101
|
Ugarte SD, Homanics GE, Hammond DL. Effect of embryonic knock-down of GABAA receptors on the levels of monoamines and their metabolites in the CNS of the mouse. Brain Res 2001; 904:290-7. [PMID: 11406127 DOI: 10.1016/s0006-8993(01)02475-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In vitro evidence indicates that gamma-aminobutyric acid (GABA), acting at GABA(A) receptors, exerts a positive trophic effect on monoaminergic neurons during embryogenesis. To determine whether in vivo antagonism of GABA(A) receptors during embryogenesis interferes with the development of monoaminergic neurons, we used mice in which the number of GABA(A) receptors was decreased by 50% by targeted deletion of the beta(3) subunit gene of the GABA(A) receptor. Levels of serotonin, dopamine, norepinephrine, and the metabolites 3,4-deoxyphenylacetic acid, homovanillic acid, and 5-hydroxyindoleacetic acid were measured in the brainstem, cortex, striatum and spinal cord of female adult homozygous null (beta3-/-) and wild-type (beta3+/+) mice, as well as progenitor C57BL/6J and Strain 129/SvJ mice. The level of norepinephrine in the spinal cord of beta3-/- mice was 44% less than that of beta3+/+ mice, and did not differ in the brainstem, cortex or striatum. This finding suggests that beta3 subunit-containing GABA(A) receptors mediate the trophic effects of GABA on a subpopulation of spinally-projecting noradrenergic neurons. In contrast, the levels of serotonin, dopamine or their metabolites were unaffected, suggesting that the development of serotonergic and dopaminergic neurons may require activation of only a small fraction of GABA(A) receptors or may not be dependent on beta3 subunit-containing GABA(A) receptors. Finally, Strain 129/SvJ and C57BL/6J mice differed with respect to the levels of dopamine and its metabolites in the brainstem, spinal cord and cortex. These differences may need to be considered when assessing the phenotype of gene-targeted mice for which these mice serve as progenitor strains.
Collapse
Affiliation(s)
- S D Ugarte
- Department of Anesthesia and Critical Care and Committee on Neurobiology, University of Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
102
|
Küppers E, Beyer C. Dopamine regulates brain-derived neurotrophic factor (BDNF) expression in cultured embryonic mouse striatal cells. Neuroreport 2001; 12:1175-9. [PMID: 11338187 DOI: 10.1097/00001756-200105080-00025] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The differentiation of striatal GABAergic neurons coincides with the perinatal establishment of nigrostriatal dopaminergic synaptic connections. We have shown previously that dopamine stimulates the maturation of striatal GABAergic neurons. Since BDNF also regulates the development of GABAergic cells, we hypothesized that dopamine might affect striatal BDNF expression. The influence of dopamine on BDNF protein/mRNA and trkB mRNA levels was studied in neuronal and astroglia cultures of the mouse striatum. Stimulation with dopamine and a dopamine D1 receptor agonist increased BDNF mRNA and protein but not trkB mRNA in neuronal cultures. Our data indicate a potential role for dopamine in the developmental regulation of striatal BDNF expression and suggest that dopamine effects on GABAergic cells may be intertwined with BDNF action.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Brain-Derived Neurotrophic Factor/biosynthesis
- Brain-Derived Neurotrophic Factor/metabolism
- Cardiotonic Agents/pharmacology
- Cells, Cultured
- Corpus Striatum/drug effects
- Corpus Striatum/growth & development
- Corpus Striatum/metabolism
- Dopamine/pharmacology
- Dopamine Agonists/pharmacology
- Embryo, Mammalian
- Female
- Male
- Mice
- Mice, Inbred BALB C
- Receptor, trkB/metabolism
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/metabolism
Collapse
Affiliation(s)
- E Küppers
- Abteilung Anatomie und Zellbiologie, Universität Ulm, 89069 Ulm, Germany
| | | |
Collapse
|
103
|
Owens DF, Kriegstein AR. Maturation of channels and receptors: consequences for excitability. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2001; 45:43-87. [PMID: 11130909 DOI: 10.1016/s0074-7742(01)45006-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- D F Owens
- Department of Neurology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | | |
Collapse
|
104
|
Brown M, Renehan WE, Schweitzer L. Changes in GABA-immunoreactivity during development of the rostral subdivision of the nucleus of the solitary tract. Neuroscience 2001; 100:849-59. [PMID: 11036219 DOI: 10.1016/s0306-4522(00)00355-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
GABA plays an important role in the processing of gustatory information in the rostral nucleus of the solitary tract. The following study used post-embedment immunohistochemistry in the rat brainstem to localize GABA at both the light and electron microscopic levels to characterize the developmental distribution of GABA and synaptogenesis of GABA-immunoreactive terminals in the rostral nucleus of the solitary tract. During the first postnatal week, GABA is present in the rostral nucleus of the solitary tract, but less of it is synaptic than any time later in development. Of the few synaptic terminals present at postnatal day 1, less than 20% are GABA-immunoreactive. This proportion more than doubles to reach adult levels by postnatal day 10. By weaning (postnatal day 20), GABA-immunoreactive cells are found in nearly the same density as in the adult. Development continues after weaning and is characterized by a disproportionate loss of non-GABA-containing cells. Finally, one previously identified subtype of GABA-immunoreactive terminal matures very late during the postweaning phase of development. The study provides the first analysis of the development of GABA-related circuitry in the rostral nucleus of the solitary tract using anatomical methods. These data provide the background with which to view the emerging physiology of developing taste neurons.
Collapse
Affiliation(s)
- M Brown
- Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | | | |
Collapse
|
105
|
Abstract
Thalamic afferents are known to exert a control over the differentiation of cortical areas at late stages of development. Here, we show that thalamic afferents also influence early stages of corticogenesis at the level of the ventricular zone. Using an in vitro approach, we show that embryonic day 14 mouse thalamic axons release a diffusable factor that promotes the proliferation of cortical precursors over a restricted developmental window. The thalamic mitogenic effect on cortical precursors (1) shortens the total cell-cycle duration via a reduction of the G(1) phase; (2) facilitates the G(1)/S transition leading to an increase in proliferative divisions; (3) is significantly reduced by antibodies directed against bFGF; and (4) influences the proliferation of both glial and neuronal precursors and does not preclude the action of signals that induce differentiation in these two lineages. We have related these in vitro findings to the in vivo condition: the organotypic culture of cortical explants in which anatomical thalamocortical innervation is preserved shows significantly increased proliferation rates compared with cortical explants devoid of subcortical afferents. These results are in line with a number of studies at subcortical levels showing the control of neurogenesis via afferent fibers in both vertebrates and invertebrates. Specifically, they indicate the mechanisms whereby embryonic thalamic afferents contribute to the known early regionalization of the ventricular zone, which plays a major role in the specification of neocortical areas.
Collapse
|
106
|
Ehrlich ME, Conti L, Toselli M, Taglietti L, Fiorillo E, Taglietti V, Ivkovic S, Guinea B, Tranberg A, Sipione S, Rigamonti D, Cattaneo E. ST14A cells have properties of a medium-size spiny neuron. Exp Neurol 2001; 167:215-26. [PMID: 11161610 DOI: 10.1006/exnr.2000.7551] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ST14A cell line was previously derived from embryonic day 14 rat striatal primordia by retroviral transduction of the temperature-sensitive SV40 large T antigen. We showed that cell division and expression of nestin persists at 33 degrees C, the permissive temperature, whereas cell division ceases, nestin expression decreases, and MAP2 expression increases at the nonpermissive temperature of 39 degrees C. In this study, we further characterized the cells and found that they express other general and subtype-specific neuronal characteristics. ST14A cells express enolase and beta III-tubulin. Furthermore, they express the striatal marker DARPP-32, which is up-regulated upon differentiation of the cells by growth in serum-free medium. Stimulation with dopamine, the D2-dopamine receptor agonist quinpirole, or the D1-dopamine receptor agonist SKF82958 results in phosphorylation of CREB. Treatment of the cells with a mixture of reagents which stimulate the MAPK and adenylyl cyclase pathways radically changes the morphology of the ST14A cells. The cells develop numerous neurite-like appearing processes which stain with beta III-tubulin. Moreover, under these conditions, intracellular injection of rectangular depolarizing current stimuli elicits overshooting action potentials with a relatively fast depolarization rate when starting from a strongly hyperpolarized membrane potential. Taken together, these data imply that the ST14A cell line displays some of the characteristics of a medium-size spiny neuron subtype and provides a new tool to elucidate the pathways and molecules involved in medium-size spiny neuron differentiation and disease.
Collapse
Affiliation(s)
- M E Ehrlich
- The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962-2210, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Verney C, Zecevic N, Puelles L. Structure of longitudinal brain zones that provide the origin for the substantia nigra and ventral tegmental area in human embryos, as revealed by cytoarchitecture and tyrosine hydroxylase, calretinin, calbindin, and GABA immunoreactions. J Comp Neurol 2001; 429:22-44. [PMID: 11086287 DOI: 10.1002/1096-9861(20000101)429:1<22::aid-cne3>3.0.co;2-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In a previous work, mapping early tyrosine hydroxylase (TH) expressing primordia in human embryos, the tegmental origin of the substantia nigra (SN) and ventral tegmental area (VTA) was located across several neuromeric domains: prosomeres 1-3, midbrain, and isthmus (Puelles and Verney, [1998] J. Comp. Neurol. 394:283-308). The present study examines in detail the architecture of the neural wall along this tegmental continuum in 6-7 week human embryos, to better define the development of the SN and VTA. TH-immunoreactive (TH-IR) structures were mapped relative to longitudinal subdivisions (floor plate, basal plate, alar plate), as well as to radially superposed strata of the neural wall (periventricular, intermediate, and superficial strata). These morphologic entities were delineated at each relevant segmental level by using Nissl-stained sections and immunocytochemical mapping of calbindin, calretinin, and GABA in adjacent sagittal or frontal sections. A numerous and varied neuronal population originates in the floor plate area, and some of its derivatives become related through lateral tangential migration with other neuronal populations born in distinct medial and lateral portions of the basal plate and in a transition zone at the border with the alar plate. Some structural differences characterize each segmental domain within this common schema. The TH-IR neuroblasts arise predominantly within the ventricular zone of the floor plate and, more sparsely, within the adjacent medial part of the basal plate. They first migrate radially from the ventricular zone to the pia and then apparently move laterally and slightly rostralward, crossing the superficial stratum of the basal plate. Several GABA-IR cell populations are present in this region. One of them, which might represent the anlage of the SN pars reticulata, is generated in the lateral part of the basal plate.
