101
|
Joslyn RC, Forero A, Green R, Parker SE, Savan R. Long Noncoding RNA Signatures Induced by Toll-Like Receptor 7 and Type I Interferon Signaling in Activated Human Plasmacytoid Dendritic Cells. J Interferon Cytokine Res 2019; 38:388-405. [PMID: 30230983 DOI: 10.1089/jir.2018.0086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) exhibit highly lineage-specific expression and act through diverse mechanisms to exert control over a wide range of cellular processes. lncRNAs can function as potent modulators of innate immune responses through control of transcriptional and posttranscriptional regulation of mRNA expression and processing. Recent studies have demonstrated that lncRNAs participate in the regulation of antiviral responses and autoimmune disease. Despite their emerging role as immune mediators, the mechanisms that govern lncRNA expression and function have only begun to be characterized. In this study, we explore the role of lncRNAs in human plasmacytoid dendritic cells (pDCs), which are critical sentinel sensors of viral infection and contribute to the development of autoimmune disease. Using genome-wide sequencing approaches, we dissect the contributions of Toll-like receptor 7 (TLR7) and type I interferon (IFN-I) in the regulation of coding and noncoding RNA expression in CAL-1 pDCs treated with R848 or IFNβ. Functional enrichment analysis reveals both the unique and synergistic roles of TLR7 and IFN-I signaling in the orchestration of pDC function. These observations were consistent with primary cell immune responses elicited by detection of viral infection. We identified and characterized the conditional TLR7- and IFN-I-dependent regulation of 588 lncRNAs. Dysregulation of these lncRNAs could significantly alter pDC maturation, IFN-I and inflammatory cytokine production, antigen presentation, costimulation or tolerance cues, turnover, or localization, all consequential events during viral infection or IFN-I-driven autoimmune diseases such as systemic lupus erythematosus. These findings demonstrate the differential responsiveness of lncRNAs to unique immune stimuli, uncover regulatory mechanisms of lncRNA expression, and reveal a novel and tractable platform for the study of lncRNA expression and function.
Collapse
Affiliation(s)
- Rochelle C Joslyn
- 1 Department of Immunology and University of Washington , Seattle, Washington
| | - Adriana Forero
- 1 Department of Immunology and University of Washington , Seattle, Washington
| | - Richard Green
- 1 Department of Immunology and University of Washington , Seattle, Washington.,2 Center for Innate Immunity and Immune Disease, University of Washington , Seattle, Washington
| | - Stephen E Parker
- 1 Department of Immunology and University of Washington , Seattle, Washington
| | - Ram Savan
- 1 Department of Immunology and University of Washington , Seattle, Washington.,2 Center for Innate Immunity and Immune Disease, University of Washington , Seattle, Washington
| |
Collapse
|
102
|
Tsai CY, Hsieh SC, Lu CS, Wu TH, Liao HT, Wu CH, Li KJ, Kuo YM, Lee HT, Shen CY, Yu CL. Cross-Talk between Mitochondrial Dysfunction-Provoked Oxidative Stress and Aberrant Noncoding RNA Expression in the Pathogenesis and Pathophysiology of SLE. Int J Mol Sci 2019; 20:ijms20205183. [PMID: 31635056 PMCID: PMC6829370 DOI: 10.3390/ijms20205183] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototype of systemic autoimmune disease involving almost every organ. Polygenic predisposition and complicated epigenetic regulations are the upstream factors to elicit its development. Mitochondrial dysfunction-provoked oxidative stress may also play a crucial role in it. Classical epigenetic regulations of gene expression may include DNA methylation/acetylation and histone modification. Recent investigations have revealed that intracellular and extracellular (exosomal) noncoding RNAs (ncRNAs), including microRNAs (miRs), and long noncoding RNAs (lncRNAs), are the key molecules for post-transcriptional regulation of messenger (m)RNA expression. Oxidative and nitrosative stresses originating from mitochondrial dysfunctions could become the pathological biosignatures for increased cell apoptosis/necrosis, nonhyperglycemic metabolic syndrome, multiple neoantigen formation, and immune dysregulation in patients with SLE. Recently, many authors noted that the cross-talk between oxidative stress and ncRNAs can trigger and perpetuate autoimmune reactions in patients with SLE. Intracellular interactions between miR and lncRNAs as well as extracellular exosomal ncRNA communication to and fro between remote cells/tissues via plasma or other body fluids also occur in the body. The urinary exosomal ncRNAs can now represent biosignatures for lupus nephritis. Herein, we’ll briefly review and discuss the cross-talk between excessive oxidative/nitrosative stress induced by mitochondrial dysfunction in tissues/cells and ncRNAs, as well as the prospect of antioxidant therapy in patients with SLE.
Collapse
Affiliation(s)
- Chang-Youh Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital & National Yang-Ming University, #201 Sec.2, Shih-Pai Road, Taipei 11217, Taiwan.
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| | - Cheng-Shiun Lu
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| | - Tsai-Hung Wu
- Division of Nephrology, Taipei Veterans General Hospital & National Yang-Ming University, #201 Sec. 2, Shih-Pai Road, Taipei 11217, Taiwan.
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital & National Yang-Ming University, #201 Sec.2, Shih-Pai Road, Taipei 11217, Taiwan.
| | - Cheng-Han Wu
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| | - Yu-Min Kuo
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| | - Hui-Ting Lee
- Section of Allergy, Immunology & Rheumatology, Mackay Memorial Hospital, #92 Sec. 2, Chung-Shan North Road, Taipei 10449, Taiwan.
| | - Chieh-Yu Shen
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| |
Collapse
|
103
|
Yo K, Rünger TM. The long non-coding RNA FLJ46906 binds to the transcription factors NF-κB and AP-1 and regulates expression of aging-associated genes. Aging (Albany NY) 2019; 10:2037-2050. [PMID: 30125263 PMCID: PMC6128423 DOI: 10.18632/aging.101528] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/13/2018] [Indexed: 01/06/2023]
Abstract
Several features differentiate aged cells from young cells, many of which are due to changes in gene expression during the aging process. The mechanisms of altered gene expression in aging cells remain incompletely understood, and we hypothesized that long non-coding (lnc) RNAs mediate at least some of these changes. We screened for alterations in lncRNA expression with aging in skin fibroblasts and identified the lncRNA FLJ46906 to be consistently upregulated with aging in-vivo and in-vitro. The function of this lncRNA has not been known. Here we show that FLJ46906 regulates several aging-associated genes, including IL1B, IL6, CXCL8, TGFB1, and ELN. We suggest that these effects are mediated through NF-κB and AP-1, because these aging-associated genes are regulated by NF-κB and AP-1, and because we found that FLJ46906 directly binds to these two transcription factors. This data supports a role of the lncRNA FLJ46906 in the aging process.
Collapse
Affiliation(s)
- Kazuyuki Yo
- Department of Dermatology, Boston University School of Medicine, Boston, MA 02118, USA.,Current address: Dermatological R & D, POLA Chemical Industries Inc., Yokohama, Japan
| | - Thomas M Rünger
- Department of Dermatology, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
104
|
Monteiro JP, Bennett M, Rodor J, Caudrillier A, Ulitsky I, Baker AH. Endothelial function and dysfunction in the cardiovascular system: the long non-coding road. Cardiovasc Res 2019; 115:1692-1704. [PMID: 31214683 PMCID: PMC6755355 DOI: 10.1093/cvr/cvz154] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/23/2019] [Accepted: 06/05/2019] [Indexed: 12/18/2022] Open
Abstract
Present throughout the vasculature, endothelial cells (ECs) are essential for blood vessel function and play a central role in the pathogenesis of diverse cardiovascular diseases. Understanding the intricate molecular determinants governing endothelial function and dysfunction is essential to develop novel clinical breakthroughs and improve knowledge. An increasing body of evidence demonstrates that long non-coding RNAs (lncRNAs) are active regulators of the endothelial transcriptome and function, providing emerging insights into core questions surrounding EC contributions to pathology, and perhaps the emergence of novel therapeutic opportunities. In this review, we discuss this class of non-coding transcripts and their role in endothelial biology during cardiovascular development, homeostasis, and disease, highlighting challenges during discovery and characterization and how these have been overcome to date. We further discuss the translational therapeutic implications and the challenges within the field, highlighting lncRNA that support endothelial phenotypes prevalent in cardiovascular disease.
Collapse
Affiliation(s)
- João P Monteiro
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Matthew Bennett
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Julie Rodor
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Axelle Caudrillier
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Andrew H Baker
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| |
Collapse
|
105
|
Ma Y, Liang X, Wu H, Zhang C, Ma Y. Long non‑coding RNA NR_002794 is upregulated in pre‑eclampsia and regulates the proliferation, apoptosis and invasion of trophoblast cells. Mol Med Rep 2019; 20:4567-4575. [PMID: 31702023 PMCID: PMC6797946 DOI: 10.3892/mmr.2019.10701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/17/2019] [Indexed: 11/26/2022] Open
Abstract
Pre-eclampsia is a common complication during pregnancy, characterized by hypertension and proteinuria. The pathogenesis of pre-eclampsia is not fully understood. Studies on the maternal spiral artery have led scientists to consider that the ineffective infiltration of placental trophoblast cells may be a primary cause of pre-eclampsia. The present study aimed to investigate the differences in the profiles of long non-coding RNAs (lncRNAs) between the placentas of patients with pre-eclampsia and those of healthy pregnant women. The involvement of the differentially expressed lncRNAs in the biological activity of trophoblast cells was also assessed. A total of 26 differentially expressed lncRNAs were identified between the pre-eclampsia and healthy groups. Upregulation of NR_002794 was found in tissues from patients with pre-eclampsia. In SWAN71 trophoblast cells, NR_002794 had suppressive effects on proliferation and migration, and resulted in an increased rate of apoptosis. Furthermore, lncRNA NR_002794 had no effect on the phagocytosis of trophoblast cells. The present study suggested that abnormal levels of NR_002794 may lead to atypical conditions in trophoblast cells, which may be associated with the failure of maternal spiral artery remodeling during pregnancy and, consequently, with the development of pre-eclampsia.
Collapse
Affiliation(s)
- Yinyao Ma
- Department of Obstetrics, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Xuxia Liang
- Department of Obstetrics, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Hua Wu
- Department of Obstetrics, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Chun Zhang
- Department of Obstetrics, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Yanhua Ma
- Department of Obstetrics, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
106
|
Lian S, Li L, Zhou Y, Liu Z, Wang L. The co-expression networks of differentially expressed RBPs with TFs and LncRNAs related to clinical TNM stages of cancers. PeerJ 2019; 7:e7696. [PMID: 31576243 PMCID: PMC6753928 DOI: 10.7717/peerj.7696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND RNA-binding proteins (RBPs) play important roles in cellular homeostasis by regulating the expression of thousands of transcripts, which have been reported to be involved in human tumorigenesis. Despite previous reports of the dysregulation of RBPs in cancers, the degree of dysregulation of RBPs in cancers and the intrinsic relevance between dysregulated RBPs and clinical TNM information remains unknown. Furthermore, the co-expressed networks of dysregulated RBPs with transcriptional factors and lncRNAs also require further investigation. RESULTS Here, we firstly analyzed the deviations of expression levels of 1,542 RBPs from 20 cancer types and found that (1) RBPs are dysregulated in almost all 20 cancer types, especially in BLCA, COAD, READ, STAD, LUAD, LUSC and GBM with proportion of deviation larger than 300% compared with non-RBPs in normal tissues. (2) Up- and down-regulated RBPs also show opposed patterns of differential expression in cancers and normal tissues. In addition, down-regulated RBPs show a greater degree of dysregulated expression than up-regulated RBPs do. Secondly, we analyzed the intrinsic relevance between dysregulated RBPs and clinical TNM information and found that (3) Clinical TNM information for two cancer types-CHOL and KICH-is shown to be closely related to patterns of differentially expressed RBPs (DE RBPs) by co-expression cluster analysis. Thirdly, we identified ten key RBPs (seven down-regulated and three up-regulated) in CHOL and seven key RBPs (five down-regulated and two up-regulated) in KICH by analyzing co-expression correlation networks. Fourthly, we constructed the co-expression networks of key RBPs between 1,570 TFs and 4,147 lncRNAs for CHOL and KICH, respectively. CONCLUSIONS These results may provide an insight into the understanding of the functions of RBPs in human carcinogenesis. Furthermore, key RBPs and the co-expressed networks offer useful information for potential prognostic biomarkers and therapeutic targets for patients with cancers at the N and M stages in two cancer types CHOL and KICH.
