101
|
Corn DJ, Kim Y, Krebs MD, Mounts T, Molter J, Gerson S, Alsberg E, Dennis JE, Lee Z. Imaging early stage osteogenic differentiation of mesenchymal stem cells. J Orthop Res 2013; 31:871-9. [PMID: 23440976 DOI: 10.1002/jor.22328] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/28/2013] [Indexed: 02/04/2023]
Abstract
Stem cells, such as mesenchymal stem cells (MSCs), contribute to bone fracture repair if they are delivered to the injury site. However, it is difficult to assess the retention and differentiation of these cells after implantation. Current options for non-invasively tracking the transplanted stem cells are limited. Cell-based therapies using MSCs would benefit greatly through the use of an imaging methodology that allows cells to be tracked in vivo and in a timely fashion. In this study, we implemented an in vivo imaging methodology to specifically track early events such as differentiation of implanted human MSCs (hMSCs). This system uses the collagen type 1 (Col1α1) promoter to drive expression of firefly luciferase (luc) in addition to a constitutively active promoter to drive the expression of green fluorescent protein (GFP). The resulting dual-promoter reporter gene system provides the opportunity for osteogenic differentiation-specific luc expression for in vivo imaging and constitutive expression of GFP for cell sorting. The function of this dual-promoter reporter gene was validated both in vitro and in vivo. In addition, the ability of this dual-promoter reporter system to image an early event of osteogenic differentiation of hMSCs was demonstrated in a murine segmental bone defect model in which reporter-labeled hMSCs were seeded into an alginate hydrogel scaffold and implanted directly into the defect. Bioluminescence imaging (BLI) was performed to visualize the turn-on of Col1α1 upon osteogenic differentiation and followed by X-ray imaging to assess the healing process for correlation with histological analyses.
Collapse
Affiliation(s)
- David J Corn
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, Ohio 44016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Kalajzic I, Matthews BG, Torreggiani E, Harris MA, Divieti Pajevic P, Harris SE. In vitro and in vivo approaches to study osteocyte biology. Bone 2013; 54:296-306. [PMID: 23072918 PMCID: PMC3566324 DOI: 10.1016/j.bone.2012.09.040] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 09/27/2012] [Accepted: 09/27/2012] [Indexed: 11/26/2022]
Abstract
Osteocytes, the most abundant cell population of the bone lineage, have been a major focus in the bone research field in recent years. This population of cells that resides within mineralized matrix is now thought to be the mechanosensory cell in bone and plays major roles in the regulation of bone formation and resorption. Studies of osteocytes had been impaired by their location, resulting in numerous attempts to isolate primary osteocytes and to generate cell lines representative of the osteocytic phenotype. Progress has been achieved in recent years by utilizing in vivo genetic technology and generation of osteocyte directed transgenic and gene deficiency mouse models. We will provide an overview of the current in vitro and in vivo models utilized to study osteocyte biology. We discuss generation of osteocyte-like cell lines and isolation of primary osteocytes and summarize studies that have utilized these cellular models to understand the functional role of osteocytes. Approaches that attempt to selectively identify and isolate osteocytes using fluorescent protein reporters driven by regulatory elements of genes that are highly expressed in osteocytes will be discussed. In addition, recent in vivo studies utilizing overexpression or conditional deletion of various genes using dentin matrix protein (Dmp1) directed Cre recombinase are outlined. In conclusion, evaluation of the benefits and deficiencies of currently used cell lines/genetic models in understanding osteocyte biology underlines the current progress in this field. The future efforts will be directed towards developing novel in vitro and in vivo models that would additionally facilitate in understanding the multiple roles of osteocytes.
Collapse
Affiliation(s)
- Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut 06032, USA.
| | | | | | | | | | | |
Collapse
|
103
|
Webster DJ, Schneider P, Dallas SL, Müller R. Studying osteocytes within their environment. Bone 2013; 54:285-95. [PMID: 23318973 PMCID: PMC3652555 DOI: 10.1016/j.bone.2013.01.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 12/29/2012] [Accepted: 01/03/2013] [Indexed: 01/13/2023]
Abstract
It is widely hypothesized that osteocytes are the mechano-sensors residing in the bone's mineralized matrix which control load induced bone adaptation. Owing to their inaccessibility it has proved challenging to generate quantitative in vivo experimental data which supports this hypothesis. Recent advances in in situ imaging, both in non-living and living specimens, have provided new insights into the role of osteocytes in the skeleton. Combined with the retrieval of biochemical information from mechanically stimulated osteocytes using in vivo models, quantitative experimental data is now becoming available which is leading to a more accurate understanding of osteocyte function. With this in mind, here we review i) state of the art ex vivo imaging modalities which are able to precisely capture osteocyte structure in 3D, ii) live cell imaging techniques which are able to track structural morphology and cellular differentiation in both space and time, and iii) in vivo models which when combined with the latest biochemical assays and microfluidic imaging techniques can provide further insight on the biological function of osteocytes.
Collapse
Affiliation(s)
| | | | - Sarah L. Dallas
- School of Dentistry, Department of Oral Biology, University of Missouri, Kansas City, MO, USA
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
104
|
Strecker S, Fu Y, Liu Y, Maye P. Generation and characterization of Osterix-Cherry reporter mice. Genesis 2013; 51:246-58. [PMID: 23180553 PMCID: PMC3602345 DOI: 10.1002/dvg.22360] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/15/2012] [Accepted: 11/17/2012] [Indexed: 01/22/2023]
Abstract
Osterix is a zinc finger containing transcription factor, which functions as a key regulator of osteoblast differentiation. To better understand the temporal and spatial expression of Osterix during embryonic development and in the adult skeleton, we generated Osterix-Cherry reporter mice. Bacterial recombination techniques were employed to engineer a transgenic construct, which consisted of a ∼39 kb DNA fragment encompassing the Osterix/Sp7 gene, but excluding adjacent gene sequences. Osterix reporter expression was characterized at embryonic, neonatal, and adult ages both by itself and in the context of a cross with Bone Sialoprotein (BSP)-Topaz reporter mice. Relative to Osterix, BSP is a more mature marker of osteoblast differentiation. In agreement with osteoblast lineage maturation, Osterix reporter expression preceded BSP reporter expression during embryonic development and spatially appeared in a much broader cell population. Strong Osterix reporter expression was observed in mature osteoblasts and osteocytes. However, weaker Osterix-Cherry positive cells were also observed in the bone marrow, possibly identifying an early osteoprogenitor cell population. Evaluation of Osterix reporter expression in male femur tissue sections from 10 days to 12 weeks of age revealed persistent expression in cells of the osteoblast lineage and a surprising increase in maturing chondrocytes of the growth plate. Also, Osterix reporter expression was transiently detected in the kidney after birth.
Collapse
Affiliation(s)
- Sara Strecker
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center
| | - Yu Fu
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center
| | - Yaling Liu
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center
| | - Peter Maye
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center
| |
Collapse
|
105
|
Abstract
Tissue engineering (TE) has promise as a biological solution and a disease modifying treatment for arthritis. Although cartilage can be generated by TE, substantial inter- and intra-donor variability makes it impossible to guarantee optimal, reproducible results. TE cartilage must be able to perform the functions of native tissue, thus mechanical and biological properties approaching those of native cartilage are likely a pre-requisite for successful implantation. A quality-control assessment of these properties should be part of the implantation release criteria for TE cartilage. Release criteria should certify that selected tissue properties have reached certain target ranges, and should be predictive of the likelihood of success of an implant in vivo. Unfortunately, it is not currently known which properties are needed to establish release criteria, nor how close one has to be to the properties of native cartilage to achieve success. Achieving properties approaching those of native cartilage requires a clear understanding of the target properties and reproducible assessment methodology. Here, we review several main aspects of quality control as it applies to TE cartilage. This includes a look at known mechanical and biological properties of native cartilage, which should be the target in engineered tissues. We also present an overview of the state of the art of tissue assessment, focusing on native articular and TE cartilage. Finally, we review the arguments for developing and validating non-destructive testing methods for assessing TE products.
Collapse
Affiliation(s)
- Joseph M. Mansour
- Skeletal Research Center, Department of Biology Case Western Reserve University Cleveland, OH, 44106
| | - Jean F. Welter
- Skeletal Research Center, Department of Biology Case Western Reserve University Cleveland, OH, 44106
| |
Collapse
|
106
|
Kim SW, Pajevic PD, Selig M, Barry KJ, Yang JY, Shin CS, Baek WY, Kim JE, Kronenberg HM. Intermittent parathyroid hormone administration converts quiescent lining cells to active osteoblasts. J Bone Miner Res 2012; 27:2075-84. [PMID: 22623172 PMCID: PMC3529414 DOI: 10.1002/jbmr.1665] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Intermittent administration of parathyroid hormone (PTH) increases bone mass, at least in part, by increasing the number of osteoblasts. One possible source of osteoblasts might be conversion of inactive lining cells to osteoblasts, and indirect evidence is consistent with this hypothesis. To better understand the possible effect of PTH on lining cell activation, a lineage tracing study was conducted using an inducible gene system. Dmp1-CreERt2 mice were crossed with ROSA26R reporter mice to render targeted mature osteoblasts and their descendents, lining cells and osteocytes, detectable by 5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside (X-gal) staining. Dmp1-CreERt2(+):ROSA26R mice were injected with 0.25 mg 4-OH-tamoxifen (4-OHTam) on postnatal days 3, 5, 7, 14, and 21. The animals were euthanized on postnatal day 23, 33, or 43 (2, 12, or 22 days after the last 4-OHTam injection). On day 43, mice were challenged with a subcutaneous injection of human PTH (1-34, 80 µg/kg) or vehicle once daily for 3 days. By 22 days after the last 4-OHTam injection, most X-gal (+) cells on the periosteal surfaces of the calvaria and the tibia were flat. Moreover, bone formation rate and collagen I(α1) mRNA expression were decreased at day 43 compared to day 23. After 3 days of PTH injections, the thickness of X-gal (+) cells increased, as did their expression of osteocalcin and collagen I(α1) mRNA. Electron microscopy revealed X-gal-associated chromogen particles in thin cells prior to PTH administration and in cuboidal cells following PTH administration. These data support the hypothesis that intermittent PTH treatment can increase osteoblast number by converting lining cells to mature osteoblasts in vivo.