Collapse
Affiliation(s)
- C Verney
- INSERM U.106, Hôpital Salpêtrière, 75651 Paris Cedex 13, France.
| | | | | |
Collapse
|
108
|
Frassoni C, Amadeo A, Ortino B, Jaranowska A, Spreafico R. Organization of radial and non-radial glia in the developing rat thalamus. J Comp Neurol 2000; 428:527-42. [PMID: 11074449 DOI: 10.1002/1096-9861(20001218)428:3<527::aid-cne9>3.0.co;2-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The organization of glia and its relationship with migrating neurons were studied in the rat developing thalamus with immunocytochemistry by using light, confocal, and electron microscopy. Carbocyanine labeling in cultured slice of the embryonic diencephalon was also used. At embryonic day (E) 14, vimentin immunoreactivity was observed in radial fascicles spanning the neuroepithelium and extending from the ventricular zone to the lateral surface of the diencephalic vesicle. Vimentin-immunopositive fibers orthogonal to the radial ones were also detected at subsequent developmental stages. At E16, radial and non-radial processes were clearly associated with migrating neurons identified by the neuronal markers calretinin and gamma-aminobutyric acid. Non-radial glial fibers were no longer evident by E19. Radial fibers were gradually replaced by immature astrocytes at the end of embryonic development. In the perinatal period, vimentin immunoreactivity labeled immature astrocytes and then gradually decreased; vimentin-immunopositive cells were only found in the internal capsule by the second postnatal week. Glial fibrillary acidic protein immunoreactivity appeared at birth in astrocytes of the internal capsule, but was not evident in most of the adult thalamic nuclei. Confocal and immunoelectron microscopy allowed direct examination of the relationships between neurons and glial processes in the embryonic thalamus, showing the coupling of neuronal membranes with both radial and non-radial glia during migration. Peculiar ultrastructural features of radial glia processes were observed. The occurrence of non-radial migration was confirmed by carbocyanine-labeled neuroblasts in E15 cultured slices. The data provide evidence that migrating thalamic cells follow both radial and non-radial glial pathways toward their destination.
Collapse
Affiliation(s)
- C Frassoni
- Dipartimento di Neurofisiologia Sperimentale, Istituto Nazionale Neurologico "C. Besta," 20133 Milano, Italy.
| | | | | | | | | |
Collapse
|
109
|
Küppers E, Sabolek M, Anders U, Pilgrim C, Beyer C. Developmental regulation of glutamic acid decarboxylase mRNA expression and splicing in the rat striatum by dopamine. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 81:19-28. [PMID: 11000475 DOI: 10.1016/s0169-328x(00)00156-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Dopamine (DA) promotes the morphological differentiation of striatal GABAergic neurons through D(1) receptor activation and cAMP/PKA signaling. In this study, we investigated the developmental role of DA on the expression of the two GAD(65/67) genes and the alternative splicing of GAD(67) transcripts in the rat striatum. In vivo, embryonic and adult GAD(67) splice variants and GAD(65) transcripts increased until E17 and E19, respectively. Thereafter, the embryonic GAD(67) isoform disappeared, whereas GAD(65) mRNA levels remained unchanged postnatally. The hypothesis that the prenatal ingrowth and functional maturation of nigrostriatal afferents may be responsible for these developmental events through DA-dependent signaling pathways was tested in E17 rat striatal cultures. Treatment with DA and D(1) but not D(2) agonists decreased the ratio of embryonic to adult GAD(67) mRNAs and increased GAD(65) mRNA levels as well as GABA synthesis rates. Our findings demonstrate a distinct developmental switch in the regulation of GAD(65) expression and GAD(67) splicing in the rat striatum which clearly depends upon D(1) receptor but not D(2) signaling. The dopaminergic input thus appears to control the functional differentiation of GABAergic neurons not only by upregulation of expression of the two GAD genes but also by regulating GAD(67) splicing.
Collapse
Affiliation(s)
- E Küppers
- Abteilung Anatomie und Zellbiologie, Universität Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | | | |
Collapse
|
110
|
Katarova Z, Sekerková G, Prodan S, Mugnaini E, Szabó G. Domain-restricted expression of two glutamic acid decarboxylase genes in midgestation mouse embryos. J Comp Neurol 2000; 424:607-27. [PMID: 10931484 DOI: 10.1002/1096-9861(20000904)424:4<607::aid-cne4>3.0.co;2-c] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glutamic acid decarboxylase (GAD) is the biosynthetic enzyme for gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system (CNS) of vertebrates. In addition to the adult CNS, GABA and GAD also have been detected in embryos, although their precise localization and specific functions in embryonic development have not been elucidated. In this paper, the authors studied the cellular distribution of two GAD isoforms, GAD65 and GAD67, in midgestation mouse embryos by in situ hybridization histochemistry. With few exceptions, it was found that GAD65 and GAD67 mRNAs are localized in overlapping cellular domains of the embryonic CNS that later develop into regions with a strong GABAergic contribution. The GAD-expressing cells are situated in the differentiating zone of the embryonic day 10.5 (E10.5) through E11.5 CNS and in the subventricular zone and the mantle zone of the E12.5 CNS, which suggests that they are committed neuronal precursors. By using a specific serum for GABA, a similar pattern of distribution was obtained, indicating that GAD mRNAs are translated efficiently into enzymatically active GAD, which produces embryonic GABA. The expression domains of GAD overlap with those of genes that are known to be involved in the patterning of the embryonic CNS. The two GAD mRNAs also are detected outside of the embryonic CNS in various cell types, mainly those of placodal and neural crest origin. This pattern of expression is consistent with the notion that GAD and its product, GABA, play a signaling role during development.
Collapse
Affiliation(s)
- Z Katarova
- BRC, Institute of Biochemistry, 6701 Szeged, Hungary.
| | | | | | | | | |
Collapse
|
111
|
Kwong WH, Chan WY, Lee KK, Fan M, Yew DT. Neurotransmitters, neuropeptides and calcium binding proteins in developing human cerebellum: a review. THE HISTOCHEMICAL JOURNAL 2000; 32:521-34. [PMID: 11127973 DOI: 10.1023/a:1004197210189] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Many endogenous neurochemicals that are known to have important functions in the mature central nervous system have also been found in the developing human cerebellum. Cholinergic neurons, as revealed by immunoreactivities towards choline acetyltransferase or acetylcholinesterase, appear early at 23 weeks of gestation in the cerebellar cortex and deep nuclei. Immunoreactivities gradually increase until the first postnatal month. Enkephalin is localized in the developing cerebellum, initially in the fibers of the cortex and deep nuclei at 16-20 weeks and then also in the Purkinje cells, granule cells, basket cells and Golgi cells at 23 weeks onward. Another neuropeptide, substance P, is localized mainly in the fibers of the dentate nucleus from 9 to 24 weeks but substance P immunoreactivity declines thereafter. GABA, an inhibitory neurotransmitter of the central nervous system, starts to appear at 16 weeks in the Purkinje cells, stellate cells, basket cells, mossy fibers and neurons of deep nuclei. GABA expression is gradually upregulated toward term forming networks of GABA-positive fibers and neurons. Catecholaminergic fibers and neurons are also detected in the cortex and deep nuclei at as early as 16 weeks. Calcium binding proteins, calbindin D28K and parvalbumin, make their first appearance in the cortex and deep nuclei at 14 weeks and then their expression decreases toward term, while calretinin appears later at 21 weeks but its expression increases with fetal age. The above findings suggest that many neurotransmitters, neuropeptides and calcium binding proteins (1) appear early during development of the cerebellum; (2) have specific temporal and spatial expression patterns; (3) may have functions other than those found in the mature neural systems; and (4) may be able to interact with each other during early development.
Collapse
Affiliation(s)
- W H Kwong
- Department of Anatomy, Faculty of Medicine, The Chinese University of Hong Kong
| | | | | | | | | |
Collapse
|
112
|
Dellovade TL, Young M, Ross EP, Henderson R, Caron K, Parker K, Tobet SA. Disruption of the gene encoding SF-1 alters the distribution of hypothalamic neuronal phenotypes. J Comp Neurol 2000; 423:579-89. [PMID: 10880989 DOI: 10.1002/1096-9861(20000807)423:4<579::aid-cne4>3.0.co;2-#] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ventromedial nucleus of the hypothalamus (VMH) in mice first emerges as a histologically distinct cell cluster around embryonic day 17 (E17). The earliest known marker for cells destined to form the VMH is the orphan nuclear receptor, steroidogenic factor 1 (SF-1), which can be detected in the hypothalamic primordium by E11. Strikingly, the VMH is absent in newborn SF-1 knockout mice, suggesting that SF-1 is essential for the development of VMH neurons. We reported previously that the VMH can be identified before it emerges as a histologically distinct nucleus (i.e., at E13) by the exclusion of cells that are immunoreactive for both gamma-aminobutyric acid (GABA) and the synthetic enzyme, glutamic acid decarboxylase (GAD67). Subsequently, by E15, the developing VMH is demarcated further by cells that are immunoreactive for neuropeptide Y, estrogen receptor alpha (ERalpha), and galanin. It is noteworthy that the normal exclusion of GABA from the developing VMH is not seen in SF-1 knockout mice, and cells that are immunoreactive for neuropeptide Y, ERalpha, and galanin also are distributed aberrantly in this region. Thus, the absence of SF-1 profoundly affects the cellular architecture of the VMH from early stages in its formation. These data suggest that, directly or indirectly, SF-1 plays important roles in determining the distribution of cells in the mediobasal hypothalamus.