Collapse
Affiliation(s)
- Shuaibin Lian
- College of Physics and Electronic Engineering, XinYang Normal University, Xinyang, HeNan, China
| | - Liansheng Li
- College of Life Sciences, XinYang Normal University, Xinyang, HeNan, China
| | - Yongjie Zhou
- College of Physics and Electronic Engineering, XinYang Normal University, Xinyang, HeNan, China
| | - Zixiao Liu
- College of Physics and Electronic Engineering, XinYang Normal University, Xinyang, HeNan, China
| | - Lei Wang
- College of Life Sciences, XinYang Normal University, Xinyang, HeNan, China
| |
Collapse
|
107
|
Li D, Wang T, Lai J, Zhang T, Zhu X, Zeng D, Hu Z. Long non-coding RNA GATA6-AS inhibits gastric cancer cell proliferation by downregulating microRNA-25-3p. Oncol Lett 2019; 18:4639-4644. [PMID: 31611972 PMCID: PMC6781765 DOI: 10.3892/ol.2019.10803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
The abnormal growth of endothelial cells is involved in several types of diseases, including gastric cancer. The long non-coding RNA GATA6-AS is a key regulator of endothelial cell growth and may therefore also play an important role in gastric cancer. In the present study it was found that GATA6-AS was downregulated in tumor tissues compared with adjacent normal tissues. Moreover, plasma levels of GATA6-AS were linearly associated with GATA6-AS expression levels in tumor tissues and not in normal tissues. MicroRNA (miR)-25-3p was upregulated in tumor tissues compared with adjacent normal tissues and was inversely associated with GATA6-AS in tumor tissues only. The overexpression of miR-25-3p in gastric cancer cells resulted in no significant changes in the expression levels of GATA6-AS, whereas overexpression of GATA6-AS led to significantly downregulated miR-25-3p levels. Furthermore, overexpression of GATA6-AS inhibited cancer cell proliferation, with no effect on migration and invasion. The overexpression of miR-25-3p resulted in increased proliferation of cancer cells and attenuated the effects of GATA6-AS overexpression. Thus, it is postulated that GATA6-AS inhibits proliferation of gastric cancer cells by downregulating miR-25-3p.
Collapse
Affiliation(s)
- Dingyun Li
- Department of Gastrointestinal Surgery, Yue Bei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Ting Wang
- Department of Physical Diagnostics, Yue Bei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Jiajun Lai
- Department of Gastrointestinal Surgery, Yue Bei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Tao Zhang
- Department of Gastrointestinal Surgery, Yue Bei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Xiaofeng Zhu
- Department of Gastrointestinal Surgery, Yue Bei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Deqiang Zeng
- Department of Gastrointestinal Surgery, Yue Bei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Zhiwei Hu
- Department of Gastrointestinal Surgery, Yue Bei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| |
Collapse
|
108
|
Cai C, Yang L, Tang Y, Wang H, He Y, Jiang H, Zhou K. Prediction of Overall Survival in Gastric Cancer Using a Nine-lncRNA. DNA Cell Biol 2019; 38:1005-1012. [PMID: 31335180 DOI: 10.1089/dna.2019.4832] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Congbo Cai
- Emergency Department, Ningbo Yinzhou No. 2 Hospital, Ningbo, China
| | - Lei Yang
- Emergency Department, Ningbo Yinzhou No. 2 Hospital, Ningbo, China
| | - Yeli Tang
- Emergency Department, Ningbo Yinzhou No. 2 Hospital, Ningbo, China
| | - Houxing Wang
- Emergency Department, Ningbo Yinzhou No. 2 Hospital, Ningbo, China
| | - Yi He
- Gastroenterology Department, Ningbo No. 9 Hospital, Ningbo, China
| | - Honggang Jiang
- Gastroenterology Department, Ningbo No. 9 Hospital, Ningbo, China
| | - Kena Zhou
- Gastroenterology Department, Ningbo No. 9 Hospital, Ningbo, China
| |
Collapse
|
109
|
Lou S, Xu J, Wang B, Li S, Ren J, Hu Z, Xu B, Luo F. Downregulation of lncRNA AFAP1-AS1 by oridonin inhibits the epithelial-to-mesenchymal transition and proliferation of pancreatic cancer cells. Acta Biochim Biophys Sin (Shanghai) 2019; 51:814-825. [PMID: 31314060 DOI: 10.1093/abbs/gmz071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/03/2019] [Indexed: 12/28/2022] Open
Abstract
Recent studies have demonstrated that the expression of the long non-coding RNA (lncRNA) AFAP1-AS1 in pancreatic cancer is negatively correlated with survival and prognosis. However, the effects of oridonin and lncRNA AFAP1-AS1 on the epithelial-to-mesenchymal transition (EMT) and migration of pancreatic cancer cells have not been fully elucidated. Surgery is the only potentially curative method for pancreatic cancer, but postoperative recurrence and metastasis are common. The aim of the present study was to assess the effect of oridonin and lncRNA AFAP1-AS1 silencing on pancreatic cancer cells. The pancreatic cancer cell lines BxPC-3 and PANC-1 cells were transfected with siAFAP1-AS1 and its negative control (siNC). After that, oridonin was used to treat the siAFAP1-AS1-transfected cells. The expression of lncRNA AFAP1-AS1 was downregulated in the pancreatic cancer cell lines BxPC-3 and PANC-1. The apoptosis and cell cycle progression of pancreatic cancer cells were evaluated by flow cytometry and Hoechst 33258 staining. Metastasis and invasion of BxPC-3 and PANC-1 cells were detected by transwell migration assay, real-time cell analysis, and western blot analysis. Cells were transfected with the lentiviral siAFAP1-AS1 and siNC, and tumorigenesis was evaluated in BALB/C nude mice. Immunohistochemical examination was used to verify the effects of oridonin and siAFAP1-AS1 on pancreatic cancer. The results demonstrated that the combination of oridonin and siAFAP1-AS1 inhibited pancreatic cancer cell proliferation, induced apoptosis, arrested cell cycle progression, prevented the migration, regulated EMT-related protein expression in BxPC-3 and PANC-1 cells, and inhibited pancreatic cancer cell tumorigenicity and EMT in nude mice.
Collapse
Affiliation(s)
- Songmei Lou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Xu
- Medical Technology College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bili Wang
- Medical Technology College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuquan Li
- Medical Technology College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Clinical Laboratory, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jun Ren
- Medical Technology College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhengjun Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Luo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
110
|
Wang Q, Liu X, Zhu R. Long Noncoding RNAs as Diagnostic and Therapeutic Targets for Ischemic Stroke. Curr Pharm Des 2019; 25:1115-1121. [PMID: 30919772 DOI: 10.2174/1381612825666190328112844] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/20/2019] [Indexed: 11/22/2022]
Abstract
LncRNAs (long non-coding RNAs) are endogenous molecules lacking protein-encoding capacity,
which have been identified as key regulators of ischemic stroke. Increasing evidence suggests that lncRNAs play
critical roles in several aspects of ischemic stroke, including atherosclerosis, dyslipidemia, hypertension, and
diabetes mellitus. Hence, lncRNAs may further broaden our understanding of stroke pathogenesis. Altered
lncRNA expression has been found in rodent focal cerebral ischemia models and oxygen–glucose deprived mouse
brain microvascular endothelial cells as well as stroke patients. LncRNAs are considered to be promising biomarkers
for the diagnosis and prognosis of cerebral ischemia. Here, we have reviewed the latest advances in
lncRNA-based therapeutic approaches for ischemic disease. Accordingly, we summarize the current understanding
of lncRNAs and ischemic stroke, focusing on the regulatory role of lncRNAs in ischemic stroke, as well as
their potential as biomarkers and therapeutic targets in cerebral ischemia.
Collapse
Affiliation(s)
- Qianwen Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Xu Liu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Ruixia Zhu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
111
|
Long Non-Coding RNAs in Kidney Disease. Int J Mol Sci 2019; 20:ijms20133276. [PMID: 31277300 PMCID: PMC6650856 DOI: 10.3390/ijms20133276] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 02/01/2023] Open
Abstract
Non-coding RNA species contribute more than 90% of all transcripts and have gained increasing attention in the last decade. One of the most recent members of this group are long non-coding RNAs (lncRNAs) which are characterized by a length of more than 200 nucleotides and a lack of coding potential. However, in contrast to this simple definition, lncRNAs are heterogenous regarding their molecular function—including the modulation of small RNA and protein function, guidance of epigenetic modifications and a role as enhancer RNAs. Furthermore, they show a highly tissue-specific expression pattern. These aspects already point towards an important role in cellular biology and imply lncRNAs as players in development, health and disease. This view has been confirmed by numerous publications from different fields in the last years and has raised the question as to whether lncRNAs may be future therapeutic targets in human disease. Here, we provide a concise overview of the current knowledge on lncRNAs in both glomerular and tubulointerstitial kidney disease.
Collapse
|
112
|
The binding of lncRNA RP11-732M18.3 with 14-3-3 β/α accelerates p21 degradation and promotes glioma growth. EBioMedicine 2019; 45:58-69. [PMID: 31202814 PMCID: PMC6642068 DOI: 10.1016/j.ebiom.2019.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have been identified as regulators of a number of developmental and tumorigenic processes. However, the functions of most lncRNAs in glioma remain unknown and the mechanisms governing the proliferation of tumor cells remain poorly defined. Methods Both in vitro and in vivo assays were performed to investigate the roles of lncRNAs in the pathophysiology of gliomas. lncRNA arrays were used to identify differentially expressed lncRNAs. Subcutaneous tumor formation and a brain orthotopic tumor model in nude mice were used to investigate the functions of lncRNAs in vivo. The in vitro functions of lncRNAs were analyzed by fluorescence-activated cell sorting, colony formation, and western blot analyses. RNA fluorescence in situ hybridization and immunoprecipitation were used to explore the underlying mechanisms. Findings Here, we describe the newly discovered noncoding RNA RP11-732M18.3, which is highly overexpressed in glioma cells and interacts with 14-3-3β/α to promote glioma growth, acting as an oncogene. Overexpression of lncRNA RP11-732 M18.3 was associated with the proliferation of glioma cells and tumor growth in vitro and in vivo. Remarkably, lncRNA RP11-732M18.3 promoted cell proliferation and G1/S cell cycle transition. lncRNA RP11-732M18.3 is predominately localized in the cytoplasm. Mechanistically, the interaction of lncRNA RP11-732M18.3 with 14-3-3β/α increases the degradation of the p21 protein. lncRNA RP11-732M18.3 promoted the recruitment of ubiquitin-conjugating enzyme E2 E1 to 14-3-3β/α and the binding of 14-3-3β/α with ubiquitin-conjugating enzyme E2 E1 (UBE2E1) promoted the degradation of p21. Interpretation Overall these data demonstrated that lncRNA RP11-732M18.3 regulates glioma growth through a newly described lncRNA-protein interaction mechanism. The inhibition of lncRNA RP11-732M18.3 could provide a novel therapeutic target for glioma treatment.
Collapse
|
113
|
Hadjicharalambous MR, Lindsay MA. Long Non-Coding RNAs and the Innate Immune Response. Noncoding RNA 2019; 5:ncrna5020034. [PMID: 31010202 PMCID: PMC6630897 DOI: 10.3390/ncrna5020034] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
Innate immunity provides the initial defence against infection and it is now clear that long non-coding RNAs (lncRNAs) are important regulators of this response. Following activation of the innate response, we commonly see rapid induction of these lncRNAs and this is often mediated via the pro-inflammatory transcription factor, nuclear factor-κB (NF-κB). Knockdown studies have shown that lncRNAs tend to act in trans to regulate the expression of multiple inflammatory mediators and other responses. Mechanistically, many lncRNAs have demonstrated acting through heterogeneous nuclear ribonucleoproteins, complexes that are implicated chromatin re-modelling, transcription process and translation. In addition, these lncRNAs have also been shown to interact with multiple other proteins involved in the regulation of chromatin re-modelling, as well as those proteins involved in intracellular immune signalling, which include NF-κB. In this review, we will describe the evidence that supports this emerging role of lncRNA in the innate immune response.
