101
|
Rahayu UB, Wibowo S, Setyopranoto I, Hibatullah Romli M. Effectiveness of physiotherapy interventions in brain plasticity, balance and functional ability in stroke survivors: A randomized controlled trial. NeuroRehabilitation 2021; 47:463-470. [PMID: 33164953 DOI: 10.3233/nre-203210] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Brain injuries such as strokes cause damage and death of the neuron cells. Physiotherapy interventions help to improve patient's performance and ability. However, this is only theorized but the impact of the physiotherapy intervention on brain plasticity is not known. OBJECTIVE The present study aimed to investigate the effect of physiotherapy interventions on brain neuroplasticity by evaluating the brain plasticity regeneration, balance and functional ability. METHODS A randomized controlled trial was conducted with 64 stroke patients from three hospitals in the Surakarta region, Indonesia. Control groups (n = 32) received conventional physiotherapy and intervention groups (n = 32) received neurorestoration protocol, which both lasted for seven days. Efficacy of the interventions were measured on brain-derived neurotropic factor serum analysis, Berg Balance Scale and Barthel Index, respectively. RESULTS Both groups showed improvements in all parameters but only balance and functional performance had a statistically significant outcome. CONCLUSION Neurorestoration protocol that combined several established physiotherapy interventions was effective in improving balance and functional ability of stroke patients in only a seven days period.
Collapse
Affiliation(s)
- Umi Budi Rahayu
- Department of Physiotherapy, Faculty of Health Sciences, Universitas Muhammadiyah, Surakarta, Indonesia
| | - Samekto Wibowo
- Department of Neurology, Faculty of Medicine, Universitas Gadjah Mada Yogyakarta, Indonesia
| | - Ismail Setyopranoto
- Department of Neurology, Faculty of Medicine, Universitas Gadjah Mada Yogyakarta, Indonesia
| | - M Hibatullah Romli
- Department of Nursing & Rehabilitation, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia
| |
Collapse
|
102
|
Delayed Exercise-induced Upregulation of Angiogenic Proteins and Recovery of Motor Function after Photothrombotic Stroke in Mice. Neuroscience 2021; 461:57-71. [PMID: 33667592 DOI: 10.1016/j.neuroscience.2021.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 01/02/2023]
Abstract
Treatments promoting post-stroke functional recovery continue to be an unmet therapeutic problem with physical rehabilitation being the most reproduced intervention in preclinical and clinical studies. Unfortunately, physiotherapy is typically effective at high intensity and early after stroke - requirements that are hardly attainable by stroke survivors. The aim of this study was to directly evaluate and compare the dose-dependent effect of delayed physical rehabilitation (daily 5 h or overnight voluntary wheel running; initiated on post-stroke day 7 and continuing through day 21) on recovery of motor function in the mouse photothrombotic model of ischemic stroke and correlate it with angiogenic potential of the brain. Our observations indicate that overnight but not 5 h access to running wheels facilitates recovery of motor function in mice in grid-walking test. Western blotting and immunofluorescence microscopy experiments evaluating the expression of angiogenesis-associated proteins VEGFR2, doppel and PDGFRβ in the peri-infarct and corresponding contralateral motor cortices indicate substantial upregulation of these proteins (≥2-fold) in the infarct core and surrounding cerebral cortex in the overnight running mice on post-stroke day 21. These findings indicate that there is a dose-dependent relationship between the extent of voluntary exercise, motor recovery and expression of angiogenesis-associated proteins in this expert-recommended mouse ischemic stroke model. Notably, our observations also point out to enhanced angiogenesis and presence of pericytes within the infarct core region during the chronic phase of stroke, suggesting a potential contribution of this tissue area in the mechanisms governing post-stroke functional recovery.
Collapse
|
103
|
Zhang XH, Zhou CC, Li CY, Hua Y, Li K, Wei P, He MF. Isoliquiritin exert protective effect on telencephalon infarction injury by regulating multi-pathways in zebrafish model of ischemic stroke. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 83:153469. [PMID: 33535128 DOI: 10.1016/j.phymed.2021.153469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/16/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Ischemic stroke is a multifactorial disease contributing to mortality and neurological dysfunction. Isoliquiritin (ISL) has been reported to possess a series of pharmacological activities including antioxidant, anti-inflammatory, antifungal, anti-depression, anti-neurotoxicity and pro-angiogenesis activities but whether it can be used for ischemic stroke treatment remains unknown. PURPOSE The goal of this study is to explore its therapeutic effect on ischemic stroke and demonstrated the potential mechanism of ISL in zebrafish model. METHODS Using the photothrombotic-induced adult zebrafish model of ischemic stroke, we visualized the telencephalon (Tel) and optic tectum (OT) infarction injury at 24 h post-light exposure for 30 min by TTC and H&E staining. The effect of ISL on neurological deficits was analyzed during open tank swimming by video tracking. The antioxidant activity against ischemia injury was quantified by SOD, GSH-Px and MDA assay. Transcriptome analysis of zebrafish Tel revealed how ISL regulating gene expression to exert protective effect, which were also been validated by real-time quantitative PCR assays. RESULTS We found for the first time that the Tel tissue was the first damaged site of the whole brain and it showed more sensitivity to the brain ischemic damage compared to the OT. ISL reduced the rate of Tel injury, ameliorated neurological deficits as well as counteracted oxidative damages by increasing SOD, GSH-Px and decreasing MDA activity. GO enrichment demonstrated that ISL protected membrane and membrane function as well as initiate immune regulation in the stress response after ischemia. KEGG pathway analysis pointed out that immune-related pathways, apoptosis as well as necroptosis pathways were more involved in the protective mechanism of ISL. Furthermore, the log2 fold change in expression pattern of 25 genes detected by qRT-PCR was consistent with that by RNA-seq. CONCLUSIONS Tel was highly sensitive to the brain ischemia injury in zebrafish model of ischemic stroke. ISL significantly exerted protective effect on Tel injury, neurological deficits and oxidative damages. ISL could regulate a variety of genes related to immune, apoptosis and necrosis pathways against complex cascade reaction after ischemia. These findings enriched the study of ISL, making it a novel multi-target agent for ischemic stroke treatment.
Collapse
Affiliation(s)
- Xiao-Huan Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chen-Cong Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chong-Yong Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yao Hua
- Jiangsu Simovay Pharmaceutical Co., Ltd, Nanjing 210042, China
| | - Kang Li
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, 140 Hanzhong Road, Nanjing 211816, China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ming-Fang He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
104
|
Qiu Z, Yang J, Deng G, Li D, Zhang S. Angiopoietin-like 4 promotes angiogenesis and neurogenesis in a mouse model of acute ischemic stroke. Brain Res Bull 2021; 168:156-164. [PMID: 33417949 DOI: 10.1016/j.brainresbull.2020.12.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 11/23/2020] [Accepted: 12/31/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The purpose of the present study is to investigate whether angiopoietin-like 4 (ANGPTL4) can promote angiogenesis and neurogenesis following stroke, as well as to explore the potential underlying mechanisms. METHODS ANGPTL4 (40 μg/kg) or a vehicle was administered via tail vein beginning 5 min prior to electrocoagulation-induced stroke in male C57/B6 J mice. Infarct volume was measured via Nissl staining at day 3 post-stroke. Angiogenesis, neurogenesis and activation of microglia were evaluated by immunofluorescence co-labelling bromodeoxyuridine (BrdU) with von Willebrand factor (vWF), doublecortin (DCX), neuronal nuclei (NeuN) and Iba1 at day 7 post-stroke. The levels of p-AKT, T-AKT, VEGF, MPO, Fas and FasL in the ipsilesional brain were detected by Western blot analysis at day 1 post-stroke. RESULTS Compared with the Vehicle group, ANGPTL4 reduced infarct volume significantly at day 3 post-stroke. ANGPTL4 significantly increased the number of BrdU+, BrdU+/vWF+and BrdU+/DCX+ cells in the peri-infarct zone, subventricular zone and subgranular zone and inhibited BrdU+/Iba1+ cells in the peri-infarct zone at day 7 post-stroke. The level of p-AKT and the ratio of phospho-AKT to total-AKT in the ipsilesional brain were significantly elevated, the levels of MPO, Fas and FasL were significantly declined; however, there was no significant difference at day 1 post-stroke between the VEGF and total-AKT levels in both groups. CONCLUSIONS ANGPTL4 enhances angiogenesis and neurogenesis post-stroke by upregulating the phosphorylation of AKT, reduces neuronal death and inhibits inflammatory response, which resultes from the inhibition of FasL/Fas expression and its downstream pathway.
Collapse
Affiliation(s)
- Zhandong Qiu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Jia Yang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Gang Deng
- Department of Neurology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dayong Li
- Department of Emergency Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Suming Zhang
- Department of Neurology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
105
|
Promotion of Momordica Charantia polysaccharides on neural stem cell proliferation by increasing SIRT1 activity after cerebral ischemia/reperfusion in rats. Brain Res Bull 2021; 170:254-263. [PMID: 33647420 DOI: 10.1016/j.brainresbull.2021.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/22/2021] [Accepted: 02/16/2021] [Indexed: 11/24/2022]
Abstract
The deacetylase SIRT1 has been reported to play a critical role in regulating neurogenesis, which may be an adaptive processes contributing to recovery after stroke. Our previous work showed that the antioxidant capacity of Momordica charantia polysaccharides (MCPs) could protect against cerebral ischemia/reperfusion (I/R) after stroke. However, whether the protective effect of MCPs on I/R injury is related to neural stem cell (NSC) proliferation remains unclear. In the present study, we designed invivo and invitro experiments to elucidate the underlying mechanisms by which MCPs promote endogenous NSC proliferation during cerebral I/R. Invivo results showed that MCPs rescued the memory and learning abilities of rats after I/R damage and enhanced NSC proliferation in the rat subventricular zone (SVZ) and subgrannular zone (SGZ) during I/R. Invitro experiments demonstrated that MCPs could stimulate the proliferation of C17.2 cells under oxygen-glucose deprivation (OGD) conditions. Further studies revealed that the proliferation-promoting mechanism of MCPs relied on increasing the activity of SIRT1, decreasing the level of acetylation of β-catenin in the cytoplasm, and then triggering the translocation of β-catenin into the nucleus. These data provide experimental evidence that the up-regulation of SIRT1 activity by MCPs led to an increased cytoplasmic deacetylation of β-catenin, which promoted translocation of β-catenin to the nucleus to participate in the signaling pathway involved in NSC proliferation. The present study reveals that MCPs function as a therapeutic drug to promote stroke recovery by increasing the activity of SIRT1, decreasing the level of acetylated β-catenin, promoting the nuclear translocation of β-catenin and thereby increasing endogenous NSC proliferation.
Collapse
|
106
|
Deng D, Qu Y, Sun L, Jia L, Bu J, Ye M, Chen Z, Geng Y, Zhou S, Fang B. Fuyuan Xingnao Decoction Promotes Angiogenesis Through the Rab1/AT1R Pathway in Diabetes Mellitus Complicated With Cerebral Infarction. Front Pharmacol 2021; 12:616165. [PMID: 33679398 PMCID: PMC7925884 DOI: 10.3389/fphar.2021.616165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Fuyuan Xingnao decoction (FYXN), a traditional Chinese formula comprised of seven herbs, has been utilized to treat diabetes mellitus complicated with cerebral infarction (DMCI) for years. Yet, its protective and regulatory mechanism is poorly understood. The aim of the study is to investigate the effects of FYXN on DMCI in vitro and in vivo, as well as its mechanism in angiogenesis. For in vivo experiments, FYXN was administered to DMCI rats with streptozotocin (STZ) injection-induced diabetes. Then middle cerebral artery occlusion (MCAO) was conducted and the cerebral cortex sections of the rats were obtained. The ultrastructure of cerebral microvessels and new vessel density of ischemic penumbra were evaluated by the transmission electron microscopy (TEM) assay and immunohistochemistry, respectively. Protein and mRNA expression levels of Rab1/AT1R in cortex were assayed by Western blotting and real-time fluorescence quantitative real-time polymerase chain reaction (RT-qPCR). In vitro, FYXN serum was produced in rats on the fourth day 2 h after the last FYXN administration. Green fluorescence was observed after transfection with lentivirus packaged Rab1-WT or siRNA for 24 h. The activity of brain microvascular endothelial cells (BMECs) treated with sera from these rats was tested by MTT assay and Transwell assays, respectively. The expression of AT1R on the cell membrane and endoplasmic reticulum of BMECs was evaluated by immunofluorescence staining. Protein expression levels of signaling molecules in the Rab1/AT1R pathways were also detected. Results showed that in vivo, FYXN treatment significantly intensified CD31 staining in the cortical areas and enhanced the mRNA and protein levels of AT1R, Ang II, Rab1a, Rab1b and VEGF expression in ischemic cerebral cortex tissues. In vitro, the expression levels of AT1R, Ang II, Rab1a, Rab1b and VEGF in the cerebral infarction model group were significantly higher than those in the control group, with further increases after administration of FYXN drug serum. FYXN promoted the proliferation and migration of BMECs by activating the Rab1/AT1R signaling pathway. In conclusion, FYXN exerts a protective effect against DMCI by promoting angiogenesis via the Rab1/AT1R pathway, which provides strong evidence for the therapeutic effect of FYXN on DMCI.