Collapse
Affiliation(s)
- T L Dellovade
- Department of Biomedical Sciences, The Eunice Kennedy Shriver Center, Program in Neuroscience, Harvard Medical School, Waltham, Massachusetts 02452, USA
| | | | | | | | | | | | | |
Collapse
|
113
|
Dammerman RS, Flint AC, Noctor S, Kriegstein AR. An excitatory GABAergic plexus in developing neocortical layer 1. J Neurophysiol 2000; 84:428-34. [PMID: 10899216 DOI: 10.1152/jn.2000.84.1.428] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Layer 1 of the developing rodent somatosensory cortex contains a dense, transient GABAergic fiber plexus. Axons arising from the zona incerta (ZI) of the ventral thalamus contribute to this plexus, as do axons of intrinsic GABAergic cells of layer 1. The function of this early-appearing fiber plexus is not known, but these fibers are positioned to contact the apical dendrites of most postmigratory neurons. Here we show that electrical stimulation of layer 1 results in a GABA(A)-mediated postsynaptic current (PSC) in pyramidal neurons. Gramicidin perforated patch recording demonstrates that the GABAergic layer 1 synapse is excitatory and can trigger action potentials in cortical neurons. In contrast to electrical stimulation, activation of intrinsic layer 1 neurons with a glutamate agonist fails to produce PSCs in pyramidal cells. In addition, responses can be evoked by stimulation of layer 1 at relatively large distances from the recording site. These findings are consistent with a contribution of the widely projecting incertocortical pathway, the only described GABAergic projection to neonatal cortex. Recording of identified neonatal incertocortical neurons reveals a population of active cells that exhibit high frequencies of spontaneous action potentials and are capable of robustly activating neonatal cortical neurons. Because the fiber plexus is confined to layer 1, this pathway provides a spatially restricted excitatory GABAergic innervation of the distal apical dendrites of pyramidal neurons during the peak period of cortical synaptogenesis.
Collapse
Affiliation(s)
- R S Dammerman
- Department of Neurology and the Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | |
Collapse
|
114
|
Kellogg CK, Yao J, Pleger GL. Sex-specific effects of in utero manipulation of GABA(A) receptors on pre- and postnatal expression of BDNF in rats. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 121:157-67. [PMID: 10876028 DOI: 10.1016/s0165-3806(00)00039-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Exposure to diazepam (DZ) during the last week of in utero development in rats induces neurobehavioral effects that do not become apparent in exposed animals until young adult ages. Some of the effects are sex specific. This study evaluated the hypothesis that late gestational exposure to DZ, a positive modulator of GABA(A) receptors, affects the developmental appearance of brain-derived neurotrophic factor (BDNF), an effect that could be linked to the later consequences of the exposure. Pregnant Long-Evans rats were injected with DZ (2.5 mg/kg) over gestation days 14-20, and their male and female offspring were evaluated for levels of BDNF mRNA and protein in the cerebral cortex and hypothalamus at fetal day 20 and at postnatal ages spanning birth to young adulthood. The effects of the exposure were sex and region specific. At fetal day 20 the expression of BDNF was reduced by about 20% in the hypothalamus of males only. The early exposure affected postnatal expression of BDNF in the hypothalamus only modestly, influencing the age-related profile in both sexes. Postnatal development of BDNF in the cerebral cortex was significantly affected by the in utero exposure in males only with mRNA levels lower in the exposed group and protein levels higher during juvenile ages. At adulthood, both levels were lower in DZ-exposed males. GABA serves a role as a trophic factor during early development, and these results suggest that manipulation of GABA(A) receptors during early development could interact with the developmental action of other trophic factors thereby leading to altered neural organization and later neurobehavioral dysfunction.
Collapse
Affiliation(s)
- C K Kellogg
- Department of Brain and Cognitive Sciences, Room 186, Meliora Hall, University of Rochester, Rochester, NY 14627, USA.
| | | | | |
Collapse
|
115
|
Mitchell JJ, Paiva M, Heaton MB. Effect of neonatal ethanol exposure on parvalbumin-expressing GABAergic neurons of the rat medial septum and cingulate cortex. Alcohol 2000; 21:49-57. [PMID: 10946157 DOI: 10.1016/s0741-8329(99)00101-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study was performed to determine the long-term effects of ethanol exposure during the brain growth spurt (postnatal days 4-10) on the number of parvalbumin-immunoreactive (PA+) GABAergic neurons in the adult (P60) rat medial septum and anterior cingulate cortex. Significant loss of neurons within each of these populations has previously been demonstrated following prenatal ethanol exposure. In the present study, no significant differences in the number of PA+ neurons were found in either the medial septum or the cingulate cortex when control and ethanol-exposed animals were compared. The cellular densities and volumetric measures in both brain regions were also similar in the two groups. We speculate that compensatory up-regulative mechanisms may have accounted for the protection of the PA neuronal populations in these two areas following the early neonatal exposure.
Collapse
Affiliation(s)
- J J Mitchell
- University of Florida Brain Institute, University of Florida College of Medicine, Gainesville, FL 32610-0244, USA
| | | | | |
Collapse
|
116
|
Abstract
Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefore important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions, signal transduction, and functional role. Glutamate is the main excitatory, and GABA and glycine are the main inhibitory transmitters acting through ionotropic receptors. These amino acids signal the principal motor commands from peripheral, spinal, and supraspinal structures. Amines, such as serotonin and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K(+) current, cationic inward current, hyperpolarization-activated inward current, Ca(2+) channels, or presynaptic release processes. Together, these numerous inputs mediate and modify incoming motor commands, ultimately generating the coordinated firing patterns that underlie muscle contractions during motor behavior.
Collapse
Affiliation(s)
- J C Rekling
- Department of Neurobiology, University of California, Los Angeles, California 90095-1763, USA
| | | | | | | | | |
Collapse
|
117
|
Dumoulin A, Privat A, Giménez y Ribotta M. Transplantation of embryonic Raphe cells regulates the modifications of the gabaergic phenotype occurring in the injured spinal cord. Neuroscience 2000; 95:173-82. [PMID: 10619473 DOI: 10.1016/s0306-4522(99)00412-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Transection of the spinal cord yields a permanent deficit due to the interruption of descending and ascending tracts which subserve the supraspinal control of spinal cord functions. We have shown previously that transplantation below the level of the section of embryonic monoaminergic neurons can promote the recovery of some segmental functions via a local serotonergic and noradrenergic reinnervation. Moreover, the up-regulation of the corresponding receptors resulting from the section was corrected by the transplants. The aim of the present work was to determine whether such a graft could also influence non-monoaminergic local neurons, the GABAergic interneurons of the spinal cord. Following spinal cord transection, the number of cells which express glutamate decarboxylase (mol. wt 67,000) messenger RNA--a marker of GABA synthesis--increased significantly below the lesion compared with the intact animal. In contrast, in lesioned animals which had been grafted one week later with raphe neuroblasts, this number was close to control level. These post-grafting modifications were further associated with increased GABA immunoreactivity in the host tissue. These data suggest that the graft of embryonic raphe cells which compensates the deficit of serotonin in the distal segment also regulates the expression of the GABAergic phenotype in the host spinal cord. This regulation could be mediated by the re-establishment of a local functional innervation by both serotonin and GABAergic transplanted neurons and/or by trophic factors released from the embryonic cells. It appears then that grafted cells influence the host tissue in a complex manner, through the release and/or regulation of several neurotransmitter systems.
Collapse
Affiliation(s)
- A Dumoulin
- INSERM Unité 336, Université Montpellier II, France
| | | | | |
Collapse
|
118
|
Roberts AA, Kellogg CK. Synchronous postnatal increase in alpha1 and gamma2L GABA(A) receptor mRNAs and high affinity zolpidem binding across three regions of rat brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 119:21-32. [PMID: 10648869 DOI: 10.1016/s0165-3806(99)00146-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The objective of this study was to correlate postnatal changes in levels of mRNAs encoding predominant GABA(A) receptor subunits with a functional index of receptor development. This study is the first to quantify the temporal relationship between postnatal changes in predominant GABA(A) receptor mRNAs and zolpidem-sensitive GABA(A) receptor subtypes. In Experiment 1, we measured zolpidem displacement of 3H-flunitrazepam from rat cerebral cortex, hippocampus, and cerebellum at 0, 6, 14, 21, 29, and 90 postnatal days. Three independent 3H-flunitrazepam sites with high (K(i)=2. 7+/-0.6 nM), low (K(i)=67+/-4.8 nM), and very low (K(i)=4.1+/-0.9 mM) affinities for zolpidem varied in regional and developmental expression. In Experiment 2, we used RNAse protection assays to quantify levels of alpha1, alpha2, beta1, beta2, gamma2S and gamma2L mRNAs in the above regions at the same postnatal ages. Although there was a high degree of regional variation in the developmental expression of zolpidem-sensitive GABA(A) receptors and subunit mRNAs, a dramatic increase in high affinity zolpidem binding sites and alpha1 mRNA levels occurred within all three regions during the second postnatal week. Furthermore, a temporal overlap was observed between the rise in alpha1 mRNA and high affinity zolpidem binding and a more prolonged increase in gamma2L in each region. These results point to the inclusion of the alpha1 and gamma2L subunits in a GABA(A) receptor subtype with a high zolpidem affinity and suggest that a global signal may influence the emergence of this subtype in early postnatal life.
