101
|
Sibarani J, Sirait SH, Widihati IAG, Manurung M. Positively charged nanomicelles in water of amphiphilic copolymer
chitosan‐g‐polylactide
as drug carrier of photoporphyrin
IX
for photodynamic therapy. J Appl Polym Sci 2021. [DOI: 10.1002/app.50729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- James Sibarani
- Department of Chemistry, Faculty of Mathematics and Sciences Udayana University Denpasar Indonesia
| | - Simon Hamonangan Sirait
- Department of Chemistry, Faculty of Mathematics and Sciences Udayana University Denpasar Indonesia
| | - Ida Ayu Gede Widihati
- Department of Chemistry, Faculty of Mathematics and Sciences Udayana University Denpasar Indonesia
| | - Manuntun Manurung
- Department of Chemistry, Faculty of Mathematics and Sciences Udayana University Denpasar Indonesia
| |
Collapse
|
102
|
Wang M, Bi S, Qin D, Su C, Wang H, Chen X. Quantitative evaluation of the antibacterial effectiveness and efficiency of chitosan considering the effect of neutralization. Carbohydr Polym 2021; 265:117918. [PMID: 33966818 DOI: 10.1016/j.carbpol.2021.117918] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/27/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
In the present research, an optimized liquid medium which had no neutralizing effect to chitosan was developed. Moreover, magnesium chloride (MgCl2) was identified to be able to absolutely neutralize the antibacterial activity of chitosan and its derivatives. Took the two results together, the minimum bactericidal concentration (MBC) and minimum inhibitory concentration (MIC) of chitosan were precisely quantified through a further improved method based on the optimized medium and the relation curve between antibacterial rate and reaction time was obtained with the help of MgCl2 neutralizer. The MBC and MIC of chitosan were all 30 μg/mL against Staphylococcus aureus and Escherichia coli, and 100 μg/mL of chitosan acetate could reach 100 % of antibacterial rate within 3 min. Furthermore, coordination between magnesium ions and chitosan as well as reduced zeta potential of chitosan caused by coordination were inferred to be the neutralizing mechanism of MgCl2 neutralizer.
Collapse
Affiliation(s)
- Mengyang Wang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Shichao Bi
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Di Qin
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Chang Su
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Honglei Wang
- School of Life Sciences, Shandong University, 72# Binhai Road, Qingdao, 266237, Shandong Province, China
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
103
|
Luka B, Arbter V, Sander K, Duerrschnabel A, Schlueter N. Impact of mucin on the anti-erosive/anti-abrasive efficacy of chitosan and/or F/Sn in enamel in vitro. Sci Rep 2021; 11:5285. [PMID: 33674643 PMCID: PMC7936000 DOI: 10.1038/s41598-021-84791-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/17/2021] [Indexed: 11/09/2022] Open
Abstract
The application of stannous ions in combination with fluoride (F/Sn) is one of the central strategies in reducing erosive tooth wear. F/Sn efficacy can be enhanced by adding chitosan, a positively charged biopolymer. For patients with low saliva flow, this efficacy, however, is not sufficient, making further improvement desirable. This could be achieved by combining chitosan with other molecules like mucin, which together might form multilayers. This in-vitro study aimed to investigate the effect of chitosan, mucin, F/Sn and combinations thereof on enamel erosion and erosion-abrasion. Human enamel samples (n = 448, 28 groups) were cyclically eroded or eroded-abraded (10 days; 6 × 2 min erosion and 2 × 15 s/200 g abrasion per day). Samples were treated 2 × 2 min/day with solutions containing either, chitosan (50 or 500 mPas), porcine gastric mucin, F/Sn or combinations thereof after abrasive challenge. Tissue loss was measured profilometrically, interaction between hard tissue and active agents was assessed with energy dispersive spectroscopy and scanning electron microscopy. Chitosan and F/Sn showed the expected effect in reducing tissue loss under erosive and under erosive-abrasive conditions. Neither mucin alone nor the combinations with mucin showed any additional beneficial effect.
Collapse
Affiliation(s)
- Benedikt Luka
- Division for Cariology, Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| | - Vivien Arbter
- Division for Cariology, Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Kathrin Sander
- Division for Cariology, Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Andrea Duerrschnabel
- Division for Cariology, Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Nadine Schlueter
- Division for Cariology, Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| |
Collapse
|
104
|
Zhang M, Yang M, Woo MW, Li Y, Han W, Dang X. High-mechanical strength carboxymethyl chitosan-based hydrogel film for antibacterial wound dressing. Carbohydr Polym 2021; 256:117590. [DOI: 10.1016/j.carbpol.2020.117590] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
|
105
|
Choi S, Jeon H, Jang M, Kim H, Shin G, Koo JM, Lee M, Sung HK, Eom Y, Yang H, Jegal J, Park J, Oh DX, Hwang SY. Biodegradable, Efficient, and Breathable Multi-Use Face Mask Filter. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003155. [PMID: 33747729 PMCID: PMC7967051 DOI: 10.1002/advs.202003155] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/19/2020] [Indexed: 05/19/2023]
Abstract
The demand for face masks is increasing exponentially due to the coronavirus pandemic and issues associated with airborne particulate matter (PM). However, both conventional electrostatic- and nanosieve-based mask filters are single-use and are not degradable or recyclable, which creates serious waste problems. In addition, the former loses function under humid conditions, while the latter operates with a significant air-pressure drop and suffers from relatively fast pore blockage. Herein, a biodegradable, moisture-resistant, highly breathable, and high-performance fibrous mask filter is developed. Briefly, two biodegradable microfiber and nanofiber mats are integrated into a Janus membrane filter and then coated by cationically charged chitosan nanowhiskers. This filter is as efficient as the commercial N95 filter and removes 98.3% of 2.5 µm PM. The nanofiber physically sieves fine PM and the microfiber provides a low pressure differential of 59 Pa, which is comfortable for human breathing. In contrast to the dramatic performance decline of the commercial N95 filter when exposed to moisture, this filter exhibits negligible performance loss and is therefore multi-usable because the permanent dipoles of the chitosan adsorb ultrafine PM (e.g., nitrogen and sulfur oxides). Importantly, this filter completely decomposes within 4 weeks in composting soil.
Collapse
Affiliation(s)
- Sejin Choi
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Min Jang
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Hyeri Kim
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Giyoung Shin
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Jun Mo Koo
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Minkyung Lee
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Hye Kyeong Sung
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Youngho Eom
- Department of Polymer EngineeringPukyong National UniversityBusan48513Republic of Korea
| | - Ho‐Sung Yang
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Jonggeon Jegal
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Jeyoung Park
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
- Advanced Materials and Chemical EngineeringUniversity of Science and Technology (UST)Daejeon34113Republic of Korea
| | - Dongyeop X. Oh
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
- Advanced Materials and Chemical EngineeringUniversity of Science and Technology (UST)Daejeon34113Republic of Korea
| | - Sung Yeon Hwang
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
- Advanced Materials and Chemical EngineeringUniversity of Science and Technology (UST)Daejeon34113Republic of Korea
| |
Collapse
|
106
|
Antibacterial Activity of Chitosan-Polylactate Fabricated Plastic Film and Its Application on the Preservation of Fish Fillet. Polymers (Basel) 2021; 13:polym13050696. [PMID: 33669080 PMCID: PMC7956300 DOI: 10.3390/polym13050696] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
This research prepared chitosan–PLA plastic films by extrusion, analyzed the physical and mechanical properties and antibacterial activity of the fabricated plastic films, and used them to preserve grouper fillet. We added chitosan (220 kDa, 93% DD) in the weight ratio of 0.5–2% into the PLA to prepare the chitosan–PLA films. With the increasing chitosan dosage, both the water vapor transmission rate and moisture content of chitosan–PLA films increased. Among the three doses of chitosan (0.5%, 1%, and 2%) added to PLA, 0.5% chitosan–PLA film had the highest antibacterial activity. This plastic film had an inhibitory efficiency of over 95% against Escherichia coli, Pseudomonas fluorescens, and Staphylococcus aureus. The action of covering the fish fillet with 0.5% chitosan–PLA film significantly reduced several microbes’ counting (i.e., mesophiles, psychrophiles, coliforms, Pseudomonas, Aeromonas, and Vibrio) and total volatile basic nitrogen (TVBN) value in the grouper fillets stored at 4 °C. Thus, such action prolongs the fish fillets’ shelf life to up to at least nine days, and this 0.5% chitosan–PLA film shows promising potential for preserving refrigerated fish.
Collapse
|
107
|
Madni A, Kousar R, Naeem N, Wahid F. Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2021. [DOI: 10.1016/j.jobab.2021.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
108
|
da Silva Alves DC, Healy B, Pinto LADA, Cadaval TRS, Breslin CB. Recent Developments in Chitosan-Based Adsorbents for the Removal of Pollutants from Aqueous Environments. Molecules 2021; 26:594. [PMID: 33498661 PMCID: PMC7866017 DOI: 10.3390/molecules26030594] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
The quality of water is continuously under threat as increasing concentrations of pollutants escape into the aquatic environment. However, these issues can be alleviated by adsorbing pollutants onto adsorbents. Chitosan and its composites are attracting considerable interest as environmentally acceptable adsorbents and have the potential to remove many of these contaminants. In this review the development of chitosan-based adsorbents is described and discussed. Following a short introduction to the extraction of chitin from seafood wastes, followed by its conversion to chitosan, the properties of chitosan are described. Then, the emerging chitosan/carbon-based materials, including magnetic chitosan and chitosan combined with graphene oxide, carbon nanotubes, biochar, and activated carbon and also chitosan-silica composites are introduced. The applications of these materials in the removal of various heavy metal ions, including Cr(VI), Pb(II), Cd(II), Cu(II), and different cationic and anionic dyes, phenol and other organic molecules, such as antibiotics, are reviewed, compared and discussed. Adsorption isotherms and adsorption kinetics are then highlighted and followed by details on the mechanisms of adsorption and the role of the chitosan and the carbon or silica supports. Based on the reviewed papers, it is clear, that while some challenges remain, chitosan-based materials are emerging as promising adsorbents.
Collapse
Affiliation(s)
- Daniele C. da Silva Alves
- Department of Chemistry, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland; (D.C.d.S.A.); (B.H.)
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil; (L.A.d.A.P.); (T.R.S.C.J.)
| | - Bronach Healy
- Department of Chemistry, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland; (D.C.d.S.A.); (B.H.)
| | - Luiz A. de Almeida Pinto
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil; (L.A.d.A.P.); (T.R.S.C.J.)
| | - Tito R. Sant’Anna Cadaval
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil; (L.A.d.A.P.); (T.R.S.C.J.)
| | - Carmel B. Breslin
- Department of Chemistry, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland; (D.C.d.S.A.); (B.H.)
| |
Collapse
|
109
|
Zhang Q, Dong H, Gao J, Chen L, Vasanthan T. Field pea protein isolate/chitosan complex coacervates: Formation and characterization. Carbohydr Polym 2020; 250:116925. [PMID: 33049839 DOI: 10.1016/j.carbpol.2020.116925] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/21/2020] [Accepted: 08/09/2020] [Indexed: 12/24/2022]
Abstract
Influence of chitosan (Ch) with low, medium, and high molecular weight (LMW, MMW, and HMW) on the formation of field pea protein isolate (FPPI)/Ch complex coacervates was investigated. An increase in maximum turbidity and a gradual shift of critical pH values towards the isoelectronic point of FPPI were observed as the FPPI/Ch ratio increased. Formation of FPPI/Ch complex coacervates was dominated by the electrostatic and hydrophobic interactions. FPPI/Ch complex coacervates exhibited a porous network microstructure and relatively uniform-sized and even-distributed pores were found in FPPI/Ch-HMW coacervates. Different thermodynamic profiles were observed during complex coacervation between FPPI and Ch with varying MWs and the largest binding stoichiometry was observed in the Ch-MMW at pH 6.6. In summary, the Ch-HMW was demonstrated to be most suitable for the formation of FPPI/Ch complex coacervates with homogenous microstructure but caused less changes in the tertiary conformation of FPPI compared to the Ch-LWM and Ch-MMW.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada; College of Food Science/Institute of Food Processing and Safety, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China.
| | - Hongmin Dong
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Jun Gao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Lingyun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Thava Vasanthan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada.
| |
Collapse
|
110
|
de Souza BM, Santi LRP, João-Souza SH, Carvalho TS, Magalhães AC. Effect of titanium tetrafluoride/sodium fluoride solutions containing chitosan at different viscosities on the protection of enamel erosion in vitro. Arch Oral Biol 2020; 120:104921. [DOI: 10.1016/j.archoralbio.2020.104921] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 11/28/2022]
|
111
|
Arnaldi P, Carosio F, Di Lisa D, Muzzi L, Monticelli O, Pastorino L. Assembly of chitosan-graphite oxide nanoplatelets core shell microparticles for advanced 3D scaffolds supporting neuronal networks growth. Colloids Surf B Biointerfaces 2020; 196:111295. [DOI: 10.1016/j.colsurfb.2020.111295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 01/05/2023]
|
112
|
Xu Y, Zhang H, Liu XW. Antimicrobial Carbohydrate-Based Macromolecules: Their Structures and Activities. J Org Chem 2020; 85:15827-15836. [DOI: 10.1021/acs.joc.0c01597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yuan Xu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
113
|
Chang SH, Hsieh PL, Tsai GJ. Chitosan Inhibits Helicobacter pylori Growth and Urease Production and Prevents Its Infection of Human Gastric Carcinoma Cells. Mar Drugs 2020; 18:md18110542. [PMID: 33138146 PMCID: PMC7692773 DOI: 10.3390/md18110542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022] Open
Abstract
This study investigated the effects of shrimp chitosan with 95% degree of deacetylation (DD95) in combination with clinical antibiotics on the growth and urease production of Helicobacter pylori. The inhibitory effect of DD95 on the adherence of H. pylori to the human intestinal carcinoma cells (TSGH9201) was also investigated. Five strains of H. pylori, including three standard strains and two strains of clinical isolates were used as the test strains. The inhibitory effects of DD95 on growth and urease production of various strains of H. pylori increased with increasing DD95 concentration and decreasing pH values from pH 6.0 to pH 2.0. Urease activity of H. pylori at pH 2.0 in the presence of 4000 μg/mL of DD95 decreased by 37.86% to 46.53%. In the presence of 50 μg/mL antibiotics of amoxicillin, tetracycline, or metronidazole at pH 6.0 and pH 2.0, H. pylori counts were decreased by 1.51–3.19, and 1.47–2.82 Log CFU/mL, respectively. Following the addition of 4000 μg/mL DD95 into the 50 μg/mL antibiotic-containing culture medium with pH 6.0 and pH 2.0, overall H. pylori counts were strongly decreased by 3.67–7.61 and 6.61–6.70 Log CFU/mL, respectively. Further, DD95 could inhibit the adherence of H. pylori on TSGH 9201 cells, as evidenced by fluorescent microscopy and thus may potentially protect against H. pylori infection.
Collapse
Affiliation(s)
- Shun-Hsien Chang
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Pei-Ling Hsieh
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Guo-Jane Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan;
- Center for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
- Correspondence: ; Tel.: +886-2-2462-2192 (ext. 5150); Fax: +886-2-2462-7954
| |
Collapse
|
114
|
Nowroozi N, Faraji S, Nouralishahi A, Shahrousvand M. Biological and structural properties of graphene oxide/curcumin nanocomposite incorporated chitosan as a scaffold for wound healing application. Life Sci 2020; 264:118640. [PMID: 33172598 DOI: 10.1016/j.lfs.2020.118640] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
AIMS The purpose of this research is to fabricate chitosan (CS)/graphene oxide (GO)/curcumin (Cur) 3D scaffolds through the freeze-drying method for wound dressing applications. MAIN METHODS GO is produced by Hammer's method; then, it is characterized by X-ray diffraction and TEM analysis. Fabricated scaffolds are characterized by FTIR, FESEM, AFM, water vapor transmission rate, PBS absorption, contact angle, tensile strength, porosity measurement, biodegradability, and drug release methods. The cell viability and morphology of NIH/3 T3 cells are investigated by WST assay kit and FESEM analysis, and the antibacterial activity of scaffolds is determined by the optical density (OD) method. The photothermal antibacterial activity is characterized by NIR irradiation, too. KEY FINDINGS The mean pore diameter of scaffolds adjusted by the incorporation of about 0-1.5%wt. of GO/Cur nanocomposite into CS matrix, decreasing from 87 to 40 μm that can be attributed to the intermolecular bonds between CS and GO/Cur nanocomposite. Besides, the PBS absorption of scaffolds enhances by the addition of GO/Cur, especially 1% of it. Furthermore, the overall average of cell viability of nanocomposite scaffolds is about 95%, and the FESEM images show that NIH/3T3 fibroblasts well spread on the nanocomposite scaffolds. GO/Cur has a significant influence on the antibacterial activity of CS scaffolds as CS/GO/Cur 0.5 scaffold diminishes the bacterial growth to about 52% of the control sample's growth. SIGNIFICANCE The results evidence the antibacterial CS/GO/Cur scaffolds are excellent supports for cell growth and proliferation, and they could be promising candidates for wound dressing applications.
Collapse
Affiliation(s)
- Nona Nowroozi
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Iran; Energy, Environment, and Nanostructure material laboratory, Caspian Faculty of Engineering, College of Engineering, University of Tehran, Iran.
| | - Soraya Faraji
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Iran; Energy, Environment, and Nanostructure material laboratory, Caspian Faculty of Engineering, College of Engineering, University of Tehran, Iran.
| | - Amideddin Nouralishahi
- Energy, Environment, and Nanostructure material laboratory, Caspian Faculty of Engineering, College of Engineering, University of Tehran, Iran.
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Rezvanshahr, P.O. Box: 43841-119, Guilan, Iran.
| |
Collapse
|
115
|
Weppelmann TA, Jeong KC, Ali A. Characterization of the Vibriocidal Activity of Chitosan Microparticles: A Potential Therapeutic Agent for Emerging Multidrug-Resistant Cholera Infections. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47278-47288. [PMID: 32990431 DOI: 10.1021/acsami.0c14313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Due to increasing reports of multidrug-resistant (MDR) Vibrio cholerae O1, the goal of this study was to characterize the in vitro antimicrobial activity of chitosan microparticles (CMs) to evaluate their potential as a novel therapeutic agent for cholera. We examined the antimicrobial activity of CMs against toxigenic V. cholerae O1 using direct enumeration, microscopy, and fluorescence microplate assays. Bacterial viability kinetics were measured with different concentrations of CMs, solution pH, and salt content using a live/dead staining technique. Growth inhibition of CM-exposed V. cholerae strains was conducted using a redox-sensitive stain and compared between wild-type and isogenic outer membrane (OM) mutants. CM concentrations above 0.1 wt % were sufficient to kill V. cholerae O1 suspensions with approximately 108 CFU/mL within 3 h. The nonviable cells demonstrated increased OM permeability that corresponded to gross morphological changes observed through scanning electron microscopy. CMs exhibited dose-dependent bactericidal activity that increased predictably at lower pH and decreased with salt addition. V. cholerae O1 strains lacking O-antigen were twice as susceptible to growth inhibition by CMs, whereas those with glycine modification to lipid A were ten times more resistant. We propose that CMs exert vibriocidal activity via electrostatic surface interactions between their positively charged amine groups and the negatively charged Gram-negative bacterial OM, resulting in disruption, increased permeability, decreased redox metabolism, and subsequent loss of cellular viability. Further research should be conducted in vivo to evaluate the efficacy of CMs as luminal agents to treat infections caused by MDR, toxigenic V. cholerae and other diarrheal pathogens.
Collapse
Affiliation(s)
- Thomas A Weppelmann
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33620, United States
| | - Kwangcheol Casey Jeong
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida 32611, United States
- Department of Animal Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida 32611, United States
| | - Afsar Ali
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida 32611, United States
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
116
|
Abdallah Y, Liu M, Ogunyemi SO, Ahmed T, Fouad H, Abdelazez A, Yan C, Yang Y, Chen J, Li B. Bioinspired Green Synthesis of Chitosan and Zinc Oxide Nanoparticles with Strong Antibacterial Activity against Rice Pathogen Xanthomonas oryzae pv. oryzae. Molecules 2020; 25:E4795. [PMID: 33086640 PMCID: PMC7587532 DOI: 10.3390/molecules25204795] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 11/17/2022] Open
Abstract
Bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most devastating diseases, resulting in significant yield losses in rice. The extensive use of chemical antibacterial agents has led to an increase the environmental toxicity. Nanotechnology products are being developed as a promising alternative to control plant disease with low environmental impact. In the present study, we investigated the antibacterial activity of biosynthesized chitosan nanoparticles (CSNPs) and zinc oxide nanoparticles (ZnONPs) against rice pathogen Xoo. The formation of CSNPs and ZnONPs in the reaction mixture was confirmed by using UV-vis spectroscopy at 300-550 nm. Moreover, CSNPs and ZnONPs with strong antibacterial activity against Xoo were further characterized by scanning and transmission electron microscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction. Compared with the corresponding chitosan and ZnO alone, CSNPs and ZnONPs showed greater inhibition in the growth of Xoo, which may be mainly attributed to the reduction in biofilm formation and swimming, cell membrane damage, reactive oxygen species production, and apoptosis of bacterial cells. Overall, this study revealed that the two biosynthesized nanoparticles, particularly CSNPs, are a promising alternative to control rice bacterial disease.
Collapse
Affiliation(s)
- Yasmine Abdallah
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.A.); (M.L.); (S.O.O.); (T.A.)
- Department of Plant pathology, Minia University, Elminya 61519, Egypt
| | - Mengju Liu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.A.); (M.L.); (S.O.O.); (T.A.)
| | - Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.A.); (M.L.); (S.O.O.); (T.A.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.A.); (M.L.); (S.O.O.); (T.A.)
| | - Hatem Fouad
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310027, China;
- Department of Field Crop Pests, Plant Protection Research Institute, Agricultural Research Centre, Cairo 12619, Egypt
| | - Amro Abdelazez
- Department of Dairy Microbiology, Animal Production Research Institute, Agriculture Research Centre, Dokki, Giza 12618, Egypt;
| | - Chenqi Yan
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
| | - Yong Yang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Jianping Chen
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.A.); (M.L.); (S.O.O.); (T.A.)
| |
Collapse
|
117
|
Hamdi M, Nasri R, Amor IB, Li S, Gargouri J, Nasri M. Structural features, anti-coagulant and anti-adhesive potentials of blue crab (Portunus segnis) chitosan derivatives: Study of the effects of acetylation degree and molecular weight. Int J Biol Macromol 2020; 160:593-601. [DOI: 10.1016/j.ijbiomac.2020.05.246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/24/2020] [Accepted: 05/27/2020] [Indexed: 12/25/2022]
|
118
|
Bhat PA, Nazir N, Chat OA, Dar AA. Exploiting self-assembled soft systems based on surfactants, biopolymers and their mixtures for inhibition of Citral degradation under harsh acidic Conditions. Food Chem 2020; 340:128168. [PMID: 33011467 DOI: 10.1016/j.foodchem.2020.128168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 01/06/2023]
Abstract
The chemical instability of Citral in acidic conditions is viewed as hurdle to commercialize it in food/beverage industries. We attempted to stabilize citral in various single and mixed surfactant systems at pH 1.0 and temperature 25 °C. The study highlights the importance of amount and density of positive charge of cationic surfactants and oxyethylene content of nonionic surfactants at the interface of self-assembly in inhibiting citral degradation. The hybrid of Chitosan and P123 showed a significant increase in the half-life of citral compared to that in its individual components. The results of the study suggest that it is possible to stabilize citral in strong acidic environs having a pH as low as 1.0 using mixed surfactant or polymer-amphiphile systems with significant positive charge/number of oxyethylene in their single components. Such polymer-surfactant systems formulations if biocompatible/food grade may act as promising media to enhance shelf life of citral.
Collapse
Affiliation(s)
- Parvaiz Ahmad Bhat
- Soft Matter Research Group, Department of Chemistry, University of Kashmir, Srinagar 190006, J&K, India; Department of Chemistry, Government Degree College Pulwama 192301, J&K, India
| | - Nighat Nazir
- Department of Chemistry, Islamia College of Science and Commerce, Hawal, Srinagar 190002, J&K, India
| | - Oyais Ahmad Chat
- Soft Matter Research Group, Department of Chemistry, University of Kashmir, Srinagar 190006, J&K, India; Department of Chemistry, Government Degree College Pulwama 192301, J&K, India
| | - Aijaz Ahmad Dar
- Soft Matter Research Group, Department of Chemistry, University of Kashmir, Srinagar 190006, J&K, India.
| |
Collapse
|
119
|
Echeverry-Cardona LM, Álzate N, Restrepo-Parra E, Ospina R, Quintero-Orozco JH. Time-Stability Dispersion of MWCNTs for the Improvement of Mechanical Properties of Portland Cement Specimens. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4149. [PMID: 32961838 PMCID: PMC7560393 DOI: 10.3390/ma13184149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 11/26/2022]
Abstract
This study shows the energy optimization and stabilization in the time of solutions composed of H2O + TX-100 + Multi-Wall Carbon Nanotubes (MWCNTs), used to improve the mechanical properties of Portland cement pastes. For developing this research, sonication energies at 90, 190, 290, 340, 390, 440, 490 and 590 J/g are applied to a colloidal substance (MWCNTs/TX-100 + H2O) with a molarity of 10 mM. Raman spectroscopy analyses showed that, for energies greater than 440 J/g, there are ruptures and fragmentation of the MWCNTs; meanwhile at energies below 390 J/g, better dispersions are obtained. The stability of the dispersion over time was evaluated over 13 weeks using UV-vis spectroscopy and Zeta Potential. With the most relevant data collected, sonication energies of 190, 390 and 490 J/g, at 10 mM were selected at the first and the fourth week of storage to obtain Portland cement specimens. Finally, we found an improvement of the mechanical properties of the samples built with Portland cement and solutions stored for one and four weeks; it can be concluded that the MWCNTs improved the hydration period.
Collapse
Affiliation(s)
- Laura M. Echeverry-Cardona
- Laboratorio de Física del Plasma, Universidad Nacional de Colombia, Sede Manizales, Manizales 170001, Colombia; (L.M.E.-C.); (N.Á.)
| | - Natalia Álzate
- Laboratorio de Física del Plasma, Universidad Nacional de Colombia, Sede Manizales, Manizales 170001, Colombia; (L.M.E.-C.); (N.Á.)
| | - Elisabeth Restrepo-Parra
- Laboratorio de Física del Plasma, Universidad Nacional de Colombia, Sede Manizales, Manizales 170001, Colombia; (L.M.E.-C.); (N.Á.)
| | - Rogelio Ospina
- Laboratory of Biological Materials Science and Semiconductors, Universidad Industrial de Santander, Bucaramanga 681012, Colombia; (R.O.); (J.H.Q.-O.)
| | - Jorge H. Quintero-Orozco
- Laboratory of Biological Materials Science and Semiconductors, Universidad Industrial de Santander, Bucaramanga 681012, Colombia; (R.O.); (J.H.Q.-O.)
| |
Collapse
|
120
|
Chitosan: Structural modification, biological activity and application. Int J Biol Macromol 2020; 164:4532-4546. [PMID: 32941908 DOI: 10.1016/j.ijbiomac.2020.09.042] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
Many by-products that are harmful to the environment and human health are generated during food processing. However, these wastes are often potential resources with high-added value. For example, crustacean waste contains large amounts of chitin. Chitin is one of the most abundant polysaccharides in natural macromolecules, and is a typical component of crustaceans, mollusks, insect exoskeleton and fungal cell walls. Chitosan is prepared by deacetylation of chitin and a copolymer of D-glucosamine and N-acetyl-D-glucosamine through β-(1 → 4)-glycosidic bonds. Chitosan has better solubility, biocompatibility and degradability compared with chitin. This review introduces the preparation, physicochemical properties, chemical and physical modification methods of chitosan, which could help us understand its biological activities and applications. According to the latest reports, the antibacterial activity, antioxidant, immune and antitumor activities of chitosan and its derivatives are summarized. Simultaneously, the various applications of chitosan and its derivatives are reviewed, including food, chemical, textile, medical and health, and functional materials. Finally, some insights into its future potential are provided, including novel modification methods, directional modification according to structure-activity relationship, activity and application development direction, etc.
Collapse
|
121
|
Mohan K, Ganesan AR, Muralisankar T, Jayakumar R, Sathishkumar P, Uthayakumar V, Chandirasekar R, Revathi N. Recent insights into the extraction, characterization, and bioactivities of chitin and chitosan from insects. Trends Food Sci Technol 2020; 105:17-42. [PMID: 32901176 PMCID: PMC7471941 DOI: 10.1016/j.tifs.2020.08.016] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 12/29/2022]
Abstract
Background Insects are a living resource used for human nutrition, medicine, and industry. Several potential sources of proteins, peptides, and biopolymers, such as silk, chitin, and chitosan are utilized in industry and for biotechnology applications. Chitosan is an amino-polysaccharide derivative of chitin that consists of linear amino polysaccharides with d-glucosamine and N-acetyl-d-glucosamine units. Currently, the chief commercial sources of chitin and chitosan are crustacean shells that accumulate as a major waste product from the marine food industry. Existing chitin resources have some natural challenges, including insufficient supplies, seasonal availability, and environmental pollution. As an alternative, insects could be utilized as unconventional but feasible sources of chitin and chitosan. Scope and approach This review focuses on the recent sources of insect chitin and chitosan, particularly from the Lepidoptera, Coleoptera, Orthoptera, Hymenoptera, Diptera, Hemiptera, Dictyoptera, and Odonata orders. In addition, the extraction methods and physicochemical characteristics are discussed. Insect chitin and chitosan have numerous biological activities and could be used for food, biomedical, and industrial applications. Key findings and conclusions Recently, the invasive and harmful effects of insect species causing severe damage in agricultural crops has led to great economic losses globally. These dangerous species serve as potential sources of chitin and are underutilized worldwide. The conclusion of the present study provides better insight into the conversion of insect waste-derived chitin into value-added products as an alternative chitin source to address food security related challenges.
Collapse
Affiliation(s)
- Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu, 638 316, India
| | - Abirami Ramu Ganesan
- School of Applied Sciences, College of Engineering, Science and Technology (CEST), Fiji National University, 5529, Fiji
| | - Thirunavukkarasu Muralisankar
- Aquatic Ecology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - Rajarajeswaran Jayakumar
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Palanivel Sathishkumar
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, PR China
| | | | | | - Nagarajan Revathi
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu, 638 316, India
| |
Collapse
|
122
|
Maruthapandi M, Sharma K, Luong JHT, Gedanken A. Antibacterial activities of microwave-assisted synthesized polypyrrole/chitosan and poly (pyrrole-N-(1-naphthyl) ethylenediamine) stimulated by C-dots. Carbohydr Polym 2020; 243:116474. [PMID: 32532398 DOI: 10.1016/j.carbpol.2020.116474] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/10/2020] [Accepted: 05/16/2020] [Indexed: 11/26/2022]
Abstract
Polypyrrole grafted with chitosan (PPy-g-CS) and poly (pyrrole-N-(1-naphthyl) ethylenediamine, a copolymer, (COP) have been synthesized by a one-step microwave procedure with carbon dots(C-Dots) as initiators. The electrostatic interaction between the positively charged polymers and negatively charged microbial cell membranes is widely anticipated to be responsible for cellular lysis. However, Escherichia coli exposed to PPy-g-CS (zeta potential = +46.9 mV) was completely perished after 3 h while COP (zeta potential = +64.1 mV) exhibited no antimicrobial effect. The two polymers were capable of eradicating Staphylococcus aureus, implying the charged effect is the main mechanism of cell death. The two polymers could also chelate calcium and other nutrients as well as form an external barrier to suppress the penetration of essential nutrients to support microbial survival and proliferation. In particular, pyrrole grafted chitosan was reasoned to stack onto the bacterial surface to impede the mass transfer and suppress the bacterial metabolic activity. The binding of chitosan to teichoic acids, essential acids of Gram-positive bacteria, would provoke a sequence of events and lead to bacterial death.
Collapse
Affiliation(s)
- Moorthy Maruthapandi
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Kusha Sharma
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | | | - Aharon Gedanken
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel.
| |
Collapse
|
123
|
Antibacterial modification of Lyocell fiber: A review. Carbohydr Polym 2020; 250:116932. [PMID: 33049845 DOI: 10.1016/j.carbpol.2020.116932] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 11/20/2022]
Abstract
As the most successful regenerated cellulose fiber developed in recent decades, Lyocell has attracted much attention due to its useful properties, simple manufacturing process, and recyclable solvent. However, Lyocell's lack of antibacterial properties limits its application in medical and health fields. Antibacterial modification of Lyocell fiber can be achieved by three general approaches: physical blending, chemical reaction, and post-treatment. Physical blending methods introduce antibacterial agents directly into the spinning dope. In chemical reaction methods, functional groups of the antibacterial additives are grafted or crosslinked into Lyocell fibers, thereby imparting antimicrobial properties. In post-treatment methods, antibacterial additives are deposited on Lyocell fiber surfaces by physical coating, padding, or impregnation processes. We organize our review of antibacterial modification of Lyocell fibers by these preparation methods. Some of the modified Lyocell fibers are reported to exhibit improved antimicrobial activity against various bacteria and fungi, indicating promise for application in medical or hygienic products.
Collapse
|
124
|
Popescu R, Ghica MV, Dinu-Pîrvu CE, Anuța V, Lupuliasa D, Popa L. New Opportunity to Formulate Intranasal Vaccines and Drug Delivery Systems Based on Chitosan. Int J Mol Sci 2020; 21:ijms21145016. [PMID: 32708704 PMCID: PMC7404068 DOI: 10.3390/ijms21145016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
In an attempt to develop drug delivery systems that bypass the blood–brain barrier (BBB) and prevent liver and intestinal degradation, it was concluded that nasal medication meets these criteria and can be used for drugs that have these drawbacks. The aim of this review is to present the influence of the properties of chitosan and its derivatives (mucoadhesion, permeability enhancement, surface tension, and zeta potential) on the development of suitable nasal drug delivery systems and on the nasal bioavailability of various active pharmaceutical ingredients. Interactions between chitosan and proteins, lipids, antigens, and other molecules lead to complexes that have their own applications or to changing characteristics of the substances involved in the bond (conformational changes, increased stability or solubility, etc.). Chitosan and its derivatives have their own actions (antibacterial, antifungal, immunostimulant, antioxidant, etc.) and can be used as such or in combination with other molecules from the same class to achieve a synergistic effect. The applicability of the properties is set out in the second part of the paper, where nasal formulations based on chitosan are described (vaccines, hydrogels, nanoparticles, nanostructured lipid carriers (NLC), powders, emulsions, etc.).
Collapse
Affiliation(s)
- Roxana Popescu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 020956 Bucharest, Romania; (R.P.); (M.V.G.); (V.A.); (L.P.)
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 020956 Bucharest, Romania; (R.P.); (M.V.G.); (V.A.); (L.P.)
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 020956 Bucharest, Romania; (R.P.); (M.V.G.); (V.A.); (L.P.)
- Correspondence:
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 020956 Bucharest, Romania; (R.P.); (M.V.G.); (V.A.); (L.P.)
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy ”Carol Davila”, 020956 Bucharest, Romania;
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 020956 Bucharest, Romania; (R.P.); (M.V.G.); (V.A.); (L.P.)
| |
Collapse
|
125
|
Hui A, Yan R, Wang W, Wang Q, Zhou Y, Wang A. Incorporation of quaternary ammonium chitooligosaccharides on ZnO/palygorskite nanocomposites for enhancing antibacterial activities. Carbohydr Polym 2020; 247:116685. [PMID: 32829813 DOI: 10.1016/j.carbpol.2020.116685] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/05/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
Quaternary ammonium chitooligosaccharides (QACOS) was incorporated onto the ZnO/palygorskite (ZnO/PAL) nanocomposite by a simple electrostatic self-assembly process to produce a new organic-inorganic nanocomposite (QACOS/ZnO/PAL) with excellent antibacterial activity. After loading QACOS, the Zeta potential of ZnO/PAL was changed from -26.7 to +30.3 mV, which facilitates to improve the targeting behavior of ZnO/PAL towards bacteria and its contact with bacteria, resulting in a significant improvement of antibacterial capability. The MIC values of QACOS/ZnO/PAL for inhibiting bacteria (0.5 mg/mL for E. coli and 1 mg/L for S. aureus) were superior to ZnO/PAL and QACOS, demonstrated an expected synergistic antibacterial effect between QACOS and ZnO/PAL. The improved contact and interface interaction between QACOS/ZnO/PAL and bacteria makes it easier to destroy the structural integrity of bacteria. As a whole, the incorporation of polysaccharide as regulators of surface charge opens up a new way to further enhance the antibacterial activity of inorganic antibacterial materials.
Collapse
Affiliation(s)
- Aiping Hui
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, PR China; Center of Xuyi Palygorskite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi, 211700, PR China
| | - Rui Yan
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, PR China; Center of Xuyi Palygorskite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi, 211700, PR China
| | - Wenbo Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, PR China; Center of Xuyi Palygorskite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi, 211700, PR China
| | - Qin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, PR China; Center of Xuyi Palygorskite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi, 211700, PR China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, PR China; Center of Xuyi Palygorskite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi, 211700, PR China.
| |
Collapse
|
126
|
Goyal N, Gao P, Wang Z, Cheng S, Ok YS, Li G, Liu L. Nanostructured chitosan/molecular sieve-4A an emergent material for the synergistic adsorption of radioactive major pollutants cesium and strontium. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122494. [PMID: 32193120 DOI: 10.1016/j.jhazmat.2020.122494] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
A fresh adsorbent nanostructured chitosan/molecular sieve 4A hybrid (NSC@MS-4A) was fabricated for the rapid adsorption of strontium (Sr2+) and cesium (Cs+) ions from aqueous solutions. The as-obtained NSC@MS-4A were thoroughly characterized by XRD, FE-SEM, EDS, BET, XPS and FT-IR. The physio-chemical properties and structural aspects revealed that NSC@MS-4A acquires fine surface area (72 m2/g), porous structure as well as compatible functional groups (-P-O-P and -C-O-C) for the admission of Cs+ and Sr2+ ions. The batch adsorption studies concluded that prepared adsorbent displayed a maximum adsorption of 92-94 % within 40 min. Fast adsorption of Cs+ and Sr2+ was achieved at neutral pH (6-7), ambient temperature (25-30 °C) and slow agitation speed (50-60 rpm) which could propose vast benefits such as little power utilization and uncomplicated operation. Among six types of adsorption isotherms, Freundlich isotherm showed the best fit with R2>0.997. Pseudo-second order made a better agreement as compare to other kinetic models. The thermodynamic coefficients suggested the passage of Cs+ and Sr2+ ions through the liquid solid boundary is exothermic and spontaneous. The NSC@MS-4A displayed excellent regenerability properties over five repetitive adsorption/desorption cycles, which specified that as-obtained NSC@MS-4A is a sustainable as well as efficient adsorbent for practical decontamination of radioactive liquid waste.
Collapse
Affiliation(s)
- Nitin Goyal
- State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, China
| | - Peng Gao
- State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, China
| | - Zhe Wang
- State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, China
| | - Shuwen Cheng
- State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, China
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia
| | - Gang Li
- State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, China; Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia.
| | - Liying Liu
- State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
127
|
Li T, Zhang P, Chen B, Liu S, Deng J. Synthesis and properties of
UV‐curable
waterborne urethane modified acrylic coatings with varying vinyl content. J Appl Polym Sci 2020. [DOI: 10.1002/app.49384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Tongqing Li
- College of Chemistry and Chemical EngineeringHunan University Changsha China
| | - Pingan Zhang
- College of Chemistry and Chemical EngineeringHunan University Changsha China
| | - Bo Chen
- College of Chemistry and Chemical EngineeringHunan University Changsha China
| | - Simeng Liu
- College of Chemistry and Chemical EngineeringHunan University Changsha China
| | - Jianru Deng
- College of Chemistry and Chemical EngineeringHunan University Changsha China
| |
Collapse
|
128
|
Bioinspired pH-sensitive riboflavin controlled-release alkaline hydrogels based on blue crab chitosan: Study of the effect of polymer characteristics. Int J Biol Macromol 2020; 152:1252-1264. [DOI: 10.1016/j.ijbiomac.2019.10.222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 12/26/2022]
|
129
|
Chitosan, its derivatives and composites with superior potentials for the corrosion protection of steel alloys: A comprehensive review. Carbohydr Polym 2020; 237:116110. [DOI: 10.1016/j.carbpol.2020.116110] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 12/31/2022]
|
130
|
Varlamov VP, Il'ina AV, Shagdarova BT, Lunkov AP, Mysyakina IS. Chitin/Chitosan and Its Derivatives: Fundamental Problems and Practical Approaches. BIOCHEMISTRY (MOSCOW) 2020; 85:S154-S176. [PMID: 32087058 DOI: 10.1134/s0006297920140084] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this review, we present the data on the natural occurrence of chitin and its partially or fully deacetylated derivative chitosan, as well as their properties, methods of modification, and potential applications of derivatives with bactericidal, fungicidal, and antioxidant activities. The structure and physicochemical characteristics of the polymers, their functions, and features of chitin microbial synthesis and degradation, including the processes occurring in nature, are described. New data on the hydrolytic microorganisms capable of chitin degradation under extreme conditions are presented. Special attention is focused on the effect of physicochemical characteristics of chitosan, including molecular weight, degree of deacetylation, polydispersity index, and number of amino group derivatives (quaternized, succinyl, etc.) on the antimicrobial and antioxidant properties of modified polymers that can be of particular interest for biotechnology, medicine, and agriculture. Analysis of the available literature data confirms the importance of fundamental research to broaden our knowledge on the occurrence of chitin and chitosan in nature, their role in global biosphere cycles, and prospects of applied research aimed at using chitin, chitosan, and their derivatives in various aspects of human activity.
Collapse
Affiliation(s)
- V P Varlamov
- Laboratory of Biopolymer Engineering, Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 117312, Russia.
| | - A V Il'ina
- Laboratory of Biopolymer Engineering, Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 117312, Russia
| | - B Ts Shagdarova
- Laboratory of Biopolymer Engineering, Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 117312, Russia
| | - A P Lunkov
- Laboratory of Biopolymer Engineering, Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 117312, Russia
| | - I S Mysyakina
- Winogradsky Institute of Microbiology, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 117312, Russia
| |
Collapse
|
131
|
Wu P, Yi J, Feng L, Li X, Chen Y, Liu Z, Tian S, Li S, Khan S, Sun Y. Microwave assisted preparation and characterization of a chitosan based flocculant for the application and evaluation of sludge flocculation and dewatering. Int J Biol Macromol 2020; 155:708-720. [PMID: 32259538 DOI: 10.1016/j.ijbiomac.2020.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
Abstract
In this study, a new type of graft modified flocculant (CS-g-PAD) was copolymerized of AM, DAC and chitosan (CS) by microwave assisted initiation and used for sludge conditioning and dewatering. The effect of reaction conditions on microwave assisted copolymerization was investigated and their optimal values were obtained by orthogonal experiments. The structure and chemical properties of CS-g-PAD were characterized and the results indicated that microwave assisted polymerization can cause the generated side polymer chain of PAD to react with the -NH2 active group in CS. Thus, the graft copolymerization occurred at amino group connected with C2 site. Compared with CCPAM, PAD and CS, the synthesized CS-g-PAD exhibits superior sludge dewatering performance (FCMC: 72.1%, SRF: 4.5 × 1012 m/kg, d50: 679.556 μm, Df: 1.72, floc sedimentation rate: 5.72 cm/min) in a wide pH range (pH = 3.5-9.5). Because CS-g-PAD contains a large amount of cationic DAC and positively charged CS as well as many functional groups on CS, it increases the charge neutralization, electrical patching and adsorption capability. Additionally, the grafting PAD on CS has a good extension in solution to increase its adsorption bridging effect. The new grafted CS-g-PAD is promising and has great practical application value in sludge dewatering and condition.
Collapse
Affiliation(s)
- Pei Wu
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China; Chongqing Xin Yun Chuang Institute of Environmental Protection Research Co. Ltd, Chongqing 402566, China
| | - Jiaxiang Yi
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China; Chongqing Xin Yun Chuang Institute of Environmental Protection Research Co. Ltd, Chongqing 402566, China
| | - Li Feng
- Chongqing Xin Yun Chuang Institute of Environmental Protection Research Co. Ltd, Chongqing 402566, China; School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China.
| | - Xuhao Li
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Yao Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Zhen Liu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Shenghai Tian
- Chongqing Water Supply Co., Ltd, Chongqing 400013, China
| | - Shiyao Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045,China
| | - Sarfaraz Khan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045,China
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, China.
| |
Collapse
|
132
|
Affiliation(s)
- Sougata Jana
- Department of Pharmaceutics, Department of Health and Family Welfare Directorate of Health Services, Gupta College of Technological Sciences, Asansol, West Bengal India
| | - Subrata Jana
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh India
| |
Collapse
|
133
|
Inanli AG, Tümerkan ETA, Abed NE, Regenstein JM, Özogul F. The impact of chitosan on seafood quality and human health: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
134
|
Wei S, Ching YC, Chuah CH. Synthesis of chitosan aerogels as promising carriers for drug delivery: A review. Carbohydr Polym 2020; 231:115744. [DOI: 10.1016/j.carbpol.2019.115744] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/10/2019] [Accepted: 12/14/2019] [Indexed: 12/12/2022]
|
135
|
Saita K, Nagaoka S, Shirosaki T, Horikawa M, Ihara H. Dispersible chitosan particles showing bacteriostatic effect against Streptococcus mutans and their dental polishing effect. Biosci Biotechnol Biochem 2020; 84:1265-1273. [PMID: 32009563 DOI: 10.1080/09168451.2020.1723402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Nontoxic and biodegradable chitosan is potentially useful in various applications. We prepared submicron chitosan particles with high dispersibility in aqueous solution utilizing the electrostatic interaction phase separation method described in a previous report, but using citric acid as the polyvalent anionic compound instead of sodium sulfate. The submicron chitosan particles showed significant antibacterial activity and anti-adhesive action against Streptococcus mutans, even at around neutral pH. However, chitosan granules showed no antibacterial activity under the same conditions. The addition of the chitosan particles to dental polishing paste provided stainless steel discs (the same hardness as dental enamel) with a smoother surface than polishing paste without additives. In view of their submicron size and antibacterial activity, chitosan particles could potentially be multifunctional components of oral and dental cleaning materials.
Collapse
Affiliation(s)
- Kanako Saita
- Kumamoto Industrial Research Institute, Kumamoto, Japan
| | - Shoji Nagaoka
- Kumamoto Industrial Research Institute, Kumamoto, Japan.,Department of Applied Chemistry & Biochemistry, Kumamoto University, Kumamoto, Japan
| | | | - Maki Horikawa
- Kumamoto Industrial Research Institute, Kumamoto, Japan
| | - Hirotaka Ihara
- Department of Applied Chemistry & Biochemistry, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
136
|
Nouri A, Jelkmann M, Khoee S, Bernkop-Schnürch A. Diaminated Starch: A Competitor of Chitosan with Highly Mucoadhesive Properties due to Increased Local Cationic Charge Density. Biomacromolecules 2020; 21:999-1008. [PMID: 31940199 PMCID: PMC7205387 DOI: 10.1021/acs.biomac.9b01665] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The purpose of this study was to synthesize diaminated starch as a novel mucoadhesive polymer. Starch was tosylated and then reacted with ethylenediamine. The degree of amination was determined by 2,4,6-trinitrobenzene sulfonic acid assay. Properties of diaminated starch including solubility, cytotoxicity, swelling behavior, and mucoadhesion were compared to chitosan. Diaminated starch displayed 2083 ± 121.6 μmol of diamine substructures/g of polymer. At pH 6, diaminated starch exhibited a ζ potential of 6 mV, whereas it was close to zero in the case of unmodified starch. In addition, diaminated starch displayed water solubility over the entire pH range and minor cytotoxicity. The novel polymer showed pronounced swelling behavior in water increasing its initial weight 18- and 6-fold at pH 5 and 6, respectively. Moreover, diaminated starch exhibited 92-fold higher-mucoadhesivity properties than those of chitosan. According to these results, diaminated starch might be a promising novel excipient for the design of mucoadhesive formulations.
Collapse
Affiliation(s)
- Akram Nouri
- Polymer Laboratory, Chemistry Department, School of Science , University of Tehran , P.O. Box 14, 155-6455 Tehran , Iran
| | - Max Jelkmann
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy , University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria
| | - Sepideh Khoee
- Polymer Laboratory, Chemistry Department, School of Science , University of Tehran , P.O. Box 14, 155-6455 Tehran , Iran
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy , University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria
| |
Collapse
|
137
|
López-Iglesias C, Barros J, Ardao I, Gurikov P, Monteiro FJ, Smirnova I, Alvarez-Lorenzo C, García-González CA. Jet Cutting Technique for the Production of Chitosan Aerogel Microparticles Loaded with Vancomycin. Polymers (Basel) 2020; 12:polym12020273. [PMID: 32013071 PMCID: PMC7077406 DOI: 10.3390/polym12020273] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/25/2020] [Accepted: 01/26/2020] [Indexed: 01/06/2023] Open
Abstract
Biopolymer-based aerogels can be obtained by supercritical drying of wet gels and endowed with outstanding properties for biomedical applications. Namely, polysaccharide-based aerogels in the form of microparticles are of special interest for wound treatment and can also be loaded with bioactive agents to improve the healing process. However, the production of the precursor gel may be limited by the viscosity of the polysaccharide initial solution. The jet cutting technique is regarded as a suitable processing technique to overcome this problem. In this work, the technological combination of jet cutting and supercritical drying of gels was assessed to produce chitosan aerogel microparticles loaded with vancomycin HCl (antimicrobial agent) for wound healing purposes. The resulting aerogel formulation was evaluated in terms of morphology, textural properties, drug loading, and release profile. Aerogels were also tested for wound application in terms of exudate sorption capacity, antimicrobial activity, hemocompatibility, and cytocompatibility. Overall, the microparticles had excellent textural properties, absorbed high amounts of exudate, and controlled the release of vancomycin HCl, providing sustained antimicrobial activity.
Collapse
Affiliation(s)
- Clara López-Iglesias
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma group (GI-1645), Faculty of Pharmacy, Agrupación Estratégica de Materiales (AeMAT) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain; (C.L.-I.); (C.A.-L.)
| | - Joana Barros
- Instituto de Investigação e Inovação em Saúde (i3S), Instituto Nacional de Engenharia Biomédica (INEB) and Faculdade de Engenharia Universidade do Porto (FEUP), Universidade do Porto, 4200-135 Porto, Portugal; (J.B.); (F.J.M.)
| | - Inés Ardao
- BioFarma Research group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain;
| | - Pavel Gurikov
- Laboratory for Development and Modelling of Novel Nanoporous Materials, Eißendorfer Str. 38, 21073 Hamburg, Germany;
| | - Fernando J. Monteiro
- Instituto de Investigação e Inovação em Saúde (i3S), Instituto Nacional de Engenharia Biomédica (INEB) and Faculdade de Engenharia Universidade do Porto (FEUP), Universidade do Porto, 4200-135 Porto, Portugal; (J.B.); (F.J.M.)
| | - Irina Smirnova
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Str. 38, 21073 Hamburg, Germany;
| | - Carmen Alvarez-Lorenzo
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma group (GI-1645), Faculty of Pharmacy, Agrupación Estratégica de Materiales (AeMAT) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain; (C.L.-I.); (C.A.-L.)
| | - Carlos A. García-González
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma group (GI-1645), Faculty of Pharmacy, Agrupación Estratégica de Materiales (AeMAT) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain; (C.L.-I.); (C.A.-L.)
- Correspondence: ; Tel.: +34-881-814882
| |
Collapse
|
138
|
Said Suliman A, Tom R, Palmer K, Tolaymat I, Younes HM, Arafat B, Elhissi AMA, Najlah M. Development, characterization and stability evaluation of ciprofloxacin-loaded parenteral nutrition nanoemulsions. Pharm Dev Technol 2020; 25:579-587. [PMID: 31967908 DOI: 10.1080/10837450.2020.1720237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this study, two licensed total parenteral nanoemulsion formulations (Clinoleic® and Intralipid®) were loaded with ciprofloxacin (CP). The physicochemical characteristics and stability profiles of the formulations were investigated using a range of drug concentrations. Furthermore, formulation stability was evaluated over a period of six months at room temperature (RT) or 4 °C. Loading CP into nanoemulsions resulted in no significant differences in their measured droplet size, polydispersity index (PI), zeta potential, and pH. Drug entrapment efficiency (EE) was relatively high for all formulations, regardless of nanoemulsion type, and the drug release was sustained over 24 h. Stability studies of all formulations were performed at 4 °C and RT for 180 and 60 days, respectively. At 4 °C for 180 days, both Clinoleic® and Intralipid® formulations at a range of drug concentrations (1-10 mg/ml) showed high stabilities measured periodically by the average droplet sizes, PI, pH, and zeta potential values. Similar results, but pH values, were shown when the formulations for both nanoemulsion stored at RT for 60 days. Overall, this study has shown that CP was successfully loaded into clinically licensed TPN lipid nanoemulsions. The resultant CP-loaded nanoemulsion formulations demonstrated desirable physicochemical properties and were stable upon storage at 4 °C for up to six months.
Collapse
Affiliation(s)
- Ammar Said Suliman
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford, UK
| | - Rose Tom
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford, UK
| | - Kirsty Palmer
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford, UK
| | - Ibrahim Tolaymat
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford, UK
| | - Husam M Younes
- Office of Vice President for Research & Graduate Studies, Qatar University, Doha, Qatar
| | - Basel Arafat
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford, UK
| | - Abdelbary M A Elhissi
- Office of Vice President for Research & Graduate Studies, Qatar University, Doha, Qatar.,Pharmaceutical Sciences Section, College of Pharmacy, Qatar University, Doha, Qatar
| | - Mohammad Najlah
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford, UK
| |
Collapse
|
139
|
Effects of Chitosan on Clostridium perfringens and Application in the Preservation of Pork Sausage. Mar Drugs 2020; 18:md18020070. [PMID: 31978959 PMCID: PMC7074077 DOI: 10.3390/md18020070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 11/25/2022] Open
Abstract
The effects of chitosan with 95% deacetylation degree (DD95) on the spore germination, cell proliferation, and heat resistance of Clostridium perfringens CCRC 10,648 and CCRC 13,019 were investigated, and its application on pork sausage with sodium nitrite reduction was also evaluated. DD95 chitosan can strongly reduce the heat resistance of both strains. The D80 and D100 values for strain CCRC 13,019 decreased from 40.98 and 4.64 min to 39.21 and 3.26 min, respectively, as a result of adding 250 ppm DD95; meanwhile, addition of chitosan decreased the D80 and D100 values for CCRC 10,648 from 41.15 and 6.46 min to 39.52 and 3.78 min, respectively. In pork sausage, addition of 3000 ppm DD95 chitosan considerably slowed down the bacterial proliferation and volatile basic nitrogen production. There were no significant differences in color (L* and b* values), shearing force, and hardness in the pork sausages with or without DD95 chitosan during storage at 4 and 25 °C. However, the addition of DD95 chitosan in pork sausage significantly retarded the decrease of the a* value. Therefore, DD95 chitosan could reduce the concentration of sodium nitrite required in pork sausages for color retention.
Collapse
|
140
|
Riaz Rajoka MS, Mehwish HM, Wu Y, Zhao L, Arfat Y, Majeed K, Anwaar S. Chitin/chitosan derivatives and their interactions with microorganisms: a comprehensive review and future perspectives. Crit Rev Biotechnol 2020; 40:365-379. [PMID: 31948287 DOI: 10.1080/07388551.2020.1713719] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Chitosan, obtained as a result of the deacetylation of chitin, one of the most important naturally occurring polymers, has antimicrobial properties against fungi, and bacteria. It is also useful in other fields, including: food, biomedicine, biotechnology, agriculture, and the pharmaceutical industries. A literature survey shows that its antimicrobial activity depends upon several factors such as: the pH, temperature, molecular weight, ability to chelate metals, degree of deacetylation, source of chitosan, and the type of microorganism involved. This review will focus on the in vitro and in vivo antimicrobial properties of chitosan and its derivatives, along with a discussion on its mechanism of action during the treatment of infectious animal diseases, as well as its importance in food safety. We conclude with a summary of the challenges associated with the uses of chitosan and its derivatives.
Collapse
Affiliation(s)
- Muhammad Shahid Riaz Rajoka
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, People's Republic of China.,Key Laboratory of Optoelectronic Devices and System of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, People's Republic of China
| | - Hafiza Mahreen Mehwish
- Department of Pharmacy, School of Medicine, Key Laboratory of Novel Health Care Product; Engineering Laboratory of Shenzhen Natural Small Molecules Innovative Drugs, Shenzhen University, Shenzhen, People's Republic of China
| | - Yiguang Wu
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, People's Republic of China
| | - Liqing Zhao
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, People's Republic of China
| | - Yasir Arfat
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Ministry of Education, Northwest University, People's Republic of China
| | - Kashif Majeed
- The Department of Applied Chemistry School of Science, Northwestern Polytechnical University, X'ian, People's Republic of China
| | - Shoaib Anwaar
- School of Medicine, Institute of Biological Therapy, Shenzhen University, Shenzhen, People's Republic of China
| |
Collapse
|
141
|
Schimpf U, Nachmann G, Trombotto S, Houska P, Yan H, Björndahl L, Crouzier T. Assessment of Oligo-Chitosan Biocompatibility toward Human Spermatozoa. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46572-46584. [PMID: 31725264 DOI: 10.1021/acsami.9b17605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The many interesting properties of chitosan polysaccharides have prompted their extensive use as biomaterial building blocks, for instance as antimicrobial coatings, tissue engineering scaffolds, and drug delivery vehicles. The translation of these chitosan-based systems to the clinic still requires a deeper understanding of their safety profiles. For instance, the widespread claim that chitosans are spermicidal is supported by little to no data. Herein, we thoroughly investigate whether chitosan oligomer (CO) molecules can impact the functional and structural features of human spermatozoa. By using a large number of primary sperm cell samples and by isolating the effect of chitosan from the effect of sperm dissolution buffer, we provide the first realistic and complete picture of the effect of chitosans on sperms. We found that CO binds to cell surfaces or/and is internalized by cells and affected the average path velocity of the spermatozoa, in a dose-dependent manner. However, CO did not affect the progressive motility, motility, or sperm morphology, nor did it cause loss of plasma membrane integrity, reactive oxygen species production, or DNA damage. A decrease in spermatozoa adenosine triphosphate levels, which was especially significant at higher CO concentrations, points to possible interference of CO with mitochondrial functions or the glycolysis processes. With this first complete and in-depth look at the spermicidal activities of chitosans, we complement the complex picture of the safety profile of chitosans and inform on further use of chitosans in biomedical applications.
Collapse
Affiliation(s)
- Ulrike Schimpf
- Division of Glycoscience, Department of Chemistry, School of Engineering Science in Chemistry, Biotechnology and Health , Royal Institute of Technology (KTH) , 106 91 Stockholm , Sweden
| | - Gilai Nachmann
- Division of Glycoscience, Department of Chemistry, School of Engineering Science in Chemistry, Biotechnology and Health , Royal Institute of Technology (KTH) , 106 91 Stockholm , Sweden
| | - Stephane Trombotto
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223 , Université Claude Bernard Lyon 1, Univ Lyon , 69622 Villeurbanne , France
| | - Petr Houska
- ANOVA-Andrology, Sexual Medicine, Transmedicine , Karolinska University Hospital and Karolinska Institutet , Norra Stationsgatan 69 , 113 64 Stockholm , Sweden
| | - Hongji Yan
- Division of Glycoscience, Department of Chemistry, School of Engineering Science in Chemistry, Biotechnology and Health , Royal Institute of Technology (KTH) , 106 91 Stockholm , Sweden
| | - Lars Björndahl
- ANOVA-Andrology, Sexual Medicine, Transmedicine , Karolinska University Hospital and Karolinska Institutet , Norra Stationsgatan 69 , 113 64 Stockholm , Sweden
| | - Thomas Crouzier
- Division of Glycoscience, Department of Chemistry, School of Engineering Science in Chemistry, Biotechnology and Health , Royal Institute of Technology (KTH) , 106 91 Stockholm , Sweden
| |
Collapse
|
142
|
|
143
|
Sun X, Jia P, Zhe T, Bu T, Liu Y, Wang Q, Wang L. Construction and multifunctionalization of chitosan-based three-phase nano-delivery system. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.05.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
144
|
Salomatina EV, Lednev IR, Silina NE, Gracheva EA, Koryagin AS, Smirnova ON, Gorshenin MK, Smirnova LA. Biocompatible compositions based on chitosan and copolymer (lactide–titanium oxide) for engineering of tissue substitutes for wound healing. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-03007-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
145
|
Choi M, Hasan N, Cao J, Lee J, Hlaing SP, Yoo JW. Chitosan-based nitric oxide-releasing dressing for anti-biofilm and in vivo healing activities in MRSA biofilm-infected wounds. Int J Biol Macromol 2019; 142:680-692. [PMID: 31622708 DOI: 10.1016/j.ijbiomac.2019.10.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/19/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022]
Abstract
Bacterial biofilms on wounds impair the healing process and often lead to chronic wounds. Chitosan is a well-known biopolymer with antimicrobial and anti-biofilm effects. S-nitrosoglutathione (GSNO) has been identified as a promising nitric oxide (NO) donor to defend against pathogenic biofilms and enhance wound healing activities. In this study, we prepared NO-releasing chitosan film (CS/NO film) and evaluated its anti-biofilm activity and in vivo wound healing efficacy against methicillin-resistant Staphylococcus aureus (MRSA) biofilm-infected wounds in diabetic mice. The in vitro release study showed sustained release of NO over 3 days in simulated wound fluid. The CS/NO film significantly enhanced antibacterial activity against MRSA by > 3 logs reduction in bacterial viability. Moreover, CS/NO film exhibited a 3-fold higher anti-biofilm activity than the control and CS film. In in vivo MRSA biofilm-infected wounds, the CS/NO film-treated group showed faster biofilm dispersal, wound size reduction, epithelialization rates, and collagen deposition than the untreated and CS film-treated groups. Therefore, the CS/NO film investigated in this study could be a promising approach for the treatment of MRSA biofilm-infected wounds.
Collapse
Affiliation(s)
- Moonjeong Choi
- College of Pharmacy, Pusan National University, Busan 609-735, South Korea
| | - Nurhasni Hasan
- College of Pharmacy, Pusan National University, Busan 609-735, South Korea
| | - Jiafu Cao
- College of Pharmacy, Pusan National University, Busan 609-735, South Korea
| | - Juho Lee
- College of Pharmacy, Pusan National University, Busan 609-735, South Korea
| | - Shwe Phyu Hlaing
- College of Pharmacy, Pusan National University, Busan 609-735, South Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan 609-735, South Korea.
| |
Collapse
|
146
|
Bonilla F, Chouljenko A, Lin A, Young BM, Goribidanur TS, Blake JC, Bechtel PJ, Sathivel S. Chitosan and water-soluble chitosan effects on refrigerated catfish fillet quality. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.100426] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
147
|
Anti-diarrhea effects and identification of Musca domestica larvae low molecular weight peptides (LMWP). J Pharm Biomed Anal 2019; 173:162-168. [PMID: 31146171 DOI: 10.1016/j.jpba.2019.05.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 12/19/2022]
Abstract
Musca domestica larvae have been used clinically to cure children malnutritional stagnation and low molecular weight peptides (LMWP) of Musca domestica larvae showed more useful bioactivities. But there is no report on anti-diarrhea effects and identification of the LWMP. The purposes of this study were clarifying the anti-diarrhea effects by regulating intestinal microecology and identification of LMWP. In anti-diarrhea test, diarrhea mice were administered LMWP by oral gavage. Then rectal stool indicator bacteria were counted also the identification of rectal stool bacteria were determined by PCR-DGGE. In LMWP identification test, GFC and RP-HPLC were used to separate the peptide. Then the single polypeptide was tested by MALDI TOF and N-terminal sequence analysis. The results of anti-diarrhea showed that LMWP was effective in the inhibition diarrhea in mice. And microbial diversity indices showed that LMWP treatment group exhibited a higher number of bands. The identification test showed that LMWP had four main components (10-30KD, S1, S2, S3), and there were 5, 7 and 4 peaks in S1, S2 and S3, respectively. The the molecular weight of S2-5, S3-2 and S3-3 was 877.053D, 877.0631D and 1069.4391D, respectively. And S3-3 was determined as Chain A, Carboxypeptidase G2. So the hypothesis that intestinal microbiological regulation might be one of the potential anti-diarrhea mechanisms of Musca domestica larvae LMWP which had four main components and one of the single polypeptide was identified could be drawn.
Collapse
|
148
|
Abeer MM, Meka AK, Pujara N, Kumeria T, Strounina E, Nunes R, Costa A, Sarmento B, Hasnain SZ, Ross BP, Popat A. Rationally Designed Dendritic Silica Nanoparticles for Oral Delivery of Exenatide. Pharmaceutics 2019; 11:E418. [PMID: 31430872 PMCID: PMC6723263 DOI: 10.3390/pharmaceutics11080418] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/04/2019] [Accepted: 08/15/2019] [Indexed: 01/17/2023] Open
Abstract
Type 2 diabetes makes up approximately 85% of all diabetic cases and it is linked to approximately one-third of all hospitalisations. Newer therapies with long-acting biologics such as glucagon-like peptide-1 (GLP-1) analogues have been promising in managing the disease, but they cannot reverse the pathology of the disease. Additionally, their parenteral administration is often associated with high healthcare costs, risk of infections, and poor patient adherence associated with phobia of needles. Oral delivery of these compounds would significantly improve patient compliance; however, poor enzymatic stability and low permeability across the gastrointestinal tract makes this task challenging. In the present work, large pore dendritic silica nanoparticles (DSNPs) with a pore size of ~10 nm were prepared, functionalized, and optimized in order to achieve high peptide loading and improve intestinal permeation of exenatide, a GLP-1 analogue. Compared to the loading capacity of the most popular, Mobil Composition of Matter No. 41 (MCM-41) with small pores, DSNPs showed significantly high loading owing to their large and dendritic pore structure. Among the tested DSNPs, pristine and phosphonate-modified DSNPs (PDSNPs) displayed remarkable loading of 40 and 35% w/w, respectively. Furthermore, particles successfully coated with positively charged chitosan reduced the burst release of exenatide at both pH 1.2 and 6.8. Compared with free exenatide, both chitosan-coated and uncoated PDSNPs enhanced exenatide transport through the Caco-2 monolayer by 1.7 fold. Interestingly, when a triple co-culture model of intestinal permeation was used, chitosan-coated PDSNPs performed better compared to both PDSNPs and free exenatide, which corroborated our hypothesis behind using chitosan to interact with mucus and improve permeation. These results indicate the emerging role of large pore silica nanoparticles as promising platforms for oral delivery of biologics such as exenatide.
Collapse
Affiliation(s)
| | - Anand Kumar Meka
- School of Pharmacy, The University of Queensland, Brisbane QLD 4072, Australia
| | - Naisarg Pujara
- School of Pharmacy, The University of Queensland, Brisbane QLD 4072, Australia
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland, Brisbane QLD 4072, Australia
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia
| | - Ekaterina Strounina
- Center for Advanced Imaging, The University of Queensland, Brisbane QLD 4072, Australia
| | - Rute Nunes
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Ana Costa
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Sumaira Z Hasnain
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia
- Australian Infectious Disease Research Centre-The University of Queensland Building 76 Room 155 Cooper Road, St. Lucia QLD 4067, Australia
| | - Benjamin P Ross
- School of Pharmacy, The University of Queensland, Brisbane QLD 4072, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane QLD 4072, Australia.
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia.
| |
Collapse
|
149
|
Kritchenkov AS, Egorov AR, Krytchankou IS, Dubashynskaya NV, Volkova OV, Shakola TV, Kurliuk AV, