2014.06.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/12/2014] [Accepted: 06/28/2014] [Indexed: 01/11/2023]
|
121
|
Gauthier-Kemper A, Igaev M, Sündermann F, Janning D, Brühmann J, Moschner K, Reyher HJ, Junge W, Glebov K, Walter J, Bakota L, Brandt R. Interplay between phosphorylation and palmitoylation mediates plasma membrane targeting and sorting of GAP43. Mol Biol Cell 2014; 25:3284-99. [PMID: 25165142 PMCID: PMC4214776 DOI: 10.1091/mbc.e13-12-0737] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A combination of biochemical, genetic, and imaging approaches is used to show that phosphorylation and lipidation exhibit a complex interplay in sorting of GAP43. Palmitoylation tags GAP43 for global sorting by inducing piggybacking on exocytic vesicles, whereas phosphorylation locally regulates plasma membrane targeting of palmitoylated GAP43. Phosphorylation and lipidation provide posttranslational mechanisms that contribute to the distribution of cytosolic proteins in growing nerve cells. The growth-associated protein GAP43 is susceptible to both phosphorylation and S-palmitoylation and is enriched in the tips of extending neurites. However, how phosphorylation and lipidation interplay to mediate sorting of GAP43 is unclear. Using a combination of biochemical, genetic, and imaging approaches, we show that palmitoylation is required for membrane association and that phosphorylation at Ser-41 directs palmitoylated GAP43 to the plasma membrane. Plasma membrane association decreased the diffusion constant fourfold in neuritic shafts. Sorting to the neuritic tip required palmitoylation and active transport and was increased by phosphorylation-mediated plasma membrane interaction. Vesicle tracking revealed transient association of a fraction of GAP43 with exocytic vesicles and motion at a fast axonal transport rate. Simulations confirmed that a combination of diffusion, dynamic plasma membrane interaction and active transport of a small fraction of GAP43 suffices for efficient sorting to growth cones. Our data demonstrate a complex interplay between phosphorylation and lipidation in mediating the localization of GAP43 in neuronal cells. Palmitoylation tags GAP43 for global sorting by piggybacking on exocytic vesicles, whereas phosphorylation locally regulates protein mobility and plasma membrane targeting of palmitoylated GAP43.
Collapse
Affiliation(s)
| | - Maxim Igaev
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Frederik Sündermann
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Dennis Janning
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Jörg Brühmann
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Katharina Moschner
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Hans-Jürgen Reyher
- Department of Experimental Physics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Wolfgang Junge
- Department of Biophysics, University of Osnabrück, 49076 Osnabrück, Germany
| | | | - Jochen Walter
- Department of Neurology, University of Bonn, 53127 Bonn, Germany
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, 49076 Osnabrück, Germany
| |
Collapse
|
122
|
Vicente-Rodríguez M, Pérez-García C, Ferrer-Alcón M, Uribarri M, Sánchez-Alonso MG, Ramos MP, Herradón G. Pleiotrophin differentially regulates the rewarding and sedative effects of ethanol. J Neurochem 2014; 131:688-95. [PMID: 25073406 DOI: 10.1111/jnc.12841] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 01/07/2023]
Abstract
Pleiotrophin (PTN) is a cytokine with important roles in dopaminergic neurons. We found that an acute ethanol (2.0 g/kg, i.p.) administration causes a significant up-regulation of PTN mRNA and protein levels in the mouse prefrontal cortex, suggesting that endogenous PTN could modulate behavioural responses to ethanol. To test this hypothesis, we studied the behavioural effects of ethanol in PTN knockout (PTN(-/-) ) mice and in mice with cortex- and hippocampus-specific transgenic PTN over-expression (PTN-Tg). Ethanol (1.0 and 2.0 g/kg) induced an enhanced conditioned place preference in PTN(-/-) compared to wild type mice, suggesting that PTN prevents ethanol rewarding effects. Accordingly, the conditioning effects of ethanol were completely abolished in PTN-Tg mice. The ataxic effects induced by ethanol (2.0 g/kg) were not affected by the genotype. However, the sedative effects of ethanol (3.6 g/kg) tested in a loss of righting reflex paradigm were significantly reduced in PTN-Tg mice, suggesting that up-regulation of PTN levels prevents the sedative effects of ethanol. These results indicate that PTN may be a novel genetic factor of importance in alcohol use disorders, and that potentiation of the PTN signalling pathway may be a promising therapeutic strategy in the treatment of these disorders.
Collapse
Affiliation(s)
- Marta Vicente-Rodríguez
- Pharmacology lab, Department of Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
123
|
Marinelli S, Eleuteri C, Vacca V, Strimpakos G, Mattei E, Severini C, Pavone F, Luvisetto S. Effects of age-related loss of P/Q-type calcium channels in a mice model of peripheral nerve injury. Neurobiol Aging 2014; 36:352-64. [PMID: 25150573 DOI: 10.1016/j.neurobiolaging.2014.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/15/2014] [Accepted: 07/21/2014] [Indexed: 01/09/2023]
Abstract
We analyzed the role of P/Q-type calcium channels in sciatic nerve regeneration after lesion induced by chronic constriction injury (CCI) in heterozygous null mutant mice lacking the CaV2.1α1 subunit of these channels (Cacna1a+/-). Compared with wild type, Cacna1a+/- mice showed an initial reduction of the CCI-induced allodynia, indicating a reduced pain perception, but they also evidenced a lack of recovery over time, with atrophy of the injured hindpaw still present 3 months after CCI when wild-type mice fully recovered. In parallel, Cacna1a+/- mice exhibited an early onset of age-dependent loss of P/Q-type channels, which can be responsible for the lack of functional recovery. Moreover, Cacna1a+/- mice showed an early age-dependent reduction of muscular strength, as well as of Schwann cells proliferation and sciatic nerve remyelination. This study demonstrates the important role played by P/Q-type channels in recovery from nerve injury and has important implications for the knowledge of age-related processes.
Collapse
Affiliation(s)
- Sara Marinelli
- CNR National Research Council of Italy, Cell Biology and Neurobiology Institute, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Cecilia Eleuteri
- CNR National Research Council of Italy, Cell Biology and Neurobiology Institute, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Valentina Vacca
- CNR National Research Council of Italy, Cell Biology and Neurobiology Institute, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Georgios Strimpakos
- CNR National Research Council of Italy, Cell Biology and Neurobiology Institute, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Elisabetta Mattei
- CNR National Research Council of Italy, Cell Biology and Neurobiology Institute, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Cinzia Severini
- CNR National Research Council of Italy, Cell Biology and Neurobiology Institute, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Flaminia Pavone
- CNR National Research Council of Italy, Cell Biology and Neurobiology Institute, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Siro Luvisetto
- CNR National Research Council of Italy, Cell Biology and Neurobiology Institute, IRCCS Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
124
|
Growth associated protein (GAP-43): cloning and the development of a sensitive ELISA for neurological disorders. J Neuroimmunol 2014; 276:18-23. [PMID: 25175067 DOI: 10.1016/j.jneuroim.2014.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 07/02/2014] [Accepted: 07/15/2014] [Indexed: 11/21/2022]
Abstract
GAP-43 has been studied in the rodent and mammalian brain and shown to be present specifically in areas undergoing axonal elongation and synapse formation. GAP-43 was cloned using the baculovirus expression system and purified. A sandwich ELISA was developed using the recombinant GAP-43 as standard and validated. CSF GAP-43 levels were analysed in benign intracranial hypertension, movement disorders, multiple sclerosis, neuropathy, CNS infections, motor neuron disease, and headache (neurological controls). GAP-43 levels were low in all disorders analysed (in particular motor neuron disease; p=0.001, and movement disorders and multiple sclerosis; p<0.0001) compared to controls, aside from CNS infections. GAP-43 is preferentially reduced in the CSF of neurological disorders associated with neurodegeneration.