Collapse
Affiliation(s)
- A A Roberts
- Department of Brain and Cognitive Sciences, University of Rochester, Meliora Hall, Rochester, NY 14627, USA
| | | |
Collapse
|
119
|
Tsou K, Mackie K, Sañudo-Peña MC, Walker JM. Cannabinoid CB1 receptors are localized primarily on cholecystokinin-containing GABAergic interneurons in the rat hippocampal formation. Neuroscience 1999; 93:969-75. [PMID: 10473261 DOI: 10.1016/s0306-4522(99)00086-x] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Localization of cannabinoid CB 1 receptors on GABAergic interneurons in the rat hippocampal formation was studied by double-labeling immunohistochemistry with confocal microscopy. Virtually all CB1-immunoreactive neurons (95%) are GABAergic. CB 1 fluorescence showed a punctate pattern. In contrast, the GABA fluorescence was distributed homogeneously, suggesting that while CB 1 receptors and GABA exist in the same cells they are not localized in the same subcellular compartments. Although virtually all CB1 neurons were GABAergic, many GABAergic neurons did not contain CB1 receptors. GABAergic interneurons in the hippocampal formation can be further divided into subpopulations with distinct connections and functions, using cell markers such as neuropeptides and calcium binding proteins. CB1 receptors were highly co-localized with cholecystokinin and partially co-localized with calretinin and calbindin, but not with parvalbumin. This suggests that cannabinoids may modulate GABAergic neurotransmission at the synapses on the soma and at synapses on the proximal dendrites of the principal neurons, as well as at synapses on other GABAergic interneurons.
Collapse
Affiliation(s)
- K Tsou
- Department of Psychology, Brown University, Providence, RI 02912, USA
| | | | | | | |
Collapse
|
120
|
Owens DF, Liu X, Kriegstein AR. Changing properties of GABA(A) receptor-mediated signaling during early neocortical development. J Neurophysiol 1999; 82:570-83. [PMID: 10444657 DOI: 10.1152/jn.1999.82.2.570] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Evidence from several brain regions suggests gamma-aminobutyric acid (GABA) can exert a trophic influence during development, expanding the role of this amino acid beyond its function as an inhibitory neurotransmitter. Proliferating precursor cells in the neocortical ventricular zone (VZ) express functional GABA(A) receptors as do immature postmigratory neurons in the developing cortical plate (CP); however, GABA(A) receptor properties in these distinct cell populations have not been compared. Using electrophysiological techniques in embryonic and early postnatal neocortex, we find that GABA(A) receptors expressed by VZ cells have a higher apparent affinity for GABA and are relatively insensitive to receptor desensitization compared with neurons in the CP. GABA-induced current magnitude increases with maturation with the smallest responses found in recordings from precursor cells in the VZ. No evidence was found that GABA(A) receptors on VZ cells are activated synaptically, consistent with previous data suggesting that these receptors are activated in a paracrine fashion by nonsynaptically released ligand. After neurons are born and migrate to the CP, they begin to demonstrate spontaneous synaptic activity, the majority of which is GABA(A) mediated. These spontaneous GABA(A) postsynaptic currents (sPSCs) first were detected at embryonic day 18 (E18). At birth, approximately 50% of recordings from cortical neurons demonstrated GABA(A)-mediated sPSCs, and this value increased with age. GABA(A)-mediated sPSCs were action potential dependent and arose from local GABAergic interneurons. GABA application could evoke action potential-dependent PSCs in neonatal cortical neurons, suggesting that during the first few postnatal days, GABA can act as an excitatory neurotransmitter. Finally, N-methyl-D-aspartate (NMDA)- but not non-NMDA-mediated sPSCs were also present in early postnatal neurons. These events were not observed in cells voltage clamped at negative holding potentials (-60 to -70 mV) but were evident when the holding potential was set at positive values (+30 to +60 mV). Together these results provide evidence for the early maturation of GABAergic communication in the neocortex and a functional change in GABA(A)-receptor properties between precursor cells and early postmitotic neurons. The change in GABA(A)-receptor properties may reflect the shift from paracrine to synaptic receptor activation.
Collapse
Affiliation(s)
- D F Owens
- The Center for Neurobiology and Behavior, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
121
|
Abstract
GABA (gamma-aminobutyric acid) is the major inhibitory neurotransmitter in the mammalian central nervous system and plays an important role in neuronal physiology during ontogenesis. The distribution of the beta1-, beta2/3-, and gamma2-subunit of the GABAA receptor in the rat retina was studied during postnatal development using immunohistochemical methods. All subunits were found at birth. However, each subunit showed a unique staining pattern with a different local distribution. The immunoreactivity pattern changed during the time course of postnatal development for each of the proteins investigated. A clustered distribution at presumptive synaptic sites as indicated by a punctate staining pattern of the inner plexiform layer was detected as early as the second day of postnatal development. However, diffuse staining of presumptive extrasynaptic sites was found throughout development. The typical adult layering of immunoreactivity into distinctive bands appeared later in development, characteristically in the second postnatal week. The results of the present study suggest that GABAA receptor expression precedes the formation of functional synapses and changes along with cellular differentiation of the rat retina. Developmentally regulated changes in GABAA receptor composition and distribution indicate possible functions for this receptor during retinal ontogeny.
Collapse
Affiliation(s)
- P Koulen
- Max-Planck-Institut für Hirnforschung, Abteilung für Neuroanatomie, Frankfurt am Main, Germany.
| |
Collapse
|
122
|
Expression of the striatal DARPP-32/ARPP-21 phenotype in GABAergic neurons requires neurotrophins in vivo and in vitro. J Neurosci 1999. [PMID: 10377350 DOI: 10.1523/jneurosci.19-13-05409.1999] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The medium spiny neuron (MSN) is the major output neuron of the caudate nucleus and uses GABA as its primary neurotransmitter. A majority of MSNs coexpress DARPP-32 and ARPP-21, two dopamine and cyclic AMP-regulated phosphoproteins, and most of the matrix neurons express calbindin. DARPP-32 is the most commonly used MSN marker, but previous attempts to express this gene in vitro have failed. In this study we found that DARPP-32 is expressed in <12% of E13- or E17-derived striatal neurons when they are grown in defined media at high or low density in serum, dopamine, or Neurobasal/N2 (Life Technologies), and ARPP-21 is expressed in <1%. The percentage increases to 25% for DARPP-32 and 10% for ARPP-21 when the same cells are grown in Neurobasal/B27 (Life Technologies) for 7 d. After growth in Neurobasal/B27 plus brain-derived neurotrophic factor (BDNF) for 7 d, E13-derived MSNs are 53.7% DARPP-32-positive and 29. 0% ARPP-21-positive; E17-derived MSNs are 66.8% DARPP-32-positive and 51.5% ARPP-21-positive. The percentage of calbindin-positive neurons also is increased under these conditions. Finally, ARPP-21 expression is reduced in mice with a targeted deletion of the BDNF gene. We conclude that BDNF is required for the maturation of a large subset of patch and matrix MSNs in vivo and in vitro. In addition, we introduce a culture system in which highly differentiated MSNs may be generated, maintained, and studied.
Collapse
|
123
|
Abstract
The distribution of mu opioid receptors was studied in human fetal spinal cords between 12-13 and 24-25 wk gestational ages. Autoradiographic localisation using [3H] DAMGO revealed the presence of mu receptors in the dorsal horn at all age groups with a higher density in the superficial laminae (I-II). A biphasic expression was noted. Receptor density increased in the dorsal horn, including the superficial laminae, between 12-13 and 16-17 wk. This could be associated with a spurt in neurogenesis. The density increased again at 24-25 wk in laminae I-II which resembled the adult pattern of distribution. A dramatic proliferation of cells was noted from the region of the ventricular zone between 16-17 and 24-25 wk. These were considered to be glial cells from their histological features. Mu receptor expression was noted over a large area of the spinal cord including the lateral funiculus at 24-25 wk. This may be due to receptor expression by glial cells. The study presents evidence of mu receptor expression by both neurons and glia during early development of human spinal cord.
Collapse
Affiliation(s)
- S B Ray
- Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi.
| | | |
Collapse
|
124
|
Zhu Y, Li H, Zhou L, Wu JY, Rao Y. Cellular and molecular guidance of GABAergic neuronal migration from an extracortical origin to the neocortex. Neuron 1999; 23:473-85. [PMID: 10433260 DOI: 10.1016/s0896-6273(00)80801-6] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Formation of the normal mammalian cerebral cortex requires the migration of GABAergic inhibitory interneurons from an extracortical origin, the lateral ganglionic eminence (LGE). Mechanisms guiding the migratory direction of these neurons, or other neurons in the neocortex, are not well understood. We have used an explant assay to study GABAergic neuronal migration and found that the ventricular zone (VZ) of the LGE is repulsive to GABAergic neurons. Furthermore, the secreted protein Slit is a chemorepellent guiding the migratory direction of GABAergic neurons, and blockade of endogenous Slit signaling inhibits the repulsive activity in the VZ. These results have revealed a cellular source of guidance for GABAergic neurons, demonstrated a molecular cue important for cortical development, and suggested a guidance mechanism for the migration of extracortical neurons into the neocortex.