Collapse
Affiliation(s)
- Sang Wan Kim
- Department of Internal Medicine, Boramae Hospital, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Kode A, Mosialou I, Silva BC, Rached MT, Zhou B, Wang J, Townes TM, Hen R, DePinho RA, Guo XE, Kousteni S. FOXO1 orchestrates the bone-suppressing function of gut-derived serotonin. J Clin Invest 2012; 122:3490-503. [PMID: 22945629 DOI: 10.1172/jci64906] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/12/2012] [Indexed: 11/17/2022] Open
Abstract
Serotonin is a critical regulator of bone mass, fulfilling different functions depending on its site of synthesis. Brain-derived serotonin promotes osteoblast proliferation, whereas duodenal-derived serotonin suppresses it. To understand the molecular mechanisms of duodenal-derived serotonin action on osteoblasts, we explored its transcriptional mediation in mice. We found that the transcription factor FOXO1 is a crucial determinant of the effects of duodenum-derived serotonin on bone formation We identified two key FOXO1 complexes in osteoblasts, one with the transcription factor cAMP-responsive element-binding protein 1 (CREB) and another with activating transcription factor 4 (ATF4). Under normal levels of circulating serotonin, the proliferative activity of FOXO1 was promoted by a balance between its interaction with CREB and ATF4. However, high circulating serotonin levels prevented the association of FOXO1 with CREB, resulting in suppressed osteoblast proliferation. These observations identify FOXO1 as the molecular node of an intricate transcriptional machinery that confers the signal of duodenal-derived serotonin to inhibit bone formation.
Collapse
Affiliation(s)
- Aruna Kode
- Department of Medicine, Division of Endocrinology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Bivi N, Nelson MT, Faillace ME, Li J, Miller LM, Plotkin LI. Deletion of Cx43 from osteocytes results in defective bone material properties but does not decrease extrinsic strength in cortical bone. Calcif Tissue Int 2012; 91:215-24. [PMID: 22865265 PMCID: PMC3729333 DOI: 10.1007/s00223-012-9628-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 06/26/2012] [Indexed: 12/12/2022]
Abstract
Deletion of connexin (Cx) 43 from osteoblasts and osteocytes (OCN-Cre;Cx43(fl/-) mice) or from osteocytes only (DMP1-8kb-Cre;Cx43(fl/fl) mice) results in increased cortical, but not cancellous, osteocyte apoptosis and widening of the femoral midshaft without changes in cortical thickness. Despite the consequent larger moment of inertia, stiffness and ultimate load, measures of mechanical strength assessed by three-point bending, are not higher in either model of Cx43 deficiency due to reduced Young's modulus, a measure of the stiffness of the material per unit of area. In OCN-Cre;Cx43(fl/-) mice, this was accompanied by a reduced ratio of nonreducible/reducible collagen cross-links as assessed by Fourier transformed infrared imaging (FTIRI) in the femoral diaphysis. On the other hand, DMP1-8kb-Cre;Cx43(fl/fl) mice did not show a significant reduction in collagen maturation in the same skeletal site, but a small decrease in mineralization was detected by FTIRI. Remarkably, both osteoblastic and osteocytic cells lacking Cx43 expressed lower mRNA levels of lysyl oxidase, a crucial enzyme involved in collagen maturation. These findings suggest that Cx43 expression in osteoblasts is involved in maintaining the quality of the bone matrix in cortical bone through the maturation of collagen cross-links. Osteocytic Cx43 expression is important also to maintain the stiffness of the bone material, where Cx43 deficiency results in local reduction in mineralization, possibly due to osteocyte apoptosis.
Collapse
Affiliation(s)
- Nicoletta Bivi
- Dept. Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Mark T. Nelson
- Department of Biology, Indiana University Purdue University Indianapolis
| | - Meghan E. Faillace
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY
- Dept. Biomedical Engineering, Stony Brook University, Stony Brook, NY
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis
| | - Lisa M. Miller
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY
- Dept. Biomedical Engineering, Stony Brook University, Stony Brook, NY
| | - Lilian I. Plotkin
- Dept. Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN
- Corresponding author: Lilian I. Plotkin, Ph.D., Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS-5035, Indianapolis, IN 46202-5120, Phone: 1-317-274-5317, Fax: 1-317-278-2040,
| |
Collapse
|
109
|
Abstract
Osteocytes were the forgotten bone cell until the bone community could become convinced that these cells do serve an important role in bone function and maintenance. In this review we trace the history of osteocyte characterization and present some of the major observations that are leading to the conclusion that these cells are not passive placeholders residing in the bone matrix, but are indeed, major orchestrators of bone remodeling.
Collapse
Affiliation(s)
- Dayong Guo
- University of Missouri, Kansas City, MO, USA
| | | |
Collapse
|
110
|
Targeted deletion of Sost distal enhancer increases bone formation and bone mass. Proc Natl Acad Sci U S A 2012; 109:14092-7. [PMID: 22886088 DOI: 10.1073/pnas.1207188109] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Wnt antagonist Sost has emerged as a key regulator of bone homeostasis through the modulation of Lrp4/5/6 Wnt coreceptors. In humans, lack of Sclerostin causes sclerosteosis and van Buchem (VB) disease, two generalized skeletal hyperostosis disorders that result from hyperactive Wnt signaling. Unlike sclerosteosis, VB patients lack SOST coding mutations but carry a homozygous 52 kb noncoding deletion that is essential for the transcriptional activation of SOST in bone. We recently identified a putative bone enhancer, ECR5, in the VB deletion region, and showed that the transcriptional activity of ECR5 is controlled by Mef2C transcription factor in vitro. Here we report that mice lacking ECR5 or Mef2C through Col1-Cre osteoblast/osteocyte-specific ablation result in high bone mass (HBM) due to elevated bone formation rates. We conclude that the absence of the Sost-specific long-range regulatory element ECR5 causes VB disease in rodents, and that Mef2C is the main transcription factor responsible for ECR5-dependent Sost transcriptional activation in the adult skeleton.
Collapse
|
111
|
Cameron K, Travers P, Chander C, Buckland T, Campion C, Noble B. Directed osteogenic differentiation of human mesenchymal stem/precursor cells on silicate substituted calcium phosphate. J Biomed Mater Res A 2012; 101:13-22. [PMID: 22733430 DOI: 10.1002/jbm.a.34261] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/13/2012] [Accepted: 05/03/2012] [Indexed: 12/31/2022]
Abstract
Insufficient, underactive, or inappropriate osteoblast function results in serious clinical conditions such as osteoporosis, osteogenesis imperfecta and fracture nonunion and therefore the control of osteogenesis is a medical priority. In vitro mesenchymal stem cells (MSCs) can be directed to form osteoblasts through the addition of soluble factors such as β-glycerophosphate, ascorbic acid, and dexamethasone; however this is unlikely to be practical in the clinical setting. An alternative approach would be to use a scaffold or matrix engineered to provide cues for differentiation without the need for soluble factors. Here we describe studies using Silicate-substituted calcium phosphate (Si-CaP) and unmodified hydroxyapatite (HA) to test whether these materials are capable of promoting osteogenic differentiation of MSCs in the absence of soluble factors. Si-CaP supported attachment and proliferation of MSCs and induced osteogenesis to a greater extent than HA, as evidenced through upregulation of the osteoblast-related genes: Runx2 (1.2 fold), Col1a1 (2 fold), Pth1r (1.5 fold), and Bglap (1.7 fold) Dmp1 (1.1 fold), respectively. Osteogenic-associated proteins, alkaline phosphatase (1.4 fold), RUNX2, COL1A1, and BGLAP, were also upregulated and there was an increased production of mineralized bone matrix (1.75 fold), as detected by the Von Kossa Assay. These data indicate that inorganic substrates are capable of directing the differentiation programme of stem cells in the absence of known chemical drivers and therefore may provide the basis for bone repair in the clinical setting.
Collapse
Affiliation(s)
- Kate Cameron
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | | | |
Collapse
|
112
|
Stern AR, Stern MM, Van Dyke ME, Jähn K, Prideaux M, Bonewald LF. Isolation and culture of primary osteocytes from the long bones of skeletally mature and aged mice. Biotechniques 2012; 52:361-73. [PMID: 22668415 PMCID: PMC3612989 DOI: 10.2144/0000113876] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 05/18/2012] [Indexed: 12/20/2022] Open
Abstract
The purpose of this work was to establish a methodology to enable the isolation and study of osteocytes from skeletally mature young (4-month-old) and old (22-month-old) mice. The location of osteocytes deep within bone is ideal for their function as mechanosensors. However, this location makes the observation and study of osteocytes in vivo technically difficult. Osteocytes were isolated from murine long bones through a process of extended collagenase digestions combined with EDTA-based decalcification. A tissue homogenizer was used to reduce the remaining bone fragments to a suspension of bone particles, which were placed in culture to yield an outgrowth of osteocyte-like cells. All of the cells obtained from this outgrowth that displayed an osteocyte-like morphology stained positive for the osteocyte marker E11/GP38. The osteocyte phenotype was further confirmed by a lack of staining for alkaline phosphatase and the absence of collagen1a1 expression. The outgrowth of osteocytes also expressed additional osteocyte-specific genes such as Sost and Mepe. This technique facilitates the isolation of osteocytes from skeletally mature bone. This novel enabling methodology should prove useful in advancing our understanding of the roles mature osteocytes play in bone health and disease.
Collapse
Affiliation(s)
- Amber Rath Stern
- Mechanical Engineering and Oral Biology, University of Missouri Kansas City, Kansas City, MO, USA.
| | | | | | | | | | | |
Collapse
|
113
|
Zhang Y, Yan M, Yu A, Mao H, Zhang J. Inhibitory effects of β-tricalciumphosphate wear particles on osteocytes via apoptotic response and Akt inactivation. Toxicology 2012; 297:57-67. [PMID: 22522029 DOI: 10.1016/j.tox.2012.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 04/03/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
Abstract
Wear debris-induced osteolysis, a major contributing factor of orthopedic implant aseptic loosening, affects long-term survival of orthopedic prostheses following joint replacement and revision surgery. Pathogenic effects of wear debris on various cell types including macrophages/monocytes, osteoblasts, and osteoclasts have been well studied. However, the interactions between wear debris particles and osteocytes, which make up over 90% of all bone cells, have not been clearly illustrated. Here, we explored the biological effects of endotoxin-free beta-tricalciumphosphate (β-TCP) wear particles with the average diameter of 1.997 μm (range 1.3-3.2 μm) on osteocytes in vitro. Our results showed that 24 h or 48 h incubation of β-TCP particles dose-dependently inhibited cell viability of osteocytes MLO-Y4. Alternatively, β-TCP particles treatment for 24 h significantly increased the osteocytic marker SOST/sclerostin mRNA expression and the release of inflammatory cytokines including TNF-α and IL-1β into the culture media, but decreased the mRNA expression of another osteocytic marker dentin matrix protein-1 (DMP-1). Furthermore, these osteocytes dysfunctions were accompanied by F-actin disassembly, cell apoptosis, sustained enhancement of intracellular reactive oxygen species (ROS) and mitochondrial injury upon β-TCP particles stimulation. In addition, β-TCP particles also caused Akt inactivation at Ser473 resides with a dose- and time-dependent pattern. Taken together, β-TCP wear particles could cause osteocytes dysfunctions, which may be mediated by apoptotic death and Akt inactivation in MLO-Y4 cells. These findings strongly suggest that osteocytes may play an important role in the β-TCP wear particles-induced osteolysis, and provide valuable insights for understanding the molecular mechanisms of osteocytes death involved in tissue damage during bone cement and intolerance of cemented prostheses.
