101
|
Rommelfanger KS, Weinshenker D. Norepinephrine: The redheaded stepchild of Parkinson's disease. Biochem Pharmacol 2007; 74:177-90. [PMID: 17416354 DOI: 10.1016/j.bcp.2007.01.036] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 01/27/2007] [Accepted: 01/29/2007] [Indexed: 01/12/2023]
Abstract
Parkinson's disease (PD) affects approximately 1% of the world's aging population. Despite its prevalence and rigorous research in both humans and animal models, the etiology remains unknown. PD is most often characterized by the degeneration of dopamine (DA) neurons in the substantia nigra pars compacta (SNc), and models of PD generally attempt to mimic this deficit. However, PD is a true multisystem disorder marked by a profound but less appreciated loss of cells in the locus coeruleus (LC), which contains the major group of noradrenergic neurons in the brain. Historic and more recent experiments exploring the role of norepinephrine (NE) in PD will be analyzed in this review. First, we examine the evidence that NE is neuroprotective and that LC degeneration sensitizes DA neurons to damage. The second part of this review focuses on the potential contribution of NE loss to the behavioral symptoms associated with PD. We propose that LC loss represents a crucial turning point in PD progression and that pharmacotherapies aimed at restoring NE have important therapeutic potential.
Collapse
Affiliation(s)
- K S Rommelfanger
- Department of Human Genetics, Emory University, Atlanta, GA 30322, United States
| | | |
Collapse
|
102
|
Carvey PM, Punati A, Newman MB. Progressive dopamine neuron loss in Parkinson's disease: the multiple hit hypothesis. Cell Transplant 2006; 15:239-50. [PMID: 16719059 DOI: 10.3727/000000006783981990] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Animal models have been an essential tool for researchers and clinicians in their efforts to study and treat Parkinson's disease (PD). Thus, the various ways 6-hydroxydopamine is employed, the use of MPTP in rodents and nonhuman primates, the prenatal exposure to bacterial endotoxin, the postnatal exposure to environmental toxins such as paraquat and rotenone, the assessment of dopamine (DA) neurons in genetic knockout mouse, and even the behavioral analysis of fruit flies and worms have added significantly to our knowledge base of PD--or have they? Are these animal models manifesting a true model of PD? Have the 7786 published studies (to date) on PD with animal models led to a clearer understanding of its etiology, treatment, or progression? In this review we critically assess this question. We begin with a succinct history of the major contributions, which have led to the current animal models of PD. We then evaluate the primary issue of the progressive loss of DA neurons, which, except for a few studies, has not been addressed in animal models of PD, even though this is the major pathological characteristic of the disease. Lastly, we discuss the possibility that more than one risk factor for PD may be necessary to develop an animal model that shows synergy--the progressive loss of DA neurons. Thus, the multiple hit hypothesis of PD-that is, the effect of more then one risk factor-may be the start of new era in animal models of PD that is one step closer to mimicking the pathology of PD in humans.
Collapse
Affiliation(s)
- Paul M Carvey
- Department of Pharmacology, Rush University Medical Center, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
103
|
Ide M, Yamada K, Toyota T, Iwayama Y, Ishitsuka Y, Minabe Y, Nakamura K, Hattori N, Asada T, Mizuno Y, Mori N, Yoshikawa T. Genetic association analyses of PHOX2B and ASCL1 in neuropsychiatric disorders: evidence for association of ASCL1 with Parkinson's disease. Hum Genet 2005; 117:520-7. [PMID: 16021468 DOI: 10.1007/s00439-005-1342-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 05/02/2005] [Indexed: 11/28/2022]
Abstract
We previously identified frequent deletion/insertion polymorphisms in the 20-alanine homopolymer stretch of PHOX2B (PMX2B), the gene for a transcription factor that plays important roles in the development of oculomotor nerves and catecholaminergic neurons and regulates the expression of both tyrosine hydroxylase and dopamine beta-hydroxylase genes. An association was detected between gene polymorphisms and overall schizophrenia, and more specifically, schizophrenia with ocular misalignment. These prior results implied the existence of other schizophrenia susceptibility genes that interact with PHOX2B to increase risk of the combined phenotype. ASCL1 was considered as a candidate interacting partner of PHOX2B, as ASCL1 is a transcription factor that co-regulates catecholamine-synthesizing enzymes with PHOX2B. The genetic contributions of PHOX2B and ASCL1 were examined separately, along with epistatic interactions with broader candidate phenotypes. These phenotypes included not only schizophrenia, but also bipolar affective disorder and Parkinson's disease (PD), each of which involve catecholaminergic function. The current case-control analyses detected nominal associations between polyglutamine length variations in ASCL1 and PD (P=0.018), but supported neither the previously observed weak association between PHOX2B and general schizophrenia, nor other gene-disease correlations. Logistic regression analysis revealed the effect of ASCL1 dominant x PHOX2B additive (P=0.008) as an epistatic gene-gene interaction increasing risk of PD. ASCL1 controls development of the locus coeruleus (LC), and accumulating evidence suggests that the LC confers protective effects against the dopaminergic neurodegeneration inherent in PD. The present genetic data may thus suggest that polyglutamine length polymorphisms in ASCL1 could influence predispositions to PD through the fine-tuning of LC integrity.
Collapse
Affiliation(s)
- Masayuki Ide
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Gobert A, Billiras R, Cistarelli L, Millan MJ. Quantification and pharmacological characterization of dialysate levels of noradrenaline in the striatum of freely-moving rats: release from adrenergic terminals and modulation by alpha2-autoreceptors. J Neurosci Methods 2005; 140:141-52. [PMID: 15589344 DOI: 10.1016/j.jneumeth.2004.04.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Accepted: 04/28/2004] [Indexed: 10/26/2022]
Abstract
Information concerning striatal levels of noradrenaline (NA) remains inconsistent. Here we have addressed this issue using a sensitive method of HPLC coupled to amperometric detection. The NA reuptake-inhibitor, reboxetine, selectively elevated levels of NA versus dopamine (DA), and NA levels were also selectively elevated by the alpha2-adrenoceptor (AR) antagonist, atipamezole. The actions of atipamezole were mimicked by the preferential alpha2A-AR antagonist, BRL44408, while JO-1 and prazosin, preferential antagonists at alpha2C-ARs, caused less marked elevations in NA levels. In contrast to antagonists, the alpha2-AR agonist, S18616, decreased NA levels and likewise suppressed those of DA. Unilateral lesions of the substantia nigra with 6-hydroxydopamine depleted DA levels without affecting those of NA. Further, the D3/D2 receptor agonist, quinelorane, decreased levels of DA without modifying those of NA. However, the D3/D2 receptor antagonists, haloperidol and raclopride, and the DA reuptake-inhibitor, GBR12935, elevated levels of both DA and NA. Levels of 5-HT (but not of NA or DA) were increased only by the 5-HT reuptake-inhibitor, citalopram. They were decreased by S18616 and prazosin, reflecting the inhibitory and excitatory influence of alpha2- and alpha1-ARs, respectively, upon serotonergic pathways. In conclusion, NA in the striatum is derived from adrenergic terminals. Its release is subject to tonic, inhibitory control by alpha2-ARs, possibly involving both alpha2A- and alpha2C-AR subtypes, though their respective contribution requires clarification. A role of dopaminergic terminals in the reuptake of NA likely explains the elevation in its levels elicited by DA reuptake-inhibitors and D3/D2 receptor antagonists.
Collapse
Affiliation(s)
- Alain Gobert
- Psychopharmacology Department, Institut de Recherches Servier, Centre de Recherches de Croissy, 125 chemin de Ronde, Croissy/Seine 78290, France.
| | | | | | | |
Collapse
|
105
|
Rommelfanger KS, Weinshenker D, Miller GW. Reduced MPTP toxicity in noradrenaline transporter knockout mice. J Neurochem 2005; 91:1116-24. [PMID: 15569255 DOI: 10.1111/j.1471-4159.2004.02785.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The noradrenergic neurons of the locus coeruleus (LC) are damaged in Parkinson's disease (PD). Neurotoxin ablation of the LC noradrenergic neurons has been shown to exacerbate the dopaminergic toxicity of MPTP, suggesting that the noradrenergic system protects dopamine neurons. We utilized mice that exhibit elevated synaptic noradrenaline (NA) by genetically deleting the noradrenaline transporter (NET), a key regulator of the noradrenergic system (NET KO mice). NET KO and wild-type littermates were administered MPTP and striatal dopamine terminal integrity was assessed by HPLC of monoamines, immmunoblotting for dopaminergic markers and tyrosine hydroxylase (TH) immunohistochemistry. MPTP significantly reduced striatal dopamine in wild-type mice, but not in the NET KO mice. To confirm that the protection observed in the NET KO mice was due to the lack of NET, we treated wild-type mice with the specific NET inhibitor, nisoxetine, and then challenged them with MPTP. Nisoxetine conferred protection to the dopaminergic system. These data indicate that NA can modulate MPTP toxicity and suggest that manipulation of the noradrenergic system may have therapeutic value in PD.
Collapse
|
106
|
Srinivasan J, Schmidt WJ. Serotonergic influence on the potentiation of D-amphetamine and apomorphine-induced rotational behavior by the α2-adrenoceptor antagonist 2-methoxy idazoxan in hemiparkinsonian rats. J Neural Transm (Vienna) 2004; 112:1223-36. [PMID: 15614426 DOI: 10.1007/s00702-004-0259-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 11/07/2004] [Indexed: 10/26/2022]
Abstract
The alpha(2)-adrenoceptor antagonists potentiate both ipsilateral and contralateral rotations induced by amphetamine and apomorphine respectively in hemiparkinsonian rats. The present study investigated the role of serotonergic transmission in this potentiation in unilaterally 6-hydroxydopamine nigral lesioned rats. D-amphetamine (0.5 mg/kg, i.p.) produced ipsilateral rotations, which were decreased by the dopamine receptor antagonist haloperidol (0.2 mg/kg, i.p.) and the alpha(1)-receptor antagonist prazosin (1 mg/kg, i.p.). The selective alpha(2)-antagonist 2-methoxy idazoxan (0.2 mg/kg, i.p.) potentiated the amphetamine-induced ipsilateral rotations, that were attenuated by haloperidol and prazosin. The selective serotonin re-uptake inhibitor citalopram (10 mg/kg, i.p.) and selective serotonin synthesis inhibitor p-chlorophenylalanine (150 mg/kg, i.p., 3 days) decreased and increased the observed potentiation respectively. Apomorphine (0.2 mg/kg, s.c.) produced contralateral rotations, which were decreased by haloperidol but not by prazosin. 2-methoxy idazoxan potentiated these rotations which were attenuated by haloperidol but not by prazosin. Citalopram and p-chlorophenylalanine increased and decreased the observed potentiation respectively. Citalopram and p-chlorophenylalanine had no effect by per se on D-amphetamine and apomorphine-induced rotations. 2-methoxy idazoxan alone increased both ipsilateral and contralateral spontaneous rotations. Taken together, these findings indicate that an increase in noradrenergic tone by 2-methoxy idazoxan potentiates both D-amphetamine-induced ipsilateral and apomorphine induced contralateral rotations. alpha(1)-Antagonism attenuates D-amphetamine induced ipsilateral rotations and its potentiation by 2-methoxy idazoxan but not apomorphine rotations or its potentiation. Increasing and decreasing the serotonergic transmission decreases and increases D-amphetamine potentiation, whereas increases and decreases apomorphine potentiation respectively. The possible mechanisms for these findings are discussed.
