101
|
Abstract
The basal ganglia comprise several nuclei in the forebrain, diencephalon, and midbrain thought to play a significant role in the control of posture and movement. It is well recognized that people with degenerative diseases of the basal ganglia suffer from rigidly held abnormal body postures, slowing of movement, involuntary movements, or a combination of these a abnormalities. However, it has not been agreed just what the basal ganglia contribute to normal movement. Recent advances in knowledge of the basal ganglia circuitry, activity of basal ganglia neurons during movement, and the effect of basal ganglia lesions have led to a new hypothesis of basal ganglia function. The hypothesis states that the basal ganglia do not generate movements. Instead, when voluntary movement is generated by cerebral cortical and cerebellar mechanisms, the basal ganglia act broadly to inhibit competing motor mechanisms that would otherwise interfere with the desired movement. Simultaneously, inhibition is removed focally from the desired motor mechanisms to allow that movement to proceed. Inability to inhibit competing motor programs results in slow movements, abnormal postures and involuntary muscle activity.
Collapse
Affiliation(s)
- J W Mink
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
102
|
Van Bockstaele EJ, Chan J, Pickel VM. Pre- and postsynaptic sites for serotonin modulation of GABA-containing neurons in the shell region of the rat nucleus accumbens. J Comp Neurol 1996; 371:116-28. [PMID: 8835722 DOI: 10.1002/(sici)1096-9861(19960715)371:1<116::aid-cne7>3.0.co;2-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The shell of the nucleus accumbens received a dense serotonergic innervation and contains abundant gamma-aminobutyric acid (GABA)-immunoreactive neurons. Moreover, serotonin (5-hydroxytryptamine: 5-HT) and GABA have been implicated in a variety of common motivational and motor-related functions partially ascribed in this brain area. We used immunoelectron microscopy of antisera directed against 5-HT and GABA in the same section of tissue to examine whether there were cellular substrates that might indicate more specific sites for functional interactions involving these transmitters in the shell region of the rat nucleus accumbens. Immunogold-silver labeling for GABA was localized to perikarya, dendrites, axons and axon terminals, whereas immunoperoxidase labeling for 5-HT was restricted to axons and axon terminals. Approximately half (187/366) of the 5-HT-immunoreactive axon terminals apposed or formed synaptic junctions with postsynaptic neurons. These junctions were mainly of the symmetric-type (83/187) characteristic of inhibitory transmitters, and were equally prevalent on dendrites with and without detectable gold-silver labeling for GABA. Of the 187 5-HT-labeled axon terminals with recognized synaptic contacts, 36% also showed convergence on a common dendrite with a GABA-labeled axon terminal. In addition, 5-HT- and GABA-immunoreactive axon terminals were commonly (83/366) identified in direct apposition to one another. Within a single plane of section, 41% of the apposed GABA-immunoreactive axon terminals formed symmetric-type junctions with dendrites or somata, whereas, the apposed 5-HT-labeled axon terminals rarely showed postsynaptic contacts. These results indicate that 5-HT-containing axon terminals may postsynaptically inhibit GABAergic neurons and their targets within the shell of the rat nucleus accumbens. Additionally, our results strongly suggest that, in this brain region, appositions between 5-HT and GABA axons and axon terminals may facilitate presynaptic interactions between these transmitter systems.
Collapse
Affiliation(s)
- E J Van Bockstaele
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York 10021, USA
| | | | | |
Collapse
|
103
|
Pickel VM, Heras A. Ultrastructural localization of calbindin-D28k and GABA in the matrix compartment of the rat caudate-putamen nuclei. Neuroscience 1996; 71:167-78. [PMID: 8834400 DOI: 10.1016/0306-4522(95)00441-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The calcium binding protein, Calbindin-D28k, is known to be localized within spiny neurons of the matrix of the dorsal striatum, caudate-putamen nuclei. This compartment is also known to contain an abundance of GABAergic neurons and to receive extensive input from excitatory limbic and cortical afferents whose activation produces rapid influxes of calcium in neuronal targets. We used electron microscopic immunocytochemistry to examine a potential role for calbindin in GABAergic neurons in the caudate-putamen nuclei. Sections of striatal tissue from acrolein-fixed adult rat brains were dual-labeled using immunoperoxidase for the localization of rabbit anti-calbindin and immunogold-silver for the localization of rat anti-GABA antibodies. Calbindin-D28k and GABA were mainly co-localized in somata and large dendrites. The peroxidase reaction product for calbindin was diffusely distributed throughout the neuronal cytoplasm, but appeared more densely localized along asymmetric, excitatory-type, postsynaptic junctions of dendritic spines, as well as saccules of smooth endoplasmic reticulum near dendritic appositions. In contrast, the immunogold-silver labeling for GABA was largely restricted to perikarya and large dendrites. Axon terminals forming symmetric junctions were also sometimes dual-labeled for calbindin and GABA. However, the majority of the calbindin-immunoreactive terminals did not contain GABA and many formed asymmetric excitatory-type synapses with either unlabeled or calbindin-labeled dendritic spines. These results suggest that, in the striatal matrix, Calbindin-D28k contributes to the immobilization of calcium (i) in selectively activated postsynaptic spines of GABAergic and possibly non-GABAergic neurons and (ii) in terminals containing GABA as well as other excitatory and inhibitory transmitters. The extent to which calbindin is able to restrict the cytosolic increases in calcium to selective sites of utilization in these neurons may have important consequences for normal synaptic function and for neuroprotection against excitoxicity.
Collapse
Affiliation(s)
- V M Pickel
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, NY 10021, USA
| | | |
Collapse
|
104
|
Abstract
Like non-peptidergic transmitters, neuropeptides and their receptors display a wide distribution in specific cell types of the nervous system. The peptides are synthesized, typically as part of a larger precursor molecule, on the rough endoplasmic reticulum in the cell body. In the trans-Golgi network, they are sorted to the regulated secretory pathway, packaged into so-called large dense-core vesicles, and concentrated. Large dense-core vesicles are preferentially located at sites distant from active zones of synapses. Exocytosis may occur not only at synaptic specializations in axonal terminals but frequently also at nonsynaptic release sites throughout the neuron. Large dense-core vesicles are distinguished from small, clear synaptic vesicles, which contain "classical' transmitters, by their morphological appearance and, partially, their biochemical composition, the mode of stimulation required for release, the type of calcium channels involved in the exocytotic process, and the time course of recovery after stimulation. The frequently observed "diffuse' release of neuropeptides and their occurrence also in areas distant to release sites is paralleled by the existence of pronounced peptide-peptide receptor mismatches found at the light microscopic and ultrastructural level. Coexistence of neuropeptides with other peptidergic and non-peptidergic substances within the same neuron or even within the same vesicle has been established for numerous neuronal systems. In addition to exerting excitatory and inhibitory transmitter-like effects and modulating the release of other neuroactive substances in the nervous system, several neuropeptides are involved in the regulation of neuronal development.
Collapse
Affiliation(s)
- G K Zupanc
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Physikalische Biologie, Tübingen, Germany.
| |
Collapse
|
105
|
Plenz D, Aertsen A. Neural dynamics in cortex-striatum co-cultures--II. Spatiotemporal characteristics of neuronal activity. Neuroscience 1996; 70:893-924. [PMID: 8848173 DOI: 10.1016/0306-4522(95)00405-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neural dynamics in organotypic cortex-striatum co-cultures grown for three to six weeks under conditions of dopamine deficiency are described. Single neuron activities were recorded intra- and extracellularly, and spatiotemporal spreading of population activity was mapped using voltage-sensitive dyes. The temporal properties of spike firing were characterized by interspike interval histograms, autocorrelation and crosscorrelation. Cortical pyramidal neurons (n = 40) showed irregular firing with a weak tendency to burst or to oscillate. Crosscorrelations revealed strong near-coincident firing and synaptic interactions. Disinhibition was a notable feature in a strongly firing cortical interneuron. Cortical activity spread in the co-culture, thus inducing an overall, homogeneous depolarization in the striatal part. Striatal cells were divided into principal cells and type I and II secondary cells. Principal cells (n = 40) were similar to those reported previously in vivo. Spiking activity ranged from irregular spiking at very low rates to episodic bursting, with an average burst duration of 1 s. Interspike intervals were single-peaked. Intracellular recordings revealed characteristic, long-lasting subthreshold depolarizations ("enabled state") that were shortened by local muscarinic receptor blockade. During prolonged time periods in the "enabled state", locally applied bicuculline induced strong firing in most principal neurons. Striatal secondary type I neurons (n = 25) showed high spiking rates, single- and double-peaked interval histograms and low-threshold, short-lasting stereotyped bursting activity and occasional rhythmic bursting. The firing of these neurons was increased by bicuculline. Crosscorrelations showed synchronization of these cells with principal cell activity. Secondary type II neurons (n = 15) revealed tonic, irregular firing patterns similar to cortical neurons, except with occasional firing in doublet spikes. We conclude that under conditions of dopamine deficiency in corticostriatal co-cultures (i) the cortex induces the "enabled" state and typical bursting mode in striatal principal neurons; (ii) principal neurons are strongly inhibited during the "enabled" state; (iii) muscarinic activity, presumably from tonically active striatal cholinergic interneurons, stabilizes the "enabled" state; (iv) striatal GABAergic interneurons receives synaptic inhibition and take part in synchronized activity among striatal principal cells. Our results favor the view of the striatum as a lateral inhibition network.
Collapse
Affiliation(s)
- D Plenz
- Max-Planck-Institut für biologische Kybernetik, Tübingen, Germany
| | | |
Collapse
|
106
|
Plenz D, Aertsen A. Neural dynamics in cortex-striatum co-cultures--I. anatomy and electrophysiology of neuronal cell types. Neuroscience 1996; 70:861-91. [PMID: 8848172 DOI: 10.1016/0306-4522(95)00406-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An in vitro system was established to analyse corticostriatal processing. Cortical and striatal slices taken at postnatal days 0-2 were co-cultured for three to six weeks. The anatomy of the organotypic co-cultures was determined using immunohistochemistry. In the cortex parvalbumin-positive and calbindin-positive cells, which resembled those seen in vivo, had laminar distributions. In the striatum, strongly stained parvalbumin-positive cells resembling striatal GABAergic interneurons and cholinergic interneurons were scattered throughout the tissue. The soma area of these interneuron classes was larger than the average striatal soma area, thus enabling visual selection of cells by class before recording. Cortical neurons with projections to the striatum showed similar morphological features to corticostriatal projection neurons in vivo. No projections from the striatum to the cortex were found. Intracellular recordings were obtained from 94 neurons. These were first classified on the basis of electrophysiological characteristics and the morphologies of cells in each class were reconstructed. Two types of striatal secondary neurons with unique electrophysiological dynamics were identified: GABAergic interneurons (n = 17) and large aspiny, probably cholinergic, interneurons (n = 15). The electrophysiological and morphological characteristics of cortical pyramidal cells (n = 27), cortical interneurons (n = 1), as well as striatal principal neurons (n = 34), were identical to those reported for similar ages in vivo. Organotypic cortex-striatum co-cultures are therefore suitable as an in vitro system in which to analyse corticostriatal processing. The network dynamics, which developed spontaneously in that system, are examined in the companion paper.