Collapse
Affiliation(s)
- Yun Zhang
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China.
| | | | | | | | | |
Collapse
|
114
|
Abstract
The idea that osteoblasts, or their progenitors, support osteoclast formation by expressing the cytokine receptor activator of NFkB ligand (RANKL) is a widely held tenet of skeletal biology. Two recent studies provide evidence that osteocytes, and not osteoblasts or their progenitors, are the major source of RANKL driving osteoclast formation in cancellous bone. The goal of this review is to highlight the results of these new studies and discuss their implications for our understanding of bone remodeling.
Collapse
Affiliation(s)
- Jinhu Xiong
- Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | |
Collapse
|
115
|
Neve A, Corrado A, Cantatore FP. Osteocytes: central conductors of bone biology in normal and pathological conditions. Acta Physiol (Oxf) 2012; 204:317-30. [PMID: 22099166 DOI: 10.1111/j.1748-1716.2011.02385.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Osteocytes are the most abundant and longest-living cells in the adult skeleton. For a long time, osteocytes were considered static and inactive cells, but in recent years, it has been suggested that they represent the key responder to various stimuli that regulate bone formation and remodelling as well as one of the key endocrine regulators of bone metabolism. Osteocytes respond to mechanical stimuli by producing and secreting several signalling molecules, such as nitric oxide and prostaglandin E(2) , that initiate local bone remodelling. Moreover, they can control bone formation by modulating the WNT signalling pathway, an essential regulator of cell fate and commitment, as they represent the main source of sclerostin, a negative regulator of bone formation. Osteocytes can also act as an endocrine organ by releasing fibroblast growth factor 23 and several other proteins (DMP-1, MEPE, PHEX) that regulate phosphate metabolism. It has been demonstrated that various bone diseases are associated with osteocyte abnormalities, although it is not clear if these changes are the direct cause of the pathology or if they are secondary to the pathological changes in the bone microenvironment. Thus, a better understanding of these cells could offer exciting opportunities for new advances in the prevention and management of different bone diseases.
Collapse
Affiliation(s)
- A Neve
- Rheumatology Clinic, Department of Medical and Occupational Sciences, University of Foggia, Italy
| | | | | |
Collapse
|
116
|
Bivi N, Condon KW, Allen MR, Farlow N, Passeri G, Brun LR, Rhee Y, Bellido T, Plotkin LI. Cell autonomous requirement of connexin 43 for osteocyte survival: consequences for endocortical resorption and periosteal bone formation. J Bone Miner Res 2012; 27:374-89. [PMID: 22028311 PMCID: PMC3271138 DOI: 10.1002/jbmr.548] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Connexin 43 (Cx43) mediates osteocyte communication with other cells and with the extracellular milieu and regulates osteoblastic cell signaling and gene expression. We now report that mice lacking Cx43 in osteoblasts/osteocytes or only in osteocytes (Cx43(ΔOt) mice) exhibit increased osteocyte apoptosis, endocortical resorption, and periosteal bone formation, resulting in higher marrow cavity and total tissue areas measured at the femoral mid-diaphysis. Blockade of resorption reversed the increased marrow cavity but not total tissue area, demonstrating that endocortical resorption and periosteal apposition are independently regulated. Anatomical mapping of apoptotic osteocytes, osteocytic protein expression, and resorption and formation suggests that Cx43 controls osteoclast and osteoblast activity by regulating osteoprotegerin and sclerostin levels, respectively, in osteocytes located in specific areas of the cortex. Whereas empty lacunae and living osteocytes lacking osteoprotegerin were distributed throughout cortical bone in Cx43(ΔOt) mice, apoptotic osteocytes were preferentially located in areas containing osteoclasts, suggesting that osteoclast recruitment requires active signaling from dying osteocytes. Furthermore, Cx43 deletion in cultured osteocytic cells resulted in increased apoptosis and decreased osteoprotegerin expression. Thus, Cx43 is essential in a cell-autonomous fashion in vivo and in vitro for osteocyte survival and for controlling the expression of osteocytic genes that affect osteoclast and osteoblast function.
Collapse
Affiliation(s)
- Nicoletta Bivi
- Dept. Anatomy & Cell Biology, Indiana University School of Medicine, U.S.A
| | - Keith W. Condon
- Dept. Anatomy & Cell Biology, Indiana University School of Medicine, U.S.A
| | - Matthew R. Allen
- Dept. Anatomy & Cell Biology, Indiana University School of Medicine, U.S.A
| | - Nathan Farlow
- Dept. Anatomy & Cell Biology, Indiana University School of Medicine, U.S.A
| | - Giovanni Passeri
- Dept. Anatomy & Cell Biology, Indiana University School of Medicine, U.S.A
| | - Lucas R. Brun
- Dept. Anatomy & Cell Biology, Indiana University School of Medicine, U.S.A
| | - Yumie Rhee
- Dept. Anatomy & Cell Biology, Indiana University School of Medicine, U.S.A
| | - Teresita Bellido
- Dept. Anatomy & Cell Biology, Indiana University School of Medicine, U.S.A
- Dept. Internal Medicine, Div. Endocrinology, Indiana University School of Medicine, U.S.A
| | - Lilian I. Plotkin
- Dept. Anatomy & Cell Biology, Indiana University School of Medicine, U.S.A
| |
Collapse
|
117
|
|
118
|
Osteoblastic expansion induced by parathyroid hormone receptor signaling in murine osteocytes is not sufficient to increase hematopoietic stem cells. Blood 2012; 119:2489-99. [PMID: 22262765 DOI: 10.1182/blood-2011-06-360933] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Microenvironmental expansion of hematopoietic stem cells (HSCs) is induced by treatment with parathyroid hormone (PTH) or activation of the PTH receptor (PTH1R) in osteoblastic cells; however, the osteoblastic subset mediating this action of PTH is unknown. Osteocytes are terminally differentiated osteoblasts embedded in mineralized bone matrix but are connected with the BM. Activation of PTH1R in osteocytes increases osteoblastic number and bone mass. To establish whether osteocyte-mediated PTH1R signaling expands HSCs, we studied mice expressing a constitutively active PTH1R in osteocytes (TG mice). Osteoblasts, osteoclasts, and trabecular bone were increased in TG mice without changes in BM phenotypic HSCs or HSC function. TG mice had progressively increased trabecular bone but decreased HSC function. In severely affected TG mice, phenotypic HSCs were decreased in the BM but increased in the spleen. TG osteocytes had no increase in signals associated with microenvironmental HSC support, and the spindle-shaped osteoblastic cells that increased with PTH treatment were not present in TG bones. These findings demonstrate that activation of PTH1R signaling in osteocytes does not expand BM HSCs, which are instead decreased in TG mice. Therefore, osteocytes do not mediate the HSC expansion induced by PTH1R signaling. Further, osteoblastic expansion is not sufficient to increase HSCs.
Collapse
|
119
|
Halleux C, Kramer I, Allard C, Kneissel M. Isolation of mouse osteocytes using cell fractionation for gene expression analysis. Methods Mol Biol 2012; 816:55-66. [PMID: 22130922 DOI: 10.1007/978-1-61779-415-5_5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Osteocytes are the terminally differentiated cells of the osteoblastic lineage embedded within the mineralized bone matrix. T: hey have been identified as key players in mechanotransduction and in mineral and phosphate homeostasis. In addition, they appear to have a role in mediating bone formation, since they secrete the bone formation inhibitor sclerostin. In contrast to osteoblasts and osteoclasts, which reside on the bone surface, it has been difficult to isolate and analyze cellular and molecular properties of osteocytes due to their specific location inside the "hard" mineralized bone compartment. This chapter describes a method to isolate osteocytes from newborn mouse calvaria and adult mouse long bone, followed by immediate total RNA extraction allowing to selectively study osteocytic versus osteoblastic gene expression by quantitative real-time polymerase chain reaction (qPCR). The osteocyte-enriched cell fraction isolated by this method can further be purified by FACS and selectively expresses osteocytic marker genes, such as Dmp1 and Sost.
Collapse
Affiliation(s)
- Christine Halleux
- Musculoskeletal Disease Department, Novartis Institutes for BioMedical Research, Basel, Switzerland.
| | | | | | | |
Collapse
|
120
|
Tu X, Rhee Y, Condon K, Bivi N, Allen MR, Dwyer D, Stolina M, Turner CH, Robling AG, Plotkin LI, Bellido T. Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone 2012; 50:209-17. [PMID: 22075208 PMCID: PMC3246572 DOI: 10.1016/j.bone.2011.10.025] [Citation(s) in RCA: 347] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/30/2011] [Accepted: 10/25/2011] [Indexed: 01/16/2023]
Abstract
Sclerostin, the Wnt signaling antagonist encoded by the Sost gene, is secreted by osteocytes and inhibits bone formation by osteoblasts. Mechanical stimulation reduces sclerostin expression, suggesting that osteocytes might coordinate the osteogenic response to mechanical force by locally unleashing Wnt signaling. To investigate whether sclerostin downregulation is a pre-requisite for load-induced bone formation, we conducted experiments in transgenic mice (TG) engineered to maintain high levels of SOST expression during mechanical loading. This was accomplished by introducing a human SOST transgene driven by the 8 kb fragment of the DMP1 promoter that also provided osteocyte specificity of the transgene. Right ulnae were subjected to in vivo cyclic axial loading at equivalent strains for 1 min/day at 2 Hz; left ulnae served as internal controls. Endogenous murine Sost mRNA expression measured 24 h after 1 loading bout was decreased by about 50% in TG and wild type (WT) littermates. In contrast, human SOST, only expressed in TG mice, remained high after loading. Mice were loaded on 3 consecutive days and bone formation was quantified 16 days after initiation of loading. Periosteal bone formation in control ulnae was similar in WT and TG mice. Loading induced the expected strain-dependent increase in bone formation in WT mice, resulting from increases in both mineralizing surface (MS/BS) and mineral apposition rate (MAR). In contrast, load-induced bone formation was reduced by 70-85% in TG mice, due to lower MS/BS and complete inhibition of MAR. Moreover, Wnt target gene expression induced by loading in WT mice was absent in TG mice. Thus, downregulation of Sost/sclerostin in osteocytes is an obligatory step in the mechanotransduction cascade that activates Wnt signaling and directs osteogenesis to where bone is structurally needed.