Collapse
Affiliation(s)
| | - Mark A Lindsay
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
114
|
Xu C, Zhou J, Wang Y, Wang A, Su L, Liu S, Kang X. Inhibition of malignant human bladder cancer phenotypes through the down-regulation of the long non-coding RNA SNHG7. J Cancer 2019; 10:539-546. [PMID: 30719150 PMCID: PMC6360294 DOI: 10.7150/jca.25507] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 10/16/2018] [Indexed: 12/29/2022] Open
Abstract
There is abundant evidence that long non-coding RNAs play important roles in the development of tumors. In the present study, our main aim was to explore the relationship between lncRNA SNHG7 and human bladder cancer cells, thus finding a novel target for bladder cancer therapy and diagnosis. Expression of lncRNA SNHG7 was evaluated using real-time quantitative polymerase chain reaction in bladder tumor tissues and paired adjacent normal tissues from 72 patients diagnosed with urothelial bladder carcinoma. We analyzed the differences in expression according to grading and staging. Human bladder cancer cell lines UMUC, 5637, T24 and SW780 were transiently transfected with lncRNA SNHG7-specific siRNA and negative control siRNA. The changes in malignant phenotypes in transfected bladder cancer cells were determined using CCK-8 assay, wound-healing assay and ELISA. We found that lncRNA SNHG7 was correlated with human bladder cancer. lncRNA SNHG7 was overexpressed in bladder cancer tissues compared to paired normal tissues and expression of SNHG7 was higher in high-grade than low-grade tumors. The malignant phenotypes were significantly inhibited when we inhibited expression of lncRNA SNHG7 in several bladder cell lines. SNHG7 plays an oncogenic role in human bladder cancer and may be a potential novel therapeutic target for treating bladder cancer.
Collapse
Affiliation(s)
- Congjie Xu
- Hainan General Hospital, Haikou 570311, China
| | | | - Yang Wang
- Hainan General Hospital, Haikou 570311, China
| | - Anfang Wang
- Hainan General Hospital, Haikou 570311, China
| | - Liangju Su
- Hainan General Hospital, Haikou 570311, China
| | - Shuan Liu
- Hainan General Hospital, Haikou 570311, China
| | - Xinli Kang
- Hainan General Hospital, Haikou 570311, China
| |
Collapse
|
115
|
Hori Y, Tanimoto Y, Takahashi S, Furukawa T, Koshiba-Takeuchi K, Takeuchi JK. Important cardiac transcription factor genes are accompanied by bidirectional long non-coding RNAs. BMC Genomics 2018; 19:967. [PMID: 30587117 PMCID: PMC6307297 DOI: 10.1186/s12864-018-5233-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 11/08/2018] [Indexed: 11/10/2022] Open
Abstract
Background Heart development is a relatively fragile process in which many transcription factor genes show dose-sensitive characteristics such as haploinsufficiency and lower penetrance. Despite efforts to unravel the genetic mechanism for overcoming the fragility under normal conditions, our understanding still remains in its infancy. Recent studies on the regulatory mechanisms governing gene expression in mammals have revealed that long non-coding RNAs (lncRNAs) are important modulators at the transcriptional and translational levels. Based on the hypothesis that lncRNAs also play important roles in mouse heart development, we attempted to comprehensively identify lncRNAs by comparing the embryonic and adult mouse heart and brain. Results We have identified spliced lncRNAs that are expressed during development and found that lncRNAs that are expressed in the heart but not in the brain are located close to genes that are important for heart development. Furthermore, we found that many important cardiac transcription factor genes are located in close proximity to lncRNAs. Importantly, many of the lncRNAs are divergently transcribed from the promoter of these genes. Since the lncRNA divergently transcribed from Tbx5 is highly evolutionarily conserved, we focused on and analyzed the transcript. We found that this lncRNA exhibits a different expression pattern than that of Tbx5, and knockdown of this lncRNA leads to embryonic lethality. Conclusion These results suggest that spliced lncRNAs, particularly bidirectional lncRNAs, are essential regulators of mouse heart development, potentially through the regulation of neighboring transcription factor genes. Electronic supplementary material The online version of this article (10.1186/s12864-018-5233-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yutaro Hori
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, the University of Tokyo, Hongo, Bunkyo, Tokyo, Japan.,Division of Cardiovascular Regeneration, Institute of Molecular and Cellular Biosciences, the University of Tokyo, Hongo, Bunkyo, Tokyo, Japan.,Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Hongo, Bunkyo, Tokyo, Japan
| | - Yoko Tanimoto
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tetsushi Furukawa
- Division of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuko Koshiba-Takeuchi
- Division of Cardiovascular Regeneration, Institute of Molecular and Cellular Biosciences, the University of Tokyo, Hongo, Bunkyo, Tokyo, Japan.,Department of Applied Biosciences, Faculty of Life Sciences, Toyo University, Itakura, Gunma, Japan
| | - Jun K Takeuchi
- Division of Cardiovascular Regeneration, Institute of Molecular and Cellular Biosciences, the University of Tokyo, Hongo, Bunkyo, Tokyo, Japan. .,Division of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
116
|
Yang M, Wang M, Li X, Xie Y, Xia X, Tian J, Zhang K, Tang A. The role of lncRNAs in signaling pathway implicated in CC. J Cell Biochem 2018; 120:2703-2712. [PMID: 30552693 DOI: 10.1002/jcb.26835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 03/09/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Min Yang
- Department of Laboratory Medicine The Second Xiangya Hospital, Central South University Changsha Hunan China
- Department of Laboratory Medicine The Sixth Affiliated Hospital of Sun Yat‐Sen University Guangzhou China
| | - Min Wang
- Department of Laboratory Medicine The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Xianping Li
- Department of Laboratory Medicine The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Yixin Xie
- Department of Laboratory Medicine The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Xiaomeng Xia
- Department of Obstetrics and Gynecology The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Jingjing Tian
- Department of Laboratory Medicine The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Kan Zhang
- Department of Laboratory Medicine The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Aiguo Tang
- Department of Laboratory Medicine The Second Xiangya Hospital, Central South University Changsha Hunan China
| |
Collapse
|
117
|
Chen L, Zhang YH, Pan X, Liu M, Wang S, Huang T, Cai YD. Tissue Expression Difference between mRNAs and lncRNAs. Int J Mol Sci 2018; 19:ijms19113416. [PMID: 30384456 PMCID: PMC6274976 DOI: 10.3390/ijms19113416] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/26/2018] [Accepted: 10/28/2018] [Indexed: 12/15/2022] Open
Abstract
Messenger RNA (mRNA) and long noncoding RNA (lncRNA) are two main subgroups of RNAs participating in transcription regulation. With the development of next generation sequencing, increasing lncRNAs are identified. Many hidden functions of lncRNAs are also revealed. However, the differences in lncRNAs and mRNAs are still unclear. For example, we need to determine whether lncRNAs have stronger tissue specificity than mRNAs and which tissues have more lncRNAs expressed. To investigate such tissue expression difference between mRNAs and lncRNAs, we encoded 9339 lncRNAs and 14,294 mRNAs with 71 expression features, including 69 maximum expression features for 69 types of cells, one feature for the maximum expression in all cells, and one expression specificity feature that was measured as Chao-Shen-corrected Shannon's entropy. With advanced feature selection methods, such as maximum relevance minimum redundancy, incremental feature selection methods, and random forest algorithm, 13 features presented the dissimilarity of lncRNAs and mRNAs. The 11 cell subtype features indicated which cell types of the lncRNAs and mRNAs had the largest expression difference. Such cell subtypes may be the potential cell models for lncRNA identification and function investigation. The expression specificity feature suggested that the cell types to express mRNAs and lncRNAs were different. The maximum expression feature suggested that the maximum expression levels of mRNAs and lncRNAs were different. In addition, the rule learning algorithm, repeated incremental pruning to produce error reduction algorithm, was also employed to produce effective classification rules for classifying lncRNAs and mRNAs, which gave competitive results compared with random forest and could give a clearer picture of different expression patterns between lncRNAs and mRNAs. Results not only revealed the heterogeneous expression pattern of lncRNA and mRNA, but also gave rise to the development of a new tool to identify the potential biological functions of such RNA subgroups.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China.
- Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China.
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Xiaoyong Pan
- Department of Medical Informatics, Erasmus MC, 3000 CA Rotterdam, The Netherlands.
| | - Min Liu
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China.
| | - Shaopeng Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
118
|
Chen X, Sun Y, Cai R, Wang G, Shu X, Pang W. Long noncoding RNA: multiple players in gene expression. BMB Rep 2018; 51:280-289. [PMID: 29636120 PMCID: PMC6033065 DOI: 10.5483/bmbrep.2018.51.6.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Indexed: 01/13/2023] Open
Abstract
Previously considered as a component of transcriptional noise, long noncoding RNAs (lncRNAs) were neglected as a therapeutic target, however, recently increasing evidence has shown that lncRNAs can participate in numerous biological processes involved in genetic regulation including epigenetic, transcriptional, and post-transcriptional regulation. In this review, we discuss the fundamental functions of lncRNAs at different regulatory levels and their roles in metabolic balance. Typical examples are introduced to illustrate their diverse molecular mechanisms. The comprehensive investigation and identification of key lncRNAs will not only contribute to insights into diseases, such as breast cancer and type II diabetes, but also provide promising therapeutic targets for related diseases. [BMB Reports 2018; 51(6): 280-289].
Collapse
Affiliation(s)
- Xiaochang Chen
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Yunmei Sun
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Rui Cai
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Guoqiang Wang
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xiaoyan Shu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan Province 621010, China
| | - Weijun Pang
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| |
Collapse
|
119
|
Long noncoding RNA SNHG16 reduced ketamine-induced neurotoxicity in human embryonic stem cell-derived neurons. J Chem Neuroanat 2018; 94:39-45. [PMID: 30171995 DOI: 10.1016/j.jchemneu.2018.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND Clinical evidence demonstrates that prolonged exposure to ketamine may cause irreversible injury to immature human brains. In this study, we utilized an in vitro model to examine the function of long noncoding RNA (lncRNA) SNHG16 in ketamine-induced neurotoxicity in human embryonic stem cell (hESC)-derived neurons. METHODS HESCs were induced toward neuronsin vitro, and treated with ketamine, at various concentrations, for 48 h. Viability, apoptosis, caspase-3 activity and ROS activity were then examined among hESC-derived neurons. Ketamine-induced gene expression change of SNHG16 was assessed by qRT-PCR. SNHG16 was overexpressed in hESC-derived neurons, which were then treated with ketamine, followed by biochemical assays to assess the effects of SNHG16 upregulation on ketamine-induced neurotoxicity. Correlation between SNHG16 and NeuroD1 gene was assess by qRT-PCR. In SNHG16-upregulated hESC-derived neurons, they were double transfected with siRNA to knock down NeuroD1. The functions of NeuroD1 inhibition on SNHG16-associated neural protection on ketamine-induced neurotoxicity were further assessed. RESULTS 48-h in vitro treatment of ketamine induced significant neurotoxicity, and downregulated SNHG16 among hESC-derived neurons. Conversely, SNHG16 upregulation reduced ketamine-induced neurotoxicity. NeuroD1 expression was downregulated by ketamine in hESC-derived neurons, and concomitantly upregulated by SNHG16 overexpression. SiRNA-mediated NeuroD1 inhibition reversed the protection of SNHG16 upregulation on ketamine-induced neurotoxicity. CONCLUSIONS SNHG16 is an important epigenetic factor which may functionally modulate ketamine-induced neurotoxicity through NeuroD1.
