101
|
Open-porous magnesium-based scaffolds withstand in vitro corrosion under cyclic loading: A mechanistic study. Bioact Mater 2023; 19:406-417. [PMID: 35574056 PMCID: PMC9062748 DOI: 10.1016/j.bioactmat.2022.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 01/05/2023] Open
Abstract
The successful application of magnesium (Mg) alloys as biodegradable bone substitutes for critical-sized defects may be comprised by their high degradation rate resulting in a loss of mechanical integrity. This study investigates the degradation pattern of an open-porous fluoride-coated Mg-based scaffold immersed in circulating Hanks' Balanced Salt Solution (HBSS) with and without in situ cyclic compression (30 N/1 Hz). The changes in morphological and mechanical properties have been studied by combining in situ high-resolution X-ray computed tomography mechanics and digital volume correlation. Although in situ cyclic compression induced acceleration of the corrosion rate, probably due to local disruption of the coating layer where fatigue microcracks were formed, no critical failures in the overall scaffold were observed, indicating that the mechanical integrity of the Mg scaffolds was preserved. Structural changes, due to the accumulation of corrosion debris between the scaffold fibres, resulted in a significant increase (p < 0.05) in the material volume fraction from 0.52 ± 0.07 to 0.47 ± 0.03 after 14 days of corrosion. However, despite an increase in fibre material loss, the accumulated corrosion products appear to have led to an increase in Young's modulus after 14 days as well as lower third principal strain (εp3) accumulation (−91000 ± 6361 με and −60093 ± 2414 με after 2 and 14 days, respectively). Therefore, this innovative Mg scaffold design and composition provide a bone replacement, capable of sustaining mechanical loads in situ during the postoperative phase allowing new bone formation to be initially supported as the scaffold resorbs. First report on in vitro cyclic loading of MgF2 coated open-porous Mg scaffolds in HBSS simulating 2–3 months in humans. Fluoride-coating slows down corrosion under cyclic loading in vitro. Entangled scaffold structure accumulates local corrosion debris which keeps the mechanical integrity over 14 days in vitro.
Collapse
|
102
|
He N, Li J, Li W, Lin X, Fu Q, Peng X, Jin W, Yu Z, Chu PK. Poly(lactic acid) coating with a silane transition layer on MgAl LDH-coated biomedical Mg alloys for enhanced corrosion and cytocompatibility. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
103
|
Imshinetskiy I, Kashepa V, Nadaraia K, Mashtalyar D, Suchkov S, Zadorozhny P, Ustinov A, Sinebryukhov S, Gnedenkov S. PEO Coatings Modified with Halloysite Nanotubes: Composition, Properties, and Release Performance. Int J Mol Sci 2022; 24:ijms24010305. [PMID: 36613748 PMCID: PMC9820610 DOI: 10.3390/ijms24010305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
In this work, the properties of the coatings formed on the Mg-Mn-Ce alloy by plasma electrolytic oxidation (PEO) in electrolytes containing halloysite nanotubes (HNTs) were investigated. The incorporation of halloysite nanotubes into the PEO coatings improved their mechanical characteristics, increased thickness, and corrosion resistance. The studied layers reduced corrosion current density by more than two times in comparison with the base PEO layer without HNTs (from 1.1 × 10-7 A/cm2 to 4.9 × 10-8 A/cm2). The presence of halloysite nanotubes and products of their dihydroxylation that were formed under the PEO conditions had a positive impact on the microhardness of the obtained layers (this parameter increased from 4.5 ± 0.4 GPa to 7.3 ± 0.5 GPa). In comparison with the base PEO layer, coatings containing halloysite nanotubes exhibited sustained release and higher adsorption capacity regarding caffeine.
Collapse
|
104
|
Qiu L, Zhang C, Yang X, Peng F, Huang Y, He Y. A SiO 2 layer on PEO-treated Mg for enhanced corrosion resistance and bone regeneration. Front Bioeng Biotechnol 2022; 10:1053944. [PMID: 36619395 PMCID: PMC9816664 DOI: 10.3389/fbioe.2022.1053944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Magnesium (Mg) is a promising biodegradable metal for orthopedic applications, and plasma electrolytic oxidation (PEO) has been widely studied as a corrosion protection coating on Mg-based implants. However, the porous structures and easily formed cracks in fluid are disadvantageous for long-term corrosion protection. In this study, a SiO2 layer was deposited on PEO-treated Mg to inhibit the formation of cracks on the PEO layer and prevent the permeation of corrosive fluid. The SiO2 layer did not alter the surface morphology of the PEO layer but considerably enhanced its corrosion resistance. The in vitro culture of MC3T3-E1 cells demonstrated the good cytocompatibility and osteogenic induction ability of SiO2-coated PEO-treated Mg, which could be attributed to Mg and Si ions released from the coating. The coating also favored the angiogenesis behaviors of HUVEC. Furthermore, with the continuous release of Mg and Si ions, the as-prepared implant showed a superior osseointegration ability in a rat bone implantation model. In summary, this newly designed Mg-based implant shows promising potential for orthopedic applications.
Collapse
Affiliation(s)
- Longhai Qiu
- Department of Traumatology and Orthopaedic Surgery, Institute of Orthopaedics, Huizhou Central People’s Hospital, Huizhou, China,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Chi Zhang
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaoming Yang
- Department of Orthopaedics, The Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Feng Peng
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuliang Huang
- Department of Traumatology and Orthopaedic Surgery, Institute of Orthopaedics, Huizhou Central People’s Hospital, Huizhou, China,*Correspondence: Yuliang Huang, ; Yue He,
| | - Yue He
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China,*Correspondence: Yuliang Huang, ; Yue He,
| |
Collapse
|
105
|
Ali F, Kalva SN, Koç M. Additive Manufacturing of Polymer/Mg-Based Composites for Porous Tissue Scaffolds. Polymers (Basel) 2022; 14:5460. [PMID: 36559829 PMCID: PMC9783552 DOI: 10.3390/polym14245460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Due to their commercial availability, superior processability, and biocompatibility, polymers are frequently used to build three-dimensional (3D) porous scaffolds. The main issues limiting the widespread clinical use of monophasic polymer scaffolds in the bone healing process are their inadequate mechanical strength and inappropriate biodegradation. Due to their mechanical strength and biocompatibility, metal-based scaffolds have been used for various bone regenerative applications. However, due to the mismatch in mechanical properties and nondegradability, they lack integration with the host tissues, resulting in the production of fiber tissue and the release of toxic ions, posing a risk to the durability of scaffolds. Due to their natural degradability in the body, Mg and its alloys increasingly attract attention for orthopedic and cardiovascular applications. Incorporating Mg micro-nano-scale particles into biodegradable polymers dramatically improves scaffolds and implants' strength, biocompatibility, and biodegradability. Polymer biodegradable implants also improve the quality of life, particularly for an aging society, by eliminating the secondary surgery often needed to remove permanent implants and significantly reducing healthcare costs. This paper reviews the suitability of various biodegradable polymer/Mg composites for bone tissue scaffolds and then summarizes the current status and challenges of polymer/magnesium composite scaffolds. In addition, this paper reviews the potential use of 3D printing, which has a unique design capability for developing complex structures with fewer material waste at a faster rate, and with a personalized and on-site fabrication possibility.
Collapse
Affiliation(s)
- Fawad Ali
- Division of Sustainable Development, College of Science and Engineering, Hamad bin Khalifa University, Qatar Foundation, Education City, Doha P.O. Box 34110, Qatar
| | | | - Muammer Koç
- Division of Sustainable Development, College of Science and Engineering, Hamad bin Khalifa University, Qatar Foundation, Education City, Doha P.O. Box 34110, Qatar
| |
Collapse
|
106
|
Antoniac I, Manescu (Paltanea) V, Paltanea G, Antoniac A, Nemoianu IV, Petrescu MI, Dura H, Bodog AD. Additive Manufactured Magnesium-Based Scaffolds for Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8693. [PMID: 36500191 PMCID: PMC9739563 DOI: 10.3390/ma15238693] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Additive manufacturing (AM) is an important technology that led to a high evolution in the manufacture of personalized implants adapted to the anatomical requirements of patients. Due to a worldwide graft shortage, synthetic scaffolds must be developed. Regarding this aspect, biodegradable materials such as magnesium and its alloys are a possible solution because the second surgery for implant removal is eliminated. Magnesium (Mg) exhibits mechanical properties, which are similar to human bone, biodegradability in human fluids, high biocompatibility, and increased ability to stimulate new bone formation. A current research trend consists of Mg-based scaffold design and manufacture using AM technologies. This review presents the importance of biodegradable implants in treating bone defects, the most used AM methods to produce Mg scaffolds based on powder metallurgy, AM-manufactured implants properties, and in vitro and in vivo analysis. Scaffold properties such as biodegradation, densification, mechanical properties, microstructure, and biocompatibility are presented with examples extracted from the recent literature. The challenges for AM-produced Mg implants by taking into account the available literature are also discussed.
Collapse
Affiliation(s)
- Iulian Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Veronica Manescu (Paltanea)
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
- Faculty of Electrical Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Gheorghe Paltanea
- Faculty of Electrical Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Iosif Vasile Nemoianu
- Faculty of Electrical Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Mircea Ionut Petrescu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Horatiu Dura
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Alin Danut Bodog
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania
| |
Collapse
|
107
|
Sadeghzade S, Liu J, Wang H, Li X, Cao J, Cao H, Tang B, Yuan H. Recent advances on bioactive baghdadite ceramic for bone tissue engineering applications: 20 years of research and innovation (a review). Mater Today Bio 2022; 17:100473. [PMID: 36345364 PMCID: PMC9636580 DOI: 10.1016/j.mtbio.2022.100473] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Various artificial bone graft substitutes based on ceramics have been developed over the last 20 years. Among them, calcium-silicate-based ceramics, which are osteoconductive and can attach directly to biological organs, have received great attention for bone tissue engineering applications. However, the degradation rate of calcium-silicate and bone formation is often out of balance, resulting in stress shielding (osteopenia). A new strategy to improve the drawbacks of these ceramics is incorporating trace elements such as Zn, Mg, and Zr into their lattice structures, enhancing their physical and biological properties. Recently, baghdadite (Ca3ZrSi2O9) ceramic, one of the most appealing calcium-silicate-based ceramics, has demonstrated high bioactivity, biocompatibility, biodegradability, and cell interaction. Because of its physical, mechanical, and biological properties and ability to be shaped using various fabrication techniques, baghdadite has found high potential in various biomedical applications such as coatings, fillers, cement, scaffolds, and drug delivery systems. Undoubtedly, there is a high potential for this newly developed ceramic to contribute significantly to therapies to provide a tremendous clinical outcome. This review paper aims to summarize and discuss the most relevant studies performed on baghdadite-based ceramics and composites by focusing on their behavior in vivo and in vitro.