Collapse
Affiliation(s)
- Xiaolin Tu
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yumie Rhee
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Keith Condon
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nicoletta Bivi
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matthew R. Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Denise Dwyer
- Metabolic Research Department, Amgen Inc., Thousand Oaks, CA, USA
| | - Marina Stolina
- Metabolic Research Department, Amgen Inc., Thousand Oaks, CA, USA
| | - Charles H. Turner
- Department of Orthopedic Surgery, Biomechanics and Biomaterials Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexander G. Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lilian I. Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Teresita Bellido
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, USA
- Corresponding author and reprint requests: Teresita Bellido, Ph.D., Department of Anatomy and Cell Biology, and Department of Internal Medicine, Division of Endocrinology, Indiana University School of Medicine, 635 Barnhill Drive, MS5035, Indianapolis, IN 46202, Phone 317-274-7410, Fax 317-278-2040,
| |
Collapse
|
121
|
Abstract
Over the past two decades there have been unprecedented advances in the capabilities for live cell imaging using light and confocal microscopy. Together with the discovery of green fluorescent protein and its derivatives and the development of a vast array of fluorescent imaging probes and conjugates, it is now possible to image virtually any intracellular or extracellular protein or structure. Traditional static imaging of fixed bone cells and tissues takes a snapshot view of events at a specific time point, but can often miss the dynamic aspects of the events being investigated. This chapter provides an overview of the application of live cell imaging approaches for the study of bone cells and bone organ cultures. Rather than emphasizing technical aspects of the imaging equipment, we have focused on what we consider to be the important principles that are of most practical use for an investigator setting up these techniques in their own laboratory, together with detailed protocols that our laboratory has used for live imaging of bone cell and organ cultures.
Collapse
Affiliation(s)
- Sarah L Dallas
- School of Dentistry/Department of Oral Biology, University of Missouri, Kansas City, MO, USA.
| | | |
Collapse
|
122
|
Lee Z, Dennis J, Alsberg E, Krebs MD, Welter J, Caplan A. Imaging Stem Cell Differentiation for Cell-Based Tissue Repair. Methods Enzymol 2012; 506:247-63. [DOI: 10.1016/b978-0-12-391856-7.00037-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
123
|
Koh AJ, Novince CM, Li X, Wang T, Taichman RS, McCauley LK. An irradiation-altered bone marrow microenvironment impacts anabolic actions of PTH. Endocrinology 2011; 152:4525-36. [PMID: 22045660 PMCID: PMC3230047 DOI: 10.1210/en.2011-1515] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PTH stimulates bone formation and increases hematopoietic stem cells through mechanisms as yet uncertain. The purpose of this study was to identify mechanisms by which PTH links actions on cells of hematopoietic origin with osteoblast-mediated bone formation. C57B6 mice (10 d) were nonlethally irradiated and then administered PTH for 5-20 d. Irradiation reduced bone marrow cellularity with retention of cells lining trabeculae. PTH anabolic activity was greater in irradiated vs. nonirradiated mice, which could not be accounted for by altered osteoblasts directly or osteoclasts but instead via an altered bone marrow microenvironment. Irradiation increased fibroblast growth factor 2, TGFβ, and IL-6 mRNA levels in the bone marrow in vivo. Irradiation decreased B220 cell numbers, whereas the percent of Lin(-)Sca-1(+)c-kit(+) (LSK), CD11b(+), CD68(+), CD41(+), Lin(-)CD29(+)Sca-1(+) cells, and proliferating CD45(-)Nestin(+) cells was increased. Megakaryocyte numbers were reduced with irradiation and located more closely to trabecular surfaces with irradiation and PTH. Bone marrow TGFβ was increased in irradiated PTH-treated mice, and inhibition of TGFβ blocked the PTH augmentation of bone in irradiated mice. In conclusion, irradiation created a permissive environment for anabolic actions of PTH that was TGFβ dependent but osteoclast independent and suggests that a nonosteoclast source of TGFβ drives mesenchymal stem cell recruitment to support PTH anabolic actions.
Collapse
Affiliation(s)
- A J Koh
- Department of Periodontics, University of Michigan, Ann Arbor, Michigan 48109-1078, USA
| | | | | | | | | | | |
Collapse
|
124
|
Elefteriou F, Yang X. Genetic mouse models for bone studies--strengths and limitations. Bone 2011; 49:1242-54. [PMID: 21907838 PMCID: PMC3331798 DOI: 10.1016/j.bone.2011.08.021] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/15/2011] [Accepted: 08/18/2011] [Indexed: 11/25/2022]
Abstract
Mice have become a preferred model system for bone research because of their genetic and pathophysiological similarities to humans: a relatively short reproductive period, leading to relatively low cost of maintenance and the availability of the entire mouse genome sequence information. The success in producing the first transgenic mouse line that expressed rabbit β-globin protein in mouse erythrocytes three decades ago marked the beginning of the use of genetically engineered mice as model system to study human diseases. Soon afterward the development of cultured pluripotent embryonic stem cells provided the possibility of gene replacement or gene deletion in mice. These technologies have been critical to identify new genes involved in bone development, growth, remodeling, repair, and diseases, but like many other approaches, they have limitations. This review will introduce the approaches that allow the generation of transgenic mice and global or conditional (tissue-specific and inducible) mutant mice. A list of the various promoters used to achieve bone-specific gene deletion or overexpression is included. The limitations of these approaches are discussed, and general guidelines related to the analysis of genetic mouse models are provided.
Collapse
Affiliation(s)
- Florent Elefteriou
- Vanderbilt University Medical Center, Department of Medicine, Vanderbilt Center for Bone Biology, 1235H Light Hall, Nashville, TN 37232-0575, USA
| | - Xiangli Yang
- Vanderbilt University Medical Center, Department of Medicine, Vanderbilt Center for Bone Biology, 1235H Light Hall, Nashville, TN 37232-0575, USA
| |
Collapse
|
125
|
Woo SM, Rosser J, Dusevich V, Kalajzic I, Bonewald LF. Cell line IDG-SW3 replicates osteoblast-to-late-osteocyte differentiation in vitro and accelerates bone formation in vivo. J Bone Miner Res 2011; 26:2634-46. [PMID: 21735478 PMCID: PMC3192242 DOI: 10.1002/jbmr.465] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Osteocytes are the most abundant cells in bone yet are the most challenging to study because they are embedded in a mineralized matrix. We generated a clonal cell line called IDG-SW3 (for Immortomouse/Dmp1-GFP-SW3) from long-bone chips from mice carrying a Dmp1 promoter driving GFP crossed with the Immortomouse, which expresses a thermolabile SV40 large T antigen regulated by interferon γ (IFN-γ). Cells from these mice can be expanded at 33 °C in the presence of IFN-γ and then allowed to resume their original phenotype at 37 °C in the absence of IFN-γ. IDG-SW3 cells are Dmp1-GFP(-) and T antigen(+) under immortalizing conditions but Dmp1-GFP(+) and T antigen(-) under osteogenic conditions. Like osteoblasts, they express alkaline phosphatase and produce and mineralize a type 1 collagen matrix containing calcospherulites. Like early osteocytes, they express E11/gp38, Dmp1, MEPE, and Phex. Like late osteocytes, they develop a dendritic morphology and express SOST/sclerostin and fibroblast growth factor 23 (FGF-23), regulated by parathyroid hormone (PTH) and 1,25-dihydroxyvitamin D(3). When cultured on 3D matrices, they express Dmp1-GFP and sclerostin. When the 3D cultures are implanted in calvarial defects in vivo, they accelerate bone healing. This cell line should prove useful for studying osteoblast-to-osteocyte transition, mechanisms for biomineralization, osteocyte function, and regulation of SOST/sclerostin and FGF-23.
Collapse
Affiliation(s)
- Stacey M. Woo
- Department of Endodontics, University of Missouri-Kansas City School of Dentistry, Kansas City, Missouri
- Department of Oral Biology, University of Missouri-Kansas City School of Dentistry, Kansas City, Missouri
| | - Jennifer Rosser
- Department of Oral Biology, University of Missouri-Kansas City School of Dentistry, Kansas City, Missouri
| | - Vladimir Dusevich
- Department of Oral Biology, University of Missouri-Kansas City School of Dentistry, Kansas City, Missouri
| | - Ivo Kalajzic
- University of Connecticut Health Center, Farmington, Connecticut
| | - Lynda F. Bonewald
- Department of Oral Biology, University of Missouri-Kansas City School of Dentistry, Kansas City, Missouri
| |
Collapse
|
126
|
Rhee Y, Bivi N, Farrow E, Lezcano V, Plotkin LI, White KE, Bellido T. Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo. Bone 2011; 49:636-43. [PMID: 21726676 PMCID: PMC3167030 DOI: 10.1016/j.bone.2011.06.025] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 06/17/2011] [Accepted: 06/19/2011] [Indexed: 12/14/2022]
Abstract
Mice with constitutive activation of parathyroid hormone (PTH) receptor signaling in osteocytes (DMP1-caPTHR1 transgenic mice) exhibit increased bone mass and remodeling, two of the recognized skeletal actions of PTH. Moreover, similar to PTH administration, DMP1-caPTHR1 mice exhibit decreased expression of the osteocyte-derived Wnt antagonist Sost/sclerostin. We now report that PTH receptor activation also regulates in vivo and in vitro the expression of fibroblast growth factor 23 (FGF23), an osteocyte product involved in inorganic phosphate (Pi) homeostasis and bone mineralization. Whole bones and osteocytes, but not osteoblasts, from DMP1-caPTHR1 mice exhibit elevated FGF23 expression, which is corrected in double transgenic mice overexpressing Sost in osteocytes. PTH, PTH related protein (PTHrP), or a cAMP stable analog, increase FGF23 transcripts in a time- and dose-dependent manner in osteocyte-containing calvarial cell cultures. Circulating FGF23 is also elevated in DMP1-caPTHR1 mice; however, plasma Pi or renal Pi reabsorption is not altered. Furthermore, the FGF23 receptor complex comprising FGFR1 and KLOTHO is expressed in osteoblastic cells; and FGFR1, GALNT3, as well as downstream targets of FGF23 signaling, are increased in osteocytes but not in osteoblasts from DMP1-caPTHR1 mice. Thus, PTH receptor signaling has the potential to modulate the endocrine and auto/paracrine functions of osteocytes by regulating FGF23 through cAMP- and Wnt-dependent mechanisms.