Collapse
Affiliation(s)
- Dong Deng
- Department of Emergency Medicine, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yao Qu
- Department of Emergency Medicine, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihua Sun
- Department of Emergency Medicine, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liyang Jia
- Department of Emergency Medicine, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhong Bu
- Department of Emergency Medicine, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Internal Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Miaoqing Ye
- Department of Liver Disease, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Zhenyi Chen
- Department of Cardiology, the Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yun Geng
- Department of Emergency Medicine, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuang Zhou
- Department of Acupuncture and Massage College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bangjiang Fang
- Department of Emergency Medicine, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
107
|
Fei Y, Zhao B, Zhu J, Fang W, Li Y. XQ-1H promotes cerebral angiogenesis via activating PI3K/Akt/GSK3β/β-catenin/VEGF signal in mice exposed to cerebral ischemic injury. Life Sci 2021; 272:119234. [PMID: 33607158 DOI: 10.1016/j.lfs.2021.119234] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/25/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Stroke still ranks as a most lethal disease worldwide. Angiogenesis during the chronic phase of ischemic stroke can alleviate ischemic injury and attenuate neurological deficit. XQ-1H is a new compound derived from the structure modification of ginkgolide B, which exerts anti-inflammation and neuroprotection against cerebral ischemic injury during the acute or subacute phase. However, whether XQ-1H facilitates angiogenesis and neural functional recovery during the chronic phase remains unclear. This research was designed to explore whether XQ-1H promotes angiogenesis after ischemic stroke and to preliminarily elucidate the mechanism. In vitro, XQ-1H was found to facilitate proliferation, migration and tube formation in bEnd.3 cells. In vivo, XQ-1H raised the CD31 positive microvessel number and increased focal cerebral blood flow in mice exposed to cerebral ischemic injury, and improved the neurological function. Mechanism studies revealed that XQ-1H exerted angiogenesis promoting effect via the PI3K/Akt/GSK3β/β-catenin/VEGF signal pathway, which was reversed by LY294002 (the specific inhibitor of PI3K/Akt). In conclusion, XQ-1H exerts angiogenetic effect both in vivo and in vitro, which is a potential agent against ischemic stroke during chronic phase.
Collapse
Affiliation(s)
- Yuxiang Fei
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Bo Zhao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jianping Zhu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
108
|
Cellular Mechanisms Participating in Brain Repair of Adult Zebrafish and Mammals after Injury. Cells 2021; 10:cells10020391. [PMID: 33672842 PMCID: PMC7917790 DOI: 10.3390/cells10020391] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Adult neurogenesis is an evolutionary conserved process occurring in all vertebrates. However, striking differences are observed between the taxa, considering the number of neurogenic niches, the neural stem cell (NSC) identity, and brain plasticity under constitutive and injury-induced conditions. Zebrafish has become a popular model for the investigation of the molecular and cellular mechanisms involved in adult neurogenesis. Compared to mammals, the adult zebrafish displays a high number of neurogenic niches distributed throughout the brain. Furthermore, it exhibits a strong regenerative capacity without scar formation or any obvious disabilities. In this review, we will first discuss the similarities and differences regarding (i) the distribution of neurogenic niches in the brain of adult zebrafish and mammals (mainly mouse) and (ii) the nature of the neural stem cells within the main telencephalic niches. In the second part, we will describe the cascade of cellular events occurring after telencephalic injury in zebrafish and mouse. Our study clearly shows that most early events happening right after the brain injury are shared between zebrafish and mouse including cell death, microglia, and oligodendrocyte recruitment, as well as injury-induced neurogenesis. In mammals, one of the consequences following an injury is the formation of a glial scar that is persistent. This is not the case in zebrafish, which may be one of the main reasons that zebrafish display a higher regenerative capacity.
Collapse
|
109
|
Rahman AA, Amruta N, Pinteaux E, Bix GJ. Neurogenesis After Stroke: A Therapeutic Perspective. Transl Stroke Res 2021; 12:1-14. [PMID: 32862401 PMCID: PMC7803692 DOI: 10.1007/s12975-020-00841-w] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
Stroke is a major cause of death and disability worldwide. Yet therapeutic strategies available to treat stroke are very limited. There is an urgent need to develop novel therapeutics that can effectively facilitate functional recovery. The injury that results from stroke is known to induce neurogenesis in penumbra of the infarct region. There is considerable interest in harnessing this response for therapeutic purposes. This review summarizes what is currently known about stroke-induced neurogenesis and the factors that have been identified to regulate it. Additionally, some key studies in this field have been highlighted and their implications on future of stroke therapy have been discussed. There is a complex interplay between neuroinflammation and neurogenesis that dictates stroke outcome and possibly recovery. This highlights the need for a better understanding of the neuroinflammatory process and how it affects neurogenesis, as well as the need to identify new mechanisms and potential modulators. Neuroinflammatory processes and their impact on post-stroke repair have therefore also been discussed.
Collapse
Affiliation(s)
- Abir A Rahman
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, Room 1349, 131 S. Robertson, Ste 1300, New Orleans, LA, 70112, USA
| | - Narayanappa Amruta
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, Room 1349, 131 S. Robertson, Ste 1300, New Orleans, LA, 70112, USA
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, University of Manchester, A.V. Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - Gregory J Bix
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, Room 1349, 131 S. Robertson, Ste 1300, New Orleans, LA, 70112, USA.
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
110
|
Li Y, Tang Y, Yang GY. Therapeutic application of exosomes in ischaemic stroke. Stroke Vasc Neurol 2021; 6:483-495. [PMID: 33431513 PMCID: PMC8485240 DOI: 10.1136/svn-2020-000419] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/28/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Ischaemic stroke is a leading cause of long-term disability in the world, with limited effective treatments. Increasing evidence demonstrates that exosomes are involved in ischaemic pathology and exhibit restorative therapeutic effects by mediating cell–cell communication. The potential of exosome therapy for ischaemic stroke has been actively investigated in the past decade. In this review, we mainly discuss the current knowledge of therapeutic applications of exosomes from different cell types, different exosomal administration routes, and current advances of exosome tracking and targeting in ischaemic stroke. We also briefly summarised the pathology of ischaemic stroke, exosome biogenesis, exosome profile changes after stroke as well as registered clinical trials of exosome-based therapy.
Collapse
Affiliation(s)
- Yongfang Li
- Department of Neurology, Ruijin Hospital, School of medcine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaohui Tang
- Neuroscience and Neuroengineering Center, Medx Research Institute, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital, School of medcine, Shanghai Jiao Tong University, Shanghai, China .,Neuroscience and Neuroengineering Center, Medx Research Institute, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| |
Collapse
|
111
|
Nemchek V, Haan EM, Mavros R, Macuiba A, Kerr AL. Voluntary exercise ameliorates the good limb training effect in a mouse model of stroke. Exp Brain Res 2021; 239:687-697. [PMID: 33388904 DOI: 10.1007/s00221-020-05994-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022]
Abstract
Stroke is the leading cause of long-term disability in the United States, making research on rehabilitation imperative. Stroke rehabilitation typically focuses on recovery of the impaired limb, although this process is tedious. Compensatory use of the intact limb after stroke is more efficient, but it is known to negatively impact the impaired limb. Exercise may help with this problem; research has shown that exercise promotes neuronal growth and prevents cell death. This study used a mouse model to investigate if post-stroke exercise could prevent deterioration of the function of the impaired limb despite compensatory training of the intact limb. Results showed that mice that exercised, in combination with intact limb training, demonstrated improved functional outcome compared to mice that received no training or compensatory limb training only. These findings suggest that exercise can prevent the deterioration of impaired limb functional outcome that is typically seen with intact limb use.
Collapse
Affiliation(s)
- Victoria Nemchek
- Neuroscience Program, Illinois Wesleyan University, Bloomington, IL, USA
| | - Emma M Haan
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA
| | - Rachel Mavros
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA
| | - Amanda Macuiba
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA
| | - Abigail L Kerr
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA.
- Neuroscience Program, Illinois Wesleyan University, Bloomington, IL, USA.
| |
Collapse
|
112
|
Jiao Y, Liu YW, Chen WG, Liu J. Neuroregeneration and functional recovery after stroke: advancing neural stem cell therapy toward clinical application. Neural Regen Res 2021; 16:80-92. [PMID: 32788451 PMCID: PMC7818886 DOI: 10.4103/1673-5374.286955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stroke is a main cause of death and disability worldwide. The ability of the brain to self-repair in the acute and chronic phases after stroke is minimal; however, promising stem cell-based interventions are emerging that may give substantial and possibly complete recovery of brain function after stroke. Many animal models and clinical trials have demonstrated that neural stem cells (NSCs) in the central nervous system can orchestrate neurological repair through nerve regeneration, neuron polarization, axon pruning, neurite outgrowth, repair of myelin, and remodeling of the microenvironment and brain networks. Compared with other types of stem cells, NSCs have unique advantages in cell replacement, paracrine action, inflammatory regulation and neuroprotection. Our review summarizes NSC origins, characteristics, therapeutic mechanisms and repair processes, then highlights current research findings and clinical evidence for NSC therapy. These results may be helpful to inform the direction of future stroke research and to guide clinical decision-making.
Collapse
Affiliation(s)
- Yang Jiao
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Yu-Wan Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Wei-Gong Chen
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| |
Collapse
|
113
|
Patel AMR, Apaijai N, Chattipakorn N, Chattipakorn SC. The Protective and Reparative Role of Colony-Stimulating Factors in the Brain with Cerebral Ischemia/Reperfusion Injury. Neuroendocrinology 2021; 111:1029-1065. [PMID: 33075777 DOI: 10.1159/000512367] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/19/2020] [Indexed: 11/19/2022]
Abstract
Stroke is a debilitating disease and has the ability to culminate in devastating clinical outcomes. Ischemic stroke followed by reperfusion entrains cerebral ischemia/reperfusion (I/R) injury, which is a complex pathological process and is associated with serious clinical manifestations. Therefore, the development of a robust and effective poststroke therapy is crucial. Granulocyte colony-stimulating factor (GCSF) and erythropoietin (EPO), originally discovered as hematopoietic growth factors, are versatile and have transcended beyond their traditional role of orchestrating the proliferation, differentiation, and survival of hematopoietic progenitors to one that fosters brain protection/neuroregeneration. The clinical indication regarding GCSF and EPO as an auspicious therapeutic strategy is conferred in a plethora of illnesses, including anemia and neutropenia. EPO and GCSF alleviate cerebral I/R injury through a multitude of mechanisms, involving antiapoptotic, anti-inflammatory, antioxidant, neurogenic, and angiogenic effects. Despite bolstering evidence from preclinical studies, the multiple brain protective modalities of GCSF and EPO failed to translate in clinical trials and thereby raises several questions. The present review comprehensively compiles and discusses key findings from in vitro, in vivo, and clinical data pertaining to the administration of EPO, GCSF, and other drugs, which alter levels of colony-stimulating factor (CSF) in the brain following cerebral I/R injury, and elaborates on the contributing factors, which led to the lost in translation of CSFs from bench to bedside. Any controversial findings are discussed to enable a clear overview of the role of EPO and GCSF as robust and effective candidates for poststroke therapy.
Collapse
Affiliation(s)
- Aysha Mohamed Rafik Patel
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand,
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand,
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand,
| |
Collapse
|
114
|
Deng RM, Li HY, Li X, Shen HT, Wu DG, Wang Z, Chen G. Neuroprotective effect of helium after neonatal hypoxic ischemia: a narrative review. Med Gas Res 2021; 11:121-123. [PMID: 33942783 PMCID: PMC8174408 DOI: 10.4103/2045-9912.314332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Neonatal hypoxic ischemia is one of the leading causes of permanent morbidity and mortality in newborns, which is caused by difficulty in supplying blood and oxygen to brain tissue and is often associated with epilepsy, cerebral palsy, death, short-term or long-term neurological and cognitive impairment. In recent years, the clinical therapeutic effects of noble gases have been gradually discovered and recognized. Numerous studies have shown that noble gases have unique neuroprotective effects to restore damaged nerve and relieve symptoms in patients. Although research on the neuroprotective mechanisms of xenon and argon has yielded a lot of results, studies on helium have stalled. Helium is a colorless, odorless, monoatomic inert gas. The helium has no hemodynamic or neurocognitive side effects and can be used as an ideal pre-adaptor for future clinical applications. In recent years, studies have shown that heliox (a mixture of helium and oxygen) pretreatment can protect the heart, brain, liver and intestine from damage in several animal models, where a variety of signaling pathways have been proved to be involved. There are numerous studies on it even though the mechanism of helium for protecting newborns has not been fully elucidated. It is urgent to find an effective treatment due to the high death rate and disability rate of neonatal hypoxic ischemia. It is believed that helium will be approved safely and effectively for clinical use in the near future.