Collapse
|
125
|
Kandasamy M, Lehner B, Kraus S, Sander PR, Marschallinger J, Rivera FJ, Trümbach D, Ueberham U, Reitsamer HA, Strauss O, Bogdahn U, Couillard-Despres S, Aigner L. TGF-beta signalling in the adult neurogenic niche promotes stem cell quiescence as well as generation of new neurons. J Cell Mol Med 2014; 18:1444-1459. [PMID: 24779367 PMCID: PMC4124027 DOI: 10.1111/jcmm.12298] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 03/10/2014] [Indexed: 12/16/2022] Open
Abstract
Members of the transforming growth factor (TGF)-β family govern a wide range of mechanisms in brain development and in the adult, in particular neuronal/glial differentiation and survival, but also cell cycle regulation and neural stem cell maintenance. This clearly created some discrepancies in the field with some studies favouring neuronal differentiation/survival of progenitors and others favouring cell cycle exit and neural stem cell quiescence/maintenance. Here, we provide a unifying hypothesis claiming that through its regulation of neural progenitor cell (NPC) proliferation, TGF-β signalling might be responsible for (i) maintaining stem cells in a quiescent stage, and (ii) promoting survival of newly generated neurons and their functional differentiation. Therefore, we performed a detailed histological analysis of TGF-β1 signalling in the hippocampal neural stem cell niche of a transgenic mouse that was previously generated to express TGF-β1 under a tetracycline regulatable Ca-Calmodulin kinase promoter. We also analysed NPC proliferation, quiescence, neuronal survival and differentiation in relation to elevated levels of TGF-β1 in vitro and in vivo conditions. Finally, we performed a gene expression profiling to identify the targets of TGF-β1 signalling in adult NPCs. The results demonstrate that TGF-β1 promotes stem cell quiescence on one side, but also neuronal survival on the other side. Thus, considering the elevated levels of TGF-β1 in ageing and neurodegenerative diseases, TGF-β1 signalling presents a molecular target for future interventions in such conditions.
Collapse
Affiliation(s)
- Mahesh Kandasamy
- Institute of Molecular Regenerative Medicine, Paracelsus Medical UniversitySalzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical UniversitySalzburg, Austria
| | - Bernadette Lehner
- Department of Neurology, University Hospital RegensburgRegensburg, Germany
| | - Sabrina Kraus
- Department of Experimental Ophthalmology, University of RegensburgRegensburg, Germany
| | - Paul Ramm Sander
- Department of Neurology, University Hospital RegensburgRegensburg, Germany
- Institute of Biophysics and Physical Biochemistry, University of RegensburgRegensburg, Germany
| | - Julia Marschallinger
- Institute of Molecular Regenerative Medicine, Paracelsus Medical UniversitySalzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical UniversitySalzburg, Austria
| | - Francisco J Rivera
- Institute of Molecular Regenerative Medicine, Paracelsus Medical UniversitySalzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical UniversitySalzburg, Austria
| | - Dietrich Trümbach
- Institute of Developmental Genetics, Helmholtz Centre Munich, German Research Centre for Environmental Health (GmbH), Technical University MunichNeuherberg, Germany
| | - Uwe Ueberham
- Paul Flechsig Institute for Brain Research, Department of Neuroanatomy, University of LeipzigLeipzig, Germany
| | - Herbert A Reitsamer
- Department of Ophthalmology, SALK, Paracelsus Medical UniversitySalzburg, Austria
| | - Olaf Strauss
- Department of Experimental Ophthalmology, University of RegensburgRegensburg, Germany
| | - Ulrich Bogdahn
- Department of Neurology, University Hospital RegensburgRegensburg, Germany
| | - Sebastien Couillard-Despres
- Institute of Molecular Regenerative Medicine, Paracelsus Medical UniversitySalzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical UniversitySalzburg, Austria
- Institute of Experimental Neuroregeneration, Paracelsus Medical UniversitySalzburg, Austria
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical UniversitySalzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical UniversitySalzburg, Austria
| |
Collapse
|
126
|
Li X, Jiang YH, Jiang P, Yang JL, Ma DF, Yang CH. Effect of Guizhi Decoction ([symbols; see text]) on heart rate variability and regulation of cardiac autonomic nervous imbalance in diabetes mellitus rats. Chin J Integr Med 2014; 20:524-33. [PMID: 24972580 DOI: 10.1007/s11655-014-1861-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To observe abnormalities in heart rate variability (HRV) in diabetic rats and to explore the effects of treatment with Guizhi Decoction ([symbols; see text]) on cardiac autonomic nervous (CAN) imbalance. METHODS A radio-telemetry system for monitoring physiological parameters was implanted into rats to record electrocardiac signals and all indictors of HRV [time domain measures: standard deviation of all RR intervals in 24 h (SDNN), root mean square of successive differences (RMSSD), percentage of differences between adjacent RR intervals greater than 50 ms (PNN50), and standard deviation of the averages of RR intervals (SDANN); frequency domain measures: low frequency (LF), high frequency (HF), total power (TP), and LF/HF ratio]. The normal group was randomly selected, and the remaining rats were used to establish streptozocin (STZ)-induced diabetic model. After 4 weeks, the model rats were divided into the model group, the methycobal group, and the Guizhi Decoction group, 9 rats in each group. Four weeks after intragastric administration of the corresponding drugs, the right atria of the rats were collected for immunohistochemical staining of tyrosine hydroxylase (TH) and choline acetyltransferase (CHAT) to observe the distribution of the sympathetic and vagus nerves in the right atrium. The myocardial homogenate from the interventricular septum and the left ventricle was used for determination of TH, CHAT, growth-associated protein 43 (GAP-43), nerve growth factor (NGF), and ciliary neurotrophic factor (CNTF) levels using an enzyme-linked immunosorbent assay. RESULTS (1) STZ rats had elevated blood glucose levels, reduced body weight, and decreased heart rate; there was no difference between the model group and the drug treated groups. (2) Compared with the model group, only RMSSD and TP increased in the methycobal group significantly (P<0.05); SDNN, RMSSD, PNN50, LF, HF, and TP increased, LF/HF decreased (P<0.05), and SDANN just showed a decreasing trend in the Guizhi Decoction group (P>0.05). TH increased, CHAT decreased, and TH/CHAT increased in the myocardial homogenate of the model group (P<0.05). Compared with the model group, left ventricular TH reduced in the methycobal group; and in the Guizhi Decoction group CHAT increased, while TH and TH/CHAT decreased (P<0.05). Compared with the model group, CNTF in the interventricular septum increased in the methycobal group (P<0.05); GAP-43 increased, NGF decreased, and CNTF increased (P<0.05) in the Guizhi Decoction group. There were significant differences in the reduction of NGF and elevation of CNTF between the Guizhi Decoction group and the methycobal group (P<0.05). (3) Immunohistochemical results showed that TH expression significantly increased and CHAT expression significantly decreased in the myocardia of the model group, whereas TH expression decreased and CHAT expression increased in the Guizhi Decoction group (P<0.05). CONCLUSION Guizhi Decoction was effective in improving the function of the vagus nerve, and it could alleviate autonomic nerve damage.