Collapse
Affiliation(s)
- Yumie Rhee
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46022, USA.
| | | | | | | | | | | | | |
Collapse
|
127
|
Igwe JC, Gao Q, Kizivat T, Kao WW, Kalajzic I. Keratocan is expressed by osteoblasts and can modulate osteogenic differentiation. Connect Tissue Res 2011; 52:401-7. [PMID: 21405980 PMCID: PMC3574643 DOI: 10.3109/03008207.2010.546536] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Keratocan is an extracellular matrix protein that belongs to the small leucine-rich proteoglycan family that also includes lumican, biglycan, decorin, mimecan, and fibromodulin. Members of this family are known to play a role in regulating cellular processes such as proliferation and modulation of osteoprogenitor lineage differentiation. The aims of this study were to evaluate the expression pattern of the keratocan within the osteoprogenitor lineage and to assess its role in regulating osteoblast maturation and function. Results from gene expression analyses of cells at different maturation stages within the osteoblast lineage indicate that keratocan is differentially expressed by osteoblasts and shows little or no expression by osteocytes. During primary osteoblast cultures, high keratocan mRNA expression was observed on day 14, whereas lower expression was detected at days 7 and 21. To assess the effects of keratocan on osteoprogenitor cell differentiation, we evaluated primary calvarial cell cultures from keratocan-deficient mice. The mineralization of calvarial osteoblast cultures derived from keratocan null (Kera-/-) mice was lower than in wild-type osteoblast cultures. Furthermore, analysis of RNA derived from Kera-/- calvarial cell cultures showed a reduction in the mature osteoblast differentiation markers, that is, bone sialoprotein and osteocalcin. In addition, we have evaluated the bone formation in keratocan-deficient mice. Histomorphometric analysis indicated that homozygous knockout mice have significantly decreased rates of bone formation and mineral apposition. Taken together, our results demonstrate the expression of keratocan by osteoblast lineage cells and its ability to modulate osteoblast function.
Collapse
Affiliation(s)
- John C. Igwe
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Qi Gao
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Tomislav Kizivat
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Winston W. Kao
- Department of Ophthalmology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
128
|
Jia J, Yao W, Guan M, Dai W, Shahnazari M, Kar R, Bonewald L, Jiang JX, Lane NE. Glucocorticoid dose determines osteocyte cell fate. FASEB J 2011; 25:3366-76. [PMID: 21705669 DOI: 10.1096/fj.11-182519] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In response to cellular insult, several pathways can be activated, including necrosis, apoptosis, and autophagy. Because glucocorticoids (GCs) have been shown to induce both osteocyte apoptosis and autophagy, we sought to determine whether osteocyte cell fate in the presence of GCs was dose dependent by performing in vivo and in vitro studies. Male Swiss-Webster mice were treated with slow-release prednisolone pellets at 1.4, 2.8, and 5.6 mg/kg/d for 28 d. An osteocyte cell line, MLO-Y4 cells, was treated with various doses of dexamethasone. We found that GC treatments dose dependently decreased activation of antioxidant-, autophagy-, and antiapoptosis-focused RT-PCR gene pathways in mouse cortical bone. The activation of antioxidant genes was correlated with autophagy gene expression after the GC treatments. The presence of osteocyte autophagy, as detected by immunostaining for LC3, increased ∼50% at the distal femur cortical bone region but not at trabecular bone region at the 1.4 and 2.8 mg/kg/d GC dose levels. The number of apoptotic osteocytes was increased at the cortical bone region by ∼40% initially observed at the 2.8 mg/kg/d dose level. In addition, the presence of the osteocyte autophagy was associated with an increased protein level of cathepsin K in vitro after the GC treatments. In summary, we found that GC treatment dose-dependently decreased antioxidant gene expression, with lower GC doses activating autophagy, whereas a higher dose increased apoptosis. These data suggest that autophagy may provide a mechanism for osteocytes to survive the stress after GC exposure and provide further insight into how GCs alter bone cell fate.
Collapse
Affiliation(s)
- Junjing Jia
- Department of Medicine, University of California at Davis Medical Center, Sacramento, California 95817, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Rhee Y, Allen MR, Condon K, Lezcano V, Ronda AC, Galli C, Olivos N, Passeri G, O'Brien CA, Bivi N, Plotkin LI, Bellido T. PTH receptor signaling in osteocytes governs periosteal bone formation and intracortical remodeling. J Bone Miner Res 2011; 26:1035-46. [PMID: 21140374 PMCID: PMC3179307 DOI: 10.1002/jbmr.304] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The periosteal and endocortical surfaces of cortical bone dictate the geometry and overall mechanical properties of bone. Yet the cellular and molecular mechanisms that regulate activity on these surfaces are far from being understood. Parathyroid hormone (PTH) has profound effects in cortical bone, stimulating periosteal expansion and at the same time accelerating intracortical bone remodeling. We report herein that transgenic mice expressing a constitutive active PTH receptor in osteocytes (DMP1-caPTHR1 mice) exhibit increased cortical bone area and an elevated rate of periosteal and endocortical bone formation. In addition, DMP1-caPTHR1 mice display a marked increase in intracortical remodeling and cortical porosity. Crossing DMP1-caPTHR1 mice with mice lacking the Wnt coreceptor, LDL-related receptor 5 (LRP5), or with mice overexpressing the Wnt antagonist Sost in osteocytes (DMP1-Sost mice) reduced or abolished, respectively, the increased cortical bone area, periosteal bone formation rate, and expression of osteoblast markers and Wnt target genes exhibited by the DMP1-caPTHR1 mice. In addition, DMP1-caPTHR1 lacking LRP5 or double transgenic DMP1-caPTHR1;DMP1-Sost mice exhibit exacerbated intracortical remodeling and increased osteoclast numbers, and markedly decreased expression of the RANK decoy receptor osteoprotegerin. Thus, whereas Sost downregulation and the consequent Wnt activation is required for the stimulatory effect of PTH receptor signaling on periosteal bone formation, the Wnt-independent increase in osteoclastogenesis induced by PTH receptor activation in osteocytes overrides the effect on Sost. These findings demonstrate that PTH receptor signaling influences cortical bone through actions on osteocytes and defines the role of Wnt signaling in PTH receptor action.
Collapse
Affiliation(s)
- Yumie Rhee
- Department of Anatomy and Cell Biology, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Balic A, Mina M. Identification of secretory odontoblasts using DMP1-GFP transgenic mice. Bone 2011; 48:927-37. [PMID: 21172466 PMCID: PMC3062740 DOI: 10.1016/j.bone.2010.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 12/02/2010] [Accepted: 12/12/2010] [Indexed: 10/18/2022]
Abstract
Terminal differentiation of odontoblasts from dental papilla is a long process involving several intermediate steps and changes in the transcriptional profile and expression of proteins secreted by cells in the odontoblast lineage. Transgenic mouse lines in which GFP expression is under the control of tissue- and stage specific promoters have provided powerful experimental tools for identification and isolation of cells at specific stages of differentiation along a lineage. Our previous studies showed utilization of pOBCol3.6GFP and pOBCol2.3GFP animals for identification of odontoblasts at early and late stages of polarization respectively. In the present study we used the DMP1-GFP transgenic animal as an experimental model to examine its expression during the differentiation of odontoblasts from progenitor cells in vivo and in vitro. Our observations showed that DMP1-GFP transgene is first activated in secretory/functional odontoblasts engaged in secretion of predentin and then transiently expressed at high levels in newly differentiated odontoblasts. Expression of DMP1-GFP was down-regulated in highly differentiated odontoblasts. The temporal and spatial pattern of expression of DMP1-GFP transgene closely mimics the expression of endogenous DMP1. This transgenic animal will facilitate studies of gene expression and biological functions in secretory/functional odontoblasts.
Collapse
Affiliation(s)
- Anamaria Balic
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | |
Collapse
|
131
|
Abstract
The last decade has provided a virtual explosion of data on the molecular biology and function of osteocytes. Far from being the "passive placeholder in bone," this cell has been found to have numerous functions, such as acting as an orchestrator of bone remodeling through regulation of both osteoclast and osteoblast activity and also functioning as an endocrine cell. The osteocyte is a source of soluble factors not only to target cells on the bone surface but also to target distant organs, such as kidney, muscle, and other tissues. This cell plays a role in both phosphate metabolism and calcium availability and can remodel its perilacunar matrix. Osteocytes compose 90% to 95% of all bone cells in adult bone and are the longest lived bone cell, up to decades within their mineralized environment. As we age, these cells die, leaving behind empty lacunae that frequently micropetrose. In aged bone such as osteonecrotic bone, empty lacunae are associated with reduced remodeling. Inflammatory factors such as tumor necrosis factor and glucocorticoids used to treat inflammatory disease induce osteocyte cell death, but by different mechanisms with potentially different outcomes. Therefore, healthy, viable osteocytes are necessary for proper functionality of bone and other organs.