Collapse
Affiliation(s)
- Ru-Ming Deng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Hai-Ying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Hai-Tao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - De-Gang Wu
- Department of Neurosurgery, Yijishan Hospital of Wan-nan Medical College, Wuhu, Anhui Province, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
115
|
Exosomes Derived from CXCR4-Overexpressing BMSC Promoted Activation of Microvascular Endothelial Cells in Cerebral Ischemia/Reperfusion Injury. Neural Plast 2021; 2020:8814239. [PMID: 33381162 PMCID: PMC7762674 DOI: 10.1155/2020/8814239] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/27/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023] Open
Abstract
Background Ischemic stroke is a severe acute cerebrovascular disease which can be improved with neuroprotective therapies at an early stage. However, due to the lack of effective neuroprotective drugs, most stroke patients have varying degrees of long-term disability. In the present study, we investigated the role of exosomes derived from CXCR4-overexpressing BMSCs in restoring vascular function and neural repair after ischemic cerebral infarction. Methods BMSCs were transfected with lentivirus encoded by CXCR4 (BMSCCXCR4). Exosomes derived from BMSCCXCR4 (ExoCXCR4) were isolated and characterized by transmission electron microscopy and dynamic light scattering. Western blot and qPCR were used to analyze the expression of CXCR4 in BMSCs and exosomes. The acute middle cerebral artery occlusion (MCAO) model was prepared, ExoCXCR4 were injected into the rats, and behavioral changes were analyzed. The role of ExoCXCR4 in promoting the proliferation and tube formation for angiogenesis and protecting brain endothelial cells was determined in vitro. Results Compared with the control groups, the ExoCXCR4 group showed a significantly lower mNSS score at 7 d, 14 d, and 21 d after ischemia/reperfusion (P < 0.05). The bEnd.3 cells in the ExoCXCR4 group have stronger proliferation ability than other groups (P < 0.05), while the CXCR4 inhibitor can reduce this effect. Exosomes control (ExoCon) can significantly promote the migration of bEnd.3 cells (P < 0.05), while there was no significant difference between the ExoCXCR4 and ExoCon groups (P > 0.05). ExoCXCR4 can further promote the proliferation and tube formation for the angiogenesis of the endothelium compared with ExoCon group (P < 0.05). In addition, cobalt chloride (COCl2) can increase the expression of β-catenin and Wnt-3, while ExoCon can reduce the expression of these proteins (P < 0.05). ExoCXCR4 can further attenuate the activation of Wnt-3a/β-catenin pathway (P < 0.05). Conclusions In ischemia/reperfusion injury, ExoCXCR4 promoted the proliferation and tube formation of microvascular endothelial cells and play an antiapoptotic role via the Wnt-3a/β-catenin pathway.
Collapse
|
116
|
ZHUGE L, FANG Y, JIN H, LI L, YANG Y, HU X, CHU L. [Chinese medicine Buyang Huanwu decoction promotes neurogenesis and angiogenesis in ischemic stroke rats by upregulating miR-199a-5p expression]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:687-696. [PMID: 33448171 PMCID: PMC10412415 DOI: 10.3785/j.issn.1008-9292.2020.12.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/22/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To investigate the mechanism of Chinese medicine Buyang Huanwu decoction (BYHWD) promoting neurogenesis and angiogenesis in ischemic stroke rats. METHODS Male SD rats were randomly divided into sham operation group, model group, BYHWD group, antagonist group and antagonist control group with 14 rats in each. Focal cerebral ischemia was induced by occlusion of the right middle cerebral artery for 90 min with intraluminal filament and reperfusion for 14 d in all groups except sham operation group. BYHWD (13 g/kg) was administrated by gastrogavage in BYHWD group, antagonist group and antagonist control group at 24 h after modeling respectively, and BrdU (50 mg/kg) was injected intraperitoneally in all groups once a day for 14 consecutive days. miR-199a-5p antagomir or NC (10 nmol) was injected into the lateral ventricle at d5 after ischemia in antagonist and antagonist control groups, respectively. The neurological deficits were evaluated by the modified neurological severity score (mNSS) and the corner test, and the infract volume was measured by toluidine blue staining. Neurogenesis and angiogenesis were detected by immunofluorescence double labeling method. The expression level of miR-199a-5p was tested by real-time RT-PCR, and the protein expressions of vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) were determined by Western blotting. RESULTS BYHWD treatment significantly promoted the recovery of neurological function (P<0.05 or P<0.01), reduced the infarct volume (P<0.05), increased the number of BrdU+/DCX+, BrdU+/NeuN+ and BrdU+/vWF+ cells (all P<0.01), upregulated the expression of miR-199a-5p (P<0.01), and increased the protein expression of VEGF and BDNF at d14 after cerebral ischemia (all P<0.05). The above effects were reversed by intracerebroventricular injection of miR-199a-5p antagomir. CONCLUSIONS Buyang Huanwu decoction promotes neurogenesis and angiogenesis in rats with cerebral ischemia, which may be related to increased protein expression of VEGF and BDNF through upregulating miR-199a-5p.
Collapse
|
117
|
Vicentini JE, Weiler M, Casseb RF, Almeida SR, Valler L, de Campos BM, Li LM. Subacute functional connectivity correlates with cognitive recovery six months after stroke. NEUROIMAGE-CLINICAL 2020; 29:102538. [PMID: 33385880 PMCID: PMC7779317 DOI: 10.1016/j.nicl.2020.102538] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/19/2020] [Accepted: 12/15/2020] [Indexed: 12/27/2022]
Abstract
Stroke disrupts ipsilesional and inter-hemispheric functional connectivity of DMN. Subacute cognition correlated to inter-hemispheric and ipsilesional DMN connectivity. Subacute cognition correlated to weaker contralesional SN connectivity. Functional connectivity remapping was not observed after six months. Cognitive recovery correlated to DMN and SN connectivity from the subacute phase.
Background and purpose Cognitive impairment is a common consequence of stroke, and the rewiring of the surviving brain circuits might contribute to cognitive recovery. Studies investigating how the functional connectivity of networks change across time and whether their remapping relates to cognitive recovery in stroke patients are scarce. We aimed to investigate whether resting-state functional connectivity was associated with cognitive performance in stroke patients and if any alterations in these networks were correlated with cognitive recovery. Methods Using an fMRI ROI-ROI approach, we compared the ipsilesional, contralesional and interhemispheric functional connectivity of three resting-state networks involved in cognition – the Default Mode (DMN), Salience (SN) and Central Executive Networks (CEN), in subacute ischemic stroke patients (time 1, n = 37, stroke onset: 24.32 ± 7.44 days, NIHSS: 2.66 ± 3.45) with cognitively healthy controls (n = 20). Patients were reassessed six months after the stroke event (time 2, n = 20, stroke onset: 182.05 ± 8.17 days) to verify the subsequent reorganization of functional connections and whether such reorganization was associated with cognitive recovery. Results At time 1, patients had weaker interhemispheric connectivity in the DMN than controls; better cognitive performance at time 1 was associated with stronger interhemispheric and ipsilesional DMN connectivity, and weaker contralesional SN connectivity. At time 2, there were no changes in functional connectivity in stroke patients, compared to time 1. Better cognitive recovery measured at time 2 (time 2 – time 1) was associated with stronger functional connectivity in the DMN, and weaker interhemispheric subacute connectivity in the SN, both from time 1. Conclusions Stroke disrupts the functional connectivity of the DMN, not only at the lesioned hemisphere but also between hemispheres. Six months after the stroke event, we could not detect the remapping of networks. Cognitive recovery was associated with the connectivity of both the DMN and SN of time 1. Our findings may be helpful for facilitating further understanding of the potential mechanisms underlying post-stroke cognitive performance.
Collapse
Affiliation(s)
- Jéssica Elias Vicentini
- Brazilian Institute of Neuroscience and Neurotechnology - Brainn, Department of Neurology, Faculty of Medical Sciences - University of Campinas (UNICAMP), Brazil
| | - Marina Weiler
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health (NIA/NIH), Intramural Research Program, United States
| | | | - Sara Regina Almeida
- Brazilian Institute of Neuroscience and Neurotechnology - Brainn, Department of Neurology, Faculty of Medical Sciences - University of Campinas (UNICAMP), Brazil
| | - Lenise Valler
- Brazilian Institute of Neuroscience and Neurotechnology - Brainn, Department of Neurology, Faculty of Medical Sciences - University of Campinas (UNICAMP), Brazil
| | - Brunno Machado de Campos
- Brazilian Institute of Neuroscience and Neurotechnology - Brainn, Department of Neurology, Faculty of Medical Sciences - University of Campinas (UNICAMP), Brazil
| | - Li Min Li
- Brazilian Institute of Neuroscience and Neurotechnology - Brainn, Department of Neurology, Faculty of Medical Sciences - University of Campinas (UNICAMP), Brazil.
| |
Collapse
|
118
|
Zhan Y, Li MZ, Yang L, Feng XF, Lei JF, Zhang N, Zhao YY, Zhao H. The three-phase enriched environment paradigm promotes neurovascular restorative and prevents learning impairment after ischemic stroke in rats. Neurobiol Dis 2020; 146:105091. [DOI: 10.1016/j.nbd.2020.105091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/30/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
|
119
|
Dabrowska S, Andrzejewska A, Kozlowska H, Strzemecki D, Janowski M, Lukomska B. Neuroinflammation evoked by brain injury in a rat model of lacunar infarct. Exp Neurol 2020; 336:113531. [PMID: 33221395 DOI: 10.1016/j.expneurol.2020.113531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/27/2020] [Accepted: 11/13/2020] [Indexed: 12/24/2022]
Abstract
Stroke is the leading cause of long-term, severe disability worldwide. Immediately after the stroke, endogenous inflammatory processes are upregulated, leading to the local neuroinflammation and the potentiation of brain tissue destruction. The innate immune response is triggered as early as 24 h post-brain ischemia, followed by adaptive immunity activation. Together these immune cells produce many inflammatory mediators, i.e., cytokines, growth factors, and chemokines. Our study examines the immune response components in the early stage of deep brain lacunar infarct in the rat brain, highly relevant to the clinical scenario. The lesion was induced by stereotactic injection of ouabain into the adult rat striatum. Ouabain is a Na/K ATPase pump inhibitor that causes excitotoxicity and brings metabolic and structural changes in the cells leading to focal brain injury. We have shown a surge of neurodegenerative changes in the peri-infarct area in the first days after brain injury. Immunohistochemical analysis revealed early microglial activation and the gradual infiltration of immune cells with a significant increase of CD4+ and CD8+ T lymphocytes in the ipsilateral hemisphere. In our studies, we identified the higher level of pro-inflammatory cytokines, i.e., interleukin-1α, interleukin-1β, tumor necrosis factor-α, and interferon-γ, but a lower level of anti-inflammatory cytokines, i.e., interleukin-10 and transforming growth factor-β2 in the injured brain than in normal rats. Concomitantly focal brain injury showed a significant increase in the level of chemokines, i.e., monocyte chemoattractant protein-1 and CC motif chemokine ligand 5 compared to control. Our findings provide new insights into an early inflammatory reaction in our model of the deep-brain lacunar infarct. The results of this study may highlight future stroke immunotherapies for targeting the acute immune response accompanied by the insult.
Collapse
Affiliation(s)
- Sylwia Dabrowska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Hanna Kozlowska
- Laboratory of Advanced Microscopy Techniques, Mossakowski Medical Research Centre PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Damian Strzemecki
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Miroslaw Janowski
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland; Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore. MD 21201, USA
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland.
| |
Collapse
|
120
|
Du J, Yin G, Hu Y, Shi S, Jiang J, Song X, Zhang Z, Wei Z, Tang C, Lyu H. Coicis semen protects against focal cerebral ischemia-reperfusion injury by inhibiting oxidative stress and promoting angiogenesis via the TGFβ/ALK1/Smad1/5 signaling pathway. Aging (Albany NY) 2020; 13:877-893. [PMID: 33290255 PMCID: PMC7835068 DOI: 10.18632/aging.202194] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
Abstract
Background: Ischemic stroke is a devastating disease that causes long-term disability. However, its pathogenesis is unclear, and treatments for ischemic stroke are limited. Recent studies indicate that oxidative stress is involved in the pathological progression of ischemic stroke and that angiogenesis participates in recovery from ischemic stroke. Furthermore, previous studies have shown that Coicis Semen has antioxidative and anti-inflammatory effects in a variety of diseases. In the present study, we investigated whether Coicis Semen has a protective effect against ischemic stroke and the mechanism of this protective effect. Results: Coicis Semen administration significantly decreased the infarct volume and mortality and alleviated neurological deficits at 3, 7 and 14 days after MCAO. In addition, cerebral edema at 3 days poststroke was ameliorated by Coicis Semen treatment. DHE staining showed that ROS levels in the vehicle group were increased at 3 days after reperfusion and then gradually declined, but Coicis Semen treatment reduced ROS levels. The levels of GSH and SOD in the brain were increased by Coicis Semen treatment, while MDA levels were reduced. Furthermore, Coicis Semen treatment decreased the extravasation of EB dye in MCAO mouse brains and elevated expression of the tight junction proteins ZO-1 and Occludin. Double immunofluorescence staining and western blot analysis showed that the expression of angiogenesis markers and TGFβ pathway-related proteins was increased by Coicis Semen administration. Consistent with the in vivo results, cytotoxicity assays showed that Coicis Semen substantially promoted HUVEC survival following OGD/RX in vitro. Additionally, though LY2109761 inhibited the activation of TGFβ signaling in OGD/RX model animals, Coicis Semen cotreatment markedly reversed the downregulation of TGFβ pathway-related proteins and increased VEGF levels. Methods: Adult male wild-type C57BL/6J mice were used to develop a middle cerebral artery occlusion (MCAO) stroke model. Infarct size, neurological deficits and behavior were evaluated on days 3, 7 and 14 after staining. In addition, changes in superoxide dismutase (SOD), GSH and malondialdehyde (MDA) levels were detected with a commercial kit. Blood-brain barrier (BBB) permeability was assessed with Evans blue (EB) dye. Western blotting was also performed to measure the levels of tight junction proteins of the BBB. Additionally, ELISA was performed to measure the level of VEGF in the brain. The colocalization of CD31, angiogenesis markers, and Smad1/5 was assessed by double immunofluorescent staining. TGFβ pathway-related proteins were measured by western blotting. Furthermore, the cell viability of human umbilical vein endothelial cells (HUVECs) following oxygen-glucose deprivation/reoxygenation (OGD/RX) was measured by Cell Counting Kit (CCK)-8 assay. Conclusions: Coicis Semen treatment alleviates brain damage induced by ischemic stroke through inhibiting oxidative stress and promoting angiogenesis by activating the TGFβ/ALK1 signaling pathway.