Collapse
Affiliation(s)
- J Srinivasan
- Zoological Institute, Neuropharmacology, University of Tuebingen, Tuebingen, Germany
| | | |
Collapse
|
107
|
Srinivasan J, Schmidt WJ. Treatment with alpha2-adrenoceptor antagonist, 2-methoxy idazoxan, protects 6-hydroxydopamine-induced Parkinsonian symptoms in rats: neurochemical and behavioral evidence. Behav Brain Res 2004; 154:353-63. [PMID: 15313023 DOI: 10.1016/j.bbr.2004.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Revised: 03/02/2004] [Accepted: 03/04/2004] [Indexed: 11/22/2022]
Abstract
Noradrenaline, not only functions as a synaptic transmitter, but also promotes neural differentiation and regenerative processes. In Parkinson's disease, besides the dopaminergic degeneration, noradrenergic neurons of locus coeruleus origin degenerate as well. Drugs enhancing noradrenergic transmission in the locus coeruleus (e.g. alpha2-adrenoceptor antagonists) have been shown to be neuroprotective against Huntington's and ischemic animal models. However, in Parkinsonian animal models, most of the studies evaluated the worsening of experimental nigral neurodegeneration after locus coeruleus lesions. Here, it has been tested, whether treatment with the selective alpha2-adrenoceptor antagonist, 2-methoxy idazoxan (2.5 mg/kg i.p., twice daily for 5 days), before an experimental lesion to nigra, protects dopaminergic neurodegeneration. Dopaminergic degeneration was produced by 6-hydroxydopamine lesion in the median forebrain bundle. The concentrations of dopamine, 5-hydroxytryptamine and its metabolites were analysed in the various regions of the basal ganglia. The concentrations of noradrenaline and dopamine were measured in the regions innervated by locus coeruleus neurons and in the basal ganglia respectively, after 2-methoxy idazoxan treatment. The Parkinsonian behavior was assessed by catalepsy and activity test. 2-Methoxy idazoxan specifically increased the concentration of noradrenaline in the brain regions, innervated by locus coeruleus neurons. 6-OHDA lesion strongly depleted the concentration of dopamine and its metabolites in the striatum and SN, producing catalepsy and hypoactivity. Multiple treatments with 2-methoxy idazoxan reduced some of the observed neurochemical and behavioral indices of 6-hydroxydopamine-induced Parkinsonism, indicating neuroprotection. Although the mechanism underlying the neuroprotective property remains elusive, the therapeutic usage of alpha2-antagonists might be helpful in slowing the neuronal death and progression of Parkinson's disease.
Collapse
Affiliation(s)
- J Srinivasan
- Neuropharmacology, Zoological Institute, University of Tuebingen, Auf der Morgenstelle 28E, 72076 Tuebingen, Germany
| | | |
Collapse
|
108
|
Marien MR, Colpaert FC, Rosenquist AC. Noradrenergic mechanisms in neurodegenerative diseases: a theory. ACTA ACUST UNITED AC 2004; 45:38-78. [PMID: 15063099 DOI: 10.1016/j.brainresrev.2004.02.002] [Citation(s) in RCA: 316] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2004] [Indexed: 11/26/2022]
Abstract
A deficiency in the noradrenergic system of the brain, originating largely from cells in the locus coeruleus (LC), is theorized to play a critical role in the progression of a family of neurodegenerative disorders that includes Parkinson's disease (PD) and Alzheimer's disease (AD). Consideration is given here to evidence that several neurodegenerative diseases and syndromes share common elements, including profound LC cell loss, and may in fact be different manifestations of a common pathophysiological process. Findings in animal models of PD indicate that the modification of LC-noradrenergic activity alters electrophysiological, neurochemical and behavioral indices of neurotransmission in the nigrostriatal dopaminergic system, and influences the response of this system to experimental lesions. In models related to AD, noradrenergic mechanisms appear to play important roles in modulating the activity of the basalocortical cholinergic system and its response to injury, and to modify cognitive functions including memory and attention. Mechanisms by which noradrenaline may protect or promote recovery from neural damage are reviewed, including effects on neuroplasticity, neurotrophic factors, neurogenesis, inflammation, cellular energy metabolism and excitotoxicity, and oxidative stress. Based on evidence for facilitatory effects on transmitter release, motor function, memory, neuroprotection and recovery of function after brain injury, a rationale for the potential of noradrenergic-based approaches, specifically alpha2-adrenoceptor antagonists, in the treatment of central neurodegenerative diseases is presented.
Collapse
Affiliation(s)
- Marc R Marien
- Centre de Recherche Pierre Fabre, Neurobiology I, 17 Avenue Jean Moulin, 81106 Castres Cedex, France.
| | | | | |
Collapse
|
109
|
Jacobowitz DM, Kallarakal AT. Flotillin-1 in the substantia nigra of the Parkinson brain and a predominant localization in catecholaminergic nerves in the rat brain. Neurotox Res 2004; 6:245-57. [PMID: 15545008 DOI: 10.1007/bf03033435] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The substantia nigra cells of a normal and Parkinson's disease human brain were obtained by the micropunch procedure and total RNA was isolated. Differential display RT-PCR of the total RNA revealed differentially expressed cDNAs that were identified by sequencing. This resulted in the identification of a panel of known and unknown differentially expressed genes. Complex I (NADH ubiquinone oxidoreductase) and Complex IV (cytochrome oxidase) whose expressions are decreased in Parkinson's disease were reduced in the Parkinson brain. Of the various differentially expressed genes, flotillin-1, also known as reggie-2, was of great interest to us. It is a relatively new protein which is an integral membrane component of lipid rafts and has been implicated in signal transduction pathway events. In situ hybridization histochemical studies with human and rat brain sections revealed the presence of this mRNA in discrete neuronal (and possibly glial) cells of the substantia nigra, locus coeruleus, cortex, hippocampus, hypothalamus, thalamus, motor nuclei, nucleus basalis, raphe nucleus, and other brain regions. Immunohistochemical studies revealed that flotillin-1 is not present in all the regions where the message was found. In the rat brain, the most prominent observation was the revelation of all catecholamine cells (dopamine, norepinephrine, epinephrine) by the flotillin-1 antibody (1:100 dilution). At a more concentrated dilution (1:10) other neuronal cells (e.g., cortex, thalamus, hindbrain) were observed. At both dilutions dense dopaminergic fibers were observed in the rat caudate-putamen, nigrostriatal tract, and substantia nigra. It is significant that there is an increased gene expression of flotillin-1 in the Parkinson substantia nigra/ventral tegmental area. The role of flotillin in these cells is unclear although it is interesting that the reggie-2/flotillin-1 gene was upregulated during retinal axon regeneration in the goldfish visual pathway (Schulte et al., Development 124:577-87, 1997) which suggests that flotillin-1/reggie-2 might play a role in axonal growth from the remaining substantia nigra cells of the Parkinson brain.
Collapse
Affiliation(s)
- D M Jacobowitz
- Laboratory of Clinical Science, NIMH, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
110
|
Muñoz A, Lopez-Real A, Labandeira-Garcia JL, Guerra MJ. Interaction between the noradrenergic and serotonergic systems in locomotor hyperactivity and striatal expression of Fos induced by amphetamine in rats. Exp Brain Res 2003; 153:92-9. [PMID: 12955385 DOI: 10.1007/s00221-003-1582-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2003] [Accepted: 06/25/2003] [Indexed: 12/24/2022]
Abstract
It is classically considered that Amphetamine acts by increasing extracellular dopamine levels. However, some data suggest a relevant role of other neurochemical systems. The striatum is of particular interest to the study of this question. We have investigated the involvement of the noradrenergic and serotonergic systems and their possible interaction in the striatal responses to Amphetamine using a double behavioral and immunohistochemical approach (i.e., changes in locomotor activity and striatal expression of Fos). In normal rats, Amphetamine induced locomotor hyperactivity and striatal expression of Fos. Pretreatment with the alpha1-adrenergic-receptor antagonist Prazosin or lesion of the serotonergic system significantly reduced the locomotor hyperactivity and striatal Fos expression induced by Amphetamine. Administration of Prazosin to rats with serotonergic denervation did not produce any further reduction in the Amphetamine-induced locomotor hyperactivity or striatal Fos expression compared with that observed in rats with serotonergic denervation only. Amphetamine did not induce a detectable increase in Fos expression in dopamine-denervated striata, and elicited intense rotation towards the dopamine-denervated side. This suggests that striatal dopamine release is essential in the Amphetamine-induced effects on striatal neurons. However, the noradrenergic system plays an important role, and the serotonergic system is necessary for mediating the effects of the Amphetamine-induced noradrenergic stimulation. Concurrent stimulation of dopaminergic and serotonergic receptors appears necessary to regulate Amphetamine-induced responses in the striatal neurons.
Collapse
Affiliation(s)
- A Muñoz
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
111
|
Abstract
It is now well accepted that inflammatory responses in brain contribute to the genesis and evolution of damage in neurological diseases, trauma, and infection. Inflammatory mediators including cytokines, cell adhesion molecules, and reactive oxygen species including NO are detected in human brain and its animal models, and interventions that reduce levels or expression of these agents provide therapeutic benefit in many cases. Although in some cases, the causes of central inflammatory responses are clear--for example those due to viral infection in AIDS dementia, or those due to the secretion of proinflammatory substances by activated lymphocytes in multiple sclerosis--in other conditions the factors that allow the initiation of brain inflammation are not well understood; nor is it well known why brain inflammatory activation is not as well restricted as it is in the periphery. The concept is emerging that perturbation of endogenous regulatory mechanisms could be an important factor for initiation, maintenance, and lack of resolution of brain inflammation. Conversely, activation of intrinsic regulatory neuronal pathways could provide protection in neuroinflammatory conditions. This concept is the extension of the principle of "central neurogenic neuroprotection" formulated by Donald Reis and colleagues, which contends the existence of neuronal circuits that protect the brain against the damage initiated by excitotoxic injury. In this paper we will review work initiated in the Reis laboratory establishing that activation of endogenous neural circuits can exert anti-inflammatory actions in brain, present data suggesting that these effects could be mediated by noradrenaline, and summarize recent studies suggesting that loss of noradrenergic locus ceruleus neurons contributes to inflammatory activation in Alzheimer's disease.
