101
|
Harkany T, Holmgren C, Härtig W, Qureshi T, Chaudhry FA, Storm-Mathisen J, Dobszay MB, Berghuis P, Schulte G, Sousa KM, Fremeau RT, Edwards RH, Mackie K, Ernfors P, Zilberter Y. Endocannabinoid-independent retrograde signaling at inhibitory synapses in layer 2/3 of neocortex: involvement of vesicular glutamate transporter 3. J Neurosci 2005; 24:4978-88. [PMID: 15163690 PMCID: PMC6729377 DOI: 10.1523/jneurosci.4884-03.2004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent studies implicate dendritic endocannabinoid release from subsynaptic dendrites and subsequent inhibition of neurotransmitter release from nerve terminals as a means of retrograde signaling in multiple brain regions. Here we show that type 1 cannabinoid receptor-mediated endocannabinoid signaling is not involved in the retrograde control of synaptic efficacy at inhibitory synapses between fast-spiking interneurons and pyramidal cells in layer 2/3 of the neocortex. Vesicular neurotransmitter transporters, such as vesicular glutamate transporters (VGLUTs) 1 and 2, are localized to presynaptic terminals and accumulate neurotransmitters into synaptic vesicles. A third subtype of VGLUTs (VGLUT3) was recently identified and found localized to dendrites of various cell types. We demonstrate, using multiple immunofluorescence labeling and confocal laser-scanning microscopy, that VGLUT3-like immunoreactivity is present in dendrites of layer 2/3 pyramidal neurons in the rat neocortex. Electron microscopy analysis confirmed that VGLUT3-like labeling is localized to vesicular structures, which show a tendency to accumulate in close proximity to postsynaptic specializations in dendritic shafts of pyramidal cells. Dual whole-cell recordings revealed that retrograde signaling between fast-spiking interneurons and pyramidal cells was enhanced under conditions of maximal efficacy of VGLUT3-mediated glutamate uptake, whereas it was reduced when glutamate uptake was inhibited by incrementing concentrations of the nonselective VGLUT inhibitor Evans blue (0.5-5.0 microm) or intracellular Cl- concentrations (4-145 mm). Our results present further evidence that dendritic vesicular glutamate release, controlled by novel VGLUT isoforms, provides fast negative feedback at inhibitory neocortical synapses, and demonstrate that glutamate can act as a retrograde messenger in the CNS.
Collapse
Affiliation(s)
- Tibor Harkany
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Nagy GG, Al-Ayyan M, Andrew D, Fukaya M, Watanabe M, Todd AJ. Widespread expression of the AMPA receptor GluR2 subunit at glutamatergic synapses in the rat spinal cord and phosphorylation of GluR1 in response to noxious stimulation revealed with an antigen-unmasking method. J Neurosci 2004; 24:5766-77. [PMID: 15215299 PMCID: PMC6729210 DOI: 10.1523/jneurosci.1237-04.2004] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glutamate, the principal excitatory neurotransmitter in the spinal cord, acts primarily through AMPA receptors. Although all four AMPA subunits are expressed by spinal neurons, we know little about their distribution at glutamatergic synapses. We used an antigen-unmasking technique to reveal the synaptic distribution of glutamate receptor (GluR) 1-4 subunits with confocal microscopy. After pepsin treatment, punctate staining was seen with antibodies against each subunit: GluR2-immunoreactive puncta were distributed throughout the gray matter, whereas GluR1-immunoreactive puncta were restricted to the dorsal horn and were most numerous in laminas I-II. Punctate staining for GluR3 and GluR4 was found in all laminas but was weak in superficial dorsal horn. Colocalization studies showed that GluR2 was present at virtually all (98%) puncta that were GluR1, GluR3, or GluR4 immunoreactive and that most (>90%) immunoreactive puncta in laminas IV, V, and IX showed GluR2, GluR3, and GluR4 immunoreactivity. Evidence that these puncta represented synaptic receptors was obtained with electron microscopy and by examining the association of GluR2- and GluR1-immunoreactive puncta with glutamatergic boutons (identified with vesicular glutamate transporters or markers for unmyelinated afferents). The great majority (96%) of these boutons were associated with GluR2-immunoreactive puncta. Our findings suggest that GluR2 is almost universally present at AMPA-containing synapses, whereas GluR1 is preferentially associated with primary afferent terminals. We also found a substantial, rapid increase in staining for synaptic GluR1 subunits phosphorylated on the S845 residue in the ipsilateral dorsal horn after peripheral noxious stimulation. This finding demonstrates plastic changes, presumably contributing to central sensitization, at the synaptic level.
Collapse
Affiliation(s)
- Gergely G Nagy
- Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | | | | | |
Collapse
|
103
|
Galvan A, Charara A, Pare JF, Levey AI, Smith Y. Differential subcellular and subsynaptic distribution of GABA(A) and GABA(B) receptors in the monkey subthalamic nucleus. Neuroscience 2004; 127:709-21. [PMID: 15283969 DOI: 10.1016/j.neuroscience.2004.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2004] [Indexed: 11/25/2022]
Abstract
The activation of GABA receptor subtype A (GABA(A)) and GABA receptor subtype B (GABA(B)) receptors mediates differential effects on GABAergic and non-GABAergic transmission in the basal ganglia. To further characterize the anatomical substrate that underlies these functions, we used immunogold labeling to compare the subcellular and subsynaptic localization of GABA(A) and GABA(B) receptors in the subthalamic nucleus (STN). Our findings demonstrate major differences and some similarities in the distribution of GABA(A) and GABA(B) receptors in the monkey STN. The immunoreactivity for GABA(A) receptor alpha1 subunits is mostly bound to the plasma membrane, whereas GABA(B) R1 subunit alpha1 immunoreactivity is largely expressed intracellularly. Plasma membrane-bound GABA(A) alpha1 subunit aggregate in the main body of putative GABAergic synapses, while GABA(B) R1 receptors are found at the edges of putative glutamatergic or GABAergic synapses. A large pool of plasma membrane-bound GABA(A) and GABA(B) receptors is extrasynaptic. In conclusion, these findings demonstrate a significant degree of heterogeneity between the distributions of the two major GABA receptor subtypes in the monkey STN. Their pattern of synaptic localization puts forward interesting questions regarding their mechanisms of activation and functions at GABAergic and non-GABAergic synapses.
Collapse
Affiliation(s)
- A Galvan
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
104
|
Paspalas CD, Goldman-Rakic PS. Microdomains for dopamine volume neurotransmission in primate prefrontal cortex. J Neurosci 2004; 24:5292-300. [PMID: 15190100 PMCID: PMC6729299 DOI: 10.1523/jneurosci.0195-04.2004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The explicit yet enigmatic involvement of dopamine in cortical physiology is in part volumetric (beyond the synapse), as is apparently the action of neuroleptics targeting dopamine receptors. The notion that nonsynaptic neuronal membranes would translate extracellular dopamine into receptor-specific spatiotemporal downstream signaling, similar to the chemical synapse, is intriguing. Here, we report that dopamine D5 (but not D1 or D2) receptors in the perisomatic plasma membrane of prefrontal cortical neurons form discrete and exclusively extrasynaptic microdomains with inositol 1,4,5-trisphosphate-gated calcium stores of subsurface cisterns and mitochondria. These findings introduce a novel dopaminoceptive substratum in the brain and a unique D5 receptor-specific signaling paradigm.
Collapse
Affiliation(s)
- Constantinos D Paspalas
- Yale University School of Medicine, Department of Neurobiology, Sterling Hall of Medicine B408, 333 Cedar Street, New Haven, CT 0651, USA.
| | | |
Collapse
|
105
|
Vizi ES, Kiss JP, Lendvai B. Nonsynaptic communication in the central nervous system. Neurochem Int 2004; 45:443-51. [PMID: 15186910 DOI: 10.1016/j.neuint.2003.11.016] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Accepted: 11/10/2003] [Indexed: 11/22/2022]
Abstract
Classical synaptic functions are important and suitable to relatively fast and discretely localized processes, but the nonclassical receptorial functions may be providing revolutionary possibilities for dealing at the cellular level with many of the more interesting and seemingly intractable features of neural and cerebral activities. Although different forms of nonsynaptic communication (volume transmission) often appear in different studies, their importance to modulate and mediate various functions is still not completely recognized. To establish the existence and the importance of nonsynaptic communication in the nervous system, here we cite pieces of evidence for each step of the interneuronal communication in the nonsynaptic context including the release into the extracellular space (ECS) and the extrasynaptic receptors and transporters that mediate nonsynaptic functions. We are now faced with a multiplicity of chemical communication. The fact that transmitters can even be released from nonsynaptic varicosities without being coupled to frequency-coded neuronal activity and they are able to diffuse over large distances indicates that there is a complementary mechanism of interneuronal communication to classical synaptic transmission. Nonconventional mediators that are also important part of the nonsynaptic world will also be overviewed.
Collapse
Affiliation(s)
- E Sylvester Vizi
- Department of Pharmacology, Institute of Experimental Medicine; Hungarian Academy of Sciences, P.O. Box 67, H-1450 Budapest, Hungary.
