101
|
Ait-Kaki A, Diaw MT, Geda F, Moula N. Effects of Artemisia herba-alba or olive leaf ( Olea europaea) powder supplementation on growth performance, carcass yield, and blood biochemical parameters in broilers. Vet World 2018; 11:1624-1629. [PMID: 30587899 PMCID: PMC6303505 DOI: 10.14202/vetworld.2018.1624-1629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/11/2018] [Indexed: 11/16/2022] Open
Abstract
Aim This study was aimed to evaluate the effects of Artemisia herba-alba (white wormwood) or olive leaf (Olea europaea) powder supplementation on growth performance, carcass yield, and serum biochemical parameters in broilers. Materials and Methods The study was conducted from April to May 2017 in Chemini region, Northern Algeria. A total of 60 1-day-old Ross 308 male chicks were divided into three groups consisted of 10 chicks, in each of two replications. The chicks in Group 1 were fed with a standard commercial diet (SCD); Group 2 received the same SCD with 2% supplementation of A. herba-alba powder; and Group 3 received the same SCD with 2% supplementation of O. europaea powder. Growth performance was measured with body weights every 2 weeks, daily feed intake, feed conversion ratio (FCR), and carcass yield at the end of 42 days of rearing. Blood samples were collected to analyze serum glucose, cholesterol, triglycerides, urea, and total protein levels. Results Results showed that, at 42 days of rearing, supplementation of O. europaea and A. herba-alba significantly increased (p<0.001) mean body weight (2230.10±26.38 g and 2117.42±26.38 g, respectively, vs. 2336.66±27.88 g in chicks of Group 1), but there was no significant difference (p≥0.05) among the three diets for FCR or percentage carcass yield. Among the serum biochemical parameters, glucose was significantly affected (p<0.01) by supplementation of olive leaf powder (1.90 g/L: Group 3), compared to the SCD (2.24 g/L: Group 1) or Artemisia powder (2.05 g/L: Group 2). Moreover, the supplementation of olive leaf powder in Group 3 broilers significantly affected (p<0.05) the serum cholesterol level (0.95 g/L), compared to the control diet (1.13 g/L). There was no significant difference (p≥0.05) for the other selected serum biochemical concentrations, namely triglycerides, urea, and total protein. Conclusion The supplementation of Artemisia or olive leaf powder into the diet for broilers improved body weight by about 5% or 10%, respectively, at slaughter with moderate changes in blood biochemical parameters.
Collapse
Affiliation(s)
- Asma Ait-Kaki
- Department of Biology, Faculty of Sciences, M'Hamed Bougara University of Boumerdes, 3500 Boumerdes, Algeria
| | | | - Fikremariam Geda
- Department of Animal Production, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, Liege University, B-4000 Liege, Belgium
| | - Nassim Moula
- Department of Animal Production, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, Liege University, B-4000 Liege, Belgium
| |
Collapse
|
102
|
Baptissart M, Sèdes L, Holota H, Thirouard L, Martinot E, de Haze A, Rouaisnel B, Caira F, Beaudoin C, Volle DH. Multigenerational impacts of bile exposure are mediated by TGR5 signaling pathways. Sci Rep 2018; 8:16875. [PMID: 30443025 PMCID: PMC6237852 DOI: 10.1038/s41598-018-34863-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/16/2018] [Indexed: 01/26/2023] Open
Abstract
Besides their well-known roles in digestion and fat solubilization, bile acids (BAs) have been described as signaling molecules activating the nuclear receptor Farnesoid-X-receptor (FXRα) or the G-protein-coupled bile acid receptor-1 (GPBAR-1 or TGR5). In previous reports, we showed that BAs decrease male fertility due to abnormalities of the germ cell lineage dependent on Tgr5 signaling pathways. In the presentstudy, we tested whether BA exposure could impact germ cell DNA integrity leading to potential implications for progeny. For that purpose, adult F0 male mice were fed a diet supplemented with cholic acid (CA) or the corresponding control diet during 3.5 months prior mating. F1 progeny from CA exposed founders showed higher perinatal lethality, impaired BA homeostasis and reduced postnatal growth, as well as altered glucose metabolism in later life. The majority of these phenotypic traits were maintained up to the F2 generation. In F0 sperm cells, differential DNA methylation associated with CA exposure may contribute to the initial programming of developmental and metabolic defects observed in F1 and F2 offspring. Tgr5 knock-out mice combined with in vitro strategies defined the critical role of paternal Tgr5 dependent pathways in the multigenerational impacts of ancestral CA exposure.
Collapse
Affiliation(s)
- Marine Baptissart
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63000, Clermont-Ferrand, France
| | - Lauriane Sèdes
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63000, Clermont-Ferrand, France
| | - Hélène Holota
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63000, Clermont-Ferrand, France
| | - Laura Thirouard
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63000, Clermont-Ferrand, France
| | - Emmanuelle Martinot
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63000, Clermont-Ferrand, France
| | - Angélique de Haze
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63000, Clermont-Ferrand, France
| | - Betty Rouaisnel
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63000, Clermont-Ferrand, France
| | - Françoise Caira
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63000, Clermont-Ferrand, France
| | - Claude Beaudoin
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63000, Clermont-Ferrand, France
| | - David H Volle
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
103
|
Massafra V, Pellicciari R, Gioiello A, van Mil SW. Progress and challenges of selective Farnesoid X Receptor modulation. Pharmacol Ther 2018; 191:162-177. [DOI: 10.1016/j.pharmthera.2018.06.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
104
|
Minassi A, Rogati F, Cruz C, Prados ME, Galera N, Jinénez C, Appendino G, Bellido ML, Calzado MA, Caprioglio D, Muñoz E. Triterpenoid Hydroxamates as HIF Prolyl Hydrolase Inhibitors. JOURNAL OF NATURAL PRODUCTS 2018; 81:2235-2243. [PMID: 30350996 DOI: 10.1021/acs.jnatprod.8b00514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pentacyclic triterpenoid acids (PCTTAs) are pleiotropic agents that target many macromolecular end-points with low to moderate affinity. To explore the biological space associated with PCTTAs, we have investigated the carboxylate-to-hydroxamate transformation, discovering that it de-emphasizes affinity for the transcription factors targeted by the natural compounds (NF-κB, STAT3, Nrf2, TGR5) and selectively induces inhibitory activity on HIF prolyl hydrolases (PHDs). Activity was reversible, isoform-selective, dependent on the hydroxamate location, and negligible when this group was replaced by other chelating elements or O-alkylated. The hydroxamate of betulinic acid (5b) was selected for further studies, and evaluation of its effect on HIF-1α expression under normal and hypoxic conditions qualified it as a promising lead structure for the discovery of new candidates in the realm of neuroprotection.
Collapse
Affiliation(s)
- Alberto Minassi
- Dipartimento di Scienze del Farmaco , Università del Piemonte Orientale , Via Bovio 6 , Novara 28100 , Italy
| | - Federica Rogati
- Dipartimento di Scienze del Farmaco , Università del Piemonte Orientale , Via Bovio 6 , Novara 28100 , Italy
| | - Cristina Cruz
- VivaCell Biotechnology SL. Parque Científico Tecnológico , Rabanales 21. Edificio Centauro , 14014 Córdoba , Spain
| | - M Eugenia Prados
- VivaCell Biotechnology SL. Parque Científico Tecnológico , Rabanales 21. Edificio Centauro , 14014 Córdoba , Spain
| | - Nuria Galera
- VivaCell Biotechnology SL. Parque Científico Tecnológico , Rabanales 21. Edificio Centauro , 14014 Córdoba , Spain
| | - Carla Jinénez
- Maimonides Biomedical Research Institute of Córdoba , Avenida Menendez Pidal s/n , 14004 Cordoba , Spain
- Department of Cellular Biology, Physiology and Immunology , University of Cordoba , Avenida Menendez Pidal s/n , 14004 Cordoba , Spain
- University Hospital Reina Sofía , Avenida Menendez Pidal s/n , 14004 Cordoba , Spain
| | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco , Università del Piemonte Orientale , Via Bovio 6 , Novara 28100 , Italy
| | - M Luz Bellido
- VivaCell Biotechnology SL. Parque Científico Tecnológico , Rabanales 21. Edificio Centauro , 14014 Córdoba , Spain
| | - Marco A Calzado
- Maimonides Biomedical Research Institute of Córdoba , Avenida Menendez Pidal s/n , 14004 Cordoba , Spain
- Department of Cellular Biology, Physiology and Immunology , University of Cordoba , Avenida Menendez Pidal s/n , 14004 Cordoba , Spain
- University Hospital Reina Sofía , Avenida Menendez Pidal s/n , 14004 Cordoba , Spain
| | - Diego Caprioglio
- Dipartimento di Scienze del Farmaco , Università del Piemonte Orientale , Via Bovio 6 , Novara 28100 , Italy
| | - Eduardo Muñoz
- Maimonides Biomedical Research Institute of Córdoba , Avenida Menendez Pidal s/n , 14004 Cordoba , Spain
- Department of Cellular Biology, Physiology and Immunology , University of Cordoba , Avenida Menendez Pidal s/n , 14004 Cordoba , Spain
- University Hospital Reina Sofía , Avenida Menendez Pidal s/n , 14004 Cordoba , Spain
| |
Collapse
|
105
|
Khwaza V, Oyedeji OO, Aderibigbe BA. Antiviral Activities of Oleanolic Acid and Its Analogues. Molecules 2018; 23:molecules23092300. [PMID: 30205592 PMCID: PMC6225463 DOI: 10.3390/molecules23092300] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/30/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022] Open
Abstract
Viral diseases, such as human immune deficiency virus (HIV), influenza, hepatitis, and herpes, are the leading causes of human death in the world. The shortage of effective vaccines or therapeutics for the prevention and treatment of the numerous viral infections, and the great increase in the number of new drug-resistant viruses, indicate that there is a great need for the development of novel and potent antiviral drugs. Natural products are one of the most valuable sources for drug discovery. Most natural triterpenoids, such as oleanolic acid (OA), possess notable antiviral activity. Therefore, it is important to validate how plant isolates, such as OA and its analogues, can improve and produce potent drugs for the treatment of viral disease. This article reports a review of the analogues of oleanolic acid and their selected pathogenic antiviral activities, which include HIV, the influenza virus, hepatitis B and C viruses, and herpes viruses.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| | - Opeoluwa O Oyedeji
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| | - Blessing A Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| |
Collapse
|
106
|
Kirchweger B, Kratz JM, Ladurner A, Grienke U, Langer T, Dirsch VM, Rollinger JM. In Silico Workflow for the Discovery of Natural Products Activating the G Protein-Coupled Bile Acid Receptor 1. Front Chem 2018; 6:242. [PMID: 30013964 PMCID: PMC6036132 DOI: 10.3389/fchem.2018.00242] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/06/2018] [Indexed: 12/16/2022] Open
Abstract
The G protein-coupled bile acid receptor (GPBAR1) has been recognized as a promising new target for the treatment of diverse diseases, including obesity, type 2 diabetes, fatty liver disease and atherosclerosis. The identification of novel and potent GPBAR1 agonists is highly relevant, as these diseases are on the rise and pharmacological unmet therapeutic needs are pervasive. Therefore, the aim of this study was to develop a proficient workflow for the in silico prediction of GPBAR1 activating compounds, primarily from natural sources. A protocol was set up, starting with a comprehensive collection of structural information of known ligands. This information was used to generate ligand-based pharmacophore models in LigandScout 4.08 Advanced. After theoretical validation, the two most promising models, namely BAMS22 and TTM8, were employed as queries for the virtual screening of natural product and synthetic small molecule databases. Virtual hits were progressed to shape matching experiments and physicochemical clustering. Out of 33 diverse virtual hits subjected to experimental testing using a reporter gene-based assay, two natural products, farnesiferol B (27) and microlobidene (28), were confirmed as GPBAR1 activators reaching more than 50% receptor activation at 20 μM with EC50s of 13.53 μM and 13.88 μM, respectively. This activity is comparable to that of the endogenous ligand lithocholic acid (1). Seven further virtual hits showed activity reaching at least 15% receptor activation either at 5 or 20 μM, including new scaffolds from natural and synthetic origin.
Collapse
Affiliation(s)
| | - Jadel M. Kratz
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Angela Ladurner
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Ulrike Grienke
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Verena M. Dirsch
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | | |
Collapse
|
107
|
Djeziri FZ, Belarbi M, Murtaza B, Hichami A, Benammar C, Khan NA. Oleanolic acid improves diet-induced obesity by modulating fat preference and inflammation in mice. Biochimie 2018; 152:110-120. [PMID: 29966735 DOI: 10.1016/j.biochi.2018.06.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022]
Abstract
Obesity, triggered by high-fat diet (HFD), is associated to altered gustatory perception of dietary lipids. Oleanolic acid (OLA), a triterpene, has been reported to exert anti-obesity effects in animal models. Hence, we investigated the role of OLA in the modulation of oro-sensory perception of lipids in control and HFD-induced obese mice. As expected, OLA-treated obese mice exhibited a decrease in body, liver, and visceral adipose tissue weights. OLA treatment improved glucose tolerance, insulin level, plasma lipopolysaccharide (LPS), and hepatic cholesterol and triglyceride concentrations. OLA-treated obese mice exhibited higher fat preference compared to untreated obese mice, probably due to the increase in mRNA encoding CD36, a fat taste receptor, in mouse taste bud cells (mTBC). This phenomenon was associated with fatty-acid induced increases in free intracellular calcium concentrations, [Ca2+]i, induced in mTBC from OLA-treated obese mice. OLA also influenced the expression of mRNA encoding pro-inflammatory cytokines (IL-1β and IL-6) and some lipogenic genes (PPARα, SREBP1, FAS, ChREBP, and G6Pase) in liver and adipose tissue. These findings reveal that OLA improves gustatory perception of lipids and exerts protective effects in obesity.
Collapse
Affiliation(s)
- Fatima Zohra Djeziri
- Laboratoire des Produits Naturels, Université Abou-Bekr Belkaïd, Tlemcen, 13000, Algeria
| | - Meriem Belarbi
- Laboratoire des Produits Naturels, Université Abou-Bekr Belkaïd, Tlemcen, 13000, Algeria
| | - Babar Murtaza
- Physiologie de la Nutrition & Toxicologie, UMR U1231 INSERM/Université de Bourgogne-Franche Compté (UBFC), Dijon, 21000, France
| | - Aziz Hichami
- Physiologie de la Nutrition & Toxicologie, UMR U1231 INSERM/Université de Bourgogne-Franche Compté (UBFC), Dijon, 21000, France
| | - Chahid Benammar
- Laboratoire des Produits Naturels, Université Abou-Bekr Belkaïd, Tlemcen, 13000, Algeria
| | - Naim Akhtar Khan
- Physiologie de la Nutrition & Toxicologie, UMR U1231 INSERM/Université de Bourgogne-Franche Compté (UBFC), Dijon, 21000, France.
| |
Collapse
|
108
|
Abstract
PURPOSE OF REVIEW Bile acids act as activating signals of endogenous renal receptors: the nuclear receptor farnesoid X receptor (FXR) and the membrane-bound G protein-coupled bile acid receptor 1 (GPBAR1, also known as TGR5). In recent years, bile acids have emerged as important for renal pathophysiology by activating FXR and TGR5 and transcription factors relevant for lipid, cholesterol and carbohydrate metabolism, as well as genes involved in inflammation and renal fibrosis. RECENT FINDINGS Activation of bile acid receptors has a promising therapeutic potential in prevention of diabetic nephropathy and obesity-induced renal damage, as well as in nephrosclerosis. During the past decade, progress has been made in understanding the biology and mechanisms of bile acid receptors in the kidney and in the development of specific bile acid receptor agonists. SUMMARY In this review, we discuss current knowledge on the roles of FXR and TGR5 in the physiology of the kidney and the latest advances made in development and characterization of bile acid analogues that activate bile acid receptors for treatment of renal disease.
Collapse
|
109
|
Rizzetto L, Fava F, Tuohy KM, Selmi C. Connecting the immune system, systemic chronic inflammation and the gut microbiome: The role of sex. J Autoimmun 2018; 92:12-34. [PMID: 29861127 DOI: 10.1016/j.jaut.2018.05.008] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
Unresolved low grade systemic inflammation represents the underlying pathological mechanism driving immune and metabolic pathways involved in autoimmune diseases (AID). Mechanistic studies in animal models of AID and observational studies in patients have found alterations in gut microbiota communities and their metabolites, suggesting a microbial contribution to the onset or progression of AID. The gut microbiota and its metabolites have been shown to influence immune functions and immune homeostasis both within the gut and systematically. Microbial derived-short chain fatty acid (SCFA) and bio-transformed bile acid (BA) have been shown to influence the immune system acting as ligands specific cell signaling receptors like GPRCs, TGR5 and FXR, or via epigenetic processes. Similarly, intestinal permeability (leaky gut) and bacterial translocation are important contributors to chronic systemic inflammation and, without repair of the intestinal barrier, might represent a continuous inflammatory stimulus capable of triggering autoimmune processes. Recent studies indicate gender-specific differences in immunity, with the gut microbiota shaping and being concomitantly shaped by the hormonal milieu governing differences between the sexes. A bi-directional cross-talk between microbiota and the endocrine system is emerging with bacteria being able to produce hormones (e.g. serotonin, dopamine and somatostatine), respond to host hormones (e.g. estrogens) and regulate host hormones' homeostasis (e.g by inhibiting gene prolactin transcription or converting glucocorticoids to androgens). We review herein how gut microbiota and its metabolites regulate immune function, intestinal permeability and possibly AID pathological processes. Further, we describe the dysbiosis within the gut microbiota observed in different AID and speculate how restoring gut microbiota composition and its regulatory metabolites by dietary intervention including prebiotics and probiotics could help in preventing or ameliorating AID. Finally, we suggest that, given consistent observations of microbiota dysbiosis associated with AID and the ability of SCFA and BA to regulate intestinal permeability and inflammation, further mechanistic studies, examining how dietary microbiota modulation can protect against AID, hold considerable potential to tackle increased incidence of AID at the population level.
Collapse
Affiliation(s)
- Lisa Rizzetto
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy.
| | - Francesca Fava
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Kieran M Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy; BIOMETRA Department, University of Milan, Italy
| |
Collapse
|
110
|
Ben Mohamed M, Guasmi F, Ben Ali S, Radhouani F, Faghim J, Triki T, Kammoun NG, Baffi C, Lucini L, Benincasa C. The LC-MS/MS characterization of phenolic compounds in leaves allows classifying olive cultivars grown in South Tunisia. BIOCHEM SYST ECOL 2018. [DOI: 10.1016/j.bse.2018.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
111
|
Sasaki T, Kuboyama A, Mita M, Murata S, Shimizu M, Inoue J, Mori K, Sato R. The exercise-inducible bile acid receptor Tgr5 improves skeletal muscle function in mice. J Biol Chem 2018; 293:10322-10332. [PMID: 29773650 DOI: 10.1074/jbc.ra118.002733] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
TGR5 (also known as G protein-coupled bile acid receptor 1, GPBAR1) is a G protein-coupled bile acid receptor that is expressed in many diverse tissues. TGR5 is involved in various metabolic processes, including glucose metabolism and energy expenditure; however, TGR5's function in skeletal muscle is not fully understood. Using both gain- and loss-of-function mouse models, we demonstrate here that Tgr5 activation promotes muscle cell differentiation and muscle hypertrophy. Both young and old transgenic mice with muscle-specific Tgr5 expression exhibited increased muscle strength. Moreover, we found that Tgr5 expression is increased by the unfolded protein response (UPR), which is an adaptive response required for maintenance of endoplasmic reticulum (ER) homeostasis. Both ER stress response element (ERSE)- and unfolded protein response element (UPRE)-like sites are present in the 5' upstream region of the Tgr5 gene promoter and are essential for Tgr5 expression by Atf6α (activating transcription factor 6α), a well known UPR-activated transcriptional regulator. We observed that in the skeletal muscle of mice, exercise-induced UPR increases Tgr5 expression, an effect that was abrogated in Atf6α KO mice, indicating that Atf6α is essential for this response. These findings indicate that the bile acid receptor Tgr5 contributes to improved muscle function and provide an additional explanation for the beneficial effects of exercise on skeletal muscle activity.
