101
|
Qiu H, Zhang X, Zhang Y, Jiang X, Ren Y, Gao D, Zhu X, Usadel B, Fernie AR, Wen W. Depicting the genetic and metabolic panorama of chemical diversity in the tea plant. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1001-1016. [PMID: 38048231 PMCID: PMC10955498 DOI: 10.1111/pbi.14241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/11/2023] [Accepted: 11/12/2023] [Indexed: 12/06/2023]
Abstract
As a frequently consumed beverage worldwide, tea is rich in naturally important bioactive metabolites. Combining genetic, metabolomic and biochemical methodologies, here, we present a comprehensive study to dissect the chemical diversity in tea plant. A total of 2837 metabolites were identified at high-resolution with 1098 of them being structurally annotated and 63 of them were structurally identified. Metabolite-based genome-wide association mapping identified 6199 and 7823 metabolic quantitative trait loci (mQTL) for 971 and 1254 compounds in young leaves (YL) and the third leaves (TL), respectively. The major mQTL (i.e., P < 1.05 × 10-5, and phenotypic variation explained (PVE) > 25%) were further interrogated. Through extensive annotation of the tea metabolome as well as network-based analysis, this study broadens the understanding of tea metabolism and lays a solid foundation for revealing the natural variations in the chemical composition of the tea plant. Interestingly, we found that galloylations, rather than hydroxylations or glycosylations, were the largest class of conversions within the tea metabolome. The prevalence of galloylations in tea is unusual, as hydroxylations and glycosylations are typically the most prominent conversions of plant specialized metabolism. The biosynthetic pathway of flavonoids, which are one of the most featured metabolites in tea plant, was further refined with the identified metabolites. And we demonstrated the further mining and interpretation of our GWAS results by verifying two identified mQTL (including functional candidate genes CsUGTa, CsUGTb, and CsCCoAOMT) and completing the flavonoid biosynthetic pathway of the tea plant.
Collapse
Affiliation(s)
- Haiji Qiu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Xiaoliang Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Youjun Zhang
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| | - Xiaohui Jiang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Yujia Ren
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Dawei Gao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Xiang Zhu
- Thermo Fisher ScientificShanghaiChina
| | - Björn Usadel
- Institute of Bio‐ and Geosciences, IBG‐4: Bioinformatics, CEPLAS, Forschungszentrum JülichJülichGermany
- Institute for Biological Data ScienceHeinrich Heine UniversityDüsseldorfGermany
| | - Alisdair R. Fernie
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| | - Weiwei Wen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
102
|
Li B, Zhang Y, Liu X, Zhang Z, Zhuang S, Zhong X, Chen W, Hong Y, Mo P, Lin S, Wang S, Yu C. Traditional Chinese medicine Pien-Tze-Huang ameliorates LPS-induced sepsis through bile acid-mediated activation of TGR5-STAT3-A20 signalling. J Pharm Anal 2024; 14:100915. [PMID: 38634065 PMCID: PMC11019283 DOI: 10.1016/j.jpha.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/22/2023] [Accepted: 12/07/2023] [Indexed: 04/19/2024] Open
Abstract
Pien Tze Huang (PZH), a class I nationally protected traditional Chinese medicine (TCM), has been used to treat liver diseases such as hepatitis; however, the effect of PZH on the progression of sepsis is unknown. Here, we reported that PZH attenuated lipopolysaccharide (LPS)-induced sepsis in mice and reduced LPS-induced production of proinflammatory cytokines in macrophages by inhibiting the activation of mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signalling. Mechanistically, PZH stimulated signal transducer and activator of transcription 3 (STAT3) phosphorylation to induce the expression of A20, which could inhibit the activation of NF-κB and MAPK signalling. Knockdown of the bile acid (BA) receptor G protein-coupled bile acid receptor 1 (TGR5) in macrophages abolished the effects of PZH on STAT3 phosphorylation and A20 induction, as well as the LPS-induced inflammatory response, suggesting that BAs in PZH may mediate its anti-inflammatory effects by activating TGR5. Consistently, deprivation of BAs in PZH by cholestyramine resin reduced the effects of PZH on the expression of phosphorylated-STAT3 and A20, the activation of NF-κB and MAPK signalling, and the production of proinflammatory cytokines, whereas the addition of BAs to cholestyramine resin-treated PZH partially restored the inhibitory effects on the production of proinflammatory cytokines. Overall, our study identifies BAs as the effective components in PZH that activate TGR5-STAT3-A20 signalling to ameliorate LPS-induced sepsis.
Collapse
Affiliation(s)
- Bei Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xinyuan Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Ziyang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shuqing Zhuang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaoli Zhong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wenbo Chen
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yilin Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Pingli Mo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shuhai Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shicong Wang
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou, China
| | - Chundong Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
103
|
Apte MM, Khattar E, Tupe RS. Mechanistic role of Syzygium cumini (L.) Skeels in glycation induced diabetic nephropathy via RAGE-NF-κB pathway and extracellular proteins modifications: A molecular approach. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117573. [PMID: 38110133 DOI: 10.1016/j.jep.2023.117573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Syzygium cumini (L.) Skeels (SC), an ancient medicinal plant, is used as a complementary and alternative medicine for treating diabetes mellitus and its associated complications, such as diabetic nephropathy (DN). Phytochemicals present in SC homeopathic formulations possess anti-glycemic, anti-glycation, anti-inflammatory, and antioxidant properties. Additionally, the non-enzymatic formation of advanced glycation end products (AGEs) increases during hyperglycemia in diabetes. AGEs interaction with their receptor of AGEs (RAGE) promotes inflammation via Nuclear Factor-κB (NF-κB) and the accumulation of Extracellular Matrix (ECM) proteins, contributing to the renal dysfunction in DN. However, the molecular mechanism through which SC formulations interact with the AGEs-RAGE-NF-κB pathway has not yet been investigated. AIM This study aims to examine the impact of SC formulations on the RAGE-NF-κB pathway and ECM protein modifications in glycation-induced DN using a molecular approach. MATERIALS AND METHODS Human serum albumin (10 mg/ml) was glycated with MGO (55 mM) in the presence of SC formulations - Mother tincture (MT), 30C, 200C for 7 days. Glycated samples were added to renal cells (HEK 293) for 24 h. Subsequently, cellular gene and protein expressions of RAGE, NF-κB, vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), collagen IV (Col IV), and fibronectin were determined using RT-qPCR and Western blot analysis. The immunofluorescence, luciferase assay, and chromatin immunoprecipitation techniques were employed to gain insights into glycation-induced NF-κB nuclear translocation, transcriptional activity, and its effect on RAGE promoter activity in SC-treated cells. RESULTS SC formulations significantly downregulated glycation-induced elevated levels of RAGE and NF-κB. Mechanistically, SC formulations prevented NF-κB nuclear translocation, transcriptional activity, and RAGE promoter activity. Also, SC formulations significantly attenuated glycation-enhanced expressions of inflammatory cytokines (IL-6, TNF-α, and VEGF) and ECM proteins (Col IV and fibronectin). CONCLUSION Our findings enlighten the molecular mechanism of SC in DN by targeting the AGEs-RAGE-NF-κB signaling pathway, inflammatory responses, and ECM accumulation. Hence, the study validates the protective role of SC formulations and signifies its novel potential for treating DN.
Collapse
Affiliation(s)
- Mayura M Apte
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| | - Ekta Khattar
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, India.
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| |
Collapse
|
104
|
Dosoky WM, Farag SA, Almuraee AA, Youssef IM, Awlya OFA, Abusudah WF, Qadhi A, Arbaeen AF, Moustafa M, Hassan H, Tellez-Isaias G. Vitamin C and/or garlic can antagonize the toxic effects of cadmium on growth performance, hematological, and immunological parameters of growing Japanese quail. Poult Sci 2024; 103:103457. [PMID: 38295500 PMCID: PMC10846401 DOI: 10.1016/j.psj.2024.103457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 02/02/2024] Open
Abstract
This study used 300 1-day-old, sexless, developing chicks of Japanese quail to estimate the ability of vitamin C and/or garlic to antagonize the venomous influence of cadmium (Cd) on the hematological, immunological, and performance characteristics of developing Japanese quail. The quail was separated into 5 similar groups of 60 chicks apiece, and 6 duplicates (10 each) were given to each sub-group. The control group received a basal diet without any supplements. The Cd group was nourished with a basal diet of + 80 mg cadmium chloride (CdCl2)/kg diet. The 3rd group was fed a basal diet + 80 mg CdCl2/kg diet and complemented with a 200 mg Vitamin C (Cd + C)/kg diet. The 4th group was nourished with a basal diet + 80 mg CdCl2/kg diet and complemented by a 500 mg dried garlic powder (Cd + G)/kg diet. The 5th group was fed a basal diet + 80 mg CdCl2/kg diet, complemented by a 200 mg vitamin C/kg diet + 500 mg dried garlic powder (Cd + CG)/kg diet. Results showed that in the 5th group in which cadmium was added together with Vit C + garlic, there was an improvement in both live weight gain (1-42 d) and feed consumption (1-21 and 1-42 d ) compared to the group in which Cd was added alone. The addition of Vit C alone and together with garlic seems to completely improve the cadmium-related increase in alkaline phosphatase (ALP), and Aspartate aminotransferase (AST), and Malondialdehyde (MDA) levels when compared to the control. Compared to cadmium-polluted diets, quail that got cadmium and feed additives significantly reduced cadmium residue. In addition, the cadmium group's serum immunoglobulin M (IgM) level decreased significantly. These data imply that dietary supplementation with (C) or (G) may be beneficial in retrogressing the drop in immunoglobulin G (IgG) and IgM caused by Cd and minimizing Cd's deleterious influence on immunity.
Collapse
Affiliation(s)
- Waleed M Dosoky
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Soha A Farag
- Department of Animal Production, Faculty of Agriculture, Tanta University, Egypt
| | - Areej A Almuraee
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Kingdom of Saudi Arabia
| | - Islam M Youssef
- Animal Production Research Institute, Agriculture Research Center, Dokki, Giza 12618, Egypt.
| | - Ohaad F A Awlya
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Kingdom of Saudi Arabia
| | - Wafaa F Abusudah
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Kingdom of Saudi Arabia
| | - Alaa Qadhi
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Kingdom of Saudi Arabia
| | - Ahmad F Arbaeen
- Clinical Laboratory Sciences Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, 21955, Kingdom of Saudi Arabia
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Hesham Hassan
- Department of Pathology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
| | | |
Collapse
|
105
|
Feng M, Zeng X, Lin Q, Wang Y, Wei H, Yang S, Wang G, Chen X, Guo M, Yang X, Hu J, Zhang Y, Yang X, Du Y, Zhao Y. Characterization of Chitosan-Gallic Acid Graft Copolymer for Periodontal Dressing Hydrogel Application. Adv Healthc Mater 2024; 13:e2302877. [PMID: 38041691 DOI: 10.1002/adhm.202302877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/09/2023] [Indexed: 12/03/2023]
Abstract
The postoperative periodontal wound is in a complex physiological environment; the bacteria accumulation, the saliva stimulation, and the food residues retention will aggravate the wound deterioration. Commercial periodontal dressings have been widely used for postoperative periodontal treatment, and there still exists some problems, such as poor biocompatibility, weak adhesion, insufficient antibacterial, and anti-inflammatory properties. In this study, a chitosan-gallic acid graft copolymer (CS-GA) is synthesized as a potential periodontal dressing hydrogel. CS-GA possesses high swelling rate, adjustable degradability, self-healing ability, biocompatibility, strong adhesion ability, high mechanical properties and toughness. Furthermore, CS-GA has good scavenging ability for ·OH, O2 - , and 1 O2. And CS-GA has good inhibition effect on different bacterial through bacterial membranes damage. CS-GA can stop bleeding in a short time and adsorb erythrocytes to form physical blood clots to enhance the hemostatic performance. In addition, CS-GA can reduce inflammatory factors expressions, increase collagen fibers deposition, and neovascularization to promote wounds healing, which makes it as a potential periodontal dressing for postoperative tissue restoration.
Collapse
Affiliation(s)
- Mengge Feng
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, P. R. China
| | - Xuelian Zeng
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Quan Lin
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yunxiao Wang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, P. R. China
| | - Hongjiang Wei
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, P. R. China
| | - Shanyi Yang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, P. R. China
| | - Guangwei Wang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xingyu Chen
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Mengqin Guo
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xin Yang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Jiangxia Laboratory, Wuhan, 430200, P. R. China
| | - Yufeng Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yangge Du
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, P. R. China
| | - Yanbing Zhao
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
106
|
Kim J, Kim BK, Moh SH, Jang G, Ryu JY. Investigation of the General Molecular Mechanisms of Gallic Acid via Analyses of Its Transcriptome Profile. Int J Mol Sci 2024; 25:2303. [PMID: 38396979 PMCID: PMC10888745 DOI: 10.3390/ijms25042303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Gallic acid (GA), a phenolic compound naturally found in many plants, exhibits potential preventive and therapeutic roles. However, the underlying molecular mechanisms of its diverse biological activities remain unclear. Here, we investigated possible mechanisms of GA function through a transcriptome-based analysis using LINCS L1000, a publicly available data resource. We compared the changes in the gene expression profiles induced by GA with those induced by FDA-approved drugs in three cancer cell lines (A549, PC3, and MCF7). The top 10 drugs exhibiting high similarity with GA in their expression patterns were identified by calculating the connectivity score in the three cell lines. We specified the known target proteins of these drugs, which could be potential targets of GA, and identified 19 potential targets. Next, we retrieved evidence in the literature that GA likely binds directly to DNA polymerase β and ribonucleoside-diphosphate reductase. Although our results align with previous studies suggesting a direct and/or indirect connection between GA and the target proteins, further experimental investigations are required to fully understand the exact molecular mechanisms of GA. Our study provides insights into the therapeutic mechanisms of GA, introducing a new approach to characterizing therapeutic natural compounds using transcriptome-based analyses.
