101
|
Shen N, Mo LQ, Hu F, Chen PX, Guo RX, Feng JQ. A novel role of spinal astrocytic connexin 43: mediating morphine antinociceptive tolerance by activation of NMDA receptors and inhibition of glutamate transporter-1 in rats. CNS Neurosci Ther 2014; 20:728-36. [PMID: 24629168 DOI: 10.1111/cns.12244] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 01/30/2014] [Accepted: 02/09/2014] [Indexed: 01/03/2023] Open
Abstract
AIMS Connexin 43 (Cx43) has been reported to be involved in neuropathic pain, but whether it contributes to morphine antinociceptive tolerance remains unknown. The present study investigated the role of spinal Cx43 in the development of morphine tolerance and its mechanisms in rats. METHODS Morphine tolerance was induced by intrathecal (i.t.) administration of morphine (15 μg) daily for seven consecutive days. The analgesia effect was assessed by hot-water tail-flick test. Expression of proteins was detected by Western blot and immunohistochemistry assay. RESULTS Chronic morphine markedly increased the expression of spinal Cx43. Gap26, a specific Cx43 mimic peptide, attenuated not only morphine antinociceptive tolerance, but also the up-regulation of spinal Cx43 expression, the activation of astrocytes, and N-methyl-D-aspartic acid (NMDA) receptors (NR1 and NR2B subunits), as well as the decreased GLT-1 expression induced by chronic morphine. MK-801, a noncompetitive NMDA receptors antagonist, suppressed the chronic morphine-induced spinal Cx43 up-regulation, astrocytes activation and decline of GLT-1 expression. CONCLUSIONS The spinal astrocytic Cx43 contributes to the development of morphine antinociceptive tolerance by activating astrocytes and NMDA receptors, and inhibiting GLT-1 expression. We also demonstrate that the role of interaction between the spinal astrocytic Cx43 and neuronal NMDA receptors is important in morphine tolerant rats.
Collapse
Affiliation(s)
- Ning Shen
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
102
|
Bautista W, Nagy JI. Connexin36 in gap junctions forming electrical synapses between motoneurons in sexually dimorphic motor nuclei in spinal cord of rat and mouse. Eur J Neurosci 2014; 39:771-87. [PMID: 24304165 PMCID: PMC3943632 DOI: 10.1111/ejn.12439] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 12/01/2022]
Abstract
Pools of motoneurons in the lumbar spinal cord innervate the sexually dimorphic perineal musculature, and are themselves sexually dimorphic, showing differences in number and size between male and female rodents. In two of these pools, the dorsomedial nucleus (DMN) and the dorsolateral nucleus (DLN), dimorphic motoneurons are intermixed with non-dimorphic neurons innervating anal and external urethral sphincter muscles. As motoneurons in these nuclei are reportedly linked by gap junctions, we examined immunofluorescence labeling for the gap junction-forming protein connexin36 (Cx36) in male and female mice and rats. Fluorescent Cx36-labeled puncta occurred in distinctly greater amounts in the DMN and DLN of male rodents than in other spinal cord regions. These puncta were localized to motoneuron somata, proximal dendrites, and neuronal appositions, and were distributed either as isolated or large patches of puncta. In both rats and mice, Cx36-labeled puncta were associated with nearly all (> 94%) DMN and DLN motoneurons. The density of Cx36-labeled puncta increased dramatically from postnatal days 9 to 15, unlike the developmental decreases in these puncta observed in other central nervous system regions. In females, Cx36 labeling of puncta in the DLN was similar to that in males, but was sparse in the DMN. In enhanced green fluorescent protein (EGFP)-Cx36 transgenic mice, motoneurons in the DMN and DLN were intensely labeled for the EGFP reporter in males, but less so in females. The results indicate the presence of Cx36-containing gap junctions in the sexually dimorphic DMN and DLN of both male and female rodents, suggesting coupling of not only sexually dimorphic but also non-dimorphic motoneurons in these nuclei.
Collapse
Affiliation(s)
- W. Bautista
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | - J. I. Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
103
|
Baker MW, Macagno ER. Control of neuronal morphology and connectivity: Emerging developmental roles for gap junctional proteins. FEBS Lett 2014; 588:1470-9. [DOI: 10.1016/j.febslet.2014.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 11/25/2022]
|
104
|
Meyrand P, Bem T. Variety of alternative stable phase-locking in networks of electrically coupled relaxation oscillators. PLoS One 2014; 9:e86572. [PMID: 24520321 PMCID: PMC3919711 DOI: 10.1371/journal.pone.0086572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 12/12/2013] [Indexed: 11/22/2022] Open
Abstract
We studied the dynamics of a large-scale model network comprised of oscillating electrically coupled neurons. Cells are modeled as relaxation oscillators with short duty cycle, so they can be considered either as models of pacemaker cells, spiking cells with fast regenerative and slow recovery variables or firing rate models of excitatory cells with synaptic depression or cellular adaptation. It was already shown that electrically coupled relaxation oscillators exhibit not only synchrony but also anti-phase behavior if electrical coupling is weak. We show that a much wider spectrum of spatiotemporal patterns of activity can emerge in a network of electrically coupled cells as a result of switching from synchrony, produced by short external signals of different spatial profiles. The variety of patterns increases with decreasing rate of neuronal firing (or duty cycle) and with decreasing strength of electrical coupling. We study also the effect of network topology - from all-to-all – to pure ring connectivity, where only the closest neighbors are coupled. We show that the ring topology promotes anti-phase behavior as compared to all-to-all coupling. It also gives rise to a hierarchical organization of activity: during each of the main phases of a given pattern cells fire in a particular sequence determined by the local connectivity. We have analyzed the behavior of the network using geometric phase plane methods and we give heuristic explanations of our findings. Our results show that complex spatiotemporal activity patterns can emerge due to the action of stochastic or sensory stimuli in neural networks without chemical synapses, where each cell is equally coupled to others via gap junctions. This suggests that in developing nervous systems where only electrical coupling is present such a mechanism can lead to the establishment of proto-networks generating premature multiphase oscillations whereas the subsequent emergence of chemical synapses would later stabilize generated patterns.
Collapse
Affiliation(s)
- Pierre Meyrand
- Univ. Bordeaux, IMN, UMR 5293, Bordeaux, France
- CNRS, IMN, UMR 5293, Bordeaux, France
- * E-mail:
| | - Tiaza Bem
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
105
|
Prochnow N. Relevance of gap junctions and large pore channels in traumatic brain injury. Front Physiol 2014; 5:31. [PMID: 24575046 PMCID: PMC3920098 DOI: 10.3389/fphys.2014.00031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/15/2014] [Indexed: 11/13/2022] Open
Abstract
In case of traumatic brain injury (TBI), occurrence of central nervous tissue damage is frequently aligned with local modulations of neuronal and glial gap junction channel expression levels. The degree of gap junctional protein expression and intercellular coupling efficiency, as well as hemichannel function has substantially impact on the course of trauma recovery and outcome. During TBI, gap junctions are especially involved in the intercellular molecule trafficking on repair of blood vessels and the regulation of vasomotor tone. Furthermore, gliosis and astrocytic swelling due to mechanical strain injury point out the consequences of derailed gap junction communication. This review addresses the outstanding role of gap junction channels in TBI pathophysiology and links the current state of results to applied clinical procedures as well as perspectives in acute and long-term treatment options.
Collapse
Affiliation(s)
- Nora Prochnow
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum Bochum, Germany
| |
Collapse
|
106
|
Xu Q, Cheong YK, Yang F, Tiwari V, Li J, Liu J, Raja SN, Li W, Guan Y. Intrathecal carbenoxolone inhibits neuropathic pain and spinal wide-dynamic range neuronal activity in rats after an L5 spinal nerve injury. Neurosci Lett 2014; 563:45-50. [PMID: 24486838 DOI: 10.1016/j.neulet.2014.01.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/10/2014] [Accepted: 01/21/2014] [Indexed: 12/30/2022]
Abstract
Spinal glial gap junctions may play an important role in dorsal horn neuronal sensitization and neuropathic pain. In rats after an L5 spinal nerve ligation (SNL), we examined the effects of intrathecal injection of carbenoxolone (CBX), a gap junction decoupler, on neuropathic pain manifestations and on wide-dynamic range (WDR) neuronal activity in vivo. Intrathecal injection of CBX dose-dependently (0.1-50 μg, 10 μl) inhibited mechanical hypersensitivity in rats at 2-3 weeks post-SNL. However, the same doses of glycyrrhizic acid (an analogue of CBX that does not affect gap junctions) and mefloquine hydrochloride (a selective neuronal gap junction decoupler) were ineffective. Intrathecal CBX (5μg) also attenuated heat hypersensitivity in SNL rats. Further, rats did not develop tachyphylaxis to CBX-induced inhibition of mechanical hypersensitivity after repetitive drug treatments (25 μg/day) during days 14-16 post-SNL. Electrophysiological study in SNL rats showed that spinal topical application of CBX (100 μg, 50 μl), which mimics intrathecal drug administration, attenuated WDR neuronal responses to mechanical stimuli and to repetitive intracutaneous electrical stimuli (0.5 Hz) that induce windup, a short-form of activity-dependent neuronal sensitization. The current findings suggest that the inhibition of neuropathic pain manifestations by intrathecal injection of CBX in SNL rats may involve an inhibition of glial gap junctions and an attenuation of WDR neuronal activity in the dorsal horn.