Collapse
|
108
|
Zheng Z, Liu P, Zhang X, Jingguo xin, Yongjie wang, Zou X, Mei X, Zhang S, Zhang S. Strategies to improve bioactive and antibacterial properties of polyetheretherketone (PEEK) for use as orthopedic implants. Mater Today Bio 2022; 16:100402. [PMID: 36105676 PMCID: PMC9466655 DOI: 10.1016/j.mtbio.2022.100402] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/26/2022] Open
Abstract
Polyetheretherketone (PEEK) has gradually become the mainstream material for preparing orthopedic implants due to its similar elastic modulus to human bone, high strength, excellent wear resistance, radiolucency, and biocompatibility. Since the 1990s, PEEK has increasingly been used in orthopedics. Yet, the widespread application of PEEK is limited by its bio-inertness, hydrophobicity, and susceptibility to microbial infections. Further enhancing the osteogenic properties of PEEK-based implants remains a difficult task. This article reviews some modification methods of PEEK in the last five years, including surface modification of PEEK or incorporating materials into the PEEK matrix. For surface modification, PEEK can be modified by chemical treatment, physical treatment, or surface coating with bioactive substances. For PEEK composite material, adding bioactive filler into PEEK through the melting blending method or 3D printing technology can increase the biological activity of PEEK. In addition, some modification methods such as sulfonation treatment of PEEK or grafting antibacterial substances on PEEK can enhance the antibacterial performance of PEEK. These strategies aim to improve the bioactive and antibacterial properties of the modified PEEK. The researchers believe that these modifications could provide valuable guidance on the future design of PEEK orthopedic implants.
Collapse
|
109
|
Zong J, He Q, Liu Y, Qiu M, Wu J, Hu B. Advances in the development of biodegradable coronary stents: A translational perspective. Mater Today Bio 2022; 16:100368. [PMID: 35937578 PMCID: PMC9352968 DOI: 10.1016/j.mtbio.2022.100368] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/25/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Implantation of cardiovascular stents is an important therapeutic method to treat coronary artery diseases. Bare-metal and drug-eluting stents show promising clinical outcomes, however, their permanent presence may create complications. In recent years, numerous preclinical and clinical trials have evaluated the properties of bioresorbable stents, including polymer and magnesium-based stents. Three-dimensional (3D) printed-shape-memory polymeric materials enable the self-deployment of stents and provide a novel approach for individualized treatment. Novel bioresorbable metallic stents such as iron- and zinc-based stents have also been investigated and refined. However, the development of novel bioresorbable stents accompanied by clinical translation remains time-consuming and challenging. This review comprehensively summarizes the development of bioresorbable stents based on their preclinical/clinical trials and highlights translational research as well as novel technologies for stents (e.g., bioresorbable electronic stents integrated with biosensors). These findings are expected to inspire the design of novel stents and optimization approaches to improve the efficacy of treatments for cardiovascular diseases. Bioresorbable stents can overcome the limitations of non-degradable stents. 3D printing of shape-memory polymeric stents can lead to better clinical outcomes. Advances in Mg-, Fe- and Zn-based stents from a translational perspective. Electronic stents integrated with biosensors can covey stent status in real time. Development in the assessment of stent performance in vivo.
Collapse
Affiliation(s)
- Jiabin Zong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuxiao Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Min Qiu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiehong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author.
| |
Collapse
|
110
|
Liu J, Tan Y, Shen E, Liu B, Tian Y, Liang L, Yan X, Wu H. Highly water-stable bimetallic organic framework MgCu-MOF74 for inhibiting bacterial infection and promoting bone regeneration. Biomed Mater 2022; 17. [PMID: 36368050 DOI: 10.1088/1748-605x/aca24c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022]
Abstract
As a typical metal-organic framework (MOF), Mg-MOF74 can release biocompatible Mg2+when the framework is degraded, and it has the potential to be used as filler in the field of bone tissue engineering. However, Mg-MOF74 has poor stability in aqueous environment and limited antibacterial ability, which limit its further development and applications. In this work, MgCu-MOF74 particles with different Cu content were synthesized through a facile one-step hydrothermal method. The physicochemical properties and water stability of the synthesized powders were characterized. The osteogenic potential of the MgCu-MOF74 particles on human osteogenic sarcoma cells (SaOS-2) was evaluated. The hybrid MgCu-MOF74 exhibited favorable water stability. These results indicated that MgCu-MOF74 enhanced cellular viability, alkaline phosphatase levels, collagen (COL) synthesis and osteogenesis-related gene expression. Moreover, the samples doped with Cu2+were more sensitive to the acidic microenvironment produced by bacteria, and exhibited stronger antibacterial ability than Mg-MOF74. In conclusion, MgCu-MOF-74 with good water stability, osteogenic ability and antibacterial ability, which could be attributed to the doping of Cu2+. Hence, MgCu-MOF74 shows great potential as a novel medical bio-functional fillers for the treatment of bone defects.
Collapse
Affiliation(s)
- Jiamin Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Yanni Tan
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Erdong Shen
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China.,Department of Oncology, Yueyang Central Hospital, Yueyang 414000, People's Republic of China
| | - Bo Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| | - Yingtao Tian
- Department of Engineering, Lancaster University, Bailrigg, Lancaster LA1 4YW, United Kingdom
| | - Luxin Liang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| | - Xinxin Yan
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan 430060, People's Republic of China
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| |
Collapse
|
111
|
Li X, Dai B, Guo J, Zhu Y, Xu J, Xu S, Yao Z, Chang L, Li Y, He X, Chow DHK, Zhang S, Yao H, Tong W, Ngai T, Qin L. Biosynthesized Bandages Carrying Magnesium Oxide Nanoparticles Induce Cortical Bone Formation by Modulating Endogenous Periosteal Cells. ACS NANO 2022; 16:18071-18089. [PMID: 36108267 DOI: 10.1021/acsnano.2c04747] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bone grafting is frequently conducted to treat bone defects caused by trauma and tumor removal, yet with significant medical and socioeconomic burdens. Space-occupying bone substitutes remain challenging in the control of osteointegration, and meanwhile activation of endogenous periosteal cells by using non-space-occupying implants to promote new bone formation becomes another therapeutic strategy. Here, we fabricated a magnesium-based artificial bandage with optimal micropatterns for activating periosteum-associated biomineralization. Collagen was self-assembled on the surface of magnesium oxide nanoparticles embedded electrospun fibrous membranes as a hierarchical bandage structure to facilitate the integration with periosteum in situ. After the implantation on the surface of cortical bone in vivo, magnesium ions were released to generate a pro-osteogenic immune microenvironment by activating the endogenous periosteal macrophages into M2 phenotype and, meanwhile, promote blood vessel formation and neurite outgrowth. In a cortical bone defect model, magnesium-based artificial bandage guided the surrounding newly formed bone tissue to cover the defected area. Taken together, our study suggests that the strategy of stimulating bone formation can be achieved with magnesium delivery to periosteum in situ and the proposed periosteal bandages act as a bioactive media for accelerating bone healing.
Collapse
Affiliation(s)
- Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Yuwei Zhu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Shunxiang Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Zhi Yao
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Liang Chang
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Ye Li
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Xuan He
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Shian Zhang
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Hao Yao
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| |
Collapse
|
112
|
Effect of pH fluctuations on the biodegradability of nanocomposite Mg-alloy in simulated bodily fluids. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02544-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractAccording to the National Institute of Health, the biodegradability, non-toxic nature, and remarkable natural and mechanical properties of magnesium and its components make them desirable choices for use in the production of supplies for biomedical implantation. Simulated bodily fluid (SBF) is used as a standard electrolyte for in vitro corrosion research. Each SBF module's independent and synergistic corrosion effects are studied in this study. Artificial pH variations increase degradation, according to the results. This experiment examined the Mg corrosion submerged in a SBF solution. The effect of pH changes on the rate of corrosion of Mg immersed in standard SBF solution was investigated. According to the previously published study, the corrosion process of Mg has been confirmed by scanning electron microscopy observations of damaged surface morphology. Because of these investigations, pH 7 was selected as the pH for bodily fluids since it is neutral.
Collapse
|
113
|
Shan Z, Xie X, Wu X, Zhuang S, Zhang C. Development of degradable magnesium-based metal implants and their function in promoting bone metabolism (A review). J Orthop Translat 2022; 36:184-193. [PMID: 36263386 PMCID: PMC9552026 DOI: 10.1016/j.jot.2022.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/05/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Background Use of degradable magnesium (Mg)-based metal implants in orthopaedic surgeries can avoid drawbacks associated with subsequent removal of the non-degradable metallic implants, reducing cost and trauma of patients. Although Mg has been applied in the clinic for orthopaedic treatment, the use of Mg-based metal implants is largely in the research phase. But its application is potentially beneficial in this context as it has been shown that Mg can promote osteogenesis and inhibit osteoclast activity. Methods A systematic literature search about “degradable magnesium (Mg)-based metal implants” was performed in PubMed and Web of Science. Meanwhile, relevant findings have been reviewed and quoted. Results In this review, we summarize the latest developments in Mg-based metal implants and their role in bone regeneration. We also review the various molecular mechanisms by which Mg ions regulate bone metabolic processes, including osteogenesis, osteoclast activity, angiogenesis, immunity, and neurology. Finally, we discuss the remaining research challenges and opportunities for Mg-based implants and their applications. Conclusion Currently, establishment of the in vitro and in vivo biological evaluation systems and phenotypic modification improvement of Mg-based implants are still needed. Clarifying the functions of Mg-based metal implants in promoting bone metabolism is beneficial for their clinical application. The Translational potential of this article All current reviews on Mg-based implants are mainly concerned with the improvement of Mg alloy properties or the progress of applications. However, there are few reviews that provides a systematic narrative on the effect of Mg on bone metabolism. This review summarized the latest developments in Mg-based metal implants and various molecular mechanisms of Mg ions regulating bone metabolism, which is beneficial to further promote the translation of Mg based implants in the clinic and is able to provide a strong basis for the clinical application of Mg based implants.