Collapse
Affiliation(s)
- Xiao Li
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | | | | | | | | | | |
Collapse
|
127
|
Couve E, Osorio R, Schmachtenberg O. Reactionary Dentinogenesis and Neuroimmune Response in Dental Caries. J Dent Res 2014; 93:788-93. [PMID: 24928097 DOI: 10.1177/0022034514539507] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/22/2014] [Indexed: 12/22/2022] Open
Abstract
Reactionary dentin formation is an adaptive secretory response mediated by odontoblasts to moderate dentin injury. The implications of this process for neuroimmune interactions operating to contain pathogens have not been fully appreciated. The purpose of the present study was to describe the relationship between reactionary dentinogenesis, the neurogenic changes of dental pulp innervation, and dendritic cell recruitment to caries progression, using a comparative immunohistochemical approach in human teeth from young adult individuals. Reactionary dentin formation during dentin caries progression is associated with changes in the integrity of junctional complexes within the odontoblast layer. Diminished coexpression of Cx43 and zonula occludens 1 implies a reduced level of intercellular connectivity between odontoblasts. Dentin caries also causes overexpression of growth-associated protein 43, a modulator of neural plasticity that promotes extensive sprouting of nerve endings into the reactionary dentin matrix. At the same time, an elevated number of HLA-DR-positive dendritic cells infiltrate the odontoblast layer and subsequently invade reactionary dentin formed underneath the early caries-affected regions. Simultaneous odontoblast layer remodeling, nerve fiber sprouting, and activation of dendritic cells during caries progression suggest a coordinated neuroimmune response to fight caries pathogen invasion and to promote dentin-pulp healing. We propose that reactionary dentin formation hinders pathogen invasion and supports defensive neuroimmune interactions against infection. The eventual understanding of this complex scenario may contribute to the development of novel approaches to dental caries treatment.
Collapse
Affiliation(s)
- E Couve
- Instituto de Biología, Laboratorio de Microscopía Electrónica Centro Interdisciplinario de Neurociencia de Valparaíso Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - R Osorio
- Instituto de Biología, Laboratorio de Microscopía Electrónica Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - O Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
128
|
Zhou K, Thouas G, Bernard C, Forsythe JS. 3D presentation of a neurotrophic factor for the regulation of neural progenitor cells. Nanomedicine (Lond) 2014; 9:1239-51. [DOI: 10.2217/nnm.13.112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background: Adequate cell–scaffold interactions and neurotrophin support are essential factors for neural regeneration. Aim: To provide insight into the biofunctionalization of complex 3D scaffolds with nanoscale precision, as well as the effect of spatial distribution of brain-derived neurotrophic factor (BDNF) and its prolonged stimulation in combination with enhanced cell affinity of nanofibrous scaffolds on the survival/proliferation and neurite outgrowth. Methods & materials: We developed a versatile approach using layer-by-layer self-assembly to incorporate cell adhesion and spatial representation of neurotrophic factors into complex nanofibrous scaffolds. Results: Heparin/poly-L-lysine (PLL) polyelectrolyte multilayers (PEMs) were deposited on electrospun poly-ε-caprolatone nanofibers. Well-controlled amounts of BDNF were immobilized on the PEM-modified nanofibers. In addition, longer neurite outgrowth was observed in neural progenitor cells cultured on PLL-terminating PEM scaffolds. The immobilized BDNF on PLL-terminated PEM scaffolds resulted in significantly longer neurites and higher cell numbers (p < 0.01) compared with BDNF-free and BDNF-adsorbed PLL-terminating scaffolds. Interestingly, there was no upregulation of TrkB-FL, TrkB-T1 or GAP-43 mRNAs with immobilized BDNF in day 5 cultures. Discussion & conclusion: This work reinforces the importance of the combinatorial effects of biomaterial scaffold nanostructure and spatial presentation of neurotrophins in directing neural progenitor cell fates. Original submitted 18 January 2013; Revised submitted 3 May 2013
Collapse
Affiliation(s)
- Kun Zhou
- Department of Materials Engineering, Monash University, VIC 3800, Australia
- Australian Regenerative Medicine Institute, Monash University, VIC 3800, Australia
| | - George Thouas
- Department of Zoology, The University of Melbourne, VIC 3010, Australia
| | - Claude Bernard
- Australian Regenerative Medicine Institute, Monash University, VIC 3800, Australia
| | - John S Forsythe
- Department of Materials Engineering, Monash University, VIC 3800, Australia
| |
Collapse
|
129
|
Narayana PA, Herrera JJ, Bockhorst KH, Esparza-Coss E, Xia Y, Steinberg JL, Moeller FG. Chronic cocaine administration causes extensive white matter damage in brain: diffusion tensor imaging and immunohistochemistry studies. Psychiatry Res 2014; 221:220-230. [PMID: 24507117 PMCID: PMC3943678 DOI: 10.1016/j.pscychresns.2014.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 12/21/2013] [Accepted: 01/14/2014] [Indexed: 12/14/2022]
Abstract
The effect of chronic cocaine exposure on multiple white matter structures in rodent brain was examined using diffusion tensor imaging (DTI), locomotor behavior, and end point histology. The animals received either cocaine at a dose of 100mg/kg (N=19), or saline (N=17) for 28 days through an implanted osmotic minipump. The animals underwent serial DTI scans, locomotor assessment, and end point histology for determining the expressions of myelin basic protein (MBP), neurofilament-heavy protein (NF-H), proteolipid protein (PLP), Nogo-A, aquaporin-4 (AQP-4), and growth associated protein-43 (GAP-43). Differences in the DTI measures were observed in the splenium (scc) and genu (gcc) of the corpus callosum (cc), fimbria (fi), and the internal capsule (ic). A significant increase in the activity in the fine motor movements and a significant decrease in the number of rearing events were observed in the cocaine-treated animals. Reduced MBP and Nogo-A and increased GAP-43 expressions were most consistently observed in these structures. A decrease in the NF-H expression was observed in fi and ic. The reduced expression of Nogo-A and the increased expression of GAP-43 may suggest destabilization of axonal connectivity and increased neurite growth with aberrant connections. Increased GAP-43 suggests drug-induced plasticity or a possible repair mechanism response. The findings indicated that multiple white matter tracts are affected following chronic cocaine exposure.