Collapse
Affiliation(s)
- Lynda F Bonewald
- Department of Oral Biology, University of Missouri-Kansas City, Kansas City, MO 64108-2784, USA.
| |
Collapse
|
132
|
Gorski JP, Huffman NT, Chittur S, Midura RJ, Black C, Oxford J, Seidah NG. Inhibition of proprotein convertase SKI-1 blocks transcription of key extracellular matrix genes regulating osteoblastic mineralization. J Biol Chem 2011; 286:1836-49. [PMID: 21075843 PMCID: PMC3023479 DOI: 10.1074/jbc.m110.151647] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 10/22/2010] [Indexed: 11/06/2022] Open
Abstract
Mineralization, a characteristic phenotypic property of osteoblastic lineage cells, was blocked by 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF) and decanoyl-Arg-Arg-Leu-Leu-chloromethyl ketone (dec-RRLL-cmk), inhibitors of SKI-1 (site 1; subtilisin kexin like-1) protease. Because SKI-1 is required for activation of SREBP and CREB (cAMP-response element-binding protein)/ATF family transcription factors, we tested the effect of these inhibitors on gene expression. AEBSF decreased expression of 140 genes by 1.5-3.0-fold including Phex, Dmp1, COL1A1, COL11A1, and fibronectin. Direct comparison of AEBSF and dec-RRLL-cmk, a more specific SKI-1 inhibitor, demonstrated that expression of Phex, Dmp1, COL11A1, and fibronectin was reduced by both, whereas COL1A2 and HMGCS1 were reduced only by AEBSF. AEBSF and dec-RRLL-cmk decreased the nuclear content of SKI-1-activated forms of transcription factors SREBP-1, SREBP-2, and OASIS. In contrast to AEBSF, the actions of dec-RRLL-cmk represent the sum of its direct actions on SKI-1 and indirect actions on caspase-3. Specifically, dec-RRLL-cmk reduced intracellular caspase-3 activity by blocking the formation of activated 19-kDa caspase-3. Conversely, overexpression of SKI-1-activated SREBP-1a and CREB-H in UMR106-01 osteoblastic cells increased the number of mineralized foci and altered their morphology to yield mineralization nodules, respectively. In summary, SKI-1 regulates the activation of transmembrane transcription factor precursors required for expression of key genes required for mineralization of osteoblastic cultures in vitro and bone formation in vivo. Our results indicate that the differentiated phenotype of osteoblastic cells and possibly osteocytes depends upon the non-apoptotic actions of SKI-1.
Collapse
Affiliation(s)
- Jeff P Gorski
- Center of Excellence in the Study of Musculoskeletal and Dental Tissues and Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA.
| | | | | | | | | | | | | |
Collapse
|
133
|
ECM-dependent mRNA expression profiles and phosphorylation patterns of p130Cas, FAK, ERK and p38 MAPK of osteoblast-like cells. Cell Biol Int 2011; 34:1005-12. [PMID: 20507284 DOI: 10.1042/cbi20100069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Osteoblast cells synthesize collagen-rich ECM (extracellular matrix) in response to various environmental cues, but little is known about ECM-dependent variations in phosphorylation patterns. Using MC3T3 E1 osteoblast-like cells and mouse whole-genome microarrays, we investigated molecular signalling affected by collagen-based ECMs. A genome-wide expression analysis revealed that cells grown in the 3D collagen matrix partially suppressed the genes associated with cell adhesion and cell cycling. Western analysis demonstrated that the expression of the active (phosphorylated) form of p130Cas, FAK (focal adhesion kinase) and ERK1/2 (extracellular-signal-regulated protein kinase 1/2) was reduced in cells grown in the 3D matrix. Conversely, phosphorylation of p38 MAPK (p38 mitogen-activated protein kinase) was elevated in the 3D matrix, and its up-regulation was linked to an increase in mRNA levels of dentin matrix protein 1 and bone sialoprotein. Although multiple characteristics such as surface topography, chemical composition and mechanical properties differ in the preparations of our collagen-rich milieu, our observations support the notion that geometrical alterations in ECM environments can alter the phosphorylation pattern of p130Cas, FAK, ERK1/2 and p38 MAPK and lead to a differential developmental fate.
Collapse
|
134
|
|
135
|
Espinoza J, Sanchez M, Sanchez A, Hanna P, Torrejon M, Buisine N, Sachs L, Marcellini S. Two families of Xenopus tropicalis skeletal genes display well-conserved expression patterns with mammals in spite of their highly divergent regulatory regions. Evol Dev 2010; 12:541-51. [PMID: 21040421 DOI: 10.1111/j.1525-142x.2010.00440.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The origin of bone and cartilage, and their subsequent diversification in specific vertebrate lineages, is intimately linked to the precise transcriptional control of genes involved in matrix mineralization. It is not yet clear, however, to which extent the osteoblasts, osteocytes, and chondrocytes of each of the major vertebrate groups express similar sets of genes. In this study we have focused on the evolution of two independent families of genes that code for extracellular matrix components of the skeleton and that include secreted protein, acidic, cysteine-rich (SPARC), bone sialoprotein (BSP) and dentin matrix protein 1 (DMP1) paralogues, and the osteocalcin (OC) and matrix gla protein (MGP) paralogues. Analyzing developing Xenopus tropicalis skeletal elements, we show that the expression patterns of these genes are well conserved with mammals. The fact that only a few osteoblasts express DMP1, while only some osteocytes express SPARC and BSP, reveals a significant degree of molecular heterogeneity for these two populations of X. tropicalis cells, similarly to what has been described in mouse. Although the cis-regulatory modules (CRM) of the mammalian OC, DMP1, and BSP orthologs have been functionally characterized, we found no evidence of sequence similarity between these regions and the X. tropicalis genome. Furthermore, these regulatory elements evolve rapidly, as they are only poorly conserved between human and rodents. Therefore, the SPARC/DMP1/BSP and the OC/MGP families provide a good paradigm to study how transcriptional output can be maintained in skeletal cells despite extensive sequence divergence of CRM.
Collapse
Affiliation(s)
- Javier Espinoza
- Departamento de Biología Celular, Universidad de Concepción, Chile
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Balic A, Aguila HL, Mina M. Identification of cells at early and late stages of polarization during odontoblast differentiation using pOBCol3.6GFP and pOBCol2.3GFP transgenic mice. Bone 2010; 47:948-58. [PMID: 20728593 PMCID: PMC2957651 DOI: 10.1016/j.bone.2010.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/12/2010] [Accepted: 08/13/2010] [Indexed: 02/09/2023]
Abstract
Transgenic mouse lines in which GFP expression is under the control of tissue- and stage specific promoters have provided powerful experimental tools for identification and isolation of cells at specific stage of differentiation along a lineage. In the present study, we used primary cell cultures derived from the dental pulp from pOBCol3.6GFP and pOBCol2.3GFP transgenic mice as a model to develop markers for early stages of odontoblast differentiation from progenitor cells. We analyzed the temporal and spatial expression of 2.3-GFP and 3.6-GFP during in vitro mineralization. Using FACS to separate cells based on GFP expression, we obtained relatively homogenous subpopulations of cells and analyzed their dentinogenic potentials and their progression into odontoblasts. Our observations showed that these transgenes were activated before the onset of matrix deposition and in cells at different stages of polarization. The 3.6-GFP transgene was activated in cells in early stages of polarization, whereas the 2.3-GFP transgene was activated at a later stage of polarization just before or at the time of formation of secretory odontoblast.
Collapse
Affiliation(s)
- Anamaria Balic
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT
| | - H. Leonardo Aguila
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT
| | - Mina Mina
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT
| |
Collapse
|
137
|
Yamamoto R, Minamizaki T, Yoshiko Y, Yoshioka H, Tanne K, Aubin JE, Maeda N. 1alpha,25-dihydroxyvitamin D3 acts predominately in mature osteoblasts under conditions of high extracellular phosphate to increase fibroblast growth factor 23 production in vitro. J Endocrinol 2010; 206:279-86. [PMID: 20530653 PMCID: PMC2917591 DOI: 10.1677/joe-10-0058] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Osteoblasts/osteocytes are the principle sources of fibroblast growth factor 23 (FGF23), a phosphaturic hormone, but the regulation of FGF23 expression during osteoblast development remains uncertain. Because 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) and inorganic phosphate (Pi) may act as potent activators of FGF23 expression, we estimated how these molecules regulate FGF23 expression during rat osteoblast development in vitro. 1,25(OH)(2)D(3)-dependent FGF23 production was restricted largely to mature cells in correlation with increased vitamin D receptor (VDR) mRNA levels, in particular, when Pi was present. Pi alone and more so in combination with 1,25(OH)(2)D(3) increased FGF23 production and VDR mRNA expression. Parathyroid hormone, stanniocalcin 1, prostaglandin E(2), FGF2, and foscarnet did not increase FGF23 mRNA expression. Thus, these results suggest that 1,25(OH)(2)D(3) may exert its largest effect on FGF23 expression/production when exposed to high levels of extracellular Pi in osteoblasts/osteocytes.
Collapse
Affiliation(s)
- Ryoko Yamamoto
- Orthodontics and Craniofacial Developmental BiologyHiroshima University Graduate School of Biomedical SciencesHiroshimaJapan
| | - Tomoko Minamizaki
- Oral Growth and Developmental BiologyHiroshima University Graduate School of Biomedical SciencesHiroshimaJapan
| | - Yuji Yoshiko
- Oral Growth and Developmental BiologyHiroshima University Graduate School of Biomedical SciencesHiroshimaJapan
- (Correspondence should be addressed to Y Yoshiko; )
| | - Hirotaka Yoshioka
- Oral Growth and Developmental BiologyHiroshima University Graduate School of Biomedical SciencesHiroshimaJapan
| | - Kazuo Tanne
- Orthodontics and Craniofacial Developmental BiologyHiroshima University Graduate School of Biomedical SciencesHiroshimaJapan
| | - Jane E Aubin
- Department of Molecular Genetics, Faculty of MedicineUniversity of Toronto1 King's College Circle, Toronto, OntarioCanadaM5S 1A8
| | - Norihiko Maeda
- Oral Growth and Developmental BiologyHiroshima University Graduate School of Biomedical SciencesHiroshimaJapan
| |
Collapse
|
138
|
Abstract
Osteocytes are derived from osteoblasts and make up over 90% of the cells in bone. However, the mechanisms that control the differentiation of osteoblasts into osteocytes embedded in bone matrix are not well understood. With the recent developments of transgenic models for manipulating gene expression in osteocytes and of transgenic mice carrying lineage reporters for osteoblasts and osteocytes, unprecedented new insights are becoming possible. In this article we review recent advances, such as comparative gene and protein expression studies, that are delineating the changes in gene and protein expression that accompany osteocyte differentiation. We also review recent studies in which time-lapse dynamic imaging approaches have been used to visualize osteoblast and osteocyte populations within bone. These approaches reveal the key role of cell motility in bone cell function and highlight the dynamic nature of mineralized tissues. Changes in motile properties of the cell may be key in the transition from osteoblast to osteocyte, as reflected in the altered expression of many molecules involved in cytoskeletal function.