Collapse
Affiliation(s)
| | | | - Moeko Mita
- From the Food Biochemistry Laboratory and
| | | | | | - Jun Inoue
- From the Food Biochemistry Laboratory and
| | - Kazutoshi Mori
- the Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan, and
| | - Ryuichiro Sato
- From the Food Biochemistry Laboratory and .,Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| |
Collapse
|
112
|
Hiebl V, Ladurner A, Latkolik S, Dirsch VM. Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR. Biotechnol Adv 2018; 36:1657-1698. [PMID: 29548878 DOI: 10.1016/j.biotechadv.2018.03.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 01/25/2023]
Abstract
Nuclear receptors (NRs) represent attractive targets for the treatment of metabolic syndrome-related diseases. In addition, natural products are an interesting pool of potential ligands since they have been refined under evolutionary pressure to interact with proteins or other biological targets. This review aims to briefly summarize current basic knowledge regarding the liver X (LXR) and farnesoid X receptors (FXR) that form permissive heterodimers with retinoid X receptors (RXR). Natural product-based ligands for these receptors are summarized and the potential of LXR, FXR and RXR as targets in precision medicine is discussed.
Collapse
Affiliation(s)
- Verena Hiebl
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Angela Ladurner
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria.
| | - Simone Latkolik
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Verena M Dirsch
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
113
|
Lu Y, Zheng W, Lin S, Guo F, Zhu Y, Wei Y, Liu X, Jin S, Jin L, Li Y. Identification of an Oleanane-Type Triterpene Hedragonic Acid as a Novel Farnesoid X Receptor Ligand with Liver Protective Effects and Anti-inflammatory Activity. Mol Pharmacol 2018; 93:63-72. [PMID: 29162643 DOI: 10.1124/mol.117.109900] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/15/2017] [Indexed: 02/14/2025] Open
Abstract
Farnesoid X receptor (FXR) and G-protein-coupled bile acid receptor 1 (GPBAR1) are two important bile acid (BA) receptors. As non-BAs drug template for GPBAR1, none of the natural oleanane-type triterpenes have been reported as FXR ligands, despite FXR and GPBAR1 having similar binding pockets for BAs. Here, we report the natural triterpene hedragonic acid that has been isolated from the stem and root of Celastrus orbiculatus Thunb. (COT) as an effective agonist for FXR. Both biochemical amplified luminescent proximity homogeneous assay and cell-based reporter assays showed that hedragonic acid regulated the transcriptional activity of FXR. Circular dichroism spectroscopy further suggested the conformational changes of FXR upon the binding of hedragonic acid. Interestingly, the crystal structure of hedragonic acid-bound FXR revealed a unique binding mode with hedragonic acid occupying a novel binding pocket different from the classic binding position. The structural comparison between hedragonic acid-bound FXR and oleanolic acid-bound GPBAR1 explained the molecular basis for the selectivity of oleanane-type triterpenes for FXR. Moreover, hedragonic acid treatment protected mice from liver injury induced by acetaminophen overdose and decreased hepatic inflammatory responses in an FXR-dependent manner, suggesting that hedragonic acid might be one of the major components of COT for its multifunctional pharmaceutical uses. In conclusion, our results provide novel structure templates for drug design based on natural triterpenes by targeting FXR and/or GPBAR1 with pharmaceutical values.
Collapse
Affiliation(s)
- Yi Lu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian, China
| | - Weili Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian, China
| | - Shengchen Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian, China
| | - Fusheng Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian, China
| | - Yanlin Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian, China
| | - Yijuan Wei
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian, China
| | - Xi Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian, China
| | - Shikai Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian, China
| | - Lihua Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian, China
| | - Yong Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
114
|
Güneş E, Danacıoğlu DA. The effect of olive (Olea europaea L.) phenolics and sugar on Drosophila melanogaster’s development. ANIM BIOL 2018. [DOI: 10.1163/15707563-17000162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Olive leaves (Olea europaea L.) contain phenolics that are used for various aims and can also be utilized as free radical scavengers and as a powerful antioxidant source. In this study, our aim was to observe the effects of olive phenolics on the survival rate, development, sex ratio, and adult longevity of Drosophila melanogaster Meigen (Diptera: Drosophilidae) fed with sugar and with a sugar-free diet. The amount of malondialdehyde and the activity of glutathione S-transferase were examined with UV-VIS spectrophotometry in third-stage larvae, pupae and adults. For this purpose, dried olive fruit and leaf extracts were added at different concentrations to the insect’s sugary diets. The results reveal that 12 mg/L phenolic fruit extract and 4 M sucrose had a negative impact on the development and survival of these insects. It was also found that phenolic leaf extract and low sugar concentrations changed the sex ratio, leading to fewer females and more males. The use of phenolic fruit and phenolic leaf extracts with increased sugar-based diets raised the amount of oxidation as well as the detoxification activity in this model organism. These results demonstrate that low amounts of sugar and olive phenolics may be used as an adjunct to adult nutrients to improve the insect’s adult characteristics.
Collapse
Affiliation(s)
- Eda Güneş
- 1Konya Necmettin Erbakan University, Faculty of Tourism, Department of Gastronomy and Culinary Arts, 42300, Konya, Turkey
| | - Derya Arslan Danacıoğlu
- 2Konya Necmettin Erbakan University, Faculty of Engineering and Architecture, Department of Food Engineering, 42300, Konya, Turkey
| |
Collapse
|
115
|
Mazidi M, de Caravatto PPP, Speakman JR, Cohen RV. Mechanisms of Action of Surgical Interventions on Weight-Related Diseases: the Potential Role of Bile Acids. Obes Surg 2017; 27:826-836. [PMID: 28091894 DOI: 10.1007/s11695-017-2549-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Surgical interventions for weight-related diseases (SWRD) may have substantial and sustainable effect on weight reduction, also leading to a higher remission rate of type 2 diabetes (T2D) mellitus than any other medical treatment or lifestyle intervention. The resolution of T2D after Roux-en-Y gastric bypass (RYGB) typically occurs too quickly to be accounted for by weight loss alone, suggesting that these operations have a direct impact on glucose homeostasis. The mechanisms underlying these beneficial effects however remain unclear. Recent research suggests that changes in the concentrations of plasma bile acids might contribute to these metabolic changes after surgery. In this review, we aimed to outline the potential role of bile acids in SWRD. We systematically reviewed MEDLINE, SCOPUS, and Web of Science for articles reporting the effect of SWRD on outcomes published between 1969 and 2016. We found that changes in circulating bile acids after surgery may play a major role through activation of the farnesoid X receptor A (FXRA), the fibroblast growth factor 19 (FGF19), and the G protein-coupled bile acid receptor (TGR5). Bile acid concentration increased significantly after RYGB. Some studies suggest that a transitory decrease occurs at 1 week post-surgery, followed by a gradual increase. Most studies have shown the increase to be proportionate by all bile acid subtypes. Bile acids can regulate glucose metabolism through the expression of TGR5 receptor in L cells, resulting in a release of glucagon-like peptide 1 (GLP-1). It may also induce the synthesis and secretion of FGF19 in ileal cells, thereby improving insulin sensitivity and regulating glucose metabolism. All the present SWRD are involved with changes in food stimulation to the stomach. This implies that discovering and developing the antagonists to TGR5 and FXRA may effectively control metabolic syndrome and the elucidation of the mechanisms underlying the physiological effects related to weight loss and T2D remission after surgery may help to identify new drug targets.
Collapse
Affiliation(s)
- Mohsen Mazidi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China.,University of the Chinese Academy of Sciences, Huairou, Beijing, China
| | - Pedro Paulo P de Caravatto
- The Center for Obesity and Diabetes, Oswaldo Cruz German Hospital, Rua Cincinato Braga, 37 5o. andar, São Paulo, São Paulo, Brazil
| | - John R Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China.,Institute of Biological and Environmental Science, University of Aberdeen, Aberdeen, Scotland, UK
| | - Ricardo V Cohen
- The Center for Obesity and Diabetes, Oswaldo Cruz German Hospital, Rua Cincinato Braga, 37 5o. andar, São Paulo, São Paulo, Brazil.
| |
Collapse
|
116
|
Qidwai A, Pandey M, Kumar R, Dikshit A. Comprehensive evaluation of pharmacological properties of Olea europaea L. for Cosmeceuticals prospects. CLINICAL PHYTOSCIENCE 2017. [DOI: 10.1186/s40816-017-0050-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
117
|
Fujiwara Y, Tsukahara C, Ikeda N, Sone Y, Ishikawa T, Ichi I, Koike T, Aoki Y. Oleuropein improves insulin resistance in skeletal muscle by promoting the translocation of GLUT4. J Clin Biochem Nutr 2017; 61:196-202. [PMID: 29203961 PMCID: PMC5703779 DOI: 10.3164/jcbn.16-120] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/13/2017] [Indexed: 01/05/2023] Open
Abstract
As the beneficial effects of the Mediterranean diet on human health are well established, the phenolic compounds in olive oil have been gaining interest. Oleuropein, a major phenolic compound in olives, is known to reduce the blood glucose levels in alloxan-induced diabetic rats and rabbits, however, its effect on type 2 diabetes caused by obesity is not clear. The purpose of this study is clarifying the effect of oleuropein on the glucose tolerance in skeletal muscle under the condition of lipotoxicity caused by type 2 diabetes. Oleuropein enhanced glucose uptake in C2C12 cells without insulin. Translocation of glucose transporter 4 (GLUT4) into the cell membrane was promoted by activation of adenosine monophosphate-activated protein kinase (AMPK) but not protein kinase B (Akt). Physiological concentration of oleuropein (10 µM) was sufficient to express beneficial effects on C2C12 cells. Oleuropein prevented palmitic acid-induced myocellular insulin resistance. Furthermore, in gastrocnemius muscles of mice fed a high fat diet, oleuropein also induced the GLUT4 localization into cell membrane. These results suggest the possibility of oleuropein to be effective for type 2 diabetes by reducing insulin resistance in skeletal muscles.