Collapse
Affiliation(s)
- Ponnada A Narayana
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Juan J Herrera
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kurt H Bockhorst
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Emilio Esparza-Coss
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ying Xia
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Joel L Steinberg
- Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - F Gerard Moeller
- Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
130
|
Gap43 transcription modulation in the adult brain depends on sensory activity and synaptic cooperation. PLoS One 2014; 9:e92624. [PMID: 24647228 PMCID: PMC3960265 DOI: 10.1371/journal.pone.0092624] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/23/2014] [Indexed: 11/19/2022] Open
Abstract
Brain development and learning is accompanied by morphological and molecular changes in neurons. The growth associated protein 43 (Gap43), indicator of neurite elongation and synapse formation, is highly expressed during early stages of development. Upon maturation of the brain, Gap43 is down-regulated by most neurons with the exception of subdivisions such as the CA3 region of hippocampus, the lateral superior olive (LSO) and the central inferior colliculus (CIC). Little is known about the regulation of this mRNA in adult brains. We found that the expression of Gap43 mRNA in specific neurons can be modulated by changing sensory activity of the adult brain. Using the central auditory system of rats as a model, Gap43 protein and mRNA levels were determined in LSO and CIC of hearing-experienced rats unilaterally or bilaterally deafened or unilaterally stimulated by a cochlear implant (CI). Our data indicate that Gap43 is a marker useful beyond monitoring neuronal growth and synaptogenesis, reflecting also specific patterns of synaptic activities on specific neurons. Thus, unilateral loss of input to an adult auditory system directly causes asymmetrical expression of Gap43 mRNA between LSOs or CICs on both sides of the brainstem. This consequence can be prevented by simple-patterned stimulation of a dysfunctional ear by way of a CI. We suggest that as a function of input balance and activity pattern, Gap43 mRNA expression changes as cells associate converging afferent signals.
Collapse
|
131
|
Chiang JH, Cheng WS, Hood L, Tian Q. An epigenetic biomarker panel for glioblastoma multiforme personalized medicine through DNA methylation analysis of human embryonic stem cell-like signature. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:310-23. [PMID: 24601786 DOI: 10.1089/omi.2013.0084] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Alterations of DNA methylation occur during the course of both stem cell development and tumorigenesis. We present a novel strategy that can be used to stratify glioblastoma multiforme (GBM) patients through the epigenetic states of genes associated with human embryonic stem cell (hESC) identity in order to 1) assess linkages between the methylation signatures of these stem cell genes and survival of GBM patients, and 2) delineate putative mechanisms leading to poor prognosis in some patient subgroups. A DNA methylation signature was established for stratifying GBM patients into several hESC methylator subgroups. The hESC methylator-negative phenotype has demonstrated poor survival and upregulation of glioma stem cell (GSC) markers, and is enriched in one of the previously defined transcriptomic phenotypes-the mesenchymal phenotype. We further identified a refined signature of 36 genes as the gene panel, including SOX2, POU3F2, FGFR2, GAP43, NTRK2, NTRK3, and NKX2-2, which are highly enriched in the nervous system. Both signatures outperformed the O6-methylguanine-DNA methyltransferase (MGMT) methylation test in predicting patient's outcome. These findings were also validated through an independent dataset of patients. Furthermore, through statistical analyses, both signatures were examined significantly. Hypomethylation of hESC-associated genes predicted poorer clinical outcome in GBM, supporting the idea that epigenetic activation of stem cell genes contributes to GBM aggression. The gene panel presented herein may be developed into clinical assays for patient stratification and future personalized medicine interventions.
Collapse
Affiliation(s)
- Jung-Hsien Chiang
- 1 Department of Computer Science and Information Engineering, National Cheng Kung University , Tainan City, Taiwan
| | | | | | | |
Collapse
|
132
|
Riascos D, Nicholas A, Samaeekia R, Yukhananov R, Mesulam MM, Bigio EH, Weintraub S, Guo L, Geula C. Alterations of Ca²⁺-responsive proteins within cholinergic neurons in aging and Alzheimer's disease. Neurobiol Aging 2013; 35:1325-33. [PMID: 24461366 DOI: 10.1016/j.neurobiolaging.2013.12.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 12/07/2013] [Accepted: 12/19/2013] [Indexed: 01/05/2023]
Abstract
The molecular basis of selective neuronal vulnerability in Alzheimer's disease (AD) remains poorly understood. Using basal forebrain cholinergic neurons (BFCNs) as a model and immunohistochemistry, we have demonstrated significant age-related loss of the calcium-binding protein calbindin-D(28K) (CB) from BFCN, which was associated with tangle formation and degeneration in AD. Here, we determined alterations in RNA and protein for CB and the Ca(2+)-responsive proteins Ca(2+)/calmodulin-dependent protein kinase I (CaMKI), growth-associated protein-43 (GAP43), and calpain in the BF. We observed progressive downregulation of CB and CaMKI RNA in laser-captured BFCN in the normal-aged-AD continuum. We also detected progressive loss of CB, CaMKIδ, and GAP43 proteins in BF homogenates in aging and AD. Activated μ-calpain, a calcium-sensitive protease that degrades CaMKI and GAP43, was significantly increased in the normal aged BF and was 10 times higher in AD BF. Overactivation of μ-calpain was confirmed using proteolytic fragments of its substrate spectrin. Substantial age- and AD-related alterations in Ca(2+)-sensing proteins most likely contribute to selective vulnerability of BFCN to degeneration in AD.
Collapse
Affiliation(s)
- David Riascos
- Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alexander Nicholas
- Department of Medicine, Harvard Medical School and Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ravand Samaeekia
- Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - M-Marsel Mesulam
- Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eileen H Bigio
- Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sandra Weintraub
- Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ling Guo
- Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Changiz Geula
- Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
133
|
Diosgenin-induced cognitive enhancement in normal mice is mediated by 1,25D₃-MARRS. Sci Rep 2013; 3:3395. [PMID: 24292207 PMCID: PMC3844946 DOI: 10.1038/srep03395] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/14/2013] [Indexed: 12/27/2022] Open
Abstract
We previously reported that diosgenin, a plant-derived steroidal sapogenin, improved memory and reduced axonal degeneration in an Alzheimer's disease mouse model. Diosgenin directly activated the membrane-associated rapid response steroid-binding receptor (1,25D3-MARRS) in neurons. However, 1,25D3-MARRS-mediated diosgenin signaling was only shown in vitro in the previous study. Here, we aimed to obtain in vivo evidence showing that diosgenin signaling is mediated by 1,25D3-MARRS in the mouse brain. Diosgenin treatment in normal mice enhanced object recognition memory and spike firing and cross-correlation in the medial prefrontal cortex and hippocampal CA1. In diosgenin-treated mice, axonal density and c-Fos expression was increased in the medial prefrontal and perirhinal cortices, suggesting that neuronal network activation may be enhanced. The diosgenin-induced memory enhancement and axonal growth were completely inhibited by co-treatment with a neutralizing antibody for 1,25D3-MARRS. Our in vivo data indicate that diosgenin is a memory-enhancing drug and that enhancement by diosgenin is mediated by 1,25D3-MARRS-triggered axonal growth.