Collapse
Affiliation(s)
- Sarah L Dallas
- Department of Oral Biology, School of Dentistry, University of Missouri, Kansas City, Missouri, USA.
| | | |
Collapse
|
139
|
San Miguel SM, Fatahi MR, Li H, Igwe JC, Aguila HL, Kalajzic I. Defining a visual marker of osteoprogenitor cells within the periodontium. J Periodontal Res 2010; 45:60-70. [PMID: 19453851 PMCID: PMC2871067 DOI: 10.1111/j.1600-0765.2009.01201.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Cells with osteoprogenitor potential are present within periodontal tissues during development and in postnatal life. To identify an osteoprogenitor population, this study utilized a transgenic model in which an alpha-smooth muscle actin (alphaSMA) promoter directed green fluorescent protein (GFP) expression. MATERIAL AND METHODS Observation of GFP expression was complemented with analysis of osteogenic differentiation by determining the expression of RNA of bone markers, by histochemical staining for alkaline phosphatase and by the detection of mineralized nodules using xylenol orange. Flow cytometry was utilized to determine the proliferative potential and cell-surface phenotype of cultured alphaSMA-positive cells. RESULTS alphaSMA-GFP expression was detected within the dental follicle and in the apical region of the root (i.e. areas rich in vascularization) but not in mature bone. alphaSMA-GFP expression was observed during the early stages of primary cultures derived from the dental follicle and periodontal ligament and was diminished in areas undergoing mineralization. Intense alkaline phosphatase activity and the presence of mineralized nodules was observed 2 wk after osteogenic induction. Consequently, the expression of bone sialoprotein, osteocalcin and dentin matrix protein-1 was increased. Flow cytometry revealed that in vitro expansion enriched for an alphaSMA-GFP-positive population in which 55-65% of cells expressed the cell-surface markers Thy1(+) and Sca1(+). The alphaSMA-GFP-positive population exhibited high proliferative and osteogenic potentials when compared with an alphaSMA-GFP-negative population. CONCLUSION Our data indicate that the alphaSMA promoter can be used to identify a population of osteoprogenitor cells residing within the dental follicle and periodontal ligament that can differentiate into mature osteoblasts.
Collapse
Affiliation(s)
- S M San Miguel
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
| | | | | | | | | | | |
Collapse
|
140
|
Turan S, Aydin C, Bereket A, Akcay T, Güran T, Yaralioglu BA, Bastepe M, Jüppner H. Identification of a novel dentin matrix protein-1 (DMP-1) mutation and dental anomalies in a kindred with autosomal recessive hypophosphatemia. Bone 2010; 46:402-9. [PMID: 19796717 PMCID: PMC2818230 DOI: 10.1016/j.bone.2009.09.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/16/2009] [Indexed: 10/20/2022]
Abstract
An autosomal recessive form of hypophosphatemia (ARHP) was recently shown to be caused by homozygous mutations in DMP1, the gene encoding dentin matrix protein-1 (DMP-1), a non-collagenous bone matrix protein with an important role in the development and mineralization of bone and teeth. Here, we describe a previously not reported consanguineous ARHP kindred in which the three affected individuals carry a novel homozygous DMP-1 mutation. The index case presented at the age of 3 years with bowing of his legs and showed hypophosphatemia due to insufficient renal phosphate retention. Serum alkaline phosphatase activity was elevated, with initially normal PTH. FGF23 was inappropriately normal at an older age while being treated with oral phosphate and 1,25(OH)(2)D. Similar clinical and biochemical findings, except for elevated FGF23 levels, were present in his 16-month-old brother and his 12.5-year-old female cousin; the parents of the three affected children are first-degree cousins. Nucleotide sequence analysis was performed on PCR-amplified exons encoding DMP-1 and flanking intronic regions. A novel homozygous frame-shift mutation (c.485Tdel; p.Glu163ArgfsX53) in exon 6 resulting in a premature stop codon was identified in all effected individuals. The parents and available unaffected siblings were heterozygous for c.485Tdel. Tooth growth and shape were normal for the index case, his affected brother and cousin, but their permanent and deciduous teeth displayed enlarged pulp chambers. The identified genetic mutation underscores the importance of DMP-1 mutations in the pathogenesis of ARHP. Furthermore, DMP-1 mutations appear to contribute, through yet unknown mechanisms, to tooth development.
Collapse
Affiliation(s)
- Serap Turan
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Igwe JC, Jiang X, Paic F, Ma L, Adams DJ, Baldock PA, Pilbeam C, Kalajzic I. Neuropeptide Y is expressed by osteocytes and can inhibit osteoblastic activity. J Cell Biochem 2009; 108:621-30. [PMID: 19670271 PMCID: PMC2754602 DOI: 10.1002/jcb.22294] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Osteocytes are the most abundant osteoblast lineage cells within the bone matrix. They respond to mechanical stimulation and can participate in the release of regulatory proteins that can modulate the activity of other bone cells. We hypothesize that neuropeptide Y (NPY), a neurotransmitter with regulatory functions in bone formation, is produced by osteocytes and can affect osteoblast activity. To study the expression of NPY by the osteoblast lineage cells, we utilized transgenic mouse models in which we can identify and isolate populations of osteoblasts and osteocytes. The Col2.3GFP transgene is active in osteoblasts and osteocytes, while the DMP1 promoter drives green fluorescent protein (GFP) expression in osteocytes. Real-time PCR analysis of RNA from the isolated populations of cells derived from neonatal calvaria showed higher NPY mRNA in the preosteocytes/osteocytes fraction compared to osteoblasts. NPY immunostaining confirmed the strong expression of NPY in osteocytes (DMP1GFP(+)), and lower levels in osteoblasts. In addition, the presence of NPY receptor Y1 mRNA was detected in cavaria and long bone, as well as in primary calvarial osteoblast cultures, whereas Y2 mRNA was restricted to the brain. Furthermore, NPY expression was reduced by 30-40% in primary calvarial cultures when subjected to fluid shear stress. In addition, treatment of mouse calvarial osteoblasts with exogenous NPY showed a reduction in the levels of intracellular cAMP and markers of osteoblast differentiation (osteocalcin, BSP, and DMP1). These results highlight the potential regulation of osteoblast lineage differentiation by local NPY signaling.
Collapse
Affiliation(s)
- John C. Igwe
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut
| | - Xi Jiang
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut
| | - Frane Paic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut
| | - Li Ma
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | - Douglas J. Adams
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut
| | - Paul A. Baldock
- Garvan Research Institute, Sydney, New South Wales, Australia
| | - Carol Pilbeam
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
142
|
Paic F, Igwe JC, Ravi N, Kronenberg MS, Franceschetti T, Harrington P, Kuo L, Shin DG, Rowe DW, Harris SE, Kalajzic I. Identification of differentially expressed genes between osteoblasts and osteocytes. Bone 2009; 45:682-92. [PMID: 19539797 PMCID: PMC2731004 DOI: 10.1016/j.bone.2009.06.010] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 06/03/2009] [Accepted: 06/04/2009] [Indexed: 11/17/2022]
Abstract
Osteocytes represent the most abundant cellular component of mammalian bones with important functions in bone mass maintenance and remodeling. To elucidate the differential gene expression between osteoblasts and osteocytes we completed a comprehensive analysis of their gene profiles. Selective identification of these two mature populations was achieved by utilization of visual markers of bone lineage cells. We have utilized dual GFP reporter mice in which osteocytes are expressing GFP (topaz) directed by the DMP1 promoter, while osteoblasts are identified by expression of GFP (cyan) driven by 2.3 kb of the Col1a1 promoter. Histological analysis of 7-day-old neonatal calvaria confirmed the expression pattern of DMP1GFP in osteocytes and Col2.3 in osteoblasts and osteocytes. To isolate distinct populations of cells we utilized fluorescent activated cell sorting (FACS). Cell suspensions were subjected to RNA extraction, in vitro transcription and labeling of cDNA and gene expression was analyzed using the Illumina WG-6v1 BeadChip. Following normalization of raw data from four biological replicates, 3444 genes were called present in all three sorted cell populations: GFP negative, Col2.3cyan(+) (osteoblasts), and DMP1topaz(+) (preosteocytes and osteocytes). We present the genes that showed in excess of a 2-fold change for gene expression between DMP1topaz(+) and Col2.3cyan(+) cells. The selected genes were classified and grouped according to their associated gene ontology terms. Genes clustered to osteogenesis and skeletal development such as Bmp4, Bmp8a, Dmp1, Enpp1, Phex and Ank were highly expressed in DMP1topaz(+)cells. Most of the genes encoding extracellular matrix components and secreted proteins had lower expression in DMP1topaz(+) cells, while most of the genes encoding plasma membrane proteins were increased. Interestingly a large number of genes associated with muscle development and function and with neuronal phenotype were increased in DMP1topaz(+) cells, indicating some new aspects of osteocyte biology. Although a large number of genes differentially expressed in DMP1topaz(+) and Col2.3cyan(+) cells in our study have already been assigned to bone development and physiology, for most of them we still lack any substantial data. Therefore, isolation of osteocyte and osteoblast cell populations and their subsequent microarray analysis allowed us to identify a number or genes and pathways with potential roles in regulation of bone mass.
Collapse
Affiliation(s)
- Frane Paic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
- Department of Biology, School of Medicine, Zagreb, Croatia
| | - John C. Igwe
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Nori Ravi
- Department of Computer Science, University of Connecticut, Storrs, Connecticut, USA
| | - Mark S. Kronenberg
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Tiziana Franceschetti
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Patrick Harrington
- Dept. of Statistics, University of Connecticut, Storrs, Connecticut, USA
| | - Lynn Kuo
- Dept. of Statistics, University of Connecticut, Storrs, Connecticut, USA
| | - Don-Guk Shin
- Department of Computer Science, University of Connecticut, Storrs, Connecticut, USA
| | - David W. Rowe
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
143
|
Dean AK, Harris SE, Kalajzic I, Ruan J. A systems biology approach to the identification and analysis of transcriptional regulatory networks in osteocytes. BMC Bioinformatics 2009; 10 Suppl 9:S5. [PMID: 19761575 PMCID: PMC2745692 DOI: 10.1186/1471-2105-10-s9-s5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The osteocyte is a type of cell that appears to be one of the key endocrine regulators of bone metabolism and a key responder to initiate bone formation and remodeling. Identifying the regulatory networks in osteocytes may lead to new therapies for osteoporosis and loss of bone. RESULTS Using microarray, we identified 269 genes over-expressed in osteocyte, many of which have known functions in bone and muscle differentiation and contractility. We determined the evolutionarily conserved and enriched TF binding sites in the 5 kb promoter regions of these genes. Using this data, a transcriptional regulatory network was constructed and subsequently partitioned to identify cis-regulatory modules. CONCLUSION Our results show that many osteocyte-specific genes, including two well-known osteocyte markers DMP1 and Sost, have highly conserved clustering of muscle-related cis-regulatory modules, thus supporting the concept that a muscle-related gene network is important in osteocyte biology and may play a role in contractility and dynamic movements of the osteocyte.