Collapse
|
120
|
Xu Y, Wang J, Wang J. Long noncoding RNA XIST promotes proliferation and invasion by targeting miR-141 in papillary thyroid carcinoma. Onco Targets Ther 2018; 11:5035-5043. [PMID: 30174441 PMCID: PMC6110635 DOI: 10.2147/ott.s170439] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The long noncoding RNA X-inactive specific transcript (XIST) was reported to play vital roles in tumor progression. In the present study, we determined the regulatory function of XIST in papillary thyroid carcinoma (PTC). MATERIALS AND METHODS XIST expression was determined in PTC tissues and cell lines by quantitative real-time polymerase chain reaction (PCR) (qRT-PCR). Cellular proliferation, migration, and invasion were measured using the Cell Counting Kit-8 (CCK-8) assay, wound-healing assay, and transwell invasion assay, respectively. Western blotting was used to determine protein expression. The downstream target miRNAs for XIST were identified by luciferase reporter assay and qRT-PCR. RESULTS Relative expression of XIST was upregulated in PTC tissues and cell lines. High XIST expression was positively correlated with TNM stage and lymph node metastasis. Function assay demonstrated that knockdown of XIST significantly decreased cell proliferation, migration, and invasion in PTC cells. Moreover, we showed that the effects of XIST on PTC cell progression were mediated by miR-141. CONCLUSION Our results demonstrated that XIST functioned as an oncogene in PTC progression by regulating miR-141, suggesting that XIST might be a promising therapeutic target for PTC treatment.
Collapse
Affiliation(s)
- Yawei Xu
- College of Bioengineering, Jilin Agricultural Science and Technology University, Jilin City 132101, People's Republic of China,
| | - Junrong Wang
- Department of Gynaecology and Obstetrics, China-Japan Union Hospital of Jinlin University, Changchun 130033, People's Republic of China
| | - Junling Wang
- College of Bioengineering, Jilin Agricultural Science and Technology University, Jilin City 132101, People's Republic of China,
| |
Collapse
|
121
|
Realizing the significance of noncoding functionality in clinical genomics. Exp Mol Med 2018; 50:1-8. [PMID: 30089779 PMCID: PMC6082831 DOI: 10.1038/s12276-018-0087-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/04/2018] [Accepted: 03/09/2018] [Indexed: 12/14/2022] Open
Abstract
Clinical genomics promises unprecedented precision in understanding the genetic basis of disease. Understanding the impact of variation across the genome is required to realize this potential. Currently, clinical genomics analyses focus on protein-coding genes. However, the noncoding genome is substantially larger than the protein-coding counterpart, and contains structural, regulatory, and transcribed information that needs to be incorporated into genome annotations if the full extent of the opportunity to use genomic information in healthcare is to be realized. This article reviews the challenges and opportunities in unlocking the clinical significance of coding and noncoding genomic information and translating its utility in practice. Most of the DNA in the genome does not consist of genes that code for proteins, and understanding the function of these less examined parts of our genetic material is essential to fully understand human development and disease. Brian Gloss and Marcel Dinger at the Garvan Institute of Medical Research in Sydney, Australia, review the challenges and opportunities in unraveling the clinical significance of all parts of our DNA. Many regions of DNA that do not encode protein molecules perform crucial functions in regulating the activity and interactions of the protein-coding genes. Variations in these regions may significantly influence the risks and causes of disease. Studying all parts of the genome will be critical for ensuring that the powerful modern techniques of genetic analysis have maximal impact on healthcare.
Collapse
|
122
|
Poller W, Dimmeler S, Heymans S, Zeller T, Haas J, Karakas M, Leistner DM, Jakob P, Nakagawa S, Blankenberg S, Engelhardt S, Thum T, Weber C, Meder B, Hajjar R, Landmesser U. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J 2018; 39:2704-2716. [PMID: 28430919 PMCID: PMC6454570 DOI: 10.1093/eurheartj/ehx165] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/14/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
Recent research has demonstrated that the non-coding genome plays a key role in genetic programming and gene regulation during development as well as in health and cardiovascular disease. About 99% of the human genome do not encode proteins, but are transcriptionally active representing a broad spectrum of non-coding RNAs (ncRNAs) with important regulatory and structural functions. Non-coding RNAs have been identified as critical novel regulators of cardiovascular risk factors and cell functions and are thus important candidates to improve diagnostics and prognosis assessment. Beyond this, ncRNAs are rapidly emgerging as fundamentally novel therapeutics. On a first level, ncRNAs provide novel therapeutic targets some of which are entering assessment in clinical trials. On a second level, new therapeutic tools were developed from endogenous ncRNAs serving as blueprints. Particularly advanced is the development of RNA interference (RNAi) drugs which use recently discovered pathways of endogenous short interfering RNAs and are becoming versatile tools for efficient silencing of protein expression. Pioneering clinical studies include RNAi drugs targeting liver synthesis of PCSK9 resulting in highly significant lowering of LDL cholesterol or targeting liver transthyretin (TTR) synthesis for treatment of cardiac TTR amyloidosis. Further novel drugs mimicking actions of endogenous ncRNAs may arise from exploitation of molecular interactions not accessible to conventional pharmacology. We provide an update on recent developments and perspectives for diagnostic and therapeutic use of ncRNAs in cardiovascular diseases, including atherosclerosis/coronary disease, post-myocardial infarction remodelling, and heart failure.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Johann Wolfgang Goethe Universität, Theodor-Stern-Kai 7, Frankfurt am Main, Germany
- DZHK, Site Rhein-Main, Frankfurt, Germany
| | - Stephane Heymans
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany
- DZHK, Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Jan Haas
- Institute for Cardiomyopathies Heidelberg (ICH), Universitätsklinikum Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany
- DZHK, Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Mahir Karakas
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany
- DZHK, Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - David-Manuel Leistner
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
| | - Philipp Jakob
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
| | - Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN Advanced Research Institute, Wako, Saitama, Japan
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo, Japan
| | - Stefan Blankenberg
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany
- DZHK, Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Stefan Engelhardt
- Institute for Pharmacology and Toxikology, Technische Universität München, Biedersteiner Strasse 29, München, Germany
- DZHK, Site Munich, Munich, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Christian Weber
- DZHK, Site Munich, Munich, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Pettenkoferstrasse 8a/9, Munich, Germany
| | - Benjamin Meder
- Institute for Cardiomyopathies Heidelberg (ICH), Universitätsklinikum Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany
- DZHK, Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Roger Hajjar
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ulf Landmesser
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
- Berlin Institute of Health, Kapelle-Ufer 2, Berlin, Germany
| |
Collapse
|
123
|
Chen W, You J, Zheng Q, Zhu YY. Downregulation of lncRNA OGFRP1 inhibits hepatocellular carcinoma progression by AKT/mTOR and Wnt/β-catenin signaling pathways. Cancer Manag Res 2018; 10:1817-1826. [PMID: 29997441 PMCID: PMC6033083 DOI: 10.2147/cmar.s164911] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Increasing evidence demonstrates that long noncoding RNAs (lncRNAs) play important roles in the progression of hepatocellular carcinoma (HCC) by regulating gene expression. However, the identification of functional lncRNAs in HCC remains insufficient. Our study aimed to investigate the function of lncRNA OGFRP1, which has not been functionally researched before, in Hep3B and HepG2 cells. METHODS lncRNA OGFRP1 in HCC cells was down-regulated by using RNAi technology. Quantitative real-time polymerase chain reaction was used to determine the mRNA expression of lncRNA OGFRP1. Cell proliferation was examined by CCK8 and clone formation assays. Cell cycle and apoptosis were analyzed by flow cytometry. Cell migration and invasion were assessed by using Scratch assay and transwell assay, respectively. Protein expression of signaling pathways was determined by using Western blot. RESULTS Cell proliferation of Hep3B was significantly inhibited by down-regulation of lncRNA OGFRP1 (P<0.05). Moreover, siOGFRP1 transfection induced Hep3B cell cycle arrest and apoptosis by regulating the expression of related proteins. Cell migration and invasion of Hep3B were also significantly inhibited by down-regulation of lncRNA OGFRP1. Wnt/β-catenin signaling pathway, involved in epithelial-mesenchymal transition (EMT), was inactivated by lncRNA OGFRP1 downregulation, including decreased expression of Wnt3a, β-catenin, N-cadherin and vimentin and increased expression of E-cadherin. We also found that the inhibitory effect of lncRNA OGFRP1 knockdown on Hep3B was mediated by the AKT/mTOR signaling pathway and IGF-1, an AKT signaling activator, could rescue the cellular phenotype. However, knockdown of lncRNA OGFRP1 did not influence cell proliferation, migration and invasion in HepG2 cells. CONCLUSION We found that downregulation of lncRNA OGFRP1 suppressed the proliferation and EMT of HCC Hep3B cells through AKT and Wnt/β-catenin signaling pathways. However, lncRNA OGFRP1 exhibited a differentiated function in different HCC cell lines, which required further study in the future.
Collapse
Affiliation(s)
- Wei Chen
- Center for Liver Diseases, The First Affiliated Hospital, Fujian Medicine University, Fuzhou 350005, Fujian Province, China, ;
| | - Jia You
- Center for Liver Diseases, The First Affiliated Hospital, Fujian Medicine University, Fuzhou 350005, Fujian Province, China, ;
| | - Qi Zheng
- Center for Liver Diseases, The First Affiliated Hospital, Fujian Medicine University, Fuzhou 350005, Fujian Province, China, ;
| | - Yue-Yong Zhu
- Center for Liver Diseases, The First Affiliated Hospital, Fujian Medicine University, Fuzhou 350005, Fujian Province, China, ;
| |
Collapse
|
124
|
Ren T, Li Z, Zhou Y, Liu X, Han R, Wang Y, Yan F, Sun G, Li H, Kang X. Sequencing and characterization of lncRNAs in the breast muscle of Gushi and Arbor Acres chickens. Genome 2018; 61:337-347. [DOI: 10.1139/gen-2017-0114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chicken muscle quality is one of the most important factors determining the economic value of poultry, and muscle development and growth are affected by genetics, environment, and nutrition. However, little is known about the molecular regulatory mechanisms of long non-coding RNAs (lncRNAs) in chicken skeletal muscle development. Our study aimed to better understand muscle development in chickens and thereby improve meat quality. In this study, Ribo-Zero RNA-Seq was used to investigate differences in the expression profiles of muscle development related genes and associated pathways between Gushi (GS) and Arbor Acres (AA) chickens. We identified two muscle tissue specific expression lncRNAs. In addition, the target genes of these lncRNAs were significantly enriched in certain biological processes and molecular functions, as demonstrated by Gene Ontology (GO) analysis, and these target genes participate in five signaling pathway, as revealed by an analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Taken together, these data suggest that different lncRNAs might be involved in regulating chicken muscle development and growth and provide new insight into the molecular mechanisms of lncRNAs.