Collapse
|
134
|
KSRP modulation of GAP-43 mRNA stability restricts axonal outgrowth in embryonic hippocampal neurons. PLoS One 2013; 8:e79255. [PMID: 24244461 PMCID: PMC3828348 DOI: 10.1371/journal.pone.0079255] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/20/2013] [Indexed: 12/02/2022] Open
Abstract
The KH-type splicing regulatory protein (KSRP) promotes the decay of AU-rich element (ARE)-containing mRNAs. Although KSRP is expressed in the nervous system, very little is known about its role in neurons. In this study, we examined whether KSRP regulates the stability of the ARE-containing GAP-43 mRNA. We found that KSRP destabilizes this mRNA by binding to its ARE, a process that requires the presence of its fourth KH domain (KH4). Furthermore, KSRP competed with the stabilizing factor HuD for binding to these sequences. We also examined the functional consequences of KSRP overexpression and knockdown on the differentiation of primary hippocampal neurons in culture. Overexpression of full length KSRP or KSRP without its nuclear localization signal hindered axonal outgrowth in these cultures, while overexpression of a mutant protein without the KH4 domain that has less affinity for binding to GAP-43′s ARE had no effect. In contrast, depletion of KSRP led to a rise in GAP-43 mRNA levels and a dramatic increase in axonal length, both in KSRP shRNA transfected cells and neurons cultured from Ksrp+/− and Ksrp −/−embryos. Finally we found that overexpression of GAP-43 rescued the axonal outgrowth deficits seen with KSRP overexpression, but only when cells were transfected with GAP-43 constructs containing 3′ UTR sequences targeting the transport of this mRNA to axons. Together, our results suggest that KSRP is an important regulator of mRNA stability and axonal length that works in direct opposition to HuD to regulate the levels of GAP-43 and other ARE-containing neuronal mRNAs.
Collapse
|
135
|
Holtmaat A, Randall J, Cane M. Optical imaging of structural and functional synaptic plasticity in vivo. Eur J Pharmacol 2013; 719:128-136. [DOI: 10.1016/j.ejphar.2013.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/11/2013] [Indexed: 12/13/2022]
|
136
|
Wang HZ, Qin HD, Guo W, Samuels J, Shugart YY. New insights into the genetic mechanism of IQ in autism spectrum disorders. Front Genet 2013; 4:195. [PMID: 24151499 PMCID: PMC3799005 DOI: 10.3389/fgene.2013.00195] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 09/13/2013] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorders (ASD) comprise a number of underlying sub-types with various symptoms and presumably different genetic causes. One important difference between these sub-phenotypes is IQ. Some forms of ASD such as Asperger’s have relatively intact intelligence while the majority does not. In this study, we explored the role of genetic factors that might account for this difference. Using a case–control study based on IQ status in 1657 ASD probands, we analyzed both common and rare variants provided by the Autism Genome Project (AGP) consortium via dbGaP (database of Genotypes and Phenotypes). We identified a set of genes, among them HLA-DRB1 and KIAA0319L, which are strongly associated with IQ within a population of ASD patients.
Collapse
Affiliation(s)
- Harold Z Wang
- Unit on Statistical Genomics, Intramural Research Program, National Institute of Mental Health, National Institutes of Health Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
137
|
Wei W, Wang Y, Wang Y, Dong J, Min H, Song B, Teng W, Xi Q, Chen J. Developmental hypothyroxinaemia induced by maternal mild iodine deficiency delays hippocampal axonal growth in the rat offspring. J Neuroendocrinol 2013; 25:852-62. [PMID: 23763342 DOI: 10.1111/jne.12058] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 05/29/2013] [Accepted: 06/09/2013] [Indexed: 12/27/2022]
Abstract
Iodine is essential for the biosynthesis of thyroid hormones, including triiodothyronine and thyroxine. Thyroid hormones are important for central nervous system development. Mild maternal iodine deficiency (ID)-induced hypothyroxinaemia causes neurological deficits and mental retardation of the foetus. However, the detailed mechanism underlying these deficits is still largely unknown. Given that the growth-associated protein of 43 kDa (GAP-43), semaphorin 3A (Sema3A) and the glycogen synthase kinase 3β (GSK3β)/collapsin response mediator protein 2 (CRMP2) pathway are essential for axonal development, we hypothesise that hippocampal axonal growth-related proteins may be impaired, which may contribute to hippocampal axonal growth delay in rat offspring exposed to maternal hypothyroxinaemia. To test this hypothesis, maternal hypothyroxinaemia models were established in Wistar rats using a mild ID diet. Besides a negative control group, two maternal hypothyroidism models were created with either a severe ID diet or methimazole in the water. Our results showed that maternal hypothyroxinaemia exposure delayed offspring axonal growth on gestational day 19, postnatal day (PN) 7, PN14 and PN21. Consistent with this, the mean intensity of hippocampal CRMP2 and Tau1 immunofluorescence axonal protein was reduced in the mild ID group. Moreover, maternal hypothyroxinaemia disrupted expressions of GAP-43 and Sema3A. Furthermore, the phosphorylation of GSK3β and CRMP2 was also affected in the treated offspring, implying a potential mechanism by which hypothyroxinaemia-exposure affects neurodevelopment. Taken together, our data support the hypothesis that maternal hypothyroxinaemia may impair axonal growth of the offspring.
Collapse
Affiliation(s)
- W Wei
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Aerobic exercise attenuates inhibitory avoidance memory deficit induced by paradoxical sleep deprivation in rats. Brain Res 2013; 1529:66-73. [DOI: 10.1016/j.brainres.2013.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 12/19/2022]
|
139
|
In vivo single branch axotomy induces GAP-43-dependent sprouting and synaptic remodeling in cerebellar cortex. Proc Natl Acad Sci U S A 2013; 110:10824-9. [PMID: 23754371 DOI: 10.1073/pnas.1219256110] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Plasticity in the central nervous system in response to injury is a complex process involving axonal remodeling regulated by specific molecular pathways. Here, we dissected the role of growth-associated protein 43 (GAP-43; also known as neuromodulin and B-50) in axonal structural plasticity by using, as a model, climbing fibers. Single axonal branches were dissected by laser axotomy, avoiding collateral damage to the adjacent dendrite and the formation of a persistent glial scar. Despite the very small denervated area, the injured axons consistently reshape the connectivity with surrounding neurons. At the same time, adult climbing fibers react by sprouting new branches through the intact surroundings. Newly formed branches presented varicosities, suggesting that new axons were more than just exploratory sprouts. Correlative light and electron microscopy reveals that the sprouted branch contains large numbers of vesicles, with varicosities in the close vicinity of Purkinje dendrites. By using an RNA interference approach, we found that downregulating GAP-43 causes a significant increase in the turnover of presynaptic boutons. In addition, silencing hampers the generation of reactive sprouts. Our findings show the requirement of GAP-43 in sustaining synaptic stability and promoting the initiation of axonal regrowth.