Collapse
Affiliation(s)
- Jiyeon Kim
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea;
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea;
| | - Bo Kyung Kim
- Department of Biotechnology, Duksung Women’s University, 33 Samyang-Ro 144-Gil, Dobong-gu, Seoul 01369, Republic of Korea;
| | - Sang Hyun Moh
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea;
| | - Goo Jang
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea;
| | - Jae Yong Ryu
- Department of Biotechnology, Duksung Women’s University, 33 Samyang-Ro 144-Gil, Dobong-gu, Seoul 01369, Republic of Korea;
| |
Collapse
|
107
|
Lunardi VB, Cheng KC, Lin SP, Angkawijaya AE, Go AW, Soetaredjo FE, Ismadji S, Hsu HY, Hsieh CW, Santoso SP. Modification of cellulosic adsorbent via iron-based metal phenolic networks coating for efficient removal of chromium ion. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132973. [PMID: 37976845 DOI: 10.1016/j.jhazmat.2023.132973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Surface modification of durian rind cellulose (DCell) was done by utilizing the strong coordination effect of polyphenol-based metal phenolic networks (MPNs). MPNs from Fe(III)-tannic acid (FTN) and Fe(III)-gallic acid (FGN) were coated on DCell via a self-assembly reaction at pH 8, resulting in adsorbent composites of FTN@DCell and FGN@DCell for removal of Cr(VI). Batch adsorption experiments revealed that FTN coating resulted in an adsorbent composite with higher adsorption capacity than FGN coating, owing to the greater number of additional adsorption sites from phenolic hydroxyl groups of tannic acid. FTN@DCell exhibits an equilibrium adsorption capacity at 30°C of 110.9 mg/g for Cr(VI), significantly higher than FGN@DCell (73.63 mg/g); the adsorption capacity was increased at higher temperature (i.e., 155.8 and 116.8 mg/g at 50°C for FTN@DCell and FGN@DCell, respectively). Effects of pH, adsorbent dose, initial concentration, and coexisting ions on Cr(VI) removal were investigated. The kinetics fractal-based model Brouers-Sotolongo indicates the 1st and 2nd order reaction for Cr(VI) adsorption on FTN@DCell and FGN@DCell, respectively. The isotherm data can be described with a fractal-based model, which implies the heterogeneous nature of the adsorbent surface sites. The Cr(VI) adsorption via surface complexation with phenolic hydroxyl groups was confirmed by evaluating the functional groups shifting. FGN@DCell and FTN@DCell were found to have good reusability, maintaining over 50 % of their adsorption efficiency after four adsorption-desorption cycles. Environmental assessment with Arabidopsis thaliana demonstrated their potential in eliminating the Cr(VI) phytotoxic effect. Thus, this study has shown the efficient and economical conversion of durian waste into environmentally benign adsorbent for heavy metal treatment.
Collapse
Affiliation(s)
- Valentino Bervia Lunardi
- Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, East Java, Indonesia
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, 1 Roosevelt Rd., Section 4, Taipei 10617, Taiwan; Graduate Institute of Food Science and Technology, National Taiwan University, 1 Roosevelt Rd., Section 4, Taipei 10617, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, 91 Hsueh-Shih Rd., Taichung 40402, Taiwan; Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
| | - Shin-Ping Lin
- School of Food Safety, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Research Center of Biomedical Device, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
| | | | - Alchris Woo Go
- Chemical Engineering Department, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd., Taipei 10607, Taiwan
| | - Felycia Edi Soetaredjo
- Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, East Java, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Suryadi Ismadji
- Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, East Java, Indonesia
| | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong 518057, Hong Kong, China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, Hong Kong, China
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, South Dist., Taichung City 40227, Taiwan; Department of Medical Research, China Medical University Hospital, North Dist., Taichung City 404333, Taiwan
| | - Shella Permatasari Santoso
- Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, East Java, Indonesia.
| |
Collapse
|
108
|
Turnaturi R, Piana S, Spoto S, Costanzo G, Reina L, Pasquinucci L, Parenti C. From Plant to Chemistry: Sources of Antinociceptive Non-Opioid Active Principles for Medicinal Chemistry and Drug Design. Molecules 2024; 29:815. [PMID: 38398566 PMCID: PMC10892999 DOI: 10.3390/molecules29040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Pain is associated with many health problems and a reduced quality of life and has been a common reason for seeking medical attention. Several therapeutics are available on the market, although side effects, physical dependence, and abuse limit their use. As the process of pain transmission and modulation is regulated by different peripheral and central mechanisms and neurotransmitters, medicinal chemistry continues to study novel ligands and innovative approaches. Among them, natural products are known to be a rich source of lead compounds for drug discovery due to their chemical structural variety and different analgesic mechanisms. Numerous studies suggested that some chemicals from medicinal plants could be alternative options for pain relief and management. Previously, we conducted a literature search aimed at identifying natural products interacting either directly or indirectly with opioid receptors. In this review, instead, we have made an excursus including active ingredients derived from plants whose mechanism of action appears from the literature to be other than the modulation of the opioid system. These substances could, either by themselves or through synthetic and/or semi-synthetic derivatives, be investigated in order to improve their pharmacokinetic characteristics and could represent a valid alternative to the opioid approach to pain therapy. They could also be the basis for the study of new mechanisms of action in the approach to this complex and disabling pathology.
Collapse
Affiliation(s)
- Rita Turnaturi
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (R.T.); (S.P.)
| | - Silvia Piana
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (R.T.); (S.P.)
| | - Salvatore Spoto
- Department of Drug and Health Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (S.S.); (C.P.)
| | - Giuliana Costanzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Lorena Reina
- Postgraduate School of Clinical Pharmacology and Toxicology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Lorella Pasquinucci
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (R.T.); (S.P.)
| | - Carmela Parenti
- Department of Drug and Health Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (S.S.); (C.P.)
| |
Collapse
|
109
|
Pisoschi AM, Iordache F, Stanca L, Cimpeanu C, Furnaris F, Geicu OI, Bilteanu L, Serban AI. Comprehensive and critical view on the anti-inflammatory and immunomodulatory role of natural phenolic antioxidants. Eur J Med Chem 2024; 265:116075. [PMID: 38150963 DOI: 10.1016/j.ejmech.2023.116075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
The immune response encompasses innate and adaptive immunity, each with distinct and specific activities. The innate immune system is constituted by phagocytic cells, macrophages, monocytes and neutrophils, the cascade system, and different classes of receptors such as toll-like receptors that are exploited by the innate immune cells. The adaptive immune system is antigen-specific, encompassing memory lymphocytes and the corresponding specific receptors. Inflammation is understood as an activation of different signaling pathways such as toll-like receptors or nuclear factor kappa-light-chain-enhancer of activated B cells, with an increase in nitric oxide, inflammatory cytokines and chemokines. Increased oxidative stress has been identified as main source of chronic inflammation. Phenolic antioxidants modulate the activities of lymphocytes and macrophages by impacting cytokines and nitric oxide release, exerting anti-inflammatory effect. The nuclear-factor kappa-light-chain-enhancer of activated B cells signaling pathway and the mitogen-activated protein kinase pathway are targeted, alongside an increase in nuclear factor erythroid 2-related factor mediated antioxidant response, triggering the activity of antioxidant enzymes. The inhibitive potential on phospholipase A2, cyclooxygenase and lipoxygenase in the arachidonic acid pathway, and the subsequent reduction in prostaglandin and leukotriene generation, reveals the potential of phenolics as inflammation antagonists. The immunomodulative potential encompasses the capacity to interfere with proinflammatory cytokine synthesis and with the expression of the corresponding genes. A diet rich in antioxidants can result in prevention of inflammation-related pathologies. More investigations are necessary to establish the role of these antioxidants in therapy. The appropriate delivery system and the prooxidant effects exhibited at large doses, or in the presence of heavy metal cations should be regarded.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Carmen Cimpeanu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Land Reclamation and Environmental Engineering, 59 Marasti Blvd, 011464, Bucharest, Romania
| | - Florin Furnaris
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Ovidiu Ionut Geicu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Liviu Bilteanu
- Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| |
Collapse
|
110
|
Chen Z, Li S, Yang F, Yue W. Construction of a colorimetric sensor array for the identification of phenolic compounds by the laccase-like activity of N-doped manganese oxide. Talanta 2024; 268:125324. [PMID: 37951179 DOI: 10.1016/j.talanta.2023.125324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/25/2023] [Accepted: 10/17/2023] [Indexed: 11/13/2023]
Abstract
Phenolic compounds, widely distributed in nature, encompass a diverse array of bioactive and antioxidant properties. The detection of different phenolic compound types holds paramount importance in elucidating their bioactivity and health effects, ensuring the quality and safety of food and drugs. Consequently, the development of simple, rapid, and cost-effective colorimetric sensing arrays capable of simultaneous phenolic compound detection has emerged as a prominent research pursuit. In this study, we present a one-step hydrothermal synthesis of N-doped MnO2 nanoflowers (NMF). NMF possess an extensive specific surface area and abundant oxygen vacancies, effectively mimicking the activity of natural laccase. Leveraging this laccase-like activity, NMF demonstrates the ability to catalyze various phenolic compounds, generating distinctive fingerprint signals. Notably, the developed colorimetric sensing array exhibits remarkable efficacy in effectively identifying and differentiating phenolic compounds within complex mixtures. Furthermore, the NMF colorimetric sensing array demonstrates successful identification of phenolic compounds in diverse environments, including food and urine samples. Overall, this study provides new insights into the design of transition metal materials for the simulation of laccase and colorimetric sensing arrays. It provides a promising avenue for the development of advanced detection platforms for phenolic compounds.
Collapse
Affiliation(s)
- Zihui Chen
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Shuaiwen Li
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Feng Yang
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Wanqing Yue
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, People's Republic of China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, People's Republic of China.
| |
Collapse
|
111
|
Chen Q, Yang ZR, Du S, Chen S, Zhang L, Zhu J. Polyphenol-sodium alginate supramolecular injectable hydrogel with antibacterial and anti-inflammatory capabilities for infected wound healing. Int J Biol Macromol 2024; 257:128636. [PMID: 38065459 DOI: 10.1016/j.ijbiomac.2023.128636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/21/2023] [Accepted: 12/03/2023] [Indexed: 01/26/2024]
Abstract
Injectable hydrogel has attracted appealing attention for skin wound treatment. Although multifunctional injectable hydrogels can be prepared by introducing bioactive ingredients with antibacterial and anti-inflammatory capabilities, their preparation remains complicated. Herein, a polyphenol-based supramolecular injectable hydrogel (PBSIH) based on polyphenol gallic acid and biological macromolecule sodium alginate is developed as a wound dressing to accelerate wound healing. We show that such PBSIH can be rapidly formed within 15 s by mixing the sodium alginate and gallic acid solutions based on the hydrogen bonding and hydrophobic interactions. The PBSIH shows excellent cytocompatibility, antibacterial, and antioxidant properties, which enhance infected wound healing by inhibiting bacterial infection and alleviating inflammation after treatment of 11 days. Moreover, we show that the preparative strategies of injectable supramolecular hydrogels can be extended to other polyphenols, including protocatechuic and tannic acids. This study provides a facile yet highly effective method to design injectable polyphenol- sodium alginate hydrogel for wound dressing based on naturally bioactive ingredients.
Collapse
Affiliation(s)
- Qiang Chen
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhuo-Ran Yang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuo Du
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Senbin Chen
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lianbin Zhang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
112
|
Che M, Su H, Si H, Guo B, Huang R, Zhao J, Su R. Efficient composite chlorinated ethenes removal using gallic acid to enhance Fe/Ni nanoparticles activated persulfate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:9421-9432. [PMID: 38191731 DOI: 10.1007/s11356-024-31823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/29/2023] [Indexed: 01/10/2024]
Abstract
As the representative volatile chlorinated hydrocarbons detected in wastewater, the removal of composite chlorinated ethenes is a major challenge in wastewater treatment. In the present study, an efficient removal system for composite chlorinated ethenes was reported, in which gallic acid was used to enhance the activation of persulfate by Fe/Ni nanoparticles. The influences of gallic acid-Fe/Ni and persulfate concentrations, initial pH value, reaction temperature, inorganic anions, and natural organic matters were evaluated in the composite chlorinated ethenes removal. Our results showed that the gallic acid-Fe/Ni-persulfate system with 9.0 mM of gallic acid-Fe/Ni and 30.0 mM of persulfate yielded about 100% trichloroethylene removal and 97.3%-98.6% perchloroethylene removal in the pH range of 3.0-12.0. Electron paramagnetic resonance analysis and radical quenching experiments indicated that SO4•- and •OH were the predominant radical species under acidic and alkaline conditions. Ultraviolet visible spectroscopy and inductively coupled plasma optical emission spectrometer tests revealed the Fe-gallic acid chelation could regulate the concentration of iron ions and improve the reactivity of gallic acid-Fe/Ni. These results demonstrated that the gallic acid-Fe/Ni-persulfate system was a promising strategy for treating composite chlorinated ethenes-containing wastewater.
Collapse
Affiliation(s)
- Mingda Che
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Hongjian Su
- 514 Brigade of North China Geological Exploration Bureau, Chengde, 067000, People's Republic of China
| | - Huimin Si
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Bin Guo
- 514 Brigade of North China Geological Exploration Bureau, Chengde, 067000, People's Republic of China
| | - Renliang Huang
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jing Zhao
- 514 Brigade of North China Geological Exploration Bureau, Chengde, 067000, People's Republic of China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
113
|
Zhang H, Wang Q, Wang J, Zhang S, Jia W, He N, Xia X, Wang T, Lai L, Li J, DU J, Olaleye OE, Chen X, Yang J, Li C. Composition analysis of Compound Shenhua Tablet, a seven-herb Chinese medicine for IgA nephropathy: evaluation of analyte-capacity of the assays. Chin J Nat Med 2024; 22:178-192. [PMID: 38342570 DOI: 10.1016/s1875-5364(24)60553-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Indexed: 02/13/2024]
Abstract
Compound Shenhua Tablet, a medicine comprising seven herbs, is employed in treating IgA nephropathy. This study aimed to meticulously analyze its chemical composition. Based on a list of candidate compounds, identified through extensive literature review pertinent to the tablet's herbal components, the composition analysis entailed the systematic identification, characterization, and quantification of the constituents. The analyte-capacity of LC/ESI-MS-based and GC/EI-MS-based assays was evaluated. The identified and characterized constituents were quantified to determine their content levels and were ranked based on the constituents' daily doses. A total of 283 constituents, classified into 12 distinct categories, were identified and characterized in the Compound Shenhua Tablet. These constituents exhibited content levels of 1-10 982 μg·g-1, with daily doses of 0.01-395 μmol·d-1. The predominant constituents, with daily doses of ≥ 10 μmol·d-1, include nine organic acids (citric acid, quinic acid, chlorogenic acid, cryptochlorogenic acid, gallic acid, neochlorogenic acid, isochlorogenic acid C, isochlorogenic acid B, and linoleic acid), five iridoids (specnuezhenide, nuezhenoside G13, nuezhenidic acid, secoxyloganin, and secologanoside), two monoterpene glycosides (paeoniflorin and albiflorin), a sesquiterpenoid (curzerenone), a triterpenoid (oleanolic acid), and a phenylethanoid (salidroside). Additionally, there were 83, 126, and 55 constituents detected in the medicine with daily doses of 1-10, 0.1-1, and 0.01-0.1 μmol·d-1, respectively. The combination of the LC/ESI-MS-based and GC/EI-MS-based assays demonstrated a complementary relationship in their analyte-capacity for detecting the constituents present in the medicine. This comprehensive composition analysis establishes a solid foundation for further pharmacological research on Compound Shenhua Tablet and facilitates the quality evaluation of this complex herbal medicine.