Collapse
Affiliation(s)
- Yoko Fujiwara
- Food and Nutritional Sciences, Graduate Course of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8601, Japan.,Institute for Human Life Innovation, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8601, Japan
| | - Chisato Tsukahara
- Food and Nutritional Sciences, Graduate Course of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8601, Japan
| | - Naoe Ikeda
- Food and Nutritional Sciences, Graduate Course of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8601, Japan
| | - Yasuko Sone
- Departments of Health and Nutrition, Takasaki University of Health and Welfare, 37-1 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan
| | - Tomoko Ishikawa
- Institute for Human Life Innovation, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8601, Japan
| | - Ikuyo Ichi
- Food and Nutritional Sciences, Graduate Course of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8601, Japan.,Institute for Human Life Innovation, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8601, Japan
| | - Taisuke Koike
- Eisai Food & Chemical Co., Ltd., 2-13-10 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Yoshinori Aoki
- Eisai Food & Chemical Co., Ltd., 2-13-10 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| |
Collapse
|
118
|
Chen X, Yan L, Guo Z, Chen Y, Li M, Huang C, Chen Z, Meng X. Chenodeoxycholic acid attenuates high-fat diet-induced obesity and hyperglycemia via the G protein-coupled bile acid receptor 1 and proliferator-activated receptor γ pathway. Exp Ther Med 2017; 14:5305-5312. [PMID: 29285057 PMCID: PMC5740767 DOI: 10.3892/etm.2017.5232] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 06/02/2017] [Indexed: 12/26/2022] Open
Abstract
G protein-coupled bile acid receptor 1 (TGR5) serves a key function in regulating glycometabolism. TGR5 is highly expressed in the mitochondria of brown adipose tissue (BAT) and downregulates adenosine triphosphate synthesis via the bile acid-TGR5-cyclic adenosine monophosphate-2-iodothyronine deiodinase (D2)-triiodothyronine-uncoupling protein pathway, thus regulating energy homeostasis and reducing body weight. Chenodeoxycholic acid (CDCA), the primary bile acid, is a natural ligand of TGR5. The present study aimed to characterize the ability of CDCA to reduce high-fat diet-induced obesity and improve glucose tolerance. A mouse model of diet-induced obesity was constructed. The results demonstrated that a high-fat diet significantly increased the weight of mice after 10 weeks (P<0.05), but following the addition of CDCA and continued feeding for another 10 weeks, a decrease in weight was detected and no significant difference in final weight was observed between the high fat diet group treated with CDCA and the group fed a normal diet. Furthermore, CDCA treatment significantly increased glucose tolerance (P<0.001, P<0.01 and P<0.01 at 15, 40 and 60 min after glucose injection, respectively) and significantly decreased serum insulin levels compared with mice fed a high-fat diet alone. Staining of the liver with hematoxylin and eosin and oil red O revealed that the CDCA-treated group exhibited significantly lower fat accumulation in BAT and WAT compared with mice fed a high-fat diet alone (P<0.001). Reverse transcription-quantitative polymerase chain reaction analysis demonstrated that the expression of D2 activation system-related factors was significantly increased in BAT from mice treated with CDCA (P<0.001), confirming the role of TGR5 in modulating high-fat diet-induced obesity. In addition, CDCA inhibited adipocyte differentiation in 3T3-L1 cells and inhibited ligand-stimulated peroxisome proliferator-activated receptor γ (PPARγ) transcriptional activity. These results suggest that CDCA may prevent high-fat diet-induced obesity and hyperglycemia, and that these beneficial effects are mediated via the activation of TGR5 and inhibition of PPARγ transcriptional activity.
Collapse
Affiliation(s)
- Xiaosong Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Liu Yan
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Zhihui Guo
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Ying Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Ming Li
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Chushan Huang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Zhaohong Chen
- Department of Burns Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Xiyong Meng
- Department of Plastic Surgery, No. 421 Hospital of Chinese PLA, Guangzhou, Guangdong 510318, P.R. China
| |
Collapse
|
119
|
Wan XL, Lu YF, Xu SF, Wu Q, Liu J. Oeanolic acid protects against the hepatotoxicity of D-galactosame plus endotoxin in mice. Biomed Pharmacother 2017; 93:1040-1046. [DOI: 10.1016/j.biopha.2017.07.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 06/26/2017] [Accepted: 07/09/2017] [Indexed: 12/13/2022] Open
|
120
|
Chen FF, Wang JT, Zhang LX, Xing SF, Wang YX, Wang K, Deng SL, Zhang JQ, Tang L, Wu HS. Oleanolic acid derivative DKS26 exerts antidiabetic and hepatoprotective effects in diabetic mice and promotes glucagon-like peptide-1 secretion and expression in intestinal cells. Br J Pharmacol 2017. [PMID: 28627773 DOI: 10.1111/bph.13921] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Glucagon-like peptide-1 (GLP-1) is an important target for diabetes therapy based on its key role in maintaining glucose and lipid homeostasis. This study was designed to investigate antidiabetic and hepatoprotective effects of a novel oleanolic acid derivative DKS26 in diabetic mice and elucidate its underlying GLP-1 related antidiabetic mechanisms in vitro and in vivo. EXPERIMENTAL APPROACH The therapeutic effects of DKS26 were investigated in streptozotocin (STZ)-induced and db/db diabetic mouse models. Levels of plasma glucose, glycosylated serum protein (GSP), lipid profiles, insulin, alanine aminotransferase (ALT) and aspartate aminotransferase (AST), oral glucose tolerance (OGT), pancreatic islets and hepatic histopathological morphology, liver lipid levels and expression of pro-inflammatory cytokines were assessed. Intestinal NCI-H716 cells and diabetic models were used to further validate its potential GLP-1-related antidiabetic mechanisms. KEY RESULTS DKS26 treatment (100 mg·kg-1 ·day-1 ) decreased plasma levels of glucose, GSP, ALT and AST; ameliorated OGT and plasma lipid profiles; augmented plasma insulin levels; alleviated islets and hepatic pathological morphology; and reduced liver lipid accumulation, inflammation and necrosis in vivo. Furthermore, DKS26 enhanced GLP-1 release and expression, accompanied by elevated levels of cAMP and phosphorylated PKA in vitro and in vivo. CONCLUSION AND IMPLICATIONS DKS26 exerted hypoglycaemic, hypolipidaemic and islets protective effects, which were associated with an enhanced release and expression of GLP-1 mediated by the activation of the cAMP/PKA signalling pathway, and alleviated hepatic damage by reducing liver lipid levels and inflammation. These findings firmly identified DKS26 as a new viable therapeutic option for diabetes control.
Collapse
Affiliation(s)
- Fei-Fei Chen
- Experiment Education Center for Pharmaceutical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jian-Ta Wang
- College of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Li-Xia Zhang
- Experiment Education Center for Pharmaceutical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Fang Xing
- Experiment Education Center for Pharmaceutical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yun-Xia Wang
- Experiment Education Center for Pharmaceutical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Kai Wang
- Experiment Education Center for Pharmaceutical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Li Deng
- Department of Conservative Dentistry, Affiliated Hospital of Stomatology, Zhejiang University, Hangzhou, China
| | - Ji-Quan Zhang
- College of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Lei Tang
- College of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Hao-Shu Wu
- Experiment Education Center for Pharmaceutical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
121
|
Ladurner A, Zehl M, Grienke U, Hofstadler C, Faur N, Pereira FC, Berry D, Dirsch VM, Rollinger JM. Allspice and Clove As Source of Triterpene Acids Activating the G Protein-Coupled Bile Acid Receptor TGR5. Front Pharmacol 2017; 8:468. [PMID: 28769799 PMCID: PMC5511840 DOI: 10.3389/fphar.2017.00468] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/30/2017] [Indexed: 12/31/2022] Open
Abstract
Worldwide, metabolic diseases such as obesity and type 2 diabetes have reached epidemic proportions. A major regulator of metabolic processes that gained interest in recent years is the bile acid receptor TGR5 (Takeda G protein-coupled receptor 5). This G protein-coupled membrane receptor can be found predominantly in the intestine, where it is mainly responsible for the secretion of the incretins glucagon-like peptide 1 (GLP-1) and peptide YY (PYY). The aim of this study was (i) to identify plant extracts with TGR5-activating potential, (ii) to narrow down their activity to the responsible constituents, and (iii) to assess whether the intestinal microbiota produces transformed metabolites with a different activity profile. Chenodeoxycholic acid (CDCA) served as positive control for both, the applied cell-based luciferase reporter gene assay for TGR5 activity and the biotransformation assay using mouse fecal slurry. The suitability of the workflow was demonstrated by the biotransformation of CDCA to lithocholic acid resulting in a distinct increase in TGR5 activity. Based on a traditional Tibetan formula, 19 plant extracts were selected and investigated for TGR5 activation. Extracts from the commonly used spices Syzygium aromaticum (SaroE, clove), Pimenta dioica (PdioE, allspice), and Kaempferia galanga (KgalE, aromatic ginger) significantly increased TGR5 activity. After biotransformation, only KgalE showed significant differences in its metabolite profile, which, however, did not alter its TGR5 activity compared to non-transformed KgalE. UHPLC-HRMS (high-resolution mass spectrometry) analysis revealed triterpene acids (TTAs) as the main constituents of the extracts SaroE and PdioE. Identification and quantification of TTAs in these two extracts as well as comparison of their TGR5 activity with reconstituted TTA mixtures allowed the attribution of the TGR5 activity to TTAs. EC50s were determined for the main TTAs, i.e., oleanolic acid (2.2 ± 1.6 μM), ursolic acid (1.1 ± 0.2 μM), as well as for the hitherto unknown TGR5 activators corosolic acid (0.5 ± 1.0 μM) and maslinic acid (3.7 ± 0.7 μM). In conclusion, extracts of clove, allspice, and aromatic ginger activate TGR5, which might play a pivotal role in their therapeutic use for the treatment of metabolic diseases. Moreover, the TGR5 activation of SaroE and PdioE could be pinpointed solely to TTAs.