Collapse
|
140
|
Batti L, Mukhtarov M, Audero E, Ivanov A, Paolicelli RC, Zurborg S, Gross C, Bregestovski P, Heppenstall PA. Transgenic mouse lines for non-invasive ratiometric monitoring of intracellular chloride. Front Mol Neurosci 2013; 6:11. [PMID: 23734096 PMCID: PMC3659292 DOI: 10.3389/fnmol.2013.00011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/26/2013] [Indexed: 11/13/2022] Open
Abstract
Chloride is the most abundant physiological anion and participates in a variety of cellular processes including trans-epithelial transport, cell volume regulation, and regulation of electrical excitability. The development of tools to monitor intracellular chloride concentration ([Cli]) is therefore important for the evaluation of cellular function in normal and pathological conditions. Recently, several Cl-sensitive genetically encoded probes have been described which allow for non-invasive monitoring of [Cli]. Here we describe two mouse lines expressing a CFP-YFP-based Cl probe called Cl-Sensor. First, we generated transgenic mice expressing Cl-Sensor under the control of the mouse Thy1 mini promoter. Cl-Sensor exhibited good expression from postnatal day two (P2) in neurons of the hippocampus and cortex, and its level increased strongly during development. Using simultaneous whole-cell monitoring of ionic currents and Cl-dependent fluorescence, we determined that the apparent EC 50 for Cli was 46 mM, indicating that this line is appropriate for measuring neuronal [Cli] in postnatal mice. We also describe a transgenic mouse reporter line for Cre-dependent conditional expression of Cl-Sensor, which was targeted to the Rosa26 locus and by incorporating a strong exogenous promoter induced robust expression upon Cre-mediated recombination. We demonstrate high levels of tissue-specific expression in two different Cre-driver lines targeting cells of the myeloid lineage and peripheral sensory neurons. Using these mice the apparent EC 50 for Cli was estimated to be 61 and 54 mM in macrophages and DRG, respectively. Our data suggest that these mouse lines will be useful models for ratiometric monitoring of Cli in specific cell types in vivo.
Collapse
Affiliation(s)
- Laura Batti
- Mouse Biology Unit, European Molecular Biology Laboratory Monterotondo, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Cao J, Yang J, Wang Y, Xu J, Zhou Z, Cheng C, Liu X, Cheng X, Long L, Gu X. Temporal-spatial expressions of Spy1 in rat sciatic nerve after crush. Cell Mol Neurobiol 2013; 33:213-21. [PMID: 23129232 PMCID: PMC11498019 DOI: 10.1007/s10571-012-9887-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/24/2012] [Indexed: 01/29/2023]
Abstract
As a novel cell cycle protein, Spy1 enhances cell proliferation, promotes the G1/S transition as well as inhibits apoptosis in response to UV irradiation. Spy1 levels are tightly regulated during mammary development, and overexpression of Spy1 accelerates tumorigenesis in vivo. But little is known about the role of Spy1 in the pathological process of damage and regeneration of the peripheral nervous system. Here we established a rat sciatic nerve crush (SNC) model to examine the spatiotemporal expression of Spy1. Spy1 expression was elevated gradually after sciatic nerve crush and peaked at day 3. The alteration was due to the increased expression of Spy1 in axons and Schwann cells after SNC. Spy1 expression correlated closely with Schwann cells proliferation in sciatic nerve post injury. Furthermore, Spy1 largely localized in axons in the crushed segment, but rarely co-localized with GAP43. These findings suggested that Spy1 participated in the pathological process response to sciatic nerve injury and may be associated with Schwann cells proliferation and axons regeneration.
Collapse
Affiliation(s)
- Jianhua Cao
- Department of Orthopaedics, Affiliated Mental Health Center of Nantong University, Nantong, 226001 People’s Republic of China
| | - Jiao Yang
- Department of Immunology, Medical College, Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001 People’s Republic of China
| | - Jian Xu
- Department of Orthopaedics, Affiliated Mental Health Center of Nantong University, Nantong, 226001 People’s Republic of China
| | - Zhengming Zhou
- Department of Immunology, Medical College, Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Chun Cheng
- Department of Immunology, Medical College, Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Xiaojuan Liu
- Department of Pathogenbiology, Medical College, Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Xinghai Cheng
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001 People’s Republic of China
| | - Long Long
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001 People’s Republic of China
| | - Xingxing Gu
- The Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, 19 Qi-Xiu Road, Nantong, 226001 Jiangsu People’s Republic of China
| |
Collapse
|
142
|
Grasselli G, Strata P. Structural plasticity of climbing fibers and the growth-associated protein GAP-43. Front Neural Circuits 2013; 7:25. [PMID: 23441024 PMCID: PMC3578352 DOI: 10.3389/fncir.2013.00025] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 02/03/2013] [Indexed: 01/12/2023] Open
Abstract
Structural plasticity occurs physiologically or after brain damage to adapt or re-establish proper synaptic connections. This capacity depends on several intrinsic and extrinsic determinants that differ between neuron types. We reviewed the significant endogenous regenerative potential of the neurons of the inferior olive (IO) in the adult rodent brain and the structural remodeling of the terminal arbor of their axons, the climbing fiber (CF), under various experimental conditions, focusing on the growth-associated protein GAP-43. CFs undergo remarkable collateral sprouting in the presence of denervated Purkinje cells (PCs) that are available for new innervation. In addition, severed olivo-cerebellar axons regenerate across the white matter through a graft of embryonic Schwann cells. In contrast, CFs undergo a regressive modification when their target is deleted. In vivo knockdown of GAP-43 in olivary neurons, leads to the atrophy of their CFs and a reduction in the ability to sprout toward surrounding denervated PCs. These findings demonstrate that GAP-43 is essential for promoting denervation-induced sprouting and maintaining normal CF architecture.
Collapse
|
143
|
Guarnieri S, Morabito C, Paolini C, Boncompagni S, Pilla R, Fanò-Illic G, Mariggiò MA. Growth associated protein 43 is expressed in skeletal muscle fibers and is localized in proximity of mitochondria and calcium release units. PLoS One 2013; 8:e53267. [PMID: 23308181 PMCID: PMC3538766 DOI: 10.1371/journal.pone.0053267] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 11/27/2012] [Indexed: 11/26/2022] Open
Abstract
The neuronal Growth Associated Protein 43 (GAP43), also known as B-50 or neuromodulin, is involved in mechanisms controlling pathfinding and branching of neurons during development and regeneration. For many years this protein was classified as neuron-specific, but recent evidences suggest that a) GAP43 is expressed in the nervous system not only in neurons, but also in glial cells, and b) probably it is present also in other tissues. In particular, its expression was revealed in muscles from patients affected by various myopathies, indicating that GAP43 can no-longer considered only as a neuron-specific molecule. We have investigated the expression and subcellular localization of GAP43 in mouse satellite cells, myotubes, and adult muscle (extensor digitorum longus or EDL) using Western blotting, immuno-fluorescence combined to confocal microscopy and electron microscopy. Our in vitro results indicated that GAP43 is indeed expressed in both myoblasts and differentiating myotubes, and its cellular localization changes dramatically during maturation: in myoblasts the localization appeared to be mostly nuclear, whereas with differentiation the protein started to display a sarcomeric-like pattern. In adult fibers, GAP43 expression was evident with the protein labeling forming (in longitudinal views) a double cross striation reminiscent of the staining pattern of other organelles, such as calcium release units (CRUs) and mitochondria. Double immuno-staining and experiments done in EDL muscles fixed at different sarcomere lengths, allowed us to determine the localization, from the sarcomere Z-line, of GAP43 positive foci, falling between that of CRUs and of mitochondria. Staining of cross sections added a detail to the puzzle: GAP43 labeling formed a reticular pattern surrounding individual myofibrils, but excluding contractile elements. This work leads the way to further investigation about the possible physiological and structural role of GAP43 protein in adult fiber function and disease.