| | | | | |
Collapse
|
106
|
Hossain MA, Russell JC, O'Brien R, Laterra J. Neuronal pentraxin 1: a novel mediator of hypoxic-ischemic injury in neonatal brain. J Neurosci 2004; 24:4187-96. [PMID: 15115814 PMCID: PMC6729280 DOI: 10.1523/jneurosci.0347-04.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neonatal hypoxic-ischemic brain injury is a major cause of neurological disability and mortality. Its therapy will likely require a greater understanding of the discrete neurotoxic molecular mechanism(s) triggered by hypoxia-ischemia (HI). Here, we investigated the role of neuronal pentraxin 1 (NP1), a member of a newly recognized subfamily of "long pentraxins," in the HI injury cascade. Neonatal brains developed marked infarcts in the ipsilateral cerebral hemisphere at 24 hr and showed significant loss of ipsilateral striatal, cortical, and hippocampal volumes at 7 d after HI compared with the contralateral hemisphere and sham controls. Immunofluorescence analyses revealed elevated neuronal expression of NP1 in the ipsilateral cerebral cortex from 6 hr to 7 d and in the hippocampal CA1 and CA3 regions from 24 hr to 7 d after HI. These same brain areas developed infarcts and terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling-positive cells within 24-48 hr of HI. In primary cortical neurons, NP1 protein was induced >2.5-fold (p < 0.001) after their exposure to hypoxia that caused approximately 30-40% neuronal death. Transfecting cortical neurons with antisense oligodeoxyribonucleotides directed against NP1 mRNA (NP1AS) significantly inhibited (p < 0.01) hypoxia-induced NP1 protein induction and neuronal death (p < 0.001), demonstrating a specific requirement of NP1 in hypoxic neuronal injury. NP1 protein colocalized and coimmunoprecipitated with the fast excitatory AMPA glutamate receptor subunit (GluR1) in primary cortical neurons, and hypoxia induced a time-dependent increase in NP1-GluR1 interactions. NPIAS also protected against AMPA-induced neuronal death (p < 0.05), implicating a role for NP1 in the excitotoxic cascade. Our results show that NP1 induction mediates hypoxic-ischemic injury probably by interacting with and modulating GluR1 and potentially other excitatory glutamate receptors.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Apoptosis/drug effects
- Brain/drug effects
- Brain/pathology
- Brain/physiopathology
- C-Reactive Protein/genetics
- C-Reactive Protein/metabolism
- Cell Hypoxia
- Cells, Cultured
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Gene Expression Regulation/drug effects
- Hypoxia-Ischemia, Brain/pathology
- Hypoxia-Ischemia, Brain/physiopathology
- Hypoxia-Ischemia, Brain/prevention & control
- In Situ Nick-End Labeling
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Neurotoxins/antagonists & inhibitors
- Neurotoxins/toxicity
- Oligonucleotides, Antisense/pharmacology
- Protein Binding/physiology
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred F344
- Receptors, AMPA/metabolism
- alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/antagonists & inhibitors
- alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/toxicity
Collapse
Affiliation(s)
- Mir Ahamed Hossain
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | |
Collapse
|
107
|
Hubert GW, Smith Y. Age-related changes in the expression of axonal and glial group I metabotropic glutamate receptor in the rat substantia nigra pars reticulata. J Comp Neurol 2004; 475:95-106. [PMID: 15176087 DOI: 10.1002/cne.20163] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neuronal systems undergo many significant changes during the course of brain development. To characterize the developmental changes in the substantia nigra pars reticulata (SNr) associated with the expression of group I metabotropic glutamate receptors (mGluRs), we used the immunoperoxidase and immunogold methods at the electron microscope level to determine whether the subcellular and subsynaptic patterns of distribution of mGluR1a and mGluR5 differ between young (P14-P18) and adult (>2 months) rats. The SNr of young rats contained a significantly higher density of labeled unmyelinated axons for both receptor subtypes. In addition, mGluR5-immunoreactive glial processes were very abundant in young rats but absent in the adults. On the other hand, the relative proportion of immunoreactive dendrites was the same for both age groups. Analysis of immunogold-labeled rat SNr revealed similar proportions of plasma membrane-bound mGluR1a and mGluR5 in adult (59.8 and 19.4%, respectively) and young (60.6 and 18.4%, respectively) rats. The pattern of subsynaptic localization of mGluR1a also remained the same between young and adults. However, the proportion of extrasynaptic mGluR5 decreased, whereas proportions of gold particles associated with symmetric synapses increased in adults. The results of this study demonstrate significant differences in the expression of group I mGluRs in the SNr of young and adult rats. These findings support a role for group I mGluRs during development and emphasize the importance of using brain tissue from age-matched subjects when attempting to correlate functional data from young rat brain slices with immunocytochemical localization of group I mGluRs.
Collapse
Affiliation(s)
- George Walton Hubert
- Yerkes National Primate Research Center, Division of Neuroscience and Department of Neurology, Emory University, 954 Gatewood Road NE, Atlanta, GA 30322, USA
| | | |
Collapse
|
108
|
Muly EC, Smith Y, Allen P, Greengard P. Subcellular distribution of spinophilin immunolabeling in primate prefrontal cortex: localization to and within dendritic spines. J Comp Neurol 2004; 469:185-97. [PMID: 14694533 DOI: 10.1002/cne.11001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Signal transduction in the nervous system depends on kinases and phosphatases, whose localization is regulated by a large group of scaffolding proteins. In particular, protein phosphatase-1 mediates dopamine's actions on a variety of substrates, including glutamate receptors, and this, in turn, depends on the binding of protein phosphatase-1 to its binding protein spinophilin. To better understand spinophilin's role in targeting protein phosphatase-1 within neurons, we used a combination of preembedding immunoperoxidase and postembedding immunogold labeling and electron microscopy to determine the localization of this scaffolding protein in macaque prefrontal cortex. Consistent with previous reports, spinophilin was found predominantly in dendritic spines, but a significant number of labeled dendritic shafts and, less frequently, glia and preterminal axons were also identified. By using the postembedding immunogold method, we further examined the distribution of spinophilin within dendritic spines. Spinophilin immunoreactivity was present throughout the spine, but the density of label was heterogeneous and defined two domains. The highest density of label was associated with the postsynaptic density and the 100 nm immediately subjacent to it. The deeper region of the spine, further than 100 nm from the postsynaptic density, had a lower density of spinophilin label. The distribution of spinophilin reported in this study supports its role in modulating glutamatergic neurotransmission but also suggests the possibility that spinophilin may target protein phosphatase-1 to other sites within the spine or to other neuronal or glial compartments.
Collapse
Affiliation(s)
- E Chris Muly
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia 30329, USA.
| | | | | | | |
Collapse
|
109
|
Bannerman DM, Deacon RMJ, Brady S, Bruce A, Sprengel R, Seeburg PH, Rawlins JNP. A Comparison of GluR-A-Deficient and Wild-Type Mice on a Test Battery Assessing Sensorimotor, Affective, and Cognitive Behaviors. Behav Neurosci 2004; 118:643-7. [PMID: 15174943 DOI: 10.1037/0735-7044.118.3.643] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous studies have demonstrated a spatial working memory deficit in glutamate receptor (GluR)-A (GluR1) AMPA receptor subunit knockout mice. The present study evaluated male and female wild-type and GluR-A-/- mice on a test battery that assessed sensorimotor, affective, and cognitive behaviors. Results revealed a behavioral phenotype more extensive than previously described. GluR-A-/- mice were hyperactive, displayed a subtle lack of motor coordination, and were generally more anxious than wild-type controls. In addition, they showed a deficit in spontaneous alternation, consistent with previous reports of a role for GluR-A-dependent plasticity in hippocampus-dependent, spatial working memory. Although changes in motor coordination or anxiety cannot explain the dissociations already reported within the spatial memory domain, it is clear that they could significantly affect interpretation of results obtained in other kinds of behavioral tasks.
Collapse
Affiliation(s)
- D M Bannerman
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford OX1 3UD, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
110
|
Ganeshina O, Berry RW, Petralia RS, Nicholson DA, Geinisman Y. Synapses with a segmented, completely partitioned postsynaptic density express more AMPA receptors than other axospinous synaptic junctions. Neuroscience 2004; 125:615-23. [PMID: 15099675 DOI: 10.1016/j.neuroscience.2004.02.025] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2004] [Indexed: 10/26/2022]
Abstract
Axospinous perforated synapses of one morphological subtype exhibit multiple transmission zones, each one being formed by an axon terminal protrusion apposing a postsynaptic density (PSD) segment and separated from others by complete spine partitions. Such segmented, completely partitioned (SCP) synapses have been implicated in synaptic plasticity and postulated to be exceptionally efficacious. The present study explored the validity of this supposition. Postembedding immunogold electron microscopy was used for quantifying the postsynaptic AMPA receptor (AMPAR) expression, which is widely regarded as a major determinant of synaptic efficacy. Various subtypes of axospinous synapses were examined in the rat CA1 stratum radiatum. The results showed that the number of immunogold particles for AMPARs in SCP synapses markedly and significantly exceeded that in other perforated subtypes (by 101% on the average) and in nonperforated immunopositive synapses (by 1086%). Moreover, the particle number per single PSD segment, each of which also contained NMDA receptors, was significantly higher than that per nonperforated PSD (by 485%). SCP synapses also exhibited a higher particle density per unit PSD area, as well as a larger overall PSD area as compared with other synaptic subtypes. Analysis of covariance revealed that the high AMPAR expression in SCP synapses was related to the segmented PSD configuration, not only to the PSD size. Moreover, the subpopulations of SCP and other perforated synapses with either overlapping or equal PSD sizes differed in AMPAR content and concentration, with both measures being significantly higher in SCP synapses. Thus, the elevated AMPAR expression in SCP synapses is associated with the presence of separate PSD segments, not only with their large PSD area. These findings are consistent with the idea that SCP synapses have a relatively greater efficacy and may support maximal levels of synaptic enhancement characteristic of certain forms of synaptic plasticity such as the early LTP phase.
Collapse
Affiliation(s)
- O Ganeshina
- Department of Cell and Molecular Biology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
111
|
Roelandse M, Welman A, Wagner U, Hagmann J, Matus A. Focal motility determines the geometry of dendritic spines. Neuroscience 2003; 121:39-49. [PMID: 12946698 DOI: 10.1016/s0306-4522(03)00405-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The geometry of dendritic spines has a major impact on signal transmission at excitatory synapses. To study it in detail we raised transgenic mice expressing an intrinsic green fluorescent protein-based plasma membrane marker that directly visualizes the cell surface of living neurons throughout the brain. Confocal imaging of developing hippocampal slices showed that as dendrites mature they switch from producing labile filopodia and polymorphic spine precursors to dendritic spines with morphologies similar to those reported from studies of adult brain. In images of live dendrites these mature spines are fundamentally stable structures, but retain morphological plasticity in the form of actin-rich lamellipodia at the tips of spine heads. In live mature dendrites up to 50% of spines had cup-shaped heads with prominent terminal lamellipodia whose motility produced constant alterations in the detailed geometry of the synaptic contact zone. The partial enveloping of presynaptic terminals by these cup-shaped spines coupled with rapid actin-driven changes in their shape may operate to fine-tune receptor distribution and neurotransmitter cross-talk at excitatory synapses.