Collapse
Affiliation(s)
- Angela K Dean
- Department of Computer Science, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | | | | | | |
Collapse
|
144
|
Atkins GJ, Welldon KJ, Halbout P, Findlay DM. Strontium ranelate treatment of human primary osteoblasts promotes an osteocyte-like phenotype while eliciting an osteoprotegerin response. Osteoporos Int 2009; 20:653-64. [PMID: 18763010 DOI: 10.1007/s00198-008-0728-6] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 07/21/2008] [Indexed: 10/21/2022]
Abstract
SUMMARY The effect of strontium ranelate (SR) on human osteoblast differentiation was tested. SR induced osteoblastic proliferation, in vitro mineralization, and increased the expression of osteocyte markers. SR also elicited an osteoprotegerin (OPG) secretory response. We conclude that SR promotes the osteoblast maturation and osteocyte differentiation while promoting an additional antiresorptive effect. INTRODUCTION SR is a new treatment for osteoporosis that reduces the risk of hip and vertebral fractures in postmenopausal women. This study sought to investigate the extent, to which SR modulates human osteoblast differentiation. METHODS Adult human primary osteoblasts (NHBC) were exposed to SR under mineralizing conditions in long-term cultures. Osteoblast differentiation status was investigated by cell-surface phenotypic analysis. Expression of genes associated with osteoblast/osteocyte differentiation was examined using real-time RT-PCR. Secreted OPG was assayed by enzyme-linked immunosorbent assay. RESULTS SR significantly increased osteoblast replication. SR time- and dose-dependently induced an osteocyte-like phenotype, as determined by cell surface alkaline phosphatase and STRO-1 expression. SR at 5 mM or greater dramatically increased in vitro mineralization. In parallel, mRNA levels of dentin matrix protein (DMP)-1 and sclerostin were higher under SR treatment, strongly suggestive of the presence of osteocytes. SR also increased the OPG/RANKL ratio throughout the culture period, consistent with an effect to inhibit osteoblast-induced osteoclastogenesis. CONCLUSIONS This study suggests that SR can promote osteoblast maturation and an osteocyte-like phenotype. Coupled with its effect on the OPG/RANKL system, these findings are consistent with in vivo effects in patients receiving SR for the treatment of osteoporosis.
Collapse
Affiliation(s)
- G J Atkins
- Bone Cell Biology Group, Discipline of Orthopaedics and Trauma, University of Adelaide and Hanson Institute, Adelaide, Australia.
| | | | | | | |
Collapse
|
145
|
Maye P, Stover ML, Liu Y, Rowe DW, Gong S, Lichtler AC. A BAC-bacterial recombination method to generate physically linked multiple gene reporter DNA constructs. BMC Biotechnol 2009; 9:20. [PMID: 19284652 PMCID: PMC2662825 DOI: 10.1186/1472-6750-9-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 03/13/2009] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Reporter gene mice are valuable animal models for biological research providing a gene expression readout that can contribute to cellular characterization within the context of a developmental process. With the advancement of bacterial recombination techniques to engineer reporter gene constructs from BAC genomic clones and the generation of optically distinguishable fluorescent protein reporter genes, there is an unprecedented capability to engineer more informative transgenic reporter mouse models relative to what has been traditionally available. RESULTS We demonstrate here our first effort on the development of a three stage bacterial recombination strategy to physically link multiple genes together with their respective fluorescent protein (FP) reporters in one DNA fragment. This strategy uses bacterial recombination techniques to: (1) subclone genes of interest into BAC linking vectors, (2) insert desired reporter genes into respective genes and (3) link different gene-reporters together. As proof of concept, we have generated a single DNA fragment containing the genes Trap, Dmp1, and Ibsp driving the expression of ECFP, mCherry, and Topaz FP reporter genes, respectively. Using this DNA construct, we have successfully generated transgenic reporter mice that retain two to three gene readouts. CONCLUSION The three stage methodology to link multiple genes with their respective fluorescent protein reporter works with reasonable efficiency. Moreover, gene linkage allows for their common chromosomal integration into a single locus. However, the testing of this multi-reporter DNA construct by transgenesis does suggest that the linkage of two different genes together, despite their large size, can still create a positional effect. We believe that gene choice, genomic DNA fragment size and the presence of endogenous insulator elements are critical variables.
Collapse
Affiliation(s)
- Peter Maye
- Department of Reconstructive Sciences, Center for Regenerative Medicine, University of Connecticut Health Center, Farmington, CT, USA.
| | | | | | | | | | | |
Collapse
|
146
|
Affiliation(s)
- Adele L Boskey
- Musculoskeletal Integrity Program, Hospital for Special Surgery, 535 East 70th Street, New York, New York 10021, USA.
| | | |
Collapse
|
147
|
George A, Veis A. Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition. Chem Rev 2008; 108:4670-93. [PMID: 18831570 PMCID: PMC2748976 DOI: 10.1021/cr0782729] [Citation(s) in RCA: 503] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Anne George
- Department of Oral Biology, Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
148
|
Dallas SL, Veno PA, Rosser JL, Barragan-Adjemian C, Rowe DW, Kalajzic I, Bonewald LF. Time lapse imaging techniques for comparison of mineralization dynamics in primary murine osteoblasts and the late osteoblast/early osteocyte-like cell line MLO-A5. Cells Tissues Organs 2008; 189:6-11. [PMID: 18728354 PMCID: PMC2824180 DOI: 10.1159/000151745] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mineralization of bone matrix and osteocyte differentiation occur simultaneously and appear interrelated both spatially and temporally. Although these are dynamic events, their study has been limited to using static imaging approaches, either alone or in combination with chemical and biochemical analysis and/or genetic manipulation. Here we describe the application of live cell imaging techniques to study mineralization dynamics in primary osteoblast cultures compared to a late osteoblast/early osteocyte-like cell line, MLO-A5. Mineral deposition was monitored using alizarin red as a vital stain for calcium. To monitor differentiation into an osteocyte-like phenotype, the calvarial cells were isolated from transgenic mice expressing green fluorescent protein (GFP) driven by an 8-kb dentin matrix protein-1 (Dmp1) promoter that gives osteocyte-selective expression. Time lapse imaging showed that there was a lag phase of 15-20 h after beta-glycerophosphate addition, followed by mineral deposition that was rapid in primary osteoblast cultures but more gradual in MLO-A5 cultures. In primary osteoblast cultures, mineral was deposited exclusively in association with clusters of cells expressing Dmp1-GFP, suggesting that they were already differentiating into osteocyte-like cells. In MLO-A5 cells, the first indication of mineralization was the appearance of punctate areas of alizarin red fluorescence of 4-7 mum in diameter, followed by mineral deposition throughout the culture in association with collagen fibrils. A high amount of cell motility was observed within mineralizing nodules and in mineralizing MLO-A5 cultures. These studies provide a novel approach for analyzing mineralization kinetics that will enable us to dissect in a time-specific manner the essential players in the mineralization process.
Collapse
Affiliation(s)
- Sarah L Dallas
- School of Dentistry, Department of Oral Biology, University of Missouri at Kansas City, 650 E. 25th Street, Kansas City, MO 64108, USA.
| | | | | | | | | | | | | |
Collapse
|
149
|
O'Brien CA, Plotkin LI, Galli C, Goellner JJ, Gortazar AR, Allen MR, Robling AG, Bouxsein M, Schipani E, Turner CH, Jilka RL, Weinstein RS, Manolagas SC, Bellido T. Control of bone mass and remodeling by PTH receptor signaling in osteocytes. PLoS One 2008; 3:e2942. [PMID: 18698360 PMCID: PMC2491588 DOI: 10.1371/journal.pone.0002942] [Citation(s) in RCA: 267] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 07/21/2008] [Indexed: 11/30/2022] Open
Abstract
Osteocytes, former osteoblasts buried within bone, are thought to orchestrate skeletal adaptation to mechanical stimuli. However, it remains unknown whether hormones control skeletal homeostasis through actions on osteocytes. Parathyroid hormone (PTH) stimulates bone remodeling and may cause bone loss or bone gain depending on the balance between bone resorption and formation. Herein, we demonstrate that transgenic mice expressing a constitutively active PTH receptor exclusively in osteocytes exhibit increased bone mass and bone remodeling, as well as reduced expression of the osteocyte-derived Wnt antagonist sclerostin, increased Wnt signaling, increased osteoclast and osteoblast number, and decreased osteoblast apoptosis. Deletion of the Wnt co-receptor LDL related receptor 5 (LRP5) attenuates the high bone mass phenotype but not the increase in bone remodeling induced by the transgene. These findings demonstrate that PTH receptor signaling in osteocytes increases bone mass and the rate of bone remodeling through LRP5-dependent and -independent mechanisms, respectively.
Collapse
Affiliation(s)
- Charles A. O'Brien
- Division of Endocrinology, Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Lilian I. Plotkin
- Division of Endocrinology, Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Carlo Galli
- Division of Endocrinology, Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Joseph J. Goellner
- Division of Endocrinology, Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Arancha R. Gortazar
- Division of Endocrinology, Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Matthew R. Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Alexander G. Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Mary Bouxsein
- Department of Orthopedic Surgery, Harvard Medical School, Orthopedic Biomechanics Laboratory, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Ernestina Schipani
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Charles H. Turner
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Robert L. Jilka
- Division of Endocrinology, Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Robert S. Weinstein
- Division of Endocrinology, Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Stavros C. Manolagas
- Division of Endocrinology, Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Teresita Bellido
- Division of Endocrinology, Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| |
Collapse
|
150
|
The direct role of vitamin D on bone homeostasis. Arch Biochem Biophys 2008; 473:225-30. [PMID: 18424254 DOI: 10.1016/j.abb.2008.03.038] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/26/2008] [Accepted: 03/27/2008] [Indexed: 12/28/2022]
|