Collapse
Affiliation(s)
- Angela Ladurner
- Department of Pharmacognosy, Faculty of Life Sciences, University of ViennaVienna, Austria
| | - Martin Zehl
- Department of Pharmacognosy, Faculty of Life Sciences, University of ViennaVienna, Austria
- Department of Pharmaceutical Chemistry, University of ViennaVienna, Austria
- Department of Analytical Chemistry, University of ViennaVienna, Austria
| | - Ulrike Grienke
- Department of Pharmacognosy, Faculty of Life Sciences, University of ViennaVienna, Austria
| | - Christoph Hofstadler
- Department of Pharmacognosy, Faculty of Life Sciences, University of ViennaVienna, Austria
| | - Nadina Faur
- Department of Pharmacognosy, Faculty of Life Sciences, University of ViennaVienna, Austria
| | - Fátima C. Pereira
- Department of Microbiology and Ecosystem Science, University of ViennaVienna, Austria
| | - David Berry
- Department of Microbiology and Ecosystem Science, University of ViennaVienna, Austria
| | - Verena M. Dirsch
- Department of Pharmacognosy, Faculty of Life Sciences, University of ViennaVienna, Austria
| | - Judith M. Rollinger
- Department of Pharmacognosy, Faculty of Life Sciences, University of ViennaVienna, Austria
| |
Collapse
|
122
|
Sasaki T, Mita M, Ikari N, Kuboyama A, Hashimoto S, Kaneko T, Ishiguro M, Shimizu M, Inoue J, Sato R. Identification of key amino acid residues in the hTGR5-nomilin interaction and construction of its binding model. PLoS One 2017; 12:e0179226. [PMID: 28594916 PMCID: PMC5464637 DOI: 10.1371/journal.pone.0179226] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 05/25/2017] [Indexed: 12/12/2022] Open
Abstract
TGR5, a member of the G protein-coupled receptor (GPCR) family, is activated by bile acids. Because TGR5 promotes energy expenditure and improves glucose homeostasis, it is recognized as a key target in treating metabolic diseases. We previously showed that nomilin, a citrus limonoid, activates TGR5 and confers anti-obesity and anti-hyperglycemic effects in mice. Information on the TGR5–nomilin interaction regarding molecular structure, however, has not been reported. In the present study, we found that human TGR5 (hTGR5) shows higher nomilin responsiveness than does mouse TGR5 (mTGR5). Using mouse–human chimeric TGR5, we also found that three amino acid residues (Q77ECL1, R80ECL1, and Y893.29) are important in the hTGR5–nomilin interaction. Based on these results, an hTGR5–nomilin binding model was constructed using in silico docking simulation, demonstrating that four hydrophilic hydrogen-bonding interactions occur between nomilin and hTGR5. The binding mode of hTGR5–nomilin is vastly different from those of other TGR5 agonists previously reported, suggesting that TGR5 forms various binding patterns depending on the type of agonist. Our study promotes a better understanding of the structure of TGR5, and it may be useful in developing and screening new TGR5 agonists.
Collapse
Affiliation(s)
- Takashi Sasaki
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Moeko Mita
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Naho Ikari
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Ayane Kuboyama
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Shuzo Hashimoto
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Tatsuya Kaneko
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Masaji Ishiguro
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Higashijima, Akiha-ku, Niigata, Japan
| | - Makoto Shimizu
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Jun Inoue
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Ryuichiro Sato
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
123
|
Xue S, Yin J, Shao J, Yu Y, Yang L, Wang Y, Xie M, Fussenegger M, Ye H. A Synthetic-Biology-Inspired Therapeutic Strategy for Targeting and Treating Hepatogenous Diabetes. Mol Ther 2017; 25:443-455. [PMID: 28153094 DOI: 10.1016/j.ymthe.2016.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 12/31/2022] Open
Abstract
Hepatogenous diabetes is a complex disease that is typified by the simultaneous presence of type 2 diabetes and many forms of liver disease. The chief pathogenic determinant in this pathophysiological network is insulin resistance (IR), an asymptomatic disease state in which impaired insulin signaling in target tissues initiates a variety of organ dysfunctions. However, pharmacotherapies targeting IR remain limited and are generally inapplicable for liver disease patients. Oleanolic acid (OA) is a plant-derived triterpenoid that is frequently used in Chinese medicine as a safe but slow-acting treatment in many liver disorders. Here, we utilized the congruent pharmacological activities of OA and glucagon-like-peptide 1 (GLP-1) in relieving IR and improving liver and pancreas functions and used a synthetic-biology-inspired design principle to engineer a therapeutic gene circuit that enables a concerted action of both drugs. In particular, OA-triggered short human GLP-1 (shGLP-1) expression in hepatogenous diabetic mice rapidly and simultaneously attenuated many disease-specific metabolic failures, whereas OA or shGLP-1 monotherapy failed to achieve corresponding therapeutic effects. Collectively, this work shows that rationally engineered synthetic gene circuits are capable of treating multifactorial diseases in a synergistic manner by multiplexing the targeting efficacies of single therapeutics.
Collapse
Affiliation(s)
- Shuai Xue
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Jianli Yin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Jiawei Shao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yuanhuan Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Linfeng Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yidan Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Mingqi Xie
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China; Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Haifeng Ye
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| |
Collapse
|
124
|
Erzhi Pill® Repairs Experimental Liver Injury via TSC/mTOR Signaling Pathway Inhibiting Excessive Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017. [PMID: 28638431 PMCID: PMC5468563 DOI: 10.1155/2017/5653643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study aimed to investigate the mechanism of hepatoprotective effect of Erzhi Pill (EZP) on the liver injury via observing TSC/mTOR signaling pathway activation. The experimental liver injury was induced by 2-acetylaminofluorene (2-AAF) treatment combined with partial hepatectomy (PH). EZP treated 2-AAF/PH-induced liver injury by the therapeutic and prophylactic administration. After the administration of EZP, the activities of aspartic transaminase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AKP), and gamma-glutamyl transpeptidase (γ-GT) were decreased, followed by the decreased levels of hepatocyte apoptosis and caspase-3 expression. However, the secretion of albumin, liver weight, and index of liver weight were elevated. Microscopic examination showed that EZP restored pathological liver injury. Meanwhile, Rheb and mammalian target of rapamycin (mTOR) activation were suppressed, and tuberous sclerosis complex (TSC) expression was elevated in liver tissues induced by 2-AAF/PHx and accompanied with lower-expression of Bax, Notch1, p70S6K, and 4E-EIF and upregulated levels of Bcl-2 and Cyclin D. Hepatoprotective effect of EZP was possibly realized via inhibiting TSC/mTOR signaling pathway to suppress excessive apoptosis of hepatocyte.
Collapse
|
125
|
Green extracts from Coratina olive cultivar leaves: Antioxidant characterization and biological activity. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.01.039] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
126
|
van Nierop FS, Scheltema MJ, Eggink HM, Pols TW, Sonne DP, Knop FK, Soeters MR. Clinical relevance of the bile acid receptor TGR5 in metabolism. Lancet Diabetes Endocrinol 2017; 5:224-233. [PMID: 27639537 DOI: 10.1016/s2213-8587(16)30155-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 01/01/2023]
Abstract
The bile acid receptor TGR5 (also known as GPBAR1) is a promising target for the development of pharmacological interventions in metabolic diseases, including type 2 diabetes, obesity, and non-alcoholic steatohepatitis. TGR5 is expressed in many metabolically active tissues, but complex enterohepatic bile acid cycling limits the exposure of some of these tissues to the receptor ligand. Profound interspecies differences in the biology of bile acids and their receptors in different cells and tissues exist. Data from preclinical studies show promising effects of targeting TGR5 on outcomes such as weight loss, glucose metabolism, energy expenditure, and suppression of inflammation. However, clinical studies are scarce. We give a summary of key concepts in bile acid metabolism; outline different downstream effects of TGR5 activation; and review available data on TGR5 activation, with a focus on the translation of preclinical studies into clinically applicable findings. Studies in rodents suggest an important role for Tgr5 in Glp-1 secretion, insulin sensitivity, and energy expenditure. However, evidence of effects on these processes from human studies is less convincing. Ultimately, safe and selective human TGR5 agonists are needed to test the therapeutic potential of TGR5.
Collapse
Affiliation(s)
- F Samuel van Nierop
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, Netherlands
| | - Matthijs J Scheltema
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, Netherlands
| | - Hannah M Eggink
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, Netherlands
| | - Thijs W Pols
- Department of Biochemistry, Academic Medical Center, Amsterdam, Netherlands
| | - David P Sonne
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Filip K Knop
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Hellerup, Denmark
| | - Maarten R Soeters
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, Netherlands.
| |
Collapse
|
127
|
Martinot E, Sèdes L, Baptissart M, Lobaccaro JM, Caira F, Beaudoin C, Volle DH. Bile acids and their receptors. Mol Aspects Med 2017; 56:2-9. [PMID: 28153453 DOI: 10.1016/j.mam.2017.01.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 02/06/2023]
Abstract
Primary bile acids are synthetized from cholesterol within the liver and then transformed by the bacteria in the intestine to secondary bile acids. In addition to their involvement in digestion and fat solubilization, bile acids also act as signaling molecules. Several receptors are sensors of bile acids. Among these receptors, this review focuses on the nuclear receptor FXRα and the G-protein-coupled receptor TGR5. This review briefly presents the potential links between bile acids and cancers that are discussed in more details in the other articles of this special issue of Molecular Aspects of Medicine focused on "Bile acids, roles in integrative physiology and pathophysiology".
Collapse
Affiliation(s)
- Emmanuelle Martinot
- INSERM U 1103, Génétique Reproduction et Développement (GReD), F-63170 Aubière, France; Université Clermont Auvergne, GReD, F-63000 Clermont-Ferrand, F-63170 Aubière, France; CNRS, UMR 6293, GReD, F-63170 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - Lauriane Sèdes
- INSERM U 1103, Génétique Reproduction et Développement (GReD), F-63170 Aubière, France; Université Clermont Auvergne, GReD, F-63000 Clermont-Ferrand, F-63170 Aubière, France; CNRS, UMR 6293, GReD, F-63170 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - Marine Baptissart
- INSERM U 1103, Génétique Reproduction et Développement (GReD), F-63170 Aubière, France; Université Clermont Auvergne, GReD, F-63000 Clermont-Ferrand, F-63170 Aubière, France; CNRS, UMR 6293, GReD, F-63170 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - Jean-Marc Lobaccaro
- INSERM U 1103, Génétique Reproduction et Développement (GReD), F-63170 Aubière, France; Université Clermont Auvergne, GReD, F-63000 Clermont-Ferrand, F-63170 Aubière, France; CNRS, UMR 6293, GReD, F-63170 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - Françoise Caira
- INSERM U 1103, Génétique Reproduction et Développement (GReD), F-63170 Aubière, France; Université Clermont Auvergne, GReD, F-63000 Clermont-Ferrand, F-63170 Aubière, France; CNRS, UMR 6293, GReD, F-63170 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - Claude Beaudoin
- INSERM U 1103, Génétique Reproduction et Développement (GReD), F-63170 Aubière, France; Université Clermont Auvergne, GReD, F-63000 Clermont-Ferrand, F-63170 Aubière, France; CNRS, UMR 6293, GReD, F-63170 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - David H Volle
- INSERM U 1103, Génétique Reproduction et Développement (GReD), F-63170 Aubière, France; Université Clermont Auvergne, GReD, F-63000 Clermont-Ferrand, F-63170 Aubière, France; CNRS, UMR 6293, GReD, F-63170 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
128
|
Abstract
The prevalence of obesity and type 2 diabetes, two closely linked metabolic disorders, is increasing worldwide. Over the past decade, the connection between these disorders and the microbiota of the gut has become a major focus of biomedical research, with recent studies demonstrating the fundamental role of intestinal microbiota in the regulation and pathogenesis of metabolic disorders. Because of the complexity of the microbiota community, however, the underlying molecular mechanisms by which the gut microbiota is associated with metabolic disorders remain poorly understood. In this review, we summarize recent studies that investigate the role of the microbiota in both human subjects and animal models of disease and discuss relevant therapeutic targets for future research. [BMB Reports 2016; 49(10): 536-541]
Collapse
Affiliation(s)
- Jin-Young Yang
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| |
Collapse
|
129
|
Kawabata K, Kitamura K, Irie K, Naruse S, Matsuura T, Uemae T, Taira S, Ohigashi H, Murakami S, Takahashi M, Kaido Y, Kawakami B. Triterpenoids Isolated from Ziziphus jujuba Enhance Glucose Uptake Activity in Skeletal Muscle Cells. J Nutr Sci Vitaminol (Tokyo) 2017; 63:193-199. [PMID: 28757534 DOI: 10.3177/jnsv.63.193] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Jujube (Ziziphus jujuba Mill.), a traditional folk medicine and functional food in China and South Korea, is known for its beneficial properties, which include anti-cancer, anti-oxidative, and anti-obesity effects. To assess the anti-hyperglycemic effect of jujube in this study, we investigated the glucose uptake-promoting activity of jujube in rat L6 myotubes. After determining that the jujube extract induces muscle glucose uptake, we identified the following active compounds by bioassay-guided fractionation: betulonic acid, betulinic acid, and oleanonic acid. Ursonic acid, known to be present in jujube, was semi-synthesized from ursolic acid and also observed to enhance glucose uptake. These four triterpenic acids induced glucose uptake in a glucose transporter 4-dependent manner. Comparison experiments of jujube fruits from three countries, namely, China, South Korea, and Japan, revealed that Japanese jujube has a higher content of active triterpenoids and is the most potent enhancer of glucose uptake.