Collapse
Affiliation(s)
- Zhengming Shan
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Xinhui Xie
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- The Department of Orthopaedics, ZhongDa Hospital, Nanjing, Jiangsu, 210009, China
- Corresponding author. The Department of Orthopaedics, ZhongDa hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
| | - Xiaotao Wu
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- The Department of Orthopaedics, ZhongDa Hospital, Nanjing, Jiangsu, 210009, China
- Corresponding author. The Department of Orthopaedics, ZhongDa hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
| | - Suyang Zhuang
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- The Department of Orthopaedics, ZhongDa Hospital, Nanjing, Jiangsu, 210009, China
| | - Cong Zhang
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- The Department of Orthopaedics, ZhongDa Hospital, Nanjing, Jiangsu, 210009, China
| |
Collapse
|
114
|
Kulyasova OB, Khudododova GD, Dyakonov GS, Zheng Y, Valiev RZ. Effect of Microstructure Refinement on the Corrosion Behavior of the Bioresorbable Mg-1Zn-0.2Ca and Mg-1Ca Alloys. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6749. [PMID: 36234091 PMCID: PMC9570597 DOI: 10.3390/ma15196749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
This paper presents a comprehensive study of the effect of the processing by high-pressure torsion (HPT) on the corrosion behavior in Ringer's solution for two popular bioresorbable magnesium alloys-Mg-1Ca and Mg-1Zn-0.2Ca. Three states were studied for each alloy-the initial homogenized state, the as-HPT-processed state and the state after subsequent annealing at 250 and 300 °C. It is shown that HPT processing results in a very strong grain refinement in both alloys down to a mean grain size of about 210 nm for the Mg-1Ca alloy and 90 nm for the Mg-1Zn-0.2Ca alloy, but their corrosion resistance values differ significantly (by an order of magnitude). The conducted precision scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction studies demonstrate that such a difference in the corrosion behavior is conditioned by a difference in the morphology and origin of the nano-sized particles of second phases, as well as by a change in the electrochemical properties of the "particle-α-Mg" pair. The obtained results are discussed from the perspective of the innovative applications of biodegradable Mg alloys for the manufacture of advanced medical implants and products.
Collapse
Affiliation(s)
- Olga B. Kulyasova
- Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, 12 K. Marx Str., 450008 Ufa, Russia
- Laboratory of Multifunctional Materials, Bashkir State University, 32 Zaki Validi Str., 450076 Ufa, Russia
| | - Ganjina D. Khudododova
- Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, 12 K. Marx Str., 450008 Ufa, Russia
- Laboratory of Multifunctional Materials, Bashkir State University, 32 Zaki Validi Str., 450076 Ufa, Russia
| | - Grigory S. Dyakonov
- Laboratory of Multifunctional Materials, Bashkir State University, 32 Zaki Validi Str., 450076 Ufa, Russia
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, 5 Yi-He-Yuan Road, Hai-Dian District, Beijing 100871, China
| | - Ruslan Z. Valiev
- Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, 12 K. Marx Str., 450008 Ufa, Russia
- Laboratory of Multifunctional Materials, Bashkir State University, 32 Zaki Validi Str., 450076 Ufa, Russia
| |
Collapse
|
115
|
Zhou Z, Chen X, Hu X, Li S, Lv M, Xie Y, Yao H, Wang H, Bai X. Influence of Heat Treatment on Microstructure, Mechanical Property, and Corrosion Behavior of Cold-Sprayed Zn Coating on Mg Alloy Substrate. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6721. [PMID: 36234064 PMCID: PMC9571842 DOI: 10.3390/ma15196721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/18/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
The influence of post-process heat treatment on cold-sprayed Zn coatings on the Mg alloy substrate was investigated at different temperatures (150, 250, and 350 °C) and times (2, 8, and 16 h). Phase, microstructure, microhardness, and tensile strength of Zn coatings were analyzed before and after heat treatment. Corrosion properties of Zn coatings after heat treatment were investigated in simulated body fluid by using potentiodynamic polarization and immersion testing. Results show that although the heat treatment presented little effect on phase compositions of Zn coatings, the full width at half maxima of the Zn phase decreased with the heat temperature and time. Zn coatings presented comparable microstructures before and after heat treatment in addition to the inter-diffusion layers, and the inter-diffusion layer was dependent on the heat temperature and time. Both the thickness and the microhardness of inter-diffusion layers were increased with the heat temperature and time, with the largest thickness of 704.1 ± 32.4 μm and the largest microhardness of 323.7 ± 104.1 HV0.025 at 350 °C for 2 h. The microhardness of Zn coating was significantly decreased from 70.8 ± 5.6 HV0.025 to 43.9 ± 12.5 HV0.025, with the heat temperature from the ambient temperature to 350 °C, and was slightly decreased with the heat time at 250 °C. Although the tensile strength of Zn coating was slightly increased by heat treatment, with the highest value of 40.9 ± 3.9 MPa at 150 °C for 2 h, excessive heat temperature and time were detrimental to the tensile strength, with the lowest value of 6.6 ± 1.6 MPa at 350 °C for 2 h. The heat temperature and heat time presented limited effects on the corrosion current and corrosion ratio of the Zn coatings, and Zn coatings before and after heat treatment effectively hindered the simulated body fluid from penetrating into the substrate. The corrosion behavior of Zn coatings was discussed in terms of corrosion products and microstructures after immersion.
Collapse
Affiliation(s)
- Zhenpeng Zhou
- Jiangxi Province Engineering Research Center of Materials Surface Enhancing & Remanufacturing, School of Materials Science and Engineering, Jiujiang University, Jiujiang 332005, China
| | - Xiao Chen
- Xinyu Key Laboratory of Materials Technology and Application for Intelligent Manufacturing, School of Mechanical and Electrical Engineering, Xinyu University, Xinyu 338004, China
| | - Xiaozhen Hu
- School of Architecture Engineering and Planning, Jiujiang University, Jiujiang 332005, China
| | - Sheng Li
- Jiangxi Province Engineering Research Center of Materials Surface Enhancing & Remanufacturing, School of Materials Science and Engineering, Jiujiang University, Jiujiang 332005, China
| | - Menglong Lv
- Jiangxi Province Engineering Research Center of Materials Surface Enhancing & Remanufacturing, School of Materials Science and Engineering, Jiujiang University, Jiujiang 332005, China
| | - Yiting Xie
- Jiangxi Province Engineering Research Center of Materials Surface Enhancing & Remanufacturing, School of Materials Science and Engineering, Jiujiang University, Jiujiang 332005, China
| | - Hailong Yao
- Jiangxi Province Engineering Research Center of Materials Surface Enhancing & Remanufacturing, School of Materials Science and Engineering, Jiujiang University, Jiujiang 332005, China
| | - Hongtao Wang
- Jiangxi Province Engineering Research Center of Materials Surface Enhancing & Remanufacturing, School of Materials Science and Engineering, Jiujiang University, Jiujiang 332005, China
| | - Xiaobo Bai
- Jiangxi Province Engineering Research Center of Materials Surface Enhancing & Remanufacturing, School of Materials Science and Engineering, Jiujiang University, Jiujiang 332005, China
| |
Collapse
|
116
|
Hassan SF, Islam MT, Saheb N, Baig MMA. Magnesium for Implants: A Review on the Effect of Alloying Elements on Biocompatibility and Properties. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5669. [PMID: 36013806 PMCID: PMC9412399 DOI: 10.3390/ma15165669] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/31/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
An attempt is made to cover the whole of the topic of biodegradable magnesium (Mg) alloys with a focus on the biocompatibility of the individual alloying elements, as well as shed light on the degradation characteristics, microstructure, and mechanical properties of most binary alloys. Some of the various work processes carried out by researchers to achieve the alloys and their surface modifications have been highlighted. Additionally, a brief look into the literature on magnesium composites as also been included towards the end, to provide a more complete picture of the topic. In most cases, the chronological order of events has not been particularly followed, and instead, this work is concentrated on compiling and presenting an update of the work carried out on the topic of biodegradable magnesium alloys from the recent literature available to us.
Collapse
Affiliation(s)
- S. Fida Hassan
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - M. T. Islam
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - N. Saheb
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - M. M. A. Baig
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
117
|
Zheng Z, Xu W, Xu Y, Xue Q. Mapping knowledge structure and themes trends of biodegradable Mg-based alloy for orthopedic application: A comprehensive bibliometric analysis. Front Bioeng Biotechnol 2022; 10:940700. [PMID: 36017343 PMCID: PMC9395602 DOI: 10.3389/fbioe.2022.940700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Since Lambotte and Payr first studied Mg-based alloys for orthopedics in 1900, the research of this field has finally ushered in vigorous development in the 21st century. From the perspective of quantitative analysis, this paper clearly demonstrated the global research trend from 2005 to 2021 by using bibliometrics and scientometric analysis. Methods: We obtained the publications from the Web of Science Core Collection (WoSCC) database. The bibliometric and scientometric analysis was conducted by using R software, CiteSpace software, VOSviewer software, Pajek software and Microsoft Excel program. Results: In total, 1921 publications were retrieved. It can be found that the number of publications is gradually increasing year by year. We can find that the most prolific countrie, institution and researcher are China, Chinese Academy of Sciences and Zheng Yufeng, respectively. The most influential journals in this field are Acta Biomaterialia and Biomaterials, with 16,511 and 12,314 total citations, respectively. By conducting the co-cited documents-based clustering analysis, 16 research hotspots and their representative studies have been identified. Besides, by conducting analysis of keywords, we divided the keyword citation bursts representing the development of the field into three stages. Conclusion: The number of researches on the biodegradable Mg-based alloys increased sharply all over the world in the 21st century. China has made significant progress in biodegradable Mg-based alloy research. More focus will be placed on osteogenic differentiation, fabrication, graphene oxide, antibacterial property, bioactive glass and nanocomposite, which may be the next popular topics in the field.
Collapse
Affiliation(s)
- Zitian Zheng
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Fifth School of Clinical Medicine, Peking University, Beijing, China
| | - Wennan Xu
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanan Xu
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qingyun Xue
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Fifth School of Clinical Medicine, Peking University, Beijing, China
- *Correspondence: Qingyun Xue,
| |
Collapse
|
118
|
Laubach M, Kobbe P, Hutmacher DW. Biodegradable interbody cages for lumbar spine fusion: Current concepts and future directions. Biomaterials 2022; 288:121699. [PMID: 35995620 DOI: 10.1016/j.biomaterials.2022.121699] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
Lumbar fusion often remains the last treatment option for various acute and chronic spinal conditions, including infectious and degenerative diseases. Placement of a cage in the intervertebral space has become a routine clinical treatment for spinal fusion surgery to provide sufficient biomechanical stability, which is required to achieve bony ingrowth of the implant. Routinely used cages for clinical application are made of titanium (Ti) or polyetheretherketone (PEEK). Ti has been used since the 1980s; however, its shortcomings, such as impaired radiographical opacity and higher elastic modulus compared to bone, have led to the development of PEEK cages, which are associated with reduced stress shielding as well as no radiographical artefacts. Since PEEK is bioinert, its osteointegration capacity is limited, which in turn enhances fibrotic tissue formation and peri-implant infections. To address shortcomings of both of these biomaterials, interdisciplinary teams have developed biodegradable cages. Rooted in promising preclinical large animal studies, a hollow cylindrical cage (Hydrosorb™) made of 70:30 poly-l-lactide-co-d, l-lactide acid (PLDLLA) was clinically studied. However, reduced bony integration and unfavourable long-term clinical outcomes prohibited its routine clinical application. More recently, scaffold-guided bone regeneration (SGBR) with application of highly porous biodegradable constructs is emerging. Advancements in additive manufacturing technology now allow the cage designs that match requirements, such as stiffness of surrounding tissues, while providing long-term biomechanical stability. A favourable clinical outcome has been observed in the treatment of various bone defects, particularly for 3D-printed composite scaffolds made of medical-grade polycaprolactone (mPCL) in combination with a ceramic filler material. Therefore, advanced cage design made of mPCL and ceramic may also carry initial high spinal forces up to the time of bony fusion and subsequently resorb without clinical side effects. Furthermore, surface modification of implants is an effective approach to simultaneously reduce microbial infection and improve tissue integration. We present a design concept for a scaffold surface which result in osteoconductive and antimicrobial properties that have the potential to achieve higher rates of fusion and less clinical complications. In this review, we explore the preclinical and clinical studies which used bioresorbable cages. Furthermore, we critically discuss the need for a cutting-edge research program that includes comprehensive preclinical in vitro and in vivo studies to enable successful translation from bench to bedside. We develop such a conceptual framework by examining the state-of-the-art literature and posing the questions that will guide this field in the coming years.