Collapse
Affiliation(s)
- Qian Xu
- Department of Clinical Pharmacology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China; Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Yong-Kwan Cheong
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Department of Anesthesiology and Pain Medicine, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Fei Yang
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Vinod Tiwari
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Jinheng Li
- Department of Clinical Pharmacology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Jian Liu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Srinivasa N Raja
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Weiyan Li
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
107
|
Fong JT, Nimlamool W, Falk MM. EGF induces efficient Cx43 gap junction endocytosis in mouse embryonic stem cell colonies via phosphorylation of Ser262, Ser279/282, and Ser368. FEBS Lett 2014; 588:836-44. [PMID: 24492000 DOI: 10.1016/j.febslet.2014.01.048] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 11/28/2022]
Abstract
Gap junctions (GJs) traverse apposing membranes of neighboring cells to mediate intercellular communication by passive diffusion of signaling molecules. We have shown previously that cells endocytose GJs utilizing the clathrin machinery. Endocytosis generates cytoplasmic double-membrane vesicles termed annular gap junctions or connexosomes. However, the signaling pathways and protein modifications that trigger GJ endocytosis are largely unknown. Treating mouse embryonic stem cell colonies - endogenously expressing the GJ protein connexin43 (Cx43) - with epidermal growth factor (EGF) inhibited intercellular communication by 64% and activated both, MAPK and PKC signaling cascades to phosphorylate Cx43 on serines 262, 279/282, and 368. Upon EGF treatment Cx43 phosphorylation transiently increased up to 4-fold and induced efficient (66.4%) GJ endocytosis as evidenced by a 5.9-fold increase in Cx43/clathrin co-precipitation.
Collapse
Affiliation(s)
- John T Fong
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, USA
| | - Wutigri Nimlamool
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, USA
| | - Matthias M Falk
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, USA.
| |
Collapse
|
108
|
Li T, Giaume C, Xiao L. Connexins-mediated glia networking impacts myelination and remyelination in the central nervous system. Mol Neurobiol 2014; 49:1460-71. [PMID: 24395132 DOI: 10.1007/s12035-013-8625-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/18/2013] [Indexed: 12/11/2022]
Abstract
In the central nervous system (CNS), the glial gap junctions are established among astrocytes (ASTs), oligodendrocytes (OLs), and/or between ASTs and OLs due to the expression of membrane proteins called connexins (Cxs). Together, the glial cells form a network of communicating cells that is important for the homeostasis of brain function for its involvement in the intercellular calcium wave propagation, exchange of metabolic substrates, cell proliferation, migration, and differentiation. Alternatively, Cxs are also involved in hemichannel function and thus participate in gliotransmission. In recent years, pathologic changes of oligodendroglia or demyelination found in transgenic mice with different subsets of Cxs or pharmacological insults suggest that glial Cxs may participate in the regulation of the myelination or remyelination processes. However, little is known about the underlying mechanisms. In this review, we will mainly focus on the functions of Cx-mediated gap junction channels, as well as hemichannels, in brain glial cells and discuss the way by which they impact myelination and remyelination. These aspects will be considered at the light of recent genetic and non-genetic studies related to demyelination and remyelination.
Collapse
Affiliation(s)
- Tao Li
- Department of Histology and Embryology, Faculty of Basic Medicine, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, No. 30 Gaotanyan Street, Chongqing, 400038, China,
| | | | | |
Collapse
|
109
|
Olejarczyk E, Ostaszewski H, Meyrand P, Bem T. Susceptibility of switching between in-phase and anti-phase patterns in the network of relaxation oscillators. Biocybern Biomed Eng 2014. [DOI: 10.1016/j.bbe.2014.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
110
|
Bautista W, Rash JE, Vanderpool KG, Yasumura T, Nagy JI. Re-evaluation of connexins associated with motoneurons in rodent spinal cord, sexually dimorphic motor nuclei and trigeminal motor nucleus. Eur J Neurosci 2013; 39:757-70. [PMID: 24313680 DOI: 10.1111/ejn.12450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/06/2013] [Accepted: 11/09/2013] [Indexed: 11/30/2022]
Abstract
Electrical synapses formed by neuronal gap junctions composed of connexin36 (Cx36) are a common feature in mammalian brain circuitry, but less is known about their deployment in spinal cord. It has been reported based on connexin mRNA and/or protein detection that developing and/or mature motoneurons express a variety of connexins, including Cx26, Cx32, Cx36 and Cx43 in trigeminal motoneurons, Cx36, Cx37, Cx40, Cx43 and Cx45 in spinal motoneurons, and Cx32 in sexually dimorphic motoneurons. We re-examined the localization of these connexins during postnatal development and in adult rat and mouse using immunofluorescence labeling for each connexin. We found Cx26 in association only with leptomeninges in the trigeminal motor nucleus (Mo5), Cx32 only with oligodendrocytes and myelinated fibers among motoneurons in this nucleus and in the spinal cord, and Cx37, Cx40 and Cx45 only with blood vessels in the ventral horn of spinal cord, including those among motoneurons. By freeze-fracture replica immunolabeling, > 100 astrocyte gap junctions but no neuronal gap junctions were found based on immunogold labeling for Cx43, whereas 16 neuronal gap junctions at postnatal day (P)4, P7 and P18 were detected based on Cx36 labeling. Punctate labeling for Cx36 was localized to the somatic and dendritic surfaces of peripherin-positive motoneurons in the Mo5, motoneurons throughout the spinal cord, and sexually dimorphic motoneurons at lower lumbar levels. In studies of electrical synapses and electrical transmission between developing and between adult motoneurons, our results serve to focus attention on mediation of this transmission by gap junctions composed of Cx36.
Collapse
Affiliation(s)
- W Bautista
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | |
Collapse
|
111
|
Possible role of gap junction intercellular channels and connexin 43 in satellite glial cells (SGCs) for preservation of human spiral ganglion neurons : A comparative study with clinical implications. Cell Tissue Res 2013; 355:267-78. [PMID: 24241398 PMCID: PMC3921454 DOI: 10.1007/s00441-013-1735-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/19/2013] [Indexed: 12/22/2022]
Abstract
Human spiral ganglion (SG) neurons show remarkable survival properties and maintain electric excitability for a long time after complete deafness and even separation from the organ of Corti, features essential for cochlear implantation. Here, we analyze and compare the localization and distribution of gap junction (GJ) intercellular channels and connexin 43 (Cx43) in cells surrounding SG cell bodies in man and guinea pig by using transmission electron microscopy and confocal immunohistochemistry. GJs and Cx43 expression has been recognized in satellite glial cells (SGCs) in non-myelinating sensory ganglia including the human SG. In man, SG neurons can survive as mono-polar or "amputated" cells with unbroken central projections following dendrite degeneration and consolidation of the dendrite pole. Cx43-mediated GJ signaling between SGCs is believed to play a key role in this "healing" process and could explain the unique preservation of human SG neurons and the persistence of cochlear implant function.
Collapse
|
112
|
Wang H, Cao Y, Chiang CY, Dostrovsky JO, Sessle BJ. The gap junction blocker carbenoxolone attenuates nociceptive behavior and medullary dorsal horn central sensitization induced by partial infraorbital nerve transection in rats. Pain 2013; 155:429-435. [PMID: 24239671 DOI: 10.1016/j.pain.2013.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 11/01/2013] [Accepted: 11/06/2013] [Indexed: 12/15/2022]
Abstract
Glial cells are being increasingly implicated in mechanisms underlying pathological pain, and recent studies suggest glial gap junctions involving astrocytes may contribute. The aim of this study was to examine the effect of a gap junction blocker, carbenoxolone (CBX), on medullary dorsal horn (MDH) nociceptive neuronal properties and facial mechanical nociceptive behavior in a rat trigeminal neuropathic pain model involving partial transection of the infraorbital nerve (p-IONX). p-IONX produced facial mechanical hypersensitivity reflected in significantly reduced head withdrawal thresholds that lasted for more than 3weeks. p-IONX also produced central sensitization in MDH nociceptive neurons that was reflected in significantly increased receptive field size, reduction of mechanical activation threshold, and increases in noxious stimulation-evoked responses. Intrathecal CBX treatment significantly attenuated the p-IONX-induced mechanical hypersensitivity and the MDH central sensitization parameters, compared to intrathecal vehicle treatment. These results provide the first documentation that gap junctions may be critically involved in orofacial neuropathic pain mechanisms.
Collapse
Affiliation(s)
- Hua Wang
- Department of Oral Physiology, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
113
|
Nagy JI, Bautista W, Blakley B, Rash JE. Morphologically mixed chemical-electrical synapses formed by primary afferents in rodent vestibular nuclei as revealed by immunofluorescence detection of connexin36 and vesicular glutamate transporter-1. Neuroscience 2013; 252:468-88. [PMID: 23912039 PMCID: PMC3795837 DOI: 10.1016/j.neuroscience.2013.07.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/22/2013] [Accepted: 07/23/2013] [Indexed: 11/23/2022]
Abstract
Axon terminals forming mixed chemical/electrical synapses in the lateral vestibular nucleus of rat were described over 40 years ago. Because gap junctions formed by connexins are the morphological correlate of electrical synapses, and with demonstrations of widespread expression of the gap junction protein connexin36 (Cx36) in neurons, we investigated the distribution and cellular localization of electrical synapses in the adult and developing rodent vestibular nuclear complex, using immunofluorescence detection of Cx36 as a marker for these synapses. In addition, we examined Cx36 localization in relation to that of the nerve terminal marker vesicular glutamate transporter-1 (vglut-1). An abundance of immunolabeling for Cx36 in the form of Cx36-puncta was found in each of the four major vestibular nuclei of adult rat and mouse. Immunolabeling was associated with somata and initial dendrites of medium and large neurons, and was absent in vestibular nuclei of Cx36 knockout mice. Cx36-puncta were seen either dispersed or aggregated into clusters on the surface of neurons, and were never found to occur intracellularly. Nearly all Cx36-puncta were localized to large nerve terminals immunolabeled for vglut-1. These terminals and their associated Cx36-puncta were substantially depleted after labyrinthectomy. Developmentally, labeling for Cx36 was already present in the vestibular nuclei at postnatal day 5, where it was only partially co-localized with vglut-1, and did not become fully associated with vglut-1-positive terminals until postnatal day 20-25. The results show that vglut-1-positive primary afferent nerve terminals form mixed synapses throughout the vestibular nuclear complex, that the gap junction component of these synapses contains Cx36, that multiple Cx36-containing gap junctions are associated with individual vglut-1 terminals and that the development of these mixed synapses is protracted over several postnatal weeks.