Collapse
Affiliation(s)
- Jin Du
- Department of Neurosurgery, The People’s Hospital of Chizhou, Chizhou 247000, Anhui, China
| | - Guobing Yin
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Yida Hu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Si Shi
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Jiazhen Jiang
- Department of Emergency, Huashan Hospital North, Fudan University, Shanghai 201907, China
| | - Xiaoyan Song
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Zhetao Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, Anhui, China
| | - Zeyuan Wei
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, Anhui, China
| | - Chaoliang Tang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Haiyan Lyu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| |
Collapse
|
121
|
Yang X, Song D, Chen L, Xiao H, Ma X, Jiang Q, Cheng O. Curcumin promotes neurogenesis of hippocampal dentate gyrus via Wnt/β-catenin signal pathway following cerebral ischemia in mice. Brain Res 2020; 1751:147197. [PMID: 33160958 DOI: 10.1016/j.brainres.2020.147197] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/31/2020] [Accepted: 10/31/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To investigate whether curcumin promotes hippocampal neurogenesis in the cerebral ischemia (CI) mice via Wnt/β-catenin signaling pathway. METHODS Male C57BL/6 mice were randomly divided into groups: sham operation group (Sham), cerebral ischemic group (CI), curcumin treatment group (50, 100 mg/kg/d, i.p.) and curcumin (100 mg/kg/d) + DKK1 (a blocker of Wnt receptor, 200 ng/d, icv) group. CI was induced by bilateral common carotid arteries occlusion (BCCAO) for 20 min. The Morris water maze test was conducted to detect spatial learning and memory. Immunofluorescence staining was used to examine the proliferation and differentiation of immature neurons in the hippocampal dentate gyrus. The proteins involved in neurogenesis and Wnt signaling pathway were examined using Western blot assay. RESULTS Curcumin significantly alleviated cognitive deficits induced by CI. Curcumin dose-dependently increased the proliferation of neural stem cells and promoted the differentiation and maturation of newly generated neural cells into neurons. Curcumin also increased the expression of proteins involved in neurogenesis (including Ngn2, Pax6 and NeuroD 1) and the Wnt/β-catenin signaling pathway. Moreover, the forenamed effects of curcumin were abolished by pretreatment with DKK1, a blocker of Wnt receptor. CONCLUSION Curcumin promotes hippocampal neurogenesis by activating Wnt/β-catenin signaling pathway to ameliorate cognitive deficits after acute CI.
Collapse
Affiliation(s)
- Xuemei Yang
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; The Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Dan Song
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China; Laboratory Research Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lili Chen
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China; Laboratory Research Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Huan Xiao
- The Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Xiaojiao Ma
- The Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Qingsong Jiang
- The Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China.
| | - Oumei Cheng
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
122
|
Jia N, Chong J, Sun L. Application of stem cell biology in treating neurodegenerative diseases. Int J Neurosci 2020; 132:815-825. [PMID: 33081549 DOI: 10.1080/00207454.2020.1840376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND The appropriate strategies are needed for stimulating the endogenous neurogenesis or introducing extrinsic neural progenitors, which could be harnessed as the regenerative resources for cueing the neurodegenerations. Adult neurogenesis is the endogenous continuing physiology in limited brain regions such as hippocampus, olfactory system, and hypothalamus. Besides adult neurogenesis, induced pluripotent stem cells (iPSCs) induced functional neurons could be another option for regenerative therapies. OBJECTIVE Current studies are trying to improve the adult neurogenesis and enable the iPSCs induced neurons into neural regeneration. Methods: Here in this review, we mainly introduced the recent progress in neural stem cell biology and its application in the treatment of the neurodegenerations. We main separated the strategy in summarizing the mediators and potential targets to promoting endogenous neural regeneration and transplantation of neural progenitors. CONCLUSION By collecting and comparing the advantages disadvantages between above-mentioned two strategies, we will offer the insight on future development of stem cell therapy in treating neurodegenerative patients.
Collapse
Affiliation(s)
- Na Jia
- Beijing University of Posts and Telecommunications, Beijing, China
| | - Jingping Chong
- Beijing University of Posts and Telecommunications, Beijing, China.,Shanghai University of Engineering Science, Shanghai, China
| | - Lina Sun
- Beijing University of Posts and Telecommunications, Beijing, China.,College of PE and Sport, Beijing Normal University, Beijing, China
| |
Collapse
|
123
|
Suda S, Nito C, Yokobori S, Sakamoto Y, Nakajima M, Sowa K, Obinata H, Sasaki K, Savitz SI, Kimura K. Recent Advances in Cell-Based Therapies for Ischemic Stroke. Int J Mol Sci 2020; 21:ijms21186718. [PMID: 32937754 PMCID: PMC7555943 DOI: 10.3390/ijms21186718] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Stroke is the most prevalent cardiovascular disease worldwide, and is still one of the leading causes of death and disability. Stem cell-based therapy is actively being investigated as a new potential treatment for certain neurological disorders, including stroke. Various types of cells, including bone marrow mononuclear cells, bone marrow mesenchymal stem cells, dental pulp stem cells, neural stem cells, inducible pluripotent stem cells, and genetically modified stem cells have been found to improve neurological outcomes in animal models of stroke, and there are some ongoing clinical trials assessing their efficacy in humans. In this review, we aim to summarize the recent advances in cell-based therapies to treat stroke.
Collapse
Affiliation(s)
- Satoshi Suda
- Department of Neurology, Nippon Medical School, Tokyo 113-8602, Japan; (C.N.); (Y.S.); (M.N.); (K.S.); (K.K.)
- Correspondence: ; Tel.: +81-3-3822-2131; Fax: +81-3-3822-4865
| | - Chikako Nito
- Department of Neurology, Nippon Medical School, Tokyo 113-8602, Japan; (C.N.); (Y.S.); (M.N.); (K.S.); (K.K.)
| | - Shoji Yokobori
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan; (S.Y.); (H.O.); (K.S.)
| | - Yuki Sakamoto
- Department of Neurology, Nippon Medical School, Tokyo 113-8602, Japan; (C.N.); (Y.S.); (M.N.); (K.S.); (K.K.)
| | - Masataka Nakajima
- Department of Neurology, Nippon Medical School, Tokyo 113-8602, Japan; (C.N.); (Y.S.); (M.N.); (K.S.); (K.K.)
| | - Kota Sowa
- Department of Neurology, Nippon Medical School, Tokyo 113-8602, Japan; (C.N.); (Y.S.); (M.N.); (K.S.); (K.K.)
| | - Hirofumi Obinata
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan; (S.Y.); (H.O.); (K.S.)
| | - Kazuma Sasaki
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan; (S.Y.); (H.O.); (K.S.)
| | - Sean I. Savitz
- Institute for Stroke and Cerebrovascular Disease, UTHealth, Houston, TX 77030, USA;
| | - Kazumi Kimura
- Department of Neurology, Nippon Medical School, Tokyo 113-8602, Japan; (C.N.); (Y.S.); (M.N.); (K.S.); (K.K.)
| |
Collapse
|
124
|
Gaire BP, Choi JW. Sphingosine 1-Phosphate Receptors in Cerebral Ischemia. Neuromolecular Med 2020; 23:211-223. [PMID: 32914259 DOI: 10.1007/s12017-020-08614-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/02/2020] [Indexed: 01/09/2023]
Abstract
Sphingosine 1-phosphate (S1P) is an important lipid biomolecule that exerts pleiotropic cellular actions as it binds to and activates its five G-protein-coupled receptors, S1P1-5. Through these receptors, S1P can mediate diverse biological activities in both healthy and diseased conditions. S1P is produced by S1P-producing enzymes, sphingosine kinases (SphK1 and SphK2), and is abundantly present in different organs, including the brain. The medically important roles of receptor-mediated S1P signaling are well characterized in multiple sclerosis because FTY720 (Gilenya™, Novartis), a non-selective S1P receptor modulator, is currently used as a treatment for this disease. In cerebral ischemia, its role is also notable because of FTY720's efficacy in both rodent models and human patients with cerebral ischemia. In particular, some of the S1P receptors, including S1P1, S1P2, and S1P3, have been identified as pathogenic players in cerebral ischemia. Other than these receptors, S1P itself and S1P-producing enzymes have been shown to play certain roles in cerebral ischemia. This review aims to compile the current updates and overviews about the roles of S1P signaling, along with a focus on S1P receptors in cerebral ischemia, based on recent studies that used in vivo rodent models of cerebral ischemia.
Collapse
Affiliation(s)
- Bhakta Prasad Gaire
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Inchon, 21936, Republic of Korea
| | - Ji Woong Choi
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Inchon, 21936, Republic of Korea.
| |
Collapse
|
125
|
Koroleva ES, Tolmachev IV, Alifirova VM, Boiko AS, Levchuk LA, Loonen AJM, Ivanova SA. Serum BDNF's Role as a Biomarker for Motor Training in the Context of AR-Based Rehabilitation after Ischemic Stroke. Brain Sci 2020; 10:E623. [PMID: 32916851 PMCID: PMC7564457 DOI: 10.3390/brainsci10090623] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND brain-derived neurotrophic factor (BDNF) may play a role during neurorehabilitation following ischemic stroke. This study aimed to elucidate the possible role of BDNF during early recovery from ischemic stroke assisted by motor training. METHODS fifty patients were included after acute recovery from ischemic stroke: 21 first received classical rehabilitation followed by 'motor rehabilitation using motion sensors and augmented reality' (AR-rehabilitation), 14 only received AR-rehabilitation, and 15 were only observed. Serum BDNF levels were measured on the first day of stroke, on the 14th day, before AR-based rehabilitation (median, 45th day), and after the AR-based rehabilitation (median, 82nd day). Motor impairment was quantified clinically using the Fugl-Meyer scale (FMA); functional disability and activities of daily living (ADL) were measured using the Modified Rankin Scale (mRS). For comparison, serum BDNF was measured in 50 healthy individuals. RESULTS BDNF levels were found to significantly increase during the phase with AR-based rehabilitation. The pattern of the sequentially measured BDNF levels was similar in the treated patients. Untreated patients had significantly lower BDNF levels at the endpoint. CONCLUSIONS the fluctuations of BDNF levels are not consistently related to motor improvement but seem to react to active treatment. Without active rehabilitation treatment, BDNF tends to decrease.
Collapse
Affiliation(s)
- Ekaterina S. Koroleva
- Department of Neurology and Neurosurgery, Siberian State Medical University, Moskovsky trakt, 2, 634050 Tomsk, Russia; (E.S.K.); (V.M.A.)
| | - Ivan V. Tolmachev
- Department of Medical and Biological Cybernetics, Siberian State Medical University, Moskovsky trakt, 2, 634050 Tomsk, Russia;
| | - Valentina M. Alifirova
- Department of Neurology and Neurosurgery, Siberian State Medical University, Moskovsky trakt, 2, 634050 Tomsk, Russia; (E.S.K.); (V.M.A.)
| | - Anastasiia S. Boiko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, 634014 Tomsk, Russia; (A.S.B.); (L.A.L.); (S.A.I.)
| | - Lyudmila A. Levchuk
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, 634014 Tomsk, Russia; (A.S.B.); (L.A.L.); (S.A.I.)
| | - Anton J. M. Loonen
- PharmacoTherapy, -Epidemiology and -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, 634014 Tomsk, Russia; (A.S.B.); (L.A.L.); (S.A.I.)
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Moskovsky trakt, 2, 634050 Tomsk, Russia
| |
Collapse
|
126
|
Cell Therapies under Clinical Trials and Polarized Cell Therapies in Pre-Clinical Studies to Treat Ischemic Stroke and Neurological Diseases: A Literature Review. Int J Mol Sci 2020; 21:ijms21176194. [PMID: 32867222 PMCID: PMC7503631 DOI: 10.3390/ijms21176194] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Stroke remains a major cause of serious disability because the brain has a limited capacity to regenerate. In the last two decades, therapies for stroke have dramatically changed. However, half of the patients cannot achieve functional independence after treatment. Presently, cell-based therapies are being investigated to improve functional outcomes. This review aims to describe conventional cell therapies under clinical trial and outline the novel concept of polarized cell therapies based on protective cell phenotypes, which are currently in pre-clinical studies, to facilitate functional recovery after post-reperfusion treatment in patients with ischemic stroke. In particular, non-neuronal stem cells, such as bone marrow-derived mesenchymal stem/stromal cells and mononuclear cells, confer no risk of tumorigenesis and are safe because they do not induce rejection and allergy; they also pose no ethical issues. Therefore, recent studies have focused on them as a cell source for cell therapies. Some clinical trials have shown beneficial therapeutic effects of bone marrow-derived cells in this regard, whereas others have shown no such effects. Therefore, more clinical trials must be performed to reach a conclusion. Polarized microglia or peripheral blood mononuclear cells might provide promising therapeutic strategies after stroke because they have pleiotropic effects. In traumatic injuries and neurodegenerative diseases, astrocytes, neutrophils, and T cells were polarized to the protective phenotype in pre-clinical studies. As such, they might be useful therapeutic targets. Polarized cell therapies are gaining attention in the treatment of stroke and neurological diseases.
Collapse
|
127
|
Yao M, Shi X, Zuo C, Ma M, Zhang L, Zhang H, Li X, Yang GY, Tang Y, Wu R. Engineering of SPECT/Photoacoustic Imaging/Antioxidative Stress Triple-Function Nanoprobe for Advanced Mesenchymal Stem Cell Therapy of Cerebral Ischemia. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37885-37895. [PMID: 32806884 DOI: 10.1021/acsami.0c10500] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The precise transplantation, long-term tracking, and maintenance of stem cells with maximizing therapeutic effect are significant challenges in stem cell-based therapy for stroke treatment. In this study, a unique core-shell labeling nanoagent was prepared by encapsulating a cobalt protoporphyrin IX (CoPP)-loaded mesoporous silica nanoparticle (CPMSN) into a 125I-conjugated/spermine-modified dextran polymer (125I-SD) by microfluidics for mesenchymal stem cell (MSC) tracking and activity maintenance. The CPMSN core not only exhibits excellent photoacoustic (PA) imaging performance induced by the intermolecular aggregation of CoPP within the mesopores but also protects the MSCs against oxidative stress by sustained release of CoPP. Meanwhile, the addition of a 125I-SD shell can increase the uptake efficiency in MSCs without inducing cell variability and enable the single-photon-emission computed tomography (SPECT) nuclear imaging. In vivo results indicated that CPMSN@125I-SD labeling could allow for an optimal combination of instant imaging of MSCs, with PA to guide intracerebral injection, followed by multiple time point SPECT imaging to consecutively track the cell homing. Importantly, the sustained release of CoPP from CPMSN@125I-SD significantly increased the survival of MSCs after injection into an ischemic mouse brain and promoted neurobehavioral recovery in ischemic mice. Thus, CPMSN@125I-SD represents a robust theranostic probe for both MSC tracking and maintaining their therapeutic effect in the treatment of brain ischemia.
Collapse
Affiliation(s)
- Minghua Yao
- Department of Medical Ultrasound, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Xiaojing Shi
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai 200030, China
| | - Changjing Zuo
- Department of Nuclear Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Ming Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Lu Zhang
- Department of Nuclear Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, FI-20520 Turku, Finland
| | - Xin Li
- Department of Medical Ultrasound, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Guo-Yuan Yang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai 200030, China
| | - Yaohui Tang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai 200030, China
| | - Rong Wu
- Department of Medical Ultrasound, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| |
Collapse
|
128
|
Deng W, Fan C, Zhao Y, Mao Y, Li J, Zhang Y, Teng J. MicroRNA-130a regulates neurological deficit and angiogenesis in rats with ischaemic stroke by targeting XIAP. J Cell Mol Med 2020; 24:10987-11000. [PMID: 32790238 PMCID: PMC7521252 DOI: 10.1111/jcmm.15732] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 05/29/2020] [Accepted: 07/15/2020] [Indexed: 02/02/2023] Open
Abstract
MicroRNAs (miRNAs) have already been proposed to be implicated in the development of ischaemic stroke. We aim to investigate the role of miR-130a in the neurological deficit and angiogenesis in rats with ischaemic stroke by regulating X-linked inhibitor of apoptosis protein (XIAP). Middle cerebral artery occlusion (MCAO) models were established by suture-occluded method, and MCAO rats were then treated with miR-130a mimics/inhibitors or/and altered XIAP for detection of changes of rats' neurological function, nerve damage and angiogenesis in MCAO rats. The oxygen-glucose deprivation (OGD) cellular models were established and respectively treated to determine the roles of miR-130a and XIAP in neuronal viability and apoptosis. The expression levels of miR-130a and XIAP in brain tissues of MCAO rats and OGD-treated neurons were detected. The binding site between miR-130a and XIAP was verified by luciferase activity assay. MiR-130a was overexpressed while XIAP was down-regulated in MCAO rats and OGD-treated neurons. In animal models, suppressed miR-130a improved neurological function, alleviated nerve damage and increased new vessels in brain tissues of rats with MCAO. In cellular models, miR-130a inhibition promoted neuronal viability and suppressed apoptosis. Inhibited XIAP reversed the effect of inhibited miR-130a in both MCAO rats and OGD-treated neurons. XIAP was identified as a target of miR-130a. Our study reveals that miR-130a regulates neurological deficit and angiogenesis in rats with MCAO by targeting XIAP.
Collapse
Affiliation(s)
- Wenjing Deng
- The Neurology Intensive Care Unit, The First Affiliated of Zhengzhou University. Zhengzhou, Henan, China
| | - Chenghe Fan
- The Neurology Intensive Care Unit, The First Affiliated of Zhengzhou University. Zhengzhou, Henan, China
| | - Yanan Zhao
- The Neurology Intensive Care Unit, The First Affiliated of Zhengzhou University. Zhengzhou, Henan, China
| | - Yuewei Mao
- The Vascular Surgery Department, Zhengzhou Central Hospital, Affiliated Hospital of Zhengzhou University. Zhengzhou, Henan, China
| | - Jiajia Li
- The Neurology Department, Zhengzhou Central Hospital, Affiliated Hospital of Zhengzhou University. Zhengzhou, Henan, China
| | - Yonggan Zhang
- The Vascular Surgery Department, The First Affiliated of Zhengzhou University. Zhengzhou, Henan, China
| | - Junfang Teng
- The Neurology Intensive Care Unit, The First Affiliated of Zhengzhou University. Zhengzhou, Henan, China
| |
Collapse
|
129
|
The Role of Neurovascular System in Neurodegenerative Diseases. Mol Neurobiol 2020; 57:4373-4393. [PMID: 32725516 DOI: 10.1007/s12035-020-02023-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022]
Abstract
The neurovascular system (NVS), which consisted of neurons, glia, and vascular cells, is a functional and structural unit of the brain. The NVS regulates blood-brain barrier (BBB) permeability and cerebral blood flow (CBF), thereby maintaining the brain's microenvironment for normal functioning, neuronal survival, and information processing. Recent studies have highlighted the role of vascular dysfunction in several neurodegenerative diseases. This is not unexpected since both nervous and vascular systems are functionally interdependent and show close anatomical apposition, as well as similar molecular pathways. However, despite extensive research, the precise mechanism by which neurovascular dysfunction contributes to neurodegeneration remains incomplete. Therefore, understanding the mechanisms of neurovascular dysfunction in disease conditions may allow us to develop potent and effective therapies for prevention and treatment of neurodegenerative diseases. This review article summarizes the current research in the context of neurovascular signaling associated with neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). We also discuss the potential implication of neurovascular factor as a novel therapeutic target and prognostic marker in patients with neurodegenerative conditions. Graphical Abstract.
Collapse
|
130
|
Riabinska A, Zille M, Terzi MY, Cordell R, Nieminen-Kelhä M, Klohs J, Piña AL. Pigment Epithelium-Derived Factor Improves Paracellular Blood-Brain Barrier Integrity in the Normal and Ischemic Mouse Brain. Cell Mol Neurobiol 2020; 40:751-764. [PMID: 31858356 PMCID: PMC11448778 DOI: 10.1007/s10571-019-00770-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/02/2019] [Indexed: 01/25/2023]
Abstract
Pigment epithelium-derived factor (PEDF) is a neurotrophic factor with neuroprotective, antiangiogenic, and antipermeability effects. In the brain, blood-brain barrier (BBB) function is essential for homeostasis. Its impairment plays a crucial role in the pathophysiology of many neurological diseases, including ischemic stroke. We investigated (a) whether PEDF counteracted vascular endothelial growth factor (VEGF)-induced BBB disruption in the mouse brain, (b) the time course and route of BBB permeability and the dynamics of PEDF expression after cerebral ischemia, and (c) whether intraventricular infusion of PEDF ameliorated brain ischemia by reducing BBB impairment. C57Bl6/N mice received intraparenchymal injections of CSF, VEGF, or a combination of VEGF and PEDF. PEDF increased paracellular but not transcellular BBB integrity as indicated by an increase in the tight junction protein claudin-5. In another group of mice undergoing 60-min middle cerebral artery occlusion (MCAO), transcellular BBB permeability (fibrinogen staining in the absence of a loss of claudin-5) increased as early as 6 h after reperfusion. PEDF immunofluorescence increased at 24 h, which paralleled with a decreased paracellular BBB permeability (claudin-5). PEDF after MCAO originated from the blood stream and endogenous pericytes. In the third experiment, the intraventricular infusion of PEDF decreased edema and cell death after MCAO, potentially mediated by the improvement of the paracellular route of BBB permeability (claudin-5) in the absence of an amelioration of Evans Blue extravasation. Together, our data suggest that PEDF improves BBB function after cerebral ischemia by affecting the paracellular but not the transcellular route. However, further quantitative data of the different routes of BBB permeability will be required to validate our findings.
Collapse
Affiliation(s)
- Arina Riabinska
- Department of Neurosurgery, Experimental Neurosurgery/BCRT, Charite-Universitätsmedizin Berlin, Campus Mitte, Chariteplatz 1/Virchowweg 21, Aschheim-Zondek-Haus 03-003, 10117, Berlin, Germany
- Department of Internal Medicine, Medical Clinic I, University Hospital of Cologne, Cologne, Germany
| | - Marietta Zille
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Menderes Yusuf Terzi
- Department of Neurosurgery, Experimental Neurosurgery/BCRT, Charite-Universitätsmedizin Berlin, Campus Mitte, Chariteplatz 1/Virchowweg 21, Aschheim-Zondek-Haus 03-003, 10117, Berlin, Germany
- Department of Medical Biology, Hatay Mustafa Kemal University, Antakya, Hatay, Turkey
| | - Ryan Cordell
- Department of Neurosurgery, Experimental Neurosurgery/BCRT, Charite-Universitätsmedizin Berlin, Campus Mitte, Chariteplatz 1/Virchowweg 21, Aschheim-Zondek-Haus 03-003, 10117, Berlin, Germany
| | - Melina Nieminen-Kelhä
- Department of Neurosurgery, Experimental Neurosurgery/BCRT, Charite-Universitätsmedizin Berlin, Campus Mitte, Chariteplatz 1/Virchowweg 21, Aschheim-Zondek-Haus 03-003, 10117, Berlin, Germany
| | - Jan Klohs
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institute for Biomedical Engineering, ETH and University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ana Luisa Piña
- Department of Neurosurgery, Experimental Neurosurgery/BCRT, Charite-Universitätsmedizin Berlin, Campus Mitte, Chariteplatz 1/Virchowweg 21, Aschheim-Zondek-Haus 03-003, 10117, Berlin, Germany.
| |
Collapse
|
131
|
Yan G, Zhao H, Hong X. LncRNA MACC1-AS1 attenuates microvascular endothelial cell injury and promotes angiogenesis under hypoxic conditions via modulating miR-6867-5p/TWIST1 in human brain microvascular endothelial cells. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:876. [PMID: 32793720 DOI: 10.21037/atm-20-4915] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Hypoxia following ischemic stroke is a common cause of brain insults. Mounting evidence suggests that long non-coding RNAs (lncRNAs) play a vital role in regulating certain physiological and pathological processes including ischemic stroke. For the first time, the present study investigated the effects and mechanism of LncRNA MACC1-AS1 on hypoxia-induced human brain microvascular endothelial cells (HBMECs). Methods LncRNA MACC1-AS1 levels in HBMECs were detected via reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay. Reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT), were detected using their respective kits. Flow cytometry and clone formation assay were performed to evaluate the effects of lncRNA MACC1-AS1 on cell apoptosis and cell proliferation respectively. Angiogenesis capacity was evaluated via tube formation assay. Transwell migration assay was performed for assessment of cell migration, Western blot assay was performed for measurement of Twist1 and VE-cadherin level, and permeability assay was performed for evaluation of the cell barrier function. The target gene was predicted via bioinformatics online tool and validated through luciferase reporter assay and RNA pull-down assay. Results LncRNA MACC1-AS1 was downregulated in hypoxia-induced HBMECs. Overexpression of LncRNA MACC1-AS1 reduced cell apoptosis and oxidative stress, while promoting cell proliferation, migration, and angiogenesis. Moreover, LncRNA MACC1-AS1 overexpression reduced cell permeability and elevated VE-cadherin level, which contributed to maintaining cell barrier function. TWIST1 was validated as the target of miR-6867-5p which was further targeted by lncRNA MACC1-AS1. Thus, LncRNA MACC1-AS1 functions in hypoxia-induced HBMECs by regulating miR-6867-5p/TWIST1. Conclusions In this study, we found that LncRNA MACC1-AS1 exerted a protective role in hypoxia-induced HBMECs via regulating miR-6867-5p/TWIST1, indicating a new therapeutic strategy for future ischemic stroke therapy.
Collapse
Affiliation(s)
- Guangjun Yan
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Haomin Zhao
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xin Hong
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
132
|
Beker M, Caglayan AB, Beker MC, Altunay S, Karacay R, Dalay A, Altintas MO, Kose GT, Hermann DM, Kilic E. Lentivirally administered glial cell line-derived neurotrophic factor promotes post-ischemic neurological recovery, brain remodeling and contralesional pyramidal tract plasticity by regulating axonal growth inhibitors and guidance proteins. Exp Neurol 2020; 331:113364. [PMID: 32454038 DOI: 10.1016/j.expneurol.2020.113364] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 01/01/2023]
Abstract
Owing to its potent longterm neuroprotective and neurorestorative properties, glial cell line-derived neurotrophic factor (GDNF) is currently studied in neurodegenerative disease clinical trials. However, little is known about the longterm effect of GDNF on neurological recovery, brain remodeling and neuroplasticity in the post-acute phase of ischemic stroke. In a comprehensive set of experiments, we examined the effects of lentiviral GDNF administration after ischemic stroke. GDNF reduced neurological deficits, neuronal injury, blood-brain barrier permeability in the acute phase in mice. As compared with control, enhanced motor-coordination and spontaneous locomotor activity were noted in GDNF-treated mice, which were associated with increased microvascular remodeling, increased neurogenesis and reduced glial scar formation in the peri-infarct tissue. We observed reduced brain atrophy and increased plasticity of contralesional pyramidal tract axons that crossed the midline in order to innervate denervated neurons in the ipsilesional red and facial nuclei. Contralesional axonal plasticity by GDNF was associated with decreased abundance of the axonal growth inhibitors brevican and versican in contralesional and ipsilesional brain tissue, reduced abundance of the growth repulsive guidance molecule ephrin b1 in contralesional brain tissue, increased abundance of the midline growth repulsive protein Slit1 in contralesional brain tissue and reduced abundance of Slit1's receptor Robo2 in ipsilesional brain tissue. These data indicate that GDNF potently induces longterm neurological recovery, peri-infarct brain remodeling and contralesional neuroplasticity, which are associated with the fine-tuned regulation of axonal growth inhibitors and guidance molecules that facilitate the growth of contralesional corticofugal axons in the direction to the ipsilesional hemisphere.
Collapse
Affiliation(s)
- Merve Beker
- Dept. of Medical Biology, International School of Medicine, University of Health Sciences Turkey, Istanbul, Turkey.; Dept. of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.; Dept. of Medical Biology, School of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ahmet B Caglayan
- Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey; Dept. of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Mustafa C Beker
- Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey; Dept. of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Serdar Altunay
- Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey; Dept. of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Reyda Karacay
- Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey; Dept. of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Arman Dalay
- Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey; Dept. of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Mehmet O Altintas
- Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey; Dept. of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Gamze T Kose
- Dept. of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Dirk M Hermann
- Dept. of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ertugrul Kilic
- Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey; Dept. of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|
133
|
Li Y, Liang W, Guo C, Chen X, Huang Y, Wang H, Song L, Zhang D, Zhan W, Lin Z, Tan H, Bei W, Guo J. Renshen Shouwu extract enhances neurogenesis and angiogenesis via inhibition of TLR4/NF-κB/NLRP3 signaling pathway following ischemic stroke in rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112616. [PMID: 32007631 DOI: 10.1016/j.jep.2020.112616] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/29/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Renshen Shouwu extract (RSSW) is a patented Traditional Chinese Medicine included in Chinese Pharmacopoeia for neurasthenia, forgetfulness, insomnia, inappetence and excessive fatigue. Our previous study had demonstrated the neuroprotective effect of RSSW against ischemic stroke in rats with middle cerebral artery occlusion (MCAO). However, its underlying mechanism remains unknown. AIM OF THE STUDY In this study, we investigated the neurogenesis and angiogenesis effects of RSSW in ischemic stroke rats, and further revealed its underlying mechanism focused on TLR4/NF-κB/NLRP3 signaling pathway. MATERIALS AND METHODS Firstly, active compounds of RSSW were determined by High Performance Liquid Chromatography (HPLC). Secondly, Middle cerebral artery occlusion (MCAO) was performed to induce ischemic stroke in rats and 2, 3, 5-Triphenyltetrazolium chloride (TTC) staining was employed to evaluate whether MCAO surgery was successfully established. Neurological deficit evaluation was conducted according to the Zea Longa' method. Then, we explored the neurogenesis and angiogenesis effects after oral administration of RSSW (50 mg/kg, 100 mg/kg) in MCAO-induced rats by Immunofluorescence Staining. Moreover, the proteins involved in TLR4/NF-κB/NLRP3 signaling pathway (TLR4, p-NF-κB p65, NF-κB p65, NLRP3, pro-IL-1β, IL-1β, pro-Caspase-1, Caspase-1) were determined by western blotting. RESULTS It was observed that RSSW treatment significantly increased the number of newborn neurons and brain microvessel density (MVD) after ischemic stroke. What's more, RSSW treatment significantly downregulated TLR4, p-NF-κB p65/p65, NLRP3, pro-IL-1β, IL-1β, pro-Caspase-1, Caspase-1 proteins involved in TLR4/NF-κB/NLRP3 signaling pathway. CONCLUSIONS RSSW enhances neurogenesis and angiogenesis via inhibition of TLR4/NF-κB/NLRP3 inflammatory signaling pathway following ischemic stroke in rats. Hence, RSSW may be a promising Chinese Medicine for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yuping Li
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Wenyi Liang
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Caijuan Guo
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Xu Chen
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Yijian Huang
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Hong Wang
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Lixia Song
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Dongxing Zhang
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Wenjing Zhan
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Ziyang Lin
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Haibo Tan
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Weijian Bei
- Guangdong Province Research Centre for Chinese Integrative Medicine Against Metabolic Disease, PR China; Guangdong TCM Key Laboratory Against Metabolic Diseases, PR China; Key Unit of Modulating Liver to Treat Hyperlipemia State Administration of Traditional Chinese Medicine, PR China; Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China.
| | - Jiao Guo
- Guangdong Province Research Centre for Chinese Integrative Medicine Against Metabolic Disease, PR China; Guangdong TCM Key Laboratory Against Metabolic Diseases, PR China; Key Unit of Modulating Liver to Treat Hyperlipemia State Administration of Traditional Chinese Medicine, PR China; Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China.
| |
Collapse
|
134
|
Yang XL, Cao CZ, Zhang QX. MiR-195 alleviates oxygen-glucose deprivation/reperfusion-induced cell apoptosis via inhibition of IKKα-mediated NF-κB pathway. Int J Neurosci 2020; 131:755-764. [PMID: 32271641 DOI: 10.1080/00207454.2020.1754212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Increasing evidence confirmed that miRNA plays a critical role in the occurrence and development of ischemic stroke. Here, the aim of this study was to examine the function and mechanisms of miR-195 in vascular endothelial cell apoptosis induced by oxygen-glucose deprivation (OGD). METHODS This study intended to use OGD to simulate ischemia in vitro. The mRNA expression of miR-195, IKKα and NF-κB in human umbilical vein endothelial cells (HUVECs) were detected by RT-qPCR. The proliferation and apoptosis ability of HUVECs were evaluated using MTT assay, colony formation assay and flow cytometry, respectively. Western blot was applied to examine related protein expression. The interaction between miR-195 and IKKα was verified by dual-luciferase reporter gene assay. RESULTS OGD significantly inhibited cell viability and induced cell apoptosis in HUVECs. Meanwhile, OGD treatment notably decreased the expression of miR-195, as well as enhanced NF-κB expression. Moreover, miR-195 directly interacted with IKKα and suppressed its expression. Mechanically, overexpression of miR-195 exhibited pro-proliferation and anti-apoptotic effect on HUVECs treated with OGD through targeting IKKα-mediated NF-κB pathway. At the molecular level, through suppressing IKKα/NF-κB pathway, miR-195 inhibited the expression of pro-apoptotic protein Bax and active caspase-3, but increased the expression of anti-apoptotic Bcl-2 in HUVECs. CONCLUSIONS Our finding uncovers the protective effect of miR-195 on the biological behavior of HUVECs via suppression of the NF-κB pathway induced by IKKα, which may provide a new potential strategy for ischemic stroke clinical treatment.
Collapse
Affiliation(s)
- Xiao-Li Yang
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, P. R. China
| | - Cheng-Zhu Cao
- Department of Physiology, Medical College of Qinghai University, Xining, P. R. China
| | - Qing-Xin Zhang
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, P. R. China
| |
Collapse
|
135
|
Zou Y, Hu J, Huang W, Ye S, Han F, Du J, Shao M, Guo R, Lin J, Zhao Y, Xiong Y, Wang X. Non-Mitogenic Fibroblast Growth Factor 1 Enhanced Angiogenesis Following Ischemic Stroke by Regulating the Sphingosine-1-Phosphate 1 Pathway. Front Pharmacol 2020; 11:59. [PMID: 32194396 PMCID: PMC7063943 DOI: 10.3389/fphar.2020.00059] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Ischemic strokes account for about 80% of all strokes and are associated with a high risk of mortality. Angiogenesis of brain microvascular endothelial cells may contribute to functional restoration following ischemia. Fibroblast growth factor 1 (FGF1), a member of FGF superfamily, involved in embryonic development, angiogenesis, wound healing, and neuron survival. However, the mitogenic activity of FGF1 is known to contribute to several human pathologies, thereby questioning the safety of its clinical applications. Here, we explored the effects and mechanism of action of non-mitogenic FGF1 (nmFGF1) on angiogenesis in mice after ischemia stroke and an oxygen-glucose deprivation (OGD)-induced human brain microvascular endothelial cells (HBMECs) injury model. We found that intranasal administration nmFGF1 significantly promoted angiogenesis in mice after stroke, and significantly increased the formation of matrigel tube and promoted scratch migration in a dose-dependent manner in OGD-induced HBMECs in vitro. However, the co-administration of an FGF receptor 1 (FGFR1)-specific inhibitor PD173074 significantly reversed the effects of nmFGF1 in vitro, suggesting that nmFGF1 functions via FGFR1 activation. Moreover, nmFGF1 activated sphingosine-1-phosphate receptor 1 (S1PR1, S1P1) in mice after stroke in vivo. S1P1 protein antagonist VPC23019 and agonist FTY720 were used to confirm that nmFGF1 promotes angiogenesis in vitro partially through the S1P1 pathway. OGD induced downregulation of S1P1 expression. The S1P1 antagonist VPC23019 blocked the stimulatory effects of nmFGF1, whereas the S1P1 agonist FTY720 exerted effects comparable with those of nmFGF1. Furthermore, PD173074 reversed the effect of nmFGF1 on upregulating S1P1 signaling. In conclusion, nmFGF1 enhanced angiogenesis in mice following stroke and OGD-induced HBMECs through S1P1 pathway regulation mediated via FGFR1 activation. This new discovery suggests the potential therapeutic role of nmFGF1 for the treatment of ischemic strokes.
Collapse
Affiliation(s)
- Yuchi Zou
- The Frist Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenting Huang
- School of the First Clinical Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Shasha Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fanyi Han
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingting Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mingjie Shao
- School of the First Clinical Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Ruili Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingjing Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yeli Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, China
| | - Ye Xiong
- The Frist Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xue Wang
- The Frist Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
136
|
Marefati N, Mokhtari-Zaer A, Roghani M, Karimian SM, Khamse S, Fatima S, Ebrahimnia P, Sadeghipour HR. Lactation ameliorates neurobehavioral outcomes in the ischemic rat dams. J Matern Fetal Neonatal Med 2020; 35:852-860. [PMID: 32102575 DOI: 10.1080/14767058.2020.1731796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Aims: Cardiac arrest and stroke as a life-threatening event that may occur in throughout the female life, especially during pregnancy or after delivery. Previous studies demonstrated that cerebral ischemia during pregnancy or the puerperium is a rare occurrence but is associated with significant mortality and high morbidity. This study was designed to assess the effects of pregnancy and lactation on behavioral deficits, neural density, and angiogenesis in rat dams undergoing global ischemia.Materials and methods: Thirty-two female Wistar rats were divided into four groups: virgin-Sham (Vir-Sham) group, virgin-ischemic (Vir-Isc) group, pregnancy-lactation-sham (P-L-Sham) group, and pregnancy-lactation-ischemic (P-L-Isc) group. Global brain ischemia was induced in ischemic groups by using the 2-vessel occlusion (2-VO) model at the end of lactation phase. Seven days after 2-VO, anxiety-like signals and passive avoidance memory tests were assessed in animals.Key findings: We found that the lactation significantly improved memory and reduced anxiety-like signals in P-L-Isc group as compared with Vir-Isc group. Moreover, angiogenesis and neural density significantly increased in the P-L-Isc group as compared with the Vir-Isc group.Significance: This finding for the first time indicated that lactation protects the maternal brain against ischemic insult partly through promoting angiogenesis and neurogenesis.
Collapse
Affiliation(s)
- Narges Marefati
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Mokhtari-Zaer
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | - Seyed Morteza Karimian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Safoura Khamse
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sulail Fatima
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Ebrahimnia
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Sadeghipour
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
137
|
Wang LH, Zhang GL, Liu XY, Peng A, Ren HY, Huang SH, Liu T, Wang XJ. CELSR1 Promotes Neuroprotection in Cerebral Ischemic Injury Mainly Through the Wnt/PKC Signaling Pathway. Int J Mol Sci 2020; 21:E1267. [PMID: 32070035 PMCID: PMC7072880 DOI: 10.3390/ijms21041267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 01/26/2023] Open
Abstract
Cadherin epidermal growth factor (EGF) laminin G (LAG) seven-pass G-type receptor 1 (CELSR1) is a member of a special subgroup of adhesion G protein-coupled receptors. Although Celsr1 has been reported to be a sensitive gene for stroke, the effect of CELSR1 in ischemic stroke is still not known. Here, we investigated the effect of CELSR1 on neuroprotection, neurogenesis and angiogenesis in middle cerebral artery occlusion (MCAO) rats. The mRNA expression of Celsr1 was upregulated in the subventricular zone (SVZ), hippocampus and ischemic penumbra after cerebral ischemic injury. Knocking down the expression of Celsr1 in the SVZ with a lentivirus significantly reduced the proliferation of neuroblasts, the number of CD31-positive cells, motor function and rat survival and increased cell apoptosis and the infarct volume in MCAO rats. In addition, the expression of p-PKC in the SVZ and peri-infarct tissue was downregulated after ischemia/ reperfusion. Meanwhile, in the dentate gyrus of the hippocampus, knocking down the expression of Celsr1 significantly reduced the proliferation of neuroblasts; however, it had no influence on motor function, cell apoptosis or angiogenesis. These data indicate that CELSR1 has a neuroprotective effect on cerebral ischemia injury by reducing cell apoptosis in the peri-infarct cerebral cortex and promoting neurogenesis and angiogenesis, mainly through the Wnt/PKC pathway.
Collapse
Affiliation(s)
- Li-Hong Wang
- Department of Cell Biology, School of Basic Medical Sciences, Shandong University, Jinan 250012, Shandong, China; (L.-H.W.); (X.-Y.L.); (A.P.); (H.-Y.R.); (T.L.)
| | - Geng-Lin Zhang
- Key Laboratory for Biotech-Drugs Ministry of Health and Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China;
| | - Xing-Yu Liu
- Department of Cell Biology, School of Basic Medical Sciences, Shandong University, Jinan 250012, Shandong, China; (L.-H.W.); (X.-Y.L.); (A.P.); (H.-Y.R.); (T.L.)
| | - Ai Peng
- Department of Cell Biology, School of Basic Medical Sciences, Shandong University, Jinan 250012, Shandong, China; (L.-H.W.); (X.-Y.L.); (A.P.); (H.-Y.R.); (T.L.)
| | - Hai-Yuan Ren
- Department of Cell Biology, School of Basic Medical Sciences, Shandong University, Jinan 250012, Shandong, China; (L.-H.W.); (X.-Y.L.); (A.P.); (H.-Y.R.); (T.L.)
| | - Shu-Hong Huang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China;
| | - Ting Liu
- Department of Cell Biology, School of Basic Medical Sciences, Shandong University, Jinan 250012, Shandong, China; (L.-H.W.); (X.-Y.L.); (A.P.); (H.-Y.R.); (T.L.)
| | - Xiao-Jing Wang
- Department of Cell Biology, School of Basic Medical Sciences, Shandong University, Jinan 250012, Shandong, China; (L.-H.W.); (X.-Y.L.); (A.P.); (H.-Y.R.); (T.L.)
- Advanced Medical Research Institute, Shandong University, Jinan 250012, Shandong, China
| |
Collapse
|
138
|
Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, Xu K. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation 2020; 17:46. [PMID: 32014002 PMCID: PMC6998092 DOI: 10.1186/s12974-020-1725-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are suspected to exert neuroprotective effects in brain injury, in part through the secretion of extracellular vesicles like exosomes containing bioactive compounds. We now investigate the mechanism by which bone marrow MSCs (BMSCs)-derived exosomes harboring the small non-coding RNA miR-29b-3p protect against hypoxic-ischemic brain injury in rats. METHODS We established a rat model of middle cerebral artery occlusion (MCAO) and primary cortical neuron or brain microvascular endothelial cell (BMEC) models of oxygen and glucose deprivation (OGD). Exosomes were isolated from the culture medium of BMSCs. We treated the MCAO rats with BMSC-derived exosomes in vivo, and likewise the OGD-treated neurons and BMECs in vitro. We then measured apoptosis- and angiogenesis-related features using TUNEL and CD31 immunohistochemical staining and in vitro Matrigel angiogenesis assays. RESULTS The dual luciferase reporter gene assay showed that miR-29b-3p targeted the protein phosphatase and tensin homolog (PTEN). miR-29b-3p was downregulated and PTEN was upregulated in the brain of MCAO rats and in OGD-treated cultured neurons. MCAO rats and OGD-treated neurons showed promoted apoptosis and decreased angiogenesis, but overexpression of miR-29b-3p or silencing of PTEN could reverse these alterations. Furthermore, miR-29b-3p could negatively regulate PTEN and activate the Akt signaling pathway. BMSCs-derived exosomes also exerted protective effects against apoptosis of OGD neurons and cell apoptosis in the brain samples from MCAO rats, where we also observed promotion of angiogenesis. CONCLUSION BMSC-derived exosomal miR-29b-3p ameliorates ischemic brain injury by promoting angiogenesis and suppressing neuronal apoptosis, a finding which may be of great significance in the treatment of hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Kun Hou
- Department of Neurosurgery, The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China
| | - Guichen Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Jinchuan Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China
| | - Baofeng Xu
- Department of Neurosurgery, The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China
| | - Yang Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China
| | - Jinlu Yu
- Department of Neurosurgery, The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China.
| | - Kan Xu
- Department of Neurosurgery, The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
139
|
Boyne P, Meyrose C, Westover J, Whitesel D, Hatter K, Reisman DS, Carl D, Khoury JC, Gerson M, Kissela B, Dunning K. Effects of Exercise Intensity on Acute Circulating Molecular Responses Poststroke. Neurorehabil Neural Repair 2020; 34:222-234. [PMID: 31976813 DOI: 10.1177/1545968319899915] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background. Exercise intensity can influence functional recovery after stroke, but the mechanisms remain poorly understood. Objective. In chronic stroke, an intensity-dependent increase in circulating brain-derived neurotrophic factor (BDNF) was previously found during vigorous exercise. Using the same serum samples, this study tested acute effects of exercise intensity on other circulating molecules related to neuroplasticity, including vascular-endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF1), and cortisol, with some updated analyses involving BDNF. Methods. Using a repeated-measures design, 16 participants with chronic stroke performed 3 exercise protocols in random order: treadmill high-intensity interval training (HIT-treadmill), seated-stepper HIT (HIT-stepper), and treadmill moderate-intensity continuous exercise (MCT-treadmill). Serum molecular changes were compared between protocols. Mediation and effect modification analyses were also performed. Results. VEGF significantly increased during HIT-treadmill, IGF1 increased during both HIT protocols and cortisol nonsignificantly decreased during each protocol. VEGF response was significantly greater for HIT-treadmill versus MCT-treadmill when controlling for baseline. Blood lactate positively mediated the effect of HIT on BDNF and cortisol. Peak treadmill speed positively mediated effects on BDNF and VEGF. Participants with comfortable gait speed ≥0.4 m/s had significantly lower VEGF and higher IGF1 responses, with a lower cortisol response during MCT-treadmill. Conclusions. BDNF and VEGF are promising serum molecules to include in future studies testing intensity-dependent mechanisms of exercise on neurologic recovery. Fast training speed and anaerobic intensity appear to be critical ingredients for eliciting these molecular responses. Serum molecular response differences between gait speed subgroups provide a possible biologic basis for previously observed differences in training responsiveness.
Collapse
Affiliation(s)
| | | | | | | | - Kristal Hatter
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Daniel Carl
- University of Cincinnati, Cincinnati, OH, USA
| | - Jane C Khoury
- University of Cincinnati, Cincinnati, OH, USA.,Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | | |
Collapse
|
140
|
Yang G, Mahadik B, Choi JY, Fisher JP. Vascularization in tissue engineering: fundamentals and state-of-art. ACTA ACUST UNITED AC 2020; 2. [PMID: 34308105 DOI: 10.1088/2516-1091/ab5637] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascularization is among the top challenges that impede the clinical application of engineered tissues. This challenge has spurred tremendous research endeavor, defined as vascular tissue engineering (VTE) in this article, to establish a pre-existing vascular network inside the tissue engineered graft prior to implantation. Ideally, the engineered vasculature can be integrated into the host vasculature via anastomosis to supply nutrient to all cells instantaneously after surgery. Moreover, sufficient vascularization is of great significance in regenerative medicine from many other perspectives. Due to the critical role of vascularization in successful tissue engineering, we aim to provide an up-to-date overview of the fundamentals and VTE strategies in this article, including angiogenic cells, biomaterial/bio-scaffold design and bio-fabrication approaches, along with the reported utility of vascularized tissue complex in regenerative medicine. We will also share our opinion on the future perspective of this field.
Collapse
Affiliation(s)
- Guang Yang
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America.,Center for Engineering Complex Tissues, University of Maryland, College Park, MD, United States of America
| | - Bhushan Mahadik
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America.,Center for Engineering Complex Tissues, University of Maryland, College Park, MD, United States of America
| | - Ji Young Choi
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America
| | - John P Fisher
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America.,Center for Engineering Complex Tissues, University of Maryland, College Park, MD, United States of America
| |
Collapse
|
141
|
Zhang B, Saatman KE, Chen L. Therapeutic potential of natural compounds from Chinese medicine in acute and subacute phases of ischemic stroke. Neural Regen Res 2020; 15:416-424. [PMID: 31571650 PMCID: PMC6921351 DOI: 10.4103/1673-5374.265545] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Stroke is one of the leading causes of death and disability in adults worldwide, resulting in huge social and financial burdens. Extracts from herbs, especially those used in Chinese medicine, have emerged as new pharmaceuticals for stroke treatment. Here we review the evidence from preclinical studies investigating neuroprotective properties of Chinese medicinal compounds through their application in acute and subacute phases of ischemic stroke, and highlight potential mechanisms underlying their therapeutic effects. It is noteworthy that many herbal compounds have been shown to target multiple mechanisms and in combinations may exert synergistic effects on signaling pathways, thereby attenuating multiple aspects of ischemic pathology. We conclude the paper with a general discussion of the prospects for novel natural compound-based regimens against stroke.
Collapse
Affiliation(s)
- Bei Zhang
- College of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Kathryn E Saatman
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, KY, USA
| | - Lei Chen
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, KY, USA
| |
Collapse
|
142
|
Abstract
Increased microvessel density in the peri-infarct region has been reported and has been correlated with longer survival times in ischemic stroke patients and has improved outcomes in ischemic animal models. This raises the possibility that enhancement of angiogenesis is one of the strategies to facilitate functional recovery after ischemic stroke. Blood vessels and neuronal cells communicate with each other using various mediators and contribute to the pathophysiology of cerebral ischemia as a unit. In this mini-review, we discuss how angiogenesis might couple with axonal outgrowth/neurogenesis and work for functional recovery after cerebral ischemia. Angiogenesis occurs within 4 to 7 days after cerebral ischemia in the border of the ischemic core and periphery. Post-ischemic angiogenesis may contribute to neuronal remodeling in at least two ways and is thought to contribute to functional recovery. First, new blood vessels that are formed after ischemia are thought to have a role in the guidance of sprouting axons by vascular endothelial growth factor and laminin/β1-integrin signaling. Second, blood vessels are thought to enhance neurogenesis in three stages: 1) Blood vessels enhance proliferation of neural stem/progenitor cells by expression of several extracellular signals, 2) microvessels support the migration of neural stem/progenitor cells toward the peri-infarct region by supplying oxygen, nutrients, and soluble factors as well as serving as a scaffold for migration, and 3) oxygenation induced by angiogenesis in the ischemic core is thought to facilitate the differentiation of migrated neural stem/progenitor cells into mature neurons. Thus, the regions of angiogenesis and surrounding tissue may be coupled, representing novel treatment targets.
Collapse
Affiliation(s)
- Masahiro Hatakeyama
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Itaru Ninomiya
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masato Kanazawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
143
|
Lv MH, Li S, Jiang YJ, Zhang W. The Sphkl/SlP pathway regulates angiogenesis via NOS/NO synthesis following cerebral ischemia-reperfusion. CNS Neurosci Ther 2019; 26:538-548. [PMID: 31814336 PMCID: PMC7163582 DOI: 10.1111/cns.13275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 12/28/2022] Open
Abstract
Aims Sphingosine kinase 1 (Sphk1) and the signaling molecule sphingosine‐1‐phosphate (S1P) are known to be key regulators of a variety of important biological processes, such as neovascularization. Nitric oxide (NO) is also known to play a role in vasoactive properties, whether Sphk1/S1P signaling is able to alter angiogenesis in the context of cerebral ischemia‐reperfusion injury (IRI), and whether such activity is linked with NO production, however, remains uncertain. Methods We used immunofluorescence to detect the expression of Sphk1 and NOS in cerebral epithelial cells (EC) after IR or oxygen‐glucose deprivation (OGDR). Western blotting was used to detect the Sphk1 and NOS protein levels in brain tissues or HBMECs. Adenovirus transfection was used to inhibit Sphk1 and NOS. An NO kit was used to detect NO contents in brain tissues and epithelial cells. Tube formation assays were conducted to measure angiogenesis. Results We determined that EC used in a model of cerebral IRI expressed Sphk1, and that inhibiting this expression led to decreased expression of two isoforms of NO synthase (eNOS and iNOS), as well as to decrease neovascularization density and NO production following injury. In HBMECs, knocking down Sphk1 markedly reduced NO production owing to reduced eNOS activity, and inhibiting eNOS directly similarly decreased NO production in a manner which could be reversed via exogenously treating cells with S1P. We further found that knocking down Sphk1 reduced HBMEC eNOS expression, in addition to decreasing the adhesion, migration, and tube formation abilities of these cells under OGDR conditions. Conclusions Based on these results, we therefore postulate that Sphk1/S1P signaling is able to mediate angiogenesis following cerebral IRI via the regulation of eNOS activity and NO production. As such, targeting these pathways may potentially represent a novel means of improving patient prognosis in those suffering from cerebral IRI.
Collapse
Affiliation(s)
- Man-Hua Lv
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shi Li
- Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong-Jia Jiang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
144
|
He L, Wei JY, Liu DX, Zhao WD, Chen YH. Atg7 Silencing Inhibits Laminin-5 Expression to Suppress Tube Formation by Brain Endothelial Cells. Anat Rec (Hoboken) 2019; 302:2255-2260. [PMID: 31265765 DOI: 10.1002/ar.24223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022]
Abstract
Cerebral angiogenesis is a key event during brain development and recovery from brain injury. We previously demonstrated that Atg7 knockout impaired angiogenesis in the mouse brain. However, the role of Atg7 in angiogenesis is not completely understood. In this study, we used human brain microvascular endothelial cells (HBMECs) to investigate the mechanism of Atg7-regulated cerebral angiogenesis. We found that Atg7 depletion specifically diminished the expression of the β3 and γ2 chains of laminin-5, a major component of the extracellular matrix. In contrast, autophagy inhibitors did not affect laminin-5 expression, suggesting that Atg7-regulated laminin-5 expression is autophagy-independent. We also found that Atg7-regulated laminin-5 expression occurred at the transcriptional level through NF-κB signaling. Exogenous laminin-5 or the NF-κB agonist betulinic acid effectively rescued tube formation by Atg7-deficient HBMECs. Taken together, our study identified a novel mechanism by which Atg7 regulates laminin-5 expression via NF-κB to modulate tube formation by brain endothelial cells during cerebral angiogenesis. Anat Rec, 302:2255-2260, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Lin He
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Jia-Yi Wei
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Dong-Xin Liu
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Wei-Dong Zhao
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yu-Hua Chen
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
145
|
Zhang C, Qian S, Zhang R, Guo D, Wang A, Peng Y, Peng H, Li Q, Ju Z, Geng D, Chen J, Zhang Y, He J, Zhong C, Xu T. Endostatin as a novel prognostic biomarker in acute ischemic stroke. Atherosclerosis 2019; 293:42-48. [PMID: 31835040 DOI: 10.1016/j.atherosclerosis.2019.11.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/22/2019] [Accepted: 11/28/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND AIMS Endostatin is implicated in the atherosclerosis process and serves as a promising cardiovascular biomarker, while its clinical significance in ischemic stroke patients remains unclear. We aimed to examine the association between endostatin and mortality and disability after ischemic stroke. METHODS A total of 3463 acute ischemic stroke patients with measured plasma endostatin from the China Antihypertensive Trial in Acute Ischemic Stroke were included in this study. The primary outcome was death or severe disability (modified Rankin scale score of 4-6), and secondary outcomes included death and vascular events. RESULTS After 3-month follow-up, 402 (11.61%) participants experienced severe disability or died. Compared with the lowest quartile of endostatin, odds ratios or hazard ratios (95% confidence intervals) for the highest quartile were 1.47 (1.04-2.09) for the primary outcome, and 2.36 (1.23-4.54) for death after adjustment for multiple covariates, including age, sex, admission NIH Stroke Scale score and systolic blood pressure. Each 1-SD higher log-transformed endostatin was associated with a 20% (6%-36%) increased risk for primary outcome. Adding plasma endostatin to the basic model constructed with conventional factors significantly improved risk stratification of primary outcome, as observed by the category-free net reclassification index of 20.5% (95% CI 10.1%-30.8%; p < 0.001) and integrated discrimination improvement of 0.3% (95% CI 0.01%-0.6%; p = 0.04). CONCLUSIONS Increased baseline plasma endostatin levels in acute ischemic stroke were associated with increased risk of mortality and severe disability at 3 months. Plasma endostatin may serve as an important prognostic marker for risk stratification in patients with ischemic stroke.
Collapse
Affiliation(s)
- Chenhuan Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Sifan Qian
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Rui Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Daoxia Guo
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Aili Wang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Yanbo Peng
- Department of Neurology, Affiliated Hospital of North China University of Science and Technology, Hebei, China
| | - Hao Peng
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Qunwei Li
- Department of Epidemiology, School of Public Health, Taishan Medical College, Shandong, China
| | - Zhong Ju
- Department of Neurology, Kerqin District First People's Hospital of Tongliao City, Inner Mongolia, China
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Jiangsu, China
| | - Jing Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Chongke Zhong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China; Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA.
| | - Tan Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
146
|
Chen Z, Chopp M, Zacharek A, Li W, Venkat P, Wang F, Landschoot-Ward J, Chen J. Brain-Derived Microparticles (BDMPs) Contribute to Neuroinflammation and Lactadherin Reduces BDMP Induced Neuroinflammation and Improves Outcome After Stroke. Front Immunol 2019; 10:2747. [PMID: 31993045 PMCID: PMC6968774 DOI: 10.3389/fimmu.2019.02747] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/08/2019] [Indexed: 12/28/2022] Open
Abstract
Microparticles (MPs, ~size between 0.1 and 1 mm) are lipid encased containers derived from intact cells which contain antigen from the parent cells. MPs are involved in intercellular communication and regulate inflammation. Stroke increases secretion of brain derived MP (BDMP) which activate macrophages/microglia and induce neuroinflammation. Lactadherin (Milk fat globule–EGF factor-8) binds to anionic phospholipids and extracellular matrices, promotes apoptotic cell clearance and limits pathogenic antigen cross presentation. In this study, we investigate whether BDMP affects stroke-induced neuroinflammation and whether Lactadherin treatment reduces stroke initiated BDMP-induced neuroinflammation, thereby improving functional outcome after stroke. Middle aged (8–9 months old) male C57BL/6J mice were subjected to distal middle cerebral artery occlusion (dMCAo) stroke, and BDMPs were extracted from ischemic brain 24 h after dMCAo by ultracentrifugation. Adult male C57BL/6J mice were subjected to dMCAo and treated via tail vein injection at 3 h after stroke with: (A) +PBS (n = 5/group); (B) +BDMPs (1.5 × 108, n = 6/group); (C) +Lactadherin (400 μg/kg, n = 5/group); (D) +BDMP+Lactadherin (n = 6/group). A battery of neurological function tests were performed and mice sacrificed for immunostaining at 14 days after stroke. Blood plasma was used for Western blot assay. Our data indicate: (1) treatment of Stroke with BDMP significantly increases lesion volume, neurological deficits, blood brain barrier (BBB) leakage, microglial activation, inflammatory cell infiltration (CD45, microglia/macrophages, and neutrophils) into brain, inflammatory factor (TNFα, IL6, and IL1β) expression in brain, increases axon/white matter (WM) damage identified by decreased axon and myelin density, and increases inflammatory factor expression in the plasma when compared to PBS treated stroke mice; (2) when compared to PBS and BDMP treated stroke mice, Lactadherin and BDMP+Lactadherin treatment significantly improves neurological outcome, and decreases lesion volume, BBB leakage, axon/WM injury, inflammatory cell infiltration and inflammatory factor expression in the ischemic brain, respectively. Lactadherin treatment significantly increases anti-inflammatory factor (IL10) expression in ischemic brain and decreases IL1β expression in plasma compared to PBS and BDMP treated stroke mice, respectively. BDMP increases neuroinflammation and aggravates ischemic brain damage after stroke. Thus, Lactadherin exerts anti-inflammatory effects and improves the clearance of MPs to reduce stroke and BDMP induced neurological deficits.
Collapse
Affiliation(s)
- Zhili Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States.,Department of Physics, Oakland University, Rochester, MI, United States
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Wei Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Fenjie Wang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| |
Collapse
|
147
|
Tert-butylhydroquinone enhanced angiogenesis and astrocyte activation by activating nuclear factor-E2-related factor 2/heme oxygenase-1 after focal cerebral ischemia in mice. Microvasc Res 2019; 126:103891. [DOI: 10.1016/j.mvr.2019.103891] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 05/07/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022]
|
148
|
Wang ML, Zhang LX, Wei JJ, Li LL, Zhong WZ, Lin XJ, Zheng JO, Li XF. Granulocyte colony-stimulating factor and stromal cell-derived factor-1 combination therapy: A more effective treatment for cerebral ischemic stroke. Int J Stroke 2019; 15:743-754. [PMID: 31564240 DOI: 10.1177/1747493019879666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Drugs that promote angiogenesis include statins, recombinant human granulocyte colony-stimulating factor, and stromal cell-derived factor-1. Low doses of atorvastatin could significantly increase the vascular expressions of endothelial growth factor, and the number of peripheral blood endothelial progenitor cells (EPCs), thus improving angiogenesis and local blood flow. G-CSF is an EPC-mobilization agent used in ischemia studies for targeting angiogenesis after cerebral ischemia via EPCs. In previous clinical trials, consistent conclusions have not been reached about the effectiveness of G-CSF on ischemic stroke. Therefore, the therapeutic effect of G-CSF and its combination with other medicines need further experimental verification. It is known that atorvastatin, rhG-CSF, and SDF-1 are considered the most promising neuroprotective candidates, but a comprehensive comparison of their effects is lacking. AIMS To compare the effects of atorvastatin, stromal cell-derived factor-1, and recombinant human granulocyte colony-stimulating factor on ischemic stroke. METHODS Adult male Sprague-Dawley rats were randomly allocated to three groups: normal, sham-operated, and middle cerebral artery occlusion operated. Middle cerebral artery occlusion operated rats were further allocated into saline, atorvastatin, recombinant human granulocyte colony-stimulating factor, and recombinant human granulocyte colony-stimulating factor + stromal cell-derived factor-1 groups. Neurological function evaluation, cerebral infarction and the blood-brain barrier integrity analysis, identification of angiogenic factors, assessment of angiogenesis, expression of growth-associated protein-43, neuroglobin, glial cell-derived neurotrophic factor, and cleaved caspase 3, were performed. RESULTS Compared with atorvastatin or recombinant human granulocyte colony-stimulating factor alone, recombinant human granulocyte colony-stimulating factor + stromal cell-derived factor-1 treatment improved neurological performance, reduced cerebral infarction and blood-brain barrier disruption after stroke, and increased the content of stromal cell-derived factor-1, vascular endothelial growth factor, monocyte chemotactic protein 1, and basic fibroblast growth factor in peripheral blood. In addition, recombinant human granulocyte colony-stimulating factor + stromal cell-derived factor-1 promoted greater angiogenesis than atorvastatin or recombinant human granulocyte colony-stimulating factor alone and increased the expression of growth-associated protein-43, neuroglobin, and glial cell-derived neurotrophic factor, while decreasing the levels of cleaved caspase 3 in the brain after ischemic stroke. CONCLUSIONS Combination therapy with recombinant human granulocyte colony-stimulating factor and stromal cell-derived factor-1 is more effective than atorvastatin or recombinant human granulocyte colony-stimulating factor alone in protecting against stroke-induced damage and could be an optimal therapeutic strategy for stroke.
Collapse
Affiliation(s)
- Ming-Li Wang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li-Xiang Zhang
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jun-Jie Wei
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lv-Li Li
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Wei-Zhang Zhong
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xin-Jing Lin
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jin-Ou Zheng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiao-Feng Li
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
149
|
Tanaka M, Ogaeri T, Samsonov M, Sokabe M. Nestorone exerts long-term neuroprotective effects against transient focal cerebral ischemia in adult male rats. Brain Res 2019; 1719:288-296. [DOI: 10.1016/j.brainres.2018.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 11/17/2022]
|
150
|
Liu CZ, Zhou HJ, Zhong JH, Tang T, Cui HJ, Zhou JH, Zhang Q, Mei ZG. Leukemia Inhibitory Factor Decreases Neurogenesis and Angiogenesis in a Rat Model of Intracerebral Hemorrhage. Curr Med Sci 2019; 39:298-304. [DOI: 10.1007/s11596-019-2034-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 10/09/2018] [Indexed: 01/15/2023]
|