Collapse
Affiliation(s)
- Markus Laubach
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000 Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - Philipp Kobbe
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Dietmar W Hutmacher
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000 Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; Max Planck Queensland Center for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| |
Collapse
|
119
|
Biodegradable magnesium barrier membrane used for guided bone regeneration in dental surgery. Bioact Mater 2022; 14:152-168. [PMID: 35310351 PMCID: PMC8892166 DOI: 10.1016/j.bioactmat.2021.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/26/2021] [Accepted: 11/12/2021] [Indexed: 12/30/2022] Open
Abstract
Barrier membranes are commonly used as part of the dental surgical technique guided bone regeneration (GBR) and are often made of resorbable collagen or non-resorbable materials such as PTFE. While collagen membranes do not provide sufficient mechanical protection of the covered bone defect, titanium reinforced membranes and non-resorbable membranes need to be removed in a second surgery. Thus, biodegradable GBR membranes made of pure magnesium might be an alternative. In this study a biodegradable pure magnesium (99.95%) membrane has been proven to have all of the necessary requirements for an optimal regenerative outcome from both a mechanical and biological perspective. After implantation, the magnesium membrane separates the regenerating bone from the overlying, faster proliferating soft tissue. During the initial healing period, the membrane maintained a barrier function and space provision, whilst retaining the positioning of the bone graft material within the defect space. As the magnesium metal corroded, it formed a salty corrosion layer and local gas cavities, both of which extended the functional lifespan of the membrane barrier capabilities. During the resorption of the magnesium metal and magnesium salts, it was observed that the membrane became surrounded and then replaced by new bone. After the membrane had completely resorbed, only healthy tissue remained. The in vivo performance study demonstrated that the magnesium membrane has a comparable healing response and tissue regeneration to that of a resorbable collagen membrane. Overall, the magnesium membrane demonstrated all of the ideal qualities for a barrier membrane used in GBR treatment. First report on a biodegradable metallic barrier membrane for use in oral surgery is presented. The mechanical stability of the metallic barrier membrane provides a careful shielding of the augmented bone defect. Full resorption of metallic barrier membrane and bone healing is completed long before current standards for second surgical patient treatment.
Collapse
|
120
|
Li Y, Tan Z, Zhang J, Mu J, Wu H. Physical and Chemical Properties, Biosafety Evaluation, and Effects of Nano Natural Deer Bone Meal on Bone Marrow Mesenchymal Stem Cells. Front Bioeng Biotechnol 2022; 10:891765. [PMID: 35910014 PMCID: PMC9335367 DOI: 10.3389/fbioe.2022.891765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
At present, bone-based products are abundant, and the main sources are bovine bone and pig bone, but there are few studies on the development of deer bone as a bone repair material. Deer bone has important osteogenic effects in the theory of traditional Chinese medicine. It is rich in protein, ossein, and a variety of trace elements, with the effect of strengthening tendons and bones. Nanomaterials and their application in the repair of bone defects have become a research hotspot in bone tissue engineering. In this study, nano-deer bone meal (nBM), nano-calcined deer bone meal, and nano-demineralized bone matrix were successfully prepared. It was found that the Ca/P ratio in deer bone was significantly higher than that in cow bone and human bone tissue, and deer bone contained beneficial trace elements, such as potassium, iron, selenium, and zinc, which were not found in cow bone. The three kinds of deer bone powders prepared in this study had good biocompatibility and met the implantation standards of medical biomaterials. Cell function studies showed that compared with other bone powders, due to the presence of organic active ingredients and inorganic calcium and phosphate salts, nBM had excellent performance in the proliferation, adhesion, migration, and differentiation of bone marrow mesenchymal stem cells. These findings indicate that nBM can be used as a potential osteoinductive active nanomaterial to enhance bone tissue engineering scaffolds with certain application prospects.
Collapse
|
121
|
Rotator cuff repair with biodegradable high-purity magnesium suture anchor in sheep model. J Orthop Translat 2022; 35:62-71. [PMID: 36186661 PMCID: PMC9471965 DOI: 10.1016/j.jot.2022.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/01/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Background Rotator cuff tear has become one of the diseases affecting people's living quality. Conventional anchor materials such as titanium alloy and poly-lactic acid can lead to postoperative complications like bone defects and aseptic inflammation. Magnesium (Mg)-based implants are biodegradable and biocompatible, with strong potential to be applied in orthopaedics. Methods In this study, we developed a high-purity (HP) Mg suture anchor and studied its mechanical properties and degradation behavior in vitro. Furthermore, we described the use of high-purity Mg to prepare suture anchor for the rotator cuff repair in sheep. Results The in vitro tests showed that HP Mg suture anchor possess proper degradation behavior and appropriate mechanical property. Animal experiment indicated that HP Mg suture anchor provided reliable anchoring function in 12 weeks and showed no toxic effect on animal organs. Conclusion In summary, the HP Mg anchor presented in this study had favorable mechanical property and biosecurity. The translational potential of this article: The translational potential of this article is to use high-purity Mg to develop a degradable suture anchor and verify the feasibility of the application in animal model. This study provides a basis for further research on the clinical application of biodegradable high-purity Mg suture anchor.
Collapse
|
122
|
Novel Design and Optimization of Porous Titanium Structure for Mandibular Reconstruction. Appl Bionics Biomech 2022; 2022:8686670. [PMID: 35782881 PMCID: PMC9249542 DOI: 10.1155/2022/8686670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/13/2022] [Accepted: 05/30/2022] [Indexed: 12/25/2022] Open
Abstract
A porous material is considered to be a potential material that can be used to repair bone defects. However, the methods of designing of a highly porous structure within the allowable stress range remain to be researched. Therefore, this study was aimed at presenting a method for generating a three-dimensional tetrahedral porous structure characterized by low peak stress and high porosity for the reconstruction of mandibular defects. Firstly, the initial tetrahedral porous structure was fabricated with the strut diameters set to 0.4 mm and a mean cell size of 2.4 mm in the design model space. Following this, the simulation analysis was carried out. Further, a homogenization algorithm was used for homogenizing the stress distribution, increasing porosity, and controlling peak stress of the porous structure by adjusting the strut diameters. The results showed that compared with the initial porous structure, the position of the large stress regions remained unchanged, and the peak stress fluctuated slightly in the mandible and fixation system with the optimized porous structure under two occlusions. The optimized porous structure had a higher porosity and more uniform stress distribution, and the maximum stress was lower than the target stress value. The design and optimization technique of the porous structure presented in this paper can be used to control peak stress, improve porosity, and fabricate a lightweight scaffold, which provides a potential solution for mandibular reconstruction.
Collapse
|
123
|
Yamamoto A, Kikuta A. Development of a Model System for Gas Cavity Formation Behavior of Magnesium Alloy Implantation. ACS Biomater Sci Eng 2022; 8:2437-2444. [PMID: 35605978 DOI: 10.1021/acsbiomaterials.1c01429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Clinical applications of magnesium (Mg)-based screws have reported gas cavity formation in the surrounding tissue, which sometimes delays the fixation of the bone fracture. The gas cavity formation is considered to depend on the balance between hydrogen generation by Mg corrosion reacting with water in the body fluid and its diffusion into the surrounding tissue by capillary flow. In order to understand the gas cavity formation behavior by Mg-based material implantation, we developed a new in vitro model system to recreate this cavity formation phenomenon: the hydrogen generation by corrosion and its diffusion into the medium. A model tissue is prepared by gelation of the cell culture medium in a sterile condition. The immersion of Mg alloy samples was performed under 5% CO2 atmosphere with periodic observation by X-ray computed tomography, which enabled us to observe gas cavity growth up to 28 d. For demonstrating the usefulness of our model system, Mg alloy samples with different corrosion rates were prepared by a biodegradable polymer coating. AZ31 screws were spin-coated by poly-l-lactide (PLLA) and classified into three groups by their coating thickness as 1.0 ± 0.0, 1.6 ± 0.2, and 2.0 ± 0.1 μm (ave. ± s.d.). Upon their immersion into the model tissue, the gas cavity volumes formed were 1.57 ± 0.23, 1.06 ± 0.22, and 0.38 ± 0.09 mm3/mm2 for 1.0, 1.6, and 2.0 μm coating samples, having the weight loss of 20.2 ± 2.93, 18.5 ± 2.84, and 11.3 ± 3.54 μg/mm2, respectively (ave. ± s.d.). This result clearly indicates the dependence of gas cavity formation on the corrosion rate of the sample. The gas cavity volume was only 3.3∼7.5% of the total hydrogen gas volume estimated based on the weight loss of the samples at 28 d, which is in the range of those calculated from the clinical report (3.2∼9.4% at 4w). This system can be an effective tool to investigate the gas cavity formation behavior and contribute to understand the mechanisms and controlling factors of this phenomenon.
Collapse
Affiliation(s)
- Akiko Yamamoto
- Research Center for Functional Materials, National Institute for Materials Sciences, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Akemi Kikuta
- Research Center for Functional Materials, National Institute for Materials Sciences, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
124
|
Xu Y, Xu Y, Zhang W, Li M, Wendel HP, Geis-Gerstorfer J, Li P, Wan G, Xu S, Hu T. Biodegradable Zn-Cu-Fe Alloy as a Promising Material for Craniomaxillofacial Implants: An in vitro Investigation into Degradation Behavior, Cytotoxicity, and Hemocompatibility. Front Chem 2022; 10:860040. [PMID: 35734444 PMCID: PMC9208203 DOI: 10.3389/fchem.2022.860040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Zinc-based nanoparticles, nanoscale metal frameworks and metals have been considered as biocompatible materials for bone tissue engineering. Among them, zinc-based metals are recognized as promising biodegradable materials thanks to their moderate degradation rate ranging between magnesium and iron. Nonetheless, materials’ biodegradability and the related biological response depend on the specific implant site. The present study evaluated the biodegradability, cytocompatibility, and hemocompatibility of a hot-extruded zinc-copper-iron (Zn-Cu-Fe) alloy as a potential biomaterial for craniomaxillofacial implants. Firstly, the effect of fetal bovine serum (FBS) on in vitro degradation behavior was evaluated. Furthermore, an extract test was used to evaluate the cytotoxicity of the alloy. Also, the hemocompatibility evaluation was carried out by a modified Chandler-Loop model. The results showed decreased degradation rates of the Zn-Cu-Fe alloy after incorporating FBS into the medium. Also, the alloy exhibited acceptable toxicity towards RAW264.7, HUVEC, and MC3T3-E1 cells. Regarding hemocompatibility, the alloy did not significantly alter erythrocyte, platelet, and leukocyte counts, while the coagulation and complement systems were activated. This study demonstrated the predictable in vitro degradation behavior, acceptable cytotoxicity, and appropriate hemocompatibility of Zn-Cu-Fe alloy; therefore, it might be a candidate biomaterial for craniomaxillofacial implants.