Collapse
Affiliation(s)
- Y Zhu
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
125
|
Depolarizing action of GABA on neurons of the central nervous system during early postnatal development. NEUROPHYSIOLOGY+ 1999. [DOI: 10.1007/bf02515099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
126
|
Phelps PE, Alijani A, Tran TS. Ventrally located commissural neurons express the GABAergic phenotype in developing rat spinal cord. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990628)409:2<285::aid-cne9>3.0.co;2-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
127
|
Yew DT, Chan WY. Early appearance of acetylcholinergic, serotoninergic, and peptidergic neurons and fibers in the developing human central nervous system. Microsc Res Tech 1999; 45:389-400. [PMID: 10402266 DOI: 10.1002/(sici)1097-0029(19990615)45:6<389::aid-jemt6>3.0.co;2-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Animal experiments have already shown that neurotransmitters and neuropeptides are not only important for normal functioning of the adult central nervous system (CNS) but are also crucial to its development. However, information on the spatio-temporal distribution of these endogenous substances in the developing human CNS is still scarce. With the use of immunocytochemical staining and a constant supply of properly fixed human abortuses from southern China, an early appearance of acetylcholinesterase, enkephalin, and substance P immunoreactivities was detected first in the spinal cord (weeks 5 to 7 of gestation), then in the brainstem nuclei (weeks 11 to 12). Their overlapping localizations in many regions of the CNS suggest possible interactions among neurons containing these substances, which are in turn important for the proper establishment of the neuronal circuitry. Immunoreactivity for neuropeptide Y appeared initially in the lateral region of upper segments of the spinal cord at week 12 of gestation, then spread latero-medially and cranio-caudally to the sacral region. In the hippocampus, neuropeptide Y neurons appeared from week 15 onwards. Serotoninergic neurons were found in the dorsal raphe nucleus at week 10 and then decreased in number as the fetus grew older. Somatostatin releasing inhibitory factor, vasopressin, and oxytocin were detected in the hypothalamus from weeks 12 to 14 onwards, and monoamine oxidase, succinic dehydrogenase, parvalbumin, calbindin D28K, and vasoactive intestinal peptide were found in the visual cortex at midgestation. The early appearance and the abundance of the neurotransmitters and neuropeptides in the developing CNS indicate that they may play a key role in neuronal differentiation.
Collapse
Affiliation(s)
- D T Yew
- Department of Anatomy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | | |
Collapse
|
128
|
Abstract
In recent studies, we demonstrated a distinct change in the distribution of glutamate decarboxylase 67 (GAD67) mRNA-containing neurons within the rat dentate gyrus from embryonic day 20 (E20) to postnatal day 15 (PN15) (Dupuy and Houser, J Comp Neurol 1997;389:402-418). We also observed a similar changing pattern for cells with birthdates of many of the mature GAD-containing neurons in the dentate gyrus (Dupuy and Houser, J Comp Neurol 1997;389:402-418). These observations suggested that some early-appearing GABA neurons within the developing molecular layer of the dentate gyrus may gradually alter their positions to become the mature GABAergic cells along the inner border of the granule cell layer. The goal of the present study was to provide additional evidence for our hypothesis by demonstrating the spatial relationships between GAD-containing neurons and granule cells at progressively older ages during development. In this study, immunohistochemical or in situ hybridization methods for the localization of GAD67 or its mRNA were combined with bromodeoxyuridine birthdating techniques that labeled early-generated granule cells with birthdates on E17. At E20, GAD67-containing neurons were located above the granule cell layer that contained E17 birthdated granule cells. During the first two postnatal weeks, both GAD67 mRNA-containing neurons and early-born granule cells were primarily concentrated within the granule cell layer. Double-labeled neurons were rarely observed, and this suggests that these two groups are separate populations. By PN15-PN30, most GAD67 mRNA-containing neurons were distributed along the base of the granule cell layer, significantly below the E17 birthdated granule cells. These findings support our new hypothesis that mature GABA neurons along the inner border of the granule cell layer reach their positions by migrating or translocating through the developing granule cell layer.
Collapse
Affiliation(s)
- S Dupuy-Davies
- Department of Neurobiology, UCLA School of Medicine 90095-1763, USA
| | | |
Collapse
|
129
|
Silva FR, Palermo-Neto J. Developmental, neuro and immunotoxic effects of perinatal diazepam treatment in rats. Immunopharmacol Immunotoxicol 1999; 21:247-65. [PMID: 10319279 DOI: 10.3109/08923979909052761] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In utero exposure of rats to low dosages of diazepam (1.0-2.0 mg/kg) has been found to result in depression of the cellular and humoral immune responses during adulthood. Behavioral dysfunctions were also reported in infants from mothers with high benzodiazepine (BDZ) intake during pregnancy. The present experiment was undertaken to reconsider the potential action of diazepam during ontogeny in order to obtain further information about developmental processes using a refined methodology. Time-pregnant rats were treated subcutaneously with diazepam (2.0 mg/kg/day,: group E1) or with diazepam vehicle (group C1) from gestational day 14 to 20. Other dams (group E2) received the same BDZ dose from the 1st to the 21st day of lactation (weaning) or were not treated, remaining undisturbed in their home cages (group C2). The following results were obtained for animals perinatally treated with diazepam compared to groups C1 and C2: 1--increased time for testis descent and decreased time for vaginal opening (group E2); 2--no changes in the dates for ear end eye opening, or incisor tooth eruption (groups E1 and E2); 3--increased locomotor activity in the open-field (group E2) and/or in the plus maze (groups E1 and E2); 4--decreased levels of anxiety measured in the plus maze (groups E1 and E2); 5--decreased macrophage spreading and phagocytosis (groups E1 and E2). These results, which occurred in the absence of overt signs of maternal or fetal toxicity, demonstrate developmental, neuro- and immunotoxic effects of perinatal diazepam treatment in rats.
Collapse
Affiliation(s)
- F R Silva
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Brasil
| | | |
Collapse
|
130
|
Rovira C, Ben-Ari Y. Developmental study of miniature IPSCs of CA3 hippocampal cells: modulation by midazolam. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 114:79-88. [PMID: 10209245 DOI: 10.1016/s0165-3806(99)00022-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Maturation of GABAA/benzodiazepine receptors is associated with changes in their subunit composition. We have investigated whether these changes are accompanied by a developmental modification in the kinetic properties of miniature IPSCs (mIPSCs) and sensitivity to midazolam, a benzodiazepine agonist. In the presence of TTX (10 microM) and excitatory amino acid antagonists, AP5 (50 microM) and CNQX (50 microM), we whole-cell recorded mIPSCs in CA3 cells of hippocampal slices of adult and young (4-8 days) rats. mIPSCs were mediated by GABAA receptors as they were suppressed by bicuculline (10 microM). In both the adult and young rats, mIPSCs were similar in amplitude and kinetic properties. However, the mIPSCs frequency markedly increased with age from 4+/-3 Hz in the young rats to 20+/-9 Hz in the adult rats. In both age groups, midazolam (0.01 microM(-10) microM) and pentobarbital (30 microM) did not affect the amplitude, frequency and rise time of the mIPSCs but they increased to a similar extent their decay time constant. The current responses to isoguvacine, a GABAA agonist, were potentiated by 0.1 microM midazolam in both age groups. It is concluded that in immature and adult rats, synaptic GABAA receptors of CA3 were not different in their kinetic properties and sensitivity to midazolam.
Collapse
Affiliation(s)
- C Rovira
- Institut des Neurosciences, Laboratoire de Neurobiologie du Developpement et du Vieillissement, UMR 7624, 9 quai St-Bernard, 75252, Paris Cedex 05, France.
| | | |
Collapse
|
131
|
Tobet SA, Henderson RG, Whiting PJ, Sieghart W. Special relationship of gamma-aminobutyric acid to the ventromedial nucleus of the hypothalamus during embryonic development. J Comp Neurol 1999; 405:88-98. [PMID: 10022198 DOI: 10.1002/(sici)1096-9861(19990301)405:1<88::aid-cne7>3.0.co;2-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ventromedial nucleus of the hypothalamus (VMH) is a key nucleus for regulating homeostatic, neuroendocrine, and behavioral functions. We conducted immunocytochemical analyses by using antisera directed against gamma-aminobutyric acid (GABA), its synthetic enzyme glutamic acid decarboxylase (GAD67), GABA-A receptor subunits (alpha2, beta3, epsilon), estrogen receptor-alpha, and Neuropeptide Y (NPY) in the region of the VMH in embryonic mice to identify potential patterning elements for VMH formation. Cells and fibers containing GABA and GAD67 encircled the primordial VMH as early as embryonic day 13 (E13) when the cytoarchitecture of the VMH was not recognizable by Nissl stain. At E16-17 the cytoarchitecture of the VMH became recognizable by Nissl stain as GABAergic fibers invaded the nucleus, continued postnatally, and by adulthood the density of GABAergic fibers was greater inside than outside the VMH. GABA-A receptor subunit expression (beta3 by E13 and alpha2 by E15) within the primordial VMH suggested potential sensitivity to the surrounding GABA signal. Brain slices were used to test whether fibers from distal or proximal sites influenced VMH development. Coronal Vibratome slices were prepared and maintained in vitro for 0-3 days. Nissl stain analyses showed a uniform distribution of cells in the region of the VMH on the day of plating (E15). After 3 days in vitro, cellular aggregation suggesting VMH formation was seen. Nuclear formation in vitro suggests that key factors resided locally within the coronal plane of the slices. It is suggested that either GABA intrinsic to the region nearby the VMH directly influences the development and organization of the VMH, or along with other markers provides an early indicator of pattern determination that precedes the cellular organization of the VMH.