Collapse
Affiliation(s)
- Tuanhui Ren
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - Yu Zhou
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuelian Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - Yongcai Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - FengBin Yan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - GuiRong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| |
Collapse
|
125
|
Bush SJ, Muriuki C, McCulloch MEB, Farquhar IL, Clark EL, Hume DA. Cross-species inference of long non-coding RNAs greatly expands the ruminant transcriptome. Genet Sel Evol 2018; 50:20. [PMID: 29690875 PMCID: PMC5926538 DOI: 10.1186/s12711-018-0391-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
Abstract
Background mRNA-like long non-coding RNAs (lncRNAs) are a significant component of mammalian transcriptomes, although most are expressed only at low levels, with high tissue-specificity and/or at specific developmental stages. Thus, in many cases lncRNA detection by RNA-sequencing (RNA-seq) is compromised by stochastic sampling. To account for this and create a catalogue of ruminant lncRNAs, we compared de novo assembled lncRNAs derived from large RNA-seq datasets in transcriptional atlas projects for sheep and goats with previous lncRNAs assembled in cattle and human. We then combined the novel lncRNAs with the sheep transcriptional atlas to identify co-regulated sets of protein-coding and non-coding loci. Results Few lncRNAs could be reproducibly assembled from a single dataset, even with deep sequencing of the same tissues from multiple animals. Furthermore, there was little sequence overlap between lncRNAs that were assembled from pooled RNA-seq data. We combined positional conservation (synteny) with cross-species mapping of candidate lncRNAs to identify a consensus set of ruminant lncRNAs and then used the RNA-seq data to demonstrate detectable and reproducible expression in each species. In sheep, 20 to 30% of lncRNAs were located close to protein-coding genes with which they are strongly co-expressed, which is consistent with the evolutionary origin of some ncRNAs in enhancer sequences. Nevertheless, most of the lncRNAs are not co-expressed with neighbouring protein-coding genes. Conclusions Alongside substantially expanding the ruminant lncRNA repertoire, the outcomes of our analysis demonstrate that stochastic sampling can be partly overcome by combining RNA-seq datasets from related species. This has practical implications for the future discovery of lncRNAs in other species. Electronic supplementary material The online version of this article (10.1186/s12711-018-0391-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephen J Bush
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK. .,Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, OX3 9DU, UK.
| | - Charity Muriuki
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - Mary E B McCulloch
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - Iseabail L Farquhar
- Centre for Synthetic and Systems Biology, CH Waddington Building, Max Borne Crescent, King's Buildings, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Emily L Clark
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - David A Hume
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK. .,Translational Research Institute, Mater Research-University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
126
|
Weikard R, Hadlich F, Hammon HM, Frieten D, Gerbert C, Koch C, Dusel G, Kuehn C. Long noncoding RNAs are associated with metabolic and cellular processes in the jejunum mucosa of pre-weaning calves in response to different diets. Oncotarget 2018; 9:21052-21069. [PMID: 29765519 PMCID: PMC5940403 DOI: 10.18632/oncotarget.24898] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/25/2018] [Indexed: 01/05/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) emerged as important regulatory component of mechanisms involved in gene expression, chromatin modification and epigenetic processes, but they are rarely annotated in the bovine genome. Our study monitored the jejunum transcriptome of German Holstein calves fed two different milk diets using transcriptome sequencing (RNA-seq). To identify potential lncRNAs within the pool of unknown transcripts, four bioinformatic lncRNA prediction tools were applied. The intersection of the alignment-free lncRNA prediction tools (CNCI, PLEK and FEELnc) predicted 1,812 lncRNA transcripts concordantly comprising a catalogue of 1,042 putative lncRNA loci expressed in the calves’ intestinal mucosa. Nine lncRNA loci were differentially expressed (DE lncRNAs) between both calf groups. To elucidate their biological function, we applied a systems biology approach that combines weighted gene co-expression network analysis with functional enrichment and biological pathway analysis. Four DE lncRNAs were found to be strongly correlated with a gene network module (GNM) enriched for genes from canonical pathways of remodeling of epithelial adherens junction, tight junction and integrin signaling. Another DE lncRNA was strongly correlated with a GNM enriched for genes associated with energy metabolism and maintaining of cellular homeostasis with a focus on mitochondrial processes. Our data suggest that these DE lncRNAs may play potential regulatory roles in modulating biological processes associated with energy metabolism pathways and cellular signaling processes affecting the barrier function of intestinal epithelial cells of calves in response to different feeding regimens in the pre-weaning period.
Collapse
Affiliation(s)
- Rosemarie Weikard
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Frieder Hadlich
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Harald M Hammon
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | | | - Caroline Gerbert
- Educational and Research Centre for Animal Husbandry, Hofgut Neumühle, Münchweiler, Germany
| | - Christian Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumühle, Münchweiler, Germany
| | - Georg Dusel
- University of Applied Sciences, Bingen, Germany
| | - Christa Kuehn
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany
| |
Collapse
|
127
|
García-Padilla C, Aránega A, Franco D. The role of long non-coding RNAs in cardiac development and disease. AIMS GENETICS 2018; 5:124-140. [PMID: 31435517 PMCID: PMC6698576 DOI: 10.3934/genet.2018.2.124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/15/2018] [Indexed: 12/12/2022]
Abstract
Cells display a set of RNA molecules at one time point, reflecting thus the cellular transcriptional steady state, configuring therefore its transcriptome. It is basically composed of two different classes of RNA molecules; protein-coding RNAs (cRNAs) and protein non-coding RNAs (ncRNAs). Sequencing of the human genome and subsequently the ENCODE project identified that more than 80% of the genome is transcribed in some type of RNA. Importantly, only 3% of these transcripts correspond to protein-coding RNAs, pointing that ncRNAs are as important or even more as cRNAs. ncRNAs have pivotal roles in development, differentiation and disease. Non-coding RNAs can be classified into two distinct classes according to their length; i.e., small (<200 nt) and long (>200 nt) noncoding RNAs. The structure, biogenesis and functional roles of small non-coding RNA have been widely studied, particularly for microRNAs (miRNAs). In contrast to microRNAs, our current understanding of long non-coding RNAs (lncRNAs) is limited. In this manuscript, we provide state-of-the art review of the functional roles of long non-coding RNAs during cardiac development as well as an overview of the emerging role of these ncRNAs in distinct cardiac diseases.
Collapse
Affiliation(s)
| | | | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| |
Collapse
|
128
|
Cipriano A, Ballarino M. The Ever-Evolving Concept of the Gene: The Use of RNA/Protein Experimental Techniques to Understand Genome Functions. Front Mol Biosci 2018; 5:20. [PMID: 29560353 PMCID: PMC5845540 DOI: 10.3389/fmolb.2018.00020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/20/2018] [Indexed: 12/12/2022] Open
Abstract
The completion of the human genome sequence together with advances in sequencing technologies have shifted the paradigm of the genome, as composed of discrete and hereditable coding entities, and have shown the abundance of functional noncoding DNA. This part of the genome, previously dismissed as “junk” DNA, increases proportionally with organismal complexity and contributes to gene regulation beyond the boundaries of known protein-coding genes. Different classes of functionally relevant nonprotein-coding RNAs are transcribed from noncoding DNA sequences. Among them are the long noncoding RNAs (lncRNAs), which are thought to participate in the basal regulation of protein-coding genes at both transcriptional and post-transcriptional levels. Although knowledge of this field is still limited, the ability of lncRNAs to localize in different cellular compartments, to fold into specific secondary structures and to interact with different molecules (RNA or proteins) endows them with multiple regulatory mechanisms. It is becoming evident that lncRNAs may play a crucial role in most biological processes such as the control of development, differentiation and cell growth. This review places the evolution of the concept of the gene in its historical context, from Darwin's hypothetical mechanism of heredity to the post-genomic era. We discuss how the original idea of protein-coding genes as unique determinants of phenotypic traits has been reconsidered in light of the existence of noncoding RNAs. We summarize the technological developments which have been made in the genome-wide identification and study of lncRNAs and emphasize the methodologies that have aided our understanding of the complexity of lncRNA-protein interactions in recent years.
Collapse
Affiliation(s)
- Andrea Cipriano
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Monica Ballarino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
129
|
Aryankalayil MJ, Chopra S, Levin J, Eke I, Makinde A, Das S, Shankavaram U, Vanpouille-Box C, Demaria S, Coleman CN. Radiation-Induced Long Noncoding RNAs in a Mouse Model after Whole-Body Irradiation. Radiat Res 2018; 189:251-263. [PMID: 29309266 PMCID: PMC5967844 DOI: 10.1667/rr14891.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Long noncoding RNAs (lncRNAs) are emerging as key molecules in regulating many biological processes and have been implicated in development and disease pathogenesis. Biomarkers of cancer and normal tissue response to treatment are of great interest in precision medicine, as well as in public health and medical management, such as for assessment of radiation injury after an accidental or intentional exposure. Circulating and functional RNAs, including microRNAs (miRNAs) and lncRNAs, in whole blood and other body fluids are potential valuable candidates as biomarkers. Early prediction of possible acute, intermediate and delayed effects of radiation exposure enables timely therapeutic interventions. To address whether long noncoding RNAs (lncRNAs) could serve as biomarkers for radiation biodosimetry we performed whole genome transcriptome analysis in a mouse model after whole-body irradiation. Differential lncRNA expression patterns were evaluated at 16, 24 and 48 h postirradiation in total RNA isolated from whole blood of mice exposed to 1, 2, 4, 8 and 12 Gy of X rays. Sham-irradiated animals served as controls. Significant alterations in the expression patterns of lncRNAs were observed after different radiation doses at the various time points. We identified several radiation-induced lncRNAs known for DNA damage response as well as immune response. Long noncoding RNA targets of tumor protein 53 (P53), Trp53cor1, Dino, Pvt1 and Tug1 and an upstream regulator of p53, Meg3, were altered in response to radiation. Gm14005 ( Morrbid) and Tmevpg1 were regulated by radiation across all time points and doses. These two lncRNAs have important potential as blood-based radiation biomarkers; Gm14005 ( Morrbid) has recently been shown to play a key role in inflammatory response, while Tmevpg1 has been implicated in the regulation of interferon gamma. Precise molecular biomarkers, likely involving a diverse group of inducible molecules, will not only enable the development and effective use of medical countermeasures but may also be used to detect and circumvent or mitigate normal tissue injury in cancer radiotherapy.
Collapse
Affiliation(s)
| | - Sunita Chopra
- Radiation Oncology Branch, Center for Cancer Research, NMional Cancer Institute, Bethesda, Maryland
| | - Joel Levin
- Radiation Oncology Branch, Center for Cancer Research, NMional Cancer Institute, Bethesda, Maryland
| | - Iris Eke
- Radiation Oncology Branch, Center for Cancer Research, NMional Cancer Institute, Bethesda, Maryland
| | - Adeola Makinde
- Radiation Oncology Branch, Center for Cancer Research, NMional Cancer Institute, Bethesda, Maryland
| | - Shaoli Das
- Radiation Oncology Branch, Center for Cancer Research, NMional Cancer Institute, Bethesda, Maryland
| | - Uma Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, NMional Cancer Institute, Bethesda, Maryland
| | | | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York
| | - C. Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, NMional Cancer Institute, Bethesda, Maryland
- Radiation Research Progrnm, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
130
|
Song J, Xu Q, Zhang H, Yin X, Zhu C, Zhao K, Zhu J. Five key lncRNAs considered as prognostic targets for predicting pancreatic ductal adenocarcinoma. J Cell Biochem 2018; 119:4559-4569. [PMID: 29239017 PMCID: PMC5947154 DOI: 10.1002/jcb.26598] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/07/2017] [Indexed: 01/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, and the 5‐year survival rate was only 7.7%. To improve prognosis, a screening biomarker for early diagnosis of pancreatic cancer is in urgent need. Long non‐coding RNA (lncRNA) expression profiles as potential cancer prognostic biomarkers play critical roles in development of tumorigenesis and metastasis of cancer. However, lncRNA signatures in predicting the survival of a patient with PDAC remain unknown. In the current study, we try to identify potential lncRNA biomarkers and their prognostic values in PDAC. LncRNAs expression profiles and corresponding clinical information for 182 cases with PDAC were acquired from The Cancer Genome Atlas (TCGA). A total of 14 470 lncRNA were identified in the cohort, and 175 PDAC patients had clinical variables. We obtained 108 differential expressed lncRNA via R packages. Univariate and multivariate Cox proportional hazards regression, lasso regression was performed to screen the potential prognostic lncRNA. Five lncRNAs have been recognized to significantly correlate with OS. We established a linear prognostic model of five lncRNA (C9orf139, MIR600HG, RP5‐965G21.4, RP11‐436K8.1, and CTC‐327F10.4) and divided patients into high‐ and low‐risk group according to the prognostic index. The five lncRNAs played independent prognostic biomarkers of OS of PDAC patients and the AUC of the ROC curve for the five lncRNAs signatures prediction 5‐year survival was 0.742. In addition, targeted genes of MIR600HG, C9orf139, and CTC‐327F10.4 were explored and functional enrichment was also conducted. These results suggested that this five‐lncRNAs signature could act as potential prognostic biomarkers in the prediction of PDAC patient's survival.