Collapse
Affiliation(s)
- Haiyan Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qiuyue Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Sichao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weiwei Jia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ning He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaoyan Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ting Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liyu Lai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaying Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing DU
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Olajide E Olaleye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China.
| | - Junling Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| | - Chuan Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China; Zhongshan Institute for Drug Discovery, Zhongshan 528400, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
114
|
Bei Z, Zhang L, Li J, Tong Q, Shi K, Chen W, Yu Y, Sun A, Xu Y, Liu J, Qian Z. A Smart Stimulation-Deadhesion and Antimicrobial Hydrogel for Repairing Diabetic Wounds Infected with Methicillin-Resistant Staphylococcus aureus. Adv Healthc Mater 2024; 13:e2303042. [PMID: 37786308 DOI: 10.1002/adhm.202303042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/28/2023] [Indexed: 10/04/2023]
Abstract
The healing of chronic diabetic wounds is a common and significant challenge in the medical field. Despite extensive efforts, the development of hydrogel dressings with satisfactory functionality remains an ongoing concern. In this study, a multifunctional hydrogel wound dressing (PAN/Ag-PLG) with adhesion, antibacterial, hemostatic, and other properties, which can effectively repair diabetic wounds infected with methicillin-resistant Staphylococcus aureus (MRSA), is presented. The hydrogel dressing is composed of gallic acid (GA)-functionalized polylysine (PL)-reduced silver nanoparticles (Ag-PLG), oxidized hyaluronic acid (OHA), and cross-linked polyacrylic acid grafted with N-hydrosuccinimide ester. Notably, compared to most conventional wound dressing that lack adhesion or are difficult to remove, the prepared hydrogels exhibit excellent adhesion and mild stimulation-triggered detachment. In vitro and in vivo experiments reveal that the PAN/Ag-PLG hydrogel exhibits outstanding biocompatibility and antibacterial properties and promotes diabetic wound repair by reducing oxidative damage and promoting cell migration and angiogenesis. The smart PAN/Ag-PLG hydrogel reported in this study provides an approach for the potential clinical development of painless antibacterial dressings.
Collapse
Affiliation(s)
- Zhongwu Bei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Linghong Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianan Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qi Tong
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kun Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wen Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Yu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ao Sun
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Xu
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
115
|
Encarnação S, Lima K, Malú Q, Caldeira GI, Duarte MP, Rocha J, Lima BS, Silva O. An Integrated Approach to the Anti-Inflammatory, Antioxidant, and Genotoxic Potential of Portuguese Traditional Preparations from the Bark of Anacardium occidentale L. PLANTS (BASEL, SWITZERLAND) 2024; 13:420. [PMID: 38337956 PMCID: PMC10857173 DOI: 10.3390/plants13030420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Anacardium occidentale L. stem bark Traditional Herbal Preparations (AoBTHPs) are widely used in traditional medicine to treat inflammatory conditions, such as diabetes. The present study aims to evaluate the anti-inflammatory, antioxidant, and genotoxic potential of red and white Portuguese AoBTHPs. Using a carrageenan-induced rat paw edema model, a significant anti-edema effect was observed for all tested doses of white AoBTHP (40.2, 71.5, and 127.0 mg/kg) and the two highest doses of red AoB THP (71.5 and 127.0 mg/kg). The anti-edema effect of red AoBTHP's highest dose was much more effective than indomethacin 10 mg/kg, Trolox 30 mg/kg, and Tempol 30 mg/kg. In DPPH, FRAP, and TAC using the phosphomolybdenum method, both types of AoBTHPs showed similar antioxidant activity and no genotoxicity up to 5000 µg/plate in the Ames test. The LC-UV/DAD-ESI/MS fingerprint allowed the identification of gallic and protocatechuic acids as the two main marker compounds and the presence of catechin, epicatechin, epigallocatechin gallate, and ellagic acid in both AoBTHPs. The obtained results support the validation of red and white AoB and their THPs as anti-inflammatory agents and contribute to the possible development of promising new therapeutic options to treat inflammatory conditions.
Collapse
Affiliation(s)
- Sofia Encarnação
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (S.E.); (K.L.); (Q.M.); (G.I.C.); (J.R.); (B.S.L.)
| | - Katelene Lima
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (S.E.); (K.L.); (Q.M.); (G.I.C.); (J.R.); (B.S.L.)
| | - Quintino Malú
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (S.E.); (K.L.); (Q.M.); (G.I.C.); (J.R.); (B.S.L.)
| | - Gonçalo I. Caldeira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (S.E.); (K.L.); (Q.M.); (G.I.C.); (J.R.); (B.S.L.)
| | - Maria Paula Duarte
- MEtRICs/NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Almada, Portugal;
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (S.E.); (K.L.); (Q.M.); (G.I.C.); (J.R.); (B.S.L.)
| | - Beatriz Silva Lima
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (S.E.); (K.L.); (Q.M.); (G.I.C.); (J.R.); (B.S.L.)
| | - Olga Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (S.E.); (K.L.); (Q.M.); (G.I.C.); (J.R.); (B.S.L.)
| |
Collapse
|
116
|
Zhang S, Liu Z, Zhang H, Zhou X, Wang X, Chen Y, Miao X, Zhu Y, Jiang W. Effect and mechanism of Qing Gan Zi Shen decoction on heart damage induced by obesity and hypertension. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117163. [PMID: 37741474 DOI: 10.1016/j.jep.2023.117163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/15/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qing Gan Zi Shen Decoction (QGZS) is a traditional Chinese formula. It has been extensively used for decades in the treatment of hypertension combined with metabolic diseases, but its cardioprotective effects and underlying mechanisms are poorly understood. AIM OF THE STUDY To explore the cardioprotective effects and potential mechanisms of QGZS in an animal model of obese hypertension. MATERIALS AND METHODS In this study, spontaneously hypertensive rats (SHRs) were utilized as an animal model to examine the effects of a high-fat diet and two concentrations of QGZS. Echocardiography, hematoxylin eosin (H&E) staining, and wheat germ agglutinin (WGA) staining were employed to assess the cardiac structure and function of the SHRs throughout a 16-week therapy period. Furthermore, Western blotting (WB) and immunofluorescence (IF) were employed to identify the levels of Nrf2 expression in the mitochondria, cytoplasm, and nucleus of the myocardium. Additionally, transmission electron microscopy and enzyme-linked immunosorbent assay (ELISA) were utilized to measure mitochondrial morphology and pro-inflammatory cytokine levels, respectively. Furthermore, Western blotting (WB), immunohistochemistry (IHC), and immunofluorescence (IF) techniques were employed to quantify the levels of marker proteins associated with myocardial fibrosis, cardiac inflammation, oxidative stress, and mitochondrial dysfunction. RESULTS QGZS inhibited weight gain and depressed systolic and mean arterial pressures in high-fat-fed SHRs. Echocardiographic results demonstrated that QGZS prevented the increase in left ventricular mass, restricted the growth of left ventricular diameter, and improved ejection fraction (EF), fractional shortening (FS), and the ratio of early diastolic peak velocity of transmitral flow (E) to late diastolic peak velocity (A) in high-fat-fed SHRs. This suggested that QGZS prevented ventricular remodeling and protected cardiac systolic and diastolic functions. H&E and WGA staining showed that QGZS improved cardiomyocyte disorders and restricted cardiomyocyte hypertrophy. The underlying mechanisms, QGZS attenuated the oxidative stress state, including reducing the generation of reactive oxygen species (ROS) in the myocardium, revitalizing the antioxidant enzyme system, and protecting mitochondrial function. Moreover, QGZS alleviated the pro-inflammatory state in high-fat-fed SHRs. What's more, QGZS significantly increased the expression level of Nrf2 in nuclei and mitochondria in rat heart tissues, exerting a proximate Nrf2 agonist effect. CONCLUSIONS QGZS exerted cardioprotective effects, in part due to its increasing expression of Nrf2 protein in the heart, which promoted Nrf2 nuclear expression.
Collapse
Affiliation(s)
- Shujie Zhang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Zitian Liu
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Han Zhang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Xiaonian Zhou
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Xiuming Wang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Yan Chen
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Xiaofan Miao
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Yao Zhu
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China.
| | - Weimin Jiang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
117
|
Daniele-Silva A, Parente AMES, de Sousa Ferreira S, Pontes da Silva D, Torres-Rêgo M, Cavalcanti FF, Assunção Ferreira MR, de Freitas Fernandes-Pedrosa M, Lira Soares LA. In vitro and in vivo anti-inflammatory and antiophidic effects of the extract and fraction of Eugenia uniflora. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117223. [PMID: 37748636 DOI: 10.1016/j.jep.2023.117223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eugenia uniflora Linn, popularly known as 'pitanga', is a native plant endemic to Brazil that belongs to the Myrtaceae family. Its traditional use (leaves infusion) has been reported for the treatment of different diseases, including hypertension, inflammation, and as a diuretic agent. Considering the snakebite problem and the rich molecule repertoire of this herbal species, studies that evaluate its antiophidic potential are relevant for a broad social impact. AIM OF THE STUDY This approach aims to evaluate the anti-inflammatory and antiophidic potential in vitro and in vivo of the extract (aqueous) and a fraction (ethyl acetate) of E. uniflora leaves against Bothrops leucurus and Bothrops brazili venoms. MATERIALS AND METHODS Extract and fraction from E. uniflora leaves were obtained by turbo-extraction and partitioning. The cytotoxicity was assayed on normal cell lines (Vero E6 and 3T3) using the 3-methyl-[4-5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide method. The anti-inflammatory activity of the aqueous extract was analyzed in vivo in the zymosan-induced air pouch model, and the leukocytes migration and other molecular inflammatory mediators quantified (myeloperoxidase, total protein, pro-inflammatory cytokine, malondialdehyde, and glutathione). In vitro, the antiophidic effect was evaluated by the ability of the E. uniflora extract and fraction to inhibit the enzymatic action (proteolytic, phospholipase A2, and hyaluronidase) of B. leucurus and B. brazili venoms. In addition, the antiophidic action in vivo was investigated after treatment with E. uniflora extract and fraction (50, 100, and 200 mg/kg) in the B. leucurus venom-induced paw edema with an evaluation of the antiedematogenic effect and quantification of myeloperoxidase (MPO) and pro-inflammatory cytokine levels. RESULTS The E. uniflora leaves extract (7.8-125 mg/mL) revealed no toxicity in cell culture, but reduced MTT by 47% at the highest concentration (250 mg/mL) in Vero E6 cells. In contrast, the E. uniflora fraction (7.8-250 mg/mL) showed no cytotoxicity for both cell lines. In the air pouch model, E. uniflora leaves extract demonstrated anti-inflammatory activity, reducing cell migration, MPO activity, protein, malondialdehyde, and proinflammatory cytokines, and increased glutathione levels. Evaluating the antiophidic action in vitro, E. uniflora extract and fraction inhibited the proteolytic, phospholipase, and hyaluronidase effects of B. leucurus and B. brazili venoms at low concentrations. In addition, the extract and fraction also demonstrated in vivo antiophidic activity by reducing edema in the first 0.5 h after treatment, besides reducing MPO and pro-inflammatory cytokines levels. CONCLUSION E. uniflora leaves extract showed cytotoxicity only at the highest concentration while the fraction revealed no toxic effect in vitro. This approach showed for the first time that the aqueous extract and ethyl acetate fraction of E. uniflora leaves has similar antiophidic action in vitro and in vivo, with antiedematogenic and anti-inflammatory effects and the ability to inhibit the enzymatic action of B. leucurus and B. brazili venoms. Therefore, this study points to the presence of bioactive components in the leaves of E. uniflora useful for the treatment of inflammatory disorders and ophidian accidents, expanding the therapeutic potential of this herbal species.
Collapse
Affiliation(s)
- Alessandra Daniele-Silva
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil; Laboratory of Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Brazil
| | - Adriana Marina E Silva Parente
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil; Laboratory of Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Brazil
| | - Sarah de Sousa Ferreira
- Laboratory of Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Brazil
| | - Diana Pontes da Silva
- Laboratory of Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Brazil
| | - Manoela Torres-Rêgo
- Laboratory of Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Brazil; Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, Brazil
| | - Felipe França Cavalcanti
- Laboratory of Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Brazil; Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, Brazil
| | | | | | - Luiz Alberto Lira Soares
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil.
| |
Collapse
|
118
|
Huamán-Castilla NL, Díaz Huamaní KS, Palomino Villegas YC, Allcca-Alca EE, León-Calvo NC, Colque Ayma EJ, Zirena Vilca F, Mariotti-Celis MS. Exploring a Sustainable Process for Polyphenol Extraction from Olive Leaves. Foods 2024; 13:265. [PMID: 38254566 PMCID: PMC10814471 DOI: 10.3390/foods13020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/01/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Olive leaves are residues from pruning and harvesting and are considered an environmental management problems. Interestingly, these residues contain high polyphenol concentrations, which can be used to treat chronic diseases. However, these compounds are a technological challenge due to their thermolability and reactivity during extraction. Thus, this study assessed the use of pressurized liquid extraction (PLE) with green solvents like water-ethanol and water-glycerol mixtures (0-15%) at 50 °C and 70 °C to yield polyphenol-rich antioxidant extracts with reduced glucose and fructose content. The use of 30% ethanol at 70°C presented the highest polyphenol content (15.29 mg gallic acid equivalent/g dry weight) and antioxidant capacity, which was expressed as IC50 (half maximal inhibitory concentration): 5.49 mg/mL and oxygen radical absorbance capacity (ORAC): 1259 μmol Trolox equivalent/g dry weight, as well as lower sugar content (glucose: 3.75 mg/g dry weight, fructose: 5.68 mg/g dry weight) compared to water-glycerol mixtures. Interestingly, ethanol exhibits a higher degree of effectiveness in recovering flavanols, stilbenes and secoiridoids, while glycerol improves the extraction of phenolic acids and flavonols. Therefore, to enhance the efficiency of polyphenol recovery during the PLE process, it is necessary to consider its solvent composition and chemical structure.
Collapse
Affiliation(s)
- Nils Leander Huamán-Castilla
- Escuela de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Prolongación Calle Ancash s/n, Moquegua 18001, Peru; (K.S.D.H.); (Y.C.P.V.); (E.E.A.-A.); (N.C.L.-C.)
- Laboratorio de Tecnologías Sustentables para la Extracción de Compuestos de Alto Valor, Instituto de Investigación para el Desarrollo del Perú (IINDEP), Universidad Nacional de Moquegua, Prolongación Calle Ancash s/n, Moquegua 18001, Peru
| | - Karla Syndel Díaz Huamaní
- Escuela de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Prolongación Calle Ancash s/n, Moquegua 18001, Peru; (K.S.D.H.); (Y.C.P.V.); (E.E.A.-A.); (N.C.L.-C.)
- Laboratorio de Tecnologías Sustentables para la Extracción de Compuestos de Alto Valor, Instituto de Investigación para el Desarrollo del Perú (IINDEP), Universidad Nacional de Moquegua, Prolongación Calle Ancash s/n, Moquegua 18001, Peru
| | - Yolanda Cristina Palomino Villegas
- Escuela de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Prolongación Calle Ancash s/n, Moquegua 18001, Peru; (K.S.D.H.); (Y.C.P.V.); (E.E.A.-A.); (N.C.L.-C.)
- Laboratorio de Tecnologías Sustentables para la Extracción de Compuestos de Alto Valor, Instituto de Investigación para el Desarrollo del Perú (IINDEP), Universidad Nacional de Moquegua, Prolongación Calle Ancash s/n, Moquegua 18001, Peru
| | - Erik Edwin Allcca-Alca
- Escuela de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Prolongación Calle Ancash s/n, Moquegua 18001, Peru; (K.S.D.H.); (Y.C.P.V.); (E.E.A.-A.); (N.C.L.-C.)