Collapse
Affiliation(s)
- M Roelandse
- Friedrich Miescher Institute, PO Box 2543, 4002 Basel, Switzerland
| | | | | | | | | |
Collapse
|
112
|
Stricker NL, Huganir RL. The PDZ domains of mLin-10 regulate its trans-Golgi network targeting and the surface expression of AMPA receptors. Neuropharmacology 2003; 45:837-48. [PMID: 14529721 DOI: 10.1016/s0028-3908(03)00275-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Dynamic regulation of synaptic AMPA receptor localization underlies certain forms of synaptic plasticity and researchers are just beginning to identify molecules that may play a role in the synaptic delivery of glutamate receptors. One candidate is mLin-10, the mammalian homolog of the C. elegans receptor targeting protein LIN-10. Here, we investigated the role of mLin-10 in glutamate receptor trafficking. Cellular localization studies, in both whole brain and cultured neurons, revealed that mLin-10 is enriched in the trans-Golgi network and present in dendrites and spines--regions where protein sorting and synaptic delivery are known to occur. The specific localization of mLin-10 in Golgi is disrupted by a point mutation in an mLin-10 PDZ domain, indicating that a PDZ domain mediates this localization. Interactions between mLin-10 and glutamate receptors in both intracellular and synaptic membrane fractions were detected through biochemical assays. GST-pull down and co-immunoprecipitation experiments in heterologous cells delineated the protein domains required for interaction. These results demonstrated that glutamate receptors interact directly with mLin-10 through a PDZ domain-mediated mechanism. A PDZ point mutation enhances surface delivery of exogenous glutamate receptors in transfected neurons, suggesting that mLin-10 may regulate AMPA receptor trafficking in vivo.
Collapse
Affiliation(s)
- Nicole L Stricker
- Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
113
|
Perestenko PV, Henley JM. Characterization of the intracellular transport of GluR1 and GluR2 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits in hippocampal neurons. J Biol Chem 2003; 278:43525-32. [PMID: 12909632 PMCID: PMC3314505 DOI: 10.1074/jbc.m306206200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Little is known about the dynamics of the dendritic transport of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) to synapses. Here, using virally expressed green fluorescent protein (GFP)-GluR1 and GFP-GluR2 and confocal photobleach techniques we show near real-time movement of these subunits in living cultured hippocampal neurons. GFP-GluR1 fluorescence was widely distributed throughout the extranuclear compartment with no evidence for discrete intracellular stores. GFP-GluR1 transport was predominantly proximal to distal at rates of 0.2-0.4 mum.s-1. GFP-GluR2 fluorescence was more punctate and localized at or close to the plasma membrane. Overall, GFP-GluR2 movement was less dynamic with distinct mobile and immobile pools. Neither activation nor inhibition of surface-expressed N-methyl-d-aspartate receptors or AMPARs had any significant effect on the rates of GFP-GluR1 or GFP-GluR2 dendritic transport. These results demonstrate that GluR1 is constitutively and rapidly transported throughout the neuron. GluR2, on the other hand, is less mobile, with a majority retained in relatively immobile membrane-associated clusters, with approximately 40% showing synaptic co-localization. Furthermore, the transport of both subunits is activity-independent, suggesting that the regulated delivery of AMPARs to the vicinity of synapses is not a mechanism that is involved in processes such as synaptic plasticity.
Collapse
Affiliation(s)
| | - Jeremy M. Henley
- To whom correspondence should be addressed. Tel.: 44-117-928-8077; Fax: 44-117-928-1687;
| |
Collapse
|
114
|
Aarts MM, Tymianski M. Novel treatment of excitotoxicity: targeted disruption of intracellular signalling from glutamate receptors. Biochem Pharmacol 2003; 66:877-86. [PMID: 12963474 DOI: 10.1016/s0006-2952(03)00297-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutamate signalling plays key physiological roles in excitatory neurotransmission and CNS plasticity, but also mediates excitotoxicity, the process responsible for triggering neurodegeneration through glutamate receptor overactivation. Excitotoxicity is thought to be a key neurotoxic mechanism in neurological disorders, including brain ischemia, CNS trauma and epilepsy. However, treating excitotoxicity using glutamate receptor antagonists has not proven clinically viable, necessitating more sophisticated approaches. Increasing knowledge of the composition of the postsynaptic density at glutamatergic synapses has allowed us to extend our understanding of the molecular mechanisms of excitotoxicity and to dissect out the distinct signalling pathways responsible for excitotoxic damage. Key molecules in these pathways are physically linked to the cytoplasmic face of glutamate receptors by scaffolding proteins that exhibit binding specificity for some receptors over others. This imparts specificity to physiological and pathological glutamatergic signalling. Recently, we have capitalized on this knowledge and, using targeted peptides to selectively disrupt intracellular interactions linked to glutamate receptors, have blocked excitotoxic signalling in neurones. This therapeutic approach circumvents the negative consequences of blocking glutamate receptors, and may be a practical strategy for treating neurological disorders that involve excitotoxicity.
Collapse
Affiliation(s)
- Michelle M Aarts
- Toronto Western Research Institute, McPav 11-416, 399 Bathurst Street, Toronto, Ont., Canada M5T 2S8.
| | | |
Collapse
|
115
|
Nyíri G, Stephenson FA, Freund TF, Somogyi P. Large variability in synaptic N-methyl-D-aspartate receptor density on interneurons and a comparison with pyramidal-cell spines in the rat hippocampus. Neuroscience 2003; 119:347-63. [PMID: 12770551 DOI: 10.1016/s0306-4522(03)00157-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pyramidal cells receive input from several types of GABA-releasing interneurons and innervate them reciprocally. Glutamatergic activation of interneurons involves both alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) type glutamate receptors expressed in type I synapses, mostly on their dendritic shafts. On average, the synaptic AMPA receptor content is several times higher on interneurons than in the spines of pyramidal cells. To compare the NMDA receptor content of synapses, we used a quantitative postembedding immunogold technique on serial electron microscopic sections, and analysed the synapses on interneuron dendrites and pyramidal cell spines in the CA1 area. Because all NMDA receptors contain the obligatory NR1 subunit, receptor localisation was carried out using antibodies recognising all splice variants of the NR1 subunit. Four populations of synapse were examined: i). on spines of pyramidal cells in stratum (str.) radiatum and str. oriens; ii). on parvalbumin-positive interneuronal dendritic shafts in str. radiatum; iii). on randomly found dendritic shafts in str. oriens and iv). on somatostatin-positive interneuronal dendritic shafts and somata in str. oriens. On average, the size of the synapses on spines was about half of those on interneurons. The four populations of synapse significantly differed in labelling for the NR1 subunit. The median density of NR1 subunit labelling was highest on pyramidal cell spines. It was lowest in the synapses on parvalbumin-positive dendrites in str. radiatum, where more than half of these synapses were immunonegative. In str. oriens, synapses on interneurons had a high variability of receptor content; some dendrites were similar to those in str. radiatum, including the proximal synapses of somatostatin-positive cells, whereas others had immunoreactivity for the NR1 subunit similar to or higher than synapses on pyramidal cell spines. These results show that synaptic NMDA receptor density differs between pyramidal cells and interneurons. Some interneurons may have a high NMDA receptor content, whereas others, like some parvalbumin-expressing cells, a particularly low synaptic NMDA receptor content. Consequently, fast glutamatergic activation of interneurons is expected to show cell type-specific time course and state-dependent dynamics.
Collapse
Affiliation(s)
- G Nyíri
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, PO Box 37, H-1450, Hungary.
| | | | | | | |
Collapse
|
116
|
Galvan A, Smith Y, Wichmann T. Continuous monitoring of intracerebral glutamate levels in awake monkeys using microdialysis and enzyme fluorometric detection. J Neurosci Methods 2003; 126:175-85. [PMID: 12814842 DOI: 10.1016/s0165-0270(03)00092-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A technique for continuous on-line detection of glutamate using brain microdialysis in awake primates is described. The method is based on an enzymatic assay using fluorescence detection of glutamate. The time resolution of the continuous fluorescent readout compares favorably with that of most published studies, which have used standard high-pressure liquid chromatography detection methods for glutamate. Exposure of the system to other amino acids (GABA, aspartate, glutamine, ascorbate, taurine, valine, alanine, and D-glutamate) revealed that this method is highly specific for L-glutamate. In vitro, the system detects reliably glutamate levels as low as 0.5 micromol/l. In vivo testing in the striatum of Rhesus macaques showed that glutamate levels were enhanced after reverse microdialysis with a glutamate uptake blocker. Stimulation with high potassium increased substantially the levels of glutamate, an effect that was calcium-dependent. Glutamate levels were also increased when the microdialysis solution contained the blocker of voltage-gated potassium channels, 4-aminopyridine. This technique effectively detects short-term changes in glutamate levels evoked by physiologic or pharmacologic manipulations in the primate brain.
Collapse
Affiliation(s)
- Adriana Galvan
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | | | | |
Collapse
|
117
|
Decossas M, Bloch B, Bernard V. Trafficking of the muscarinic m2 autoreceptor in cholinergic basalocortical neurons in vivo: differential regulation of plasma membrane receptor availability and intraneuronal localization in acetylcholinesterase-deficient and -inhibited mice. J Comp Neurol 2003; 462:302-14. [PMID: 12794734 DOI: 10.1002/cne.10734] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In vivo, the abundance of receptors at the neuronal plasma membrane may be critical in the mediation of pre- and postsynaptic responses. Thus, we have studied the membrane availability and intraneuronal distribution of the m2 muscarinic autoreceptor (m2R) in cholinergic neurons of the nucleus basalis magnocellularis (NBM) projecting to the frontal cortex (FC). We have studied the subcellular compartmentalization of m2R at somatodendritic postsynaptic and axonal presynaptic sites in control animals (AChE +/+) and in two animal models: mice displaying acute acetylcholinesterase (AChE) inhibition by treatment with metrifonate, and AChE-deficient mice (AChE -/-). In control animals, m2R was mainly located at the plasma membrane in the somatodendritic field of NBM and in cortical varicosities. Acute AChE inhibition and chronic AChE deficiency induced a dramatic decrease of cell surface m2R in the somatodendritic compartment. This finding was associated with two different intracytoplasmic events: (1). internalization of m2R in endosomes after acute AChE inhibition, (2). exaggerated storage of m2R in the endoplasmic reticulum and Golgi complex in AChE -/- mice. In contrast, the m2R density was higher at the membrane of cortical varicosities in AChE -/- mice but unchanged in acutely AChE-inhibited mice. Our data demonstrate that acute and chronic stimulation provoke, in vivo, depletion of the membrane store of somatodendritic m2R through different intracellular mechanisms: endocytosis of receptors from the plasma membrane to the cytoplasm (acute) or regulation of their delivery from intracytoplasmic stores to the plasma membrane (chronic). The increase of m2R at the membrane of axonal varicosities after chronic stimulation suggest modulation of presynaptic cholinergic activity, including neurotransmitter release.