Collapse
Affiliation(s)
- Yan Xu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yichen Xu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Section Medical Materials Science and Technology, University Hospital Tübingen, Tübingen, Germany
| | - Wentai Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Ming Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
- Department of Materials Engineering, Sichuan Engineering Technical College, Deyang, China
| | - Hans-Peter Wendel
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Hospital Tübingen, Tübingen, Germany
| | - Jürgen Geis-Gerstorfer
- Section Medical Materials Science and Technology, University Hospital Tübingen, Tübingen, Germany
| | - Ping Li
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
- Section Medical Materials Science and Technology, University Hospital Tübingen, Tübingen, Germany
- *Correspondence: Ping Li, ; Guojiang Wan, ; Shulan Xu,
| | - Guojiang Wan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
- *Correspondence: Ping Li, ; Guojiang Wan, ; Shulan Xu,
| | - Shulan Xu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Ping Li, ; Guojiang Wan, ; Shulan Xu,
| | - Tao Hu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
125
|
Chen J, Dai J, Qian J, Li W, Li R, Pang D, Wan G, Li P, Xu S. Influence of Surface Roughness on Biodegradability and Cytocompatibility of High-Purity Magnesium. MATERIALS 2022; 15:ma15113991. [PMID: 35683285 PMCID: PMC9182346 DOI: 10.3390/ma15113991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 11/16/2022]
Abstract
High-purity magnesium (Mg) is a promising biodegradable metal for oral and maxillofacial implants. Appropriate surface roughness plays a critical role in the degradation behavior and the related cellular processes of biodegradable Mg-based metals. Nevertheless, the most optimized surface roughness has been questionable, especially for Mg-based oral and maxillofacial implants. Three representative scales of surface roughness were investigated in this study, including smooth (Sa < 0.5 µm), moderately rough (Sa between 1.0−2.0 µm), and rough (Sa > 2.0 µm). The results indicated that the degradation rate of the Mg specimen in the cell culture medium was significantly accelerated with increased surface roughness. Furthermore, an extract test revealed that Mg with different roughness did not induce an evident cytotoxic effect. Nonetheless, the smooth Mg surface had an adversely affected cell attachment. Therefore, the high-purity Mg with a moderately rough surface exhibited the most optimized balance between biodegradability and overall cytocompatibility.
Collapse
Affiliation(s)
- Jiahao Chen
- Department of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China; (J.C.); (J.D.)
| | - Jingtao Dai
- Department of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China; (J.C.); (J.D.)
| | - Junyu Qian
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.Q.); (G.W.)
| | - Weirong Li
- Medical Device Division, Dongguan Eontec Co., Ltd., Dongguan 523662, China; (W.L.); (R.L.); (D.P.)
| | - Ronghui Li
- Medical Device Division, Dongguan Eontec Co., Ltd., Dongguan 523662, China; (W.L.); (R.L.); (D.P.)
| | - Dong Pang
- Medical Device Division, Dongguan Eontec Co., Ltd., Dongguan 523662, China; (W.L.); (R.L.); (D.P.)
| | - Guojiang Wan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.Q.); (G.W.)
| | - Ping Li
- Department of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China; (J.C.); (J.D.)
- Correspondence: (P.L.); (S.X.)
| | - Shulan Xu
- Department of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China; (J.C.); (J.D.)
- Correspondence: (P.L.); (S.X.)
| |
Collapse
|
126
|
Saha J, Pal K. Investigation on Mechanical, Biocorrosion, and Biocompatibility Behavior of HAp-Assisted Sr-Based Mg Composites. ACS APPLIED BIO MATERIALS 2022; 5:2608-2621. [PMID: 35654437 DOI: 10.1021/acsabm.2c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Numerous biodegradable Mg-based biomaterials have been developed in recent years because of their outstanding biocompatibility, biodegradation, and mechanical properties. The Mg-based composite is an appropriate candidate for orthopedic implants, such as supporting the fractured bone due to its superb biocompatibility and biodegradation properties. In the present work, a Mg-based biomaterial is developed by incorporating low wt % of alloying elements such as Zn, Ca, Mn, and Sr and ceramic powders such as HAp to improve the biocompatibility and biodegradebility and strengthen the mechanical properties. In this study, the Mg-4Zn-3Ca-1HAp-0.5Mn and Mg-4Zn-2.9Ca-1HAp-0.5Mn-0.1Sr composites are prepared, and the mechanical, microstructure, and in vitro degradation behavior of these composites are studied. The Mg-4Zn-2.9Ca-1HAp-0.5Mn-0.1Sr composite has good mechanical properties and a low uniform in vitro degradation rate (0.587 mm/year). From the dynamic mechanical analysis, it is found that the composites have better damping characteristics than the pure Mg. The composites are chosen for further evaluation. All the composites show no cytotoxicity to MG63 cells. The composite having Sr with PVA/ZrO2 coating showed the highest cell viability. On the basis of the above observation, the viability of the Mg-4Zn-3Ca-1HAp-0.5Mn and Mg-4Zn-2.9Ca-1HAp-0.5Mn-0.1Sr composites is discussed systematically for the use as an orthopedic implant. This investigation delivers a new idea for the evolution of a high-performance Sr-based Mg composite having excellent mechanical and corrosion properties while successfully reducing the cytotoxicity effect.
Collapse
Affiliation(s)
- Joy Saha
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Kaushik Pal
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.,Centre for Nanotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| |
Collapse
|
127
|
Potential bioactive coating system for high-performance absorbable magnesium bone implants. Bioact Mater 2022; 12:42-63. [PMID: 35087962 PMCID: PMC8777287 DOI: 10.1016/j.bioactmat.2021.10.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Magnesium alloys are considered the most suitable absorbable metals for bone fracture fixation implants. The main challenge in absorbable magnesium alloys is their high corrosion/degradation rate that needs to be controlled. Various coatings have been applied to magnesium alloys to slow down their corrosion rates to match their corrosion rate to the regeneration rate of the bone fracture. In this review, a bioactive coating is proposed to slow down the corrosion rate of magnesium alloys and accelerate the bone fracture healing process. The main aim of the bioactive coatings is to enhance the direct attachment of living tissues and thereby facilitate osteoconduction. Hydroxyapatite, collagen type I, recombinant human bone morphogenetic proteins 2, simvastatin, zoledronate, and strontium are six bioactive agents that show high potential for developing a bioactive coating system for high-performance absorbable magnesium bone implants. In addition to coating, the substrate itself can be made bioactive by alloying magnesium with calcium, zinc, copper, and manganese that were found to promote bone regeneration. Bioactive-coated magnesium implant could accelerate bone fracture healing time to match with magnesium degradation. Hydroxyapatite, collagen type I, recombinant human bone morphogenetic proteins 2, simvastatin, zoledronate, and strontium are high potential bioactive coating materials. The incorporation of Ca, Zn, Cu, Sr, and Mn in Mg base-metal could further enhance bone formation.
Collapse
|
128
|
Feng M, Fu Q, Li J, Li J, Wang Q, Liu X, Jin W, Li W, Chu PK, Yu Z. Sodium alginate coating on biodegradable high-purity magnesium with a hydroxide/silane transition layer for corrosion retardation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
129
|
Hassan HW, Rahmati M, Barrantes A, Haugen HJ, Mirtaheri P. In Vitro Monitoring of Magnesium-Based Implants Degradation by Surface Analysis and Optical Spectroscopy. Int J Mol Sci 2022; 23:6099. [PMID: 35682779 PMCID: PMC9181122 DOI: 10.3390/ijms23116099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/10/2022] [Accepted: 05/27/2022] [Indexed: 01/25/2023] Open
Abstract
Magnesium (Mg)-based degradable alloys have attracted substantial attention for tissue engineering applications due to their biodegradability and potential for avoiding secondary removal surgeries. However, insufficient data in the existing literature regarding Mg's corrosion and gas formation after implantation have delayed its wide clinical application. Since the surface properties of degradable materials constantly change after contact with body fluid, monitoring the behaviour of Mg in phantoms or buffer solutions could provide some information about its physicochemical surface changes over time. Through surface analysis and spectroscopic analysis, we aimed to investigate the structural and functional properties of degradable disks. Since bubble formation may lead to inflammation and change pH, monitoring components related to acidosis near the cells is essential. To study the bubble formation in cell culture media, we used a newly developed Mg alloy (based on Mg, zinc, and calcium), pure Mg, and commercially available grade 2 Titanium (Ti) disks in Dulbecco's Modified Eagle Medium (DMEM) solution to observe their behaviour over ten days of immersion. Using surface analysis and the information from near-infrared spectroscopy (NIRS), we concluded on the conditions associated with the medical risks of Mg alloy disintegration. NIRS is used to investigate the degradation behaviour of Mg-based disks in the cell culture media, which is correlated with the surface analysis where possible.
Collapse
Affiliation(s)
- Hafiz Wajahat Hassan
- Department of Mechanical, Electronic and Chemical Engineering, Faculty of Technology, Art and Design, Oslo Metropolitan University, 0130 Oslo, Norway;
| | - Maryam Rahmati
- Department of Biomaterials, Institute of Clinical Dentistry and Oral Research Laboratory, University of Oslo, 0317 Oslo, Norway; (M.R.); (A.B.); (H.J.H.)
| | - Alejandro Barrantes
- Department of Biomaterials, Institute of Clinical Dentistry and Oral Research Laboratory, University of Oslo, 0317 Oslo, Norway; (M.R.); (A.B.); (H.J.H.)