- Laboratorio de Tecnologías Sustentables para la Extracción de Compuestos de Alto Valor, Instituto de Investigación para el Desarrollo del Perú (IINDEP), Universidad Nacional de Moquegua, Prolongación Calle Ancash s/n, Moquegua 18001, Peru
| | - Nilton Cesar León-Calvo
- Escuela de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Prolongación Calle Ancash s/n, Moquegua 18001, Peru; (K.S.D.H.); (Y.C.P.V.); (E.E.A.-A.); (N.C.L.-C.)
- Laboratorio de Tecnologías Sustentables para la Extracción de Compuestos de Alto Valor, Instituto de Investigación para el Desarrollo del Perú (IINDEP), Universidad Nacional de Moquegua, Prolongación Calle Ancash s/n, Moquegua 18001, Peru
| | - Elvis Jack Colque Ayma
- Laboratorio de Contaminantes Orgánicos y Ambiente, Instituto de Investigación para el Desarrollo del Perú (IINDEP), Universidad Nacional de Moquegua, Moquegua 18001, Peru; (E.J.C.A.); (F.Z.V.)
| | - Franz Zirena Vilca
- Laboratorio de Contaminantes Orgánicos y Ambiente, Instituto de Investigación para el Desarrollo del Perú (IINDEP), Universidad Nacional de Moquegua, Moquegua 18001, Peru; (E.J.C.A.); (F.Z.V.)
| | | |
Collapse
|
119
|
Vlase AM, Toiu A, Gligor O, Muntean D, Casian T, Vlase L, Filip A, Bȃldea I, Clichici S, Decea N, Moldovan R, Toma VA, Virag P, Crișan G. Investigation of Epilobium hirsutum L. Optimized Extract's Anti-Inflammatory and Antitumor Potential. PLANTS (BASEL, SWITZERLAND) 2024; 13:198. [PMID: 38256751 PMCID: PMC10819739 DOI: 10.3390/plants13020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Epilobium hirsutum L., commonly known as hairy willowherb, is a perennial herbaceous plant native to Europe and Asia. In Romania, the Epilobium genus includes 17 species that are used in folk medicine for various purposes. This study aimed to investigate the anti-inflammatory and antitumor potential of the optimized extract of Epilobium hirsutum (EH) in animal models. The first study investigated the anti-inflammatory properties of EH optimized extract and the model used was carrageenan-induced paw inflammation. Wistar rats were divided into three groups: negative control, positive control treated with indomethacin, and a group treated with the extract. Oxidative stress markers, cytokine levels, and protein expressions were assessed. The extract demonstrated anti-inflammatory properties comparable to those of the control group. In the second study, the antitumor effects of the extract were assessed using the tumor model of Ehrlich ascites carcinoma. Swiss albino mice with Ehrlich ascites were divided into four groups: negative, positive treated with cyclophosphamide (Cph), Group 3 treated with Cph and EH optimized extract, and Group 4 treated with extract alone. Samples from the ascites fluid, liver, and heart were analyzed to evaluate oxidative stress, inflammation, and cancer markers. The extract showed a reduction in tumor-associated inflammation and oxidative stress. Overall, the EH optimized extract exhibited promising anti-inflammatory and antitumor effects in the animal models studied. These findings suggest its potential as a natural adjuvant therapeutic agent for addressing inflammation and oxidative stress induced by different pathologies.
Collapse
Affiliation(s)
- Ana-Maria Vlase
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.-M.V.); (O.G.); (G.C.)
| | - Anca Toiu
- Department of Pharmacognosy, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Octavia Gligor
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.-M.V.); (O.G.); (G.C.)
| | - Dana Muntean
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.M.); (T.C.)
| | - Tibor Casian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.M.); (T.C.)
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.M.); (T.C.)
| | - Adriana Filip
- Department of Physiology, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.F.); (S.C.); (N.D.); (R.M.)
| | - Ioana Bȃldea
- Department of Physiology, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.F.); (S.C.); (N.D.); (R.M.)
| | - Simona Clichici
- Department of Physiology, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.F.); (S.C.); (N.D.); (R.M.)
| | - Nicoleta Decea
- Department of Physiology, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.F.); (S.C.); (N.D.); (R.M.)
| | - Remus Moldovan
- Department of Physiology, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.F.); (S.C.); (N.D.); (R.M.)
| | - Vlad-Alexandru Toma
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii Street, 400015 Cluj-Napoca, Romania;
- Institute of Biological Research, Branch of NIRDBS, 48 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Piroska Virag
- Department of Radiobiology and Tumor Biology, The Oncology Institute “Prof. Dr. Ion Chiricuță”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania;
| | - Gianina Crișan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.-M.V.); (O.G.); (G.C.)
| |
Collapse
|
120
|
Sharaf-El-Deen S, Soliman S, Brakat R. Evaluation of the antiparasitic and antifibrotic effects of gallic acid on experimental hepatic schistosomiasis mansoni. J Helminthol 2024; 98:e3. [PMID: 38167243 DOI: 10.1017/s0022149x23000937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Schistosomiasis afflicts approximately 120 million individuals globally. The hepatic pathology that occurs due to egg-induced granuloma and fibrosis is commonly attributed to this condition. However, there is currently no efficacious treatment available for either of these conditions.Our study aimed to investigate the potential antifibrotic and antiparasitic properties of different doses of gallic acid (GA) in experimental schistosomiasis mansoni. In addition, we investigated the outcomes of co-administering it with the standard anti-schistosomiasis treatment, praziquantel (PZQ).In experiment I, Schistosoma mansoni-infected mice were administered GA at doses of 10, 20, or 40 mg/kg. Their effectiveness was evaluated through parasitological (worm and egg loads, granuloma number and diameter), pathological (fibrosis percentage and H-score of hepatic stellate cells (HSCs)), and functional (liver enzymes) tests. In experiment II, we investigated the optimal dosage that yielded the best outcomes. This dosage was administered in conjunction with PZQ and was evaluated regarding the parasitological, pathological, functional, and immunological (fibrosis-regulating cytokines) activities.Our findings indicate that the administration of 40 mg/kg GA exhibited the highest level of effectiveness in experiment I. In experiment II, it exhibited lower antiparasitic efficacy in comparison to PZQ. However, it surpassed PZQ in other tests. It showed enhanced outcomes when combined with PZQ.In conclusion, our findings reveal that GA only slightly increased the antischistosomal activity of PZQ. However, it was linked to decreased fibrosis, particularly when administrated with PZQ. Our pilot study identifies GA as a natural antifibrotic agent, which could be administered with PZQ to mitigate the development of fibrosis.
Collapse
Affiliation(s)
- S Sharaf-El-Deen
- Parasitology Department, Faculty of Medicine, Menoufia University, Shebin-el-kom, Menoufia, Egypt
| | - S Soliman
- Public Health and Community Medicine Department, Faculty of Medicine, Menoufia University, Shebin-el-kom, Menoufia, Egypt
| | - R Brakat
- Parasitology Department, Faculty of Medicine, Menoufia University, Shebin-el-kom, Menoufia, Egypt
| |
Collapse
|
121
|
Momeni Z, Danesh S, Ahmadpour M, Eshraghi R, Farkhondeh T, Pourhanifeh MH, Samarghandian S. Protective Roles and Therapeutic Effects of Gallic Acid in the Treatment of Cardiovascular Diseases: Current Trends and Future Directions. Curr Med Chem 2024; 31:3733-3751. [PMID: 37815180 DOI: 10.2174/0109298673259299230921150030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/19/2023] [Accepted: 08/18/2023] [Indexed: 10/11/2023]
Abstract
Cardiovascular diseases (CVDs) are serious life-threatening illnesses and significant problematic issues for public health having a heavy economic burden on all society worldwide. The high incidence of these diseases as well as high mortality rates make them the leading causes of death and disability. Therefore, finding novel and more effective therapeutic methods is urgently required. Gallic acid, an herbal medicine with numerous biological properties, has been utilized in the treatment of various diseases for thousands of years. It has been demonstrated that gallic acid possesses pharmacological potential in regulating several molecular and cellular processes such as apoptosis and autophagy. Moreover, gallic acid has been investigated in the treatment of CVDs both in vivo and in vitro. Herein, we aimed to review the available evidence on the therapeutic application of gallic acid for CVDs including myocardial ischemia-reperfusion injury and infarction, drug-induced cardiotoxicity, hypertension, cardiac fibrosis, and heart failure, with a focus on underlying mechanisms.
Collapse
Affiliation(s)
- Zahra Momeni
- Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sepideh Danesh
- Research Hub Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Ahmadpour
- Research Hub Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Eshraghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Hub Institute, Tehran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Saeed Samarghandian
- University of Neyshabur Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
122
|
Zhang L, Ye Q, Gan S, Liu H, Zhang Q, Wang S, Cheng C. Gallic Acid Alleviates Psoriasis Keratinization and Inflammation by Regulating BRD4 Expression. Folia Biol (Praha) 2024; 70:53-61. [PMID: 38830123 DOI: 10.14712/fb2024070010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Psoriasis is a chronic non-contagious autoimmune disease. Gallic acid is a natural compound with potential health benefits, including antioxidant, anticancer, antiviral and antibacterial properties. Nevertheless, the influence of gallic acid on psoriasis has not been fully determined. This investigation aimed to discover the effect of gallic acid on psoriasis. Thirty-one pairs of psoriatic skin tissues and healthy adult human skin tissues were collected. Human keratinocytes (HaCaT cells) were transfected with interleukin 17A (IL-17A) to create the psoriatic keratinocyte model. The content of bromodomain-containing protein 4 (BRD4) microRNA was assessed using qRT-PCR testing. The content of BRD4 was detected by Western blotting. Cell migration was evaluated by conducting a wound healing assay. Cell proliferation was determined using an EdU assay. Apoptosis was detected by the TUNEL assay. The contents of interferon gamma (IFN-γ), IL-6, IL-8 and IL-17 were detected by ELISA. BRD4 was up-regulated in psoriatic skin tissues and in the IL-17A group compared to the healthy adult human skin tissues and the control group. Silencing BRD4 inhibited cell migration, proliferation and inflammatory response but induced apoptosis in IL-17A-treated HaCaT cells. Conversely, BRD4 over-expression promoted cell migration, proliferation and inflammatory response but suppressed apoptosis in IL-17A-treated HaCaT cells. Gallic acid repressed cell migration, proliferation and inflammatory response but indu-ced apoptosis in HaCaT cells transfected with IL-17A by down-regulating BRD4. Gallic acid represses cell migration, proliferation and inflammatory response but induces apoptosis in IL-17A-transfected HaCaT cells by down-regulating BRD4.
Collapse
Affiliation(s)
- Li Zhang
- Dermatology Department, ShenZhen Qianhai Shekou Free Trade Zone Hospital, China
| | - Qiaoyuan Ye
- Department of Dermatology and Venereology, Second Clinical Medical College of Guangdong Medical University, China
| | - Saiyang Gan
- Dermatology Department, ShenZhen Qianhai Shekou Free Trade Zone Hospital, China
| | - Huan Liu
- Dermatology Department, ShenZhen Qianhai Shekou Free Trade Zone Hospital, China
| | - Qing Zhang
- Dermatology Department, ShenZhen Qianhai Shekou Free Trade Zone Hospital, China
| | - Shuangshuang Wang
- Dermatology Department, ShenZhen Qianhai Shekou Free Trade Zone Hospital, China
| | | |
Collapse
|
123
|
Dinata R, Nisa N, Arati C, Rasmita B, Uditraj C, Siddhartha R, Bhanushree B, Saeed-Ahmed L, Manikandan B, Bidanchi RM, Abinash G, Pori B, Khushboo M, Roy VK, Gurusubramanian G. Repurposing immune boosting and anti-viral efficacy of Parkia bioactive entities as multi-target directed therapeutic approach for SARS-CoV-2: exploration of lead drugs by drug likeness, molecular docking and molecular dynamics simulation methods. J Biomol Struct Dyn 2024; 42:43-81. [PMID: 37021347 DOI: 10.1080/07391102.2023.2192797] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/10/2023] [Indexed: 04/07/2023]
Abstract
The COVID-19 pandemic has caused adverse health (severe respiratory, enteric and systemic infections) and environmental impacts that have threatened public health and the economy worldwide. Drug repurposing and small molecule multi-target directed herbal medicine therapeutic approaches are the most appropriate exploration strategies for SARS-CoV-2 drug discovery. This study identified potential multi-target-directed Parkia bioactive entities against SARS-CoV-2 receptors (S-protein, ACE2, TMPRSS2, RBD/ACE2, RdRp, MPro, and PLPro) using ADMET, drug-likeness, molecular docking (AutoDock, FireDock and HDOCK), molecular dynamics simulation and MM-PBSA tools. One thousand Parkia bioactive entities were screened out by virtual screening and forty-five bioactive phytomolecules were selected based on favorable binding affinity and acceptable pharmacokinetic and pharmacodynamics properties. The binding affinity values of Parkia phyto-ligands (AutoDock: -6.00--10.40 kcal/mol; FireDock: -31.00--62.02 kcal/mol; and HDOCK: -150.0--294.93 kcal/mol) were observed to be higher than the reference antiviral drugs (AutoDock: -5.90--9.10 kcal/mol; FireDock: -35.64--59.35 kcal/mol; and HDOCK: -132.82--211.87 kcal/mol), suggesting a potent modulatory action of Parkia bioactive entities against the SARS-CoV-2. Didymin, rutin, epigallocatechin gallate, epicatechin-3-0-gallate, hyperin, ursolic acid, lupeol, stigmasta-5,24(28)-diene-3-ol, ellagic acid, apigenin, stigmasterol, and campesterol strongly bound with the multiple targets of the SARS-CoV-2 receptors, inhibiting viral entry, attachment, binding, replication, transcription, maturation, packaging and spread. Furthermore, ACE2, TMPRSS2, and MPro receptors possess significant molecular dynamic properties, including stability, compactness, flexibility and total binding energy. Residues GLU-589, and LEU-95 of ACE2, GLN-350, HIS-186, and ASP-257 of TMPRSS2, and GLU-14, MET-49, and GLN-189 of MPro receptors contributed to the formation of hydrogen bonds and binding interactions, playing vital roles in inhibiting the activity of the receptors. Promising results were achieved by developing multi-targeted antiviral Parkia bioactive entities as lead and prospective candidates under a small molecule strategy against SARS-CoV-2 pathogenesis. The antiviral activity of Parkia bioactive entities needs to be further validated by pre-clinical and clinical trials.