Collapse
Affiliation(s)
- Jukun Song
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's Hospital, Guizhou, China
| | - Qiuyan Xu
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's Hospital, Guizhou, China
| | - Haodeng Zhang
- Department of Pathology, School of Basic Medicine, Central South University, Guizhou, China
| | - Xinhai Yin
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's Hospital, Guizhou, China
| | - Chen Zhu
- Guiyang Hospital of Stomatology, Medical College, Zunyi Medical College, Guiyang, China
| | - Ke Zhao
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's Hospital, Guizhou, China
| | - Jianguo Zhu
- Department of Urology, Guizhou Provincial People's Hospital, Guizhou, China
| |
Collapse
|
131
|
Durinck K, Speleman F. Epigenetic regulation of neuroblastoma development. Cell Tissue Res 2018; 372:309-324. [PMID: 29350283 DOI: 10.1007/s00441-017-2773-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/16/2017] [Indexed: 02/07/2023]
Abstract
In recent years, technological advances have enabled a detailed landscaping of the epigenome and the mechanisms of epigenetic regulation that drive normal cell function, development and cancer. Rather than merely a structural entity to support genome compaction, we now look at chromatin as a very dynamic and essential constellation that is actively participating in the tight orchestration of transcriptional regulation as well as DNA replication and repair. The unique feature of chromatin flexibility enabling fast switches towards more or less restricted epigenetic cellular states is, not surprisingly, intimately connected to cancer development and treatment resistance, and the central role of epigenetic alterations in cancer is illustrated by the finding that up to 50% of all mutations across cancer entities affect proteins controlling the chromatin status. We summarize recent insights into epigenetic rewiring underlying neuroblastoma (NB) tumor formation ranging from changes in DNA methylation patterns and mutations in epigenetic regulators to global effects on transcriptional regulatory circuits that involve key players in NB oncogenesis. Insights into the disruption of the homeostatic epigenetic balance contributing to developmental arrest of sympathetic progenitor cells and subsequent NB oncogenesis are rapidly growing and will be exploited towards the development of novel therapeutic strategies to increase current survival rates of patients with high-risk NB.
Collapse
Affiliation(s)
- Kaat Durinck
- Center for Medical Genetics, Ghent University, Ghent, Belgium.
| | - Frank Speleman
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| |
Collapse
|
132
|
Abstract
RNA-binding proteins (RBPs) are typically thought of as proteins that bind RNA through one or multiple globular RNA-binding domains (RBDs) and change the fate or function of the bound RNAs. Several hundred such RBPs have been discovered and investigated over the years. Recent proteome-wide studies have more than doubled the number of proteins implicated in RNA binding and uncovered hundreds of additional RBPs lacking conventional RBDs. In this Review, we discuss these new RBPs and the emerging understanding of their unexpected modes of RNA binding, which can be mediated by intrinsically disordered regions, protein-protein interaction interfaces and enzymatic cores, among others. We also discuss the RNA targets and molecular and cellular functions of the new RBPs, as well as the possibility that some RBPs may be regulated by RNA rather than regulate RNA.
Collapse
|
133
|
Abstract
The majority of our genome is transcribed to produce RNA molecules that are mostly noncoding. Among them, long noncoding RNAs (lncRNAs) are the most numerous and functionally versatile class.LncRNAs have emerged as key regulators of gene expression at multiple levels.This section describes bioinformatics aspects important for lncRNA discovery and molecular approaches to perform structure-function characterization of this exciting class of regulatory molecules.
Collapse
|
134
|
Lin X, Gao Q, Zhu L, Zhou G, Ni S, Han H, Yue Z. Long noncoding RNAs regulate Wnt signaling during feather regeneration. Development 2018; 145:dev.162388. [DOI: 10.1242/dev.162388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 10/04/2018] [Indexed: 02/01/2023]
Abstract
Long noncoding RNAs (lncRNAs) are non-protein coding transcripts that are involved in a broad range of biological processes. Here, we examined the functional roles of lncRNAs in feather regeneration. RNA-seq profiling of the regenerating feather blastema revealed that the Wnt signaling is among the most active pathways during feather regeneration, with the Wnt ligands and their inhibitors showing distinct expression patterns. Co-expression analysis identified hundreds of lncRNAs with similar expression patterns to either the Wnt ligands (the Lwnt group) or their downstream target genes (the Twnt group). Among these, we randomly picked two lncRNAs in the Lwnt group, and three lncRNAs in the Twnt group to validate their expression and function. Members in the Twnt group regulated feather regeneration and axis formation, whereas members in the Lwnt group showed no obvious phenotype. Further analysis confirmed that the three Twnt group members inhibit Wnt signal transduction and at the same time are down-stream target genes of this pathway. Our results suggested that the feather regeneration model can be utilized to systematically annotate the functions of lncRNAs in the chicken genome.
Collapse
Affiliation(s)
- Xiang Lin
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| | - QingXiang Gao
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| | - LiYan Zhu
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| | - GuiXuan Zhou
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| | - ShiWei Ni
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| | - Hao Han
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - ZhiCao Yue
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
135
|
Ong MS, Cai W, Yuan Y, Leong HC, Tan TZ, Mohammad A, You ML, Arfuso F, Goh BC, Warrier S, Sethi G, Tolwinski NS, Lobie PE, Yap CT, Hooi SC, Huang RY, Kumar AP. 'Lnc'-ing Wnt in female reproductive cancers: therapeutic potential of long non-coding RNAs in Wnt signalling. Br J Pharmacol 2017; 174:4684-4700. [PMID: 28736855 PMCID: PMC5727316 DOI: 10.1111/bph.13958] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/30/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023] Open
Abstract
Recent discoveries in the non-coding genome have challenged the original central dogma of molecular biology, as non-coding RNAs and related processes have been found to be important in regulating gene expression. MicroRNAs and long non-coding RNAs (lncRNAs) are among those that have gained attention recently in human diseases, including cancer, with the involvement of many more non-coding RNAs (ncRNAs) waiting to be discovered. ncRNAs are a group of ribonucleic acids transcribed from regions of the human genome, which do not become translated into proteins, despite having essential roles in cellular physiology. Deregulation of ncRNA expression and function has been observed in cancer pathogenesis. Recently, the roles of a group of ncRNA known as lncRNA have gained attention in cancer, with increasing reports of their oncogenic involvement. Female reproductive cancers remain a leading cause of death in the female population, accounting for almost a third of all female cancer deaths in 2016. The Wnt signalling pathway is one of the most important oncogenic signalling pathways which is hyperactivated in cancers, including female reproductive cancers. The extension of ncRNA research into their mechanistic roles in human cancers has also led to novel reported roles of ncRNAs in the Wnt pathway and Wnt-mediated oncogenesis. This review aims to provide a critical summary of the respective roles and cellular functions of Wnt-associated lncRNAs in female reproductive cancers and explores the potential of circulating cell-free lncRNAs as diagnostic markers and lncRNAs as therapeutic targets. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Mei S Ong
- Departments of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Wanpei Cai
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Yi Yuan
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Hin C Leong
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Tuan Z Tan
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Asad Mohammad
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Ming L You
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research InstituteCurtin UniversityPerthWAAustralia
| | - Boon C Goh
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- National University Cancer InstituteNational University Health SystemSingapore
- Department of Haematology‐OncologyNational University Health SystemSingapore
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative MedicineManipal UniversityBangaloreIndia
- School of Biomedical Sciences, Curtin Health Innovation Research InstituteCurtin UniversityPerthWAAustralia
| | - Gautam Sethi
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- School of Biomedical Sciences, Curtin Health Innovation Research InstituteCurtin UniversityPerthWAAustralia
| | - Nicholas S Tolwinski
- Division of ScienceYale‐NUS CollegeSingapore
- Department of Biological ScienceNational University of SingaporeSingapore
| | - Peter E Lobie
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Departments of Anatomy, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Tsinghua Berkeley Shenzhen Institute and Division of Life Science and HealthTsinghua University Graduate SchoolShenzhenChina
| | - Celestial T Yap
- Departments of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- National University Cancer InstituteNational University Health SystemSingapore
| | - Shing C Hooi
- Departments of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Ruby Y Huang
- Departments of Anatomy, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- National University Cancer InstituteNational University Health SystemSingapore
- Department of Obstetrics and GynaecologyNational University HospitalSingapore
| | - Alan P Kumar
- Departments of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- National University Cancer InstituteNational University Health SystemSingapore
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative MedicineManipal UniversityBangaloreIndia
- Curtin Medical School, Faculty of Health ScienceCurtin UniversityPerthWAAustralia
- Department of Biological SciencesUniversity of North TexasDentonTXUSA
| |
Collapse
|
136
|
Wu H, Wu R, Chen M, Li D, Dai J, Zhang Y, Gao K, Yu J, Hu G, Guo Y, Lin C, Li X. Comprehensive analysis of differentially expressed profiles of lncRNAs and construction of miR-133b mediated ceRNA network in colorectal cancer. Oncotarget 2017; 8:21095-21105. [PMID: 28177879 PMCID: PMC5400568 DOI: 10.18632/oncotarget.15045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/09/2017] [Indexed: 01/15/2023] Open
Abstract
Background Growing evidence suggests that long non-coding RNAs (lncRNAs) play a key role in tumorigenesis. However, the mechanism remains largely unknown. Results Thousands of significantly dysregulated lncRNAs and mRNAs were identified by microarray. Furthermore, a miR-133b-meditated lncRNA-mRNA ceRNA network was revealed, a subset of which was validated in 14 paired CRC patient tumor/non-tumor samples. Gene set enrichment analysis (GSEA) results demonstrated that lncRNAs ENST00000520055 and ENST00000535511 shared KEGG pathways with miR-133b target genes. Materials and Methods We used microarrays to survey the lncRNA and mRNA expression profiles of colorectal cancer and para-cancer tissues. Gene Ontology (GO) and KEGG pathway enrichment analyses were performed to explore the functions of the significantly dysregulated genes. An innovate method was employed that combined analyses of two microarray data sets to construct a miR-133b-mediated lncRNA-mRNA competing endogenous RNAs (ceRNA) network. Quantitative RT-PCR analysis was used to validate part of this network. GSEA was used to predict the potential functions of these lncRNAs. Conclusions This study identifies and validates a new method to investigate the miR-133b-mediated lncRNA-mRNA ceRNA network and lays the foundation for future investigation into the role of lncRNAs in colorectal cancer.
Collapse
Affiliation(s)
- Hao Wu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P. R. China
| | - Runliu Wu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P. R. China
| | - Miao Chen
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P. R. China
| | - Daojiang Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P. R. China
| | - Jing Dai
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P. R. China
| | - Yi Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P. R. China
| | - Kai Gao
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P. R. China
| | - Jun Yu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P. R. China
| | - Gui Hu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P. R. China
| | - Yihang Guo
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P. R. China
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P. R. China
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P. R. China
| |
Collapse
|
137
|
Chen L, Zhang YH, Huang G, Pan X, Wang S, Huang T, Cai YD. Discriminating cirRNAs from other lncRNAs using a hierarchical extreme learning machine (H-ELM) algorithm with feature selection. Mol Genet Genomics 2017; 293:137-149. [DOI: 10.1007/s00438-017-1372-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022]
|
138
|
De Quattro C, Pè ME, Bertolini E. Long noncoding RNAs in the model species Brachypodium distachyon. Sci Rep 2017; 7:11252. [PMID: 28900227 PMCID: PMC5595811 DOI: 10.1038/s41598-017-11206-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic genomes are pervasively transcribed and only a small portion of the transcribed sequences belongs to protein coding genes. High-throughput sequencing technology contributed to consolidate this perspective, allowing the identification of numerous noncoding RNAs with key roles in biological processes. Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nt with limited phylogenetic conservation, expressed at low levels and characterized by tissue/organ specific expression profiles. Although a large set of lncRNAs has been identified, the functional roles of lncRNAs are only beginning to be recognized and the molecular mechanism of lncRNA-mediated gene regulation remains largely unexplored, particularly in plants where their annotation and characterization are still incomplete. Using public and proprietary poly-(A)+ RNA-seq data as well as a collection of full length ESTs from several organs, developmental stages and stress conditions in three Brachypodium distachyon inbred lines, we describe the identification and the main features of thousands lncRNAs. Here we provide a genome-wide characterization of lncRNAs, highlighting their intraspecies conservation and describing their expression patterns among several organs/tissues and stress conditions. This work represents a fundamental resource to deepen our knowledge on long noncoding RNAs in C3 cereals, allowing the Brachypodium community to exploit these results in future research programs.
Collapse
Affiliation(s)
- Concetta De Quattro
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Edoardo Bertolini
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA.
| |
Collapse
|
139
|
Zelinger L, Karakülah G, Chaitankar V, Kim JW, Yang HJ, Brooks MJ, Swaroop A. Regulation of Noncoding Transcriptome in Developing Photoreceptors by Rod Differentiation Factor NRL. Invest Ophthalmol Vis Sci 2017; 58:4422-4435. [PMID: 28863214 PMCID: PMC5584472 DOI: 10.1167/iovs.17-21805] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023] Open
Abstract
Purpose Transcriptome analysis by next generation sequencing allows qualitative and quantitative profiling of expression patterns associated with development and disease. However, most transcribed sequences do not encode proteins, and little is known about the functional relevance of noncoding (nc) transcriptome in neuronal subtypes. The goal of this study was to perform a comprehensive analysis of long noncoding (lncRNAs) and antisense (asRNAs) RNAs expressed in mouse retinal photoreceptors. Methods Transcriptomic profiles were generated at six developmental time points from flow-sorted Nrlp-GFP (rods) and Nrlp-GFP;Nrl-/- (S-cone like) mouse photoreceptors. Bioinformatic analysis was performed to identify novel noncoding transcripts and assess their regulation by rod differentiation factor neural retina leucine zipper (NRL). In situ hybridization (ISH) was used for validation and cellular localization. Results NcRNA profiles demonstrated dynamic yet specific expression signature and coexpression clusters during rod development. In addition to currently annotated 586 lncRNAs and 454 asRNAs, we identified 1037 lncRNAs and 243 asRNAs by de novo assembly. Of these, 119 lncRNAs showed altered expression in the absence of NRL and included NRL binding sites in their promoter/enhancer regions. ISH studies validated the expression of 24 lncRNAs (including 12 previously unannotated) and 4 asRNAs in photoreceptors. Coexpression analysis demonstrated 63 functional modules and 209 significant antisense-gene correlations, allowing us to predict possible role of these lncRNAs in rods. Conclusions Our studies reveal coregulation of coding and noncoding transcripts in rod photoreceptors by NRL and establish the framework for deciphering the function of ncRNAs during retinal development.
Collapse
Affiliation(s)
- Lina Zelinger
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Gökhan Karakülah
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Vijender Chaitankar
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Jung-Woong Kim
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hyun-Jin Yang
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Matthew J. Brooks
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
140
|
Transcriptome Profiling in Human Diseases: New Advances and Perspectives. Int J Mol Sci 2017; 18:ijms18081652. [PMID: 28758927 PMCID: PMC5578042 DOI: 10.3390/ijms18081652] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/21/2017] [Accepted: 07/27/2017] [Indexed: 12/14/2022] Open
Abstract
In the last decades, transcriptome profiling has been one of the most utilized approaches to investigate human diseases at the molecular level. Through expression studies, many molecular biomarkers and therapeutic targets have been found for several human pathologies. This number is continuously increasing thanks to total RNA sequencing. Indeed, this new technology has completely revolutionized transcriptome analysis allowing the quantification of gene expression levels and allele-specific expression in a single experiment, as well as to identify novel genes, splice isoforms, fusion transcripts, and to investigate the world of non-coding RNA at an unprecedented level. RNA sequencing has also been employed in important projects, like ENCODE (Encyclopedia of the regulatory elements) and TCGA (The Cancer Genome Atlas), to provide a snapshot of the transcriptome of dozens of cell lines and thousands of primary tumor specimens. Moreover, these studies have also paved the way to the development of data integration approaches in order to facilitate management and analysis of data and to identify novel disease markers and molecular targets to use in the clinics. In this scenario, several ongoing clinical trials utilize transcriptome profiling through RNA sequencing strategies as an important instrument in the diagnosis of numerous human pathologies.
Collapse
|
141
|
High resolution temporal transcriptomics of mouse embryoid body development reveals complex expression dynamics of coding and noncoding loci. Sci Rep 2017; 7:6731. [PMID: 28751729 PMCID: PMC5532269 DOI: 10.1038/s41598-017-06110-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/07/2017] [Indexed: 02/06/2023] Open
Abstract
Cellular responses to stimuli are rapid and continuous and yet the vast majority of investigations of transcriptional responses during developmental transitions typically use long interval time courses; limiting the available interpretive power. Moreover, such experiments typically focus on protein-coding transcripts, ignoring the important impact of long noncoding RNAs. We therefore evaluated coding and noncoding expression dynamics at unprecedented temporal resolution (6-hourly) in differentiating mouse embryonic stem cells and report new insight into molecular processes and genome organization. We present a highly resolved differentiation cascade that exhibits coding and noncoding transcriptional alterations, transcription factor network interactions and alternative splicing events, little of which can be resolved by long-interval developmental time-courses. We describe novel short lived and cycling patterns of gene expression and dissect temporally ordered gene expression changes in response to transcription factors. We elucidate patterns in gene co-expression across the genome, describe asynchronous transcription at bidirectional promoters and functionally annotate known and novel regulatory lncRNAs. These findings highlight the complex and dynamic molecular events underlying mammalian differentiation that can only be observed though a temporally resolved time course.
Collapse
|
142
|
Sakamoto N, Honma R, Sekino Y, Goto K, Sentani K, Ishikawa A, Oue N, Yasui W. Non-coding RNAs are promising targets for stem cell-based cancer therapy. Noncoding RNA Res 2017; 2:83-87. [PMID: 30159424 PMCID: PMC6096406 DOI: 10.1016/j.ncrna.2017.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 12/19/2022] Open
Abstract
The term “non-coding RNA” (ncRNA) is generally used to indicate RNA that does not encode a protein and includes several classes of RNAs, such as microRNA and long non-coding RNA. Several lines of evidence suggest that ncRNAs appear to be involved in a hidden layer of biological procedures that control various levels of gene expression in physiology and development including stem cell biology. Stem cells have recently constituted a revolution in regenerative medicine by providing the possibility of generating suitable cell types for therapeutic use. Here, we review the recent progress that has been made in elaborating the interaction between ncRNAs and tissue/cancer stem cells, discuss related technical and biological challenges, and highlight plausible solutions to surmount these difficulties. This review particularly emphasises the involvement of ncRNAs in stem cell biology and in vivo modulation to treat and cure specific pathological disorders especially in cancer. We believe that a better understanding of the molecular machinery of ncRNAs as related to pluripotency, cellular reprogramming, and lineage-specific differentiation is essential for progress of cancer therapy.
Collapse
Key Words
- CD, cytosine deaminase
- CSC, cancer stem cell
- EMT, epithelial to mesenchymal transition
- ESCs, embryonic stem cells
- MET, mesenchymal to epithelial transition
- MSCs, mesenchymal stem cells
- Non-coding RNA
- Stem cell-based therapy
- T-UCR, transcribed ultraconserved region
- Transcribed ultraconserved region
- iPSCs, induced pluripotent stem cells
- lincRNA, long inverting non-coding RNA
- lncRNA, long ncRNA
- miRNAs, microRNAs
- ncRNAs, non-coding RNAs
Collapse
Affiliation(s)
- Naoya Sakamoto
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ririno Honma
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yohei Sekino
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Keisuke Goto
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Cancer Biology Program, University of Hawaii Cancer Center, United States
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akira Ishikawa
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
143
|
Shi D, Qu Q, Chang Q, Wang Y, Gui Y, Dong D. A five-long non-coding RNA signature to improve prognosis prediction of clear cell renal cell carcinoma. Oncotarget 2017; 8:58699-58708. [PMID: 28938589 PMCID: PMC5601685 DOI: 10.18632/oncotarget.17506] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/22/2017] [Indexed: 12/17/2022] Open
Abstract
Recent works have reported that long non-coding RNAs (lncRNAs) play critical roles in tumorigenesis and prognosis of cancers, suggesting the potential utility of lncRNAs as cancer prognostic markers. However, lncRNA signatures in predicting the survival of patients with clear cell renal cell carcinoma (ccRCC) remain unknown. In this study, we attempted to identify lncRNA signatures and their prognostic values in ccRCC. Using lncRNA expression profiling data in 440 ccRCC tumors from The Cancer Genome Atlas (TCGA) data, a five-lncRNA signature (AC069513.4, AC003092.1, CTC-205M6.2, RP11-507K2.3, U91328.21) has been identified to be significantly associated with ccRCC patients’ overall survival in both training set and testing set. Based on the lncRNA signature, ccRCC patients could be divided into high-risk and low-risk group with significantly different survival rate. Further multivariable Cox regression analysis suggested that the prognostic value of this signature was independent of clinical factors. Functional enrichment analyses showed the potential functional roles of the five prognostic lncRNAs in ccRCC oncogenesis. These results indicated that this five-lncRNA signature could be used as an independent prognostic biomarker in the prediction of ccRCC patients’ survival.
Collapse
Affiliation(s)
- Da Shi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Qinghua Qu
- Department of Urology, Pudong People's Hospital, Shanghai, China
| | - Qimeng Chang
- Department of General Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Yilin Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yaping Gui
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dong Dong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
144
|
Nejat N, Mantri N. Emerging roles of long non-coding RNAs in plant response to biotic and abiotic stresses. Crit Rev Biotechnol 2017; 38:93-105. [PMID: 28423944 DOI: 10.1080/07388551.2017.1312270] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Spectacular progress in high-throughput transcriptome sequencing and expression profiling using next-generation sequencing technologies have recently revolutionized molecular biology and allowed massive advances in identifying the genomic regions and molecular mechanisms underlying transcriptional regulation of growth, development, and stress response. Through recent research, non-coding RNAs, in particular long non-coding RNAs, have emerged as key regulators of transcription in eukaryotes. Long non-coding RNAs are vastly heterogeneous groups of RNAs that execute a broad range of essential roles in various biological processes at the epigenetic, transcriptional, and post-transcriptional levels. They modulate transcription through diverse mechanisms. Recently, numerous lncRNAs have been identified to be associated with defense responses to biotic and abiotic stresses. These have been suggested to perform indispensable roles in plant immunity and adaptation to environmental conditions. However, only a few lncRNAs have been functionally characterized in plants. In this paper, we summarize the present knowledge of lncRNAs, review the recent advances in understanding regulatory functions of lncRNAs, and highlight the emerging roles of lncRNAs in regulating immune responses in plants.
Collapse
Affiliation(s)
- Naghmeh Nejat
- a School of Science, Health Innovations Research Institute, RMIT University , Melbourne , Victoria , Australia
| | - Nitin Mantri
- a School of Science, Health Innovations Research Institute, RMIT University , Melbourne , Victoria , Australia
| |
Collapse
|
145
|
You L, Zhou Y, Cui X, Wang X, Sun Y, Gao Y, Wang X, Wen J, Xie K, Tang R, Ji C, Guo X. GM13133 is a negative regulator in mouse white adipocytes differentiation and drives the characteristics of brown adipocytes. J Cell Physiol 2017; 233:313-324. [PMID: 28247947 DOI: 10.1002/jcp.25878] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/27/2017] [Indexed: 12/26/2022]
Abstract
Obesity is tightly associated with the disturbance of white adipose tissue storing excess energy. Thermogenic adipocytes (brown and beige) exert a critical role of oxidizing nutrients at the high rates through non-shivering thermogenesis. The recruitment of brown characteristics in white adipocytes, termed browning, has been considered as a promising strategy for treating obesity and associated metabolic complications. Recently, long noncoding RNAs play a crucial role in regulating tissue development and participating in disease pathogenesis, yet their effects on the conversion of white into brown-like adipocytes and thermogenic function were not totally understood. Here, we identified a mouse brown adipose specific expressed lncRNA, termed GM13133. Moreover, a considerable amount of GM13133 is expressed in adipocytes and actively modulated by cold, β3 -adrenergic agonist and cAMP stimuli, implying a potential role in the conversion from white to brown adipocytes. Overexpression of GM13133 did not affect the proliferation of mouse white pre-adipocytes, but inhibited white adipocyte differentiation by decreasing lipid accumulation. The forced expression of GM13133 also significantly drove the conversion of white into brown-like adipocytes with the enhanced mitochondrial biogenesis and the induced expression of brown adipocytes specific markers. A global mRNA analysis further indicated the possible regulatory role of cAMP signaling pathway in GM13133 mediated white-to-brown adipocytes conversion. Our results identified a lncRNA-mediated modulation in primary mouse white adipocyte differentiation and indicate the functional significance of GM13133 in promoting browning of white adipocytes and maintenance of thermogenesis, further providing a potential strategy to treating obesity.
Collapse
Affiliation(s)
- LiangHui You
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - YaHui Zhou
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China.,Institute of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - XianWei Cui
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - XingYun Wang
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - YaZhou Sun
- Department of Pediatrics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China
| | - Yao Gao
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Xing Wang
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Juan Wen
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Kaipeng Xie
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - RanRan Tang
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - ChenBo Ji
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China.,Institute of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - XiRong Guo
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obsterics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China.,Institute of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
146
|
Huang K, Sun J, Yang C, Wang Y, Zhou B, Kang C, Han L, Wang Q. HOTAIR upregulates an 18-gene cell cycle-related mRNA network in glioma. Int J Oncol 2017; 50:1271-1278. [PMID: 28350082 DOI: 10.3892/ijo.2017.3901] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/24/2017] [Indexed: 11/05/2022] Open
Abstract
HOTAIR is a tumor promoting long non-coding RNA (lncRNA) with roles in multiple cancers. However, the role of HOTAIR in glioma has not been well charaterized. Genes that positively correlated with HOTAIR were identified from the Chinese Glioma Genome Atlas and constructed into an interacting network. In total, 18 genes with P-values <0.01 were further extracted and constructed into a subnetwork. Real-time PCR, western blot and immunofluorescence analyses were employed to examine the expression of the genes after HOTAIR overexpression or knockdown. Intracranial glioblastoma multiform (GBM) models were used to test the potential of HOTAIR as a glioma therapy target. It was discovered that the 18 genes that most significantly correlated with HOTAIR expression formed a cell cycle-related mRNA network, which is positively regulated by HOTAIR. Furthermore, HOTAIR knockdown inhibited mouse intracranial GBM model formation. HOTAIR positively regulates a cell cycle-related mRNA network in glioma, and could be a potential therapeutic target for treating glioma.
Collapse
Affiliation(s)
- Kai Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jia Sun
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, P.R. China
| | - Chao Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yunfei Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Bingcong Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Lei Han
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Qixue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
147
|
Differential long noncoding RNA/mRNA expression profiling and functional network analysis during osteogenic differentiation of human bone marrow mesenchymal stem cells. Stem Cell Res Ther 2017; 8:30. [PMID: 28173844 PMCID: PMC5297123 DOI: 10.1186/s13287-017-0485-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/22/2016] [Accepted: 01/20/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are the most promising cell types for bone regeneration and repair due to their osteogenic potential. MSC differentiation is precisely regulated and orchestrated by the mechanical and molecular signals from the extracellular environment, involving complex pathways regulated at both the transcriptional and post-transcriptional levels. However, the potential role of long noncoding RNA (lncRNA) in the osteogenic differentiation of human MSCs remains largely unclear. METHODS Here, we undertook the survey of differential coding and noncoding transcript expression profiling and functional network analysis during osteogenic differentiation of human bone marrow mesenchymal stem cells (BMSCs) using human whole transcriptome microarray. The key pathways, mRNAs, and lncRNAs controlling osteogenic differentiation of BMSCs were identified by further bioinformatic analysis. The role of lncRNA in the osteogenic differentiation of MSCs was verified by lncRNA overexpression or knockdown methods. RESULTS A total of 1269 coding transcripts with 648 genes significantly upregulated and 621 genes downregulated, and 1408 lncRNAs with 785 lncRNAs significantly upregulated and 623 lncRNAs downregulated were detected along with osteogenic differentiation. Bioinformatic analysis identified that several pathways may be associated with osteogenic differentiation potentials of BMSCs, such as the MAPK signaling pathway, the Jak-STAT signaling pathway, the Toll-like receptor signaling pathway, and the TGF-beta signaling pathway, etc. Bioinformatic analysis also revealed 13 core regulatory genes including seven mRNAs (GPX3, TLR2, BDKRB1, FBXO5, BRCA1, MAP3K8, and SCARB1), and six lncRNAs (XR_111050, NR_024031, FR374455, FR401275, FR406817, and FR148647). Based on the analysis, we identified one lncRNA, XR_111050, that could enhance the osteogenic differentiation potentials of MSCs. CONCLUSIONS The potential regulatory mechanisms were identified using bioinformatic analyses. We further predicted the interactions of differentially expressed coding and noncoding genes, and identified core regulatory factors by co-expression networks during osteogenic differentiation of BMSCs. Our results could lead to a better understanding of the molecular mechanisms of genes and lncRNAs, and their cooperation underlying MSC osteogenic differentiation and bone formation. We identified that one lncRNA, XR_111050, could be a potential target for bone tissue engineering.
Collapse
|
148
|
Dallagiovanna B, Pereira IT, Origa-Alves AC, Shigunov P, Naya H, Spangenberg L. lncRNAs are associated with polysomes during adipose-derived stem cell differentiation. Gene 2017; 610:103-111. [PMID: 28185860 DOI: 10.1016/j.gene.2017.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/04/2017] [Accepted: 02/05/2017] [Indexed: 12/22/2022]
Abstract
Over the past few years, an increasing number of long noncoding RNAs (lncRNAs) have been identified in mammalian genomes. Most of these lncRNAs are expressed at low levels in different human cell types. lncRNAs are found not only in the nucleus but are also enriched in the cytosolic fraction and are associated with translating polysomes. Expression of lncRNAs that have putative roles in cell differentiation has been identified in embryonic and adult stem cells. Nevertheless, the mechanisms by which lncRNAs operate in the cell are still poorly understood.Here, we studied the expression of the subpopulation of lncRNAs that are associated with polysomes in adipose-derived stem cells (hASCs) during their commitment to adipocytes. We established that lncRNAs and protein coding genes have similar expression levels. The relatively comparable expression of these transcripts could be a particular feature of hASCs. We then show that lncRNAs are associated with polysomes in undifferentiated and early differentiating cells, which was confirmed by quantitative RT-PCR. The association of lncRNAs with polysomes was also comparable to that of mRNAs. Our results suggest that the presence of lncRNAs in the polysomal RNA fraction is not the result of random association. We observed that a high percentage of lncRNAs are actively mobilized to or from polysomes during early stages of adipogenesis. Moreover, we found several lncRNAs that can potentially target miRNAs relevant to adipogenesis.
Collapse
Affiliation(s)
- Bruno Dallagiovanna
- Laboratorio de Biologia Basica de Celulas-tronco, FIOCRUZ-PR, Rua Professor Algacyr Munhoz Mader, 3775, 81.350-010 Curitiba, Brazil.
| | - Isabela T Pereira
- Laboratorio de Biologia Basica de Celulas-tronco, FIOCRUZ-PR, Rua Professor Algacyr Munhoz Mader, 3775, 81.350-010 Curitiba, Brazil.
| | - Ana Carolina Origa-Alves
- Laboratorio de Biologia Basica de Celulas-tronco, FIOCRUZ-PR, Rua Professor Algacyr Munhoz Mader, 3775, 81.350-010 Curitiba, Brazil.
| | - Patricia Shigunov
- Laboratorio de Biologia Basica de Celulas-tronco, FIOCRUZ-PR, Rua Professor Algacyr Munhoz Mader, 3775, 81.350-010 Curitiba, Brazil.
| | - Hugo Naya
- Bioinformatics Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay.
| | - Lucía Spangenberg
- Bioinformatics Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay.
| |
Collapse
|
149
|
Ranzani V, Arrigoni A, Rossetti G, Panzeri I, Abrignani S, Bonnal RJP, Pagani M. Next-Generation Sequencing Analysis of Long Noncoding RNAs in CD4+ T Cell Differentiation. Methods Mol Biol 2017; 1514:173-185. [PMID: 27787801 DOI: 10.1007/978-1-4939-6548-9_14] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Next-generation sequencing approaches, in particular RNA-seq, provide a genome-wide expression profiling allowing the identification of novel and rare transcripts such as long noncoding RNAs (lncRNA). Many RNA-seq studies have now been performed aimed at the characterization of lncRNAs and their possible involvement in cell development and differentiation in different organisms, cell types, and tissues. The adaptive immune system is an extraordinary context for the study of the role of lncRNAs in differentiation. Indeed lncRNAs seem to be key drivers in governing flexibility and plasticity of both CD8+ and CD4+ T cell, together with lineage-specific transcription factors and cytokines, acting as fine-tuners of fate choices in T cell differentiation.We describe here a pipeline for the identification of lncRNAs starting from RNA-Seq raw data.
Collapse
Affiliation(s)
- Valeria Ranzani
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Via F. Sforza 35, Milan, 20122, Italy
| | - Alberto Arrigoni
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Via F. Sforza 35, Milan, 20122, Italy
| | - Grazisa Rossetti
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Via F. Sforza 35, Milan, 20122, Italy
| | - Ilaria Panzeri
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Via F. Sforza 35, Milan, 20122, Italy
| | - Sergio Abrignani
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Via F. Sforza 35, Milan, 20122, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via Festa del Perdono 7, Milan, 20122, Italy
| | - Raoul J P Bonnal
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Via F. Sforza 35, Milan, 20122, Italy.
| | - Massimiliano Pagani
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Via F. Sforza 35, Milan, 20122, Italy.
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Festa del Perdono 7, Milan, 20122, Italy.
| |
Collapse
|
150
|
Schlosser K, Hanson J, Villeneuve PJ, Dimitroulakos J, McIntyre L, Pilote L, Stewart DJ. Assessment of Circulating LncRNAs Under Physiologic and Pathologic Conditions in Humans Reveals Potential Limitations as Biomarkers. Sci Rep 2016; 6:36596. [PMID: 27857151 PMCID: PMC5114641 DOI: 10.1038/srep36596] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/17/2016] [Indexed: 01/02/2023] Open
Abstract
Long non-coding RNAs (lncRNA) are a new class of regulatory molecules with diverse cellular functions. Recent reports have suggested that extracellular lncRNAs are detectable in human plasma and may serve as biomarkers. Here, we sought to investigate circulating lncRNAs as potential biomarkers for pulmonary arterial hypertension (PAH). Eighty-four lncRNAs, representing some of the most abundant and functionally relevant candidates identified in cellular studies, were assessed via RT-qPCR in plasma from PAH and healthy subjects. However, despite preamplification, the majority of lncRNAs were surprisingly undetectable or sporadically detectable, and showed no differential changes. Systematic characterization of plasma/RNA quality and technical performance via internal and external controls revealed no evidence of RNA degradation or RT-qPCR inhibition, and most lncRNAs were robustly detectable in pulmonary tissue. In plasma, lncRNA levels were the lowest among several different RNA species examined, and this was generalizable to other chronic and acute vascular conditions including coronary artery disease, acute coronary syndrome, and septic shock. In addition, two of three previously reported circulating lncRNA biomarker candidates were not detectable in any of the plasma samples. This study reveals new insight on the relative levels of lncRNAs in circulation, which has important implications for their potential development as biomarkers.
Collapse
Affiliation(s)
- Kenny Schlosser
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jennifer Hanson
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | | | - Jim Dimitroulakos
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Lauralyn McIntyre
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Louise Pilote
- Division of General Internal Medicine, McGill University Health Centre, Montreal, Quebec, Canada.,Research Institute, McGill University Health Center, Montreal, Quebec, Canada
| | - Duncan J Stewart
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|