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry and Oral Research Laboratory, University of Oslo, 0317 Oslo, Norway; (M.R.); (A.B.); (H.J.H.)
| | - Peyman Mirtaheri
- Department of Mechanical, Electronic and Chemical Engineering, Faculty of Technology, Art and Design, Oslo Metropolitan University, 0130 Oslo, Norway;
| |
Collapse
|
130
|
Wu Y, Lu Y, Zhao M, Bosiakov S, Li L. A Critical Review of Additive Manufacturing Techniques and Associated Biomaterials Used in Bone Tissue Engineering. Polymers (Basel) 2022; 14:polym14102117. [PMID: 35631999 PMCID: PMC9143308 DOI: 10.3390/polym14102117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/21/2022] [Accepted: 05/11/2022] [Indexed: 12/10/2022] Open
Abstract
With the ability to fabricate complex structures while meeting individual needs, additive manufacturing (AM) offers unprecedented opportunities for bone tissue engineering in the biomedical field. However, traditional metal implants have many adverse effects due to their poor integration with host tissues, and therefore new material implants with porous structures are gradually being developed that are suitable for clinical medical applications. From the perspectives of additive manufacturing technology and materials, this article discusses a suitable manufacturing process for ideal materials for biological bone tissue engineering. It begins with a review of the methods and applicable materials in existing additive manufacturing technologies and their applications in biomedicine, introducing the advantages and disadvantages of various AM technologies. The properties of materials including metals and polymers, commonly used AM technologies, recent developments, and their applications in bone tissue engineering are discussed in detail and summarized. In addition, the main challenges for different metallic and polymer materials, such as biodegradability, anisotropy, growth factors to promote the osteogenic capacity, and enhancement of mechanical properties are also introduced. Finally, the development prospects for AM technologies and biomaterials in bone tissue engineering are considered.
Collapse
Affiliation(s)
- Yanli Wu
- Department of Engineering Mechanics, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China; (Y.W.); (Y.L.); (M.Z.)
| | - Yongtao Lu
- Department of Engineering Mechanics, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China; (Y.W.); (Y.L.); (M.Z.)
- DUT-BSU Joint Institute, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Ming Zhao
- Department of Engineering Mechanics, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China; (Y.W.); (Y.L.); (M.Z.)
| | - Sergei Bosiakov
- Faculty of Mechanics and Mathematics, Belarusian State University, No. 4 Nezavisimosti Avenue, 220030 Minsk, Belarus;
| | - Lei Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian 116023, China
- Correspondence:
| |
Collapse
|
131
|
Microfluidic-preparation of PLGA microcarriers with collagen patches for MSCs expansion and osteogenic differentiation. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
132
|
Oxyhydroxide-Coated PEO–Treated Mg Alloy for Enhanced Corrosion Resistance and Bone Regeneration. J Funct Biomater 2022; 13:jfb13020050. [PMID: 35645258 PMCID: PMC9149893 DOI: 10.3390/jfb13020050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/16/2022] [Accepted: 04/22/2022] [Indexed: 12/20/2022] Open
Abstract
Plasma electrolytic oxidation (PEO) is widely used as a surface modification method to enhance the corrosion resistance of Mg alloy, the most likely applied biodegradable material used in orthopedic implants. However, the pores and cracks easily formed on the PEO surface are unfavorable for long-term corrosion resistance. In this study, to solve this problem, we used simple immersion processes to construct Mn and Fe oxyhydroxide duplex layers on the PEO-treated AZ31 (PEO–Mn/Fe). As control groups, single Mn and Fe oxyhydroxide layers were also fabricated on PEO (denoted as PEO–Mn and PEO–Fe, respectively). PEO–Mn showed a similar porous morphology to the PEO sample. However, the PEO–Fe and PEO–Mn/Fe films completely sealed the pores on the PEO surfaces, and no cracks were observed even after the samples were immersed in water for 7 days. Compared with PEO, PEO–Mn, and PEO–Fe, PEO–Mn/Fe exhibited a significantly lower self-corrosion current, suggesting better corrosion resistance. In vitro C3H10T1/2 cell culture showed that PEO–Fe/Mn promoted the best cell growth, alkaline phosphatase activity, and bone-related gene expression. Furthermore, the rat femur implantation experiment showed that PEO–Fe/Mn–coated Mg showed the best bone regeneration and osteointegration abilities. Owing to enhanced corrosion resistance and osteogenesis, the PEO–Fe/Mn film on Mg alloy is promising for orthopedic applications.
Collapse
|
133
|
Clinical translation of a patient-specific scaffold-guided bone regeneration concept in four cases with large long bone defects. J Orthop Translat 2022; 34:73-84. [PMID: 35782964 PMCID: PMC9213234 DOI: 10.1016/j.jot.2022.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 02/08/2023] Open
Abstract
Background Bone defects after trauma, infection, or tumour resection present a challenge for patients and clinicians. To date, autologous bone graft (ABG) is the gold standard for bone regeneration. To address the limitations of ABG such as limited harvest volume as well as overly fast remodelling and resorption, a new treatment strategy of scaffold-guided bone regeneration (SGBR) was developed. In a well-characterized sheep model of large to extra-large tibial segmental defects, three-dimensional (3D) printed composite scaffolds have shown clinically relevant biocompatibility and osteoconductive capacity in SGBR strategies. Here, we report four challenging clinical cases with large complex posttraumatic long bone defects using patient-specific SGBR as a successful treatment. Methods After giving informed consent computed tomography (CT) images were used to design patient-specific biodegradable medical-grade polycaprolactone-tricalcium phosphate (mPCL-TCP, 80:20 wt%) scaffolds. The CT scans were segmented using Materialise Mimics to produce a defect model and the scaffold parts were designed with Autodesk Meshmixer. Scaffold prototypes were 3D-printed to validate robust clinical handling and bone defect fit. The final scaffold design was additively manufactured under Food and Drug Administration (FDA) guidelines for patient-specific and custom-made implants by Osteopore International Pte Ltd. Results Four patients (age: 23–42 years) with posttraumatic lower extremity large long bone defects (case 1: 4 cm distal femur, case 2: 10 cm tibia shaft, case 3: complex malunion femur, case 4: irregularly shaped defect distal tibia) are presented. After giving informed consent, the patients were treated surgically by implanting a custom-made mPCL-TCP scaffold loaded with ABG (case 2: additional application of recombinant human bone morphogenetic protein-2) harvested with the Reamer-Irrigator-Aspirator system (RIA, Synthes®). In all cases, the scaffolds matched the actual anatomical defect well and no perioperative adverse events were observed. Cases 1, 3 and 4 showed evidence of bony ingrowth into the large honeycomb pores (pores >2 mm) and fully interconnected scaffold architecture with indicative osseous bridges at the bony ends on the last radiographic follow-up (8–9 months after implantation). Comprehensive bone regeneration and full weight bearing were achieved in case 2 at follow-up 23 months after implantation. Conclusion This study shows the bench to bedside translation of guided bone regeneration principles into scaffold-based bone tissue engineering. The scaffold design in SGBR should have a tissue-specific morphological signature which stimulates and directs the stages from the initial host response towards the full regeneration. Thereby, the scaffolds provide a physical niche with morphology and biomaterial properties that allow cell migration, proliferation, and formation of vascularized tissue in the first one to two months, followed by functional bone formation and the capacity for physiological bone remodelling. Great design flexibility of composite scaffolds to support the one to three-year bone regeneration was observed in four patients with complex long bone defects. The translational potential of this article This study reports on the clinical efficacy of SGBR in the treatment of long bone defects. Moreover, it presents a comprehensive narrative of the rationale of this technology, highlighting its potential for bone regeneration treatment regimens in patients with any type of large and complex osseous defects.
Collapse
|
134
|
Magnesium galvanic cells produce hydrogen and modulate the tumor microenvironment to inhibit cancer growth. Nat Commun 2022; 13:2336. [PMID: 35484138 PMCID: PMC9051066 DOI: 10.1038/s41467-022-29938-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 04/08/2022] [Indexed: 12/14/2022] Open
Abstract
Hydrogen can be used as an anti-cancer treatment. However, the continuous generation of H2 molecules within the tumor is challenging. Magnesium (Mg) and its alloys have been extensively used in the clinic as implantable metals. Here we develop, by decorating platinum on the surface of Mg rods, a Mg-based galvanic cell (MgG), which allows the continuous generation of H2 in an aqueous environment due to galvanic-cell-accelerated water etching of Mg. By implanting MgG rods into a tumor, H2 molecules can be generated within the tumor, which induces mitochondrial dysfunction and intracellular redox homeostasis destruction. Meanwhile, the Mg(OH)2 residue can neutralize the acidic tumor microenvironment (TME). Such MgG rods with the micro-galvanic cell structure enable hydrogen therapy to inhibit the growth of tumors, including murine tumor models, patient-derived xenografts (PDX), as well as VX2 tumors in rabbits. Our research suggests that the galvanic cells for hydrogen therapy based on implantable metals may be a safe and effective cancer treatment. The production of hydrogen inside cells can stimulate cell death. Here, the authors made magnesium galvanic rods that continuously produce hydrogen and result in tumor inhibition in vitro and in vivo.
Collapse
|
135
|
Millán-Ramos B, Morquecho-Marín D, Silva-Bermudez P, Ramírez-Ortega D, Depablos-Rivera O, García-López J, Fernández-Lizárraga M, Almaguer-Flores A, Victoria-Hernández J, Letzig D, Rodil SE. Degradation Behavior and Mechanical Integrity of a Mg-0.7Zn-0.6Ca (wt.%) Alloy: Effect of Grain Sizes and Crystallographic Texture. MATERIALS 2022; 15:ma15093142. [PMID: 35591473 PMCID: PMC9102660 DOI: 10.3390/ma15093142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023]
Abstract
The microstructural characteristics of biodegradable Mg alloys determine their performance and appropriateness for orthopedic fixation applications. In this work, the effect of the annealing treatment of a Mg-0.7Zn-0.6Ca (ZX11) alloy on the mechanical integrity, corrosive behavior, and biocompatibility-osteoinduction was studied considering two annealing temperatures, 350 and 450 °C. The microstructure showed a recrystallized structure, with a lower number of precipitates, grain size, and stronger basal texture for the ZX11-350 condition than the ZX11-450. The characteristics mentioned above induce a higher long-term degradation rate for the ZX11-450 than the ZX11-350 on days 7th and 15th of immersion. In consequence, the mechanical integrity changes within this period. The increased degradation rate of the ZX11-450 condition reduces 40% the elongation at failure, in contrast with the 16% reduction for the ZX11-350 condition. After that period, the mechanical integrity remained unchanged. No cytotoxic effects were observed for both treatments and significant differentiation of mesenchymal stem cells into the osteoblast phenotype was observed.
Collapse
Affiliation(s)
- Benjamin Millán-Ramos
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (D.R.-O.); (O.D.-R.); (S.E.R.)
- Posgrado en Ciencia e Ingeniería de Materiales, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Correspondence: (B.M.-R.); (J.V.-H.)
| | - Daniela Morquecho-Marín
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (D.M.-M.); (P.S.-B.); (J.G.-L.); (M.F.-L.)