Collapse
Affiliation(s)
- Roy Dinata
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | - Nisekhoto Nisa
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | - Chettri Arati
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | | | - Chetia Uditraj
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | | | | | | | - Bose Manikandan
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | | | - Giri Abinash
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | - Buragohain Pori
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | - Maurya Khushboo
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | | |
Collapse
|
124
|
Hu Q, Zhang W, Wei F, Huang M, Shu M, Song D, Wen J, Wang J, Nian Q, Ma X, Zeng J, Zhao Y. Human diet-derived polyphenolic compounds and hepatic diseases: From therapeutic mechanisms to clinical utilization. Phytother Res 2024; 38:280-304. [PMID: 37871899 DOI: 10.1002/ptr.8043] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/12/2023] [Accepted: 10/01/2023] [Indexed: 10/25/2023]
Abstract
This review focuses on the potential ameliorative effects of polyphenolic compounds derived from human diet on hepatic diseases. It discusses the molecular mechanisms and recent advancements in clinical applications. Edible polyphenols have been found to play a therapeutic role, particularly in liver injury, liver fibrosis, NAFLD/NASH, and HCC. In the regulation of liver injury, polyphenols exhibit anti-inflammatory and antioxidant effects, primarily targeting the TGF-β, NF-κB/TLR4, PI3K/AKT, and Nrf2/HO-1 signaling pathways. In the regulation of liver fibrosis, polyphenolic compounds effectively reverse the fibrotic process by inhibiting the activation of hepatic stellate cells (HSC). Furthermore, polyphenolic compounds show efficacy against NAFLD/NASH by inhibiting lipid oxidation and accumulation, mediated through the AMPK, SIRT, and PPARγ pathways. Moreover, several polyphenolic compounds exhibit anti-HCC activity by suppressing tumor cell proliferation and metastasis. This inhibition primarily involves blocking Akt and Wnt signaling, as well as inhibiting the epithelial-mesenchymal transition (EMT). Additionally, clinical trials and nutritional evidence support the notion that certain polyphenols can improve liver disease and associated metabolic disorders. However, further fundamental research and clinical trials are warranted to validate the efficacy of dietary polyphenols.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Wei
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meilan Huang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengyao Shu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianxia Wen
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Jundong Wang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Nian
- Department of Blood Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
125
|
Singh S, Sharma S, Sharma H. Potential Impact of Bioactive Compounds as NLRP3 Inflammasome Inhibitors: An Update. Curr Pharm Biotechnol 2024; 25:1719-1746. [PMID: 38173061 DOI: 10.2174/0113892010276859231125165251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 01/05/2024]
Abstract
The inflammasome NLRP3 comprises a caspase recruitment domain, a pyrin domain containing receptor 3, an apoptosis-linked protein like a speck containing a procaspase-1, and an attached nucleotide domain leucine abundant repeat. There are a wide variety of stimuli that can activate the inflammasome NLRP3. When activated, the protein NLRP3 appoints the adapter protein ASC. Adapter ASC protein then recruits the procaspase-1 protein, which causes the procaspase- 1 protein to be cleaved and activated, which induces cytokines. At the same time, abnormal activation of inflammasome NLRP3 is associated with many diseases, such as diabetes, atherosclerosis, metabolic syndrome, cardiovascular and neurodegenerative diseases. As a result, a significant amount of effort has been put into comprehending the mechanisms behind its activation and looking for their specific inhibitors. In this review, we primarily focused on phytochemicals that inhibit the inflammasome NLRP3, as well as discuss the defects caused by NLRP3 signaling. We conducted an in-depth research review by searching for relevant articles in the Scopus, Google Scholar, and PubMed databases. By gathering information on phytochemical inhibitors that block NLRP3 inflammasome activation, a complicated balance between inflammasome activation or inhibition with NLRP3 as a key role was revealed in NLRP3-driven clinical situations.
Collapse
Affiliation(s)
- Sonia Singh
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, Uttar Pradesh-281406, India
| | - Shiwangi Sharma
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, Uttar Pradesh-281406, India
| | - Himanshu Sharma
- Department of Computer Engineering & Applications, GLA University, Uttar Pradesh-281406, India
| |
Collapse
|
126
|
Huang J, Jiang Z, Wu M, Zhang J, Chen C. Gallic acid exerts protective effects in spinal cord injured rats through modulating microglial polarization. Physiol Behav 2024; 273:114405. [PMID: 37939829 DOI: 10.1016/j.physbeh.2023.114405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) is a highly traumatic injury that causes mechanical damage to the spinal cord. Our study aimed to investigate whether gallic acid has protective effects against SCI injury. METHODS Adult male rats were subjected to contusive spinal cord injuries. For behavioural evaluation, the rats were given gallic acid by i.p. injection at the doses of 10, 50 or 100 mg/kg immediately after SCI once daily for consecutive 28 days. Behavioral tests were used to evaluate locomotor functions, mechanical sensitivity and nerve conduction functions. For biochemical experiments, the rats were randomly divided into three groups: sham group, SCI group and SCI+gallic acid group. The rats in the SCI+gallic acid group were given gallic acid at the dose of 100 mg/kg immediately after SCI once daily for consecutive 14 days. The levels of inflammatory factors were evaluated. RESULTS Gallic acid treatment could improve locomotive and sensory function and reduce the functional impairments in SCI rats. The effects were more effective with increasing gallic acid dose. The levels of M1 markers (inducible nitric oxide synthase and cyclooxygenase-2) were decreased in gallic acid-treated SCI rats, whereas the levels of M2 markers (arginase 1 and cluster of differentiation 206) were increased in response to gallic acid administration. Gallic acid treatment resulted in a significant reduction in pro-inflammatory cytokines and an increase in anti-inflammatory cytokine levels. CONCLUSION Gallic acid enhances the recovery in SCI rats by regulating microglial polarization. The underlying mechanism may involve the promotion of M2 polarization and the suppression of M1 polarization in microglia.
Collapse
Affiliation(s)
- Jianxing Huang
- Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian 350001, China; Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248-252 Dong Road, Quanzhou, Fujian 362000, China.
| | - Zhixian Jiang
- Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248-252 Dong Road, Quanzhou, Fujian 362000, China
| | - Manzhen Wu
- Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248-252 Dong Road, Quanzhou, Fujian 362000, China
| | - Jinning Zhang
- Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248-252 Dong Road, Quanzhou, Fujian 362000, China.
| | - Chunmei Chen
- Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian 350001, China.
| |
Collapse
|
127
|
Sathiyaseelan A, Zhang X, Wang MH. Biosynthesis of gallic acid fabricated tellurium nanoparticles (GA-Te NPs) for enhanced antibacterial, antioxidant, and cytotoxicity applications. ENVIRONMENTAL RESEARCH 2024; 240:117461. [PMID: 37890834 DOI: 10.1016/j.envres.2023.117461] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
The development of antibiotic resistance and the onset of diverse forms of cancer necessitate the utilization of innovative multifunctional biocompatible materials. The synthesis of metal and metalloid nanoparticles through eco-friendly means demonstrates promising potential in therapeutic and diagnostic domains. Among these materials, Tellurium (Te) exhibits exceptional characteristics and finds application in numerous fields; nevertheless, its usage in biological applications has been somewhat limited, primarily due to its inherent toxicity. Furthermore, nanomaterials developed from Te have not garnered adequate research attention. Conversely, nanomaterials fashioned using biomolecules augment their biological efficacy and applicability. Therefore, the present work focuses on synthesizing the tellurium nanoparticles (Te NPs) using the antioxidant molecule gallic acid (GA) and evaluating their biological activity and toxicity for the first time. The study evidenced that GA-Te NPs are spherical and monodispersed, with an average size of 19.74 ± 5.3 nm. XRD analysis confirmed a hexagonal crystalline structure for GA-Te NPs, and FTIR analysis evidenced the capping of GA on Te NPs. GA-Te NPs (MIC: 1.56 μg/mL) strongly reduce the growth and biofilm formation of S. aureus, E. coli, and S. enterica. Additionally, GA-Te NPs at a concentration of 50 μg/mL cause a significant level of toxicity in BT474 breast cancer cells but not in NIH3T3 cells. Unexpectedly, GA-Te NPs at concentrations <250 μg/mL do not cause hemolysis in red blood cells (RBC) Besides, the way of utilizing the lower concentrations of therapeutics could result in ecological safety. Therefore, the study concludes that GA-Te NPs could be used as potential multifunctional agents.
Collapse
Affiliation(s)
- Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
128
|
Camilleri E, Blundell R, Cuschieri A. Deciphering the anti-constipation characteristics of palm dates ( Phoenix dactylifera): a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2022.2153865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Emma Camilleri
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Imsida, Malta
| | - Renald Blundell
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Imsida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Andrea Cuschieri
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Imsida, Malta
| |
Collapse
|
129
|
Nazar N, Hussain AI, Rathore HA. Inter-Varietal Variation in Phenolic Profile, Antioxidant, Anti-Inflammatory and Analgesic Activities of Two Brassica rapa Varieties: Influence on Pro-Inflammatory Mediators. Molecules 2023; 29:117. [PMID: 38202700 PMCID: PMC10779636 DOI: 10.3390/molecules29010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 01/12/2024] Open
Abstract
The present research study aims to appraise the potential of polyphenol-rich extracts from two Brassica rapa varieties on antioxidant, anti-inflammatory and analgesic activities using carrageenan-induced paw edema model in rats. Methanol extracts of peels and pulps of Brassica rapa yellow root (BRYR) and Brassica rapa white root (BRWR) were prepared using the soxhlet extraction technique. All four extracts were analyzed by reversed-phase high-pressure liquid chromatography (RP-HPLC) for the polyphenols, and results showed that 10 phenolic acids and 4 flavonoids were detected. Gallic acid was the major phenolic acid (174.6-642.3 mg/100 g of dry plant material) while catechin was the major (34.45-358.5 mg/100 g of dry plant material) flavonoid detected in the extracts. The total phenolic contents (TPC) of BRYR peel, BRWR peel, BRYR pulp and BRWR pulp extracts were in the range of 1.21-5.01 mg/g of dry plant material, measured as GAE, whereas the total flavonoid contents (TFC) were found in the range of 0.90-3.95 mg/g of dry plant material, measured as QE. BRYR peel extract exhibited the best DPPH radical scavenging activity (IC50, 3.85 µg/mL) and reducing potential as compared with other extracts. The in vivo anti-inflammatory potential was assessed by carrageenan-induced rat paw edema, and the analgesic potential was investigated by a hot plate test. Suppression of biochemical inflammatory biomarkers including C-reactive protein (CRP), rheumatoid factor (RF) and tumor necrosis factor (TNF-α), and interleukin-6 (IL-6) concentration were also determined. Results showed that BRYR peel extracts reduced paw edema and suppressed the production of TNF-α, IL-6, CRP and RF most significantly, followed by BRWR peel, BRYR pulp and BRWR pulp extracts. In addition, histopathology observation also supports the anti-inflammatory effect of peel extracts as being greater than that of root pulp extracts. Moreover, it was observed that the analgesic effect of the root-peel extracts was also more pronounced as compared with root-pulp extracts. It can be concluded that BRYR peel extract has higher phenolic contents and showed higher suppression of TNF-α, IL-6, CRP and RF, with strong antioxidant, anti-inflammatory and analgesic effects.
Collapse
Affiliation(s)
- Nida Nazar
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Abdullah Ijaz Hussain
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
- Hi-Tech Lab, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Hassaan Anwer Rathore
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| |
Collapse
|
130
|
Ye S, Su F, Li J, Yu B, Xu L, Xiong T, Shao K, Yuan X. Enhanced in vivo antiviral activity against pseudorabies virus through transforming gallic acid into graphene quantum dots with stimulation of interferon-related immune responses. J Mater Chem B 2023; 12:122-130. [PMID: 37997769 DOI: 10.1039/d3tb01844j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
With the urgent need for antiviral agents, antiviral materials with high biocompatibility and antiviral effects have attracted a lot of attention. In this study, gallic acid, a natural polyphenolic compound, was transformed into biocompatible graphene quantum dots (GAGQDs) which exhibit enhanced antiviral activity against pseudorabies virus (PRV). The as-prepared GAGQDs inhibit PRV proliferation with a 104-fold reduction in viral titers. Investigation of the antiviral mechanism revealed that GAGQDs inhibit the adsorption, invasion and replication of PRV infection. Treatment with GAGQDs regulates the expression levels of interferon-related antiviral proteins, including mitochondrial antiviral-signaling protein (MAVS), signal transducer and activator of transcription 1 (STAT1) and 2',5'-oligoadenylate synthetase 1 (OAS1), suggesting that GAGQDs can stimulate innate antiviral immune responses, resulting in enhanced antiviral effects. More importantly, GAGQD treatments alleviate clinical symptoms and reduce mortality in PRV-infected mice. Our results reveal the enhanced therapeutic effects of GAGQDs against PRV infection in vitro and in vivo, suggesting the potential of GAGQDs as a promising novel antiviral agent.
Collapse
Affiliation(s)
- Shiyi Ye
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China.
| | - Fei Su
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China.
| | - Junxing Li
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China.
| | - Bin Yu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China.
| | - Lihua Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China.
| | - Tao Xiong
- College of Life Science, Yangtze University, Jingzhou 434025, P. R. China
| | - Kang Shao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiufang Yuan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China.
| |
Collapse
|
131
|
Yang H, Yan R, Chen Q, Wang Y, Zhong X, Liu S, Xie R, Ren L. Functional nano drug delivery system with dual lubrication and immune escape for treating osteoarthritis. J Colloid Interface Sci 2023; 652:2167-2179. [PMID: 37730470 DOI: 10.1016/j.jcis.2023.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/20/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
Local drug delivery via inter-articular injection offers a promising scenario to treat the most common joint disease, osteoarthritis (OA), which is closely associated with the increased friction or cartilage degeneration and the inflammatory syndrome of synovium. Therefore, it is quite necessary to improve the retention of drug delivery system within synovial joint, simultaneously restore the lubrication of degraded cartilage and meanwhile alleviate the inflammation. In this study, we propose a hydrophilic coating modified nano-liposome drug carrier (PMPC-Lipo) to achieve these functions. A modified chain transfer agent was utilized to polymerize 2-methacryloyloxyethyl phosphorylcholine (MPC), the obtained polymer, combined with lecithin and cholesterol, formed a liposome (PMPC-Lipo) where poly (MPC) acted as hydrophilic coating. PMPC-Lipo was found to restore the lubrication of mechanically damage cartilage (mimicking OA conditions) to the level like healthy cartilage due to the hydration lubrication. Additionally, due to the presence of poly (MPC), we also found PMPC-Lipo avoid the recognition of macrophage and thus escape from the phagocytosis to prolong its retention in synovial joint. Furthermore, after encapsulating gallic acid (GA) into PMPC-Lipo, the obtained GA-PMPC-Lipo can effectively scavenge reactive oxygen species and restore the imbalance of matrix secretion in inflammatory chondrocytes. Collectively, the proposed GA-PMPC-Lipo may provide a new idea for osteoarthritis treatment by providing both long-term effective drug action and excellent lubrication properties.
Collapse
Affiliation(s)
- Hai Yang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Ruyu Yan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Qiuyi Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Yanyan Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - XiuPeng Zhong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Sa Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.
| | - Renjian Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China; School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China.