Collapse
Affiliation(s)
- Elena Galea
- Department of Anesthesiology, University of Illinois, Chicago, Illinois USA
| | | | - Cinzia Dello Russo
- Department of Anesthesiology, University of Illinois, Chicago, Illinois USA
| | | |
Collapse
|
112
|
Villégier AS, Drouin C, Bizot JC, Marien M, Glowinski J, Colpaërt F, Tassin JP. Stimulation of postsynaptic α1b- and α2-adrenergic receptors amplifies dopamine-mediated locomotor activity in both rats and mice. Synapse 2003; 50:277-84. [PMID: 14556232 DOI: 10.1002/syn.10267] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent experiments have shown that mice lacking the alpha1b-adrenergic receptor (alpha1b-AR KO) are less responsive to the locomotor hyperactivity induced by psychostimulants, such as D-amphetamine or cocaine, than their wild-type littermates (WT). These findings suggested that psychostimulants induce locomotor hyperactivity not only because they increase dopamine (DA) transmission, but also because they release norepinephrine (NE). To test whether NE release could increase DA-mediated locomotor hyperactivity, rats were treated with GBR 12783 (10 mg/kg), a specific inhibitor of the DA transporter, and NE release was enhanced with dexefaroxan (0.63-10 mg/kg), a potent and specific antagonist at alpha2-adrenergic receptors. Dexefaroxan increased the GBR 12783-mediated locomotor response by almost 8-fold. The role of alpha1b-ARs in this effect was then verified in alpha1b-AR KO mice: whereas dexefaroxan (1 mg/kg) doubled locomotor hyperactivity induced by GBR 12783 (14 mg/kg) in WT mice, it decreased it by 43% in alpha1b-AR KO mice. Finally, to test whether this latter inhibition was related to the occupation of alpha2-adrenergic autoreceptors or of alpha2-ARs not located on noradrenergic neurons, effects of dexefaroxan on locomotor hyperactivity induced by D-amphetamine (0.75 mg/kg) were monitored in rats depleted in ascending noradrenergic neurons. In these animals dexefaroxan inhibited by 25-70% D-amphetamine-induced locomotor hyperactivity. These data indicate not only that the stimulation of alpha1b-ARs increases DA-mediated locomotor response, but also suggest a significant implication of postsynaptic alpha2-ARs. Involvement of these adrenergic receptor mechanisms may be exploited in the therapy of Parkinson's disease.
Collapse
|
113
|
Activation of beta1-adrenoceptors excites striatal cholinergic interneurons through a cAMP-dependent, protein kinase-independent pathway. J Neurosci 2003. [PMID: 12832552 DOI: 10.1523/jneurosci.23-12-05272.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The role of noradrenergic neurotransmission was analyzed in striatal cholinergic interneurons. Conventional intracellular and whole-cell patch-clamp recordings were made of cholinergic interneurons in rat brain slice preparations. Bath-applied noradrenaline (NA) (1-300 microm) dose-dependently induced both an increase in the spontaneous firing activity and a membrane depolarization of the recorded cells. In voltage-clamped neurons, an inward current was induced by NA. This effect was not prevented by alpha-adrenoceptor antagonists, whereas it was mimicked by the beta-adrenoceptor agonist isoproterenol and blocked by the beta1 antagonists propranolol and betaxolol. Interestingly, forskolin, activator of adenylate cyclase, mimicked and occluded the membrane depolarization obtained at saturating doses of both dopamine and NA. Accordingly, SQ22,536, a selective adenylate cyclase inhibitor, reduced the response to NA. Analysis of the reversal potential of the NA-induced current did not provide homogeneous results, indicating the involvement of multiple membrane conductances. Because cAMP is known to modulate Ih, the effects of ZD7288, a selective inhibitor of Ih current, were examined on the NA-induced membrane depolarization/inward current. ZD7288 mostly reduced the response to NA. However, both KT-5720 and H-89, selective protein kinase A (PKA) blockers, failed to prevent the excitatory action of NA. Likewise, calphostin C, antagonist of PKC, genistein, inhibitor of tyrosine kinase, and 8-Bromo-cGMP, blocker of PKG, did not affect the response to NA. Finally, double-labeling experiments combining beta1-adrenoceptor and choline acetyltransferase immunocytochemistry by means of confocal microscopy revealed a strong beta1-adrenoceptor labeling on cholinergic interneurons. We conclude that NA depolarizes striatal cholinergic interneurons via beta1-adrenoceptor activation, through a cAMP-dependent but PKA-independent mechanism.
Collapse
|
114
|
Battaglia G, Fornai F, Busceti CL, Lembo G, Nicoletti F, De Blasi A. Alpha-1B adrenergic receptor knockout mice are protected against methamphetamine toxicity. J Neurochem 2003; 86:413-21. [PMID: 12871582 DOI: 10.1046/j.1471-4159.2003.01867.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The psychostimulant methamphetamine (MA) is toxic to nigro-striatal dopaminergic terminals in both experimental animals and humans. In mice, three consecutive injections of MA (5 mg/kg, i.p. with 2 h of interval) induced a massive degeneration of the nigro-striatal pathway, as reflected by a 50% reduction in the striatal levels of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC), by a substantial reduction in striatal tyrosine hydroxylase and high-affinity DA transporter immunostaining, and by the development of reactive gliosis. MA-induced nigro-striatal degeneration was largely attenuated in mice lacking alpha1b-adrenergic receptors (ARs). MA-stimulated striatal DA release (measured by microdialysis in freely moving animals) and locomotor activity were also reduced in alpha1b-AR knockout mice. Pharmacological blockade of alpha-adrenergic receptors with prazosin also protected wild-type mice against MA toxicity. These results suggests that alpha1b-ARs may play a role in the toxicity of MA on nigro-striatal DA neurons.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- 3,4-Dihydroxyphenylacetic Acid/analysis
- 3,4-Dihydroxyphenylacetic Acid/metabolism
- Adrenergic alpha-1 Receptor Antagonists
- Adrenergic alpha-Antagonists/pharmacology
- Animals
- Behavior, Animal/drug effects
- Body Temperature/drug effects
- Central Nervous System Stimulants/toxicity
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Corpus Striatum/pathology
- Cytoprotection/drug effects
- Cytoprotection/genetics
- Dopamine/analysis
- Dopamine/metabolism
- Dopamine Plasma Membrane Transport Proteins
- Gliosis/chemically induced
- Gliosis/pathology
- Homovanillic Acid/analysis
- Homovanillic Acid/metabolism
- MPTP Poisoning/chemically induced
- MPTP Poisoning/drug therapy
- Male
- Membrane Glycoproteins
- Membrane Transport Proteins/metabolism
- Methamphetamine/toxicity
- Mice
- Mice, Knockout
- Microdialysis
- Motor Activity/drug effects
- Nerve Tissue Proteins
- Prazosin/pharmacology
- Receptors, Adrenergic, alpha-1/deficiency
- Receptors, Adrenergic, alpha-1/genetics
- Tyrosine 3-Monooxygenase/metabolism
Collapse
Affiliation(s)
- Giuseppe Battaglia
- IRCCS Istituto Neurologico Mediterraneo Neuromed, 86077 Pozzilli, Italy.
| | | | | | | | | | | |
Collapse
|
115
|
Harro J, Terasmaa A, Eller M, Rinken A. Effect of denervation of the locus coeruleus projections by DSP-4 treatment on [3H]-raclopride binding to dopamine D(2) receptors and D(2) receptor-G protein interaction in the rat striatum. Brain Res 2003; 976:209-16. [PMID: 12763255 DOI: 10.1016/s0006-8993(03)02677-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Changes in the control of dopaminergic neurotransmission by noradrenergic locus coeruleus (LC) projections has been implicated in such disorders as depression, drug addiction, and Parkinson's disease. In the present study, the effect of DSP-4, a neurotoxin highly selective for LC projections, on D(2) receptor abundance as assessed by [3H]-raclopride binding in the striatum was studied in rats after administration in doses of 10 and 50 mg/kg either 3 days or 1 month before decapitation. Three days after DSP-4 the levels of noradrenaline in the frontal cortex were dose-dependently reduced; after 1 month, noradrenaline levels were lowered only by the higher dose. DOPAC levels were dose-dependently reduced in the frontal cortex and striatum 3 days but not 1 month after DSP-4 treatment. Cortical 5-HIAA levels were reduced 3 days but not 1 month after DSP-4. The apparent number of D(2) receptor binding sites in the striatum was higher 1 month after either dose of DSP-4. DSP-4 treatment had no effect on [3H]-raclopride binding affinity, the ability of dopamine (DA) to compete with [3H]-raclopride binding and to activate [35S]GTPgammaS binding or on the binding affinities of GDP and [35S]GTPgammaS for corresponding G proteins 1 month after administration of the neurotoxin. These data suggest that after administration of DSP-4, short-term reduction in DA and 5-HT metabolism occurs. Subsequently, an upregulation of D(2) receptor binding sites develops in the striatum even after a minor denervation of the LC projections. Thus, alterations in the LC projection systems elicit lasting adaptive changes in DA-ergic neurotransmission that can serve as a substrate for psychiatric disorders.
Collapse
Affiliation(s)
- Jaanus Harro
- Department of Psychology, Center of Behavioral and Health Sciences, University of Tartu, EE-50410, Tartu, Estonia.
| | | | | | | |
Collapse
|
116
|
Holmberg M, Fagerholm V, Scheinin M. Regional distribution of alpha(2C)-adrenoceptors in brain and spinal cord of control mice and transgenic mice overexpressing the alpha(2C)-subtype: an autoradiographic study with [(3)H]RX821002 and [(3)H]rauwolscine. Neuroscience 2003; 117:875-98. [PMID: 12654340 DOI: 10.1016/s0306-4522(02)00966-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Behavioral studies on gene-manipulated mice have started to elucidate the neurobiological functions of the alpha(2C)-adrenoceptor (AR) subtype. In this study, we applied quantitative receptor autoradiography to investigate the potential anatomical correlates of the observed functional effects of altered alpha(2C)-AR expression. Labeling of brain and spinal cord sections with the subtype non-selective alpha(2)-AR radioligand [(3)H]RX821002 and the alpha(2C)-AR-preferring ligand [(3)H]rauwolscine revealed distinct binding-site distribution patterns. In control mice, [(3)H]rauwolscine binding was most abundant in the olfactory tubercle, accumbens and caudate putamen nuclei, and in the CA1 field of the hippocampus. A mouse strain with overexpression of alpha(2C)-AR regulated by a gene-specific promoter showed approximately two- to four-fold increased levels of [(3)H]rauwolscine binding in these regions. In addition, dramatic increases in [(3)H]rauwolscine binding were seen in the nerve layer of the olfactory bulb, the molecular layer of the cerebellum, and the ventricular system of alpha(2C)-AR-overexpressing mice, representing "ectopic" alpha(2C)-AR expression. Competition-binding experiments with several alpha(2)-AR ligands confirmed the alpha(2C)-AR identity of these sites. Our results provide quantitative evidence of the predominance of the alpha(2A)-AR subtype in most regions of the mouse CNS, but also disclose the wide distribution of alpha(2C)-AR in the normal mouse brain, although at relatively low density, except in the ventral and dorsal striatum and the hippocampal CA1 area. alpha(2C)-AR are thus present in brain regions involved in the processing of sensory information and in the control of motor and emotion-related activities such as the accumbens and caudate putamen nuclei, the olfactory tubercle, the lateral septum, the hippocampus, the amygdala, and the frontal and somatosensory cortices. The current results may help in specifying an anatomical framework for the functional roles of the alpha(2A)- and alpha(2C)-AR subtypes in the mouse CNS.
Collapse
Affiliation(s)
- M Holmberg
- Department of Pharmacology and Clinical Pharmacology, University of Turku, FIN-20520, Turku, Finland
| | | | | |
Collapse
|
117
|
Srinivasan J, Schmidt WJ. Potentiation of parkinsonian symptoms by depletion of locus coeruleus noradrenaline in 6-hydroxydopamine-induced partial degeneration of substantia nigra in rats. Eur J Neurosci 2003; 17:2586-92. [PMID: 12823465 DOI: 10.1046/j.1460-9568.2003.02684.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Parkinson's disease is characterized not only by a progressive loss of dopaminergic neurons in the substantia nigra but also by a degeneration of locus coeruleus noradrenergic neurons. The present study addresses the question of whether a partial neurodegeneration of dopaminergic neurons using 6-hydroxydopamine in rat, not sufficient to produce motor disturbances, is potentiated by prior selective denervation of locus coeruleus noradrenergic terminal fields using N-ethyl-2-bromobenzylamine. Two types of denervations, one causing dopamine deficiency alone and the other causing noradrenaline and dopamine deficiency, were performed. Noradrenaline, 5-hydroxytryptamine, 5-hydroxyindole acetic acid, dopamine and its metabolites were analysed in various brain regions. Behaviour was evaluated by catalepsy tests and activity box. N-ethyl-2-bromobenzylamine selectively depleted noradrenaline from neurons of locus coeruleus origin. Decreased dopamine content in the striatum, substantia nigra and pre-frontal cortex was observed after dopaminergic lesion with 6-hydroxydopamine (42.9%). Additional locus coeruleus noradrenaline depletion with N-ethyl-2-bromobenzylamine aggravated the dopamine depletion (61.2%). The lesion in the noradrenergic and dopaminergic neurodegenerated group was not sufficient to induce consistent catalepsy and akinesia. However, after a subthreshold dose of haloperidol (0.1 mg/kg), the expression of catalepsy and akinesia was strong in the dual-lesioned group and less in the 6-hydroxydopamine-lesioned group. These results indicate that denervation of locus coeruleus noradrenergic terminals with N-ethyl-2-bromobenzylamine potentiates the 6-hydroxydopamine-induced partial dopaminergic neurodegeneration and parkinsonian symptoms. Based on the present findings and existing reports, it can be concluded that noradrenergic neurons of locus coeruleus have neuromodulatory and neuroprotective properties on the dopaminergic neurons of basal ganglia and that noradrenergic degeneration may contribute to the aetiology and pathophysiology of Parkinson's disease.
Collapse
Affiliation(s)
- J Srinivasan
- Zoological Institute, Neuropharmacology, University of Tuebingen, Auf der Morgenstelle 28E, 72076, Tuebingen, Germany
| | | |
Collapse
|
118
|
Feinstein DL, Heneka MT, Gavrilyuk V, Dello Russo C, Weinberg G, Galea E. Noradrenergic regulation of inflammatory gene expression in brain. Neurochem Int 2002; 41:357-65. [PMID: 12176079 DOI: 10.1016/s0197-0186(02)00049-9] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It is now well accepted that inflammatory events contribute to the pathogenesis of numerous neurological disorders, including multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease, and AID's dementia. Whereas inflammation in the periphery is subject to rapid down regulation by increases in anti-inflammatory molecules and the presence of scavenging soluble cytokine receptors, the presence of an intact blood-brain barrier may limit a similar autoregulation from occurring in brain. Mechanisms intrinsic to the brain may provide additional immunomodulatory functions, and whose dysregulation could contribute to increased inflammation in disease. The findings that noradrenaline (NA) reduces cytokine expression in microglial, astroglial, and brain endothelial cells in vitro, and that modification of the noradrenergic signaling system occurs in some brain diseases having an inflammatory component, suggests that NA could act as an endogenous immunomodulator in brain. Furthermore, accumulating studies indicate that modification of the noradrenergic signaling system occurs in some neurodiseases. In this article, we will briefly review the evidence that NA can modulate inflammatory gene expression in vitro, summarize data supporting a similar immunomodulatory role in brain, and present recent data implicating a role for NA in attenuating the cortical inflammatory response to beta amyloid protein.
Collapse
|
119
|
Noradrenergic depletion potentiates beta -amyloid-induced cortical inflammation: implications for Alzheimer's disease. J Neurosci 2002. [PMID: 11923407 DOI: 10.1523/jneurosci.22-07-02434.2002] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Degeneration of locus ceruleus (LC) neurons and reduced levels of norepinephrine (NE) in LC projection areas are well known features of Alzheimer's disease (AD); however, the consequences of those losses are not clear. Because inflammatory mediators contribute to AD pathogenesis and because NE can suppress inflammatory gene expression, we tested whether LC loss influenced the brain inflammatory gene expression elicited by amyloid beta (Abeta). Adult rats were injected with the selective neurotoxin N-(2-chloroethyl)-N-ethyl-2 bromobenzylamine (DSP4) to induce LC death and subsequently injected in the cortex with Abeta (aggregated 1-42 peptide). DSP4 treatment potentiated the Abeta-dependent induction of inflammatory nitric oxide synthase (iNOS), interleukin (IL)-1beta, and IL-6 expression compared with control animals. In contrast, the induction of cyclooxygenase-2 expression was not modified by DSP4 treatment. In control animals, injection of Abeta induced iNOS primarily in microglial cells, whereas in DSP4-treated animals, iNOS was localized to neurons, as is observed in AD brains. Injection of Abeta increased IL-1beta expression initially in microglia and at later times in astrocytes, and expression levels were greater in DSP4-treated animals than in controls. The potentiating effects of DSP4 treatment on iNOS and IL-1beta expression were attenuated by coinjection with NE or the beta-adrenergic receptor agonist isoproterenol. These data demonstrate that LC loss and NE depletion augment inflammatory responses to Abeta and suggest that LC loss in AD is permissive for increased inflammation and neuronal cell death.
Collapse
|
120
|
Abstract
Stem cells have been suggested as candidate therapeutic tools for neurodegenerative disorders, given their ability to give rise to the appropriate cell types after grafting in vivo. In this review I summarize some of the evidence currently available concerning two approaches for the treatment of Parkinson's disease: (1) The generation of dopaminergic neurons from embryonic stem cells, multipotent stem cells, and neuronal progenitor cells for cell replacement therapy. (2) The engineering of multipotent stem cells to release glial cell-line derived neurotrophic factor, a potent neurotrophic factor for dopaminergic neurons, in a neuroprotective and neuroregenerative approach to the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- E Arenas
- Laboratory of Molecular Neurobiology, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
121
|
Eller M, Harro J. Partial denervation of the locus coeruleus projections by treatment with the selective neurotoxin DSP-4 potentiates the long-term effect of parachloroamphetamine on 5-hydroxytryptamine metabolism in the rat. Neurosci Lett 2002; 322:53-6. [PMID: 11958842 DOI: 10.1016/s0304-3940(02)00089-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pretreatment with N-2-chloroethyl-N-ethyl-2-bromobenzylamine (DSP-4), a neurotoxin highly selective for the locus coeruleus (LC) projections, has recently been found to increase the vulnerability of dopaminergic nerve terminals to their selective neurotoxins. In the present study, combined treatment with a selective serotonergic (5-HT-ergic) neurotoxin parachloroamphetamine (PCA) at low doses (1 or 2 mg/kg) and a low dose of DSP-4 (10 mg/kg) led to larger decreases in 5-hydroxyindoleacetic acid (5-HIAA) levels in several brain regions than with either toxin alone. A reduction in 5-hydroxytryptamine (5-HT) turnover was observed only after the combined treatment with low doses of DSP-4 and PCA. When DSP-4 (10 mg/kg) was administered 2 months before PCA (2 mg/kg), the effect of PCA on cortical 5-HT levels was augmented, as was the effect on cortical and hypothalamic 5-HIAA levels. Conclusively, after limited alterations in the LC projections, there is an enhanced sensitivity of 5-HT-ergic nerve terminals to PCA.
Collapse
Affiliation(s)
- Marika Eller
- Department of Psychology, Centre of Behavioural and Health Sciences, University of Tartu, 50410, Estonia
| | | |
Collapse
|
122
|
Harro J, Oreland L. Depression as a spreading adjustment disorder of monoaminergic neurons: a case for primary implication of the locus coeruleus. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 38:79-128. [PMID: 11750928 DOI: 10.1016/s0165-0173(01)00082-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A model for the pathophysiology of depression is discussed in the context of other existing theories. The classic monoamine theory of depression suggests that a deficit in monoamine neurotransmitters in the synaptic cleft is the primary cause of depression. More recent elaborations of the classic theory also implicitly include this postulate, other theories of depression frequently prefer to depart from the monoamine-based model altogether. We suggest that the primary defect emerges in the regulation of firing rates in brainstem monoaminergic neurons, which brings about a decrease in the tonic release of neurotransmitters in their projection areas, an increase in postsynaptic sensitivity, and concomitantly, exaggerated responses to acute increases in the presynaptic firing rate and transmitter release. It is proposed that the initial defect involves, in particular, the noradrenergic innervation from the locus coeruleus (LC). Dysregulation of the LC projection activities may lead in turn to dysregulation of serotonergic and dopaminergic neurotransmission. Failure of the LC function could explain the basic impairments in the processing of novel information, intensive processing of irrational beliefs, and anxiety. Concomitant impairments in the serotonergic neurotransmission may contribute to the mood changes and reduction in the mesotelencephalic dopaminergic activity to loss of motivation, and anhedonia. Dysregulation of CRF and other neuropeptides such as neuropeptide Y, galanin and substance P may reinforce the LC dysfunction and thus further weaken the adaptivity to stressful stimuli.
Collapse
Affiliation(s)
- J Harro
- Department of Psychology, University of Tartu, Tiigi 78, EE-50410 Tartu, Estonia.
| | | |
Collapse
|
123
|
Troadec JD, Marien M, Darios F, Hartmann A, Ruberg M, Colpaert F, Michel PP. Noradrenaline provides long-term protection to dopaminergic neurons by reducing oxidative stress. J Neurochem 2001; 79:200-10. [PMID: 11595772 DOI: 10.1046/j.1471-4159.2001.00556.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To better understand the neurotrophic function of the neurotransmitter noradrenaline, we have developed a model of mesencephalic cultures in which we find low concentrations (0.3-10 microM) of noradrenaline to be remarkably effective in promoting long-term survival and function of dopaminergic neurons. This protective action reproduced the effect of caspase inhibition. It was atypical in that it occurred independently of adrenoceptor activation and was mimicked by some antioxidants, redox metal chelators and the hydroxyl radical detoxifying enzyme catalase. Interestingly, intracellular reactive oxygen species (ROS) were drastically reduced by treatment with noradrenaline, indicating that the neurotransmitter itself acted as an antioxidant. Prevention of oxidative stress was, however, independent of the glutathione antioxidant defense system. Chemical analogues of noradrenaline bearing two free hydroxyl groups in the ortho position of the aromatic ring (o-catechols), as well as o-catechol itself, mimicked the survival promoting effects of the neurotransmitter, suggesting that this diphenolic structure was critical for both neuroprotection and reduction of ROS production. Paradoxically, the autoxidation of noradrenaline and the ensuing production of quinone metabolites may be required for both effects, as the neurotransmitter was spontaneously and rapidly degraded over time in the culture medium. These results support the concept that central noradrenergic mechanisms have a neuroprotective role, perhaps in part by reducing oxidative stress.
Collapse
MESH Headings
- Animals
- Antioxidants/pharmacology
- Catalase/pharmacology
- Catechols/chemistry
- Cell Death/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Chelating Agents/pharmacology
- Dopamine/physiology
- Embryo, Mammalian
- Glutathione/metabolism
- Iron/metabolism
- Mesencephalon
- Neurons/drug effects
- Neurons/physiology
- Norepinephrine/analogs & derivatives
- Norepinephrine/chemistry
- Norepinephrine/pharmacology
- Oxidation-Reduction
- Oxidative Stress/drug effects
- Rats
- Rats, Wistar
- Receptors, Adrenergic, alpha/drug effects
- Receptors, Adrenergic, alpha/physiology
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/physiology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- J D Troadec
- INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|
124
|
Bingaman KD, Bakay RA. The primate model of Parkinson's disease: its usefulness, limitations, and importance in directing future studies. PROGRESS IN BRAIN RESEARCH 2001; 127:267-97. [PMID: 11142031 DOI: 10.1016/s0079-6123(00)27013-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- K D Bingaman
- Department of Neurological Surgery, 1365-B Clifton Road NE, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
125
|
Murer MG, Yan Q, Raisman-Vozari R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer's disease and Parkinson's disease. Prog Neurobiol 2001; 63:71-124. [PMID: 11040419 DOI: 10.1016/s0301-0082(00)00014-9] [Citation(s) in RCA: 648] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a small dimeric protein, structurally related to nerve growth factor, which is abundantly and widely expressed in the adult mammalian brain. BDNF has been found to promote survival of all major neuronal types affected in Alzheimer's disease and Parkinson's disease, like hippocampal and neocortical neurons, cholinergic septal and basal forebrain neurons, and nigral dopaminergic neurons. In this article, we summarize recent work on the molecular and cellular biology of BDNF, including current ideas about its intracellular trafficking, regulated synthesis and release, and actions at the synaptic level, which have considerably expanded our conception of BDNF actions in the central nervous system. But our primary aim is to review the literature regarding BDNF distribution in the human brain, and the modifications of BDNF expression which occur in the brain of individuals with Alzheimer's disease and Parkinson's disease. Our knowledge concerning BDNF actions on the neuronal populations affected in these pathological states is also reviewed, with an aim at understanding its pathogenic and pathophysiological relevance.
Collapse
Affiliation(s)
- M G Murer
- Departamento de Fisiologia, Facultad de Medicina, Universidad de Buenos Aires, Paraguay.
| | | | | |
Collapse
|
126
|
Mayer P, Brunel P, Chaplain C, Piedecoq C, Calmel F, Schambel P, Chopin P, Wurch T, Pauwels PJ, Marien M, Vidaluc JL, Imbert T. New substituted 1-(2,3-dihydrobenzo[1, 4]dioxin-2-ylmethyl)piperidin-4-yl derivatives with alpha(2)-adrenoceptor antagonist activity. J Med Chem 2000; 43:3653-64. [PMID: 11020279 DOI: 10.1021/jm991121g] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The emergence of a novel theory concerning the role of noradrenaline in the progression and the treatment of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases has provided a new impetus toward the discovery of novel compounds acting at alpha(2)-adrenoceptors. A series of substituted 1-(2, 3-dihydrobenzo[1,4]dioxin-2-ylmethyl)piperidin-4-yl derivatives bearing an amide, urea, or imidazolidinone moiety was studied. Some members of this series of compounds proved to be potent alpha(2)-adrenoceptor antagonists with good selectivity versus alpha(1)-adrenergic and D(2)-dopamine receptors. Particular emphasis is given to compound 33g which displays potent alpha(2)-adrenoceptor binding affinity in vitro and central effects in vivo following oral administration.
Collapse
Affiliation(s)
- P Mayer
- Division of Medicinal Chemistry, Department of Analytical Chemistry, Centre de Recherche Pierre Fabre, 17, Avenue Jean Moulin, 81100 Castres, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Gesi M, Soldani P, Giorgi FS, Santinami A, Bonaccorsi I, Fornai F. The role of the locus coeruleus in the development of Parkinson's disease. Neurosci Biobehav Rev 2000; 24:655-68. [PMID: 10940440 DOI: 10.1016/s0149-7634(00)00028-2] [Citation(s) in RCA: 192] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Parkinson's disease, together with the classic loss of dopamine neurons of the substantia nigra pars compacta, neuropathological studies and biochemical findings documented the occurrence of a concomitant significant cell death in the locus coeruleus. This review analyzes the latest data obtained from experimental parkinsonism indicating that, the loss of norepinephrine in Parkinson's disease might worsen the dopamine nigrostriatal damage. Within this latter context, basic research provided a new provocative hypothesis on the significance of locus coeruleus in conditioning the natural history of Parkinson's disease. In particular, the loss of a trophic influence of these neurons might be crucial in increasing the sensitivity of nigrostriatal dopamine axons to various neurotoxic insults. In line with this, recently, it has been shown that locus coeruleus activity plays a pivotal role in the expression of various immediate early genes and in inducing the phosphorilation of cyclic adenosine monophosphate response element-binding proteins, suggesting a role of the nucleus in sustaining a protective effect.
Collapse
Affiliation(s)
- M Gesi
- Department of Human Morphology and Applied Biology, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | | | | | | | | | | |
Collapse
|
128
|
Elsworth JD, Taylor JR, Sladek JR, Collier TJ, Redmond DE, Roth RH. Striatal dopaminergic correlates of stable parkinsonism and degree of recovery in old-world primates one year after MPTP treatment. Neuroscience 2000; 95:399-408. [PMID: 10658619 DOI: 10.1016/s0306-4522(99)00437-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite widespread use of the primate 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson's disease, there is a paucity of data concerning the relationship between striatal dopaminergic function and behavior over time. This study examines the relationship between markers of dopamine neuron integrity and dopaminergic metabolic activity in striatal subregions with the degree of parkinsonian disability in 32 monkeys treated with MPTP one year earlier. Based on the parkinsonian summary score during the month following MPTP treatment, each monkey was assigned to one of four severity categories. We called these categories "Severe", "Moderate", "Mild" and "Asymptomatic". Monkeys in the Severe category were behaviorally stable, and loss of dopamine concentration was greater than 98% in all subregions of striatum one year after MPTP treatment. This value was not significantly different from the level of depletion, reported previously, at one to two months after MPTP in Severe monkeys, and apparently this loss of striatal dopamine is beyond the level from which effective compensations can occur. The parkinsonian disabilities in monkeys of other severity groups (Moderate, Mild, Asymptomatic) improved significantly over the year, despite having mean dopamine depletion of 75-99% in different subregions of striatum at one to two months after MPTP treatment. At one year after MPTP treatment, the mean dopamine depletions in different subregions of caudate nucleus and putamen had diminished in Asymptomatics (21-81%), Milds (35-96%), and Moderates (86-97%). Dopamine loss in nucleus accumbens was relatively spared compared with most striatal subregions, yet in Severe monkeys the decrease in this region reached 96%. In addition, at one year after MPTP treatment, there was a significant linear relationship between parkinsonian behavioral severity category and dopamine concentration, and homovanillic acid concentration and homovanillic acid/dopamine ratio in the striatum. The re-establishment of dopamine levels and homovanillic acid/dopamine ratios was most pronounced in putamen, ventromedial caudate nucleus and nucleus accumbens. Thus the small difference in striatal dopamine loss that distinguishes monkeys with widely different behavior at one to two months after MPTP increases over time. We suggest that the milder the initial loss, the greater capacity there is for regeneration or sprouting of dopamine terminals, which is reflected in marked increases in dopamine levels and modest elevations of metabolic activity (homovanillic acid/dopamine ratio). With greater initial losses, there is less capacity to increase terminal density, which is reflected later by smaller increases in striatal dopamine levels and more marked increases in metabolic activity. It appears that 5-10% of normal striatal dopamine levels is sufficient for overtly normal motor performance in non-human primates.
Collapse
Affiliation(s)
- J D Elsworth
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
129
|
Alonso-Vanegas MA, Fawcett JP, Causing CG, Miller FD, Sadikot AF. Characterization of dopaminergic midbrain neurons in a DBH:BDNF transgenic mouse. J Comp Neurol 1999; 413:449-62. [PMID: 10502251 DOI: 10.1002/(sici)1096-9861(19991025)413:3<449::aid-cne7>3.0.co;2-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) has been implicated in the survival and differentiation of central nervous system neurons, including dopaminergic cells in culture. To determine whether BDNF might play a role in the development of dopaminergic neurons in vivo, we used a previously characterized transgenic mouse (DBH:BDNF) that overexpresses BDNF in adrenergic and noradrenergic neurons as a result of fusion of the BDNF gene to the dopamine beta-hydroxylase (DBH) gene promoter. We quantified dopaminergic neuronal profiles at four midbrain coronal levels and compared DBH:BDNF transgenic animals with wild-type mice of the same genetic background. Analysis of sections immunostained with tyrosine hydroxylase (TH) showed that the mean number of dopaminergic neurons in the four selected midbrain sections was 52% greater (one-way analysis of variance, P < 0.0005) in transgenic mice (2,165 +/- 55 S. E.M., n = 4) than in control mice (1,428 +/- 71 S.E.M., n = 4). The increase in dopaminergic neuron profile count in DBH:BDNF transgenic animals was confirmed by analysis of the pars compacta of the substantia nigra on Nissl-stained sections. Surface area of the reference region of interest containing TH-immunoreactive neurons was similar in transgenic and control mice. Regional analysis of different midbrain areas containing dopaminergic neurons suggested that the increase in cell profile count occurs in a relatively homogeneous manner. Comparison of TH-immunoreactive cell size showed a tendency for smaller neurons in transgenic animals, but the difference was not statistically significant. We conclude that DBH:BDNF transgenic mice show increased number of TH-immunoreactive cells in the midbrain. We propose that BDNF rescues dopaminergic neurons from the perinatal period of developmental cell death as a consequence of increased anterograde transport of the neurotrophin via the coeruleonigral projection.
Collapse
Affiliation(s)
- M A Alonso-Vanegas
- Department of Neurology and Neurosurgery, Cone Laboratory and Center for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
130
|
Fornai F, Giorgi FS, Alessandrì MG, Giusiani M, Corsini GU. Effects of pretreatment with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) on methamphetamine pharmacokinetics and striatal dopamine losses. J Neurochem 1999; 72:777-84. [PMID: 9930753 DOI: 10.1046/j.1471-4159.1999.0720777.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We recently demonstrated that pretreatment with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) exacerbates experimental parkinsonism induced by methamphetamine. The mechanism responsible for this effect remains to be elucidated. In this study, we investigated whether the exacerbation of chronic dopamine loss in DSP-4-pretreated animals is due to an impairment in the recovery of dopamine levels once the neurotoxic insult is generated or to an increased efficacy of the effects induced by methamphetamine. We administered different doses of methamphetamine either to DSP-4-pretreated or to intact Swiss-Webster mice and evaluated the methamphetamine-induced striatal dopamine loss at early and prolonged intervals. As a further step, we evaluated the striatal pharmacokinetics of methamphetamine, together with its early biochemical effects. We found that previous damage to norepinephrine terminals produced by DSP-4 did not modify the recovery of striatal dopamine levels occurring during several weeks after methamphetamine. By contrast, pretreatment with DSP-4 exacerbated early biochemical effects of methamphetamine, which were already detectable 1 h after methamphetamine administration. In addition, in norepinephrine-depleted animals, the clearance of striatal methamphetamine is prolonged, although the striatal concentration peak observed at 1 h is unmodified. These findings, together with the lack of a methamphetamine enhancement when DSP-4 was injected 12 h after methamphetamine administration, suggest that in norepinephrine-depleted animals, a more pronounced acute neuronal sensitivity to methamphetamine occurs.
Collapse
Affiliation(s)
- F Fornai
- Department of Neuroscience, University of Pisa, and IRCCS Stella Maris-INPE, Italy
| | | | | | | | | |
Collapse
|
131
|
Martel J, Chopin P, Colpaert F, Marien M. Neuroprotective effects of the alpha2-adrenoceptor antagonists, (+)-efaroxan and (+/-)-idazoxan, against quinolinic acid-induced lesions of the rat striatum. Exp Neurol 1998; 154:595-601. [PMID: 9878194 DOI: 10.1006/exnr.1998.6942] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A deficient control of neuronal repair mechanisms by noradrenergic projections originating from the locus coeruleus may be a critical factor in the progression of neurodegenerative diseases. Blockade of presynaptic inhibitory alpha2-adrenergic autoreceptors can disinhibit this system, facilitating noradrenaline release. In order to test the neuroprotective potential of this approach in a model involving excitotoxicity, the effects of treatments with the alpha2-adreneceptor antagonists, (+)-efaroxan (0.63 mg/kg i.p., thrice daily for 7 days) or (+/-)-idazoxan (2.5 mg/kg i.p., thrice daily for 7 days), were evaluated in rats which received a quinolinic acid-induced lesion of the left striatum. Both drug treatments resulted in a reduced ipsiversive circling response to apomorphine and a reduced choline acetyltransferase deficit in the lesioned striatum. The mechanisms underlying this effect are not known for certain, but may include noradrenergic receptor modulation of glial cell function, growth factor synthesis and release, activity of glutamatergic corticostriatal afferents, and/or events initiated by NMDA receptor activation. These results suggest a therapeutic potential of alpha2-adrenoceptor antagonists in neurodegenerative disorders where excitotoxicity has been implicated.
Collapse
Affiliation(s)
- J Martel
- Centre de Recherche Pierre Fabre, 17 Avenue Jean Moulin, Castres Cédex, 81106, France
| | | | | | | |
Collapse
|
132
|
Murer MG, Dziewczapolski G, Menalled LB, García MC, Agid Y, Gershanik O, Raisman-Vozari R. Chronic levodopa is not toxic for remaining dopamine neurons, but instead promotes their recovery, in rats with moderate nigrostriatal lesions. Ann Neurol 1998; 43:561-75. [PMID: 9585350 DOI: 10.1002/ana.410430504] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Orally administered levodopa remains the most effective symptomatic treatment for Parkinson's disease (PD). The introduction of levodopa therapy is often delayed, however, because of the fear that it might be toxic for the remaining dopaminergic neurons and, thus, accelerate the deterioration of patients. However, in vivo evidence of levodopa toxicity is scarce. We have evaluated the effects of a 6-month oral levodopa treatment on several dopaminergic markers, in rats with moderate or severe 6-hydroxydopamine-induced lesions of mesencephalic dopamine neurons and sham-lesioned animals. Counts of tyrosine hydroxylase (TH)-immunoreactive neurons in the substantia nigra and ventral tegmental area showed no significant difference between levodopa-treated and vehicle-treated rats. In addition, for rats of the sham-lesioned and severely lesioned groups, immunoradiolabeling for TH, the dopamine transporter (DAT), and the vesicular monoamine transporter (VMAT2) at the striatal level was not significantly different between rats treated with levodopa or vehicle. It was unexpected that quantification of immunoautoradiograms showed a partial recovery of all three dopaminergic markers (TH, DAT, and VMAT2) in the denervated territories of the striatum of moderately lesioned rats receiving levodopa. Furthermore, the density of TH-positive fibers observed in moderately lesioned rats was higher in those treated chronically with levodopa than in those receiving vehicle. Last, that chronic levodopa administration reversed the up-regulation of D2 dopamine receptors seen in severely lesioned rats provided evidence that levodopa reached a biologically active concentration at the basal ganglia. Our results demonstrate that a pharmacologically effective 6-month oral levodopa treatment is not toxic for remaining dopamine neurons in a rat model of PD but instead promotes the recovery of striatal innervation in rats with partial lesions.
Collapse
Affiliation(s)
- M G Murer
- INSERM U289, Hôpital de la Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|
133
|
Rückert N, Bubser M, Schmidt WJ. 6-Hydroxydopamine lesion of locus coeruleus and the antiparkinsonian potential of NMDA-receptor antagonists in rats. J Neural Transm (Vienna) 1997; 104:363-77. [PMID: 9295171 DOI: 10.1007/bf01277657] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Behavioral and neurochemical effects after bilateral 6-hydroxy-dopamine locus coeruleus- (LC) lesion were examined in rats and compared to sham-lesioned controls. Behavior after treatment with the antiakinetic drugs dizocilpine, amantadine, memantine or L-DOPA as well as joint treatment of these drugs with haloperidol were tested in an open field with holeboard and in an experimental chamber. Under saline spontaneous activity (open field with holeboard) and sniffing (experimental chamber) were reduced after lesion. Injection of the proparkinsonian drug haloperidol decreased sniffing in all rats but to a greater extent in LC-lesioned rats. In combination with haloperidol none of the tested drugs could completely compensate for the motor deficits induced by the lesion. Neurochemical data revealed a reduced content of noradrenaline in the prefrontal cortex and in the posterior striatum of LC-lesioned rats. These results indicate that loss of LC neurons intensifies parkinsonian symptoms induced by blockade of dopamine D2-receptors, and lowers the antiakinetic potential of dizocilpine, amantadine, memantine or L-DOPA.
Collapse
Affiliation(s)
- N Rückert
- Department of Neuropharmacology, Zoological Institute, University of Tübingen, Federal Republic of Germany
| | | | | |
Collapse
|
134
|
Fornai F, Torracca MT, Bassi L, D'Errigo DA, Scalori V, Corsini GU. Norepinephrine loss selectively enhances chronic nigrostriatal dopamine depletion in mice and rats. Brain Res 1996; 735:349-53. [PMID: 8911678 DOI: 10.1016/0006-8993(96)00891-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this study we investigated whether a selective pattern of norepinephrine loss potentiates methamphetamine-induced striatal dopamine depletion in rats. We also evaluated whether chronic norepinephrine depletion reduces the threshold dose of methamphetamine necessary to induce long-lasting striatal dopamine loss in mice and in rats. Pre-treatment with the selective noradrenergic neurotoxin DSP-4 (50 mg/kg, i.p.) in mice and in rats significantly enhanced methamphetamine-induced striatal dopamine depletion. Administration of a low dose of methamphetamine (1 x 5 mg/kg and 3 x 5 mg/kg, respectively, i.p., at 2-h interval) to C57B1/6N mice and Sprague-Dawley rats did not decrease striatal dopamine levels when injected alone but produced a significant decrease in striatal dopamine when given to rodents carrying a long-lasting norepinephrine depletion previously induced by DSP-4. Our results suggest that norepinephrine loss might both enhance neurotoxic damage and decrease the threshold for neurotoxicity to nigrostriatal dopaminergic neurons in different animal species.
Collapse
Affiliation(s)
- F Fornai
- Institute of Pharmacology, School of Medicine, University of Pisa, Rome, Italy
| | | | | | | | | | | |
Collapse
|
135
|
Abstract
This study addresses the relationship between blink rate (as a measure of central dopaminergic activity), symptoms, neuropsychological performance, as well as neurological signs in schizophrenia. Blink rate between schizophrenic patients and a matched control group was compared in both "relaxed" and "attentive" conditions. Blink rate was increased in schizophrenic patients in the "relaxed" condition but not in the "attentive" condition. The relationship between blink rate and clinical variables was examined in a larger sample of 204 patients. In both "relaxed" and "attentive" conditions, blink rate was related to "hallucinations," "anxiety," negative symptoms, and neuroleptic dosage. Attention was a significant predictor only in the "relaxed" condition. No other significant correlation was found between blink rate, neuropsychological impairments, and neurological signs. These findings suggest that blink rate is not related to neurocognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- E Y Chen
- Department of Psychiatry, University of Hong Kong, Hong Kong
| | | | | | | |
Collapse
|
136
|
Abstract
The outlines of a theory of the pathophysiology of depression are presented. The classic monoamine theory of depression as well as its more recent elaborations suggests that a deficit in monoamine neurotransmitters in the synaptic cleft is the primary cause of depression. We suggest that the primary defect emerges in the regulation of firing rates in brainstem monoaminergic neurons, which brings about a decrease in the tonic release of neurotransmitters in their projection areas, an increase in postsynaptic sensitivity and, concomitantly, exaggerated responses to acute increases in presynaptic firing rate and transmitter release. We propose that the initial defect involves, in particular, the noradrenergic innervation from the locus coeruleus, which in turn leads to dysregulation of 5-HT-ergic and dopaminergic neurotransmission.
Collapse
Affiliation(s)
- J Harro
- Department of Medical Pharmacology, University of Uppsala, Sweden
| | | |
Collapse
|
137
|
|
138
|
Gerlach M, Riederer P. Animal models of Parkinson's disease: an empirical comparison with the phenomenology of the disease in man. J Neural Transm (Vienna) 1996; 103:987-1041. [PMID: 9013391 DOI: 10.1007/bf01291788] [Citation(s) in RCA: 327] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Animal models are an important aid in experimental medical science because they enable one to study the pathogenetic mechanisms and the therapeutic principles of treating the functional disturbances (symptoms) of human diseases. Once the causative mechanism is understood, animal models are also helpful in the development of therapeutic approaches exploiting this understanding. On the basis of experimental and clinical findings. Parkinson's disease (PD) became the first neurological disease to be treated palliatively by neurotransmitter replacement therapy. The pathological hallmark of PD is a specific degeneration of nigral and other pigmented brainstem nuclei, with a characteristic inclusion, the Lewy body, in remaining nerve cells. There is now a lot of evidence that degeneration of the dopaminergic nigral neurones and the resulting striatal dopamine-deficiency syndrome are responsible for its classic motor symptoms akinesia and bradykinesia. PD is one of many human diseases which do not appear to have spontaneously arisen in animals. The characteristic features of the disease can however be more or less faithfully imitated in animals through the administration of various neurotoxic agents and drugs disturbing the dopaminergic neurotransmission. The cause of chronic nigral cell death in PD and the underlying mechanisms remain elusive. The partial elucidation of the processes underlie the selective action of neurotoxic substances such as 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), has however revealed possible molecular mechanisms that give rise to neuronal death. Accordingly, hypotheses concerning the mechanisms of these neurotoxines have been related to the pathogenesis of nigral cell death in PD. The present contribution starts out by describing some of the clinical, pathological and neurochemical phenomena of PD. The currently most important animal models (e.g. the reserpine model, neuroleptic-induced catalepsy, tremor models, experimentally-induced degeneration of nigrostriatal dopaminergic neurons with 6-OHDA, methamphetamine, MPTP, MPP+, tetrahydroisoquinolines, beta-carbolines, and iron) critically reviewed next, and are compared with the characteristic features of the disease in man.
Collapse
Affiliation(s)
- M Gerlach
- Department of Clinical Neurochemistry, University Neurological Clinic, University of Würzburg, Federal Republic of Germany
| | | |
Collapse
|
139
|
Arenas E, Trupp M, Akerud P, Ibáñez CF. GDNF prevents degeneration and promotes the phenotype of brain noradrenergic neurons in vivo. Neuron 1995; 15:1465-73. [PMID: 8845169 DOI: 10.1016/0896-6273(95)90024-1] [Citation(s) in RCA: 268] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The locus coeruleus (LC), the main noradrenergic center in the brain, participates in many neural functions, as diverse as memory and motor output, and is severely affected in several neurodegenerative disorders of the CNS. GDNF, a neurotrophic factor initially identified as dopaminotrophic, was found to be expressed in several targets of central noradrenergic neurons in the adult rat brain. Grafting of genetically engineered fibroblasts expressing high levels of GDNF prevented > 80% of the 6-hydroxydopamine-induced degeneration of noradrenergic neurons in the LC in vivo. Moreover, GDNF induced a fasciculated sprouting and increased by 2.5-fold both tyrosine hydroxylase levels and the soma size of lesioned LC neurons. These findings reveal a novel and potent neurotrophic activity of GDNF that may have therapeutic applications in neurodegenerative disorders affecting central noradrenergic neurons, such as Alzheimer's, Parkinson's, and Huntington's diseases.
Collapse
Affiliation(s)
- E Arenas
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
140
|
Fornai F, Bassi L, Torracca MT, Scalori V, Corsini GU. Norepinephrine loss exacerbates methamphetamine-induced striatal dopamine depletion in mice. Eur J Pharmacol 1995; 283:99-102. [PMID: 7498327 DOI: 10.1016/0014-2999(95)00313-a] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Evidence is accumulating that norepinephrine depletion enhances the neurotoxic effect of the parkinsonism inducing neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In this study we investigated whether norepinephrine loss potentiates methamphetamine-induced striatal dopamine depletion. Injection of C57BL/6N mice with methamphetamine (2 x 5 mg/kg i.p., at 2-h intervals) produced only a partial (50%) striatal dopamine depletion 7 days after drug administration. Pretreatment with the selective noradrenergic neurotoxin N-(-2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4; 50 mg/kg i.p.) enhanced methamphetamine-induced striatal dopamine depletion by 86%, without decreasing striatal dopamine levels when injected alone. Our results extend previous findings obtained with the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine in DSP-4-pretreated mice.
Collapse
Affiliation(s)
- F Fornai
- Institute of Pharmacology, School of Medicine, University of Pisa, Italy
| | | | | | | | | |
Collapse
|
141
|
Gnanalingham KK, Milkowski NA, Smith LA, Hunter AJ, Jenner P, Marsden CD. Short- and long-term changes in striatal and extrastriatal dopamine uptake sites in the MPTP-treated common marmoset. Eur J Pharmacol 1995; 277:235-41. [PMID: 7493614 DOI: 10.1016/0014-2999(95)00086-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The 'short-term' (15-30 days) and 'long-term' (18-42 months) effects of the systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on [3H]mazindol binding to dopamine uptake sites was investigated in the common marmoset. In the 'short-term' MPTP-treated group, [3H]mazindol binding was reduced in the caudate-putamen (by -82 to -98% with respect to controls), substantia nigra pars compacta (-71 to -84%), ventral tegmental area (-72%) and nucleus accumbens (-54%). [3H]Mazindol binding in the globus pallidus, frontal cortex and substantia nigra pars reticulata was much lower and was unaffected by MPTP treatment. In the 'long-term' MPTP-treated group [3H]mazindol binding was still greatly reduced in the substantia nigra pars compacta (by -76 to -89%), ventral tegmental area (-71%) and most of the caudate-putamen (-69 to -98%), although the reduction in [3H]mazindol binding in the nucleus accumbens (-27%) and rostroventral caudate nucleus (-69%) was less than in the 'short-term' MPTP-treated group. The motor deficits induced by MPTP treatment in the common marmoset are largely reversible with increasing survival times (Ueki et al., 1989, Neuropharmacology 28, 1089). In the present study, the apparent 'recovery' in [3H]mazindol binding in the rostroventral caudate nucleus and nucleus accumbens may indicate regeneration of dopamine neurone terminals in these regions and this may contribute to the behavioural recovery seen in this primate model of Parkinson's disease.
Collapse
Affiliation(s)
- K K Gnanalingham
- Parkinson's Disease Society Experimental Research Laboratories, King's College, London, UK
| | | | | | | | | | | |
Collapse
|
142
|
Schneider JS, Lidsky TI, Hawks T, Mazziotta JC, Hoffman JM. Differential recovery of volitional motor function, lateralized cognitive function, dopamine agonist-induced rotation and dopaminergic parameters in monkeys made hemi-parkinsonian by intracarotid MPTP infusion. Brain Res 1995; 672:112-7. [PMID: 7749732 DOI: 10.1016/0006-8993(94)01332-c] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
There is still controversy regarding the frequency and extent of spontaneous functional recovery in primate models of parkinsonism, perhaps in part stemming from the variety of ways in which recovery has been assessed. The present study examined functional recovery in monkeys made unilaterally parkinsonian by intracarotid infusion of MPTP. Monkeys were evaluated prior to lesioning and for at least 1 year after lesioning on a battery of tests including a rating of spontaneous behaviors, a learned reaction time/movement time task, tests of lateralized neglect or inattention (i.e. lateralized reward retrieval task, extinction with double simultaneous stimulation, and response to a target moving from one hemispace to the other), and rotational asymmetry in response to a dopamine agonist. Some animals also received 6-[18F]Fluoro-L-Dopa (F-DOPA) position emission tomography (PET) scans before MPTP, when symptomatic, and when showing signs of functional recovery. These animals were sacrificed for post mortem neurochemical assessment following the last PET scan. Results showed that estimates of functional recovery in hemi-parkinsonian monkeys may depend upon the behavioral assay used. Even in behavioral tasks that were sensitive to recovery effects, the degree of functional recovery shown by an animal on one such task did not predict recovery on another. This may in part be due to the inherent difficulty in designing behavioral tests to assess basal ganglia functioning, when there is no consensus concerning which aspects of behavior the normal basal ganglia actually control.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J S Schneider
- Department of Neurology, Hahnemann University, Philadelphia, PA 19102, USA
| | | | | | | | | |
Collapse
|
143
|
Bing G, Zhang Y, Watanabe Y, McEwen BS, Stone EA. Locus coeruleus lesions potentiate neurotoxic effects of MPTP in dopaminergic neurons of the substantia nigra. Brain Res 1994; 668:261-5. [PMID: 7704612 DOI: 10.1016/0006-8993(94)90534-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The observation that Parkinson's disease (PD) is associated with locus coeruleus (LC) noradrenergic neuronal degeneration suggests that the LC noradrenergic system may be involved in the pathogenesis and natural progression of the destruction of the substantia nigra (SN) dopaminergic neurons in Parkinson's disease. The relationship of these two systems was examined by injection of subtoxic doses of MPTP into unilateral LC 6-hydroxydopamine (6-OHDA) lesioned mice. A significant loss of dopaminergic cells was only found in the SN on the side of the LC lesions. These results suggest that the LC may have protective effects on SN dopaminergic neurons.
Collapse
Affiliation(s)
- G Bing
- Department of Psychiatry, New York University, NY, USA
| | | | | | | | | |
Collapse
|
144
|
McRae A, Ling EA, Hjorth S, Dahlström A, Mason D, Tice T. Catecholamine-containing biodegradable microsphere implants as a novel approach in the treatment of CNS neurodegenerative disease. A review of experimental studies in DA-lesioned rats. Mol Neurobiol 1994; 9:191-205. [PMID: 7888096 DOI: 10.1007/bf02816119] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Biodegradable controlled-release microsphere systems made with the biocompatible biodegradable polyester excipient poly(DL-lactide-co-glycolide) constitute an exciting new technology for drug delivery to the central nervous system (CNS). Implantable controlled-release microspheres containing dopamine (DA) or norepinephrine (NE) provide a novel means to compare DA- or NE -induced restitution of function in unilateral 6-hydroxydopamine lesioned rats. A suspension of 3 microL of DA- or NE-containing microspheres or empty microspheres was implanted in 2 sites of the DA denervated striatum of rats previously unilaterally lesioned with 6-hydroxydopamine. Contralateral-rotational behavior induced by apomorphine was used as an index of lesion success and, following implantation of the microspheres, also as an index of functional recovery. Interestingly, both DA- and NE-microsphere-implanted rats displayed a 30-50% reduction in the number of apomorphine-induced rotations up to 8 wk postimplantation. Rats implanted with empty microspheres did not demonstrate significant changes in contralateral rotational behavior. Behavioral studies following implantation of a mixture of DA and NE microspheres revealed an 80% decrease in the number of apomorphine induced rotations up to 4 wk. On conclusion of the studies, immunocytochemical examination revealed growth of DA and tyrosine hydroxylase immunoreactive fibers in the striatum of DA and NE microsphere-implanted rats. Functional behavior appeared to correlate with the degree of fiber growth. Preliminary electron microscopic studies showed signs of axonal sprouting in the vicinity of the implanted microspheres. No growth was noted in rats implanted with empty microspheres. This report reviews the abilities of both microencapsulated NE and DA to assure functional recovery and to promote DA fiber (re)growth in parkinsonian rats. This novel means to deliver these substances to the central nervous system could be of therapeutic usefulness in Parkinson's disease.
Collapse
Affiliation(s)
- A McRae
- University of Göteborg Department of Anatomy and Cell Biology, Sweden
| | | | | | | | | | | |
Collapse
|
145
|
Suyama K, Dykstra KH, Masana MI, Manji HK, Potter WZ. In vivo evidence that nonneuronal beta-adrenoceptors as well as dopamine receptors contribute to cyclic AMP efflux in rat striatum. J Neurochem 1994; 62:1734-40. [PMID: 8158123 DOI: 10.1046/j.1471-4159.1994.62051734.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We applied in vivo microdialysis to assess the effects of dopaminergic and beta-adrenergic receptor stimulation on cyclic AMP efflux in rat striatum under chloral hydrate anesthesia. Dopamine (up to 1 mM) infused for 20 min through the probe did not increase cyclic AMP, whereas both the selective dopamine D1 agonist SKF 38393 and D2 antagonist sulpiride produced modest increases. It is interesting that the beta-adrenoceptor agonist isoproterenol produced a marked increase (204.7% of basal level at 1 mM) which was antagonized by the beta-adrenoceptor antagonist propranolol. Pretreatment with a glial selective metabolic inhibitor, fluorocitrate (1 mM), by a 5-h infusion through the probe attenuated basal cyclic AMP efflux by 30.3% and significantly blocked the response to isoproterenol. By contrast, striatal injection of a neurotoxin, kainic acid (2.5 micrograms), 2 days before the dialysis experiment did not affect basal cyclic AMP or the response to isoproterenol, but blocked the response to SKF 38393. These data demonstrate the beta-adrenoceptors as well as dopamine receptors contribute to cyclic AMP efflux in rat striatum in vivo. They also suggest that basal and beta-adrenoceptor-stimulated cyclic AMP efflux are substantially dependent on intact glial cells.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/administration & dosage
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Analysis of Variance
- Animals
- Citrates/administration & dosage
- Citrates/pharmacology
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Cyclic AMP/metabolism
- Infusions, Parenteral
- Isoproterenol/pharmacology
- Kainic Acid/pharmacology
- Kinetics
- Male
- Microdialysis
- Propranolol/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/physiology
- Receptors, Dopamine/drug effects
- Receptors, Dopamine/physiology
Collapse
Affiliation(s)
- K Suyama
- Section on Clinical Pharmacology, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
146
|
Andersson JL, Marcus M, Nomikos GG, Svensson TH. Prazosin modulates the changes in firing pattern and transmitter release induced by raclopride in the mesolimbic, but not in the nigrostriatal dopaminergic system. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1994; 349:236-43. [PMID: 7911558 DOI: 10.1007/bf00169289] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Most antipsychotic drugs are, in addition to being dopamine (DA) D2 receptor antagonists, also relatively potent alpha 1 adrenoceptor antagonists. Here, we have studied the effects of the selective DA D2 receptor antagonist raclopride, alone and in combination with the selective alpha 1 adrenoceptor antagonist, prazosin, on midbrain DA neurons utilizing extracellular single cell recording techniques. As a reference compound, haloperidol (0.05-1.6 mg/kg, i.v.), a potent antagonist at both DA D2 receptors and alpha 1 adrenoceptors, was included in the electrophysiological part of the study. In addition, in vivo voltammetry was used to measure extracellular DA concentrations in the nucleus accumbens (NAC) and the dorsolateral striatum (STR) in anesthetized, pargyline pretreated rats treated with the above drugs. Raclopride (10-5120 micrograms/kg, i.v.) induced a dose dependent increase in firing rate of DA neurons in the ventral tegmental area (VTA), that was significant already at 10 micrograms/kg, and in the substantia nigra-zone compacta (SN-ZC), that reached significance at 2560 micrograms/kg. Burst firing of DA neurons was also increased in the VTA at 40 micrograms/kg, as well as in the SN-ZC at 640 micrograms/kg. A low dose of raclopride (80 micrograms/kg, cumulated dose) induced a significant increase in extracellular DA concentrations in NAC to 490% and in STR to 220%. A high dose of raclopride (2560 micrograms/kg, cumulated dose) induced a 930% increase in extracellular DA concentrations in NAC, but only a 280% increase in STR. These data demonstrate that raclopride exerts a relatively selective action on mesolimbic DA neurons. Prazosin (0.3 mg/kg, i.v.) decreased burst firing of VTA, but not SN-ZC DA neurons.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J L Andersson
- Department of Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
147
|
Patt S, Gerhard L. A Golgi study of human locus coeruleus in normal brains and in Parkinson's disease. Neuropathol Appl Neurobiol 1993; 19:519-23. [PMID: 8121544 DOI: 10.1111/j.1365-2990.1993.tb00480.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The locus coeruleus (LC) of eight adults without neurodegenerative disease and eight patients with Parkinson's disease was investigated by means of the Golgi-Braitenberg method for formalin-fixed human autopsy material. As with Golgi studies in the rat and cat, two main neuronal classes could be demonstrated in the human LC: (i) medium-sized fusiform and multipolar LC neurons known to contain neuromelanin and (ii) smaller neurons of widely varying somatic shape and dendritic arborization which are considered to be intermingled neurons of adjacent brain stem nuclei not containing neuromelanin. In Parkinson's disease, the Golgi-impregnated medium-sized LC neurons were reduced in number. They showed marked reduction of dendritic length, severe loss of spines, dendritic varicosities and swollen perikarya. The last two findings could be due in part to Lewy-body inclusions. The smaller non-noradrenergic neurons did not show severe pathological changes by the Golgi impregnation technique, which is in line with the fact that only neuromelanin-containing LC neurons are affected in the pathological process of Parkinson's disease.
Collapse
Affiliation(s)
- S Patt
- Institute of Neuropathology, Free University of Berlin, Germany
| | | |
Collapse
|
148
|
Herrero MT, Hirsch EC, Kastner A, Ruberg M, Luquin MR, Laguna J, Javoy-Agid F, Obeso JA, Agid Y. Does neuromelanin contribute to the vulnerability of catecholaminergic neurons in monkeys intoxicated with MPTP? Neuroscience 1993; 56:499-511. [PMID: 8247275 DOI: 10.1016/0306-4522(93)90349-k] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The question has been raised as to whether neuromelanin, a by-product of catecholamine metabolism which accumulates during aging in primate midbrain neurons, contributes to the selective vulnerability of subgroups of dopaminergic neurons in Parkinson's disease. 1-Methyl-4-phenylpyridinium (MPP+) a metabolite of 1-methyl, 4-phenyl, 1,2,3,6-tetrahydropyridine (MPTP) is toxic to dopaminergic neurons, particularly in primates, producing a motor syndrome similar to that observed in Parkinson's disease. To test whether this neurotoxin preferentially affects melanized neurons, the survival of melanized and non-melanized catecholaminergic neurons was analysed after MPTP intoxication in the midbrain of the cynomolgus monkey (Macaca fascicularis). Experiments were performed on six animals chronically treated with MPTP (two were severely disabled, four moderately affected) and two age-matched control monkeys. Two populations of neurons were examined on regularly spaced sections throughout the midbrain: catecholaminergic neurons, identified by tyrosine hydroxylase immunohistochemistry and neuromelanin-containing neurons, visualized by Masson's method. The total number of neurons of each type was estimated in the different midbrain catecholaminergic cell groups using computer assisted image analysis. In the midbrains of control animals not all catecholaminergic neurons contained neuromelanin. The percentage of melanized neurons compared to the total population of tyrosine hydroxylase-positive neurons was high in the substantia nigra pars compacta (81.5%) and in the locus coeruleus (98%), intermediate in the substantia nigra pars lateralis (70%), in the catecholaminergic cell group A8 (50%), and in the ventral tegmental area (41.5%) and almost nil in the central gray substance. In MPTP-treated monkeys, the severity of the loss of catecholaminergic neurons was variable within the different midbrain cell groups, though of similar intensity in severely and mildly disabled monkeys. A relationship was found between the loss of dopaminergic neurons in the different mesencephalic cell groups of MPTP-intoxicated animals and the percentage of melanized neurons they normally contain (r = 0.98; P = 0.04). The percentage loss of catecholaminergic neurons in the locus coeruleus, the only noradrenergic cell group studied, was lower than expected from the correlation curve obtained for dopaminergic cell groups. Altogether, these findings indicate: (i) that dopaminergic neurons are more vulnerable to MPTP-toxicity than noradrenergic neurons; and (ii) that among dopaminergic neurons, those containing neuromelanin are more susceptible, indicating a possible role of neuromelanin in MPTP-toxicity.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M T Herrero
- INSERM U289, Hôpital de la Salpêtrière, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Marien M, Briley M, Colpaert F. Noradrenaline depletion exacerbates MPTP-induced striatal dopamine loss in mice. Eur J Pharmacol 1993; 236:487-9. [PMID: 7689466 DOI: 10.1016/0014-2999(93)90489-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Injection of C57Bl/6 mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 4 x 10 mg/kg i.p. over 8 h) resulted in a partial (40%) striatal dopamine depletion at 7 days post-drug. Pretreatment with the selective noradrenergic neurotoxin N-[2-chloroethyl]-N-ethyl-2-bromobenzylamine (DSP-4; 40 mg/kg i.p.), while having no effect per se on striatal dopamine levels, exacerbated the MPTP-induced dopamine deficit to 60%. Results support the hypothesis that damage to the locus coeruleus-noradrenergic system, by removing a facilitatory influence on the nigrostriatal dopamine system, interferes with the ability of the nigrostriatal pathway to compensate for or recover from injury.
Collapse
Affiliation(s)
- M Marien
- Division Neurobiologie I, Centre de Recherche Pierre Fabre, Castres, France
| | | | | |
Collapse
|
150
|
Grenhoff J, Svensson TH. Prazosin modulates the firing pattern of dopamine neurons in rat ventral tegmental area. Eur J Pharmacol 1993; 233:79-84. [PMID: 8097162 DOI: 10.1016/0014-2999(93)90351-h] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Previous studies have indicated a noradrenergic modulation of midbrain dopamine cell activity. The effects of systemic administration of the alpha 1-adrenoceptor antagonist prazosin and the alpha 2-antagonist idazoxan on midbrain dopamine cell firing were now studied with extracellular recording from single dopamine neurons in the ventral tegmental area of chloral hydrate-anaesthetized male rats. Prazosin (0.15-0.6 mg/kg i.v.) dose dependently decreased burst firing and regularized the firing pattern of dopamine neurons, while the firing rate was unaffected. The prazosin-induced effects were abolished by pretreatment with reserpine. Idazoxan (0.5-2.0 mg/kg i.v.) increased firing rate and burst firing and made the firing pattern less regular, probably by increasing adrenergic transmission via blockade of presynaptic alpha 2-adrenoceptors. The effects of idazoxan were blocked by prazosin. The present results indicate that noradrenergic neurons modulate the dopamine cell firing pattern via excitatory postsynaptic alpha 1-adrenoceptors. This mechanism might be involved in the pathogenesis and pharmacological treatment of schizophrenia.
Collapse
Affiliation(s)
- J Grenhoff
- Department of Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|