Collapse
Affiliation(s)
- S A Tobet
- Program in Neuroscience, The Shriver Center and Harvard Medical School, Waltham, Massachusetts 02154, USA.
| | | | | | | |
Collapse
|
132
|
Abstract
The inhibitory neurotransmitter GABA may act as a trophic signal for developing monoamine neurons in embryonic rat brain, because GABA neurons and their receptors appear in brainstem during generation of monoamine neurons. To test this hypothesis, we used dissociated cell cultures from embryonic day 14 rat brainstem, which contains developing serotonin (5-HT), noradrenaline (tyrosine hydroxylase; TH), and GABA neurons. Immunocytochemistry and reverse transcription-PCR (RT-PCR) revealed the presence of multiple alpha, beta, gamma, and delta subunits in these cultures. Competitive RT-PCR demonstrated high levels of beta3 subunit transcripts. Expression of functional GABAA receptors was demonstrated using 36Cl- flux assays. To investigate GABAergic regulation of neuronal survival and growth, cultures were treated for 1-3 d in vitro with 10 microM GABA and/or GABAA antagonist (bicuculline or the pesticide dieldrin). The effects of treatments were quantified by analysis of immunoreactive 5-HT, TH, and GABA neurons. GABAA receptor ligands differentially regulated neuronal survival and growth depending on neurotransmitter phenotype. GABA exerted positive effects on monoamine neurons, which were countered by bicuculline (and dieldrin, 5-HT neurons only). By itself, bicuculline produced inhibitory effects on both 5-HT and TH neurons, whereas dieldrin potently inhibited 5-HT neurons only. GABA neurons responded positively to both antagonists, but more strongly to bicuculline. Taken together, these results demonstrate that the activation/inhibition of GABAA receptors produces opposite effects on the development of embryonic monoamine and GABA neurons. This suggests that these neurotransmitter phenotypes may express GABAA receptors that differ in fundamental ways, and these differences determine the developmental responses of these cells to GABAergic stimuli.
Collapse
|
133
|
Abstract
Neurotransmitter transporters are involved in termination of the synaptic neurotransmission and they also play a key role in neuroregulation and brain development. In this report, we describe the developmental distribution of the y-aminobutyric acid transporter GAT3 which transports gamma-aminobutyric acid (GABA) and beta-alanine in a sodium chloride-dependent manner. GAT3 was localized to the meninges in developmental stages where two other GABA transporters, GAT1 and GAT4, were adjacently expressed. In later developmental stages, only GAT3 remained in this area. The expression of GAT3 in the peripheral embryonic tissues was confined to the liver, to a layer of cells under the skin, to the mouse kidney, and to hipoccampal blood vessels only in late developmental stages. The developmental distribution of GAT3 suggests involvement in central nervous system (CNS) maturation.
Collapse
Affiliation(s)
- F Jursky
- Department of Biochemistry, Tel Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
134
|
Commons KG, Kow LM, Milner TA, Pfaff DW. In the ventromedial nucleus of the rat hypothalamus, GABA-immunolabeled neurons are abundant and are innervated by both enkephalin- and GABA-immunolabeled axon terminals. Brain Res 1999; 816:58-67. [PMID: 9878688 DOI: 10.1016/s0006-8993(98)01084-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Immunohistochemical-labeling for the neurochemicals gamma-aminobutyric acid (GABA) and enkephalin are abundant in the ventromedial nucleus of the hypothalamus (VMN). In VMN, both GABA and enkephalin may function to regulate feeding behavior, as well as other hormone-controlled behaviors. Importantly, in several brain areas, enkephalin is often thought to modulate GABAergic neurotransmission. Therefore, we used dual-labeling immunohistochemistry with electron microscopic analysis to study the circuitry of neurons containing GABA- and/or enkephalin-labeling within the VMN. Somato-dendritic profiles containing GABA-labeling were three fold more abundant than GABA-labeled axon terminals (117 soma or dendrites vs. 34 axons). In addition, axon terminals containing GABA-labeling sometimes synapsed onto GABA-labeled somata or dendrites (25% or 9/34). In contrast, under these conditions labeling for enkephalin was primarily restricted to axon terminals, which were very abundant throughout VMN. Enkephalin-containing terminals accounted for a large fraction (25% 23/92) of the axons in contact with GABA-labeled dendrites, although they also contacted unlabeled dendrites. These observations suggest that a population of VMN neurons are GABAergic. These may be either local circuit 'interneurons' or projection neurons. In addition, GABA-labeled VMN neurons may be regulated by either enkephalin or GABA. These morphologic observations provide the basis for disinhibitory mechanisms to function within the VMN.
Collapse
Affiliation(s)
- K G Commons
- Laboratory of Neurobiology and Behavior, The Rockefeller University Box 275, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
135
|
Lima L, Obregón F, Matus P. Taurine, glutamate and GABA modulate the outgrowth from goldfish retinal explants and its concentrations are affected by the crush of the optic nerve. Amino Acids 1999; 15:195-209. [PMID: 9871499 DOI: 10.1007/bf01318859] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The amino acid taurine plays an important trophic role during development and regeneration of the central nervous system. Other amino acid systems, such as those for glutamate and gamma-aminobutyric acid (GABA), are modified during the same physiological and pathological processes. After crushing the optic nerve, goldfish retinal explants were plated in the absence and in the presence of different amino acids and amino acid receptor agonists. The length and the density of the neurites were measured at 5 days in culture. Taurine increased the length and the density of neurites. Glutamate and glycine increased them at low concentration, but were inhibitors at higher concentration. The combination of N-methyl-D-aspartate (NMDA) and glycine produced a greater inhibitory effect than NMDA alone. NMDA or alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) added simultaneously with taurine impaired the stimulatory effect of the latter. GABA stimulated the emission of neurites in a concentration dependent manner. Hypotaurine also elevated the length of neurites, but cysteinsesulfinic acid did not produce a significant effect. The concentrations of taurine, glutamate and GABA were determined by HPLC with fluorescent detection in the retina of goldfish at various days post-crushing the optic nerve. The levels of taurine were significantly increased at 48h after the crush, and were elevated up to 20 days. Glutamate level decreased after the lesion of the optic nerve and was still low at 20 days. GABA concentration was not significantly different from the control. The interaction of these amino acids during the regenerative period, especially the balance between taurine and glutamate, may be a determinant in restoring vision after the crush.
Collapse
Affiliation(s)
- L Lima
- Laboratorio de Neuroquímica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | | | | |
Collapse
|
136
|
Kiser PJ, Cooper NG, Mower GD. Expression of two forms of glutamic acid decarboxylase (GAD67 and GAD65) during postnatal development of rat somatosensory barrel cortex. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19981207)402:1<62::aid-cne5>3.0.co;2-m] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
137
|
Dupuy ST, Houser CR. Developmental changes in GABA neurons of the rat dentate gyrus: An in situ hybridization and birthdating study. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19971222)389:3<402::aid-cne4>3.0.co;2-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
138
|
Cazalets JR, Bertrand S, Sqalli-Houssaini Y, Clarac F. GABAergic control of spinal locomotor networks in the neonatal rat. Ann N Y Acad Sci 1998; 860:168-80. [PMID: 9928310 DOI: 10.1111/j.1749-6632.1998.tb09047.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We studied the GABAergic control of the spinal locomotor network using an isolated brain stem/spinal cord from newborn rats, in which locomotor-like activity was recorded. We demonstrate that endogenously released GABA controls the locomotor network, by decreasing or completely abolishing all locomotor-like activity. At first, we investigated the role played by GABA in the control of the locomotor period. By separately superfusing various compartments of the lumbar cord, we identified the targets of GABA. When bath-applied on the upper lumbar segments (L1/L2), GABA or its agonists (muscimol, baclofen) modulated the locomotor period, whereas it had no effects when bath-applied on the caudal lumbar cord (L3/L6). In the second step we studied how GABA may presynaptically control the locomotor drive arising from the locomotor network located in L1/L2. By use of the partitioned spinal cord, intracellular recordings from the caudal pool motoneurons (L4/L5) were performed, while initiating locomotor-like activity in L1/L2. We found that GABA or its agonists decreased the monosynaptic locomotor drive that the motoneurons received from the L1/L2 network, and we found a presynaptic effect exerted through the activation of GABAB receptors. In conclusion, this study emphasizes the role played by GABA at various levels in the control of the locomotor network in mammals.
Collapse
Affiliation(s)
- J R Cazalets
- CNRS Laboratoire de Neurobiologie et Mouvements, Marseille, France.
| | | | | | | |
Collapse
|
139
|
Kenigsberg RL, Hong Y, Théorêt Y. Cholinergic cell expression in the developing rat medial septal nucleus in vitro is differentially controlled by GABAA and GABAB receptors. Brain Res 1998; 805:123-30. [PMID: 9733945 DOI: 10.1016/s0006-8993(98)00690-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The early appearance and relative abundance of GABAergic neurons in basal forebrain cholinergic nuclei like the medial septum suggest that the maturation of the later developing cholinergic neurons in these nuclei may be controlled by GABA. To examine this possibility, the effects of both exogenous GABA and specific GABA receptor agonists, as well as that of endogenous GABA on the phenotypic expression and survival of the cholinergic neurons in primary cultures from the fetal rat medial septum, were studied. Treatment of these cultures for six days with GABA significantly decreased the enzymatic activity of choline acetyltransferase (EC 2.3.1.6) (ChAT) in a dose-dependent manner. This response to exogenous GABA was blocked by bicuculline, mimicked by muscimol and slightly potentiated by saclofen. Consistent with this latter observation, the GABAB receptor agonist, baclofen, dose-dependently increased septal ChAT activity. However, while the effect of baclofen on cholinergic expression was lost in the absence of glia, the suppressive effects of GABA or muscimol were more marked. Acetylcholinesterase (EC 3.1.1.7) (AChE) expression in mixed neuronal-glial cultures, was, like ChAT activity, increased or decreased in intensity with the inclusion of baclofen or muscimol, respectively. Although the number of AChE positive neurons in muscimol-treated cultures was significantly lower than that in controls, no changes in neither neuronal nor general cell viability were noted. Finally, as GABAA or GABAB receptor antagonists bicuculline and picrotoxin or saclofen, when applied alone to mixed cultures, increased or decreased ChAT activity, respectively, it appears that endogenous GABA, tonically released in the developing septum, may, via specific receptor types, differentially control the biochemical maturation of the cholinergic neurons.