Collapse
Affiliation(s)
- Simone Guarnieri
- Department of Neuroscience and Imaging (DNI), University G. d’Annunzio, Chieti, Italy
- Center for Research on Ageing (CeSI), University G. d’Annunzio, Chieti, Italy
- Interuniversitary Institute of Myology (IIM), University G. d’Annunzio, Chieti, Italy
| | - Caterina Morabito
- Department of Neuroscience and Imaging (DNI), University G. d’Annunzio, Chieti, Italy
- Center for Research on Ageing (CeSI), University G. d’Annunzio, Chieti, Italy
- Interuniversitary Institute of Myology (IIM), University G. d’Annunzio, Chieti, Italy
| | - Cecilia Paolini
- Department of Neuroscience and Imaging (DNI), University G. d’Annunzio, Chieti, Italy
- Center for Research on Ageing (CeSI), University G. d’Annunzio, Chieti, Italy
- Interuniversitary Institute of Myology (IIM), University G. d’Annunzio, Chieti, Italy
| | - Simona Boncompagni
- Department of Neuroscience and Imaging (DNI), University G. d’Annunzio, Chieti, Italy
- Center for Research on Ageing (CeSI), University G. d’Annunzio, Chieti, Italy
- Interuniversitary Institute of Myology (IIM), University G. d’Annunzio, Chieti, Italy
| | - Raffaele Pilla
- Center for Research on Ageing (CeSI), University G. d’Annunzio, Chieti, Italy
- Interuniversitary Institute of Myology (IIM), University G. d’Annunzio, Chieti, Italy
| | - Giorgio Fanò-Illic
- Department of Neuroscience and Imaging (DNI), University G. d’Annunzio, Chieti, Italy
- Center for Research on Ageing (CeSI), University G. d’Annunzio, Chieti, Italy
- Interuniversitary Institute of Myology (IIM), University G. d’Annunzio, Chieti, Italy
| | - Maria A. Mariggiò
- Department of Neuroscience and Imaging (DNI), University G. d’Annunzio, Chieti, Italy
- Center for Research on Ageing (CeSI), University G. d’Annunzio, Chieti, Italy
- Interuniversitary Institute of Myology (IIM), University G. d’Annunzio, Chieti, Italy
| |
Collapse
|
144
|
Ding Y, Yan Q, Ruan JW, Zhang YQ, Li WJ, Zeng X, Huang SF, Zhang YJ, Wu JL, Fisher D, Dong H, Zeng YS. Electroacupuncture Promotes the Differentiation of Transplanted Bone Marrow Mesenchymal Stem Cells Overexpressing TrkC into Neuron-Like Cells in Transected Spinal Cord of Rats. Cell Transplant 2013; 22:65-86. [DOI: 10.3727/096368912x655037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Our previous study indicated that electroacupuncture (EA) could increase neurotrophin-3 (NT-3) levels in the injured spinal cord, stimulate the differentiation of transplanted bone marrow mesenchymal stem cells (MSCs), and improve functional recovery in the injured spinal cord of rats. However, the number of neuron-like cells derived from the MSCs is limited. It is known that NT-3 promotes the survival and differentiation of neurons by preferentially binding to its receptor TrkC. In this study, we attempted to transplant TrkC gene-modified MSCs (TrkC-MSCs) into the spinal cord with transection to investigate whether EA treatment could promote NT-3 secretion in the injured spinal cord and to determine whether increased NT-3 could further enhance transplanted MSCs overexpressing TrkC to differentiate into neuron-like cells, resulting in increased axonal regeneration and functional improvement in the injured spinal cord. Our results showed that EA increased NT-3 levels; furthermore, it promoted neuron-phenotype differentiation, synaptogenesis, and myelin formation of transplanted TrkC-MSCs. In addition, TrkC-MSC transplantation combined with EA (the TrkC-MSCs + EA group) treatment promoted the growth of the descending BDA-labeled corticospinal tracts (CSTs) and 5-HT-positive axonal regeneration across the lesion site into the caudal cord. In addition, the conduction of cortical motor-evoked potentials (MEPs) and hindlimb locomotor function increased as compared to controls (treated with the LacZ-MSCs, TrkC-MSCs, and LacZ-MSCs + EA groups). In the TrkC-MSCs + EA group, the injured spinal cord also showed upregulated expression of the proneurogenic factors laminin and GAP-43 and downregulated GFAP and chondroitin sulfate proteoglycans (CSPGs), major inhibitors of axonal growth. Together, our data suggest that TrkC-MSC transplantation combined with EA treatment spinal cord injury not only increased MSC survival and differentiation into neuron-like cells but also promoted CST regeneration across injured sites to the caudal cord and functional improvement, perhaps due to increase of NT-3 levels, upregulation of laminin and GAP-43, and downregulation of GFAP and CSPG proteins.