- Posgrado en Ciencias Médicas, Odontológicas y de la Salud, Ciencias Odontológicas, Universidad Nacional Autónoma de México, Mexico City 14389, Mexico
| | - Phaedra Silva-Bermudez
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (D.M.-M.); (P.S.-B.); (J.G.-L.); (M.F.-L.)
| | - David Ramírez-Ortega
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (D.R.-O.); (O.D.-R.); (S.E.R.)
| | - Osmary Depablos-Rivera
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (D.R.-O.); (O.D.-R.); (S.E.R.)
- Departamento de Ingeniería Metalúrgica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Julieta García-López
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (D.M.-M.); (P.S.-B.); (J.G.-L.); (M.F.-L.)
| | - Mariana Fernández-Lizárraga
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (D.M.-M.); (P.S.-B.); (J.G.-L.); (M.F.-L.)
- Posgrado de Doctorado en Ciencias en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Argelia Almaguer-Flores
- Laboratorio de Biointerfaces, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - José Victoria-Hernández
- Institute of Material and Process Design, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany;
- Correspondence: (B.M.-R.); (J.V.-H.)
| | - Dietmar Letzig
- Institute of Material and Process Design, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany;
| | - Sandra E. Rodil
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (D.R.-O.); (O.D.-R.); (S.E.R.)
| |
Collapse
|
136
|
Microstructure Evolution and Properties of β-TCP/Mg-Zn-Ca Biocomposite Processed by Hot Extrusion Combined with Multi-Pass ECAP. METALS 2022. [DOI: 10.3390/met12040685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To further improve the comprehensive performance of Mg-based alloy, hot extrusion combined with multi-pass equal channel angular pressing (ECAP) was applied to process Mg-3 wt%Zn-0.2 wt%Ca alloy and 1 wt%β-TCP/Mg-3 wt%Zn-0.2 wt%Ca biocomposites. The microstructure evolution, mechanical properties, corrosion behavior, and cell biocompatibility of the experimental specimens were systematically investigated. The average grain size of 13.4 ± 0.6 μm in MgZnCa alloy and 9.6 ± 0.3 μm in composites materials can be achieved by six ECAP passes. The uniaxial compressive strength (UCS) of 388.4 ± 7.3 MPa and the strain at failure of 14.3 ± 1.5% were confirmed in MgZnCa alloy, while the UCS of 405.3 ± 7.4 MPa and the strain at failure of 9.8 ± 1.9% were achieved by the addition of β-TCP after six ECAP passes. In spite of different compositions, the minimum corrosion rate of 0.895 mm·Y−1 and 1.117 mm·Y−1 can be achieved by two ECAP passes at 593 K. The cytocompatibility evaluation revealed that the experimental materials processed by six ECAP passes had no significant cytotoxicity to L929 cells, and the addition of β-TCP improved the cytocompatibility.
Collapse
|
137
|
Silver, Copper, Magnesium and Zinc Contained Electroactive Mesoporous Bioactive S53P4 Glass–Ceramics Nanoparticle for Bone Regeneration: Bioactivity, Biocompatibility and Antibacterial Activity. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02295-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
138
|
Effect of Milling Parameters on Mechanical Properties and In Vitro Biocompatibility of Mg-Zn-Co Ternary Alloy. METALS 2022. [DOI: 10.3390/met12030529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Magnesium (Mg) is a potential candidate for biomedical implants, but its susceptibility to suffer corrosion attack in human body fluid limits its practical use. Thus, alloying Mg with other metal elements is the most effective strategy to improve its mechanical properties and biocompatibility. Herein, we report a Mg-Zn-Co ternary alloy (85-10-5 wt %) synthesized by the mechanical alloying technique. Ball-milling parameters such as ball size and milling time were varied to obtain better alloy properties. After compaction and sintering, the obtained alloy samples were subjected to various characterizations, including grain, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, X-ray diffraction (XRD), microhardness and nanoindentation analyses. In vitro biocompatibility analysis of different alloys was also performed with MC3T3-E1 osteoblasts. Grain analysis confirmed the even dispersion of particles, while SEM analysis showed the formation of laminates, spherical and fine particles with an increase in time and varied ball size. XRD results further confirmed the formation of intermetallic compounds. The microhardness of samples was increased with the increase in milling time. The Young’s modulus of ternary alloys obtained from nanoindentation analysis was comparable to the modulus of human bone. Moreover, in vitro analysis with osteoblasts showed that the developed alloys were noncytotoxic and biocompatible.
Collapse
|
139
|
Guo Y, Li G, Xu Z, Xu Y, Yin L, Yu Z, Zhang Z, Lian J, Ren L. Corrosion Resistance and Biocompatibility of Calcium Phosphate Coatings with a Micro-Nanofibrous Porous Structure on Biodegradable Magnesium Alloys. ACS APPLIED BIO MATERIALS 2022; 5:1528-1537. [PMID: 35312270 DOI: 10.1021/acsabm.1c01277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Magnesium (Mg) and its alloys have exhibited great potential for orthopedic applications; however, their poor corrosion resistance and potential cytotoxicity have hindered their further clinical applications. In this study, we prepared a calcium phosphate (Ca-P) coating with a micro-nanofibrous porous structure on the Mg alloy surface by a chemical conversion method. The morphology, composition, and corrosion performance of the coatings were investigated by scanning electron microscope (SEM), energy-dispersive spectrometer (EDS), X-ray diffraction (XRD), immersion tests, and electrochemical measurements. The effects of the preparation temperature of the Ca-P coatings were analyzed, and the results confirmed that the coating obtained at 60 °C had the densest structure and the best corrosion resistance. In addition, a systematic investigation into cell viability, ALP activity, and cell morphology confirmed that the Ca-P coating had excellent biocompatibility, which could effectively promote the proliferation, differentiation, and adhesion of osteoblasts. Hence, the Ca-P coating demonstrates great potential in the field of biodegradable Mg-based orthopedic implant materials.
Collapse
Affiliation(s)
- Yunting Guo
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun 130025, China.,Weihai Institute for Bionic, Jilin University, Weihai 264402, China
| | - Guangyu Li
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Zezhou Xu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun 130025, China.,Weihai Institute for Bionic, Jilin University, Weihai 264402, China
| | - Yingchao Xu
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Liquan Yin
- Department of Rehabilitation Medicine, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun 130033, China
| | - Zhenglei Yu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Zhihui Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Jianshe Lian
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun 130025, China
| |
Collapse
|
140
|
Biodegradable Mg-Zn-Ca-Based Metallic Glasses. MATERIALS 2022; 15:ma15062172. [PMID: 35329624 PMCID: PMC8955783 DOI: 10.3390/ma15062172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022]
Abstract
Biodegradable Mg-Zn-Ca-based metallic glasses (MGs) present improved strength and superior corrosion resistance, compared to crystalline Mg. In particular, in vivo and in vitro attempts reveal that biodegradable Mg-Zn-Ca-based MGs possess excellent biocompatibility, suggesting that they are ideal candidates for temporary implant materials. However, the limited size and severe brittleness prevent their widespread commercialization. In this review, we firstly summarize the microstructure characteristic and mechanical properties of Mg-Zn-Ca-based MGs. Then, we provide a comprehensive and systematic understanding of the recent progress of the biocorrosion and biocompatibility of Mg-Zn-Ca-based MGs. Last, but not least, the outlook towards the fabrication routes, composition design, structure design, and reinforcement approaches of Mg-Zn-Ca-based MGs are briefly proposed.
Collapse
|
141
|
Construction of a magnesium hydroxide/graphene oxide/hydroxyapatite composite coating on Mg–Ca–Zn–Ag alloy to inhibit bacterial infection and promote bone regeneration. Bioact Mater 2022; 18:354-367. [PMID: 35415306 PMCID: PMC8965913 DOI: 10.1016/j.bioactmat.2022.02.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022] Open
Abstract
The improved corrosion resistance, osteogenic activity, and antibacterial ability are the key factors for promoting the large-scale clinical application of magnesium (Mg)-based implants. In the present study, a novel nanocomposite coating composed of inner magnesium hydroxide, middle graphene oxide, and outer hydroxyapatite (Mg(OH)2/GO/HA) is constructed on the surface of Mg-0.8Ca–5Zn-1.5Ag by a combined strategy of hydrothermal treatment, electrophoretic deposition, and electrochemical deposition. The results of material characterization and electrochemical corrosion test showed that all the three coatings have high bonding strength, hydrophilicity and corrosion resistance. In vitro studies show that Mg(OH)2 indeed improves the antibacterial activity of the substrate. The next GO and GO/HA coating procedures both promote the osteogenic differentiation of MC3T3-E1 cells and show no harm to the antibacterial activity of Mg(OH)2 coating, but the latter exhibits the best promoting effect. In vivo studies demonstrate that the Mg alloy with the composite coating not only ameliorates osteolysis induced by bacterial invasion but also promotes bone regeneration under both normal and infected conditions. The current study provides a promising surface modification strategy for developing multifunctional Mg-based implants with good corrosion resistance, antibacterial ability and osteogenic activity to enlarge their biomedical applications. A Mg(OH)2/GO/HA composite coating with high bonding strength was constructed on the surface of Mg–Ca–Zn–Ag alloy. The outer HA layer with excellent osteogenic activity recovered the high corrosion resistance of inner Mg(OH)2 layer. The Mg(OH)2/GO/HA composite coating promoted new bone regeneration significantly under both normal and infected conditions.
Collapse
|
142
|
Zhu WY, Guo J, Yang WF, Tao ZY, Lan X, Wang L, Xu J, Qin L, Su YX. Biodegradable magnesium implant enhances angiogenesis and alleviates medication-related osteonecrosis of the jaw in rats. J Orthop Translat 2022; 33:153-161. [PMID: 35415073 PMCID: PMC8965768 DOI: 10.1016/j.jot.2022.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/26/2022] [Accepted: 03/12/2022] [Indexed: 01/01/2023] Open
Abstract
Background Medication-related osteonecrosis of the jaw (MRONJ) is a serious complication associated with antiresorptive and antiangiogenic medications, of which impaired angiogenesis is a key pathological alteration. Since Magnesium (Mg)-based implants possess proangiogenic effects, we hypothesized that the biodegradable Mg implant could alleviate the development of MRONJ via enhancing angiogenesis. Methods MRONJ model was established and divided into the Veh + Ti group (Vehicle-treated rat, with Titanium (Ti) implant), BP + Ti group (Bisphosphonate (BP)-treated rat, with Ti implant), BP + Mg group (BP-treated rat, with Mg implant), BP + Mg + SU5416 group (BP-treated rat, with Mg implant and vascular endothelial growth factor (VEGF) receptor-2 inhibitor), BP + Mg + BIBN group (BP-treated rat, with Mg implant and calcitonin gene-related peptide (CGRP) receptor antagonist), and BP + Mg + SU5416+BIBN group (BP-treated rat, with Mg implant and VEGF receptor-2 inhibitor and CGRP receptor antagonist). The occurrence of MRONJ, alveolar bone necrosis, new bone formation and vessel formation were assessed by histomorphometry, immunohistochemistry, and micro-CT analysis. Results Eight weeks after surgery, the BP + Mg group had significantly reduced occurrence of MRONJ-like lesion and histological osteonecrosis, increased bone microstructural parameters, and increased expressions of VEGFA and CGRP, than the BP + Ti group. By simultaneously blocking VEGF receptor-2 and CGRP receptor, the vessel volume and new bone formation in the BP + Mg group were significantly decreased, meanwhile the occurrence of MRONJ-like lesion and histological bone necrosis were significantly increased. Conclusion Biodegradable Mg implant could alleviate the development of MRONJ-like lesion, possibly via upregulating VEGF- and CGRP-mediated angiogenesis. Mg-based implants have the translational potential to be developed as a novel internal fixation device for patients with the risk of MRONJ. The Translational potential of this article This work reports a biodegradable Mg implant which ameliorates the development of MRONJ-like lesions possibly due to its angiogenic property. Mg-based implants have the potential to be developed as a novel internal fixation device for patients at the risk of MRONJ.