Collapse
Affiliation(s)
- D Plenz
- Max-Planck-Institut für biologische Kybernetik, Tübingen, Germany
| | | |
Collapse
|
107
|
|
108
|
Pretel S, Applegate CD, Piekut DT. The kindling-activated neuronal network: recruitment of somatostatin-synthesizing neurons. Brain Res Bull 1996; 41:237-47. [PMID: 8924034 DOI: 10.1016/s0361-9230(96)00194-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The present study demonstrates the anatomical extent of the kindling-activated neuronal network in general, and specifically the recruitment of extrahippocampal somatostatin (SST)-synthesizing neurons into this network. It has been known that SST neurons of the hippocampal formation are activated during episodes of seizure, however, it was not known if this activation was a local event or extended to other areas in the brain. We were therefore interested in determining if and which SST neurons outside the hippocampal formation might be recruited into this seizure-activated neuronal network. Using the kindling model of seizure elicitation, expression of the Fos protein in activated, depolarized neurons was utilized to identify seizure-activated neurons. Subsequently, the mRNA for SST was identified through in situ hybridization in the same tissue section, allowing the identification of seizure-activated, SST-synthesizing neurons. The results show that: (a) the majority of SST-synthesizing neurons in the forebrain and diencephalon became activated during the kindling development; (b) their recruitment into the kindling-activated neuronal network occurred progressively; and, (c) these SST-synthesizing neurons represented a component of the kindling-activated neuronal network throughout the development of kindling-induced seizures.
Collapse
Affiliation(s)
- S Pretel
- Department of Neurobiology and Anatomy, University of Rochester, School of Medicine and Dentistry, NY 14642, USA
| | | | | |
Collapse
|
109
|
Ford B, Holmes CJ, Mainville L, Jones BE. GABAergic neurons in the rat pontomesencephalic tegmentum: codistribution with cholinergic and other tegmental neurons projecting to the posterior lateral hypothalamus. J Comp Neurol 1995; 363:177-96. [PMID: 8642069 DOI: 10.1002/cne.903630203] [Citation(s) in RCA: 276] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The present study was undertaken to determine the frequency and distribution of GABAergic neurons within the rat pontomesencephalic tegmentum and the relationship of GABAergic cells to cholinergic and other tegmental neurons projecting to the hypothalamus. In sections immunostained for glutamic acid decarboxylase (GAD), large numbers of small GAD-positive neurons (approximately 50,000 cells) were distributed through the tegmentum and associated with a high density of GAD-positive varicosities surrounding both GAD-positive and GAD-negative cells. Through the reticular formation, ventral tegmentum, raphe nuclei, and dorsal tegmentum, GAD-positive cells were codistributed with larger cells, which included neurons immunostained on adjacent sections for glutamate, tyrosine hydroxylase (TH), serotonin, or choline acetyltransferase (ChAT). In sections dual-immunostained for GAD and ChAT, GABAergic neurons were seen to be intermingled with less numerous cholinergic cells (approximately 2,600 GAD+ to approximately 1,400 ChAT+ cells in the laterodorsal tegmental nucleus, LDTg). Retrograde transport of cholera toxin (CT) was examined from the posterior lateral hypothalamus, where a major population of cortically projecting neurons are located. A small number of GABAergic cells were retrogradely labeled, representing a small percentage of all the GABAergic neurons (approximately 1%) and of all the hypothalamically projecting neurons (approximately 6%) in the tegmentum. The double-labeled GAD+/CT+ cells were commonly found ipsilaterally within 1) the deep mesencephalic reticular field, codistributed with putative glutamatergic projection neurons; 2) the ventral tegmental area, substantia nigra compacta, and retrorubral field, codistributed with dopaminergic projection neurons; 3) dorsal raphe, codistributed with serotonergic projection neurons; and 4) laterodorsal and pedunculopontine tegmental nuclei, codistributed with and in similar proportion to cholinergic projection cells (20-30% in LDTg). Acting as both projection and local neurons, the pontomesencephalic GABAergic cells would have the capacity to modulate the influence of the "ascending reticular activating system" and its chemically specific constituents upon cortical activation.
Collapse
Affiliation(s)
- B Ford
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Quebec, Canada
| | | | | | | |
Collapse
|
110
|
Löscher W, Rohlfs A, Rundfeldt C. Reduction in firing rate of substantia nigra pars reticulata neurons by valproate: influence of different types of anesthesia in rats. Brain Res 1995; 702:133-44. [PMID: 8846068 DOI: 10.1016/0006-8993(95)01030-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nondopaminergic, presumably GABAergic neurons in the substantia nigra pars reticulata (SNR) are thought to function as a gating mechanism for seizure propagation. Systemic administration of anticonvulsant doses of the antiepileptic drug valproate (VPA) has previously been reported to inhibit the firing of nondopaminergic SNR neurons in anesthetized but not in awake, paralyzed and locally anesthetized rats, suggesting that the findings in anesthetized rats were due to an interaction between VPA and the general anesthetic used. In the present study, we determined the influence of different anesthetic measures on the effect of an anticonvulsant dose of VPA (100 mg/kg) on extracellularly recorded spontaneous single unit activity of nondopaminergic SNR neurons in rats. Rats were anesthetized by continuous infusion of the general anesthetic chloral hydrate, the dissociative anesthetic ketamine or the narcotic opioid fentanyl, or were only locally anesthetized and paralyzed. VPA significantly reduced SNR firing in all groups with a time course that matched its anticonvulsant time course in rodents. However, VPA's inhibitory effect on SNR firing was significantly less marked under anesthesia with chloral hydrate than in any of the other groups, indicating that this anesthetic suppresses the action of VPA, which may be related to an interaction with GABA-related processes in the SNR. The closest approximation to the effect of VPA in awake rats was obtained under anesthesia with ketamine, while VPA's inhibitory action on SNR neuronal firing seemed to be enhanced in the fentanyl group, which exhibited the highest baseline firing rates of all groups. Determination of VPA in the SN showed that the difference in VPA's inhibitory effect on SNR neurons was not secondary to differences in local drug concentrations. The data demonstrate that VPA is capable of significantly slowing the spontaneous activity of nondopaminergic SNR neurons, but that the magnitude of this effect depends on the anesthetic measures used. In view of the presumed role of SNR neurons in seizure propagation and the finding that VPA consistently inhibits these neurons at an anticonvulsant dose, the present data suggest that suppression of spontaneous SNR neuronal firing may be an important mechanism through which VPA exerts its anticonvulsant properties.
Collapse
Affiliation(s)
- W Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, School of Veterinary Medicine, Hannover, Germany
| | | | | |
Collapse
|
111
|
Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC. Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci 1995; 18:527-35. [PMID: 8638293 DOI: 10.1016/0166-2236(95)98374-8] [Citation(s) in RCA: 892] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The neostriatum is the largest component of the basal ganglia, and the main recipient of afferents to the basal ganglia from the cerebral cortex and thalamus. Studies of the cellular organization of the neostriatum have focused upon the spiny projection neurones, which represent the vast majority of neurones, but the identity and functions of interneurones in this structure have remained enigmatic despite decades of study. Recently, the discovery of cytochemical markers that are specific for each of the major classes of striatal interneurones, and the combination of this with intracellular recording and staining, has revealed the identities of interneurones and some of their functional characteristics in a way that could not have been imagined by the classical morphologists. These methods also suggest some possible modes of action of interneurones in the neostriatal circuitry.
Collapse
Affiliation(s)
- Y Kawaguchi
- Bio-Mimetic Control Research Center, Institute of Physical and Chemical Research (RIKEN), Nagoya, Japan
| | | | | | | |
Collapse
|
112
|
Durkin MM, Smith KE, Borden LA, Weinshank RL, Branchek TA, Gustafson EL. Localization of messenger RNAs encoding three GABA transporters in rat brain: an in situ hybridization study. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 33:7-21. [PMID: 8774941 DOI: 10.1016/0169-328x(95)00101-w] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Localization of the messenger RNAs encoding three gamma-aminobutyric acid (GABA) transporters, termed GAT-1, GAT-2, and GAT-3, has been carried out in rat brain using radiolabeled oligonucleotide probes and in situ hybridization histochemistry. Hybridization signals for GAT-1 mRNA were observed over many regions of the rat brain, including the retina, olfactory bulb, neocortex, ventral pallidum, hippocampus, and cerebellum. At the microscopic level, this signal appeared to be restricted to neuronal profiles, and the overall distribution of GAT-1 mRNA closely paralleled that seen in other studies with antibodies to GABA. Areas containing hybridization signals for GAT-3 mRNA included the retina, olfactory bulb, subfornical organ, hypothalamus, midline thalamus, and brainstem. In some regions, the hybridization signal for GAT-3 seemed to be preferentially distributed over glial cells, although hybridization signals were also observed over neurons, particularly in the retina and olfactory bulb. Notably, hybridization signal for GAT-3 mRNA was absent from the neocortex and cerebellar cortex, and was very weak in the hippocampus. In contrast to the parenchymal localization obtained for GAT-1 and GAT-3 mRNAs, hybridization signals for GAT-2 mRNA were found only over the leptomeninges (pia and arachnoid). The differential distribution of the three GABA transporters described here suggests that while each plays a role in GABA uptake, they do so via distinct cellular populations.
Collapse
Affiliation(s)
- M M Durkin
- Synaptic Pharmaceutical Corporation, Paramus, NJ 07652, USA
| | | | | | | | | | | |
Collapse
|
113
|
Inglis WL, Winn P. The pedunculopontine tegmental nucleus: where the striatum meets the reticular formation. Prog Neurobiol 1995; 47:1-29. [PMID: 8570851 DOI: 10.1016/0301-0082(95)00013-l] [Citation(s) in RCA: 232] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The pedunculopontine tegmental nucleus (PPTg) contains a population of cholinergic neurons (the Ch5 group) and non-cholinergic neurons. There appears to be functional interdigitation between these two groups, which both have extensive projections. The principal ascending connections are with thalamic nuclei and structures associated with the striatum, including the substantial nigra pars compacta. The descending connections are with a variety of nuclei in the pons, medulla and spinal cord, concerned with autonomic and motor functions. In the past, emphasis has been laid on the role of the PPTg in locomotion and behavioural state control. In this review, we emphasise the role of the PPTg in processing outputs from the striatum. The non-cholinergic neurons receive outflow from both dorsal and vental striatum, and lesions of the PPTg disrupt behaviour associated with each of these. Our review indicates that the PPTg is less concerned with the induction of locomotion and more concerned with relating reinforcement (information about which comes from the ventral striatum) with motor output from the dorsal striatum. The conclusions we draw are: (1) the PPTg is an outflow system for the striatum, but also forms a 'subsidiary circuit', returning information to striatal circuitry; in this, the PPTg has an anatomical organisation that resembles that of the substantia nigra. (2) As well as a role in the mediation of REM sleep, cholinergic PPTg neurons have an important role in the waking state, providing feedback into the thalamus and striatum. (3) The precise function of the computations performed on striatal outflow by the PPTg is uncertain. We discuss whether this function is complementary (parallel to other routes of striatal outflow), integrative (modifying other forms of striatal outflow) or both.
Collapse
Affiliation(s)
- W L Inglis
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
114
|
Chang HT, Tian Q, Herron P. GABAergic axons in the ventral forebrain of the rat: an electron microscopic study. Neuroscience 1995; 68:207-20. [PMID: 7477926 DOI: 10.1016/0306-4522(95)00109-v] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ventral forebrain, including the ventral striatum, the ventral pallidum and the substantia innominata, is an important region involved in the functions of the basal ganglia and the limbic system, as well as the magnocellular corticopetal neurons of the nucleus basalis of Meynert. Although previous studies have shown that this region is richly innervated by GABAergic fibers, little is known with respect to the relative densities of GABAergic to non-GABAergic axon terminals in this region. To address this issue, we have developed a specific rabbit antiserum to GABA and used a postembedding immunocytochemical reaction to analyse the distribution of GABA-like immunoreactive axon terminals in the rat ventral striatum, ventral pallidum and substantia innominata. Of all axon terminals that form identifiable synapses within single ultrathin sections taken from these regions, 11.6% in the ventral striatum, 85.5% in the ventral pallidum and 64.8% in the substantia innominata were GABAergic. Differences were also found in the distribution patterns of these terminals with respect to the size of their synaptic target dendrites. These findings are consistent with previous findings that a majority of inputs to the ventral striatum are excitatory, and that a majority of inputs to the ventral pallidum are inhibitory. Our results provide a first approximation of the anatomical substrate for the physiology and pharmacology of GABA actions in the ventral forebrain region. These results also show that GABA may play an important role in the substantia innominata, where both the cholinergic and the non-cholinergic magnocellular corticopetal neurons reside within a neuropil innervated by many different non-cholinergic fibers.
Collapse
Affiliation(s)
- H T Chang
- Department of Anatomy & Neurobiology, University of Tennessee, College of Medicine, Memphis 38163, USA
| | | | | |
Collapse
|
115
|
Benazzouz A, Piallat B, Pollak P, Benabid AL. Responses of substantia nigra pars reticulata and globus pallidus complex to high frequency stimulation of the subthalamic nucleus in rats: electrophysiological data. Neurosci Lett 1995; 189:77-80. [PMID: 7609923 DOI: 10.1016/0304-3940(95)11455-6] [Citation(s) in RCA: 235] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
High frequency stimulation of the subthalamic nucleus (STN-HFS) has been shown to reverse parkinsonian motor symptoms in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys. We have studied the effect of STN-HFS on the spontaneous activity of the substantia nigra pars reticulata (SNr), entopeduncular nucleus (EP) and globus pallidus (GP) in rats. STN-HFS induced a decrease in activity of 91% of SNr cells, a suppression of activity in 80% of EP cells and an activation of 100% of GP recorded cells. These results show that STN-HFS exerts an inhibitory influence on the basal ganglia output structures similar to that obtained by STN lesion.
Collapse
Affiliation(s)
- A Benazzouz
- Laboratoire de Neurobiophysique, UJFG, INSERM U.318, Centre Hospitalier Universitaire de Grenoble, France
| | | | | | | |
Collapse
|
116
|
Desban M, Gauchy C, Glowinski J, Kemel ML. Heterogeneous topographical distribution of the striatonigral and striatopallidal neurons in the matrix compartment of the cat caudate nucleus. J Comp Neurol 1995; 352:117-33. [PMID: 7536221 DOI: 10.1002/cne.903520109] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The topographical organization of the striatonigral projection was investigated in the cat by comparing the localization and the intensity of labelling of retrogradely labelled cells in the caudate nucleus following one or multiple injections of horseradish peroxidase-wheat germ agglutinin into the center or along the rostrocaudal axis of the substantia nigra pars reticulata. Second, the localizations of retrogradely labelled striatopallidal neurons and of clusters of aggregated striatonigral neurons (as outlined by the transport of 14C-material) were compared in cats that received four horseradish peroxidase-wheat germ agglutinin injections into the internal segment of the globus pallidus and three nigral injections of 14C-amino acids into the substantia nigra pars reticulata. Two types of striatonigral neurons located predominantly within the matrix compartment were identified: poorly collateralized aggregated cells distributed in clusters and more numerous collateralized cells distributed outside the clusters. In addition, two cell types were distinguished within each cluster of aggregated neurons. Those innervating the center of the substantia nigra pars reticulata were observed after a single nigral injection of the tracer, whereas those projecting to distinct sites of the substantia nigra pars reticulata along a rostrocaudal axis were observed only after multiple injections. Striatal neurons innervating the internal segment of the globus pallidus were heterogeneously distributed predominantly within the matrix but outside the clusters of aggregated striatonigral neurons. Together, these results provide further evidence for the heterogeneity of the matrix and for the complexity of matrix striatonigral connections that send both diverging and converging signals to the substantia nigra pars reticulata.
Collapse
Affiliation(s)
- M Desban
- Chaire de Neuropharmacologie, INSERM U114, Collège de France, Paris
| | | | | | | |
Collapse
|
117
|
Parent A, Hazrati LN. Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1995; 20:128-154. [PMID: 7711765 DOI: 10.1016/0165-0173(94)00008-d] [Citation(s) in RCA: 969] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The subthalamic nucleus and the external pallidum (GPe) are classically viewed as part of the so-called indirect pathway, which acts in concert with the direct pathway. The direct and indirect pathways form the conceptual framework of the anatomical and functional organization of the basal ganglia. A review of recent data regarding the connections of the subthalamic nucleus and the GPe has revealed a lack of firm anatomical support for the existence of the indirect pathway. However, newly recognized projections of the subthalamic nucleus and the GPe place these structures on various novel routes that change the conceptual architecture of the basal ganglia circuitry. These new findings force us to modify our view of the functional identity of the subthalamic nucleus and the GPe. In this new perspective, the GPe stands as an additional integrative station, together with the striatum and the internal pallidum and substantia nigra pars reticulata (GPi/SNr), along the main steam of information processing within the basal ganglia circuitry. Because of its crucial position between the input and output stations of the basal ganglia, the GPe can markedly influence the neuronal computation that occurs at GPi/SNr levels. The subthalamic nucleus can still be regarded as a 'control structure' lying alongside the main stream of information processing. However, because of its widespread efferent projections, the subthalamic nucleus exerts its driving effect on most components of the basal ganglia. Its action is mediated not only by the indirect pathway, but by a multitude of mono- and polysynaptic projections that ultimately reach the basal ganglia output cells.
Collapse
Affiliation(s)
- A Parent
- Centre de recherche en neurobiologie, Hôpital de l'Enfant-Jésus, Québec, QC, Canada
| | | |
Collapse
|
118
|
Andrén PE, Levin ED, Liminga U, Gunne L. Behavioral and neurochemical consequences of ibotenic acid lesion in the subthalamic nucleus of the common marmoset. Brain Res Bull 1995; 36:301-7. [PMID: 7697384 DOI: 10.1016/0361-9230(94)00206-g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Five marmosets were unilaterally lesioned within the subthalamic nucleus (STN) by injection of 10 micrograms ibotenic acid. Seven marmosets served as saline injected controls. The lesioned marmosets showed an increased locomotor activity, occasional tongue protrusions, posture asymmetry, and abnormal movements of the contralateral legs and arms. The animals were sacrificed 21 days after the ibotenic acid injection and markers of gamma-aminobutyric acid (GABA), dopamine (DA), and acetylcholine were studied in a variety brain regions. There was a bilateral increase in the activity of glutamic acid decarboxylase (GAD) in the caudate, putamen, globus pallidus, superior colliculus, and the ventral anterior/ventral lateral (VA/VL) thalamus, whereas GABA concentrations were only increased ipsilaterally in the ventral posterior medial/centromedial/parafasciculus (VPM/CM/Pf) complex of the thalamus. Tyrosine hydroxylase (TH) activity was bilaterally increased in the medial segment of globus pallidus and nucleus accumbens. However, there were also changes restricted to the side contralateral to the lesion. TH activity and DA concentrations were increased contralateral to the lesion in the putamen. Choline acetyltransferase (CAT) activity was bilaterally increased in the medial segment of globus pallidus and hypothalamus. The ibotenic acid induced STN-lesion in the marmoset, thus, seemed to cause a widespread bilateral activation of neurons within the basal ganglia.
Collapse
Affiliation(s)
- P E Andrén
- Department of Psychiatry at Ulleråker, Uppsala University, Sweden
| | | | | | | |
Collapse
|
119
|
Ochiishi T, Terashima T, Yamauchi T. Specific distribution of Ca2+/calmodulin-dependent protein kinase II alpha and beta isoforms in some structures of the rat forebrain. Brain Res 1994; 659:179-93. [PMID: 7820660 DOI: 10.1016/0006-8993(94)90877-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The immunohistochemical distribution of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) alpha and beta isoforms in the rat forebrain was examined by using monoclonal antibodies specific to each isoform. The present study confirmed that alpha and beta immunoreactivities are localized only in neuronal elements. At the light microscopic level, specific distribution patterns of these isoforms and staining characteristics were recognized in some regions of the forebrain as follows. Firstly, alpha-immunoreactive neurons were more homogeneously distributed throughout the cellular layers of the cerebral cortex (i.e., layers II-VI) than beta-immunoreactive ones. Secondly, neurons in the globus pallidus were immunostained by the anti-beta antibody, but not by the anti-alpha antibody. Thirdly, neurons in the medial habenular nucleus, the subthalamic nucleus and the reticular thalamic nucleus were more densely stained with the anti-beta antibody than with the anti-alpha antibody. However, marked differences were not observed in the hippocampal formation at the light microscopic level. The electron microscopic analysis of the cerebral cortex demonstrated that subcellular localizations of alpha- and beta-immunoreactive products within the cortical neurons were quite dissimilar: (i) the nucleus was stained only with the anti-alpha antibody, but not with the anti-beta antibody, and (ii) beta-immunoreactive products were more sporadically localized in the cytoplasms of the perikarya and dendrites than the alpha-immunoreactive ones. These regional and subcellular differences between the distribution patterns of alpha and beta immunoreactivities suggest the functional diversity of CaM kinase II alpha and beta isoforms in the central nervous system.
Collapse
Affiliation(s)
- T Ochiishi
- Department of Anatomy and Embryology, Tokyo Metropolitan Institute for Neuroscience, Japan
| | | | | |
Collapse
|
120
|
Abstract
To add to our understanding of the anatomical organization of the globus pallidus (GP) of the rat, a light and electron microscopic analysis of parvalbumin (PV, a Ca-binding protein) immunoreactive neurons in the GP was performed. Light microscopic analysis revealed that the GP contains PV-positive and PV-negative neurons. Approximately two-thirds of the GP neurons were PV-positive. The somata of PV-positive neurons were, on average, larger than PV-negative ones. The proximal dendrites of PV-positive neurons were smooth and often lay parallel to the border between the GP and the neostriatum. Distal dendrites of PV-positive neurons were varicose. Thin PV-positive fibers with large boutons (with average diameter of 1.7 microns) were observed in the neuropil of the GP. Some PV-positive boutons formed basket-like aggregates surrounding the somata of PV-positive or negative neurons. Electron microscopic observations revealed that PV-positive neurons were often large and contained deeply indented nuclei and a large volume of cytoplasm. PV-negative neurons had smaller somata that were occupied by deeply indented nuclei and a small volume of cytoplasm. Both PV-positive and negative neurons were contacted by synaptic boutons identical to the known striato-pallidal, subthalamo-pallidal, and local collateral boutons. The PV-positive boutons contained small round or elongated vesicles and often more than one mitochondrion. Most of the boutons (i.e. 86%) formed symmetric synapses with somata and large dendrites and, the other (14%) formed asymmetric synapses with small dendrites. The study indicated that GP projection neurons can be divided into two subgroups according to their PV-immunoreactivity. PV-positive and negative neurons received similar extrinsic synaptic inputs and both types of neurons were connected through their local collateral axons. It is conceivable that the physiology of PV-positive and negative neurons might be different because of a difference in the Ca-buffering mechanisms in these neurons.
Collapse
Affiliation(s)
- H Kita
- University of Tennessee at Memphis, College of Medicine, Department of Anatomy and Neurobiology 38163
| |
Collapse
|
121
|
Fisher RS, Levine MS, Sibley DR, Ariano MA. D2 dopamine receptor protein location: Golgi impregnation-gold toned and ultrastructural analysis of the rat neostriatum. J Neurosci Res 1994; 38:551-64. [PMID: 7529326 DOI: 10.1002/jnr.490380508] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The neostriatal distribution of D2 dopamine receptor protein has been assessed using subtype-selective polyclonal antibodies generated against three unique polypeptide sequences of the receptor. The experimental tissues were processed by peroxidase based immunohistochemical procedures for routine light microscopy, Golgi impregnation-gold toned morphological characterization, and correlative light/electron microscopy. The results demonstrated a regional gradient of D2-like dopamine receptor expression in the neostriatum, where lateral portions in the nucleus exhibited more reactive cell bodies than medial portions. D2-like expression was detected in the three populations of neostriatal neurons, i.e., the medium-sized spiny projection neurons, and the medium- and large-sized aspiny interneuron types. Morphometric measurements of labeled neurons verified that medium and large diameter neurons expressed the D2-like receptor subtype. D2-like immunoreactivity was distributed throughout the cytoplasm in dendritic processes, and in presynaptic terminal boutons. Immunoreactivity for the receptor protein was also detected in small, thinly myelinated axons, suggesting the possibilities of anterograde transport of the receptor from cell bodies in the substantia nigra to their neostriatal terminal fields, as well as from local axon collaterals of neostriatal projections neurons. These findings provide evidence of widespread distribution of the D2-like receptor protein in neostriatal neurons, and showed that the presynaptic D2 receptors contain analogous epitopes to the postsynaptic receptor subtype.
Collapse
Affiliation(s)
- R S Fisher
- Mental Retardation Research Center, UCLA School of Medicine
| | | | | | | |
Collapse
|
122
|
Steckler T, Inglis W, Winn P, Sahgal A. The pedunculopontine tegmental nucleus: a role in cognitive processes? BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1994; 19:298-318. [PMID: 7820134 DOI: 10.1016/0165-0173(94)90016-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The cholinergic pedunculopontine tegmental nucleus, located in the brainstem and part of the reticular formation, has been traditionally linked to motor function, arousal and sleep. Its anatomical connections, however, raise the possibility that the pedunculopontine tegmental nucleus is also involved in other aspects of behaviour such as motivation, attention and mnemonic processes. This is of obvious importance, since the pedunculopontine tegmental nucleus undergoes degeneration in human neurodegenerative disorders also characterized by attentional and/or mnemonic deficits. Moreover, recent behavioural animal work suggests that cognitive processes may be represented in the pedunculopontine tegmental nucleus. The difficulty that faces research in this area, however is the possible influence of cognition by other processes, such as arousal state, motivation and motor function. Nevertheless, by reviewing the literature, the pedunculopontine tegmental nucleus seems to be involved in attentional and possibly also in learning processes. These processes could be mediated by influencing cortical function via the thalamus, basal forebrain and basal ganglia. The involvement of the pedunculopontine tegmental nucleus in mechanisms of memory, however, seems to be rather unlikely.
Collapse
Affiliation(s)
- T Steckler
- MRC Neurochemical Pathology Unit, Newcastle General Hospital, Newcastle-upon-Tyne, UK
| | | | | | | |
Collapse
|
123
|
Veenman CL, Albin RL, Richfield EK, Reiner A. Distributions of GABAA, GABAB, and benzodiazepine receptors in the forebrain and midbrain of pigeons. J Comp Neurol 1994; 344:161-89. [PMID: 8077457 DOI: 10.1002/cne.903440202] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Autoradiographic and immunohistochemical methods were used to study the distributions of GABAA, GABAB and benzodiazepine (BDZ) receptors in the pigeon fore- and midbrain. GABAA, GABAB and BDZ binding sites were found to be abundant although heterogeneously distributed in the telencephalon. The primary sensory areas of the pallium of the avian telencephalon (Wulst and dorsal ventricular ridge) tended to be low in all three binding sites, while the surrounding second order belt regions of the pallium were typically high in all three. Finally, the outermost rind of the pallium (termed the pallium externum by us), which surrounds the belt regions and projects to the striatum of the basal ganglia, was intermediate in all three GABAergic receptors types. Although both GABAA and benzodiazepine receptors were abundant within the basal ganglia, GABAA binding sites were densest in the striatum and BDZ binding sites were densest in the pallidum. Among the brainstem regions receiving GABAergic basal ganglia input, the anterior and posterior nuclei of the ansa lenticularis showed very low levels of all three receptors, while the lateral spiriform nucleus and the ventral tegmental area/substantia nigra complex contained moderate abundance of the three binding sites. The dorsalmost part of the dorsal thalamus (containing nonspecific nuclei) was rich in all three binding sites, while the more ventral part of the dorsal thalamus (containing specific sensory nuclei), the ventral thalamus and the hypothalamus were poor in all three binding sites. The pretectum was also generally poor in all three, although some nuclei displayed higher levels of one or more binding sites. The optic tectum, inferior colliculus, and central gray were rich in all three sites, while among the isthmic nuclei, the parvicellular isthmic nucleus was conspicuously rich in BDZ sites. The results show a strong correlation of the regional abundance of GABA binding sites with previously described distributions of GABAergic fibers and terminals in the avian forebrain and midbrain. The regional distribution of these binding sites is also remarkably similar to that in mammals, indicating a conservative evolution of forebrain and midbrain GABA systems among amniotes.
Collapse
Affiliation(s)
- C L Veenman
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis 38163
| | | | | | | |
Collapse
|
124
|
Pickel VM, Chan J. Met5-enkephalin is localized within axon terminals in the subfornical organ: vascular contacts and interactions with neurons containing gamma-aminobutyric acid. J Neurosci Res 1994; 37:735-49. [PMID: 8046774 DOI: 10.1002/jnr.490370608] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Met5-enkephalin inhibits sodium and water excretion and antagonizes the central actions of angiotensin II in subfornical organ of rat brain. We examined the ultrastructural basis for enkephalin modulation in this circumventricular region. Additionally, we examined the possibility that there might be cellular sites for functional interactions involving Met5-enkephalin and gamma-aminobutyric acid (GABA), a known inhibitory transmitter throughout the central nervous system. Met5-enkephalin and GABA were identified in single coronal sections through the subfornical organ using immunoperoxidase and silver-enhanced immunogold labeling methods, respectively. Enkephalin-like immunoreactivity was most prominently localized within axon terminals. These were distributed primarily in the central, highly vascular, regions of the subfornical organ. Enkephalin-labeled terminals were apposed to the basement membranes of fenestrated capillaries and also formed symmetric, inhibitory type synapses with neurons. In terminals associated with either blood vessels or neurons, the enkephalin immunoreactivity was enriched in large (80-150 nm) dense core vesicles. The immunoreactive vesicles were usually located within portions of the axon in close proximity to astrocytic processes. In contrast, smaller vesicles in the same terminals were more often aggregated near the basement membrane of the capillaries and the active zone of the synapse. The targets of enkephalin-immunoreactive terminals were either unlabeled or GABA-labeled dendrites of local neurons. Enkephalin was also co-localized with GABA in perikarya and in axon terminals. Terminals containing only GABA were far more abundant than those containing enkephalin or enkephalin and GABA. GABA-immunoreactive terminals formed symmetric synapses on unlabeled dendrites some of which also received convergent input from terminals containing enkephalin. Additionally, the enkephalin-immunoreactive terminals were closely apposed to GABA-labeled and unlabeled terminals. These results suggest sites for nonsynaptic release of Met5-enkephalin from dense core vesicles in contact with astrocytes near blood vessels and synaptic complexes in the rat subfornical organ. Moreover, the observed dual localization and pre- and postsynaptic associations between neurons containing Met5-enkephalin and GABA indicate that inhibitory effects of opioids in the subfornical organ may be mediated or potentiated by GABA.
Collapse
Affiliation(s)
- V M Pickel
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, NY 10021
| | | |
Collapse
|
125
|
Mori A, Takahashi T, Miyashita Y, Kasai H. Two distinct glutamatergic synaptic inputs to striatal medium spiny neurones of neonatal rats and paired-pulse depression. J Physiol 1994; 476:217-28. [PMID: 8046639 PMCID: PMC1160435 DOI: 10.1113/jphysiol.1994.sp020125] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Excitatory postsynaptic currents (EPSCs) were recorded from the medium spiny neurones of neonatal rat striatal slices using the whole-cell patch clamp method. EPSCs were selectively elicited in the presence of picrotoxin with a glass stimulating pipette placed in the striatum. We found two distinct unitary EPSCs that were evoked by stimulation of single presynaptic fibres. The major type of EPSC, termed 'S-type', failed frequently and had a small mean amplitude (2.05 pA). They probably represented cortical afferents. The other type of unitary EPSC, the 'H-type', seldom failed and was 13 times larger than the S-type. Spontaneous EPSCs with amplitudes similar to those of H-type EPSCs could be induced. H-type EPSCs were mediated by both non-NMDA and NMDA receptors. The two types of EPSCs could be evoked in the same neurons. The intensity of stimulation for H-type EPSCs was higher than that for S-type EPSCs. H-type EPSCs could be polysynaptically activated, suggesting the presence of glutamatergic interneurones in the striatum that generated H-type EPSCs. H-type EPSCs displayed particularly long-lasting paired-pulse depression, while that displayed by the S-type EPSCs was short. The paired-pulse depression of both EPSCs was Ca2+ dependent and involved presynaptic mechanisms. We have demonstrated that the medium spiny neurones of neonatal rats receive two different glutamatergic input systems having different amplitudes, origins and paired-pulse depression, reminiscent of cerebellar Purkinje cells. This suggests that the two types of EPSCs also play distinctive roles in striatal neuronal circuitry.
Collapse
Affiliation(s)
- A Mori
- Department of Physiology, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | |
Collapse
|
126
|
Inglis WL, Allen LF, Whitelaw RB, Latimer MP, Brace HM, Winn P. An investigation into the role of the pedunculopontine tegmental nucleus in the mediation of locomotion and orofacial stereotypy induced by d-amphetamine and apomorphine in the rat. Neuroscience 1994; 58:817-33. [PMID: 8190259 DOI: 10.1016/0306-4522(94)90459-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
As the pedunculopontine tegmental nucleus has an important anatomical position as an output station for the striatum, its role in the mediation of behaviour stimulated by d-amphetamine and apomorphine was investigated. Bilateral ibotenate lesions were made in either the pedunculopontine tegmental nucleus or, as a control, in the adjacent deep mesencephalic nucleus; sham lesions were made using phosphate buffer. Over the 14 days after surgery there were no significant differences in the rats' body weight or food intake. Deep mesencephalic lesioned rats spilled more food and drank more water (never more than 5 ml more) than controls or pedunculopontine tegmental lesioned rats. Spontaneous locomotion and that elicited by d-amphetamine or apomorphine were not affected by ibotenate lesions of either the pedunculopontine tegmental nucleus or deep mesencephalic nucleus. At higher doses of d-amphetamine and apomorphine, however, excessive biting and licking were observed in the pedunculopontine tegmental nucleus, but not deep mesencephalic nucleus, lesioned rats. Such orofacial stereotypies are never observed in normal rats after systemic injection of d-amphetamine. Post mortem analysis showed that ibotenate lesions of the pedunculopontine tegmental nucleus had destroyed cholinergic and non-cholinergic neurons there but had left the deep mesencephalic nucleus intact; ibotenate lesions of the deep mesencephalic nucleus destroyed neurons in that structure but not the pedunculopontine tegmental nucleus. These data demonstrate that lesions in the pedunculopontine tegmental nucleus and deep mesencephalic nucleus have different effects, measured histologically and behaviourally; that neither spontaneous locomotion nor that stimulated by d-amphetamine or apomorphine is dependent on the integrity of the pedunculopontine tegmental nucleus; and that the pedunculopontine tegmental nucleus plays an important role in mediating orofacial activity stimulated by these drugs. The data are discussed in terms of their implications for understanding outflow from the caudate-putamen and nucleus accumbens.
Collapse
Affiliation(s)
- W L Inglis
- School of Psychology, University of St Andrews, Fife, U.K
| | | | | | | | | | | |
Collapse
|
127
|
White LE, Hodges HD, Carnes KM, Price JL, Dubinsky JM. Colocalization of excitatory and inhibitory neurotransmitter markers in striatal projection neurons in the rat. J Comp Neurol 1994; 339:328-40. [PMID: 7907614 DOI: 10.1002/cne.903390303] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The principle neuronal output of the neostriatum comes from medium spiny neurons that project from the caudate/putamen to the globus pallidus and substantia nigra. Although current evidence generally indicates that gamma-aminobutyric acid (GABA) is the principal neurotransmitter in this pathway, this cannot account for the excitatory synaptic activity present among cultures of striatal neurons or the short latency excitatory postsynaptic potentials which often proceed or obscure inhibitory activity evoked by striatal stimulation. In this study, retrograde transport of [3H]D-aspartate has been used to demonstrate striato-pallidal and striato-nigral neurons that possess a high-affinity uptake system for glutamate and aspartate and are therefore putatively glutamatergic. Injections of [3H]D-aspartate into the globus pallidus or substantia nigra, pars reticularis of the rat retrogradely labeled medium-sized neurons throughout the rostral-caudal extent of the neostriatum. To characterize this population further, adjacent sections were immunoreacted with antibodies to either GABA, glutamic acid decarboxylase (GAD), calbindin, or parvalbumin prior to autoradiographic processing. Under these conditions, autoradiographically labeled neurons displayed positive immunoreactivity for GABA, GAD, or calbindin. Autoradiographic label did not colocalize with parvalbumin immunoreactivity. The colocalization of anatomical markers of GABAergic and glutamatergic neurotransmission raises the possibility that both neurotransmitters are functionally expressed within single striatal projection neurons.
Collapse
Affiliation(s)
- L E White
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | | | |
Collapse
|
128
|
Gritti I, Mainville L, Jones BE. Projections of GABAergic and cholinergic basal forebrain and GABAergic preoptic-anterior hypothalamic neurons to the posterior lateral hypothalamus of the rat. J Comp Neurol 1994; 339:251-68. [PMID: 8300907 DOI: 10.1002/cne.903390206] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Within the basal forebrain, gamma-aminobutyric acid (GABA)-synthesizing neurons are codistributed with acetylcholine-synthesizing neurons (Gritti et al. [1993] J. Comp. Neurol. 329:438-457), which constitute one of the major forebrain sources of subcortical afferents to the cerebral cortex. In the present study, descending projections of the GABAergic and cholinergic neurons were investigated to the lateral posterior hypothalamus (LHp) through which the medial forebrain bundle passes and where another major forebrain source of subcortical afferents is situated. Retrograde transport of cholera toxin b subunit (CT) from the LHp was combined with immunohistochemical staining for glutamic acid decarboxylase (GAD) and choline acetyl transferase (ChAT) using a sequential peroxidase-antiperoxidase (PAP) technique. A relatively large number of GAD+ neurons (estimated at approximately 6,200), which represented > 15% of the total population of GAD+ cells in the basal forebrain (estimated at approximately 39,000), were retrogradely labeled from the LHp. These cells were distributed through the basal forebrain cell groups, where ChAT+ cells are also located, including the medial septum and diagonal band nuclei, the magnocellular preoptic nucleus, and the substantia innominata, with few cells in the globus pallidus. In these same nuclei, a small number of ChAT+ cells were retrogradely labeled (estimated at approximately 800), which represented only a small percentage (< 5%) of the ChAT+ cell population in the basal forebrain (estimated at approximately 18,000). Both the GAD+ and ChAT+ LHp-projecting neurons represented a small subset of their respective populations in the basal forebrain, distinct from the magnocellular, presumed cortically projecting, basal neurons. In addition to the GAD+ cells in the basal forebrain, GAD+ cells in the adjacent preoptic and anterior hypothalamic regions were also retrogradely labeled in significant numbers (estimated at approximately 5,500) and proportion (> 20%) of the total population (estimated at approximately 30,000) from the LHp. The retrogradely labeled GAD+ neurons were distributed in continuity with those in the basal forebrain through the lateral preoptic area, medial preoptic area, bed nucleus of the stria terminals, and anterior and dorsal hypothalamic areas. Of the large number of cells that project to the LHp in the basal forebrain and preoptic-anterior hypothalamic regions (estimated at approximately 66,000), the GAD+ neurons represented a significant proportion (> 15%) and the ChAT+ neurons a very small proportion (approximately 2%). The relative magnitude of the GABAergic projection suggests that it may represent an important inhibitory influence of the descending efferent output from the basal forebrain and preoptic-anterior hypothalamic regions.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- I Gritti
- Istituto di Fisiologia Umana II, Università degli Studi di Milano, Italy
| | | | | |
Collapse
|
129
|
Veenman CL, Reiner A. The distribution of GABA-containing perikarya, fibers, and terminals in the forebrain and midbrain of pigeons, with particular reference to the basal ganglia and its projection targets. J Comp Neurol 1994; 339:209-50. [PMID: 8300906 DOI: 10.1002/cne.903390205] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Immunohistochemical techniques were used to study the distributions of glutamic acid decarboxylase (GAD) and gamma-aminobutyric acid (GABA) in pigeon forebrain and midbrain to determine the organization of GABAergic systems in these brain areas in birds. In the basal ganglia, numerous medium-sized neurons throughout the striatum were labeled for GABA, while pallidal neurons, as well as a small population of large, aspiny striatal neurons, labeled for GAD and GABA. GAD+ and GABA+ fibers and terminals were abundant throughout the basal ganglia, and GABAergic fibers were found in all extratelencephalic targets of the basal ganglia. Most of these targets also contained numerous GABAergic neurons. In pallial regions, approximately 10-12% of the neurons were GABAergic. The outer rind of the pallium was more intensely labeled for GABAergic fibers than the core. The olfactory tubercle region, the ventral pallidum, and the hypothalamus were extremely densely labeled for GABAergic fibers, while GABAergic neurons were unevenly distributed in the hypothalamus. GABAergic neurons and fibers were abundant in the dorsalmost part of thalamus and the dorsal geniculate region, while GABAergic neurons and fibers were sparse (or lightly labeled) in the thalamic nuclei rotundus, triangularis, and ovoidalis. Further, GABAergic neurons were abundant in the superficial tectal layers, the magnocellular isthmic nucleus, the inferior colliculus, the intercollicular region, the central gray, and the reticular formation. GABAergic fibers were particularly abundant in the superficial tectal layers, the parvocellular isthmic nucleus, the inferior colliculus, the intercollicular region, the central gray, and the interpeduncular nucleus. These results suggest that GABA plays a role as a neurotransmitter in nearly all fore- and midbrain regions of birds, and in many instances the observed distributions of GABAergic neurons and fibers closely resemble the patterns seen in mammals, as well as in other vertebrates.
Collapse
Affiliation(s)
- C L Veenman
- Department of Anatomy and Neurobiology, University of Tennessee-Memphis 38163
| | | |
Collapse
|
130
|
Internal Composition of Striatal Grafts: Light and Electron Microscopy. ADVANCES IN BEHAVIORAL BIOLOGY 1994. [DOI: 10.1007/978-1-4613-0485-2_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
131
|
Angulo JA, McEwen BS. Molecular aspects of neuropeptide regulation and function in the corpus striatum and nucleus accumbens. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1994; 19:1-28. [PMID: 7909470 DOI: 10.1016/0165-0173(94)90002-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the corpus striatum and nucleus accumbens, neuropeptides participate along with conventional neurotransmitters such as dopamine, gamma-aminobutyric acid (GABA), acetylcholine and glutamate in the regulation of locomotor activity, stereotyped motor behaviors and neural events related to reward and affective state. The present review concerns itself with four major neuropeptide systems--enkephalin, dynorphin, tachykinins and neurotensin--and it summarizes neuroanatomical and functional studies as well as emphasizing regulatory interactions between neurotransmitters and neuropeptides at the level of neuropeptide gene expression. Dopaminergic transmission emanating from midbrain dopaminergic cell bodies of the substantia nigra and the ventral tegmentum regulates striatal and accumbens neuropeptide levels and their mRNAs. Evidence is presented for D1 or D2 receptor involvement as well as D1-D2 interactions that modulate neuropeptide and mRNA levels in striatum and accumbens neurons. Regulatory influences by GABAergic, serotonergic and cortical (glutamatergic) neurotransmission and via sigma receptors and circulating adrenal steroids are also described. The evidence gathered in many laboratories thus far indicates that these major basal ganglia peptidergic systems are modulated dynamically and sometimes in opposing ways by various neurochemical inputs which alter neuropeptide and neuropeptide mRNA levels over both short- and long-term. Neuropeptide systems are involved in the regulation and execution of motor programs and may also be involved in the control of mood and affect as well as self-administration behavior and behavioral sensitization, especially via the nucleus accumbens and its reciprocal connections with the midbrain, hippocampus and frontal cortex. Glucocorticoids modulate mood as well as self-administration behavior and influence locomotor activity and certain forms of stereotypy. The modulation of striatal proenkephalin and protachykinin mRNA levels by adrenal steroids is described along with distribution of adrenal steroid receptor subtypes. Adrenal steroid regulation of neuropeptide gene expression in striatum, accumbens and midbrain suggests that there may be a wider role for glucocorticoids and for other neuropeptide systems in environmental and drug influences on normal and abnormal behaviors involving the nigrostriatal and mesolimic systems.
Collapse
Affiliation(s)
- J A Angulo
- Department of Biological Sciences, Hunter College of the City University of New York, NY 10021
| | | |
Collapse
|
132
|
Kaneko T, Shigemoto R, Nakanishi S, Mizuno N. Substance P receptor-immunoreactive neurons in the rat neostriatum are segregated into somatostatinergic and cholinergic aspiny neurons. Brain Res 1993; 631:297-303. [PMID: 7907524 DOI: 10.1016/0006-8993(93)91548-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Immunochemical characteristics of neostriatal neurons producing substance P receptor (SPR) were examined in adult rats by double- and triple-immunofluorescence methods. In the neostriatum, SPR immunoreactivity was detected in large and medium-sized aspiny neurons. Virtually all SPR-immunoreactive neurons in the neostriatum contained somatostatin (SS) or choline acetyltransferase (ChAT), but not parvalbumin. All SS- and ChAT-immunoreactive neurons in the neostriatum showed SPR immunoreactivity. The co-existence of SS and ChAT was, however, not found in single neurons expressing SPR immunoreactivity. The present results indicate that neostriatal neurons immunoreactive for SPR are segregated into 2 groups: (1) medium-sized, spiny somatostatinergic, and (2) large, aspiny cholinergic neurons.
Collapse
Affiliation(s)
- T Kaneko
- Department of Morphological Brain Science, Faculty of Medicine, Kyoto University, Japan
| | | | | | | |
Collapse
|
133
|
Abstract
This study describes the distribution of GABA immunoreactivity in the amygdaloid complex of cats. At the light microscopic level, immunopositive structures consisted of morphologically diverse somata and numerous small punctate elements. The latter accounted for most of the staining at low magnification and, at the electron microscopic level, were found to be axon terminals establishing symmetric synaptic contacts with a variety of postsynaptic profiles. Deep and superficial amygdaloid nuclei could be assigned to one of four groups according to (i) the intensity of immunolabeling they displayed, (ii) their density in reactive somata, and (iii) the size of the immunopositive somata they contained. Intercalated cell masses displayed the highest density of strongly immunoreactive cell bodies and presumed GABAergic terminals. However, electron microscope observations showed that intercalated somata were almost devoid of synaptic contacts. In contrast, central and medial nuclei were characterized by a low density of intensely immunoreactive somata and an elevated concentration for GABAergic terminals which contacted somatic and dendritic profiles. In addition, central and medial nuclei contained numerous neurons displaying low to moderate immunoreactivity. Superficial amygdaloid nuclei and nuclei of the basolateral complex displayed an intermediate density of immunoreactive somata and a low to moderate concentration of presumed terminals. Analysis of the distribution of soma areas within these nuclei revealed that the basolateral complex contains a distinct subpopulation of larger immunoreactive neurons. In light of recent electrophysiological findings, these results suggest that the intra-amygdaloid GABAergic system plays a major role in controlling the synaptic responsiveness and spontaneous activity of amygdaloid neurons.
Collapse
Affiliation(s)
- D Paré
- Département de Physiologie, Faculté de Médecine, Université Laval, Québec, Canada
| | | |
Collapse
|
134
|
Janson AM, Møller A. Chronic nicotine treatment counteracts nigral cell loss induced by a partial mesodiencephalic hemitransection: an analysis of the total number and mean volume of neurons and glia in substantia nigra of the male rat. Neuroscience 1993; 57:931-41. [PMID: 8309553 DOI: 10.1016/0306-4522(93)90039-i] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This study combines immunocytochemical and stereological methods for the first time to obtain unbiased estimates of the number of cells in the entire substantia nigra and their respective mean volume. Nicotine, delivered by subcutaneously implanted osmotic pumps (0.125 mg/kg/h, 14 days) to male Sprague-Dawley rats with a partial unilateral mesodiencephalic lesion, caused a significant counteraction of the lesion-induced reduction in total number of nigral tyrosine hydroxylase-like immunoreactive neurons counterstained with Cresyl Violet compared with saline treated control animals. The number of Nissl stained neurons without tyrosine hydroxylase-like immunoreactivity was not affected by the lesion nor by nicotine. The numbers of non-neuronal glial fibrillary acidic protein-like immunoreactive cells counterstained with Cresyl Violet and smaller cells seen after Cresyl Violet staining alone, possibly representing microglia, were increased by the lesion but not affected by nicotine. No nicotine-induced effects were found on the number of nigral cells located contralateral to the lesion. The lesion-induced reduction in the mean volume of the nigral cells showing tyrosine hydroxylase-like immunoreactivity, as determined with the stereological rotator method, was not affected by nicotine. These findings suggest that continuous nicotine infusion exerts protective effects on lesioned nigroneostriatal dopamine systems and that these protective effects are selective for the nigral dopamine neurons not affecting other populations of neurons or non-neuronal cells. This neuroprotective effect might lead to new therapeutic strategies in clinical neurodegenerative disorders such as Parkinson's Disease.
Collapse
Affiliation(s)
- A M Janson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
135
|
Krebs MO, Kemel ML, Gauchy C, Desban M, Glowinski J. Local GABAergic regulation of the N-methyl-D-aspartate-evoked release of dopamine is more prominent in striosomes than in matrix of the rat striatum. Neuroscience 1993; 57:249-60. [PMID: 8115037 DOI: 10.1016/0306-4522(93)90060-s] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Using an in vitro microsuperfusion device we have previously demonstrated that in the absence of magnesium, the N-methyl-D-aspartate-evoked release of [3H]dopamine (continuously synthesized from [3H]tyrosine) is more prominent in matrix- than in striosome-enriched areas of the rat striatum and that in the matrix, the response is partially tetrodotoxin-sensitive. Since the medium-sized GABAergic neurons are the main targets of the corticostriatal glutamatergic fibers, the involvement of local GABAergic regulation in the N-methyl-D-aspartate-evoked release of [3H]dopamine was investigated in both striatal compartments using the same experimental approach. Firstly, bicuculline alone (5 microM, 25-min application) was shown to enhance the release of [3H]dopamine similarly in both compartments revealing the existence of a tonic GABAergic control of the spontaneous release of [3H]dopamine. Secondly, the N-methyl-D-aspartate (50 microM, 25-min application)-evoked release of [3H]dopamine was markedly amplified in the presence of bicuculline (5 microM, continuous delivery). This effect being more important in striosome- than in matrix-enriched areas (5.5- and two-times the N-methyl-D-aspartate-evoked response observed in the absence of the GABAA antagonist, respectively). Thirdly, the tetrodotoxin (1 microM, continuous delivery)-resistant N-methyl-D-aspartate-evoked responses were also enhanced in the presence of bicuculline, but in this case, the amplification of the N-methyl-D-aspartate-evoked release of [3H]dopamine was less marked than in the absence of tetrodotoxin and identical in both compartments (about two-times the tetrodotoxin-resistant N-methyl-D-aspartate-evoked responses observed in the absence of bicuculline). Altogether, these results indicate that GABAergic neurons exert locally an important inhibitory regulation of the N-methyl-D-aspartate-evoked release of dopamine and that this effect is more prominent in the striosome-enriched area. Both tetrodotoxin-sensitive (striosome) and tetrodotoxin-resistant (striosome and matrix) processes intervene in this inhibitory GABAergic presynaptic regulation of dopamine release.
Collapse
Affiliation(s)
- M O Krebs
- Chaire de Neuropharmacologie, INSERM U114, Collège de France, Paris
| | | | | | | | | |
Collapse
|
136
|
Clarke DJ, Dunnett SB. Synaptic relationships between cortical and dopaminergic inputs and intrinsic GABAergic systems within intrastriatal striatal grafts. J Chem Neuroanat 1993; 6:147-58. [PMID: 8102060 DOI: 10.1016/0891-0618(93)90024-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Synaptic relationships between gamma-aminobutyric acid-ergic systems intrinsic to intrastriatal striatal grafts and inputs from host adult rat neocortex and substantia nigra were investigated using a variety of neuroanatomical techniques. The input from host frontal cortex was demonstrated using an anterograde degeneration technique, whilst a double immunocytochemical procedure, using the chromogens diaminobenzidine and benzidine dihydrochloride was utilized to visualize the tyrosine hydroxylase (TH)- and glutamate decarboxylase (GAD)-immunoreactive systems. Only areas receiving dense TH-immunoreactive innervation were examined for synaptic interactions since these areas were judged as being striatal in origin. Examples of synaptic interactions were observed between cortical and TH-immunoreactive inputs; between cortical input and GAD-immunoreactive neuronal elements within TH-immunoreactive inputs and a variety of GAD-immunoreactive neuronal elements within the striatal grafts. No interactions were seen between cortical input and GAD-immunoreactive neuronal perikarya or dendrites, possibly because of technical limitations since the GAD-immunoreactivity did not extend into the distal dendrites where cortical input is predominantly located, nor between all three systems. The results suggest that the formation of new synaptic connections in a pattern reminiscent of that seen in control neostriatum may be responsible, in part at least, for the behavioural recovery in motor skills seen in rats following intrastriatal striatal transplants. They also demonstrate that the host adult brain retains sufficient plasticity and may play an important role in the control of synaptic output from the transplant.
Collapse
Affiliation(s)
- D J Clarke
- Department of Human Anatomy, Oxford and Department of Experimental Psychology, Cambridge, UK
| | | |
Collapse
|
137
|
Ostergaard K. Organotypic slice cultures of the rat striatum--I. A histochemical and immunocytochemical study of acetylcholinesterase, choline acetyltransferase, glutamate decarboxylase and GABA. Neuroscience 1993; 53:679-93. [PMID: 8487950 DOI: 10.1016/0306-4522(93)90616-n] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Slices of striatal tissue from newborn to eight-day-old rats were cultured for six to 47 days. Cholinergic neurons and fibres were then visualized by histochemical staining for acetylcholinesterase or immunocytochemical staining for choline acetyltransferase. GABA-containing neurons and fibres were visualized by immunocytochemical staining for glutamate decarboxylase or GABA. Corresponding to the normal postnatal development in vivo, acetylcholinesterase staining of the striatal tissue progressed from a "patchy" distribution in the six to 14 days old cultures to an almost even distribution of high acetylcholinesterase activity after 18-27 days. Extrinsic afferents were accordingly not necessary for the maintenance of a patch-matrix-like, acetylcholinesterase distribution during the first one to two weeks in culture, just as a subsequent, normal developmental change of the acetylcholinesterase staining pattern into a more homogeneous distribution also occurred without such afferents. Cholinergic, choline acetyltransferase-immunoreactive neurons were evenly distributed within the cultured striatal tissue, like in vivo, but the density of the neurons appeared to be higher in the cultures. The neurons had a morphology corresponding to the "classical", large-sized, aspiny, cholinergic interneurons in the adult rat striatum. Glutamate decarboxylase-immunoreactive and GABA-immunoreactive neurons were either lightly or darkly stained and of medium size, but some large, lightly stained glutamate decarboxylase-immunoreactive and GABA-immunoreactive neurons were also found. The difference in staining density among the medium-sized cells was observed with both antisera and hence provide evidence for the existence of two populations of medium-sized GABAergic neurons, which in vivo are intensely stained interneurons and more weakly stained, spiny projection neurons. Fibres stained better for glutamate decarboxylase than for GABA and outgrowth of glutamate decarboxylase-immunoreactive nerve fibres from the striatal slice cultures onto the coverslip was often observed. The presence at all culture periods of "protospines" on cell bodies and proximal dendrites of some glutamate decarboxylase-immunoreactive, and in particular some GABA-immunoreactive neurons, suggested that at least some developmental characteristics might be maintained for extended periods in culture. In several cultures, groups of small GABA-immunoreactive cells were observed. Similar groups were also found by staining for glutamate decarboxylase, but a smaller proportion of the cells were then positively stained. In view of their immature appearance with few or no processes, the known presence of GABA in neuroblast-like cells, and the recent demonstration of neuronal and glial progenitor cells in the adult mouse striatum, the small cells might belong to a population of undifferentiated cells surviving in the slice cultures.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K Ostergaard
- PharmaBiotec, Institute of Neurobiology, University of Aarhus, Denmark
| |
Collapse
|
138
|
Gritti I, Mainville L, Jones BE. Codistribution of GABA- with acetylcholine-synthesizing neurons in the basal forebrain of the rat. J Comp Neurol 1993; 329:438-57. [PMID: 8454735 DOI: 10.1002/cne.903290403] [Citation(s) in RCA: 234] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In recent years, GABAergic neurons have been identified in the basal forebrain where cholinergic cortically projecting neurons are located and known to be important in mechanisms of cortical activation. In the present study in the rat, the relationship of the GABA-synthesizing neurons to the acetylcholine-synthesizing neurons was examined by application of a sequential double staining immunohistochemical procedure involving the peroxidase-antiperoxidase technique for glutamic acid decarboxylase (GAD) and choline acetyltransferase (ChAT). In these double and adjacent single immunostained series of sections, the GAD+ and ChAT+ cells were mapped, counted and measured with the aid of a computerized image analysis system. Through the entire basal forebrain, there was no evidence for colocalization of GAD and ChAT in the same neurons. Instead, a large population of GAD-immunoreactive neurons is codistributed with ChAT-immunoreactive neurons and outnumbers them by a factor of two: approximately 39,000 GAD+ cells to 18,000 ChAT+ cells. Although the GAD+ and ChAT+ neurons lie intermingled within fascicles of the major longitudinal and transverse forebrain fiber systems in subregions of the basal forebrain, the GAD+ cells are more highly concentrated within different sectors of the pathways and regions than the ChAT+ cells. Although GAD+ neurons resemble ChAT+ neurons in certain regions, both being bi- or multipolar and, on average, medium-sized cells, the GAD+ neurons are, in the majority (51%), small-sized cells (< 15 microns in length) and as a population significantly smaller than the ChAT+ neurons. These results suggest that many GABAergic neurons may represent interneurons in the basal forebrain and potentially exert an inhibitory influence on adjacent cortically projecting cholinergic neurons. Medium- to large GAD+ cells, which resemble similar ChAT+ cells, are also present and represent the majority of the GAD+ cells in the nucleus of the diagonal band of Broca, magnocellular preoptic nucleus, and olfactory tubercle, but represent the minority in the anterior and posterior substantia innominata and globus pallidus. Given their prominent size, such GABAergic cells may also exert an inhibitory influence outside the basal forebrain as projection neurons and potentially in parallel with cholinergic neurons, to certain regions of the cerebral cortex. Accordingly, GABAergic cells may be considered as constituents of the magnocellular basal nucleus and potentially important elements within the ventral extrathalamic relay from the brainstem reticular formation to the cerebral cortex.
Collapse
Affiliation(s)
- I Gritti
- Istituto di Fisiologia Umana II, Università degli Studi di Milano, Italy
| | | | | |
Collapse
|
139
|
Meana JJ, Johansson B, Herrera-Marschitz M, O'Connor WT, Goiny M, Parkinson FE, Fredholm BB, Ungerstedt U. Effect of the neurotoxin AF64A on intrinsic and extrinsic neuronal systems of rat neostriatum measured by in vivo microdialysis. Brain Res 1993; 596:65-72. [PMID: 1361419 DOI: 10.1016/0006-8993(92)91533-k] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present in vivo microdialysis study the aziridinium ion of ethylcholine mustard, AF64A and the excitotoxin ibotenic acid were compared for their effects on extracellular striatal acetylcholine, choline, gamma-aminobutyric acid (GABA), dopamine and its metabolites, glutamate and aspartate, measured in the same perfusate sample, under basal and high KCL conditions. Ten days following unilateral striatal injections of AF64A (2 x 0.08 to 2 x 8 mM) there was a dose-dependent decrease in the extracellular striatal levels of acetylcholine and GABA, the two major intrinsic striatal neurotransmitter systems. No significant effects were observed on any of the monitored neurotransmitter systems following the lowest (2 x 0.08 mM) dose of AF64A, while at the intermediate (2 x 0.8 mM) dose, AF64A produced a unilateral > 50% and > 70% decrease in basal extracellular striatal acetylcholine and GABA levels respectively. The effects of K(+)-depolarization on extracellular acetylcholine and GABA levels were diminished by approximately 50%. At the highest dose (2 x 8 mM), extracellular striatal acetylcholine levels were non-detectable under basal conditions, while the GABA levels were decreased by > 50%, when compared with the contralateral intact side. However, at this dose, GABA levels were bilaterally decreased compared to levels observed in control animals. Basal extracellular striatal dopamine and glutamate levels, representing the two major extrinsic neurotransmitter systems innervating the neostriatum were only affected by the highest dose of AF64A. The excitotoxin ibotenic acid (2 x 28.4 mM) produced a strong unilateral decrease in extracellular striatal acetylcholine (> 80%) and GABA (> 90%) levels, without significantly affecting basal dopamine and glutamate levels.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J J Meana
- Department of Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Affiliation(s)
- H Kita
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee at Memphis 38163
| |
Collapse
|
141
|
Abstract
Neurons exhibiting GABA-like immunoreactivity were identified in the monkey amygdala using an avidin-biotin immunohistochemical technique. The pattern of GABA immunoreactivity was very similar in the basolateral and superficial amygdaloid nuclei. In these regions GABA-positive cells were nonpyramidal neurons that were often arranged in clusters or curvilinear rows. These GABA-positive nonpyramidal neurons constituted about 25% of the total neuronal population of the basolateral and superficial amygdaloid nuclei. Numerous GABA-positive puncta resembling axon terminals were observed both in the neuropil and encapsulating the perikarya of GABA-negative pyramidal cells. The pattern of GABA-like immunoreactivity was different in the central and medial amygdaloid nuclei. These regions contained a very dense array of GABA-positive puncta. There were numerous GABA-positive neurons in the lateral subdivision of the central nucleus and fewer cells in the medial nucleus and medial subdivision of the central nucleus. Many immunoreactive puncta were observed contacting the perikarya and dendrites of GABA-positive cells in these regions. The intercalated nuclei consisted of numerous, small, GABA-positive neurons and a few, larger, GABA-negative cells. Both cell types were contacted by GABA-positive puncta. This study indicates that neuronal subpopulations in each of the amygdaloid nuclei of the monkey are GABAergic. The pattern of immunoreactivity varies in different amygdaloid regions and is very similar to that described in the rat. Certain aspects of the functional organization of this rich GABAergic circuitry can be elucidated by correlating the findings of the present investigation with previous anatomical, physiological, and pharmacological studies of the amygdala.
Collapse
Affiliation(s)
- A J McDonald
- Department of Anatomy, Cell Biology, and Neurosciences, University of South Carolina School of Medicine, Columbia 29208
| | | |
Collapse
|
142
|
Kincaid AE, Albin RL, Newman SW, Penney JB, Young AB. 6-Hydroxydopamine lesions of the nigrostriatal pathway alter the expression of glutamate decarboxylase messenger RNA in rat globus pallidus projection neurons. Neuroscience 1992; 51:705-18. [PMID: 1488118 DOI: 10.1016/0306-4522(92)90309-p] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In situ hybridization was used to study the effect of 6-hydroxydopamine-induced damage to the midbrain dopaminergic neurons on the level of glutamate decarboxylase mRNA in globus pallidus neurons in the rat. Some animals received an injection of Fluoro-gold in the entopeduncular nucleus or the substantia nigra prior to the 6-hydroxydopamine lesion in order to identify glutamic acid decarboxylase mRNA levels in pallidal neurons that project to one of these targets. Analysis was carried out on a sample of all pallidal neurons as well as neurons that were identified as projection neurons in control and lesioned groups. The loss of the dopamine-containing neurons in the substantia nigra resulted in significant increases in the percentage of globus pallidus neurons that expressed glutamate decarboxylase mRNA and in the amount of glutamate decarboxylase mRNA per globus pallidus neuron. These increases were noted in a sample of all pallidal neurons, as well as pallidal neurons that were identified as projecting to either the entopeduncular nucleus or the substantia nigra. In control animals, glutamate decarboxylase mRNA was clearly identified in globus pallidus neurons projecting to the entopeduncular nucleus, indicating that this recently reported projection is at least partially GABAergic. The results of this study indicate that substantia nigra dopaminergic neurons regulate globus pallidus neurons in the rat, and that removal of the dopaminergic input to the corpus striatum results in a significant increase in the amount of glutamate decarboxylase mRNA in pallidal neurons. The decreased firing rate of pallidal neurons that is seen following the loss of dopamine input appears to be accompanied by an increase in the level of glutamate decarboxylase mRNA in these neurons.
Collapse
Affiliation(s)
- A E Kincaid
- Department of Anatomy and Cell Biology, University of Michigan, Ann Arbor 48109
| | | | | | | | | |
Collapse
|
143
|
Najlerahim A, Pearson RC. Changes in glutamic acid decarboxylase mRNA in the pallidum of the rat following unilateral damage of the striatum and overlying cortex. Exp Neurol 1992; 118:352-6. [PMID: 1306491 DOI: 10.1016/0014-4886(92)90193-t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The messenger RNA encoding glutamic acid decarboxylase (GAD) has been examined in the pallidum of the rat using in situ hybridization histochemistry following damage of the striatum and overlying frontal neocortex of one side. Following a postoperative survival time of 5 weeks, ipsilateral shrunken pallidal neurons showed significant decrease in GAD mRNA. The mRNA for GAD is significantly increased in neurons of the contralateral pallidum. These neurons are also significantly enlarged. These findings may be related to pathological changes in pallidal neurons in Huntington's disease.
Collapse
Affiliation(s)
- A Najlerahim
- Department of Biomedical Science, University of Sheffield, United Kingdom
| | | |
Collapse
|
144
|
Rugg EL, Dunbar JS, Latimer M, Winn P. Excitotoxic lesions of the pedunculopontine tegmental nucleus of the rat. I. Comparison of the effects of various excitotoxins, with particular reference to the loss of immunohistochemically identified cholinergic neurons. Brain Res 1992; 589:181-93. [PMID: 1382812 DOI: 10.1016/0006-8993(92)91277-l] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The pedunculopontine tegmental nucleus (PPTg) has been shown to have cholinergic connections with the thalamus and basal ganglia. The ability of various doses of the excitotoxins (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) (AMPA), folate, ibotenate, kainate, N-methyl-D-aspartate (NMDA), quinolinate and quisqualate to make lesions in the PPTg was examined, with particular reference to their ability to destroy cholinergic neurons identified using choline acetyltransferase (ChAT) immunohistochemistry. All of the toxins induced convulsive activity on recovery from surgical anesthesia and all except folate made lesions in the PPTg and surrounding structures. The size of the lesions was computed following examination of Cresyl violet stained sections. The largest lesions were made by kainate = AMPA greater than NMDA = ibotenate greater than quisqualate = quinolinate. All of the toxins destroyed cholinergic neurons, higher doses producing greater loss than lower. The ratio of cholinergic cell loss to general neuronal loss (assessed by Cresyl violet staining) was also computed, revealing marked differences between the toxins. Statistical analysis showed that there were significant differences between excitotoxins in terms of this ratio, but these were accounted for by the low dose of quinolinate (24 nmol) producing a significantly greater ratio of damage (12.18:1) than every other toxin. (Next highest ratio: quisqualate 60 nmol, 6.22:1.) Between the other toxins (kainate, AMPA, ibotenate, quisqualate, NMDA and the high dose of quinolinate) there were no statistically significant differences. Intense calcium deposits (stained by Alizarin red) were found frequently and often defined the borders of the lesion. Tyrosine hydroxylase immunohistochemistry revealed axons running below and into the area of lesioned tissue suggesting strongly that fibers were undamaged by the lesions. We conclude that in the PPTg, different excitotoxins make discriminably different lesions, both quantitatively and qualitatively. Unlike excitotoxic lesions in the basal forebrain quinolinate, not quisqualate, made the most selective lesions of cholinergic neurons and, unlike excitotoxic lesions in the septal nuclei, non-myelinated fibers were spared by ibotenate. The implications of these data for research into brainstem mechanisms of Parkinson's disease are discussed.
Collapse
Affiliation(s)
- E L Rugg
- Department of Psychology, University of St Andrews, Fife, UK
| | | | | | | |
Collapse
|
145
|
Dunbar JS, Hitchcock K, Latimer M, Rugg EL, Ward N, Winn P. Excitotoxic lesions of the pedunculopontine tegmental nucleus of the rat. II. Examination of eating and drinking, rotation, and reaching and grasping following unilateral ibotenate or quinolinate lesions. Brain Res 1992; 589:194-206. [PMID: 1356593 DOI: 10.1016/0006-8993(92)91278-m] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The pedunculopontine tegmental nucleus (PPTg) contains a population of cholinergic neurons thought to be part of the ascending reticular activating system, and non-cholinergic neurons. In the previous study it was shown that various excitotoxins made effective lesions of cholinergic neurons in the PPTg but that quinolinate made smaller lesions in the non-cholinergic population, making it more selective than any other excitotoxin. The purpose of the present experiment was, first, to make lesions of cholinergic neurons throughout the length of the PPTg by infusing toxin at two different sites within it; and second, to examine simple motor activities in rats bearing either quinolinate or ibotenate lesions of the PPTg, and contrast these with the deficits seen after 6-hydroxydopamine (6-OHDA) induced lesions of mesostriatal dopamine (DA)-containing neurons. Post-mortem examination was carried out using choline acetyltransferase (ChAT) and tyrosine hydroxylase (TOH) immunohistochemistry, and routine Nissl staining. Both quinolinate and ibotenate destroyed approximately 75% of ChAT-positive neurons in the PPTg, but damage to non-cholinergic neurons (assessed by Nissl staining) was twice as great following ibotenate as quinolinate. 6-OHDA induced almost complete lesions of mesostriatal DA neurons, assessed by TOH immunohistochemistry. DA depleted rats showed deficits in drinking and spilled more food in the first 2 weeks after surgery, and were unable to reach or grasp food pellets in the staircase test. They also showed strong ipsilateral turning in response to amphetamine and contralateral turning to apomorphine. Quinolinate lesioned rats had no eating or drinking impairment in the home cage but showed a reaching (though not grasping) disability in the staircase test. They had a mild ipsilateral bias following amphetamine. Ibotenate lesioned rats, despite having larger lesions than the quinolinate, showed no deficits in eating or drinking in the home cage, or reaching or grasping disabilities in the staircase test. They did have a mild contralateral bias in response to amphetamine. This dissociation of the effects of quinolinate and ibotenate lesions of the PPTg is consistent with the suggestion that the PPTg has two functionally distinct components, and is attributed to the differential lesion of non-cholinergic neurons by the two excitotoxins.
Collapse
Affiliation(s)
- J S Dunbar
- Department of Psychology, University of St Andrews, Fife, UK
| | | | | | | | | | | |
Collapse
|
146
|
Kaneko T, Mizuno N. Mosaic distribution of phosphate-activated glutaminase-like immunoreactivity in the rat striatum. Neuroscience 1992; 49:329-45. [PMID: 1436471 DOI: 10.1016/0306-4522(92)90100-g] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The dorsal and ventral striatum of mammals has been known to be organized in a mosaic manner, referred to as "patches" and "matrix" of the caudatoputamen. The present study was primarily attempted in order to reveal the relationship of glutamatergic neuronal components to the mosaic organization in the rat striatum by using a monoclonal antibody to phosphate-activated glutaminase, a major synthetic enzyme of transmitter glutamate. Antibodies against glutamate decarboxylase and choline acetyltransferase were also used as the markers for GABAergic and cholinergic neuronal components, respectively. Glutaminase immunoreactivity was seen in a number of large- and a few medium-sized neurons in the caudatoputamen, nucleus accumbens and olfactory tubercle. The large neurons with glutaminase immunoreactivity were observed in the neuropil of the caudatoputamen and nucleus accumbens; glutaminase immunoreactivity was particularly marked in the neuropil of island-like patchy areas although it was seen throughout the neuropil of the nuclei. In the caudatoputamen, island-like areas with marked glutaminase immunoreactivity exhibited less marked choline acetyltransferase immunoreactivity than the surrounding background region, and were thus considered to correspond to the patches. The mosaic distribution of glutamate decarboxylase immunoreactivity in the caudatoputamen seemed identical with that of glutaminase immunoreactivity. However, in the nucleus accumbens, the mosaic pattern of neuropil labeling for glutaminase was neither consistent with that for glutamate decarboxylase nor that for choline acetyltransferase, suggesting the presence of non-GABAergic glutaminase-containing nerve terminals in the nucleus. In an attempt to clarify the origin of neuropil labeling for glutaminase in the striatum, lesions were made in the regions sending projection fibers to the caudatoputamen and nucleus accumbens. After placing lesions in the cerebral cortex, glutaminase immunoreactivity was decreased in neuropil of the caudatoputamen, but the mosaic pattern remained. Lesions which were placed in the intralaminar thalamic nuclei, amygdaloid body, globus pallidus or substantia nigra produced no substantial change in glutaminase immunoreactivity in the caudatoputamen and nucleus accumbens. After injection of kainic acid into the caudatoputamen or nucleus accumbens, glutaminase immunoreactivity in the neuropil of the affected regions was decreased to lose the mosaic pattern, indicating that neuronal components with glutaminase immunoreactivity in the neuropil of the patches were mainly of intrinsic origin. In summary, possible axon terminals containing glutaminase were observed with mosaic patterns in the caudatoputamen and nucleus accumbens, in which large cholinergic and medium-sized non-cholinergic neurons were immunoreactive for glutaminase. In the caudatoputamen, glutaminase immunoreactivity in neuropil was more marked in the patches than in the matrix.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- T Kaneko
- Department of Morphological Brain Science, Faculty of Medicine, Kyoto University, Japan
| | | |
Collapse
|
147
|
Timmerman W, Zwaveling J, Westerink BH. Characterization of extracellular GABA in the substantia nigra reticulata by means of brain microdialysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1992; 345:661-5. [PMID: 1635589 DOI: 10.1007/bf00164580] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Brain microdialysis was used to characterize extracellular gamma-aminobutyric acid (GABA) in the substantia nigra reticulata (SNR) of freely moving rats. The extracellular GABA in the SNR was characterized using acutely implanted probes (4-8 h after surgery; day 1) and chronically implanted probes (24 h after surgery; day 2). 3-Mercaptopropionic acid, a glutamic acid decarboxylase inhibitor, was used to identify GABA. This drug induced an immediate decrease in the extracellular GABA levels to 40% of basal values, suggesting that the detected GABA is, at least in part, newly synthesized. The basal levels of extracellular GABA measured either on day 1 or day 2 were not affected by infusion of micromolar amounts of tetrodotoxin. Therefore, a direct coupling between GABA dialysate concentrations and nerve-impulse flow does not seem to exist. Infusion of the GABA uptake inhibitor nipecotic acid (0.5 mmol/l) resulted in a 4-fold increase in the dialysate levels of GABA lasting at least for 3 h on both days. K+ stimulation (60 mmol/l) increased extracellular GABA levels in the SNR to 450% of basal values. This effect again did not differ significantly on day 1 and day 2. The origin of the extracellular GABA in the SNR, as recorded by microdialysis under the two experimental conditions, is discussed.
Collapse
Affiliation(s)
- W Timmerman
- Department of Medicinal Chemistry, University Centre for Pharmacy, Groningen, The Netherlands
| | | | | |
Collapse
|
148
|
Soghomonian JJ, Chesselet MF. Effects of nigrostriatal lesions on the levels of messenger RNAs encoding two isoforms of glutamate decarboxylase in the globus pallidus and entopeduncular nucleus of the rat. Synapse 1992; 11:124-33. [PMID: 1626311 DOI: 10.1002/syn.890110205] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The neurotransmitter gamma-aminobutyric acid (GABA) is present in efferent neurons of the striatum and of the pallidum, one of the main striatal target areas. Dopaminergic nigrostriatal neurons play a critical role in the regulation of GABAergic neurotransmission in the striatum. In the present study, we investigated their role in the regulation of glutamate-decarboxylase (GAD) mRNA expression in two divisions of the pallidum in rats: the globus pallidus and entopeduncular nucleus, equivalent to the external and internal pallidum, respectively, of primates. Dopaminergic neurons were lesioned by unilateral injections of 6-hydroxydopamine (6-OHDA) in the substantia nigra of adult rats. Two or 3 weeks after the lesion, frontal cryostat-cut sections of the brain were processed for in situ hybridization histochemistry with 35S-labeled RNA probes synthesized from cDNAs encoding two distinct isoforms of GAD of respective molecular weight 67,000 (GAD67) and 65,000 (GAD65). The number of labeled cells was determined, and intensity of labeling in individual cells was analyzed by computerized image analysis on emulsion radioautographs. In the globus pallidus, the number of labeled neurons and intensity of labeling per cell were increased on the side ipsilateral to the lesion as compared with control rats in sections hybridized with the GAD67 RNA probe. No changes were detected on the side contralateral to the lesion or in the levels of labeling for GAD65 mRNA. Confirming previous data, the level of labeling for GAD65 mRNA was much higher than for GAD67 mRNA in the entopeduncular nucleus of control rats. In rats with a 6-OHDA lesion, labeling for both GAD67 and GAD65 mRNAs was decreased on the side contralateral, but not ipsilateral, to the lesion, as compared with control rats. The results show that lesions of the nigrostriatal pathway in rats affect the levels of mRNAs encoding two distinct isoforms of GAD in neurons of the globus pallidus and entopeduncular nucleus differently. In addition, results in the entopeduncular nucleus further support a bilateral effect of unilateral dopaminergic lesions.
Collapse
Affiliation(s)
- J J Soghomonian
- Department of Pharmacology, University of Pennsylvania, Philadelphia 19104
| | | |
Collapse
|
149
|
Soghomonian JJ, Gonzales C, Chesselet MF. Messenger RNAs encoding glutamate-decarboxylases are differentially affected by nigrostriatal lesions in subpopulations of striatal neurons. Brain Res 1992; 576:68-79. [PMID: 1515913 DOI: 10.1016/0006-8993(92)90610-l] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dopaminergic nigrostriatal neurons constitute one of the major inputs to the striatum, and play a role in the regulation of gamma-aminobutyric acid (GABA) and glutamic acid decarboxylase (GAD), the GABA-synthesizing enzyme, in striatal neurons. The effect of nigrostriatal lesions on the level of expression of messenger RNAs encoding two distinct isoforms of glutamate decarboxylase was examined at the single cell level with in situ hybridization histochemistry. Rats received a unilateral injection of the neurotoxin 6-hydroxydopamine in the substantia nigra and were sacrificed 2 or 3 weeks later. Sections of the striatum were processed for in situ hybridization histochemistry with radiolabeled RNA probes selective for mRNAs encoding glutamate decarboxylase with molecular weights of 65,000 and 67,000, respectively. In addition, immunohistochemistry with a monospecific antibody for the latter glutamate decarboxylase isoform was performed. In agreement with previous reports, we observed increased labeling for the messenger RNA encoding glutamate decarboxylase (M(r) 67,000) in a population of medium-sized striatal efferent neurons normally expressing low levels of this messenger RNA. We now show that this effect occurred in two striatal compartments, the striosomes and the extrastriosomal matrix, and was accompanied by increased immunostaining for the corresponding protein with a monospecific antibody. In contrast, labeling for messenger RNA encoding GAD (M(r) 67,000) was decreased in a population of medium-sized neurons normally expressing high levels of this messenger RNA and corresponding to GABAergic interneurons. Labeling for messenger RNA encoding glutamate decarboxylase (M(r) 65,000) was not modified in the dopamine-depleted striatum. The results show that dopamine depletion differentially affects gene expression for different isoforms of glutamate decarboxylase in distinct subpopulations of striatal neurons in rat.
Collapse
Affiliation(s)
- J J Soghomonian
- Department of Pharmacology, University of Pennsylvania, Philadelphia 19104
| | | | | |
Collapse
|
150
|
Benson DL, Isackson PJ, Gall CM, Jones EG. Contrasting patterns in the localization of glutamic acid decarboxylase and Ca2+/calmodulin protein kinase gene expression in the rat central nervous system. Neuroscience 1992; 46:825-49. [PMID: 1311814 DOI: 10.1016/0306-4522(92)90188-8] [Citation(s) in RCA: 161] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The expression of the genes encoding the alpha subunit of type II calcium calmodulin-dependent protein kinase (CaM II kinase alpha) and the 67,000 mol. wt form of glutamic acid decarboxylase was examined throughout the rat central nervous system. In situ hybridization histochemistry, using cRNA probes, revealed a dense population of CaM II kinase alpha-expressing cells throughout the telencephalon and diencephalon. CaM II kinase alpha mRNA was also expressed in the midbrain, cerebellum and medulla oblongata, but at greatly reduced levels. No CaM II kinase alpha gene expression was detected in nuclei producing monoamines or acetylcholine. By contrast, the glutamic acid decarboxylase gene was moderately to highly expressed throughout the central nervous system. In several regions there was a complementarity in the distributions of cells expressing the glutamic acid decarboxylase or CaM II kinase alpha genes. Cells in certain nuclei such as the thalamic reticular nucleus or globus pallidus showed glutamic acid decarboxylase gene expression only; others such as the majority of the dorsal thalamic nuclei showed CaM II kinase alpha gene expression only. Several regions contained both glutamic acid decarboxylase and CaM II kinase alpha expressing cells. However, simultaneous immunostaining for both proteins revealed only two regions where CaM II kinase alpha and glutamic acid decarboxylase immunoreactivity were colocalized: the cerebellar Purkinje cells and the commissural nucleus of the stria terminalis. The results imply that CaM II kinase alpha is primarily expressed in non-GABAergic neurons. In several regions CaM II kinase alpha mRNA is concentrated in nuclei known to contain populations of neurons that use excitatory amino acid transmitters.
Collapse
Affiliation(s)
- D L Benson
- Department of Anatomy and Neurobiology, University of California, Irvine 92717
| | | | | | | |
Collapse
|