Collapse
Affiliation(s)
- Kyuichi Kawabata
- Department of Bioscience, Faculty of Biotechnology, Fukui Prefectural University
| | - Kenji Kitamura
- Department of Bioscience, Faculty of Biotechnology, Fukui Prefectural University
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Shoma Naruse
- Department of Bioscience, Faculty of Biotechnology, Fukui Prefectural University
| | - Tomohiro Matsuura
- Department of Bioscience, Faculty of Biotechnology, Fukui Prefectural University
| | - Tomoyuki Uemae
- Department of Bioscience, Faculty of Biotechnology, Fukui Prefectural University
| | - Shu Taira
- Department of Bioscience, Faculty of Biotechnology, Fukui Prefectural University
| | - Hajime Ohigashi
- Department of Bioscience, Faculty of Biotechnology, Fukui Prefectural University
| | - Shigeru Murakami
- Department of Bioscience, Faculty of Biotechnology, Fukui Prefectural University
| | - Masakazu Takahashi
- Department of Bioscience, Faculty of Biotechnology, Fukui Prefectural University
| | | | | |
Collapse
|
130
|
Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice. Mucosal Immunol 2017; 10:104-116. [PMID: 27118489 DOI: 10.1038/mi.2016.42] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 02/04/2023]
Abstract
In humans, the composition of gut commensal bacteria is closely correlated with obesity. The bacteria modulate metabolites and influence host immunity. In this study, we attempted to determine whether there is a direct correlation between specific commensal bacteria and host metabolism. As mice aged, we found significantly reduced body weight and fat mass in Atg7ΔCD11c mice when compared with Atg7f/f mice. When mice shared commensal bacteria by co-housing or feces transfer experiments, body weight and fat mass were similar in both mouse groups. By pyrosequencing analysis, Bacteroides acidifaciens (BA) was significantly increased in feces of Atg7ΔCD11c mice compared with those of control Atg7f/f mice. Wild-type C57BL/6 (B6) mice fed with BA were significantly more likely to gain less weight and fat mass than mice fed with PBS. Of note, the expression level of peroxisome proliferator-activated receptor alpha (PPARα) was consistently increased in the adipose tissues of Atg7ΔCD11c mice, B6 mice transferred with fecal microbiota of Atg7ΔCD11c mice, and BA-fed B6 mice. Furthermore, B6 mice fed with BA showed elevated insulin levels in serum, accompanied by increased serum glucagon-like peptide-1 and decreased intestinal dipeptidyl peptidase-4. These finding suggest that BA may have potential for treatment of metabolic diseases such as diabetes and obesity.
Collapse
|
131
|
Guo C, Chen WD, Wang YD. TGR5, Not Only a Metabolic Regulator. Front Physiol 2016; 7:646. [PMID: 28082913 PMCID: PMC5183627 DOI: 10.3389/fphys.2016.00646] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/09/2016] [Indexed: 12/29/2022] Open
Abstract
G-protein-coupled bile acid receptor, Gpbar1 (TGR5), is a member of G-protein-coupled receptor (GPCR) superfamily. High levels of TGR5 mRNA were detected in several tissues such as small intestine, stomach, liver, lung, especially in placenta and spleen. TGR5 is not only the receptor for bile acids, but also the receptor for multiple selective synthetic agonists such as 6α-ethyl-23(S)-methyl-cholic acid (6-EMCA, INT-777) and a series of 4-benzofuranyloxynicotinamde derivatives to regulate different signaling pathways such as nuclear factor κB (NF-κB), AKT, and extracellular signal-regulated kinases (ERK). TGR5, as a metabolic regulator, is involved in energy homeostasis, bile acid homeostasis, as well as glucose metabolism. More recently, our group and others have extended the functions of TGR5 to more than metabolic regulation, which include inflammatory response, cancer and liver regeneration. These findings highlight TGR5 as a potential drug target for different diseases. This review summarizes the basic information of TGR5 and its new functions.
Collapse
Affiliation(s)
- Cong Guo
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology Beijing, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan UniversityKaifeng, China; Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical UniversityHohhot, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology Beijing, China
| |
Collapse
|
132
|
Souilem S, Fki I, Kobayashi I, Khalid N, Neves MA, Isoda H, Sayadi S, Nakajima M. Emerging Technologies for Recovery of Value-Added Components from Olive Leaves and Their Applications in Food/Feed Industries. FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-016-1834-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
133
|
Romero-García JM, Lama-Muñoz A, Rodríguez-Gutiérrez G, Moya M, Ruiz E, Fernández-Bolaños J, Castro E. Obtaining sugars and natural antioxidants from olive leaves by steam-explosion. Food Chem 2016; 210:457-65. [DOI: 10.1016/j.foodchem.2016.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/27/2016] [Accepted: 05/01/2016] [Indexed: 10/21/2022]
|
134
|
Kaska L, Sledzinski T, Chomiczewska A, Dettlaff-Pokora A, Swierczynski J. Improved glucose metabolism following bariatric surgery is associated with increased circulating bile acid concentrations and remodeling of the gut microbiome. World J Gastroenterol 2016; 22:8698-8719. [PMID: 27818587 PMCID: PMC5075546 DOI: 10.3748/wjg.v22.i39.8698] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/23/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023] Open
Abstract
Clinical studies have indicated that circulating bile acid (BA) concentrations increase following bariatric surgery, especially following malabsorptive procedures such as Roux-en-Y gastric bypasses (RYGB). Moreover, total circulating BA concentrations in patients following RYGB are positively correlated with serum glucagon-like peptide-1 concentrations and inversely correlated with postprandial glucose concentrations. Overall, these data suggest that the increased circulating BA concentrations following bariatric surgery - independently of calorie restriction and body-weight loss - could contribute, at least in part, to improvements in insulin sensitivity, incretin hormone secretion, and postprandial glycemia, leading to the remission of type-2 diabetes (T2DM). In humans, the primary and secondary BA pool size is dependent on the rate of biosynthesis and the enterohepatic circulation of BAs, as well as on the gut microbiota, which play a crucial role in BA biotransformation. Moreover, BAs and gut microbiota are closely integrated and affect each other. Thus, the alterations in bile flow that result from anatomical changes caused by bariatric surgery and changes in gut microbiome may influence circulating BA concentrations and could subsequently contribute to T2DM remission following RYGB. Research data coming largely from animal and cell culture models suggest that BAs can contribute, via nuclear farnezoid X receptor (FXR) and membrane G-protein-receptor (TGR-5), to beneficial effects on glucose metabolism. It is therefore likely that FXR, TGR-5, and BAs play a similar role in glucose metabolism following bariatric surgery in humans. The objective of this review is to discuss in detail the results of published studies that show how bariatric surgery affects glucose metabolism and subsequently T2DM remission.
Collapse
|
135
|
Effects of acute dietary weight loss on postprandial plasma bile acid responses in obese insulin resistant subjects. Clin Nutr 2016; 36:1615-1620. [PMID: 27773549 DOI: 10.1016/j.clnu.2016.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/09/2016] [Accepted: 10/06/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS Bile acids (BA) are pleiotropic hormones affecting glucose and lipid metabolism. The physiochemical properties of different BA species affect their enterohepatic dynamics and their affinity for bile acid receptors. The BA pool composition is altered in patients with type 2 diabetes and obesity. In this study we used a 2-week very-low-calorie diet (VLCD) to investigate the effects of weight loss on BA pool composition and postprandial dynamics. METHODS We performed mixed meal tests in obese, insulin resistant subjects before and after the VLCD. We measured postprandial plasma levels of glucose, insulin, BA and the BA-induced enterokine fibroblast growth factor 19 (FGF19). RESULTS The VLCD decreased weight by 4.5 ± 2.3 kg (p < 0.0001) within 14 days. Weight loss increased peak postprandial deoxycholate (DCA) levels (median [IQR]: 0.90 [0.90] vs. 1.25 [1.35] μmol/L; p = 0.045*). Other BA species, glucose, insulin and FGF19 levels and prandial excursions were not significantly affected. The VLCD decreased resting and postprandial energy expenditure by 7 and 11% respectively. CONCLUSIONS VLCD induced weight loss increased postprandial DCA peak levels and decreased resting energy expenditure in obese insulin resistant subjects.