Collapse
Affiliation(s)
- Wang-yong Zhu
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wei-fa Yang
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Zhuo-ying Tao
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Xinmiao Lan
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Leilei Wang
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yu-xiong Su
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region
- Corresponding author.
| |
Collapse
|
143
|
Biocompatible Materials in Otorhinolaryngology and Their Antibacterial Properties. Int J Mol Sci 2022; 23:ijms23052575. [PMID: 35269718 PMCID: PMC8910137 DOI: 10.3390/ijms23052575] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 12/29/2022] Open
Abstract
For decades, biomaterials have been commonly used in medicine for the replacement of human body tissue, precise drug-delivery systems, or as parts of medical devices that are essential for some treatment methods. Due to rapid progress in the field of new materials, updates on the state of knowledge about biomaterials are frequently needed. This article describes the clinical application of different types of biomaterials in the field of otorhinolaryngology, i.e., head and neck surgery, focusing on their antimicrobial properties. The variety of their applications includes cochlear implants, middle ear prostheses, voice prostheses, materials for osteosynthesis, and nasal packing after nasal/paranasal sinuses surgery. Ceramics, such as as hydroxyapatite, zirconia, or metals and metal alloys, still have applications in the head and neck region. Tissue engineering scaffolds and drug-eluting materials, such as polymers and polymer-based composites, are becoming more common. The restoration of life tissue and the ability to prevent microbial colonization should be taken into consideration when designing the materials to be used for implant production. The authors of this paper have reviewed publications available in PubMed from the last five years about the recent progress in this topic but also establish the state of knowledge of the most common application of biomaterials over the last few decades.
Collapse
|
144
|
Zhou J, Jian L, Xie J, Cheng S, Li B, Wang D, Shao H, Zhang Y, Peng F. Strontium-Containing Barium Titanate-Modified Titanium for Enhancement of Osteointegration. ACS Biomater Sci Eng 2022; 8:1271-1278. [PMID: 35143178 DOI: 10.1021/acsbiomaterials.1c01393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One of the major challenges for Ti-based implants is insufficient osteointegration, which might result in the loosening of the implant. In this study, we fabricated strontium (Sr)-containing barium titanate (BST) on the surface of Ti to improve the bioactivity for osteointegration enhancement. The introduction of Sr significantly reduced the crystallization time and improved crystallinity, which was proved by X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy. Compared with Ti, the BST film showed greater wettability surface and lower elastic modulus and hardness. Furthermore, in synergy with the release of Sr ions, the BST film improved early adhesion and followed osteogenic differentiation of rat bone mesenchymal stem cells. Furthermore, the bone implantation experiment suggested that the BST film could significantly improve the in vivo osteogenesis and osteointegration capabilities of Ti implants. In summary, this study revealed that BST-modified Ti has potential application in bone repair.
Collapse
Affiliation(s)
- Jielong Zhou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.,Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Linjia Jian
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Juning Xie
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Shi Cheng
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Baoe Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Donghui Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Hongwei Shao
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yu Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.,Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Feng Peng
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
145
|
Magnesium-Based Alloys Used in Orthopedic Surgery. MATERIALS 2022; 15:ma15031148. [PMID: 35161092 PMCID: PMC8840615 DOI: 10.3390/ma15031148] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023]
Abstract
Magnesium (Mg)-based alloys have become an important category of materials that is attracting more and more attention due to their high potential use as orthopedic temporary implants. These alloys are a viable alternative to nondegradable metals implants in orthopedics. In this paper, a detailed overview covering alloy development and manufacturing techniques is described. Further, important attributes for Mg-based alloys involved in orthopedic implants fabrication, physiological and toxicological effects of each alloying element, mechanical properties, osteogenesis, and angiogenesis of Mg are presented. A section detailing the main biocompatible Mg-based alloys, with examples of mechanical properties, degradation behavior, and cytotoxicity tests related to in vitro experiments, is also provided. Special attention is given to animal testing, and the clinical translation is also reviewed, focusing on the main clinical cases that were conducted under human use approval.
Collapse
|
146
|
Liu J, Liu B, Min S, Yin B, Peng B, Yu Z, Wang C, Ma X, Wen P, Tian Y, Zheng Y. Biodegradable magnesium alloy WE43 porous scaffolds fabricated by laser powder bed fusion for orthopedic applications: Process optimization, in vitro and in vivo investigation. Bioact Mater 2022; 16:301-319. [PMID: 35415288 PMCID: PMC8965912 DOI: 10.1016/j.bioactmat.2022.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 12/23/2022] Open
Abstract
Laser powder bed fusion (L-PBF) of magnesium (Mg) alloy porous scaffolds is expected to solve the dual challenges from customized structures and biodegradable functions required for repairing bone defects. However, one of the key technical difficulties lies in the poor L-PBF process performance of Mg, contributed by the high susceptibility to oxidation, vaporization, thermal expansion, and powder attachment etc. This work investigated the influence of L-PBF energy input and scanning strategy on the formation quality of porous scaffolds by using WE43 powder, and characterized the microstructure, mechanical properties, biocompatibility, biodegradation and osteogenic effect of the as-built WE43 porous scaffolds. With the customized energy input and scanning strategy, the relative density of struts reached over 99.5%, and the geometrical error between the designed and the fabricated porosity declined to below 10%. Massive secondary phases including intermetallic precipitates and oxides were observed. The compressive strength (4.37–23.49 MPa) and elastic modulus (154.40–873.02 MPa) were comparable to those of cancellous bone. Good biocompatibility was observed by in vitro cell viability and in vivo implantation. The biodegradation of as-built porous scaffolds promoted the osteogenic effect, but the structural integrity devastated after 12 h by the immersion tests in Hank's solution and after 4 weeks by the implantation in rabbits' femur, indicating an excessively rapid degradation rate. In vitro and in vivo investigations were performed on WE43 porous scaffolds. Reliable fusion quality and dimensional accuracy were achieved. The compressive strength and Young modulus ranged 4.37–23.49 and 154.40–873.02 MPa. Good biocompatibility and improved osteogenic effect were observed. The massive secondary phases as well as the enlarged specific surface resulted to a rapid degradation rate.
Collapse
|
147
|
Zhang Y, Li Y, Lv Y, Zhang X, Dong Z, Yang L, Zhang E. Ag distribution and corrosion behaviour of the plasma electrolytic oxidized antibacterial Mg-Ag alloy. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
148
|
Impact of degradable magnesium implants on osteocytes in single and triple cultures. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112692. [DOI: 10.1016/j.msec.2022.112692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/12/2022] [Accepted: 01/29/2022] [Indexed: 11/21/2022]
|
149
|
Quan PH, Antoniac I, Miculescu F, Antoniac A, Păltânea VM, Robu A, Bița AI, Miculescu M, Saceleanu A, Bodog AD, Saceleanu V. Fluoride Treatment and In Vitro Corrosion Behavior of Mg-Nd-Y-Zn-Zr Alloys Type. MATERIALS 2022; 15:ma15020566. [PMID: 35057284 PMCID: PMC8779082 DOI: 10.3390/ma15020566] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/26/2022]
Abstract
Fluoride conversion coatings on Mg present many advantages, among which one can find the reduction of the corrosion rate under “in vivo” or “in vitro” conditions and the promotion of the calcium phosphate deposition. Moreover, the fluoride ions released from MgF2 do not present cytotoxic effects and inhibit the biofilm formation, and thus these treated alloys are very suitable for cardiovascular stents and biodegradable orthopedic implants. In this paper, the biodegradation behavior of four new magnesium biodegradable alloys that have been developed in the laboratory conditions, before and after surface modifications by fluoride conversion (and sandblasting) coatings, are analyzed. We performed structural and surface analysis (XRD, SEM, contact angle) before and after applying different surface treatments. Furthermore, we studied the electrochemical behavior and biodegradation of all experimental samples after immersion test performed in NaCl solution. For a better evaluation, we also used LM and SEM for evaluation of the corroded samples after immersion test. The results showed an improved corrosion resistance for HF treated alloy in the NaCl solution. The chemical composition, uniformity, thickness and stability of the layers generated on the surface of the alloys significantly influence their corrosion behavior. Our study reveals that HF treatment is a beneficial way to improve the biofunctional properties required for the studied magnesium alloys to be used as biomaterials for manufacturing the orthopedic implants.
Collapse
Affiliation(s)
- Pham Hong Quan
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Iulian Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
- Academy of Romania Scientist, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Florin Miculescu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Veronica Manescu Păltânea
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
- Faculty of Electrical Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Alina Robu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Ana-Iulia Bița
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Marian Miculescu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Adriana Saceleanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, 2A Lucian Blaga Street, 550169 Sibiu, Romania
| | - Alin Dănuț Bodog
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania
| | - Vicentiu Saceleanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, 2A Lucian Blaga Street, 550169 Sibiu, Romania
| |
Collapse
|
150
|
Mechanical Alloying Process Applied for Obtaining a New Biodegradable Mg-xZn-Zr-Ca Alloy. METALS 2022. [DOI: 10.3390/met12010132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The aim of the present paper is to apply the mechanical alloying process to obtain from powder components a new biodegradable Mg-based alloy powder from the system Mg-xZn-Zr-Ca, with high biomechanical and biochemical performance. Various processing parameters for mechanical alloying have been experimented with the ultimate goal to establish an efficient processing route for the production of small biodegradable parts for the medical domain. It has been observed that for the same milling parameters, the composition of the powders has influenced the powder size and shape. On the other hand, for the same composition, the highest experimented milling speed and time conduct to finer powder particles, almost round-shaped, without pores or various inclusions. The most uniform size has been obtained for the powder sample with 10 wt.%Zn. These powders were finally processed by selective laser melting, an additive manufacturing technology, to obtain a homogeneous experimental sample, without cracking, for future more systematical trials.
Collapse
|