Collapse
Affiliation(s)
- Ying Ding
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qing Yan
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jing-Wen Ruan
- Department of Acupuncture of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan-Qing Zhang
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wen-Jie Li
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Si-Fan Huang
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yu-Jiao Zhang
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jin-Lang Wu
- Department of Electron Microscope, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Danny Fisher
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Yuan-Shan Zeng
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
145
|
Onodera N, Kakehata A, Araki I. Differential Expression of GAP-43 Protein in the Rostral Brain Neurons of Early Chick Embryos. TOHOKU J EXP MED 2013; 231:293-8. [DOI: 10.1620/tjem.231.293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Nozomi Onodera
- Department of Chemistry and Bioengineering, Faculty of Engineering, Iwate University
- The United Graduate School of Agricultural Sciences, Iwate University
| | - Akinobu Kakehata
- Department of Chemistry and Bioengineering, Faculty of Engineering, Iwate University
| | - Isato Araki
- Department of Chemistry and Bioengineering, Faculty of Engineering, Iwate University
- The United Graduate School of Agricultural Sciences, Iwate University
| |
Collapse
|
146
|
Tsai SW, Tung YT, Chen HL, Shen CJ, Chuang CH, Tang TY, Chen CM. Treadmill running upregulates the expression of acetylcholine receptor in rat gastrocnemius following botulinum toxin A injection. J Orthop Res 2013; 31:125-31. [PMID: 22733692 DOI: 10.1002/jor.22180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 06/04/2012] [Indexed: 02/04/2023]
Abstract
Treadmill running is a commonly used training method for patients with spasticity to improve functional performance. Botulinum toxin has been widely used therapeutically to reduce contraction force of spastic muscle. However, the effects of treadmill running in neuromuscular junction expression and motor unit physiology on muscle following botulinum toxin injection are not well established. To assess the effects of treadmill running on neuromuscular recovery of gastrocnemius following botulinum toxin A (BoNT-A) injection, we observed changes in gene expression. We hypothesized that the expression of acetylcholine receptor (AChR), myogenesis, and nerve plasticity could be enhanced. Twenty-four Sprague-Dawley rats received botulinum toxin injection in right gastrocnemius and were then randomly assigned into untrained control and treadmill running groups. The rats assigned to the treadmill running group were trained on a treadmill 3 times/week with a running speed of 15 m/min for 8 weeks. The duration of training was 20 min per session. Muscle strength and gene expression of AChR subunit (α, β, δ, γ, and ε), MyoD, Myf-5, MRF4, myogenin, p21, IGF-1, GAP43, were analyzed. Treadmill running had no influence on gastrocnemius mass, but improved the maximal contraction force of the gastrocnemius in the treadmill running group (p < 0.05). Upregulation of GAP-43, IGF-1, Myo-D, Myf-5, myogenin, and AChR subunits α and β were found following treadmill running. The expression of genes associated with neurite and AChR regeneration following treadmill exercise was upregulated, which may have contributed to enhanced recovery of gastrocnemius strength.
Collapse
Affiliation(s)
- Sen-Wei Tsai
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
147
|
Thy-1-Interacting Molecules and Cellular Signaling in Cis and Trans. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:163-216. [DOI: 10.1016/b978-0-12-407695-2.00004-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
148
|
Morita S, Miyata S. Synaptic localization of growth-associated protein 43 in cultured hippocampal neurons during synaptogenesis. Cell Biochem Funct 2012; 31:400-11. [PMID: 23055398 DOI: 10.1002/cbf.2914] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 11/07/2022]
Abstract
Growth-associated protein 43 (GAP-43), a novel axonal phosphoprotein, is originally identified as a growth-cone-specific protein of developing neurons in vitro. The expression of GAP-43 is also shown to be up-regulated concomitant with increased synaptic plasticity in the brains in vivo, but how GAP-43 is concerned with synaptic plasticity is not well understood. In the present study, therefore, we aimed to elucidate subcellular localization of GAP-43 as culture development of rat hippocampal neurons. Western blotting showed that the expression of GAP-43 in the cerebral and hippocampal tissues was prominently high at postnatal days 14 and 21 or the active period of synaptogenesis. Double-labelling immunohistochemistry with an axonal marker Tau revealed that the immunoreactivity of GAP-43 was seen throughout axons of cultured hippocampal neurons but stronger at axonal puncta of developing neurons than axonal processes. Double-labelling immunohistochemistry with presynaptic terminal markers of synapsin and synaptotagmin revealed that the immunoreactivity of GAP-43 was observed mostly at weak synapsin- and synaptotagmin-positive puncta rather than strong ones. The quantitative analysis of immunofluorescent intensity showed a clear inverse correlation between GAP-43 and either synapsin or synaptotagmin expression. These data indicate that GAP-43 is highly expressed at immature growing axonal terminals and its expression is decreased along with the maturation of synaptogenesis.
Collapse
Affiliation(s)
- Shoko Morita
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | | |
Collapse
|
149
|
Pathi SS, Jose S, Govindaraju S, Conde JA, Romo HE, Chamakura KR, Claunch CJ, Benito-Martín A, Challa-Malladi M, González-García M, Ballestero RP. zRICH, a protein induced during optic nerve regeneration in zebrafish, promotes neuritogenesis and interacts with tubulin. Brain Res 2012; 1474:29-39. [PMID: 22885342 DOI: 10.1016/j.brainres.2012.07.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 07/07/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
Mammals do not regenerate axons in their central nervous system (CNS) spontaneously. This phenomenon is the cause of numerous medical conditions after damage to nerve fibers in the CNS of humans. The study of the mechanisms of nerve regeneration in other vertebrate animals able to spontaneously regenerate axons in their CNS is essential for understanding nerve regeneration from a scientific point of view, and for developing therapeutic approaches to enhance nerve regeneration in the CNS of humans. RICH proteins are a novel group of proteins implicated in nerve regeneration in the CNS of teleost fish, yet their mechanisms of action are not well understood. A number of mutant versions of the zebrafish RICH (zRICH) protein were generated and characterized at biochemical and cellular levels in our laboratory. With the aim of understanding the effects of RICH proteins in neuronal axon outgrowth, stable transfectants derived from the neuronal model PC12 cell line expressing zRICH Wild-Type or mutant versions of zRICH were studied. Results from differentiation experiments suggest that RICH proteins enhance neuronal plasticity by facilitating neurite branching. Biochemical co-purification results have demonstrated that zRICH binds to the cytoskeletal protein tubulin. The central domain of the protein is sufficient for tubulin binding, but a mutant version of the protein lacking the terminal domains, which cannot bind to the plasma membrane, was not able to enhance neurite branching. RICH proteins may facilitate axon regeneration by regulating the axonal cytoskeleton and facilitating the formation of new neurite branches.
Collapse
Affiliation(s)
- Satya S Pathi
- Department of Biological and Health Sciences, Texas A&M University-Kingsville, Kingsville, TX 78363, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Neurogenesis is enhanced and mossy fiber sprouting arises in FGF7-deficient mice during development. Mol Cell Neurosci 2012; 51:61-7. [PMID: 22889808 DOI: 10.1016/j.mcn.2012.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/08/2012] [Accepted: 07/27/2012] [Indexed: 12/11/2022] Open
Abstract
One of the most common types of epilepsy in adults is temporal lobe epilepsy. Temporal lobe epilepsy is often resistant to pharmacological treatment, requiring urgent understanding of its molecular and cellular mechanisms. It is generally accepted that an imbalance between excitatory and inhibitory inputs is related to epileptogenesis. We have recently identified that fibroblast growth factor (FGF) 7 is critical for inhibitory synapse formation in the developing hippocampus. Remarkably, FGF7 knockout mice are prone to epileptic seizures induced by chemical kindling (Terauchi et al., 2010). Here we show that FGF7 knockout mice exhibit epileptogenesis-related changes in the hippocampus even without kindling induction. FGF7 knockout mice show mossy fiber sprouting and enhanced dentate neurogenesis by 2 months of age, without apparent spontaneous seizures. These results suggest that FGF7-deficiency impairs inhibitory synapse formation, which results in mossy fiber sprouting and enhanced neurogenesis during development, making FGF7 knockout mice vulnerable to epilepsy.
Collapse
|