Collapse
|
136
|
Arora T, Bäckhed F. The gut microbiota and metabolic disease: current understanding and future perspectives. J Intern Med 2016; 280:339-49. [PMID: 27071815 DOI: 10.1111/joim.12508] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human gut microbiota has been studied for more than a century. However, of nonculture-based techniques exploiting next-generation sequencing for analysing the microbiota, development has renewed research within the field during the past decade. The observation that the gut microbiota, as an environmental factor, contributes to adiposity has further increased interest in the field. The human microbiota is affected by the diet, and macronutrients serve as substrates for many microbially produced metabolites, such as short-chain fatty acids and bile acids, that may modulate host metabolism. Obesity predisposes towards type 2 diabetes and cardiovascular disease. Recently, it has been established that levels of butyrate-producing bacteria are reduced in patients with type 2 diabetes, whereas levels of Lactobacillus sp. are increased. Recent data suggest that the reduced levels of butyrate-producing bacteria might be causally linked to type 2 diabetes. Bariatric surgery, which promotes long-term weight loss and diabetes remission, alters the gut microbiota in both mice and humans. Furthermore, by transferring the microbiota from postbariatric surgery patients to mice, it has been demonstrated that an altered microbiota may contribute to the improved metabolic phenotype following this intervention. Thus, greater understanding of alterations of the gut microbiota, in combination with dietary patterns, may provide insights into how the gut microbiota contributes to disease progression and whether it can be exploited as a novel diagnostic, prognostic and therapeutic target.
Collapse
Affiliation(s)
- T Arora
- Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - F Bäckhed
- Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
137
|
Hutch CR, Sandoval DA. Physiological and molecular responses to bariatric surgery: markers or mechanisms underlying T2DM resolution? Ann N Y Acad Sci 2016; 1391:5-19. [DOI: 10.1111/nyas.13194] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/30/2016] [Accepted: 07/12/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Chelsea R. Hutch
- Department of Surgery; University of Michigan; Ann Arbor Michigan
| | | |
Collapse
|
138
|
Rufino-Palomares EE, Reyes-Zurita FJ, García-Salguero L, Peragón J, de la Higuera M, Lupiáñez JA. NADPH production, a growth marker, is stimulated by maslinic acid in gilthead sea bream by increased NADP-IDH and ME expression. Comp Biochem Physiol C Toxicol Pharmacol 2016; 187:32-42. [PMID: 27178358 DOI: 10.1016/j.cbpc.2016.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/24/2016] [Accepted: 05/07/2016] [Indexed: 12/14/2022]
Abstract
NADPH plays a central role in reductive biosynthesis of membrane lipids, maintenance of cell integrity, protein synthesis and redox balance maintenance. Hence, NADPH is involved in the growth and proliferation processes. In addition, it has been shown that changes in nutritional conditions produced changes in NADPH levels and growth rate. Maslinic acid (MA), a pentacyclic triterpene of natural origin, is able to stimulate NADPH production, through regulation of the two oxidative phase dehydrogenases of the pentose phosphate pathway. Our main objective was to study the effects of MA on the kinetic behaviour and on the molecular expression of two NADPH-generating systems, NADP-dependent isocitrate dehydrogenase (NADP-IDH) and malic enzyme (ME), in the liver and white muscle of gilthead sea bream (Sparus aurata). Four groups of 12g of a mean body mass were fed for 210days in a fish farm, with diets containing 0 (control), and 0.1g of MA per kg of diet. Two groups were fed ad libitum (C-AL and MA-AL) and another's two, with restricted diet of 1% of fish weight (C-R and MA-R). Results showed that MA significantly increased the main kinetic parameter of the NADPH-forming enzymes (NADP-IDH and ME). In this sense, specific activity, maximum velocity, catalytic efficiency and activity ratio values were higher in MA conditions than control groups. Moreover, these changes were observed in both feeding regimen, AL and R. Meanwhile, the Michaelis constant changed mainly in groups fed with the MA and restricted diet, these changes are related to the best substrate affinity by enzyme. Moreover, in the Western-blot result, we found that MA increased both protein levels studied, this behaviour being consistent with the regulation of the number of enzyme molecules. All results, indicate that MA, independently of the fed regimen, could potentially be a nutritional additive for fish as it improved the metabolic state of fish, as consequence of increased activity and expression of NADP-IDH and ME enzymes.
Collapse
Affiliation(s)
- Eva E Rufino-Palomares
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain.
| | - Fernando J Reyes-Zurita
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain
| | - Leticia García-Salguero
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain
| | - Juan Peragón
- Department of Experimental Biology, Biochemistry and Molecular Biology Section, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Manuel de la Higuera
- Department of Animal Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - José A Lupiáñez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain.
| |
Collapse
|
139
|
Jain AK, Sharma A, Arora S, Blomenkamp K, Jun IC, Luong R, Westrich DJ, Mittal A, Buchanan PM, Guzman MA, Long J, Neuschwander-Tetri BA, Teckman J. Preserved Gut Microbial Diversity Accompanies Upregulation of TGR5 and Hepatobiliary Transporters in Bile Acid-Treated Animals Receiving Parenteral Nutrition. JPEN J Parenter Enteral Nutr 2016; 41:198-207. [PMID: 27503935 DOI: 10.1177/0148607116661838] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Parenteral nutrition (PN) is a lifesaving therapy but is associated with gut atrophy and cholestasis. While bile acids (BAs) can modulate intestinal growth via gut receptors, the gut microbiome likely influences gut proliferation and inflammation. BAs also regulate the bile salt export pump (BSEP) involved in cholestasis. We hypothesized that the BA receptor agonist oleanolic acid (OA) regulates gut TGR5 receptor and modulates gut microbiota to prevent PN-associated injury. MATERIALS AND METHODS Neonatal piglets were randomized to approximately 2 weeks of isocaloric enteral nutrition (EN), PN, or PN + enteral OA. Serum alanine aminotransferase, bilirubin, BAs, hepatic BSEP, gut TGR5, gut, liver morphology, and fecal microbiome utilizing 16S rRNA sequencing were evaluated. Kruskal-Wallis test, pairwise Mann-Whitney U test, and multilevel logistic regression analysis were performed. RESULTS PN support resulted in gut atrophy substantially prevented by OA. The median (interquartile range) for villous/crypt ratio was as follows: EN, 3.37 (2.82-3.80); PN, 1.73 (1.54-2.27); and OA, 2.89 (2.17-3.34; P = .006). Pairwise comparisons yielded P = .002 (EN vs PN), P = .180 (EN vs OA), P = .026 (PN vs OA). OA upregulated TGR5 and BSEP without significant improvement in serum bilirubin ( P = .095). A decreased microbial diversity and shift toward proinflammatory phylum Bacteroidetes were seen with PN, which was prevented by OA. CONCLUSIONS OA prevented PN-associated gut mucosal injury, Bacterioides expansion, and the decreased microbial diversity noted with PN. This study demonstrates a novel relationship among PN-associated gut dysfunction, BA treatment, and gut microbial changes.
Collapse
Affiliation(s)
- Ajay Kumar Jain
- 1 Department of Pediatrics, Saint Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St. Louis, Missouri, USA
| | - Abhineet Sharma
- 2 Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sumit Arora
- 1 Department of Pediatrics, Saint Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St. Louis, Missouri, USA
| | - Keith Blomenkamp
- 1 Department of Pediatrics, Saint Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St. Louis, Missouri, USA
| | - Ik Chan Jun
- 1 Department of Pediatrics, Saint Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St. Louis, Missouri, USA
| | - Robert Luong
- 1 Department of Pediatrics, Saint Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St. Louis, Missouri, USA
| | - David John Westrich
- 1 Department of Pediatrics, Saint Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St. Louis, Missouri, USA
| | | | - Paula M Buchanan
- 4 Center for Outcomes Research, Saint Louis University, St. Louis, Missouri, USA
| | - Miguel A Guzman
- 5 Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - John Long
- 6 Department of Comparative Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | | | - Jeffery Teckman
- 1 Department of Pediatrics, Saint Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St. Louis, Missouri, USA
| |
Collapse
|
140
|
Taoka H, Yokoyama Y, Morimoto K, Kitamura N, Tanigaki T, Takashina Y, Tsubota K, Watanabe M. Role of bile acids in the regulation of the metabolic pathways. World J Diabetes 2016; 7:260-270. [PMID: 27433295 PMCID: PMC4937164 DOI: 10.4239/wjd.v7.i13.260] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/24/2015] [Accepted: 05/27/2016] [Indexed: 02/05/2023] Open
Abstract
Recent studies have revealed that bile acids (BAs) are not only facilitators of dietary lipid absorption but also important signaling molecules exerting multiple physiological functions. Some major signaling pathways involving the nuclear BAs receptor farnesoid X receptor and the G protein-coupled BAs receptor TGR5/M-BAR have been identified to be the targets of BAs. BAs regulate their own homeostasis via signaling pathways. BAs also affect diverse metabolic pathways including glucose metabolism, lipid metabolism and energy expenditure. This paper suggests the mechanism of controlling metabolism via BA signaling and demonstrates that BA signaling is an attractive therapeutic target of the metabolic syndrome.
Collapse
|
141
|
Özcan MM, Matthäus B. A review: benefit and bioactive properties of olive (Olea europaea L.) leaves. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2726-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
142
|
He K, Hu Y, Ma H, Zou Z, Xiao Y, Yang Y, Feng M, Li X, Ye X. Rhizoma Coptidis alkaloids alleviate hyperlipidemia in B6 mice by modulating gut microbiota and bile acid pathways. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1696-709. [PMID: 27287254 DOI: 10.1016/j.bbadis.2016.06.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/25/2016] [Accepted: 06/06/2016] [Indexed: 12/13/2022]
Abstract
It is hypothesized that Rhizoma Coptidis (RC) alkaloids exert their hypolipidemic effects primarily by targeting the gastrointestinal tract and liver. Thus, this study was conducted to evaluate the antihyperlipidemic mechanisms of RC alkaloids (at a daily dose of 140mg/kg for 35days) in high-fat and high-cholesterol induced hyperlipidemic B6 mice. After treatment, serum lipid parameters were determined, the expression of lipid metabolism related genes and pathways such as the sterol regulatory element binding proteins (SREBPs) and bile acid signaling in mice were also investigated. Meanwhile, Illumina sequencing was used to investigate the differences in gut microbiota of B6 mice. The results indicated that RC alkaloids reduced the body weight gain and serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), total bile acids (TBA) and lipopolysaccharide of B6 mice. Liver fat deposition and epididymal adipose cell size were also deceased in therapy group. RC alkaloids feeding significantly promoted the abundance of Sporobacter termitidis, Alcaligenes faecalis, Akkermansia muciniphila in the gut of mice, whereas, the abundance of Escherichia coli, Desulfovibrio C21_c20, Parabacteroides distasonis was suppressed. The observed antihyperlipidemic effects of RC alkaloids can also be attributed to their action as agonists of FXR and TGR5, activators for SREBP2, LDLR, UCP2 and CYP7A1, inhibitors of HMGCR, TXNIP, TLR4 and JNK. Therefore, this study expands current knowledge on hypolipidemic mechanisms of RC alkaloids and presents new evidence supporting a key role for RC alkaloids as regulators of lipid homeostasis by modulation gut microbiota and hepatic lipid metabolism.