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
132
|
Jiang L, Zhang W, Zhao W, Cai Y, Qin X, Wang B, Xue J, Wen Y, Wei Y, Hua Y, Yao W. Optimization of Ethanol Extraction Technology for Yujin Powder Using Response Surface Methodology with a Box-Behnken Design Based on Analytic Hierarchy Process-Criteria Importance through Intercriteria Correlation Weight Analysis and Its Safety Evaluation. Molecules 2023; 28:8124. [PMID: 38138612 PMCID: PMC10746038 DOI: 10.3390/molecules28248124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Here, we aimed to optimize the ethanol extraction technology for Yujin powder (YJP) and evaluate its safety. The ultrasonic-assisted ethanol reflux extraction method refluxing was used to extract YJP. The parameters were optimized through a combination of single-factor and response surface methodology (RSM). The comprehensive Y value score calculated using the content of 13 active ingredients in YJP ethanolic extracts (YEEs) and the yield of the dry extract were used as measuring criteria. RSM with a Box-Behnken design using three factors and three levels was adopted to optimize the ethanol extraction technology for YJP. Finally, acute and subchronic toxicity tests were performed to evaluate its safety. The results revealed the best technological parameters: a liquid-material ratio of 24:1, an ethanol concentration of 69%, assistance of ultrasound (40 °C, 50 kHZ, 30 min), reflux time of 53 min, and reflux temperature of 50 °C. In acute toxicity tests, the maximum administration dosage in mice was 28.21 g/kg, which is higher than 10 times the clinical dosage. Adverse effects in the acute and subchronic toxicity tests were not observed. All clinical indexes were normal. In conclusion, the RSM based on AHP-CRITIC weight analysis could be used to optimize the ethanol extraction technology for YJP and YEEs prepared under the above conditions and ensure high safety.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Wanling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (L.J.); (W.Z.); (W.Z.); (Y.C.); (X.Q.); (B.W.); (J.X.); (Y.W.); (Y.W.); (Y.H.)
| |
Collapse
|
133
|
Singh J, Rasane P, Kaur R, Kaur H, Garg R, Kaur S, Ercisli S, Choudhary R, Skrovankova S, Mlcek J. Valorization of grape ( Vitis vinifera) leaves for bioactive compounds: novel green extraction technologies and food-pharma applications. Front Chem 2023; 11:1290619. [PMID: 38156021 PMCID: PMC10754528 DOI: 10.3389/fchem.2023.1290619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
Grape leaves, scientifically known as Vitis vinifera, the primary by-product obtained after the processing of grapes, are gathered in enormous amounts and disposed of as agricultural waste. For more sustainable agriculture and better food systems, it is crucial to investigate these byproducts' nutritional values. The primary bioactive compounds present in grape leaves are quercetin, resveratrol, caffeic acid, kaempferol, and gallic acid, which favour pharmacological effects on human health such as antioxidant, anti-inflammatory, anti-obesity, anti-diabetic, and hepatoprotective. Furthermore, grape leaves extract has been used as a functional ingredient for creating both food and non-food products. The aim of the current review is to review the nutritional and phytochemical composition of various varieties of grape leaves, their health-promoting characteristics and their applications. The study also highlights the various extraction techniques including conventional and non-conventional methods for extracting the various bioactive compounds present in grape leaves. Grape leaves bioactives can be extracted using environmentally safe and sustainable processes, which are in line with the rising demand for eco-friendly and healthful products worldwide. These methods are perfectly suited to the changing needs of both customers and industries since they lessen environmental effect, enhance product quality, and offer financial advantages.
Collapse
Affiliation(s)
- Jyoti Singh
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Prasad Rasane
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Rajdeep Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Harmandeep Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Ritika Garg
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Türkiye
- HGF Agro, ATA Teknokent, Erzurum, Türkiye
| | - Ravish Choudhary
- Seed Science and Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sona Skrovankova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Zlín, Czechia
| | - Jiri Mlcek
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Zlín, Czechia
| |
Collapse
|
134
|
Teterovska R, Sile I, Paulausks A, Kovalcuka L, Koka R, Mauriņa B, Bandere D. The Antioxidant Activity of Wild-Growing Plants Containing Phenolic Compounds in Latvia. PLANTS (BASEL, SWITZERLAND) 2023; 12:4108. [PMID: 38140435 PMCID: PMC10748313 DOI: 10.3390/plants12244108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
Ethnobotanical reports from Latvia show that Tanacetum vulgare, Calluna vulgaris, Quercus robur, Artemisa absinthium, and Artemisia vulgaris contain phenolic compounds that have antioxidant properties, which can be beneficial in the treatment and prophylaxis of many diseases. The aim of this study was to characterize the phenolic compounds and antioxidant properties of these plants. Plant extracts were prepared using ethanol or acetone and then freeze-dried. Their total phenolic content (TPC), total flavonoid content (TFC), and total tannin content (TTC) were determined and characterized by HPLC. Their antioxidant properties were determined using a DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay. C. vulgaris herb and T. vulgare leaf extracts contained the highest amounts of flavonoids, but the bark of Q. robur had mostly tannins and phenolic acids. A. absinthium and A. vulgaris had the lowest amounts of polyphenols. When compared using extraction solvents, all acetone extracts had more TPC, more TFC, and better antioxidant activity. All plants contained chlorogenic acid, which contributes to antioxidant properties. The analysed plant extracts could be used in future studies to develop medicinal products with antioxidant properties.
Collapse
Affiliation(s)
- Renāte Teterovska
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, LV-1007 Riga, Latvia;
- Department of Pharmaceuticals, Red Cross Medical College of Riga Stradiņš University, LV-1009 Riga, Latvia
| | - Inga Sile
- Department of Applied Pharmacy, Riga Stradinš University, 16 Dzirciema Street, LV-1007 Riga, Latvia; (I.S.); (B.M.)
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Street, LV-1006 Riga, Latvia
| | - Artūrs Paulausks
- Laboratory of Finished Dosage Forms, Riga Stradiņš University, 16 Dzirciema Street, LV-1007 Riga, Latvia;
| | - Liga Kovalcuka
- Clinical Institute, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia;
| | - Rudīte Koka
- Department of Biology and Microbiology, Riga Stradinš University, 16 Dzirciema Street, LV-1007 Riga, Latvia;
| | - Baiba Mauriņa
- Department of Applied Pharmacy, Riga Stradinš University, 16 Dzirciema Street, LV-1007 Riga, Latvia; (I.S.); (B.M.)
| | - Dace Bandere
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, LV-1007 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
| |
Collapse
|
135
|
Meftahi GH, Aboutaleb N. Gallic acid ameliorates behavioral dysfunction, oxidative damage, and neuronal loss in the prefrontal cortex and hippocampus in stressed rats. J Chem Neuroanat 2023; 134:102364. [PMID: 38016595 DOI: 10.1016/j.jchemneu.2023.102364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Gallic acid (GA) is known to be a natural phenolic compound with antioxidant and neuroprotective effects. This study aims to investigate the impact of GA against restraint stress-induced oxidative damage, anxiety-like behavior, neuronal loss, and spatial learning and memory impairment in male Wistar rats. The animals were divided into four groups (n = 8) and subjected to restraint stress for 4 h per day for 14 consecutive days or left undisturbed (control without inducing stress). In the treatment group, the animals were treated with 2 mL normal saline plus 100 mg/kg GA per day for 14 consecutive days (STR + GA group). The animals received the drug or normal saline by gavage 2 h before inducing restraint stress. ELISA assay measured oxidative stress factors. Elevated-plus maze and Morris water maze tests assessed anxiety-like behavior and spatial learning and memory, respectively. Also, neuronal density was determined using Nissl staining. Restraint stress significantly increased MDA and reduced the activities of GPX and SOD in the stressed rats, which were reserved by treatment with 100 mg/kg GA. Restraint stress markedly enhanced the anxiety-like behavior and spatial learning and memory impairment that were reserved by GA. In addition, treatment with GA reduced the neuronal loss in the stressed rats in the hippocampus and prefrontal cortex (PFC) regions. Taken together, our findings suggest that GA has the potential to be used as a good candidate to attenuate neurobehavioral disorders as well as neuronal loss in the hippocampus and PFC induced by restraint stress via reducing oxidative damage.
Collapse
Affiliation(s)
- Gholam Hossein Meftahi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Nahid Aboutaleb
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Physiology Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
136
|
Kokila NR, Mahesh B, Ramu R, Mruthunjaya K, Bettadaiah BK, Madhyastha H. Inhibitory effect of gallic acid from Thunbergia mysorensis against α-glucosidase, α-amylase, aldose reductase and their interaction: Inhibition kinetics and molecular simulations. J Biomol Struct Dyn 2023; 41:10642-10658. [PMID: 36533383 DOI: 10.1080/07391102.2022.2156923] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
In this exploration, we assessed the antihyperglycaemic properties of methanol extract of flowers of Thunbergia mysorensis (MeT) against α-glucosidase, α-amylase and aldose reductase enzymes for the effective management of postprandial hyperglycemia. Hyperglycemia occurs when the body lacks enough insulin or is unable to correctly utilize it. MeT inhibited both the carbohydrate digestive enzymes (α-glucosidase and α-amylase) and aldose reductase, which are vital for the therapeutic control of postprandial hyperglycaemia. MeT was also found to have significant antioxidant activity. Using several spectroscopic approaches, the primary active component found in MeT was identified as gallic acid. With low Ki values, gallic acid significantly inhibited α-glucosidase (30.86 µg/mL) and α-amylase (6.50 µg/mL). Also, MeT and gallic acid both inhibited aldose reductase effectively, corresponding to an IC50 value of 3.31 and 3.05 µg/mL. Our findings imply that the presence of polyphenol compounds (identified via HPLC analysis) is more likely to be responsible for the antihyperglycaemic role exhibited by MeT via the inhibition of α-glucosidase and the polyol pathway. Further, gallic acid interacted with the key residues of the active sites of α-glucosidase (-6.4 kcal/mol), α-amylase (-5.8 kcal/mol) and aldose reductase (-5.8 kcal/mol) as observed in the protein-ligand docking. It was also predicted that gallic acid was stable inside the binding pockets of the target enzymes during molecular dynamics simulation. Overall, gallic acid derived from MeT via bioassay-guided isolation emerges as a natural antidiabetic drug and can be taken into in vivo and clinical studies shortly.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- N R Kokila
- Department of Chemistry, JSS Academy of Technical Education,(Affiliated to Visvesvaraya Technological University, Belagavi), Bengaluru, India
| | - B Mahesh
- Department of Chemistry, JSS Academy of Technical Education,(Affiliated to Visvesvaraya Technological University, Belagavi), Bengaluru, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - K Mruthunjaya
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - B K Bettadaiah
- Spices and Flavour Science Department, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
137
|
Begum SN, Hossain M, Adnan M, Rahaman CH, Reza A. Optimization and Characterization of Phenolic Extraction Conditions and Antioxidant Activity Evaluation of Adenanthera pavonina L. Bark. PLANTS (BASEL, SWITZERLAND) 2023; 12:3902. [PMID: 38005799 PMCID: PMC10674903 DOI: 10.3390/plants12223902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
The presence of high levels of secondary metabolites in medicinal plants can significantly influence the progress of drug development. Here, we aimed to maximize phenolic extraction from Adenanthera pavonina L. stem bark using various solvents such as ethyl acetate, methanol, petroleum ether, and chloroform. A response surface method (RSM) with a central composite design (CCD) statistical technique was applied to optimize the extraction process, employing three important extracting parameters such as extraction time (h), temperature (°C), and solvent composition (% v/v of methanol/water) to obtain the highest phenolic content. Total phenolic content (TPC) and antioxidant activity (IC50 of extract's DPPH radical scavenging activity) were used as response variables to find the influence of these extracting parameters. Among the various solvents used, methanol extract showed the highest contents of phenolics and the maximum level of antioxidant activity with a lower IC50 value. The notable TPC and IC50 value of the extract's DPPH radical scavenging capacity were found to be 181.69 ± 0.20 mg GAE/g dry tissue and 60.13 ± 0.11 mg/mL, respectively, under the optimal conditions with a solvent composition of 71.61% (v/v) of methanol/water, extraction temperature of 42.52 °C, and extraction time of 24 h. The optimized extract of A. pavonina stem bark was further subjected to HPLC analysis, where six phenolic compounds, including coumarin, p-coumaric acid, chlorogenic acid, sinapic acid, gallic acid, and caffeic acid, were identified along with their respective quantities. Overall, the findings of this study uncover a low-cost analytical model for maximizing phenolic extraction from A. pavonina bark with enhanced antioxidant activity.
Collapse
Affiliation(s)
- Syeda Nurunnesa Begum
- Ethnopharmacology Laboratory, Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India;
| | - Mobarok Hossain
- Department of Applied Geosciences, GZG—University of Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Lower Saxony, Germany;
| | - Md. Adnan
- Department of Molecular Pharmaceutics, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA;
| | - Chowdhury Habibur Rahaman
- Ethnopharmacology Laboratory, Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India;
| | - Arif Reza
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY 11794, USA
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Environmental Science, College of Agricultural Sciences, IUBAT—International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh
| |
Collapse
|
138
|
Zare H, Nabavizdeh SH, Jaladat AM, Zarshenas MM, Moghtaderi M, Basirat A, Nasri N. The Added-on of Ziziphus jujube Syrup in the Treatment of Chronic Spontaneous Urticaria Resistant to Standard-Dose of Secondary-generation H 1 Antihistamine: A Double-Blind Randomized Clinical Trial. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:582-590. [PMID: 38094286 PMCID: PMC10715122 DOI: 10.30476/ijms.2023.95531.2690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/01/2022] [Accepted: 12/03/2022] [Indexed: 12/18/2023]
Abstract
Background Although antihistamines are the first-line treatment for chronic spontaneous urticaria (CSU), 50% of patients don't respond to standard doses. In this study, the effectiveness of Ziziphus jujube fruit syrup in combination with antihistamines was assessed in patients with CSU. Methods This double-blind randomized clinical trial was conducted in Shiraz between December 2019 and December 2020. 64 patients with CSU who had experienced hives for at least six weeks and did not respond to the usual treatments were enrolled in the study. They were randomly assigned to intervention and control groups using permuted block random allocation. For four weeks, the intervention group received 7.5 mL Ziziphus jujube syrup twice a day, while the control group received 7.5 mL simple jujube syrup twice a day. Both groups received cetirizine 10 mg every night. Urticaria activity score (UAS) and CU-Q2oL questionnaires were used to assess urticaria state and sleep quality before and after each week for four consecutive weeks. Data were analyzed using SPSS software version 18, and P<0.05 was considered statistically significant. Results Before the intervention, there was no statistically significant difference between the two groups' mean of UAS (P=0.490) and sleep quality (P=0.423). During the follow-up, UAS in the intervention group was significantly lower (P=0.001). Moreover, this difference was significant on the day 28 (P=0.046). During the follow-up, the quality of sleep in both groups improved significantly, and this improvement was more significant in the intervention group. Conclusion Ziziphus jujube syrup could be an effective adjuvant treatment for CSU.Trial Registration Number: IRCT20190304042916N1.