Collapse
Affiliation(s)
- J I Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | |
Collapse
|
114
|
Neuronal gap junction coupling as the primary determinant of the extent of glutamate-mediated excitotoxicity. J Neural Transm (Vienna) 2013; 121:837-46. [PMID: 24178243 DOI: 10.1007/s00702-013-1109-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/16/2013] [Indexed: 01/12/2023]
Abstract
In the mammalian central nervous system (CNS), coupling of neurons by gap junctions (electrical synapses) increases during early postnatal development, then decreases, but increases in the mature CNS following neuronal injury, such as ischemia, traumatic brain injury and epilepsy. Glutamate-dependent neuronal death also occurs in the CNS during development and neuronal injury, i.e., at the time when neuronal gap junction coupling is increased. Here, we review our recent studies on regulation of neuronal gap junction coupling by glutamate in developing and injured neurons and on the role of gap junctions in neuronal cell death. A modified model of the mechanisms of glutamate-dependent neuronal death is discussed, which includes neuronal gap junction coupling as a critical part of these mechanisms.
Collapse
|
115
|
Anava S, Saad Y, Ayali A. The role of gap junction proteins in the development of neural network functional topology. INSECT MOLECULAR BIOLOGY 2013; 22:457-472. [PMID: 23782271 DOI: 10.1111/imb.12036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Gap junctions (GJs) provide a common form of intercellular communication in most animal cells and tissues, from Hydra to human, including electrical synaptic signalling. Cell coupling via GJs has an important role in development in general, and in neural network development in particular. However, quantitative studies monitoring GJ proteins throughout nervous system development are few. Direct investigations demonstrating a role for GJ proteins by way of experimental manipulation of their expression are also rare. In the current work we focused on the role of invertebrate GJ proteins (innexins) in the in vitro development of neural network functional topology, using two-dimensional neural culture preparations derived from the frontal ganglion of the desert locust, Schistocerca gregaria. Immunocytochemistry and quantitative real-time PCR revealed a dynamic expression pattern of the innexins during development of the cultured networks. Changes were observed both in the levels and in the localization of expression. Down-regulating the expression of innexins, by using double-strand RNA for the first time in locust neural cultures, induced clear changes in network morphology, as well as inhibition of synaptogenesis, thus suggesting a role for GJs during the development of the functional topology of neuronal networks.
Collapse
Affiliation(s)
- S Anava
- Department of Zoology, Tel-Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|
116
|
Costa C, Tozzi A, Rainero I, Cupini LM, Calabresi P, Ayata C, Sarchielli P. Cortical spreading depression as a target for anti-migraine agents. J Headache Pain 2013; 14:62. [PMID: 23879550 PMCID: PMC3728002 DOI: 10.1186/1129-2377-14-62] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/08/2013] [Indexed: 12/18/2022] Open
Abstract
Spreading depression (SD) is a slowly propagating wave of neuronal and glial depolarization lasting a few minutes, that can develop within the cerebral cortex or other brain areas after electrical, mechanical or chemical depolarizing stimulations. Cortical SD (CSD) is considered the neurophysiological correlate of migraine aura. It is characterized by massive increases in both extracellular K⁺ and glutamate, as well as rises in intracellular Na⁺ and Ca²⁺. These ionic shifts produce slow direct current (DC) potential shifts that can be recorded extracellularly. Moreover, CSD is associated with changes in cortical parenchymal blood flow. CSD has been shown to be a common therapeutic target for currently prescribed migraine prophylactic drugs. Yet, no effects have been observed for the antiepileptic drugs carbamazepine and oxcarbazepine, consistent with their lack of efficacy on migraine. Some molecules of interest for migraine have been tested for their effect on CSD. Specifically, blocking CSD may play an enabling role for novel benzopyran derivative tonabersat in preventing migraine with aura. Additionally, calcitonin gene-related peptide (CGRP) antagonists have been recently reported to inhibit CSD, suggesting the contribution of CGRP receptor activation to the initiation and maintenance of CSD not only at the classic vascular sites, but also at a central neuronal level. Understanding what may be lying behind this contribution, would add further insights into the mechanisms of actions for "gepants", which may be pivotal for the effectiveness of these drugs as anti-migraine agents. CSD models are useful tools for testing current and novel prophylactic drugs, providing knowledge on mechanisms of action relevant for migraine.
Collapse
Affiliation(s)
- Cinzia Costa
- Neurologic Clinic, Department of Public Health and Medical and Surgical Specialties, University of Perugia, Ospedale Santa Maria della Misericordia, Sant'Andrea delle Fratte, 06132, Perugia, Italy
- Fondazione Santa Lucia I.R.C.C.S., Via del Fosso di Fiorano, 00143, Rome, Italy
| | - Alessandro Tozzi
- Neurologic Clinic, Department of Public Health and Medical and Surgical Specialties, University of Perugia, Ospedale Santa Maria della Misericordia, Sant'Andrea delle Fratte, 06132, Perugia, Italy
- Fondazione Santa Lucia I.R.C.C.S., Via del Fosso di Fiorano, 00143, Rome, Italy
| | - Innocenzo Rainero
- Neurology II, Department of Neuroscience, University of Torino, Ospedale Molinette, Via Cherasco 15, 10126, Turin, Italy
| | | | - Paolo Calabresi
- Neurologic Clinic, Department of Public Health and Medical and Surgical Specialties, University of Perugia, Ospedale Santa Maria della Misericordia, Sant'Andrea delle Fratte, 06132, Perugia, Italy
- Fondazione Santa Lucia I.R.C.C.S., Via del Fosso di Fiorano, 00143, Rome, Italy
| | - Cenk Ayata
- Neurovascular Research Lab., Department of Radiology, Stroke Service and Neuroscience Intensive Unit Department of Neurology Massachusetts Hospital, Harvard Medical School, 02115, Boston, MA, USA
| | - Paola Sarchielli
- Neurologic Clinic, Department of Public Health and Medical and Surgical Specialties, University of Perugia, Ospedale Santa Maria della Misericordia, Sant'Andrea delle Fratte, 06132, Perugia, Italy
| |
Collapse
|
117
|
Zhang F, Yao SY, Whetsell WO, Sriram S. Astrogliopathy and oligodendrogliopathy are early events in CNS demyelination. Glia 2013; 61:1261-73. [PMID: 23832594 DOI: 10.1002/glia.22513] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 03/22/2013] [Indexed: 01/12/2023]
Abstract
We examined the phenotypic composition of cells and the underlying mechanisms of demyelination following injection of lipopolysaccharide (LPS) into the corpus callosum of rats. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay showed fragmented DNA, which co-localized with oligodendrocytes in areas of demyelination following intracerebral injection with LPS. Immunostaining showed the presence of caspase 3 in cells which expressed the oligodendrocyte markers, suggesting activation of the apoptotic pathway. Commensurate reduction in glial fibrillary acid protein (GFAP)+/ gap junction protein connexin43+ (Cx43) cells, was also seen in the corpus callosum prior to histochemical evidence of demyelination. Expression of mRNA for proinflammatory cytokines was maximal 3 day postinjection, at a time when the numbers of TUNEL positive cells in the corpus callosum were declining and the total number of CD68+ cells peaked at day 14 postinjection. Our studies suggest that death of oligodendrocytes is an early event in LPS model of demyelination. We believe that the innate immune model of oligodendrocyte death will be useful in the development of neuroprotective agents capable of rescuing oligodendrocytes from apoptosis.
Collapse
Affiliation(s)
- Fanglin Zhang
- Department of Neurology, Multiple Sclerosis Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | |
Collapse
|
118
|
The distribution and functional properties of Pelizaeus-Merzbacher-like disease-linked Cx47 mutations on Cx47/Cx47 homotypic and Cx47/Cx43 heterotypic gap junctions. Biochem J 2013; 452:249-58. [PMID: 23544880 DOI: 10.1042/bj20121821] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
GJs (gap junctions) allow direct intercellular communication, and consist of Cxs (connexins). In the mammalian central nervous system, oligodendrocytes express Cx47, Cx32 and Cx29, whereas astrocytes express Cx43, Cx30 and Cx26. Homotypic Cx47/Cx47 GJs couple oligodendrocytes, and heterotypic Cx47/Cx43 channels are the primary GJs at oligodendrocyte/astrocyte junctions. Interestingly, autosomal recessive mutations in the gene GJC2 encoding Cx47 have been linked to a central hypomyelinating disease termed PMLD (Pelizaeus-Merzbacher-like disease). The aim of the present study was to determine the cellular distribution and functional properties of PMLD-associated Cx47 mutants (I46M, G149S, G236R, G236S, M286T and T398I). Expressing GFP (green fluorescent protein)-tagged mutant versions of Cx47 in gap-junction-deficient model cells revealed that these mutants were detected at the cell-cell interface similar to that observed for wild-type Cx47. Furthermore, four of the six mutants showed no electrical coupling in both Cx47/Cx47 and Cx47/Cx43 GJ channels. These results suggest that most of the PMLD-linked Cx47 mutants disrupt Cx47/Cx47 and Cx47/Cx43 GJ function in the glial network, which may play a role in leading to PMLD symptoms.