Collapse
Affiliation(s)
- R L Kenigsberg
- Department of Pediatrics, Research Center, St. Justine's Hospital, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
140
|
Abstract
A microdissection technique was used to separate differentiated cortical plate (cp) cells from immature ventricular zone cells (vz) in the rat embryonic cortex. The cp population contained >85% neurons (TUJ1(+)), whereas the vz population contained approximately 60% precursors (nestin+ only). The chemotropic response of each population was analyzed in vitro, using an established microchemotaxis assay. Micromolar GABA (1-5 microM) stimulated the motility of cp neurons expressing glutamic acid decarboxylase (GAD), the rate-limiting enzyme in GABA synthesis. In contrast, femtomolar GABA (500 fM) directed a subset of GAD- vz neurons to migrate. Thus, the two GABA concentrations evoked the motility of phenotypically distinct populations derived from different anatomical regions. Pertussis toxin (PTX) blocked GABA-induced migration, indicating that chemotropic signals involve G-protein activation. Depolarization by micromolar muscimol, elevated [K+]o, or micromolar glutamate arrested migration to GABA or GABA mimetics, indicating that migration is inhibited in the presence of excitatory stimuli. These results suggest that GABA, a single ligand, can promote motility via G-protein activation and arrest attractant-induced migration via GABAA receptor-mediated depolarization.
Collapse
|
141
|
Van Bockstaele EJ. Morphological substrates underlying opioid, epinephrine and gamma-aminobutyric acid inhibitory actions in the rat locus coeruleus. Brain Res Bull 1998; 47:1-15. [PMID: 9766384 DOI: 10.1016/s0361-9230(98)00062-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The locus coeruleus (LC) has been implicated in attentional processes related to orienting behaviors, learning and memory, anxiety, stress, the sleep-wake cycle, and autonomic control, as well as to contributing to the affective state. Direct activation of LC neurons causes desynchronization of the electroencephalogram, suggesting that the LC is an important modulator of the behavioral state. The LC has been an intensely studied neuronal system, as the physiology and pharmacology of this nucleus is well understood. This is mainly because of the similarity in neurochemical composition of LC cells which all contain norepinephrine in the rat. However, the homogeneity in neurotransmitter content in LC neurons is sharply contrasted by the heterogeneity of neurochemicals found in its afferent processes. Among these are axon terminals that contain inhibitory and excitatory amino acids, monoamines, and neuropeptides, many of which have been shown to exert differential physiological effects on LC discharge activity. Although much attention has focused on physiological activation of LC neurons, substantial evidence indicates that diverse afferents prominently inhibit noradrenergic cellular activity. Such inhibitory neurochemicals, which arise from local and extrinsic sources, include gamma-aminobutyric acid (GABA) and epinephrine as well as the neuropeptides methionine5-enkephalin and leucine5-enkephalin. Inhibitory transmission in the LC has widespread implications for norepinephrine release at diverse postsynaptic targets, and clinically useful pharmacological agents such as clonidine, an alpha2 adrenergic receptor agonist that potently inhibits the firing of LC neurons, alleviate some negative physical symptoms observed following withdrawal from opiates. In the present review, the synaptic and functional organization of selected inhibitory-type neurotransmitters in the LC obtained from immunoelectron microscopic data will be discussed.
Collapse
Affiliation(s)
- E J Van Bockstaele
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
142
|
Clayton GH, Owens GC, Wolff JS, Smith RL. Ontogeny of cation-Cl- cotransporter expression in rat neocortex. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 109:281-92. [PMID: 9729431 DOI: 10.1016/s0165-3806(98)00078-9] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neuronal precursors and immature cortical neurons actively accumulate Cl- and as a consequence depolarize in response to GABAA receptor activation. With maturity, intracellular Cl- decreases resulting in a shift towards GABAA inhibition. These observations suggest that changes in expression of cation-Cl- cotransporters may have a significant role in the ontogeny of neuronal Cl- homeostasis. Using ribonuclease protection analysis and in situ hybridization we examined the developmental expression of all presently known members of the cation-Cl- cotransporter gene family in rat brain. Of the inwardly directed cotransporters, NKCC-1, NKCC-2, and NCC-1, only NKCC-1 was detected at significant levels in brain. NKCC-1 was expressed in neurons, appearing first in cortical plate but not in ventricular or subventricular zone. Expression levels peaked by the third postnatal week and were maintained into adulthood. The outwardly directed cotransporters, KCC-1 and KCC-2, demonstrated significantly different levels and time courses of expression. KCC-1 was expressed prenatally at very low levels which increased little over the course of development. In contrast, KCC-2 expression appeared perinatally and increased dramatically after the first week of postnatal life. Differential changes in expression of this gene family occurred during periods of critical shifts in chloride homeostasis and GABA response suggestive of a role in these processes. Furthermore the absence of expression of known inwardly directed cotransporters in Cl- accumulating neuroepithelia and lack of evidence for glial expression suggests that as yet unidentified members of this gene family may be involved in chloride homeostasis in immature neuronal precursors and neuroglia.
Collapse
Affiliation(s)
- G H Clayton
- Neurology and Pediatrics, Department of Neurology, B-182, University of Colorado Health Sciences Center, 4200 E. Ninth Ave., Denver, CO 80262, USA
| | | | | | | |
Collapse
|
143
|
Abstract
GABAergic and glycinergic circuits are found throughout the auditory brainstem, and it is generally assumed that transmitter phenotype is established early in development. The present study documents a profound transition from GABAergic to glycinergic transmission in the gerbil lateral superior olive (LSO) during the first 2 postnatal weeks. Whole-cell voltage-clamp recordings were obtained from LSO neurons in a brain slice preparation, and IPSCs were evoked by electrical stimulation of the medial nucleus of the trapezoid body (MNTB), a known glycinergic projection in adult animals. GABAergic and glycinergic components were identified by blocking transmission with bicuculline and strychnine (SN), respectively. In the medial limb of LSO, there was a dramatic change in the GABAergic IPSC component, decreasing from 78% at postnatal day 3 (P3)-P5 to 12% at P12-P16. There was an equal and opposite increase in the glycinergic component during this same period. Direct application of GABA also elicited significantly larger amplitude and longer duration responses in P3-P5 neurons compared with glycine-evoked responses. In contrast, MNTB-evoked IPSCs in lateral limb neurons were more sensitive to SN throughout development. Consistent with the electrophysiological observations, there was a reduction in staining for the beta2,3-GABAA receptor subunit from P4 to P14, whereas staining for the glycine receptor-associated protein gephyrin increased. Brief exposure to baclofen depressed transmission at excitatory and inhibitory synapses for approximately 15 min, suggesting a GABAB-mediated metabotropic signal. Collectively, these data demonstrate a striking switch from GABAergic to glycinergic transmission during postnatal development. Although GABA and glycine elicit similar postsynaptic ionotropic responses, our results raise the possibility that GABAergic transmission in neonates may play a developmental role distinct from that of glycine.
Collapse
|
144
|
Clayton GH, Staley KJ, Wilcox CL, Owens GC, Smith RL. Developmental expression of C1C-2 in the rat nervous system. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 108:307-18. [PMID: 9693808 DOI: 10.1016/s0165-3806(98)00045-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Regulation of expression of the voltage-gated chloride channel, C1C-2, was investigated during development and adult life in rat brain. RNase protection assays demonstrated a marked increase in levels of expression of C1C-2 in brain during early postnatal development which was also detected in adult brain. In situ hybridization of E15 and E18 rat brains demonstrated C1C-2 expression in deep brain nuclei and scattered cells within the neuroepithelial layers, but not in the regions of subventricular zone that primarily give rise to glial populations. By E18 all neurons within the emerging cortical plate and its equivalent in other areas of the CNS were heavily labeled. During the first postnatal week, C1C-2 was highly expressed in most neurons. By P7 a pattern of differential expression emerged with evidence of decreased expression of C1C-2 mRNA in many neuronal populations. In adult rat brain, C1C-2 was expressed at highest levels in large neurons as found within layer V of cortex, Ammon's Horn of hippocampus, or mitral cells of the olfactory bulb and Purkinje cells within the cerebellum. Many smaller neurons within the diencephalon maintained significant levels of expression. A functional conductance was readily detected in hippocampal neurons during the first postnatal week, which had the same characteristic properties as the conductance observed in adult neurons. The observed expression and functional presence of C1C-2 suggest a widespread role in neuronal chloride homeostasis in early postnatal life, and demonstrated that cell specific shut-down resulted in the adult pattern of expression.
Collapse
Affiliation(s)
- G H Clayton
- Department of Neurology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | |
Collapse
|
145
|
Hagedorn M, Mack AF, Evans B, Fernald RD. The embryogenesis of rod photoreceptors in the teleost fish retina, Haplochromis burtoni. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 108:217-27. [PMID: 9693798 DOI: 10.1016/s0165-3806(98)00051-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Development of the retina, like that of other tissues, occurs via an orderly sequence of cell division and differentiation, producing the functional retina. In teleost fish, however, cell division and differentiation in the retina continue throughout the life of the animal in two distinct ways. Stem cells in a circumferential germinal zone at the periphery of the retina give rise to all retinal cell types and progenitor cells located throughout the retina in the outer nuclear layer (ONL) produce new rod photoreceptors. These processes in adult retina recapitulate in space the embryonic events responsible for forming the retina. Analysis of these events in an African cichlid fish, Haplochromis burtoni, confirmed that cone photoreceptors differentiate first, followed by rod photoreceptors. Correspondingly, at the margin of the eye, cone photoreceptors differentiate nearer to the margin than do rods. Control of photoreceptor production is not understood. Here we present the time of appearance and distribution pattern of GABA and vimentin which are candidates for the control of retinal cell division and differentiation. Antibody staining reveals that both GABA and vimentin exhibit unique patterns of expression during embryonic retinal development. Vimentin immunoreactivity is evident throughout the retina in a spoke-like pattern between developmental Days 4 and 7, as both cone and rod photoreceptors are being formed. GABA is expressed in horizontal cells between Days 5 and 7, corresponding to the onset of rod differentiation in time and in position within the retina. Moreover, the wave of GABAergic staining in the horizontal cells parallels the wave of rod differentiation across the embryonic retina of H. burtoni. Thus, GABA may play a role in the development of rod photoreceptors.