Collapse
Affiliation(s)
- Marion Decossas
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5541, Laboratoire d'Histologie-Embryologie, Université Victor Ségalen-Bordeaux 2, 33076 Bordeaux Cedex, France
| | | | | |
Collapse
|
118
|
Abstract
Activity-dependent changes in synaptic function are believed to underlie the formation of memories. A prominent example is long-term potentiation (LTP), whose mechanisms have been the subject of considerable scrutiny over the past few decades. I review studies from our laboratory that support a critical role for AMPA receptor trafficking in LTP and experience-dependent plasticity.
Collapse
Affiliation(s)
- Roberto Malinow
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
119
|
Lachamp P, Balland B, Tell F, Crest M, Kessler JP. Synaptic localization of the glutamate receptor subunit GluR2 in the rat nucleus tractus solitarii. Eur J Neurosci 2003; 17:892-6. [PMID: 12603280 DOI: 10.1046/j.1460-9568.2003.02494.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The GluR2 subunit controls several key features of the alpha amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-type glutamate receptor including calcium permeability, rectification and gating. In the present study, electrophysiological recordings and immunocytochemistry were used to document the synaptic localization of GluR2 in the rat nucleus tractus solitarii (NTS). Synaptic responses recorded in NTS neurons exhibited linear current-voltage relationships suggestive of GluR2-containing AMPA receptor responses. Furthermore, after antigen retrieval GluR2 immunolabelling in the NTS mainly consisted of small puncta. Double-labelling experiments showed that these GluR2 puncta were apposed to glutamatergic synaptic terminals identified by type II vesicular glutamate transporter immunoreactivity. These results indicate that NTS glutamatergic synapses are endowed with AMPA receptors which contain the GluR2 subunit and are therefore likely to be both calcium-impermeable and slowly desensitizing.
Collapse
Affiliation(s)
- Philippe Lachamp
- ITIS, UMR 6150, Centre National de la Recherche Scientifique et Université de la Méditerranée, IFR Jean Roche, Faculté de Médecine Nord, Bd Pierre Dramard, F13916 Marseille cedex 20, France
| | | | | | | | | |
Collapse
|
120
|
Fletcher G, Mason S, Terrett J, Soloviev M. Self-assembly of proteins and their nucleic acids. J Nanobiotechnology 2003; 1:1. [PMID: 12646068 PMCID: PMC151556 DOI: 10.1186/1477-3155-1-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2002] [Accepted: 01/28/2003] [Indexed: 11/10/2022] Open
Abstract
We have developed an artificial protein scaffold, herewith called a protein vector, which allows linking of an in-vitro synthesised protein to the nucleic acid which encodes it through the process of self-assembly. This protein vector enables the direct physical linkage between a functional protein and its genetic code. The principle is demonstrated using a streptavidin-based protein vector (SAPV) as both a nucleic acid binding pocket and a protein display system. We have shown that functional proteins or protein domains can be produced in vitro and physically linked to their DNA in a single enzymatic reaction. Such self-assembled protein-DNA complexes can be used for protein cloning, the cloning of protein affinity reagents or for the production of proteins which self-assemble on a variety of solid supports. Self-assembly can be utilised for making libraries of protein-DNA complexes or for labelling the protein part of such a complex to a high specific activity by labelling the nucleic acid associated with the protein. In summary, self-assembly offers an opportunity to quickly generate cheap protein affinity reagents, which can also be efficiently labelled, for use in traditional affinity assays or for protein arrays instead of conventional antibodies.
Collapse
Affiliation(s)
- Graham Fletcher
- Oxford GlycoSciences (UK) Ltd, Abingdon, Oxon OX14 3YS, United Kingdom
| | - Sean Mason
- Oxford GlycoSciences (UK) Ltd, Abingdon, Oxon OX14 3YS, United Kingdom
| | - Jon Terrett
- Oxford GlycoSciences (UK) Ltd, Abingdon, Oxon OX14 3YS, United Kingdom
| | - Mikhail Soloviev
- Oxford GlycoSciences (UK) Ltd, Abingdon, Oxon OX14 3YS, United Kingdom
| |
Collapse
|
121
|
Ganeshina O, Berry RW, Petralia RS, Nicholson DA, Geinisman Y. Differences in the expression of AMPA and NMDA receptors between axospinous perforated and nonperforated synapses are related to the configuration and size of postsynaptic densities. J Comp Neurol 2003; 468:86-95. [PMID: 14648692 DOI: 10.1002/cne.10950] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Axospinous synapses are traditionally divided according to postsynaptic density (PSD) configuration into a perforated subtype characterized by a complex-shaped PSD and nonperforated subtype exhibiting a simple-shaped, disc-like PSD. It has been hypothesized that perforated synapses are especially important for synaptic plasticity because they have a higher efficacy of impulse transmission. The aim of the present study was to test this hypothesis. The number of postsynaptic AMPA receptors (AMPARs) is widely regarded as the major determinant of synaptic efficacy. Therefore, the expression of AMPARs was evaluated in the two synaptic subtypes and compared with that of NMDA receptors (NMDARs). Postembedding immunogold electron microscopy was used to quantify the immunoreactivity following single labeling of AMPARs or NMDARs in serial sections through the CA1 stratum radiatum of adult rats. The results showed that all perforated synapses examined were immunopositive for AMPARs. In contrast, only a proportion of nonperforated synapses (64% on average) contained immunogold particles for AMPARs. The number of immunogold particles for AMPARs was markedly and significantly higher in perforated synapses than in immunopositive nonperforated synapses. Although all synapses of both subtypes were NMDAR immunopositive perforated synapses contained significantly more immunogold particles for NMDARs than nonperforated ones. Multivariate analysis of variance revealed that the mode of AMPAR and NMDAR expression is related to the complexity of PSD configuration, not only to PSD size. These findings support the notion that perforated synapses may evoke larger postsynaptic responses relative to nonperforated synapses and, hence, contribute to an enhancement of synaptic transmission associated with some forms of synaptic plasticity.
Collapse
Affiliation(s)
- Olga Ganeshina
- Department of Cell and Molecular Biology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | | | | | | | |
Collapse
|
122
|
Raiteri L, Raiteri M, Bonanno G. Coexistence and function of different neurotransmitter transporters in the plasma membrane of CNS neurons. Prog Neurobiol 2002; 68:287-309. [PMID: 12498989 DOI: 10.1016/s0301-0082(02)00059-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Transporters able to recapture released neurotransmitters into neurons can no longer be considered as cell-specific neuronal markers. In fact, colocalization on one nerve terminal of transporters able to selectively recapture the released endogenously synthesized transmitter (homotransporters) and of transporters that can selectively take up transmitters/modulators originating from neighboring structures (heterotransporters) has been demonstrated to occur on several families of nerve terminals. Activation of heterotransporters often increases the release of the transmitter stored in the terminals on which the heterotransporters are localized. The release caused by heterotransporter activation takes place through multiple mechanisms including exocytosis, either dependent on external Ca(2+) or on Ca(2+) mobilized from intraterminal stores, and homotransporter reversal. Homocarrier-mediated release elicited by heterocarrier activation represents a clear case of transporter-transporter interaction. Although the functional significance of transporter coexpression on one nerve terminal remains to be established, it may in some instances reflect cotransmission. In other cases, heterotransporters may mediate modulation of basal transmitter release in addition to the modulation of the evoked release brought about by presynaptic heteroreceptors. Heterotransporters are also increasingly reported to exist on neuronal soma/dendrites. With the exception of EAAT4, the glutamate transporter/chloride channel situated on GABAergic Purkinje cells in the cerebellum, the functions of somatodendritic heterocarriers is not understood.
Collapse
Affiliation(s)
- Luca Raiteri
- Department of Experimental Medicine, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | | | | |
Collapse
|
123
|
Lörincz A, Notomi T, Tamás G, Shigemoto R, Nusser Z. Polarized and compartment-dependent distribution of HCN1 in pyramidal cell dendrites. Nat Neurosci 2002; 5:1185-93. [PMID: 12389030 DOI: 10.1038/nn962] [Citation(s) in RCA: 356] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2002] [Accepted: 10/01/2002] [Indexed: 11/09/2022]
Abstract
An ion channel's function depends largely on its location and density on neurons. Here we used high-resolution immunolocalization to determine the subcellular distribution of the hyperpolarization-activated and cyclic-nucleotide-gated channel subunit 1 (HCN1) in rat brain. Light microscopy revealed graded HCN1 immunoreactivity in apical dendrites of hippocampal, subicular and neocortical layer-5 pyramidal cells. Quantitative comparison of immunogold densities showed a 60-fold increase from somatic to distal apical dendritic membranes. Distal dendritic shafts had 16 times more HCN1 labeling than proximal dendrites of similar diameters. At the same distance from the soma, the density of HCN1 was significantly higher in dendritic shafts than in spines. Our results reveal the complex cell surface distribution of voltage-gated ion-channels, and predict its role in increasing the computational power of single neurons via subcellular domain and input-specific mechanisms.
Collapse
Affiliation(s)
- Andrea Lörincz
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Szigony Street 43, 1083 Budapest, Hungary
| | | | | | | | | |
Collapse
|
124
|
Abstract
Activity-dependent changes in synaptic function are believed to underlie the formation of memories. Two prominent examples are long-term potentiation (LTP) and long-term depression (LTD), whose mechanisms have been the subject of considerable scrutiny over the past few decades. Here we review the growing literature that supports a critical role for AMPA receptor trafficking in LTP and LTD, focusing on the roles proposed for specific AMPA receptor subunits and their interacting proteins. While much work remains to understand the molecular basis for synaptic plasticity, recent results on AMPA receptor trafficking provide a clear conceptual framework for future studies.