Collapse
Affiliation(s)
- Hamid Zare
- Department of Persian Medicine; School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Health System Research, Vice Chancellor of Treatment, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Hesamedin Nabavizdeh
- Department of Pediatrics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mohamad Jaladat
- Traditional Medicine and History of Medicine Research Center, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad Mehdi Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mozhgan Moghtaderi
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Basirat
- Health System Research, Vice Chancellor of Treatment, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nahid Nasri
- Health System Research, Vice Chancellor of Treatment, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
139
|
Roney M, Issahaku AR, Huq AM, Soliman MES, Tajuddin SN, Aluwi MFFM. Exploring the potential of biologically active phenolic acids from marine natural products as anticancer agents targeting the epidermal growth factor receptor. J Biomol Struct Dyn 2023; 42:13564-13587. [PMID: 37909584 DOI: 10.1080/07391102.2023.2276879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
The epidermal growth factor receptor (EGFR) dimerizes upon ligand bindings to the extracellular domain that initiates the downstream signaling cascades and activates intracellular kinase domain. Thus, activation of autophosphorylation through kinase domain results in metastasis, cell proliferation, and angiogenesis. The main objective of this research is to discover more promising anti-cancer lead compound against EGRF from the phenolic acids of marine natural products using in-silico approaches. Phenolic compounds reported from marine sources are reviewed from previous literatures. Furthermore, molecular docking was carried out using the online tool CB-Dock. The molecules with good docking and binding energies scores were subjected to ADME, toxicity and drug-likeness analysis. Subsequently, molecules from the docking experiments were also evaluated using the acute toxicity and MD simulation studies. Fourteen phenolic compounds from the reported literatures were reviewed based on the findings, isolation, characterized and applications. Molecular docking studies proved that the phenolic acids have good binding fitting by forming hydrogen bonds with amino acid residues at the binding site of EGFR. Chlorogenic acid, Chicoric acid and Rosmarinic acid showed the best binding energies score and forming hydrogen bonds with amino acid residues compare to the reference drug Erlotinib. Among these compounds, Rosmarinic acid showed the good pharmacokinetics profiles as well as acute toxicity profile. The MD simulation study further revealed that the lead complex is stable and could be future drug to treat the cancer disease. Furthermore, in a wet lab environment, both in-vitro and in-vivo testing will be employed to validate the existing computational results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
| | - Abdul Rashid Issahaku
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Akm Moyeenul Huq
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
- School of Medicine, Department of Pharmacy, University of Asia Pacific, Bangladesh
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Saiful Nizam Tajuddin
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
| |
Collapse
|
140
|
de Melo LFM, Barbosa JDS, Cordeiro MLDS, Aquino-Martins VGDQ, da Silva AP, Paiva WDS, Silveira ER, dos Santos DYAC, Rocha HAO, Scortecci KC. The Antioxidant and Immunomodulatory Potential of Coccoloba alnifolia Leaf Extracts. Int J Mol Sci 2023; 24:15885. [PMID: 37958868 PMCID: PMC10650087 DOI: 10.3390/ijms242115885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Oxidative stress has been associated with different diseases, and different medicinal plants have been used to treat or prevent this condition. The leaf ethanolic extract (EE) and aqueous extract (AE) from Coccoloba alnifolia have previously been characterized to have antioxidant potential in vitro and in vivo. In this study, we worked with EE and AE and two partition phases, AF (ethyl acetate) and BF (butanol), from AE extract. These extracts and partition phases did not display cytotoxicity. The EE and AE reduced NO production and ROS in all three concentrations tested. Furthermore, it was observed that EE and AE at 500 μg/mL concentration were able to reduce phagocytic activity by 30 and 50%, respectively. A scratch assay using a fibroblast cell line (NHI/3T3) showed that extracts and fractions induced cell migration with 60% wound recovery within 24 h, especially for BF. It was also observed that AF and BF had antioxidant potential in all the assays evaluated. In addition, copper chelation was observed. This activity was previously not detected in AE. The HPLC-DAD analysis showed the presence of phenolic compounds such as p-cumaric acid and vitexin for extracts, while the GNPS annotated the presence of isoorientin, vitexin, kanakugiol, and tryptamine in the BF partition phase. The data presented here demonstrated that the EE, AE, AF, and BF of C. alnifolia have potential immunomodulatory effects, antioxidant effects, as well as in vitro wound healing characteristics, which are important for dynamic inflammation process control.
Collapse
Affiliation(s)
- Luciana Fentanes Moura de Melo
- Laboratory of Plant Transformation and Microscopy Analysis (LPTAM), Cell Biology and Genetics Department, Centro de Biociências, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (L.F.M.d.M.); (V.G.d.Q.A.-M.); (A.P.d.S.)
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Biochemistry Department, Centro de Biociências, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (J.d.S.B.); (W.d.S.P.); (H.A.O.R.)
- Biochemistry and Molecular Biology Graduation School Programa de Pós-Graduação em Bioquímica, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, RN, Brazil
| | - Jefferson da Silva Barbosa
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Biochemistry Department, Centro de Biociências, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (J.d.S.B.); (W.d.S.P.); (H.A.O.R.)
- Federal Institut of Education, Science and Technology of Rio Grande do Norte (IFRN), São Gonçalo do Amarante 59291-727, RN, Brazil
| | - Maria Lúcia da Silva Cordeiro
- Laboratory of Plant Transformation and Microscopy Analysis (LPTAM), Cell Biology and Genetics Department, Centro de Biociências, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (L.F.M.d.M.); (V.G.d.Q.A.-M.); (A.P.d.S.)
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Biochemistry Department, Centro de Biociências, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (J.d.S.B.); (W.d.S.P.); (H.A.O.R.)
- Biochemistry and Molecular Biology Graduation School Programa de Pós-Graduação em Bioquímica, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, RN, Brazil
| | - Verônica Giuliani de Queiroz Aquino-Martins
- Laboratory of Plant Transformation and Microscopy Analysis (LPTAM), Cell Biology and Genetics Department, Centro de Biociências, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (L.F.M.d.M.); (V.G.d.Q.A.-M.); (A.P.d.S.)
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Biochemistry Department, Centro de Biociências, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (J.d.S.B.); (W.d.S.P.); (H.A.O.R.)
- Biochemistry and Molecular Biology Graduation School Programa de Pós-Graduação em Bioquímica, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, RN, Brazil
| | - Ariana Pereira da Silva
- Laboratory of Plant Transformation and Microscopy Analysis (LPTAM), Cell Biology and Genetics Department, Centro de Biociências, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (L.F.M.d.M.); (V.G.d.Q.A.-M.); (A.P.d.S.)
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Biochemistry Department, Centro de Biociências, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (J.d.S.B.); (W.d.S.P.); (H.A.O.R.)
| | - Weslley de Souza Paiva
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Biochemistry Department, Centro de Biociências, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (J.d.S.B.); (W.d.S.P.); (H.A.O.R.)
- Northeast Biotecnology Network (RENORBIO), Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Elielson Rodrigo Silveira
- Phytochemistry Laboratory, Botany Departament, Bioscience Institut, São Paulo University, São Paulo 05508-070, SP, Brazil; (E.R.S.); (D.Y.A.C.d.S.)
| | - Déborah Yara A. Cursino dos Santos
- Phytochemistry Laboratory, Botany Departament, Bioscience Institut, São Paulo University, São Paulo 05508-070, SP, Brazil; (E.R.S.); (D.Y.A.C.d.S.)
| | - Hugo Alexandre Oliveira Rocha
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Biochemistry Department, Centro de Biociências, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (J.d.S.B.); (W.d.S.P.); (H.A.O.R.)
- Biochemistry and Molecular Biology Graduation School Programa de Pós-Graduação em Bioquímica, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, RN, Brazil
| | - Kátia Castanho Scortecci
- Laboratory of Plant Transformation and Microscopy Analysis (LPTAM), Cell Biology and Genetics Department, Centro de Biociências, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (L.F.M.d.M.); (V.G.d.Q.A.-M.); (A.P.d.S.)
- Biochemistry and Molecular Biology Graduation School Programa de Pós-Graduação em Bioquímica, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, RN, Brazil
| |
Collapse
|
141
|
Bhatt SC, Naik B, Kumar V, Gupta AK, Kumar S, Preet MS, Sharma N, Rustagi S. Untapped potential of non-conventional rubus species: bioactivity, nutrition, and livelihood opportunities. PLANT METHODS 2023; 19:114. [PMID: 37891607 PMCID: PMC10604922 DOI: 10.1186/s13007-023-01094-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Rubus species holds promise as a valuable source of polyphenols and bioactive compounds, offering significant potential as functional food ingredients with both nutraceutical and pharmaceutical benefits. However, many edible species within this genus remain under-explored and their importance is largely unrecognized. This review aims to provide an overview of the nutritional and bioactive components of both explored and under-explored Rubus species, highlighting their potential health advantages, value addition, and recent advancements. The economic exploitation of Rubus is currently limited to a few cultivated species, while numerous non-conventional and wild edible species are overlooked. Recognizing the economic and nutritional significance of exploited Rubus species, it is imperative to explore the untapped potential of these underutilized plants. By doing so, these species can be preserved from endangerment and contribute to nutritional and livelihood security for communities having access to them. This review emphasizes the importance of understanding the exceptional characteristics of Rubus species as "superfoods" and encourages the promotion and cultivation of these unexplored species. By expanding the cultivation and utilization of under-explored Rubus species, we can unlock their full potential and support sustainable nutritional and economic benefits.
Collapse
Affiliation(s)
- Saurav Chandra Bhatt
- Department of Food Science and Technology, Graphic Era (Deemed to Be University), Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Bindu Naik
- Department of Food Science and Technology, Graphic Era (Deemed to Be University), Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India.
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun, 248016, Uttarakhand, India
| | - Arun Kumar Gupta
- Department of Food Science and Technology, Graphic Era (Deemed to Be University), Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Sanjay Kumar
- Department of Food Science and Technology, Graphic Era (Deemed to Be University), Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Manpreet Singh Preet
- School of Agriculture, Graphic Era Hill University, Clement Town, Dehradun, Uttarakhand, India
| | - Nitya Sharma
- World Resources Institute India, Hauz Khas, New Delhi, 110016, India
| | - Sarvesh Rustagi
- Department of Food Technology, UCALS, Uttaranchal University, Dehradun, Uttarakhand, India
| |
Collapse
|
142
|
Li Q, Lyu C, Chen D, Cai W, Kou F, Li Q, Wei H, Zhang H. Gallic Acid Treats Hypertrophic Scar in Rabbit Ears via the TGF-β/Smad and TRPC3 Signaling Pathways. Pharmaceuticals (Basel) 2023; 16:1514. [PMID: 38004381 PMCID: PMC10675562 DOI: 10.3390/ph16111514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Hypertrophic scars (HSs) develop due to excessive collagen deposition and abnormal fibroblast proliferation during wound healing, significantly impacting patient quality of life. Three dosages of GA ointments were administered to rabbit ear HS models to investigate the potential efficacy and mechanism of gallic acid (GA) on HS. Daily application of ointment was performed on the matrix group, the GA ointment groups, and the silicone gel group for 28 days. (No drug treatment was performed on the skin and model groups as a blank group and vehicle group, and silicone gel ointment was topically administered to the silicone gel group as a positive control group.) Scar specimens were collected for histopathology analysis, RNA sequencing analysis, real-time quantitative polymerase chain reaction, and Western blot analysis at the first, second, and fourth weeks after the treatment. Low-dose and medium-dose GA effectively suppressed HS formation and markedly decreased fibroblast infiltration levels and scar thickness. Moreover, decreased expression of TRPC3 mRNA and TGF-β1, p-Smad2/3, and Smad2/3 protein was observed in the low- and medium-dose GA groups and the silicone gel group. This study provides evidence for the efficacy of GA in treating HS and sheds light on its potential underlying pharmacological mechanisms.
Collapse
Affiliation(s)
- Qiannan Li
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Q.L.); (W.C.)
| | - Chunming Lyu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
- Qinghai Province Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Daqin Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (D.C.); (F.K.); (Q.L.)
| | - Wanling Cai
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Q.L.); (W.C.)
| | - Fang Kou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (D.C.); (F.K.); (Q.L.)
| | - Qiang Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (D.C.); (F.K.); (Q.L.)
| | - Hai Wei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (D.C.); (F.K.); (Q.L.)
| | - Huimin Zhang
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Q.L.); (W.C.)
| |
Collapse
|
143
|
Fuentes Y, Giovagnoli-Vicuña C, Faúndez M, Giordano A. Microencapsulation of Chilean Papaya Waste Extract and Its Impact on Physicochemical and Bioactive Properties. Antioxidants (Basel) 2023; 12:1900. [PMID: 37891979 PMCID: PMC10604294 DOI: 10.3390/antiox12101900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
The microencapsulation of bioactive extracts of Chilean papaya waste, including both seeds and skin, was investigated. Papaya waste extract microcapsules utilizing maltodextrin at 10% (MD10), 20% (MD20), and 30% (MD30) (w/v) as the wall material through the freeze-drying process were obtained, and subsequently their physicochemical, antioxidant, and antimicrobial properties were evaluated. The TPC efficiency and yield values achieved were more than 60% for the microencapsulated seed and skin extracts, respectively. The best results for phenolic and antioxidant compounds were found in the microencapsulated seed extract with MD20, with a value of 44.20 ± 3.32 EAG/g DW for total phenols and an antioxidant capacity of 12.0 ± 0.32 mol ET/g DW for the DPPH and 236.3 ± 4.1 mol ET/g DW for the FRAP assay. In addition, the seed and skin samples reduced ROS generation in H2O2-treated Hek293 cells. In terms of antimicrobial activity, values ranging from 7 to 15 mm of inhibitory halos were found, with the maximum value corresponding to the inhibition of S. aureus, for both microencapsulated extracts. Therefore, the successful microencapsulation of the waste bioactive extracts (seed and skin) with the demonstrated antimicrobial and antioxidant properties highlight the bioactivity from Chilean papaya waste resources.
Collapse
Affiliation(s)
- Yihajara Fuentes
- Departamento de Química Inorgánica, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul 7820436, Chile;
| | - Claudia Giovagnoli-Vicuña
- Departamento de Química Inorgánica, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul 7820436, Chile;
| | - Mario Faúndez
- Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul 7820436, Chile;
| | - Ady Giordano
- Departamento de Química Inorgánica, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul 7820436, Chile;
| |
Collapse
|
144
|
Kim JW, Choi J, Park MN, Kim B. Apoptotic Effect of Gallic Acid via Regulation of p-p38 and ER Stress in PANC-1 and MIA PaCa-2 Cells Pancreatic Cancer Cells. Int J Mol Sci 2023; 24:15236. [PMID: 37894916 PMCID: PMC10607041 DOI: 10.3390/ijms242015236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic cancer (PC) is currently recognized as the seventh most prevalent cause of cancer-related mortality among individuals of both genders. It is projected that a significant number of individuals will succumb to this disease in the forthcoming years. Extensive research and validation have been conducted on both gemcitabine and 5-fluorouracil as viable therapeutic options for PC. Nevertheless, despite concerted attempts to enhance treatment outcomes, PC continues to pose significant challenges in terms of achieving effective treatment alone through chemotherapy. Gallic acid, an endogenous chemical present in various botanical preparations, has attracted considerable attention due to its potential as an anticancer agent. The results of the study demonstrated that gallic acid exerted a decline in cell viability that was dependent on its concentration. Furthermore, it efficiently suppressed cell proliferation in PC cells. This study observed a positive correlation between gallic acid and the production of reactive oxygen species (ROS). Additionally, it confirmed the upregulation of proteins associated with the protein kinase-like endoplasmic reticulum kinase (PERK) pathway, which is one of the pathways involved in endoplasmic reticulum (ER) stress. Moreover, the administration of gallic acid resulted in verified alterations in the transmission of mitogen-activated protein kinase (MAPK) signals. Notably, an elevation in the levels of p-p38, which represents the phosphorylated state of p38 MAPK was detected. The scavenger of reactive oxygen species (ROS), N-Acetyl-L-cysteine (NAC), has shown inhibitory effects on phosphorylated p38 (p-p38), whereas the p38 inhibitor SB203580 inhibited C/EBP homologous protein (CHOP). In both instances, the levels of PARP have been successfully reinstated. In other words, the study discovered a correlation between endoplasmic reticulum stress and the p38 signaling pathway. Consequently, gallic acid induces the activation of both the p38 pathway and the ER stress pathway through the generation of ROS, ultimately resulting in apoptosis. The outcomes of this study provide compelling evidence to support the notion that gallic acid possesses considerable promise as a viable therapeutic intervention for pancreatic cancer.