Collapse
|
119
|
Kreft M, Lukšič M, Zorec TM, Prebil M, Zorec R. Diffusion of D-glucose measured in the cytosol of a single astrocyte. Cell Mol Life Sci 2013; 70:1483-92. [PMID: 23224430 PMCID: PMC11113596 DOI: 10.1007/s00018-012-1219-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 11/18/2012] [Accepted: 11/22/2012] [Indexed: 01/26/2023]
Abstract
Astrocytes interact with neurons and endothelial cells and may mediate exchange of metabolites between capillaries and nerve terminals. In the present study, we investigated intracellular glucose diffusion in purified astrocytes after local glucose uptake. We used a fluorescence resonance energy transfer (FRET)-based nano sensor to monitor the time dependence of the intracellular glucose concentration at specific positions within the cell. We observed a delay in onset and kinetics in regions away from the glucose uptake compared with the region where we locally super-fused astrocytes with the D-glucose-rich solution. We propose a mathematical model of glucose diffusion in astrocytes. The analysis showed that after gradual uptake of glucose, the locally increased intracellular glucose concentration is rapidly spread throughout the cytosol with an apparent diffusion coefficient (D app) of (2.38 ± 0.41) × 10(-10) m(2) s(-1) (at 22-24 °C). Considering that the diffusion coefficient of D-glucose in water is D = 6.7 × 10(-10) m(2) s(-1) (at 24 °C), D app determined in astrocytes indicates that the cytosolic tortuosity, which hinders glucose molecules, is approximately three times higher than in aqueous solution. We conclude that the value of D app for glucose measured in purified rat astrocytes is consistent with the view that cytosolic diffusion may allow glucose and glucose metabolites to traverse from the endothelial cells at the blood-brain barrier to neurons and neighboring astrocytes.
Collapse
Affiliation(s)
- Marko Kreft
- LN-MCP, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Zaloška cesta 4, 1000, Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
120
|
Gap junction channels and hemichannels in the CNS: regulation by signaling molecules. Neuropharmacology 2013; 75:567-82. [PMID: 23499663 DOI: 10.1016/j.neuropharm.2013.02.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 02/08/2013] [Accepted: 02/26/2013] [Indexed: 11/20/2022]
Abstract
Coordinated interaction among cells is critical to develop the extremely complex and dynamic tasks performed by the central nervous system (CNS). Cell synchronization is in part mediated by connexins and pannexins; two different protein families that form gap junction channels and hemichannels. Whereas gap junction channels connect the cytoplasm of contacting cells and coordinate electric and metabolic activities, hemichannels communicate intra- and extra-cellular compartments and serve as diffusional pathways for ions and small molecules. Cells in the CNS depend on paracrine/autocrine communication via several extracellular signaling molecules, such as, cytokines, growth factors, transmitters and free radical species to sense changes in microenvironment as well as to adapt to them. These signaling molecules modulate crucial processes of the CNS, including, cellular migration and differentiation, synaptic transmission and plasticity, glial activation, cell viability and microvascular blood flow. Gap junction channels and hemichannels are affected by different signaling transduction pathways triggered by these paracrine/autocrine signaling molecules. Most of the modulatory effects induced by these signaling molecules are specific to the cell type and the connexin and pannexin subtype expressed in different brain areas. In this review, we summarized and discussed most of the relevant and recently published information on the effects of signaling molecules on connexin or pannexin based channels and their possible relevance in CNS physiology and pathology. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'.
Collapse
|
121
|
Wang J, Li Z, Feng M, Ren K, Shen G, Zhao C, Jin X, Jiang K. Opening of astrocytic mitochondrial ATP-sensitive potassium channels upregulates electrical coupling between hippocampal astrocytes in rat brain slices. PLoS One 2013; 8:e56605. [PMID: 23418587 PMCID: PMC3572089 DOI: 10.1371/journal.pone.0056605] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 01/15/2013] [Indexed: 01/10/2023] Open
Abstract
Astrocytes form extensive intercellular networks through gap junctions to support both biochemical and electrical coupling between adjacent cells. ATP-sensitive K(+) (K(ATP)) channels couple cell metabolic state to membrane excitability and are enriched in glial cells. Activation of astrocytic mitochondrial K(ATP) (mitoK(ATP)) channel regulates certain astrocytic functions. However, less is known about its impact on electrical coupling between directly coupled astrocytes ex vivo. By using dual patch clamp recording, we found that activation of mitoK(ATP) channel increased the electrical coupling ratio in brain slices. The electrical coupling ratio started to increase 3 min after exposure to Diazoxide, a mitoK(ATP) channel activator, peaked at 5 min, and maintained its level with little adaptation until the end of the 10-min treatment. Blocking the mitoK(ATP) channel with 5-hydroxydecanoate, inhibited electrical coupling immediately, and by 10-min, the ratio dropped by 71% of the initial level. Activation of mitoK(ATP) channel also decreased the latency time of the transjunctional currents by 50%. The increase in the coupling ratio resulting from the activation of the mitoK(ATP) channel in a single astrocyte was further potentiated by the concurrent inhibiting of the channel on the recipient astrocyte. Furthermore, Meclofenamic acid, a gap-junction inhibitor which completely blocked the tracer coupling, hardly reversed the impact of mitoK(ATP) channel's activation on electrical coupling (by 7%). The level of mitochondrial Connexin43, a gap junctional subunit, significantly increased by 70% in astrocytes after 10-min Diazoxide treatment. Phospho-ERK signals were detected in Connexin43 immunoprecipitates in the Diazoxide-treated astrocytes, but not untreated control samples. Finally, inhibiting ERK could attenuate the effects of Diazoxide on electrical coupling by 61%. These findings demonstrate that activation of astrocytic mitoK(ATP) channel upregulates electrical coupling between hippocampal astrocytes ex vivo. In addition, this effect is mainly via up-regulation of the Connexin43-constituted gap junction coupling by an ERK-dependent mechanism in the mitochondria.
Collapse
Affiliation(s)
- Jiangping Wang
- Department of Neurology, The Children’s Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Rehabilitation, The Children’s Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhongxia Li
- Department of Neurology, The Children’s Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mei Feng
- Department of Neurology, The Children’s Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Keming Ren
- Department of Neurology, The Children’s Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guoxia Shen
- Department of Neurology, The Children’s Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Congying Zhao
- Department of Neurology, The Children’s Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaoming Jin
- Stark Neurosciences Research Institute Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Kewen Jiang
- Department of Neurology, The Children’s Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Laboratory, The Children’s Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
122
|
mGluR1,5 activation protects cortical astrocytes and GABAergic neurons from ischemia-induced impairment. Neurosci Res 2013; 75:160-6. [DOI: 10.1016/j.neures.2012.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 10/02/2012] [Accepted: 12/11/2012] [Indexed: 11/22/2022]
|
123
|
Oliveira DR, Sanada PF, Filho ACS, Conceição GMS, Cerutti JM, Cerutti SM. Long-term treatment with standardized extract of Ginkgo biloba L. enhances the conditioned suppression of licking in rats by the modulation of neuronal and glial cell function in the dorsal hippocampus and central amygdala. Neuroscience 2013; 235:70-86. [PMID: 23321541 DOI: 10.1016/j.neuroscience.2013.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/21/2012] [Accepted: 01/08/2013] [Indexed: 01/02/2023]
Abstract
Our group previously demonstrated that short-term treatment with a standardized extract of Ginkgo biloba (EGb) changed fear-conditioned memory by modulating gene expression in the hippocampus, amygdaloid complex and prefrontal cortex. Although there are few controlled studies that support the long-term use of EGb for the prevention and/or treatment of memory impairment, the chronic use of Ginkgo is common. This study evaluated the effects of chronic treatment with EGb on the conditioned emotional response, assessed by the suppression of ongoing behavior and in the modulation of gene and protein expression. Male adult Wistar rats were treated over 28days and assigned to five groups (n=10) as follows: positive control (4mgkg(-1) Diazepam), negative control (12% Tween 80), EGb groups (0.5 and 1.0gkg(-1)) and the naïve group. The suppression of the licking response was calculated for each rat in six trials. Our results provide further evidence for the efficacy of EGb on memory. For the first time, we show that long-term treatment with the highest dose of EGb improves the fear memory and suggests that increased cAMP-responsive element-binding protein (CREB)-1 and glial fibrillary acidic protein (GFAP) mRNA and protein (P<0.001) in the dorsal hippocampus and amygdaloid complex and reduced growth and plasticity-associated protein 43 (GAP-43) (P<0.01) in the hippocampus are involved in this process. The fear memory/treatment-dependent changes observed in our study suggest that EGb might be effective for memory enhancement through its effect on the dorsal hippocampus and amygdaloid complex.