Collapse
|
125
|
Neocortical long-term potentiation and long-term depression: site of expression investigated by infrared-guided laser stimulation. J Neurosci 2002. [PMID: 12196579 DOI: 10.1523/jneurosci.22-17-07558.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The synaptic site of expression of long-term potentiation (LTP) and long-term depression (LTD) is still a matter of debate. To address the question of presynaptic versus postsynaptic expression of neocortical LTP and LTD in a direct approach, we measured the glutamate sensitivity of apical dendrites of layer 5 pyramidal neurons during LTP and LTD. We used infrared-guided laser stimulation to release glutamate from its "caged" form with high spatial and temporal resolution. Responses to photolytically released glutamate and synaptically evoked EPSPs were recorded with patch-clamp pipettes from the neuronal somata. LTP and LTD could be induced by electrical stimulation at the same synapses in succession. The NMDA receptor-dependent LTD was accompanied by a decrease in the dendritic glutamate sensitivity, suggesting a postsynaptic expression of neocortical LTD. In contrast, LTP was never accompanied by a change in the dendritic glutamate sensitivity. A possible explanation for this finding is a presynaptic expression of neocortical LTP. Another set of experiments corroborated these results: Photolytic application of glutamate with a frequency of 5 Hz caused a long-lasting Ca2+ and NMDA receptor-dependent decrease in the dendritic glutamate sensitivity. In contrast, LTP of dendritic glutamate sensitivity was never induced by photostimulation, despite several experimental modifications to prevent washout of the induction mechanism and to induce a stronger postsynaptic Ca2+ influx. In conclusion, our findings provide strong evidence for a postsynaptic expression of neocortical LTD and favor a primarily presynaptic locus of neocortical LTP.
Collapse
|
126
|
Abstract
Accumulating evidence suggests that special lipid microdomains in the lipid membrane play various roles in cellular functions. Neurons also have such microdomains, non-caveolar lipid rafts. However, the rafts at the synaptic sites had not been reported until 2001, when a raft-like fraction was purified from synaptic plasma membrane of the rat forebrain (Mol. Brain Res. 89 (2001) 20). This article reviews recent findings on lipid rafts, especially those in the brain, and discusses the possible interaction between the postsynaptic raft and the postsynaptic density, both of which are essential for the structure and function of the postsynaptic side of the synapse.
Collapse
Affiliation(s)
- Tatsuo Suzuki
- Department of Neuroplasticity, Research Center on Aging and Adaptation, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan.
| |
Collapse
|
127
|
Grünert U, Haverkamp S, Fletcher EL, Wässle H. Synaptic distribution of ionotropic glutamate receptors in the inner plexiform layer of the primate retina. J Comp Neurol 2002; 447:138-51. [PMID: 11977117 DOI: 10.1002/cne.10220] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The distribution and synaptic clustering of glutamate receptors (GluRs) were studied in the inner plexiform layer (IPL) of the macaque monkey retina by using subunit specific antisera. A punctate immunofluorescence pattern was observed in the IPL for all subunits tested, and electron microscopy confirmed that the immunoreactive puncta represent clustering of receptors at sites postsynaptic to the bipolar cell ribbon synapses (dyads). Usually only one of the two postsynaptic processes at the dyads expressed a given subunit. Immunoreactive GluR2, GluR2/3, and GluR4 puncta were found at high density throughout the IPL and are probably expressed at every dyad. The GluR1 subunit was expressed at lower density. The N-methyl-D-aspartate (NMDA) receptor subunits NR2A and NR1C2' were restricted to synapses localized in two broad bands in the center of the IPL. They were often colocalized with GluR2/3 and GluR4 subunits. The orphan receptor subunits delta 1/2 predominated in three horizontal bands. The kainate receptor subunits GluR6/7 were clustered in large postsynaptic densities adjacent to bipolar cell axon terminals but lacking a synaptic ribbon on the presynaptic side. This might represent a conventional synapse made by a bipolar axon terminal. The results suggest that GluR2/3 and GluR4, together with NMDA receptors, are preferentially expressed on ganglion cell dendrites, whereas kainate receptors and the delta 1/2 subunits are mostly localized on amacrine cell processes.
Collapse
MESH Headings
- Animals
- Glutamate Decarboxylase/metabolism
- Glutamic Acid/metabolism
- Immunohistochemistry
- Isoenzymes/metabolism
- Macaca fascicularis/anatomy & histology
- Macaca fascicularis/metabolism
- Microscopy, Electron
- Presynaptic Terminals/metabolism
- Presynaptic Terminals/ultrastructure
- Receptors, AMPA/metabolism
- Receptors, AMPA/ultrastructure
- Receptors, Glutamate/metabolism
- Receptors, Glutamate/ultrastructure
- Receptors, Kainic Acid/metabolism
- Receptors, Kainic Acid/ultrastructure
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, N-Methyl-D-Aspartate/ultrastructure
- Retina/metabolism
- Retina/ultrastructure
- Synaptic Membranes/metabolism
- Synaptic Membranes/ultrastructure
- Synaptic Transmission/physiology
- Vision, Ocular/physiology
Collapse
Affiliation(s)
- Ulrike Grünert
- Department of Physiology F13, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | |
Collapse
|
128
|
Tamaru Y, Nomura S, Mizuno N, Shigemoto R. Distribution of metabotropic glutamate receptor mGluR3 in the mouse CNS: differential location relative to pre- and postsynaptic sites. Neuroscience 2002; 106:481-503. [PMID: 11591452 DOI: 10.1016/s0306-4522(01)00305-0] [Citation(s) in RCA: 281] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The metabotropic glutamate receptors (mGluRs) have distinct distribution patterns in the CNS but subtypes within group I or group III mGluRs share similar ultrastructural localization relative to neurotransmitter release sites: group I mGluRs are concentrated in an annulus surrounding the edge of the postsynaptic density, whereas group III mGluRs are concentrated in the presynaptic active zone. One of the group II subtypes, mGluR2, is expressed in both pre- and postsynaptic elements, having no close association with synapses. In order to determine if such a distribution is common to another group II subtype, mGluR3, an antibody was raised against a carboxy-terminus of mGluR3 and used for light and electron microscopic immunohistochemistry in the mouse CNS. The antibody reacted strongly with mGluR3, but it also reacted, though only weakly, with mGluR2. Therefore, to examine mGluR3-selective distribution, we used mGluR2-deficient mice as well as wild-type mice. Strong immunoreactivity for mGluR3 was found in the cerebral cortex, striatum, dentate gyrus of the hippocampus, olfactory tubercle, lateral septal nucleus, lateral and basolateral amygdaloid nuclei, and nucleus of the lateral olfactory tract. Pre-embedding immunoperoxidase and immunogold methods revealed mGluR3 labeling in both presynaptic and postsynaptic elements, and also in glial profiles. Double labeling revealed that the vast majority of mGluR3 in presynaptic elements is not closely associated with glutamate and GABA release sites in the striatum and thalamus, respectively. However, in the spines of the dentate granule cells, the highest receptor density was found in perisynaptic sites (20% of immunogold particles within 60 nm from the edge of postsynaptic membrane specialization) followed by a decreasing receptor density away from the synapses (to approximately 5% of particles per 60 nm). Furthermore, 19% of immunogold particles were located in asymmetrical postsynaptic specialization, indicating an association of mGluR3 to glutamatergic synapses. The present results indicate that the localization of mGluR3 is rather similar to that of group I mGluRs in the postsynaptic elements, suggesting a unique functional role of mGluR3 in glutamatergic neurotransmission in the CNS.
Collapse
Affiliation(s)
- Y Tamaru
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Japan
| | | | | | | |
Collapse
|
129
|
Schuster T, Krug M, Stalder M, Hackel N, Gerardy-Schahn R, Schachner M. Immunoelectron microscopic localization of the neural recognition molecules L1, NCAM, and its isoform NCAM180, the NCAM-associated polysialic acid, beta1 integrin and the extracellular matrix molecule tenascin-R in synapses of the adult rat hippocampus. JOURNAL OF NEUROBIOLOGY 2001; 49:142-58. [PMID: 11598921 DOI: 10.1002/neu.1071] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have investigated the possibility that morphologically different excitatory glutamatergic synapses of the "trisynaptic circuit" in the adult rodent hippocampus, which display different types of long-term potentiation (LTP), may express the immunoglobulin superfamily recognition molecules L1 and NCAM, the extracellular matrix molecule tenascin-R, and the extracellular matrix receptor constituent beta1 integrin in a differential manner. The neural cell adhesion molecules L1, NCAM (all three major isoforms), NCAM180 (the largest major isoform with the longest cytoplasmic domain), beta1 integrin, polysialic acid (PSA) associated with NCAM, and tenascin-R were localized by pre-embedding immunostaining procedures in the CA3/CA4 region (mossy fiber synapses) and in the dentate gyrus (spine synapses) of the adult rat hippocampus. Synaptic membranes of mossy fiber synapses where LTP is expressed presynaptically did not show detectable levels of immunoreactivity for any of the molecules/epitopes studied. L1, NCAM, and PSA, but not NCAM180 or beta1 integrin, were detectable on axonal membranes of fasciculating mossy fibers. In contrast to mossy fiber synapses, spine synapses in the outer third of the molecular layer of the dentate gyrus, which display postsynaptic expression mechanisms of LTP, were both immunopositive and immunonegative for NCAM, NCAM180, beta1 integrin, and PSA. Those spine synapses postsynaptically immunoreactive for NCAM or PSA also showed immunoreactivity on their presynaptic membranes. NCAM180 was not detectable presynaptically in spine synapses. L1 could not be found in spine synapses either pre- or postsynaptically. Also, the extracellular matrix molecule tenascin-R was not detectable in synaptic clefts of all synapses tested, but was amply present between fasciculating axons, axon-astrocyte contact areas, and astrocytic gap junctions. Differences in expression of the membrane-bound adhesion molecules at both types of synapses may reflect the different mechanisms for induction and/or maintenance of synaptic plasticity.