Collapse
Affiliation(s)
- M Hagedorn
- Institute of Neuroscience, University of Oregon, Eugene 97403, USA.
| | | | | | | |
Collapse
|
146
|
Foa LC, Cooke IR. The ontogeny of GABA- and glutamate-like immunoreactivity in the embryonic Australian freshwater crayfish, Cherax destructor. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 107:33-42. [PMID: 9602044 DOI: 10.1016/s0165-3806(97)00216-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The distribution and ontogeny of GABA- and glutamate-like immunoreactivity in embryos of the Australian freshwater crayfish Cherax destructor were investigated over the period from 30% development until hatching. GABA-like immunoreactive cells and fibres appeared first in the brain at 40-45% development. By 70% development, GABA-like immunoreactive cells were present in almost all ganglia, and GABA-like immunoreactive fibres were distributed extensively throughout the neuropil, commissures and connectives of the central nervous system, and were also found in peripheral nerve roots supplying the appendages and the abdominal musculature. In contrast, glutamate-like immunoreactivity did not appear in the central nervous system until 60-65% development. By the time of hatching, the distribution of glutamate-like immunoreactivity was restricted to discrete regions of neuropil and fibre staining in the thoracic and abdominal nerve cord, the abdominal musculature and the appendages. The precocious establishment of the extensive distribution of GABA-like immunoreactive neurons in the developing crayfish embryo is consistent with the possibility that these neurons play a trophic role in controlling or modulating the development of the nervous system.
Collapse
Affiliation(s)
- L C Foa
- School of Biological and Chemical Sciences, Deakin University, Geelong, Australia
| | | |
Collapse
|
147
|
GABA inhibits migration of luteinizing hormone-releasing hormone neurons in embryonic olfactory explants. J Neurosci 1998. [PMID: 9502815 DOI: 10.1523/jneurosci.18-07-02560.1998] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
During development, a subpopulation of olfactory neurons transiently expresses GABA. The spatiotemporal pattern of GABAergic expression coincides with migration of luteinizing hormone-releasing hormone (LHRH) neurons from the olfactory pit to the CNS. In this investigation, we evaluated the role of GABAergic input on LHRH neuronal migration using olfactory explants, previously shown to exhibit outgrowth of olfactory axons, migration of LHRH neurons in association with a subset of these axons, and the presence of the olfactory-derived GABAergic neuronal population. GABAA receptor antagonists bicuculline (10(-5) M) or picrotoxin (10(-4) M) had no effect on the length of peripherin-immunoreactive olfactory fibers or LHRH cell number. However, LHRH cell migration, as determined by the distance immunopositive cells migrated from olfactory pits, was significantly increased by these perturbations. Addition of tetrodotoxin (10(-6) M), to inhibit Na+-transduced electrical activity, also significantly enhanced LHRH migration. The most robust effect observed was dramatic inhibition of LHRH cell migration in explants cultured in the presence of the GABAA receptor agonist muscimol (10(-4) M). This study demonstrates that GABAergic activity in nasal regions can have profound effects on migration of LHRH neurons and suggests that GABA participates in appropriate timing of LHRH neuronal migration into the developing brain.
Collapse
|
148
|
Abstract
Considering the mechanisms responsible for age- and Alzheimer's disease (AD)-related neuronal degeneration, little attention was paid to the opposing relationships between the energy-rich phosphates, mainly the availability of the adenosine triphosphate (ATP), and the activity of the glutamic acid decarboxylase (GAD), the rate-limiting enzyme synthesizing the gamma-amino butyric acid (GABA). Here, it is postulated that in all neuronal phenotypes the declining ATP-mediated negative control of GABA synthesis gradually declines and results in age- and AD-related increases of GABA synthesis. The Ca2+-independent carrier-mediated GABA release interferes with Ca2+-dependent exocytotic release of all transmitter-modulators, because the interstitial (ambient) GABA acts on axonal preterminal and terminal varicosities endowed with depolarizing GABA(A)-benzodiazepine receptors; this makes GABA the "executor" of virtually all age- and AD-related neurodegenerative processes. Such a role of GABA is diametrically opposite to that in the perinatal phase, when the carrier-mediated GABA release, acting on GABA(A)/chloride ionophore receptors, positively controls chemotactic migration of neuronal precursor cells, has trophic actions and initiates synaptogenesis, thereby enabling retrograde axonal transport of target produced factors that trigger differentiation of neuronal phenotypes. However, with advancing age, and prematurely in AD, the declining mitochondrial ATP synthesis unleashes GABA synthesis, and its carrier-mediated release blocks Ca2+-dependent exocytotic release of all transmitter-modulators, leading to dystrophy of chronically depolarized axon terminals and block of retrograde transport of target-produced trophins, causing "starvation" and death of neuronal somata. The above scenario is consistent with the following observations: 1) a 10-month daily administration to aging rats of the GABA-chloride ionophore antagonist, pentylenetetrazol, or of the BDZ antagonist, flumazenil (FL), each forestalls the age-related decline in cognitive functions and losses of hippocampal neurons; 2) the brains of aging rats, relative to young animals, and the postmortem brains of AD patients, relative to age-matched controls, show up to two-fold increases in GABA synthesis; 3) the aging humans and those showing symptoms of AD, as well as the aging nonhuman primates and rodents--all show in the forebrain dystrophic axonal varicosities, losses of transmitter vesicles, and swollen mitochondria. These markers, currently regarded as the earliest signs of aging and AD, can be reproduced in vitro cell cultures by 1 microM GABA; the development of these markers can be prevented by substituting Cl- with SO4(2-); 4) the extrasynaptic GABA suppresses the membrane Na+, K+-ATPase and ion pumping, while the resulting depolarization of soma-dendrites relieves the "protective" voltage-dependent Mg2+ control of the N-methyl-D-aspartate (NMDA) channels, thereby enabling Ca2+-dependent persistent toxic actions of the excitatory amino acids (EAA); and 5) in whole-cell patch-clamp recording from neurons of aging rats, relative to young rats, the application of 3 microM GABA, causes twofold increases in the whole-cell membrane Cl- conductances and a loss of the physiologically important neuronal ability to desensitize to repeated GABA applications. These age-related alterations in neuronal membrane functions are amplified by 150% in the presence of agonists of BDZ recognition sites located on GABA receptor. The GABA deafferentation hypothesis also accounts for the age- and AD-related degeneration in the forebrain ascending cholinergic, glutamatergic, and the ascending mesencephalic monoaminergic system, despite that the latter, to foster the distribution-utilization of locally produced trophins, evolved syncytium-like connectivities among neuronal somata, axon collaterals, and dendrites, to bidirectionally transport trophins. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- T J Marczynski
- Department of Pharmacology, College of Medicine, University of Illinois, Chicago 60612, USA.
| |
Collapse
|
149
|
Amadeo A, de Biasi S, Frassoni C, Ortino B, Spreafico R. Immunocytochemical and ultrastructural study of the rat perireticular thalamic nucleus during postnatal development. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980316)392:3<390::aid-cne8>3.0.co;2-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
150
|
Vogt Weisenhorn DM, Celio MR, Rickmann M. The onset of parvalbumin-expression in interneurons of the rat parietal cortex depends upon extrinsic factor(s). Eur J Neurosci 1998; 10:1027-36. [PMID: 9753170 DOI: 10.1046/j.1460-9568.1998.00120.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Parvalbumin (PV) belongs to the large family of EF-hand calcium-binding proteins and is an excellent marker for a subpopulation of GABAergic neocortical interneurons. During cortical development, PV first appears on postnatal day (P)8, in the infragranular layers; after P14, it also becomes apparent within the supragranular layers. However, nothing is known about the factors controlling its expression, which could involve functional activity, neuronal connectivity and/or neurotrophic factors. It being difficult to manipulate these parameters in vivo, their role may be more readily assessed in organotypic cultures, which are deprived of their subcortical afferents and efferents, and hence of subcortically derived neurotrophic factors and extrinsic functional activity. We prepared slices of the rat brain on P3, P5, P7 and P9, maintained them in culture for 2-5 weeks, and compared the temporal and spatial distribution pattern of PV-immunoreactivity within these slices with the in vivo situation. We found, first, that during late postnatal in vivo development and ageing, the number of PV-immunoreactive neurons in the parietal cortex decreases significantly, and second, that the expression of PV-immunoreactivity in the parietal cortex was markedly influenced by the phase of postnatal development at which slice cultures were explanted. In those removed on P7 and P9, the number of PV-immunoreactive cells, as well as the temporal and spatial distribution pattern of PV-immunoreactivity corresponded to the in vivo situation, but in explants obtained on P3 or P5, PV-immunoreactivity remained confined to layer V of the cortex, reminiscent of the expression profile manifested at the end of the second postnatal week in vivo. Also, the number of PV-immunoreactive cells in these cultures was significantly lower than in explants at the later stages. Our results indicate that the onset of PV-expression in the parietal cortex depends upon extrinsic cortical factors subsisting prior to P7. Once the production of this protein has been initiated, such influences are no longer required.
Collapse
Affiliation(s)
- D M Vogt Weisenhorn
- Emory University, School of Medicine, Department of Pathology, Atlanta, GA 30329, USA.
| | | | | |
Collapse
|