Collapse
Affiliation(s)
- Jeong Woo Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea; (J.W.K.); (J.C.); (M.N.P.)
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| | - Jinwon Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea; (J.W.K.); (J.C.); (M.N.P.)
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea; (J.W.K.); (J.C.); (M.N.P.)
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea; (J.W.K.); (J.C.); (M.N.P.)
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| |
Collapse
|
145
|
Zhang P, Gong Y, Pan Q, Fan Z, Li G, Pei M, Zhang J, Wang T, Zhou G, Wang X, Ren W. Multifunctional calcium polyphenol networks reverse the hostile microenvironment of trauma for preventing postoperative peritoneal adhesions. Biomater Sci 2023; 11:6848-6861. [PMID: 37646188 DOI: 10.1039/d3bm01091k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abdominal adhesions, a commonly observed complication of abdominal surgery, have a high incidence and adversely affect patients' physical and mental health. The primary causes of abdominal adhesions are intraoperative trauma, acute inflammatory response, bleeding, and foreign body infection. Because most current treatment approaches for abdominal adhesions are limited, improved and novel postoperative anti-adhesion regimens are urgently needed. In this study, we developed calcium polyphenol network (CaPN) microspheres based on the self-assembly of the natural triphenolic compound gallic acid and Ca2+ in solution. The physicochemical properties of CaPNs, including their hemostatic, antibacterial, antioxidant, and anti-inflammatory activities, were investigated in vitro. Bleeding and cecal-abdominal wall adhesion models were established to observe the hemostatic activity of CaPNs and their preventive effect on postoperative abdominal wall adhesion in vivo. The results showed that CaPNs significantly reduced inflammation, oxidative stress, fibrosis, and abdominal adhesion formation and had good hemostatic and antibacterial properties. Our findings suggest a novel strategy for the prevention of postoperative adhesions.
Collapse
Affiliation(s)
- Pei Zhang
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Yan Gong
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qingqing Pan
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Zhenlin Fan
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Genke Li
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
- Department of Orthopedics, the First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
| | - Mengyu Pei
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Junhe Zhang
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Tianyun Wang
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
- Xinxiang University, Xinxiang, Henan Province 453000, China
| | - Guangdong Zhou
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiansong Wang
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wenjie Ren
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
- Department of Orthopedics, the First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
| |
Collapse
|
146
|
Keyvani‐Ghamsari S, Rahimi M, Khorsandi K. An update on the potential mechanism of gallic acid as an antibacterial and anticancer agent. Food Sci Nutr 2023; 11:5856-5872. [PMID: 37823155 PMCID: PMC10563697 DOI: 10.1002/fsn3.3615] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 10/13/2023] Open
Abstract
Drug resistance to antibacterial and anticancer drugs is one of the most important global problems in the treatment field that is constantly expanding and hinders the recovery and survival of patients. Therefore, it is necessary to identify compounds that have antibacterial and anticancer properties or increase the effectiveness of existing drugs. One of these approaches is using natural compounds that have few side effects and are effective. Gallic acid (GA) has been identified as one of the most important plant polyphenols that health-promoting effects in various aspects such as bacterial and viral infections, cancer, inflammatory, neuropsychological, gastrointestinal, and metabolic disease. Various studies have shown that GA inhibits bacterial growth by altering membrane structure, and bacterial metabolism, and inhibits biofilm formation. Also, GA inhibits cancer cell growth by targeting different signaling pathways in apoptosis, increasing reactive oxygen species (ROS) production, targeting the cell cycle, and inhibiting oncogenes and matrix metalloproteinases (MMPs) expression. Due to the powerful function of GA against bacteria and cancer cells. In this review, we describe the latest findings in the field of the sources and chemical properties of GA, its pharmacological properties and bioavailability, the antibacterial and anticancer activities of GA, and its derivatives alone, in combination with other drugs and in the form of nanoformulation. This review can be a comprehensive perspective for scientists to use medicinal compounds containing GA in future research and expand its clinical applications.
Collapse
Affiliation(s)
- Saeedeh Keyvani‐Ghamsari
- Clinical Cares and Health Promotion Research Center, Karaj BranchIslamic Azad UniversityKarajIran
| | - Maryam Rahimi
- Clinical Cares and Health Promotion Research Center, Karaj BranchIslamic Azad UniversityKarajIran
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research CenterYara Institute, ACECRTehranIran
| |
Collapse
|
147
|
Liu J, Liang S, Qin K, Jia B, Ren Z, Yang X, Yang X. Acer truncatum leaves extract modulates gut microbiota, improves antioxidant capacity, and alleviates lipopolysaccharide-induced inflammation in broilers. Poult Sci 2023; 102:102951. [PMID: 37562124 PMCID: PMC10432845 DOI: 10.1016/j.psj.2023.102951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023] Open
Abstract
This study investigated the appropriate way of dietary Acer truncatum leaves (ATL) addition, the effect of disease prevention and its mechanism of action. In experiment 1, 192 Arbor Acres broilers were assigned to 4 treatment groups, fed with basal diets containing 2% bran, replacing it with primary and fermented ATL, and additional 0.3% ATL extract to the basal diet for 42 d, respectively. In experiment 2, 144 broilers were assigned to 3 treatment groups for 21-d trial: (1) C-N group, basal diets, and injected with 0.9% (w/v) sterile saline; (2) C-L group, basal diets, and injected with lipopolysaccharide (LPS); (3) T-L group, ATL diets and injected with LPS. In experiment 1, ATL significantly decreased the index of abdominal fat at 42 d (P < 0.05). ATL extract had a better ability to improve antioxidant capacity and reduce inflammatory levels among all treatment groups, which significantly decreased the content of MDA in the liver and ileum mucosa at 21 d, and increased the expression of IL-10 and Occludin in jejunal mucosa at 42 d (P < 0.05). In experiment 2, ATL significantly increased the level of T-AOC in the liver, decreased the expression of NF-κB in the jejunal mucosa and ileum mucosa (P < 0.05), and restored LPS-induced the changed level of CAT in jejunal mucosa, the expression of IL-6, Claudin-1, and ZO-1 in jejunal mucosa and IL-1β in ileum mucosa (P < 0.05). Analysis of gut microbiota indicated that ATL enhanced the abundances of Bacteroidota and reduced the proportion of Firmicutes (P < 0.05), and the changed levels of T-AOC in body, IL-1β, IL-6, IL-10, and NF-κB in jejunum mucosa and propionic acid in cecal were associated with gut microbiota. Collectively, our data showed that the extract of ATL had a better antioxidant and anti-inflammatory effects than primality and fermented. Extraction of ATL modulated intestinal microbiota, and had a protective effect on oxidative stress, inflammation, and intestinal barrier function in broilers challenged with LPS.
Collapse
Affiliation(s)
- Jiongyan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Saisai Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Kailong Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Bingzheng Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Zhouzheng Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China.
| |
Collapse
|
148
|
Thongboontho R, Petcharat K, Munkong N, Khonthun C, Boondech A, Phromnoi K, Thim-uam A. Effects of Pogonatherum paniceum (Lamk) Hack extract on anti-mitochondrial DNA mediated inflammation by attenuating Tlr9 expression in LPS-induced macrophages. Nutr Res Pract 2023; 17:827-843. [PMID: 37780212 PMCID: PMC10522809 DOI: 10.4162/nrp.2023.17.5.827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND/OBJECTIVES Mitochondrial DNA leakage leads to inflammatory responses via endosome activation. This study aims to evaluate whether the perennial grass water extract (Pogonatherum panicum) ameliorate mitochondrial DNA (mtDNA) leakage. MATERIALS/METHODS The major bioactive constituents of P. paniceum (PPW) were investigated by high-performance liquid chromatography, after which their antioxidant activities were assessed. In addition, RAW 264.7 macrophages were stimulated with lipopolysaccharide, resulting in mitochondrial damage. Quantitative polymerase chain reaction and enzyme-linked immunosorbent assay were used to examine the gene expression and cytokines. RESULTS Our results showed that PPW extract-treated activated cells significantly decrease reactive oxygen species and nitric oxide levels by reducing the p22phox and iNOS expression and lowering cytokine-encoding genes, including IL-6, TNF-α, IL-1β, PG-E2 and IFN-γ relative to the lipopolysaccharide (LPS)-activated macrophages. Furthermore, we observed that LPS enhanced the mtDNA leaked into the cytoplasm, increasing the transcription of Tlr9 and signaling both MyD88/Irf7-dependent interferon and MyD88/NF-κb p65-dependent inflammatory cytokine mRNA expression but which was alleviated in the presence of PPW extract. CONCLUSIONS Our data show that PPW extract has antioxidant and anti-inflammatory activities by facilitating mtDNA leakage and lowering the Tlr9 expression and signaling activation.
Collapse
Affiliation(s)
- Rungthip Thongboontho
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Mae Ka 56000, Thailand
| | - Kanoktip Petcharat
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Mae Ka 56000, Thailand
| | - Narongsuk Munkong
- Department of Pathology, School of Medicine, University of Phayao, Mae Ka 56000, Thailand
| | - Chakkraphong Khonthun
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Mae Ka 56000, Thailand
| | - Atirada Boondech
- Biology Program, Faculty of Science and Technology, Kamphaeng Phet Rajabhat University, Nakhon Chum 65000, Thailand
| | - Kanokkarn Phromnoi
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Mae Ka 56000, Thailand
| | - Arthid Thim-uam
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Mae Ka 56000, Thailand
| |
Collapse
|
149
|
Mektrirat R, Chuammitri P, Navathong D, Khumma T, Srithanasuwan A, Suriyasathaporn W. Exploring the potential immunomodulatory effects of gallic acid on milk phagocytes in bovine mastitis caused by Staphylococcus aureus. Front Vet Sci 2023; 10:1255058. [PMID: 37781277 PMCID: PMC10540443 DOI: 10.3389/fvets.2023.1255058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Bovine mastitis caused by Staphylococcus aureus may exacerbate by resulting in significant economic losses and impacting milk quality. To date, the use of gallic acid, a phenolic compound naturally occurring in various plants, holds promise due to its potent anti-oxidant and anti-inflammatory effects in many pieces of literature, thus, making it a subject of interest in bovine innate immunity research. Here we used gallic acid to assess its potential immunomodulation on milk phagocytes in vitro challenges with mastitis-causing bacteria. Our findings indicated that cells exposed to gallic acid showed no harm to cell viability but might maintain the longevity of cells during the bacterial infection. Gallic acid-treated cells displayed reduced cell migration, phagocytosis, and bacterial killing ability, while showing an increase in ROS production, all of which are undoubtedly linked to the intracellular killing abilities of the cells. Nonetheless, the extracellular structure called neutrophil extracellular traps (NETs) was significantly released after receiving gallic acid, representing extracellular killing. We also reported that gallic acid neutralizes inflammation by regulating specific pro-inflammatory genes (IL1B, IL6, TNF) and ROS-generating genes (CYBA, LAMP1, RAC1), subsequently preventing tissue damage. Regarding apoptosis-related genes and proteins, the increased production of caspase-3 and Bcl-2 family proteins could potentially promote the longevity of cells, implicated in the mechanism of combating bacterial invasion during udder inflammation and infection. The novel role of gallic acid on milk phagocytes highlights its potential immunomodulatory properties and contributes to our understanding of its effects on bacterial-host interactions, and provides valuable molecular insights.
Collapse
Affiliation(s)
- Raktham Mektrirat
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai, Thailand
| | - Phongsakorn Chuammitri
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai, Thailand
| | - Dussaniya Navathong
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thofun Khumma
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anyaphat Srithanasuwan
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Witaya Suriyasathaporn
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai, Thailand
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
150
|
Darwish SF, Elbadry AMM, Elbokhomy AS, Salama GA, Salama RM. The dual face of microglia (M1/M2) as a potential target in the protective effect of nutraceuticals against neurodegenerative diseases. FRONTIERS IN AGING 2023; 4:1231706. [PMID: 37744008 PMCID: PMC10513083 DOI: 10.3389/fragi.2023.1231706] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
The pathophysiology of different neurodegenerative illnesses is significantly influenced by the polarization regulation of microglia and macrophages. Traditional classifications of macrophage phenotypes include the pro-inflammatory M1 and the anti-inflammatory M2 phenotypes. Numerous studies demonstrated dynamic non-coding RNA modifications, which are catalyzed by microglia-induced neuroinflammation. Different nutraceuticals focus on the polarization of M1/M2 phenotypes of microglia and macrophages, offering a potent defense against neurodegeneration. Caeminaxin A, curcumin, aromatic-turmerone, myricetin, aurantiamide, 3,6'-disinapoylsucrose, and resveratrol reduced M1 microglial inflammatory markers while increased M2 indicators in Alzheimer's disease. Amyloid beta-induced microglial M1 activation was suppressed by andrographolide, sulforaphane, triptolide, xanthoceraside, piperlongumine, and novel plant extracts which also prevented microglia-mediated necroptosis and apoptosis. Asarone, galangin, baicalein, and a-mangostin reduced oxidative stress and pro-inflammatory cytokines, such as interleukin (IL)-1, IL-6, and tumor necrosis factor-alpha in M1-activated microglia in Parkinson's disease. Additionally, myrcene, icariin, and tenuigenin prevented the nod-like receptor family pyrin domain-containing 3 inflammasome and microglial neurotoxicity, while a-cyperone, citronellol, nobiletin, and taurine prevented NADPH oxidase 2 and nuclear factor kappa B activation. Furthermore, other nutraceuticals like plantamajoside, swertiamarin, urolithin A, kurarinone, Daphne genkwa flower, and Boswellia serrata extracts showed promising neuroprotection in treating Parkinson's disease. In Huntington's disease, elderberry, curcumin, iresine celosia, Schisandra chinensis, gintonin, and pomiferin showed promising results against microglial activation and improved patient symptoms. Meanwhile, linolenic acid, resveratrol, Huperzia serrata, icariin, and baicalein protected against activated macrophages and microglia in experimental autoimmune encephalomyelitis and multiple sclerosis. Additionally, emodin, esters of gallic and rosmarinic acids, Agathisflavone, and sinomenine offered promising multiple sclerosis treatments. This review highlights the therapeutic potential of using nutraceuticals to treat neurodegenerative diseases involving microglial-related pathways.
Collapse
Affiliation(s)
- Samar F. Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Abdullah M. M. Elbadry
- Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Egypt
| | | | - Ghidaa A. Salama
- Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Rania M. Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| |
Collapse
|