Collapse
Affiliation(s)
- T Schuster
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
130
|
Hermans E, Challiss RA. Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors. Biochem J 2001; 359:465-84. [PMID: 11672421 PMCID: PMC1222168 DOI: 10.1042/0264-6021:3590465] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In 1991 a new type of G-protein-coupled receptor (GPCR) was cloned, the type 1a metabotropic glutamate (mGlu) receptor, which, despite possessing the defining seven-transmembrane topology of the GPCR superfamily, bore little resemblance to the growing number of other cloned GPCRs. Subsequent studies have shown that there are eight mammalian mGlu receptors that, together with the calcium-sensing receptor, the GABA(B) receptor (where GABA is gamma-aminobutyric acid) and a subset of pheromone, olfactory and taste receptors, make up GPCR family C. Currently available data suggest that family C GPCRs share a number of structural, biochemical and regulatory characteristics, which differ markedly from those of the other GPCR families, most notably the rhodopsin/family A GPCRs that have been most widely studied to date. This review will focus on the group I mGlu receptors (mGlu1 and mGlu5). This subgroup of receptors is widely and differentially expressed in neuronal and glial cells within the brain, and receptor activation has been implicated in the control of an array of key signalling events, including roles in the adaptative changes needed for long-term depression or potentiation of neuronal synaptic connectivity. In addition to playing critical physiological roles within the brain, the mGlu receptors are also currently the focus of considerable attention because of their potential as drug targets for the treatment of a variety of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- E Hermans
- Laboratoire de Pharmacologie, Université Catholique de Louvain (54.10), B-1200 Brussels, Belgium.
| | | |
Collapse
|
131
|
Baudry M, Lynch G. Remembrance of arguments past: how well is the glutamate receptor hypothesis of LTP holding up after 20 years? Neurobiol Learn Mem 2001; 76:284-97. [PMID: 11726238 DOI: 10.1006/nlme.2001.4023] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- M Baudry
- Neuroscience Program, University of Southern California, Los Angeles, California 90089-2520, USA.
| | | |
Collapse
|
132
|
Smith Y, Charara A, Paquet M, Kieval JZ, Paré JF, Hanson JE, Hubert GW, Kuwajima M, Levey AI. Ionotropic and metabotropic GABA and glutamate receptors in primate basal ganglia. J Chem Neuroanat 2001; 22:13-42. [PMID: 11470552 DOI: 10.1016/s0891-0618(01)00098-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The functions of glutamate and GABA in the CNS are mediated by ionotropic and metabotropic, G protein-coupled, receptors. Both receptor families are widely expressed in basal ganglia structures in primates and nonprimates. The recent development of highly specific antibodies and/or cDNA probes allowed the better characterization of the cellular localization of various GABA and glutamate receptor subtypes in the primate basal ganglia. Furthermore, the use of high resolution immunogold techniques at the electron microscopic level led to major breakthroughs in our understanding of the subsynaptic and subcellular localization of these receptors in primates. In this review, we will provide a detailed account of the current knowledge of the localization of these receptors in the basal ganglia of humans and monkeys.
Collapse
Affiliation(s)
- Y Smith
- Division of Neuroscience, Yerkes Regional Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Nunzi MG, Birnstiel S, Bhattacharyya BJ, Slater NT, Mugnaini E. Unipolar brush cells form a glutamatergic projection system within the mouse cerebellar cortex. J Comp Neurol 2001; 434:329-41. [PMID: 11331532 DOI: 10.1002/cne.1180] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Unipolar brush cells (UBCs) of the mammalian vestibulocerebellum receive mossy fiber projections primarily from the vestibular ganglion and vestibular nuclei. Recently, the axons of UBCs have been shown to generate an extensive system of cortex-intrinsic mossy fibers, which resemble traditional cerebellar mossy fiber afferents and synapse with granule cell dendrites and other UBCs. However, the neurotransmitter used by the UBC axon is still unknown. In this study, we used long-term organotypic slice cultures of the isolated nodulus (lobule X) from postnatal day 8 mouse cerebella to identify the neurotransmitter and receptors at synapses of the UBC axon terminals, relying on the notion that, in these cultures, all of the cortex-extrinsic fibers had degenerated during the first few days in vitro. Quantification of glutamate immunogold labeling showed that the UBC axon terminals have the same high gold-particle density as the glutamatergic parallel fiber varicosities. Furthermore, UBCs identified by calretinin immunoreactivity expressed the glutamate receptor subunits GluR2/3, NMDAR1, and mGluR2/3, like they do in the mature mouse cerebellum in situ. Evoked excitatory postsynaptic currents (EPSCs), spontaneous EPSCs, and burst discharges were demonstrated in UBCs and granule cells by patch-clamp recording. Both the evoked and spontaneous EPSCs were blocked by ionotropic glutamate receptor antagonists CNQX and D-AP5. We conclude that neurotransmission at the UBC axon terminals is glutamatergic. Thus, UBCs provide a powerful network of feedforward excitation within the granular layer, which may amplify vestibular signals and synchronize activity in clusters of functionally related granule cells which project vertically to patches of Purkinje cells.
Collapse
Affiliation(s)
- M G Nunzi
- Institute for Neuroscience, Northwestern University Medical School, Chicago, Illinois 60611, USA.
| | | | | | | | | |
Collapse
|
134
|
Kudryashov IE, Kudryashova IV. The effects of forelimb deafferentation on the post-natal development of synaptic plasticity in the hippocampus. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2001; 31:305-10. [PMID: 11430575 DOI: 10.1023/a:1010338702708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effects of partial deafferentation of the forelimb on the development of long-term potentiation in the hippocampus of rats aged 13-18 days were studied. Long-term potentiation in hippocampus field CA1 was of greater amplitude and duration in control rats at 16-18 days of post-natal ontogenesis than in adult animals. Partial deafferentation by section of the median nerve in the forelimb on the 13th day of life led to the disappearance of this excess at 16-18 days. The peak in synaptic plasticity occurred later in operated animals--on day 17--and was much less marked than in controls. The decreases in the amplitude and duration of long-term potentiation in hippocampal field CA1 in operated animals provides evidence for a decrease in the sensitivity and/or number of NMDA receptors. This suggests that partial deafferentation of one limb may lead not to a decrease but to an increase in spike and synaptic activity in the hippocampus, which in normal conditions may affect the maturation of the plastic properties of synaptic transmission associated with the expression and positions of NMDA receptors. The level of long-term potentiation in sham-operated rats was significantly greater than in controls of the same age. This significant increase in NMDA-dependent long-term potentiation may be explained by a decrease in the level of activation due to anesthesia. It is suggested that the decrease in the spike activity of cells receiving signals from the median nerve may be compensated for by activation of other specific and non-specific inputs.
Collapse
Affiliation(s)
- I E Kudryashov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow
| | | |
Collapse
|
135
|
Suzuki T, Ito J, Takagi H, Saitoh F, Nawa H, Shimizu H. Biochemical evidence for localization of AMPA-type glutamate receptor subunits in the dendritic raft. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 89:20-8. [PMID: 11311972 DOI: 10.1016/s0169-328x(01)00051-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A low density Triton-insoluble fraction with characteristic lipid composition was prepared from synaptic plasma membrane from the rat forebrain. The fraction was named dendritic raft based on its absence of the presynaptic marker synaptophysin, the presence of postsynaptic Glutamate receptor (GluR) subunits, and its resemblance to raft, caveolae-like structure. We found a differential distribution of NMDA-type and AMPA-type GluR subunits in the dendritic raft and postsynaptic density (PSD) fractions; the latter type GluR subunits were localized to the dendritic raft as well as PSD fraction, whereas the former type was mostly localized to the PSD fraction. We also found the differential distribution of the components of ras/mitogen-activated protein kinase (MAPK) pathway to the dendritic raft and PSD fractions. Dendritic raft and PSD may possibly interact at the postsynaptic sites for efficient signal processing that is required for expression of synaptic plasticity.
Collapse
Affiliation(s)
- T Suzuki
- Department of Neuroplasticity, Research Center on Aging and Adaptation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan.
| | | | | | | | | | | |
Collapse
|
136
|
Chatha BT, Bernard V, Streit P, Bolam JP. Synaptic localization of ionotropic glutamate receptors in the rat substantia nigra. Neuroscience 2001; 101:1037-51. [PMID: 11113353 DOI: 10.1016/s0306-4522(00)00432-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Glutamatergic neurotransmission in the substantia nigra pars compacta and pars reticulata is mediated through N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxaline propionic acid/kainate (AMPA) type receptors as well as other glutamate receptors and is critical for basal ganglia functioning. A major glutamatergic input to the substantia nigra originates in the subthalamic nucleus, and the long-lasting stimulation of the dopaminergic cells of the substantia nigra pars compacta by the subthalamic neurons has been implicated in the pathophysiology of Parkinson's disease. The objectives of the present study were to determine the subcellular and subsynaptic localization of subunits of the N-methyl-D-aspartate and AMPA receptors in the substantia nigra, and also to determine whether co-localization of N-methyl-D-aspartate and AMPA receptor subunits occur at individual synapses. To achieve this, pre-embedding and post-embedding immunocytochemistry was applied to sections of substantia nigra using antibodies that recognize the NR1 and NR2A/B subunits of the N-methyl-D-aspartate receptor, and GluR2/3 subunits of the AMPA receptor. In both regions of the substantia nigra, immunolabelling for each of the subunits was observed in numerous perikarya and proximal dendrites. At the subcellular level, silver-intensified immunogold particles localizing N-methyl-D-aspartate and AMPA receptor subunits were most commonly present within dendrites where they were associated with a variety of intracellular organelles and with the internal surface of the plasma membrane. Post-embedding immunogold labelling revealed immunoparticles labelling for NR1, NR2A/B and GluR2/3 to be enriched at asymmetric synaptic specializations, although a large proportion of asymmetric synapses were immunonegative. Double immunolabelling revealed, in addition to single-labelled synapses, the co-localization of subunits of the N-methyl-D-aspartate receptor and subunits of the AMPA receptor at individual asymmetric synapses. Similarly, double immunolabelling also revealed the co-localization of the NRl and NR2A/B subunits of the N-methyl-D-aspartate receptor at individual asymmetric synapses. Labelling for NR1 and GluR2/3 was, on average, relatively evenly distributed across the width of the synapse with a gradual reduction towards the periphery when analysed in single sections. In summary, the present results demonstrate that AMPA and N-methyl-D-aspartate receptors are selectively localized at a subpopulation of asymmetric synapses in the substantia nigra pars compacta and reticulata and that the two receptor types, at least partially co-localize at individual synapses. It is concluded that glutamatergic transmission in the substantia nigra pars compacta and pars reticulata occurs primarily at asymmetric synapses and, at least in part, is mediated by both N-methyl-D-aspartate and AMPA receptors.
Collapse
Affiliation(s)
- B T Chatha
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, Mansfield Road, OX1 3TH, Oxford, UK
| | | | | | | |
Collapse
|
137
|
Abstract
There has been an explosion of new information on the neurobiology of dendritic spines in synaptic signaling, integration, and plasticity. Novel imaging and analytical techniques have provided important new insights into dendritic spine structure and function. Results are accumulating across many disciplines, and a step toward consolidating some of this work has resulted in Dendritic Spines of the Hippocampus. Leaders in the field provide a discussion at the level of advanced under-graduates, with sufficient detail to be a contemporary resource for research scientists. Critical reviews are presented on topics ranging from spine structure, formation, and maintenance, to molecular composition, plasticity, and the role of spines in learning and memory. Dendritic Spines of the Hippocampus provides a timely discussion of our current understanding of form and function at these excitatory synapses. We asked authors to include areas of controversy in their papers so as to distinguish results that are generally agreed upon from those where multiple interpretations are possible. We thank the contributors for their insights and thoughtful discussions. In this paper we provide background on the structure, composition, function, development, plasticity, and pathology of hippocampal dendritic spines. In addition, we highlight where each of these subjects will be elaborated upon in subsequent papers of this special issue of Hippocampus.