Collapse
Affiliation(s)
- Kai He
- Chongqing Productivity Promotion Center for the Modernization of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China; Department of Clinical Laboratory, Hunan University of Medicine, Hunan 418000, China
| | - Yinran Hu
- Chongqing Productivity Promotion Center for the Modernization of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Hang Ma
- Chongqing Productivity Promotion Center for the Modernization of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Zongyao Zou
- Chongqing Productivity Promotion Center for the Modernization of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Yubo Xiao
- Chongqing Productivity Promotion Center for the Modernization of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Yong Yang
- Department of Clinical Laboratory, Hunan University of Medicine, Hunan 418000, China
| | - Min Feng
- Chongqing Productivity Promotion Center for the Modernization of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Xuegang Li
- Chongqing Productivity Promotion Center for the Modernization of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Xiaoli Ye
- School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
143
|
Silva FSG, Oliveira PJ, Duarte MF. Oleanolic, Ursolic, and Betulinic Acids as Food Supplements or Pharmaceutical Agents for Type 2 Diabetes: Promise or Illusion? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2991-3008. [PMID: 27012451 DOI: 10.1021/acs.jafc.5b06021] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Oleanolic (OA), ursolic (UA), and betulinic (BA) acids are three triterpenic acids (TAs) with potential effects for treatment of type 2 diabetes (T2DM). Mechanistic studies showed that these TAs act as hypoglycemic and antiobesity agents mainly through (i) reducing the absorption of glucose; (ii) decreasing endogenous glucose production; (iii) increasing insulin sensitivity; (iv) improving lipid homeostasis; and (v) promoting body weight regulation. Besides these promising beneficial effects, it is believed that OA, UA, and BA protect against diabetes-related comorbidities due to their antiatherogenic, anti-inflammatory, and antioxidant properties. We also highlight the protective effect of OA, UA, and BA against oxidative damage, which may be very relevant for the treatment and/or prevention of T2DM. In the present review, we provide an integrative description of the antidiabetic properties of OA, UA, and BA, evaluating the potential use of these TAs as food supplements or pharmaceutical agents to prevent and/or treat T2DM.
Collapse
Affiliation(s)
- Filomena S G Silva
- Centro de Biotecnologia Agrı́cola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja) , Apartado 6158, 7801-908 Beja, Portugal
| | - Paulo J Oliveira
- CNC, Center for Neuroscience and Cellular Biology, UC-Biotech Building, Biocant Park, University of Coimbra , 3060-107 Cantanhede, Portugal
| | - Maria F Duarte
- Centro de Biotecnologia Agrı́cola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja) , Apartado 6158, 7801-908 Beja, Portugal
| |
Collapse
|
144
|
Jafri L, Saleem S, Calderwood D, Gillespie A, Mirza B, Green BD. Naturally-occurring TGR5 agonists modulating glucagon-like peptide-1 biosynthesis and secretion. Peptides 2016; 78:51-8. [PMID: 26820940 DOI: 10.1016/j.peptides.2016.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/14/2016] [Accepted: 01/21/2016] [Indexed: 10/22/2022]
Abstract
Selective GLP-1 secretagogues represent a novel potential therapy for type 2 diabetes mellitus. This study examined the GLP-1 secretory activity of the ethnomedicinal plant, Fagonia cretica, which is postulated to possess anti-diabetic activity. After extraction and fractionation extracts and purified compounds were tested for GLP-1 and GIP secretory activity in pGIP/neo STC-1 cells. Intracellular levels of incretin hormones and their gene expression were also determined. Crude F. cretica extracts stimulated both GLP-1 and GIP secretion, increased cellular hormone content, and upregulated gene expression of proglucagon, GIP and prohormone convertase. However, ethyl acetate partitioning significantly enriched GLP-1 secretory activity and this fraction underwent bioactivity-guided fractionation. Three isolated compounds were potent and selective GLP-1 secretagogues: quinovic acid (QA) and two QA derivatives, QA-3β-O-β-D-glycopyranoside and QA-3β-O-β-D-glucopyranosyl-(28→1)-β-D-glucopyranosyl ester. All QA compounds activated the TGR5 receptor and increased intracellular incretin levels and gene expression. QA derivatives were more potent GLP-1 secretagogues than QA. This is the first time that QA and its naturally-occurring derivatives have been shown to activate TGR5 and stimulate GLP-1 secretion. These data provide a plausible mechanism for the ethnomedicinal use of F. cretica and may assist in the ongoing development of selective GLP-1 agonists.
Collapse
Affiliation(s)
- Laila Jafri
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan; Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Samreen Saleem
- University Institute of Biochemistry & Biotechnology (UIBB), PMAS-Arid Agriculture University Rawalpindi, Murree Road, Rawalpindi, Pakistan; Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Danielle Calderwood
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK.
| | - Anna Gillespie
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK.
| | - Bushra Mirza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Brian D Green
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK.
| |
Collapse
|
145
|
Vettorazzi JF, Ribeiro RA, Borck PC, Branco RCS, Soriano S, Merino B, Boschero AC, Nadal A, Quesada I, Carneiro EM. The bile acid TUDCA increases glucose-induced insulin secretion via the cAMP/PKA pathway in pancreatic beta cells. Metabolism 2016; 65:54-63. [PMID: 26892516 DOI: 10.1016/j.metabol.2015.10.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 09/20/2015] [Accepted: 10/12/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE While bile acids are important for the digestion process, they also act as signaling molecules in many tissues, including the endocrine pancreas, which expresses specific bile acid receptors that regulate several cell functions. In this study, we investigated the effects of the conjugated bile acid TUDCA on glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. METHODS Pancreatic islets were isolated from 90-day-old male mice. Insulin secretion was measured by radioimmunoassay, protein phosphorylation by western blot, Ca(2+) signals by fluorescence microscopy and ATP-dependent K(+) (KATP) channels by electrophysiology. RESULTS TUDCA dose-dependently increased GSIS in fresh islets at stimulatory glucose concentrations but remained without effect at low glucose levels. This effect was not associated with changes in glucose metabolism, Ca(2+) signals or KATP channel activity; however, it was lost in the presence of a cAMP competitor or a PKA inhibitor. Additionally, PKA and CREB phosphorylation were observed after 1-hour incubation with TUDCA. The potentiation of GSIS was blunted by the Gα stimulatory, G protein subunit-specific inhibitor NF449 and mimicked by the specific TGR5 agonist INT-777, pointing to the involvement of the bile acid G protein-coupled receptor TGR5. CONCLUSION Our data indicate that TUDCA potentiates GSIS through the cAMP/PKA pathway.
Collapse
Affiliation(s)
- Jean Franciesco Vettorazzi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil; Institute of Bioengineering and the Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Miguel Hernández University, 03202, Elche, Spain
| | - Rosane Aparecida Ribeiro
- Integrated Laboratory of Morphology, Centre for Ecology and Socio-Environmental - NUPEM, Federal University of Rio de Janeiro (UFRJ), Macaé, Rio de Janeiro, Brazil
| | - Patricia Cristine Borck
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil
| | - Renato Chaves Souto Branco
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil
| | - Sergi Soriano
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03080 Alicante, Spain
| | - Beatriz Merino
- Institute of Bioengineering and the Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Miguel Hernández University, 03202, Elche, Spain
| | - Antônio Carlos Boschero
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil
| | - Angel Nadal
- Institute of Bioengineering and the Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Miguel Hernández University, 03202, Elche, Spain
| | - Ivan Quesada
- Institute of Bioengineering and the Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Miguel Hernández University, 03202, Elche, Spain
| | - Everardo Magalhães Carneiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
146
|
Xu Y. Recent Progress on Bile Acid Receptor Modulators for Treatment of Metabolic Diseases. J Med Chem 2016; 59:6553-79. [DOI: 10.1021/acs.jmedchem.5b00342] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yanping Xu
- Lilly Research
Laboratories, Eli Lilly and Company, Lilly Corporate Center, DC 1910, Indianapolis, Indiana 46285, United States
| |
Collapse
|
147
|
SAR studies on FXR modulators led to the discovery of the first combined FXR antagonistic/TGR5 agonistic compound. Future Med Chem 2016; 8:133-48. [PMID: 26824277 DOI: 10.4155/fmc.15.178] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bile acids can serve as signaling molecules by activating the nuclear receptor FXR and the G-protein-coupled receptor TGR5 and both bile acid receptors are prominent experimental drug targets. Results/methodology: In this study we optimized the fatty acid mimetic compound pirinixic acid to a new scaffold with the aim to develop novel FXR modulatory compounds. After a multistep structure-activity optimization process, we discovered FXR agonistic compounds and the first dual FXR antagonistic and TGR5 agonistic compound 79a. CONCLUSION With this novel dual activity profile on both bile acid receptors 79a might be a valuable pharmalogical tool to further study the bile acid signaling network.
Collapse
|
148
|
|
149
|
Chen Z, Ning M, Zou Q, Cao H, Ye Y, Leng Y, Shen J. Discovery and Structure–Activity Relationship Study of 4-Phenoxythiazol-5-carboxamides as Highly Potent TGR5 Agonists. Chem Pharm Bull (Tokyo) 2016; 64:326-39. [DOI: 10.1248/cpb.c15-00905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Zhixiang Chen
- College of Pharmacy, Nanchang University
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences
| | - Mengmeng Ning
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences
| | - Qingan Zou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences
| | - Hua Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences
| | - Yangliang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences
| | - Jianhua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences
| |
Collapse
|
150
|
Dua S, Bhat Z, Kumar S. Effect of oleuropein on the oxidative stability and storage quality of Tabaq-Maz, fried mutton ribs. FOOD BIOSCI 2015. [DOI: 10.1016/j.fbio.2015.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|