Collapse
Affiliation(s)
- D R Oliveira
- Behavior Pharmacology and Etnopharmacology Laboratory, Department of Biological Science, Universidade Federal de Sao Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
124
|
Mika T, Prochnow N. Functions of connexins and large pore channels on microglial cells: the gates to environment. Brain Res 2012; 1487:16-24. [PMID: 22842527 DOI: 10.1016/j.brainres.2012.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/08/2012] [Accepted: 07/10/2012] [Indexed: 12/12/2022]
Abstract
Microglial cells are not only sensitive indicators for pathology of the central nervous system (CNS), they are a key factor for neurotoxicity and degeneration in many diseases. Neuronal damage leads to reactive gliosis and to activation of microglia including cytoarchitectonic changes accompanied by alterations in surface receptor and channel expression. In this context, the release of neuroactive soluble factors like pro-inflammatory cytokines can result in increased cellular motility and a higher grade of phagocytotic activity. Ligands including glutamate, tumor necrosis factor alpha (TNF-α), cytokines, superoxide radicals and neurotrophins released by microglia have in turn effects on neuronal function and cell death. The current review focuses on large pore and hemichannel function in microglial cells under different conditions of activation and elucidates the role of these channels in cytokine release, as well as putative targets for clinical intervention in case of inflammatory processes. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- Thomas Mika
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, D-44780 Bochum, Germany
| | | |
Collapse
|
125
|
Liu Z, Huo W, Sun W, Lv M, Li F, Su Z. A sequential impairment of cortical astrocytes and GABAergic neurons during ischemia is improved by mGluR1,5 activation. Neurol Sci 2012; 34:1189-95. [DOI: 10.1007/s10072-012-1220-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 10/05/2012] [Indexed: 10/27/2022]
|
126
|
Wang X, Bukoreshtliev NV, Gerdes HH. Developing neurons form transient nanotubes facilitating electrical coupling and calcium signaling with distant astrocytes. PLoS One 2012; 7:e47429. [PMID: 23071805 PMCID: PMC3469499 DOI: 10.1371/journal.pone.0047429] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 09/13/2012] [Indexed: 12/14/2022] Open
Abstract
Despite the well-documented cooperation between neurons and astrocytes little is known as to how these interactions are initiated. We show here by differential interference contrast microscopy that immature hippocampal neurons generated short protrusions towards astrocytes resulting in tunneling nanotube (TNT) formation with an average lifetime of 15 minutes. Fluorescence microscopy revealed that all TNTs between the two cell types contained microtubules but 35% of them were F-actin negative. Immunolabeling against connexin 43 showed that this gap junction marker localized at the contact site of TNTs with astrocytes. Using optical membrane-potential measurements combined with mechanical stimulation, we observed that ~35% of immature neurons were electrically coupled with distant astrocytes via TNTs up to 5 hours after co-culture but not after 24 hours. Connexin 43 was expressed by most neurons at 5 hours of co-culture but was not detected in neurons after 24 hours. We show that TNTs mediated the propagation of both depolarization and transient calcium signals from distant astrocytes to neurons. Our findings suggest that within a limited maturation period developing neurons establish electrical coupling and exchange of calcium signals with astrocytes via TNTs, which correlates with a high neuronal expression level of connexin 43. This novel cell-cell communication pathway between cells of the central nervous system provides new concepts in our understanding of neuronal migration and differentiation.
Collapse
Affiliation(s)
- Xiang Wang
- University of Bergen, Department of Biomedicine, Bergen, Norway
| | | | | |
Collapse
|
127
|
Bautista W, Nagy JI, Dai Y, McCrea DA. Requirement of neuronal connexin36 in pathways mediating presynaptic inhibition of primary afferents in functionally mature mouse spinal cord. J Physiol 2012; 590:3821-39. [PMID: 22615430 PMCID: PMC3476635 DOI: 10.1113/jphysiol.2011.225987] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 05/17/2012] [Indexed: 01/28/2023] Open
Abstract
Electrical synapses formed by gap junctions containing connexin36 (Cx36) promote synchronous activity of interneurones in many regions of mammalian brain; however, there is limited information on the role of electrical synapses in spinal neuronal networks. Here we show that Cx36 is widely distributed in the spinal cord and is involved in mechanisms that govern presynaptic inhibition of primary afferent terminals. Electrophysiological recordings were made in spinal cord preparations from 8- to 11-day-old wild-type and Cx36 knockout mice. Several features associated with presynaptic inhibition evoked by conditioning stimulation of low threshold hindlimb afferents were substantially compromised in Cx36 knockout mice. Dorsal root potentials (DRPs) evoked by low intensity stimulation of sensory afferents were reduced in amplitude by 79% and in duration by 67% in Cx36 knockouts. DRPs were similarly affected in wild-types by bath application of gap junction blockers. Consistent with presynaptic inhibition of group Ia muscle spindle afferent terminals on motoneurones described in adult cats, conditioning stimulation of an adjacent dorsal root evoked a long duration inhibition of monosynaptic reflexes recorded from the ventral root in wild-type mice, and this inhibition was antagonized by bicuculline. The same conditioning stimulation failed to inhibit monosynaptic reflexes in Cx36 knockout mice. Immunofluorescence labelling for Cx36 was found throughout the dorsal and ventral horns of the spinal cord of juvenile mice and persisted in mature animals. In deep dorsal horn laminae, where interneurones involved in presynaptic inhibition of large diameter muscle afferents are located, cells were extensively dye-coupled following intracellular neurobiotin injection. Coupled cells displayed Cx36-positive puncta along their processes. Our results indicate that gap junctions formed by Cx36 in spinal cord are required for maintenance of presynaptic inhibition, including the regulation of transmission from Ia muscle spindle afferents. In addition to a role in presynaptic inhibition in juvenile animals, the persistence of Cx36 expression among spinal neuronal populations in the adult mouse suggests that the contribution of electrical synapses to integrative processes in fully mature spinal cord may be as diverse as that found in other areas of the CNS.
Collapse
Affiliation(s)
- Wendy Bautista
- Spinal Cord Research Centre, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | | | | | | |
Collapse
|
128
|
Stauch K, Kieken F, Sorgen P. Characterization of the structure and intermolecular interactions between the connexin 32 carboxyl-terminal domain and the protein partners synapse-associated protein 97 and calmodulin. J Biol Chem 2012; 287:27771-88. [PMID: 22718765 PMCID: PMC3431650 DOI: 10.1074/jbc.m112.382572] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 06/20/2012] [Indexed: 12/20/2022] Open
Abstract
In Schwann cells, connexin 32 (Cx32) can oligomerize to form intracellular gap junction channels facilitating a shorter pathway for metabolite diffusion across the layers of the myelin sheath. The mechanisms of Cx32 intracellular channel regulation have not been clearly defined. However, Ca(2+), pH, and the phosphorylation state can regulate Cx32 gap junction channels, in addition to the direct interaction of protein partners with the carboxyl-terminal (CT) domain. In this study, we used different biophysical methods to determine the structure and characterize the interaction of the Cx32CT domain with the protein partners synapse-associated protein 97 (SAP97) and calmodulin (CaM). Our results revealed that the Cx32CT is an intrinsically disordered protein that becomes α-helical upon binding CaM. We identified the GUK domain as the minimal SAP97 region necessary for the Cx32CT interaction. The Cx32CT residues affected by the binding of CaM and the SAP97 GUK domain were determined as well as the dissociation constants for these interactions. We characterized three Cx32CT Charcot-Marie-Tooth disease mutants (R219H, R230C, and F235C) and identified that whereas they all formed functional channels, they all showed reduced binding affinity for SAP97 and CaM. Additionally, we report that in RT4-D6P2T rat schwannoma cells, Cx32 is differentially phosphorylated and exists in a complex with SAP97 and CaM. Our studies support the importance of protein-protein interactions in the regulation of Cx32 gap junction channels and myelin homeostasis.
Collapse
Affiliation(s)
- Kelly Stauch
- From the Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Fabien Kieken
- From the Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Paul Sorgen
- From the Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
129
|
Carlen PL. Curious and contradictory roles of glial connexins and pannexins in epilepsy. Brain Res 2012; 1487:54-60. [PMID: 22796594 DOI: 10.1016/j.brainres.2012.06.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 10/28/2022]
Abstract
Glia play an under-recognized role in epilepsy. This review examines the involvement of glial connexins (Cxs) and pannexins (Panxs), proteins which form gap junctions and membrane hemichannels (connexins) and hemichannels (pannexins), in epilepsy. These proteins, particularly glial Cx43, have been shown to be upregulated in epileptic brain tissue. In a cobalt model of in vitro seizures, seizures increased Panxs1 and 2 and Cx43 expression, and remarkably reorganized the interrelationships between their mRNA levels (transcriptome) which then became statistically significant. Gap junctions are highly implicated in synchronous seizure activity. Blocking gap junctional communication (GJC) is often anticonvulsant, and assumed to be due to blocking gap junctionally-medicated electrotonic coupling between neurons. However, in organotypic hippocampal slice cultures, connexin43 specific peptides, which attenuate GJC possibly by blocking connexon docking, diminished spontaneous seizures. Glia have many functions including extracellular potassium redistribution, in part via gap junctions, which if blocked, can be seizuregenic. Glial gap junctions are critical for the delivery of nutrients to neurons, which if interrupted, can depress seizure activity. Other functions of glia possibly related to epileptogenesis are mentioned including anatomic reorganization in chronic seizure models greatly increasing the overlapping domains of glial processes, changes in neurotransmitter re-uptake, and possible glial generation of currents and fields during seizure activity. Finally there is recent evidence for Cx43 hemichannels and Panx1 channels in glial membranes which could play a role in brain damage and seizure activity. Although glial Cxs and Panxs are increasingly recognized as contributing to fundamental mechanisms of epilepsy, the data are often contradictory and controversial, requiring much more research. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- Peter L Carlen
- Toronto Western Research Institute, Epilepsy Program, University Health Network, Toronto, Ontario, Canada M5T2S8.
| |
Collapse
|
130
|
Belousov AB. Novel model for the mechanisms of glutamate-dependent excitotoxicity: role of neuronal gap junctions. Brain Res 2012; 1487:123-30. [PMID: 22771704 DOI: 10.1016/j.brainres.2012.05.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/23/2012] [Accepted: 05/31/2012] [Indexed: 11/16/2022]
Abstract
In the mammalian central nervous system (CNS), coupling of neurons by gap junctions (electrical synapses) increases during early post-natal development, then decreases, but increases in the mature CNS following neuronal injury, such as ischemia, traumatic brain injury and epilepsy. Glutamate-dependent neuronal death also occurs in the CNS during development and neuronal injury, i.e., at the time when neuronal gap junction coupling is increased. Here, we review our recent studies on the regulation of neuronal gap junction coupling by glutamate during development and injury and on the role of gap junctions in neuronal cell death. A novel model of the mechanisms of glutamate-dependent neuronal death is discussed, which includes neuronal gap junction coupling as a critical part of these mechanisms.
Collapse
Affiliation(s)
- Andrei B Belousov
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
131
|
Connexin composition in apposed gap junction hemiplaques revealed by matched double-replica freeze-fracture replica immunogold labeling. J Membr Biol 2012; 245:333-44. [PMID: 22760604 PMCID: PMC3401501 DOI: 10.1007/s00232-012-9454-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/08/2012] [Indexed: 10/28/2022]
Abstract
Despite the combination of light-microscopic immunocytochemistry, histochemical mRNA detection techniques and protein reporter systems, progress in identifying the protein composition of neuronal versus glial gap junctions, determination of the differential localization of their constituent connexin proteins in two apposing membranes and understanding human neurological diseases caused by connexin mutations has been problematic due to ambiguities introduced in the cellular and subcellular assignment of connexins. Misassignments occurred primarily because membranes and their constituent proteins are below the limit of resolution of light microscopic imaging techniques. Currently, only serial thin-section transmission electron microscopy and freeze-fracture replica immunogold labeling have sufficient resolution to assign connexin proteins to either or both sides of gap junction plaques. However, freeze-fracture replica immunogold labeling has been limited because conventional freeze fracturing allows retrieval of only one of the two membrane fracture faces within a gap junction, making it difficult to identify connexin coupling partners in hemiplaques removed by fracturing. We now summarize progress in ascertaining the connexin composition of two coupled hemiplaques using matched double-replicas that are labeled simultaneously for multiple connexins. This approach allows unambiguous identification of connexins and determination of the membrane "sidedness" and the identities of connexin coupling partners in homotypic and heterotypic gap junctions of vertebrate neurons.
Collapse
|
132
|
Endothelial cells and astrocytes: a concerto en duo in ischemic pathophysiology. Int J Cell Biol 2012; 2012:176287. [PMID: 22778741 PMCID: PMC3388591 DOI: 10.1155/2012/176287] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/30/2012] [Indexed: 11/17/2022] Open
Abstract
The neurovascular/gliovascular unit has recently gained increased attention in cerebral ischemic research, especially regarding the cellular and molecular changes that occur in astrocytes and endothelial cells. In this paper we summarize the recent knowledge of these changes in association with edema formation, interactions with the basal lamina, and blood-brain barrier dysfunctions. We also review the involvement of astrocytes and endothelial cells with recombinant tissue plasminogen activator, which is the only FDA-approved thrombolytic drug after stroke. However, it has a narrow therapeutic time window and serious clinical side effects. Lastly, we provide alternative therapeutic targets for future ischemia drug developments such as peroxisome proliferator- activated receptors and inhibitors of the c-Jun N-terminal kinase pathway. Targeting the neurovascular unit to protect the blood-brain barrier instead of a classical neuron-centric approach in the development of neuroprotective drugs may result in improved clinical outcomes after stroke.
Collapse
|
133
|
Curti S, Hoge G, Nagy JI, Pereda AE. Electrical transmission between mammalian neurons is supported by a small fraction of gap junction channels. J Membr Biol 2012; 245:283-90. [PMID: 22729690 DOI: 10.1007/s00232-012-9449-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/01/2012] [Indexed: 12/19/2022]
Abstract
Electrical synapses formed by gap junctions between neurons create networks of electrically coupled neurons in the mammalian brain, where these networks have been found to play important functional roles. In most cases, interneuronal gap junctions occur at remote dendro-dendritic contacts, making difficult accurate characterization of their physiological properties and correlation of these properties with their anatomical and morphological features of the gap junctions. In the mesencephalic trigeminal (MesV) nucleus where neurons are readily accessible for paired electrophysiological recordings in brain stem slices, our recent data indicate that electrical transmission between MesV neurons is mediated by connexin36 (Cx36)-containing gap junctions located at somato-somatic contacts. We here review evidence indicating that electrical transmission between these neurons is supported by a very small fraction of the gap junction channels present at cell-cell contacts. Acquisition of this evidence was enabled by the unprecedented experimental access of electrical synapses between MesV neurons, which allowed estimation of the average number of open channels mediating electrical coupling in relation to the average number of gap junction channels present at these contacts. Our results indicate that only a small proportion of channels (~0.1 %) appear to be conductive. On the basis of similarities with other preparations, we postulate that this phenomenon might constitute a general property of vertebrate electrical synapses, reflecting essential aspects of gap junction function and maintenance.
Collapse
Affiliation(s)
- Sebastian Curti
- Facultad de Medicina, Departamento de Fisiología, Laboratorio de Neurofisiología Celular, Universidad de la República, Montevideo 11800, Uruguay.
| | | | | | | |
Collapse
|
134
|
Lynn BD, Li X, Nagy JI. Under construction: building the macromolecular superstructure and signaling components of an electrical synapse. J Membr Biol 2012; 245:303-17. [PMID: 22722764 PMCID: PMC3506381 DOI: 10.1007/s00232-012-9451-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/01/2012] [Indexed: 10/28/2022]
Abstract
A great deal is now known about the protein components of tight junctions and adherens junctions, as well as how these are assembled. Less is known about the molecular framework of gap junctions, but these also have membrane specializations and are subject to regulation of their assembly and turnover. Thus, it is reasonable to consider that these three types of junctions may share macromolecular commonalities. Indeed, the tight junction scaffolding protein zonula occluden-1 (ZO-1) is also present at adherens and gap junctions, including neuronal gap junctions. On the basis of these earlier observations, we more recently found that two additional proteins, AF6 and MUPP1, known to be associated with ZO-1 at tight and adherens junctions, are also components of neuronal gap junctions in rodent brain and directly interact with connexin36 (Cx36) that forms these junctions. Here, we show by immunofluorescence labeling that the cytoskeletal-associated protein cingulin, commonly found at tight junctions, is also localized at neuronal gap junctions throughout the central nervous system. In consideration of known functions related to ZO-1, AF6, MUPP1, and cingulin, our results provide a context in which to examine functional relationships between these proteins at Cx36-containing electrical synapses in brain--specifically, how they may contribute to regulation of transmission at these synapses, and how they may govern gap junction channel assembly and/or disassembly.
Collapse
Affiliation(s)
- B. D. Lynn
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Xinbo Li
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - J. I. Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
135
|
Chiang CY, Sessle BJ, Dostrovsky JO. Role of Astrocytes in Pain. Neurochem Res 2012; 37:2419-31. [DOI: 10.1007/s11064-012-0801-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/18/2012] [Accepted: 05/07/2012] [Indexed: 12/18/2022]
|
136
|
Hamzei-Sichani F, Davidson KGV, Yasumura T, Janssen WGM, Wearne SL, Hof PR, Traub RD, Gutiérrez R, Ottersen OP, Rash JE. Mixed Electrical-Chemical Synapses in Adult Rat Hippocampus are Primarily Glutamatergic and Coupled by Connexin-36. Front Neuroanat 2012; 6:13. [PMID: 22615687 PMCID: PMC3351785 DOI: 10.3389/fnana.2012.00013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 04/19/2012] [Indexed: 01/08/2023] Open
Abstract
Dendrodendritic electrical signaling via gap junctions is now an accepted feature of neuronal communication in mammalian brain, whereas axodendritic and axosomatic gap junctions have rarely been described. We present ultrastructural, immunocytochemical, and dye-coupling evidence for “mixed” (electrical/chemical) synapses on both principal cells and interneurons in adult rat hippocampus. Thin-section electron microscopic images of small gap junction-like appositions were found at mossy fiber (MF) terminals on thorny excrescences of CA3 pyramidal neurons (CA3pyr), apparently forming glutamatergic mixed synapses. Lucifer Yellow injected into weakly fixed CA3pyr was detected in MF axons that contacted four injected CA3pyr, supporting gap junction-mediated coupling between those two types of principal cells. Freeze-fracture replica immunogold labeling revealed diverse sizes and morphologies of connexin-36-containing gap junctions throughout hippocampus. Of 20 immunogold-labeled gap junctions, seven were large (328–1140 connexons), three of which were consistent with electrical synapses between interneurons; but nine were at axon terminal synapses, three of which were immediately adjacent to distinctive glutamate receptor-containing postsynaptic densities, forming mixed glutamatergic synapses. Four others were adjacent to small clusters of immunogold-labeled 10-nm E-face intramembrane particles, apparently representing extrasynaptic glutamate receptor particles. Gap junctions also were on spines in stratum lucidum, stratum oriens, dentate gyrus, and hilus, on both interneurons and unidentified neurons. In addition, one putative GABAergic mixed synapse was found in thin-section images of a CA3pyr, but none were found by immunogold labeling, suggesting the rarity of GABAergic mixed synapses. Cx36-containing gap junctions throughout hippocampus suggest the possibility of reciprocal modulation of electrical and chemical signals in diverse hippocampal neurons.
Collapse
|
137
|
Curti S, Hoge G, Nagy JI, Pereda AE. Synergy between electrical coupling and membrane properties promotes strong synchronization of neurons of the mesencephalic trigeminal nucleus. J Neurosci 2012; 32:4341-59. [PMID: 22457486 PMCID: PMC3339267 DOI: 10.1523/jneurosci.6216-11.2012] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 01/06/2023] Open
Abstract
Electrical synapses are known to form networks of extensively coupled neurons in various regions of the mammalian brain. The mesencephalic trigeminal (MesV) nucleus, formed by the somata of primary afferents originating in jaw-closing muscles, constitutes one of the first examples supporting the presence of electrical synapses in the mammalian CNS; however, the properties, functional organization, and developmental emergence of electrical coupling within this structure remain unknown. By combining electrophysiological, tracer coupling, and immunochemical analysis in brain slices of rat and mouse, we found that coupling is mostly restricted to pairs or small clusters of MesV neurons. Electrical transmission is supported by connexin36 (Cx36)-containing gap junctions at somato-somatic contacts where only a small proportion of channels appear to be open (∼0.1%). In marked contrast with most brain structures, coupling among MesV neurons increases with age, such that it is absent during early development and appears at postnatal day 8. Interestingly, the development of coupling parallels the development of intrinsic membrane properties responsible for repetitive firing in these neurons. We found that, acting together, sodium and potassium conductances enhance the transfer of signals with high-frequency content via electrical synapses, leading to strong spiking synchronization of the coupled neurons. Together, our data indicate that coupling in the MesV nucleus is restricted to mostly pairs of somata between which electrical transmission is supported by a surprisingly small fraction of the channels estimated to be present, and that coupling synergically interacts with specific membrane conductances to promote synchronization of these neurons.
Collapse
Affiliation(s)
- Sebastian Curti
- Laboratorio de Neurofisiología Celular, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay.
| | | | | | | |
Collapse
|
138
|
Parpura V, Heneka MT, Montana V, Oliet SHR, Schousboe A, Haydon PG, Stout RF, Spray DC, Reichenbach A, Pannicke T, Pekny M, Pekna M, Zorec R, Verkhratsky A. Glial cells in (patho)physiology. J Neurochem 2012; 121:4-27. [PMID: 22251135 DOI: 10.1111/j.1471-4159.2012.07664.x] [Citation(s) in RCA: 416] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuroglial cells define brain homeostasis and mount defense against pathological insults. Astroglia regulate neurogenesis and development of brain circuits. In the adult brain, astrocytes enter into intimate dynamic relationship with neurons, especially at synaptic sites where they functionally form the tripartite synapse. At these sites, astrocytes regulate ion and neurotransmitter homeostasis, metabolically support neurons and monitor synaptic activity; one of the readouts of the latter manifests in astrocytic intracellular Ca(2+) signals. This form of astrocytic excitability can lead to release of chemical transmitters via Ca(2+) -dependent exocytosis. Once in the extracellular space, gliotransmitters can modulate synaptic plasticity and cause changes in behavior. Besides these physiological tasks, astrocytes are fundamental for progression and outcome of neurological diseases. In Alzheimer's disease, for example, astrocytes may contribute to the etiology of this disorder. Highly lethal glial-derived tumors use signaling trickery to coerce normal brain cells to assist tumor invasiveness. This review not only sheds new light on the brain operation in health and disease, but also points to many unknowns.
Collapse
Affiliation(s)
- Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy & Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, Alabama, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Li X, Lynn BD, Nagy JI. The effector and scaffolding proteins AF6 and MUPP1 interact with connexin36 and localize at gap junctions that form electrical synapses in rodent brain. Eur J Neurosci 2012; 35:166-81. [PMID: 22211808 DOI: 10.1111/j.1460-9568.2011.07947.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Electrical synapses formed by neuronal gap junctions composed of connexin36 (Cx36) occur in most major structures in the mammalian central nervous system. These synapses link ensembles of neurons and influence their network properties. Little is known about the macromolecular constituents of neuronal gap junctions or how transmission through electrical synapses is regulated at the level of channel conductance or gap junction assembly/disassembly. Such knowledge is a prerequisite to understanding the roles of gap junctions in neuronal circuitry. Gap junctions share similarities with tight and adhesion junctions in that all three reside at close plasma membrane appositions, and therefore may associate with similar structural and regulatory proteins. Previously, we reported that the tight junction-associated protein zonula occludens-1 (ZO-1) interacts with Cx36 and is localized at gap junctions. Here, we demonstrate that two proteins known to be associated with tight and adherens junctions, namely AF6 and MUPP1, are components of neuronal gap junctions in rodent brain. By immunofluorescence, AF6 and MUPP1 were co-localized with Cx36 in many brain areas. Co-immunoprecipitation and pull-down approaches revealed an association of Cx36 with AF6 and MUPP1, which required the C-terminus PDZ domain interaction motif of Cx36 for interaction with the single PDZ domain of AF6 and with the 10th PDZ domain of MUPP1. As AF6 is a target of the cAMP/Epac/Rap1 signalling pathway and MUPP1 is a scaffolding protein that interacts with CaMKII, the present results suggest that AF6 may be a target for cAMP/Epac/Rap1 signalling at electrical synapses, and that MUPP1 may contribute to anchoring CaMKII at these synapses.
Collapse
Affiliation(s)
- X Li
- Department of Physiology, Faculty of Medicine, University of Manitoba, 745 Bannatyne Ave., Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
140
|
Abstract
The name astroglia unifies many non-excitable neural cells that act as primary homeostatic cells in the nervous system. Neuronal activity triggers multiple homeostatic responses of astroglia that include increase in metabolic activity and synthesis of neuronal preferred energy substrate lactate, clearance of neurotransmitters and buffering of extracellular K(+) ions to name but a few. Many (if not all) of astroglial homeostatic responses are controlled by dynamic changes in the cytoplasmic concentration of two cations, Ca(2+) and Na(+). Intracellular concentration of these ions is tightly controlled by several transporters and can be rapidly affected by the activation of respective fluxes through ionic channels or ion exchangers. Here, we provide a comprehensive review of astroglial Ca(2+) and Na(+) signalling.
Collapse
|
141
|
Lynn BD, Tress O, May D, Willecke K, Nagy JI. Ablation of connexin30 in transgenic mice alters expression patterns of connexin26 and connexin32 in glial cells and leptomeninges. Eur J Neurosci 2011; 34:1783-93. [PMID: 22098503 DOI: 10.1111/j.1460-9568.2011.07900.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Expression of connexin26 (Cx26), Cx30 and Cx43 in astrocytes and expression of Cx29, Cx32 and Cx47 in oligodendrocytes of adult rodent brain has been well documented, as has the interdependence of connexin expression patterns of macroglial cells in Cx32- and Cx47-knockout mice. To investigate this interdependence further, we examined immunofluorescence labelling of glial connexins in transgenic Cx30 null mice. Ablation of astrocytic Cx30, confirmed by the absence of immunolabelling for this connexin in all brain regions, resulted in the loss of its coupling partner Cx32 on the oligodendrocyte side of astrocyte-oligodendrocyte (A/O) gap junctions, but had no effect on the localization of astrocytic Cx43 and oligodendrocytic Cx47 at these junctions or on the distribution of Cx32 along myelinated fibres. Surprisingly, gene deletion of Cx30 led to the near total elimination of immunofluorescence labelling for Cx26 in all leptomeningeal tissues covering brain surfaces as well as in astrocytes of brain parenchyma. Moreover northern blot analysis revealed downregulation of Cx26 mRNA in Cx30-knockout brains. Our results support earlier observations on the interdependency of Cx30/Cx32 targeting to A/O gap junctions and further suggest that Cx26 mRNA expression is affected by Cx30 gene expression. In addition, Cx30 protein may be required for co-stabilization of gap junctions or for co-trafficking in cells.
Collapse
Affiliation(s)
- B D Lynn
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | |
Collapse
|
142
|
Mitterauer BJ. Qualitative Information Processing in Tripartite Synapses: A Hypothetical Model. Cognit Comput 2011. [DOI: 10.1007/s12559-011-9115-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
143
|
Glial connexin expression and function in the context of Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:2048-57. [PMID: 22008509 DOI: 10.1016/j.bbamem.2011.10.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 09/20/2011] [Accepted: 10/03/2011] [Indexed: 01/26/2023]
Abstract
A hallmark of neurodegenerative diseases is the reactive gliosis characterized by a phenotypic change in astrocytes and microglia. This glial response is associated with modifications in the expression and function of connexins (Cxs), the proteins forming gap junction channels and hemichannels. Increased Cx expression is detected in most reactive astrocytes located at amyloid plaques, the histopathological lesions typically present in the brain of Alzheimer's patients and animal models of the disease. The activity of Cx channels analyzed in vivo as well as in vitro after treatment with the amyloid β peptide is also modified and, in particular, hemichannel activation may contribute to neuronal damage. In this review, we summarize and discuss recent data that suggest glial Cx channels participate in the neurodegenerative process of Alzheimer's disease. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
|
144
|
Wu A, Green CR, Rupenthal ID, Moalem-Taylor G. Role of gap junctions in chronic pain. J Neurosci Res 2011; 90:337-45. [DOI: 10.1002/jnr.22764] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/15/2011] [Accepted: 07/15/2011] [Indexed: 11/10/2022]
|
145
|
Potolicchio I, Cigliola V, Velazquez-Garcia S, Klee P, Valjevac A, Kapic D, Cosovic E, Lepara O, Hadzovic-Dzuvo A, Mornjacovic Z, Meda P. Connexin-dependent signaling in neuro-hormonal systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1919-36. [PMID: 22001400 DOI: 10.1016/j.bbamem.2011.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/14/2011] [Accepted: 09/23/2011] [Indexed: 01/04/2023]
Abstract
The advent of multicellular organisms was accompanied by the development of short- and long-range chemical signalling systems, including those provided by the nervous and endocrine systems. In turn, the cells of these two systems have developed mechanisms for interacting with both adjacent and distant cells. With evolution, such mechanisms have diversified to become integrated in a complex regulatory network, whereby individual endocrine and neuro-endocrine cells sense the state of activity of their neighbors and, accordingly, regulate their own level of functioning. A consistent feature of this network is the expression of connexin-made channels between the (neuro)hormone-producing cells of all endocrine glands and secretory regions of the central nervous system so far investigated in vertebrates. This review summarizes the distribution of connexins in the mammalian (neuro)endocrine systems, and what we know about the participation of these proteins on hormone secretion, the life of the producing cells, and the action of (neuro)hormones on specific targets. The data gathered since the last reviews on the topic are summarized, with particular emphasis on the roles of Cx36 in the function of the insulin-producing beta cells of the endocrine pancreas, and of Cx40 in that of the renin-producing juxta-glomerular epithelioid cells of the kidney cortex. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- Ilaria Potolicchio
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Abstract
The appearance of multicellular organisms imposed the development of several mechanisms for cell-to-cell communication, whereby different types of cells coordinate their function. Some of these mechanisms depend on the intercellular diffusion of signal molecules in the extracellular spaces, whereas others require cell-to-cell contact. Among the latter mechanisms, those provided by the proteins of the connexin family are widespread in most tissues. Connexin signaling is achieved via direct exchanges of cytosolic molecules between adjacent cells at gap junctions, for cell-to-cell coupling, and possibly also involves the formation of membrane "hemi-channels," for the extracellular release of cytosolic signals, direct interactions between connexins and other cell proteins, and coordinated influence on the expression of multiple genes. Connexin signaling appears to be an obligatory attribute of all multicellular exocrine and endocrine glands. Specifically, the experimental evidence we review here points to a direct participation of the Cx36 isoform in the function of the insulin-producing β-cells of the endocrine pancreas, and of the Cx40 isoform in the function of the renin-producing juxtaglomerular epithelioid cells of the kidney cortex.
Collapse
Affiliation(s)
- Domenico Bosco
- Department of Surgery, University of Geneva Medical School, Geneva, Switzerland
| | | | | |
Collapse
|
147
|
Mitterauer BJ. Downregulation and upregulation of glial connexins may cause synaptic imbalances responsible for the pathophysiology of bipolar disorder. CNS Neurosci Ther 2011; 17:281-93. [PMID: 20626435 PMCID: PMC6493903 DOI: 10.1111/j.1755-5949.2010.00178.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The model of the pathophysiology of bipolar disorder proposed is based on imbalances in tripartite synapses caused by dysregulations of connexin expression in the astrocytic syncytium. If the expression of connexins is downregulated, a compensatory upregulation of astrocytic receptors may occur and be responsible for the pathophysiology of depression. Conversely, if the expression of connexins is upregulated, the expression of the astrocytic receptors may be downregulated and be responsible for the pathophysiology of mania. In depression, a relative lack of neurotransmitters exerts a protracted synaptic information processing, whereas in mania a relative increase of neurotransmitters may accelerate synaptic information processing. In addition, the modulatory role of gliotransmitters may be affected in bipolar disorder. Since the dysregulations of connexins impair the astrocytic syncytium, these disorders could be explanatory for cognitive impairment both in depression and in mania. Finally, the testability of this model is discussed.
Collapse
Affiliation(s)
- Bernhard J Mitterauer
- Volitronics-Institute for Basic Research, Psychopathology and Brain Philosophy, Wals (Salzburg), Austria.
| |
Collapse
|
148
|
Giaume C, Liu X. From a glial syncytium to a more restricted and specific glial networking. ACTA ACUST UNITED AC 2011; 106:34-9. [PMID: 21979115 DOI: 10.1016/j.jphysparis.2011.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 08/26/2011] [Accepted: 09/02/2011] [Indexed: 02/03/2023]
Abstract
In the brain, glia represents the cell population that expresses the highest level of connexins, the membrane protein constituents of gap junction channels and hemichannels. This statement has initially led to propose the existence of a glial syncytium. Since then, functional studies have established that connexin channel-mediated communication between glial cells was more restricted and plastic that primarily thought. In particular, this is the case for astrocytes that form functional networks of communicating cells. Altogether these findings lead to reconsider the interaction between neurons and glia that should not be solely studied at the single cell level but also at a more integrated level as the interplay between neuronal circuits and glial networks.
Collapse
Affiliation(s)
- Christian Giaume
- CIRB, CNRS UMR UMR7241/INSERM U1050, MEMOLIFE Laboratory of Excellence and Paris Science Lettre, Collège de France, University Pierre et Marie Curie, ED, N°158, 11 Place Marcelin Berthelot, 75005 Paris, France.
| | | |
Collapse
|
149
|
Nagy JI, Lynn BD, Tress O, Willecke K, Rash JE. Connexin26 expression in brain parenchymal cells demonstrated by targeted connexin ablation in transgenic mice. Eur J Neurosci 2011; 34:263-71. [PMID: 21714813 PMCID: PMC3138861 DOI: 10.1111/j.1460-9568.2011.07741.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Astrocytes are known to express the gap junction forming proteins connexin30 (Cx30) and connexin43 (Cx43), but it has remained controversial whether these cells also express connexin26 (Cx26). To investigate this issue further, we examined immunofluorescence labelling of glial connexins in wild-type vs. transgenic mice with targeted deletion of Cx26 in neuronal and glial cells (Cx26fl/fl:Nestin-Cre mice). The Cx26 antibodies utilized specifically recognized Cx26 and lacked cross reaction with highly homologous Cx30, as demonstrated by immunoblotting and immunofluorescence in Cx26-transfected and Cx30-transfected C6 glioma cells. Punctate immunolabelling of Cx26 with these antibodies was observed in leptomeninges and subcortical brain regions. This labelling was absent in subcortical areas of Cx26fl/fl:Nestin-Cre mice, but persisted in leptomeningeal tissues of these mice, thereby distinguishing localization of Cx26 between parenchymal and non-parenchymal tissue. In subcortical brain parenchyma, Cx26-positive puncta were often co-localized with astrocytic Cx43, and some were localized along astrocyte cell bodies and processes immunolabelled for glial fibrillary acidic protein. Cx26-positive puncta were also co-localized with punctate labelling of Cx47 around oligodendrocyte somata. Comparisons of Cx26 labelling in rodent species revealed a lower density of Cx26-positive puncta and a more restricted distribution in subcortical regions of mouse compared with rat brain, perhaps partly explaining reported difficulties in detection of Cx26 in mouse brain parenchyma using antibodies or Cx26 gene reporters. These results support our earlier observations of Cx26 expression in astrocytes and its ultrastructural localization in individual gap junction plaques formed between astrocytes as well as in heterotypic gap junctions between astrocytes and oligodendrocytes.
Collapse
Affiliation(s)
- J I Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, 745 Bannatyne Ave., Winnipeg, MB, Canada R3E 0J9.
| | | | | | | | | |
Collapse
|
150
|
A novel hypothesis about mechanisms affecting conduction velocity of central myelinated fibers. Neurochem Res 2011; 36:1732-9. [PMID: 21553257 DOI: 10.1007/s11064-011-0488-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
Abstract
The hypothesis that gap junctions are implicated in facilitating axonal conduction has not yet been experimentally demonstrated at the electrophysiological level. We found that block of gap junctions with oleammide slows down axonal conduction velocity in the hippocampal Schaffer collaterals, a central myelinated pathway. Moreover, we explored the possibility that support by the oligodendrocyte to the axon involves energy metabolism, a hypothesis that has been recently proposed by some of us. In agreement with this hypothesis, we found that the effect of oleammide was reversed by pretreatment with creatine, a compound that is known to increase the energy charge of the tissue. Moreover, conduction velocity was also slowed down by anoxia, a treatment that obviously decreases the energy charge of the tissue, and by ouabain, a compound that blocks plasma membrane Na/K-ATPase, the main user of ATP in the brain. We hypothesize that block of gap junctions slows down conduction velocity in central myelinated pathways because oligodendrocytes synthesize ATP and transfer it to the axon through gap junctions.
Collapse
|