Collapse
Affiliation(s)
- K E Sorra
- Department of Biology, Boston University, Massachusetts 02215, USA
| | | |
Collapse
|
138
|
Abstract
Nearly all excitatory input in the hippocampus impinges on dendritic spines which serve as multifunctional compartments that can, at the very least, selectively isolate and amplify incoming signals. Their importance to normal brain function is highlighted by the severe mental impairment observed in most individuals having poorly developed spines (Purpura, Science 1974;186:1126-1128). Distinct groups of membrane proteins, cytoskeletal elements, scaffolding proteins, and second messenger-related proteins are concentrated particularly in dendritic spines, but their ability to generate, maintain, and coordinately regulate spine structure or function is poorly understood. Here we review the unique molecular composition of dendritic spines along with the factors known to influence dendritic spine development in order to construct a model of dendritic spine development in relation to synaptogenesis.
Collapse
Affiliation(s)
- W Zhang
- Fishberg Research Center for Neurobiology and Program in Cell Adhesion, Mount Sinai School of Medicine, New York, New York 10029,USA
| | | |
Collapse
|
139
|
Lin DD, Cohen AS, Coulter DA. Zinc-induced augmentation of excitatory synaptic currents and glutamate receptor responses in hippocampal CA3 neurons. J Neurophysiol 2001; 85:1185-96. [PMID: 11247988 DOI: 10.1152/jn.2001.85.3.1185] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Zinc is found throughout the CNS at synapses co-localized with glutamate in presynaptic terminals. In particular, dentate granule cells' (DGC) mossy fiber (MF) axons contain especially high concentrations of zinc co-localized with glutamate within vesicles. To study possible physiological roles of zinc, visualized slice-patch techniques were used to voltage-clamp rat CA3 pyramidal neurons, and miniature excitatory postsynaptic currents (mEPSCs) were isolated. Bath-applied zinc (200 microM) enhanced median mEPSC peak amplitudes to 153.0% of controls, without affecting mEPSC kinetics. To characterize this augmentation further, rapid agonist application was performed on perisomatic outside-out patches to coapply zinc with glutamate extremely rapidly for brief (1 ms) durations, thereby emulating release kinetics of these substances at excitatory synapses. When zinc was coapplied with glutamate, zinc augmented peak glutamate currents (mean +/- SE, 116.6 +/- 2.8% and 143.8 +/- 9.8% of controls at 50 and 200 microM zinc, respectively). This zinc-induced potentiation was concentration dependent, and pharmacological isolation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated currents (AMPAR currents) gave results similar to those observed with glutamate application (mean, 115.0 +/- 5.4% and 132.5 +/- 9.1% of controls at 50 and 200 microM zinc, respectively). Inclusion of the AMPAR desensitization blocker cyclothiazide in the control solution, however, abolished zinc-induced augmentation of glutamate-evoked currents, suggesting that zinc may potentiate AMPAR currents by inhibiting AMPAR desensitization. Based on the results of the present study, we hypothesize that zinc is a powerful modulator of both excitatory synaptic transmission and glutamate-evoked currents at physiologically relevant concentrations. This modulatory role played by zinc may be a significant factor in enhancing excitatory neurotransmission and could significantly regulate function at the mossy fiber-CA3 synapse.
Collapse
Affiliation(s)
- D D Lin
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298-0599, USA
| | | | | |
Collapse
|
140
|
Kullmann DM. Spillover and synaptic cross talk mediated by glutamate and GABA in the mammalian brain. PROGRESS IN BRAIN RESEARCH 2001; 125:339-51. [PMID: 11098670 DOI: 10.1016/s0079-6123(00)25023-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- D M Kullmann
- Department of Clinical Neurology, UCL, London, UK.
| |
Collapse
|
141
|
Lacassagne O, Kessler JP. Cellular and subcellular distribution of the amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subunit GluR2 in the rat dorsal vagal complex. Neuroscience 2001; 99:557-63. [PMID: 11029547 DOI: 10.1016/s0306-4522(00)00204-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) type glutamate receptors are ligand gated ion channels made up of various combinations of four subunits termed GluR1-4. The GluR2 subunit controls several key features of the receptor including calcium permeability and inward rectification. In the present study, we analysed by immunocytochemistry the cellular and subcellular distribution of the GluR2 subunit in neurons of the dorsal vagal complex of the rat. GluR2 immunoreactivity was found both in the neuropile and in neuronal cell bodies. Perikaryal staining was strong in the dorsal motor nucleus of the vagus nerve and moderate in the medial part of the nucleus tractus solitarii as well as in the area postrema. The lateral part of the nucleus tractus solitarii was almost devoid of immunoreactivity except for the interstitial subnucleus which was filled with numerous strongly immunoreactive perikarya and large cell processes. Ultrastructural examination was carried out in the interstitial subnucleus. Peroxidase staining indicative of GluR2 immunoreactivity was observed in neuronal cell bodies and dendrites. No labeled axon terminal or glial cell body was found. Additional experiments performed using pre-embedding immunogold showed that most of the labeling in immunoreactive dendrites was intracytoplasmic. These results indicate that GluR2 immunoreactivity is differentially distributed among neurons in the dorsal vagal complex, thereby suggesting differences in the functional properties of AMPA receptors between neuronal populations. These results also suggest that AMPA receptors, at least those containing the GluR2 subunit, have no major role as presynaptic receptors within this region. Finally, they indicate the existence of large intracellular pools of GluR2 subunits within dendrites of immunoreactive neurons.
Collapse
Affiliation(s)
- O Lacassagne
- Laboratoire de Neurobiologie, UPR 9024, Centre National de la Recherche Scientifique, 31, chem Joseph-Aiguier, F13402 cedex 20, Marseille, France
| | | |
Collapse
|
142
|
Zilles K, Wu J, Crusio WE, Schwegler H. Water maze and radial maze learning and the density of binding sites of glutamate, GABA, and serotonin receptors in the hippocampus of inbred mouse strains. Hippocampus 2001; 10:213-25. [PMID: 10902891 DOI: 10.1002/1098-1063(2000)10:3<213::aid-hipo2>3.0.co;2-q] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Correlations between the densities of ionotropic glutamate, GABA(A), and serotonin binding sites in the hippocampus of seven inbred mouse strains and strain-specific learning capacities in two types of maze were studied. Binding site densities were measured with quantitative receptor autoradiography. Learning capacities were determined in a water maze task as well as in spatial and nonspatial versions of an eight-arm radial maze. The densities of most binding sites differed significantly between the strains in the subfields of Ammon's horn (CA1 and CA3) and the dentate gyrus, except for serotonin binding sites in CA1. By comparing the different strains, significant receptor-behavioral correlations between the densities of the GABA(A) receptors and the activity-dependent behavior in the water maze as well as the spatial learning in the radial maze were found. The densities of D,L-alpha-amino-3-hydroxy-5-methyl-4-isoxalone propionate (AMPA) and kainate receptors correlated positively with learning capacity in the spatial eight-arm radial maze. We conclude that hereditary variations mainly in AMPA, kainate, and GABA(A) receptor densities are involved in behavioral variations in spatial and nonspatial learning tasks.
Collapse
Affiliation(s)
- K Zilles
- C. und O. Vogt Institut für Hirnforschung, Universität Düsseldorf, Germany.
| | | | | | | |
Collapse
|
143
|
Abstract
A chemical form of synaptic potentiation was produced with a brief bath application of NMDA to rat hippocampal slices. Two methods were used to assess changes in membrane-bound AMPA receptors. Traditional subcellular fractionation was used to isolate synaptic membranes; alternatively, membrane receptors were cross-linked with the membrane-impermeable reagent bis(sulfosuccinimidyl) suberate, and levels of nonmembrane receptors were determined. In both cases, Western blots were used to determine the content of receptor subunits in various subcellular fractions. NMDA-induced potentiation was associated with increased levels of glutamate receptor 1 (GluR1) and GluR2/3 subunits of AMPA receptors in synaptic membrane preparations, whereas no change was observed in whole homogenates. Both KN-62, an inhibitor of calcium/calmodulin kinase, and calpain inhibitor III, a calpain inhibitor, inhibited NMDA-induced potentiation and changes in GluR1 and GluR2/3 subunits of AMPA receptors. Brefeldin A (BFA) inhibits protein trafficking between the Golgi apparatus and cell membranes. Pretreatment of hippocampal slices with BFA significantly decreased NMDA-induced potentiation and completely prevented an NMDA-induced increase in GluR1 levels in membrane fractions. Thus, the levels of GluR1 and GluR2/3 subunits of AMPA receptors are rapidly upregulated in synaptic membranes under conditions associated with potentiation of synaptic responses, and this upregulation requires a functional secretory pathway.
Collapse
|
144
|
Milner TA, Drake CT. Ultrastructural evidence for presynaptic mu opioid receptor modulation of synaptic plasticity in NMDA-receptor-containing dendrites in the dentate gyrus. Brain Res Bull 2001; 54:131-40. [PMID: 11275401 DOI: 10.1016/s0361-9230(00)00415-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Physiological studies have demonstrated that long-term potentiation (LTP) induction in N-methyl-D-aspartate (NMDA) receptor containing dentate granule cells following lateral perforant path stimulation is opioid dependent, involving mu-opioid receptors (MORs) on gamma-aminobutyric acid (GABA)-ergic neurons. To determine the cellular relationships of MORs to postsynaptic NMDA receptor-containing dendrites, immunoreactivity (-I) against MOR and the NMDA receptor subunit 1 (NMDAR1) was examined in the outer molecular layer of the dentate gyrus using electron microscopy. MOR-I was predominantly in axons and axon terminals. NMDAR1-I was almost exclusively in spiny dendrites, but was also in a few terminals. Using immunogold particles to localize precisely NMDAR1, one-third of the NMDAR1-I was detected on the dendritic plasmalemma; in dendritic spines plasmalemmal immunogold particles were near synaptic densities. Many MOR-labeled axons and terminals contacted NMDAR1-labeled dendrites. MOR-labeled terminals formed symmetric (inhibitory-type) synapses on NMDAR1-labeled dendritic shafts or nonsynaptically contacted NMDAR1-labeled shafts and spines. MOR-labeled axons often abutted NMDAR1-containing dendritic spines which received asymmetric (excitatory-type) synapses from unlabeled terminals. Occasionally, MOR-labeled terminals and dendrites were apposed to NMDAR1-containing terminals. These results provide anatomical evidence that endogenous enkephalins or exogenous opioid agonists could inhibit GABAergic terminals that modulate granule cell dendrites, thus boosting depolarizing events in granule cells and facilitating the activation of NMDA receptors located on their dendrites.
Collapse
MESH Headings
- Animals
- Dendrites/chemistry
- Dendrites/ultrastructure
- Dentate Gyrus/chemistry
- Dentate Gyrus/ultrastructure
- Interneurons/chemistry
- Interneurons/ultrastructure
- Male
- Microscopy, Electron
- Neuronal Plasticity
- Presynaptic Terminals/chemistry
- Presynaptic Terminals/ultrastructure
- Rats
- Rats, Sprague-Dawley
- Receptors, N-Methyl-D-Aspartate/chemistry
- Receptors, N-Methyl-D-Aspartate/ultrastructure
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/physiology
- Receptors, Opioid, mu/ultrastructure
Collapse
Affiliation(s)
- T A Milner
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | |
Collapse
|
145
|
Miner LH, Schroeter S, Blakely RD, Sesack SR. Ultrastructural localization of the serotonin transporter in superficial and deep layers of the rat prelimbic prefrontal cortex and its spatial relationship to dopamine terminals. J Comp Neurol 2000; 427:220-34. [PMID: 11054690 DOI: 10.1002/1096-9861(20001113)427:2<220::aid-cne5>3.0.co;2-p] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Dopamine levels within the prefrontal cortex (PFC) can be manipulated by selective inhibitors of the serotonin transporter (SERT). However, the cellular mechanisms underlying these effects are not clear. The present study sought to examine the distribution of immunogold-silver labeling for SERT (SERT-ir) in the rat prelimbic PFC and to describe its ultrastructural spatial relationship to dopamine axons labeled by immunoperoxidase staining for tyrosine hydroxylase (TH-ir). SERT was localized to axonal profiles that ranged in size from fine caliber fibers containing dense SERT-ir, primarily along the membrane, and rarely forming synapses to large, spherical varicosities exhibiting less dense staining, mainly within the cytoplasm, and more commonly forming synapses. Synaptic contacts of SERT profiles were typically asymmetric, axospinous, and more frequent in superficial (38%) than deep (19%) layers. For TH-ir profiles, only 24% were within the same 13.8 microm(2) microenvironment as SERT-ir profiles. Furthermore, TH-ir and SERT-ir profiles were rarely directly apposed to each other or convergent onto common dendritic structures. Instead, these two profiles were typically separated by an average distance of 1.30 microm in the coronal plane, a value that did not vary with the size of SERT-ir axons, the amount of SERT labeling, or the cortical layer examined. These results are consistent with two populations of SERT profiles within the rat prelimbic PFC that may arise from different raphe nuclei or that represent varicose and intervaricose portions of the same axons. Moreover, the functional interactions between cortical serotonin and dopamine systems that may contribute to the therapeutic efficacy of antidepressant drugs are likely to occur over distances greater than 1 microm.
Collapse
Affiliation(s)
- L H Miner
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | |
Collapse
|
146
|
Fabian-Fine R, Volknandt W, Fine A, Stewart MG. Age-dependent pre- and postsynaptic distribution of AMPA receptors at synapses in CA3 stratum radiatum of hippocampal slice cultures compared with intact brain. Eur J Neurosci 2000; 12:3687-700. [PMID: 11029638 DOI: 10.1046/j.1460-9568.2000.00265.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Organotypic slice cultures of rat hippocampus are widely used as experimental preparations for the study of synaptic plasticity, but their degree of correspondence with intact brain is not fully known. Here, using postembedding immunogold labelling, we describe the ultrastructural distribution of AMPA-type glutamate receptors (GluR1-4) in CA3 stratum radiatum of organotypic hippocampal slice cultures at 10 days to 11 weeks in vitro and compare the labelling with intact brain of corresponding age. In both types of preparation, the 11-week-old samples contained the highest proportion of AMPA receptor-like immunoreactive synapses. The incidence of labelled synapses, however, was higher in vivo (49%) than in vitro (24%). The intensity of labelling (number of gold particles per labelled synapse) also increased with age and was also higher in vivo than in vitro. In both organotypic cultures and intact brain, labelling was frequently found at presynaptic sites, often attached to vesicular structures. The specificity of these findings was supported both by light microscopic immunolabelling of GluR2/3 subunits and by electron microscopic double labelling of different epitopes of the GluR2 subunit. The vesicular localization of AMPA receptors was supported by Western blot analysis of subcellular fractions. Morphological evidence of presynaptic excitatory innervation of glutamatergic neurons supports a functional role for presynaptically located AMPA receptors. Our results therefore suggest that AMPA receptors occur in both pre- and postsynaptic profiles and that the distribution of AMPA receptors in cultured brain slices is fundamentally similar to intact brain, but that synaptic maturation may be retarded in vitro.
Collapse
Affiliation(s)
- R Fabian-Fine
- Department of Biological Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| | | | | | | |
Collapse
|
147
|
Cottrell JR, Dubé GR, Egles C, Liu G. Distribution, density, and clustering of functional glutamate receptors before and after synaptogenesis in hippocampal neurons. J Neurophysiol 2000; 84:1573-87. [PMID: 10980028 DOI: 10.1152/jn.2000.84.3.1573] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Postsynaptic differentiation during glutamatergic synapse formation is poorly understood. Using a novel biophysical approach, we have investigated the distribution and density of functional glutamate receptors and characterized their clustering during synaptogenesis in cultured hippocampal neurons. We found that functional alpha-amino-3-hydroxy-5-methyl-4-isoxazolpropionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors are evenly distributed in the dendritic membrane before synaptogenesis with an estimated density of 3 receptors/microm(2). Following synaptogenesis, functional AMPA and NMDA receptors are clustered at synapses with a density estimated to be on the order of 10(4) receptors/microm(2), which corresponds to approximately 400 receptors/synapse. Meanwhile there is no reduction in the extrasynaptic receptor density, which indicates that the aggregation of the existing pool of receptors is not the primary mechanism of glutamate receptor clustering. Furthermore our data suggest that the ratio of AMPA to NMDA receptor density may be regulated to be close to one in all dendritic locations. We also demonstrate that synaptic AMPA and NMDA receptor clusters form with a similar time course during synaptogenesis and that functional AMPA receptors cluster independently of activity and glutamate receptor activation, including following the deletion of the NMDA receptor NR1 subunit. Thus glutamate receptor activation is not necessary for the insertion, clustering, and activation of functional AMPA receptors during synapse formation, and this process is likely controlled by an activity-independent signal.
Collapse
Affiliation(s)
- J R Cottrell
- RIKEN-MIT Neuroscience Research Center, Center for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
148
|
Abstract
The hippocampal mossy fiber pathway between the granule cells of the dentate gyrus and the pyramidal cells of area CA3 has been the target of numerous scientific studies. Initially, attention was focused on the mossy fiber to CA3 pyramidal cell synapse because it was suggested to be a model synapse for studying the basic properties of synaptic transmission in the CNS. However, the accumulated body of research suggests that the mossy fiber synapse is rather unique in that it has many distinct features not usually observed in cortical synapses. In this review, we have attempted to summarize the many unique features of this hippocampal pathway. We also have attempted to reconcile some discrepancies that exist in the literature concerning the pharmacology, physiology and plasticity of this pathway. In addition we also point out some of the experimental challenges that make electrophysiological study of this pathway so difficult.Finally, we suggest that understanding the functional role of the hippocampal mossy fiber pathway may lie in an appreciation of its variety of unique properties that make it a strong yet broadly modulated synaptic input to postsynaptic targets in the hilus of the dentate gyrus and area CA3 of the hippocampal formation.
Collapse
Affiliation(s)
- D A Henze
- Department of Neuroscience and Center for Neural Basis of Cognition, University of Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
149
|
Seress L, Gallyas F. The use of a sodium tungstate developer markedly improves the electron microscopic localization of zinc by the Timm method. J Neurosci Methods 2000; 100:33-9. [PMID: 11040364 DOI: 10.1016/s0165-0270(00)00227-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Timm's sulfide-silver method is frequently used for the demonstration of the mossy fiber bundle or sprouted mossy fibers in the normal or epileptic hippocampal dentate gyrus. Under the light microscope the results are excellent, but the ultrastructure is considerably impaired and the silver grains produced are too large as compared to the sizes of intra-synaptic structures. The present study was meant to test a series of physical developers containing, instead of gum arabic, sodium tungstate as protective colloid. One of them left the ultrastructure fairly intact and produced small, round silver grains, making it possible to precisely locate zinc in mossy terminals. With this method, it could be demonstrated that zinc is contained inside synaptic vesicles in the resting axon terminals of granule cells. As a consequence of prolonged sodium sulfide perfusion, zinc is released from synaptic vesicles and enters the synaptic cleft.
Collapse
Affiliation(s)
- L Seress
- Central Electron Microscopic Laboratory, Faculty of Medicine, Pécs University, 7643, Szigeti u. 12, Pécs, Hungary.
| | | |
Collapse
|
150
|
Pettit DL, Augustine GJ. Distribution of functional glutamate and GABA receptors on hippocampal pyramidal cells and interneurons. J Neurophysiol 2000; 84:28-38. [PMID: 10899180 DOI: 10.1152/jn.2000.84.1.28] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The distribution of functional neurotransmitter receptors is an important determinant of neuronal information processing. To map the location of functional glutamate and GABA receptors on individual hippocampal neurons, we photolyzed "caged" glutamate and GABA while measuring the electrical currents resulting from activation of these receptors. Responses to uncaged neurotransmitters were spatially nonuniform and varied according to the type of receptor and type of neuron. Every region of CA1 pyramidal cells responded to glutamate and GABA, but glutamate and GABA receptors increased in density along the length of their distal dendrites. Similar gradients of glutamate receptors were found in stratum radiatum interneurons, while GABA responses were detectable only in the perisomatic region of these interneurons. These regional variations in receptor distribution indicate the selective targeting of receptors on central neurons and may reflect a mechanism for local regulation of synaptic efficacy.
Collapse
Affiliation(s)
- D L Pettit
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|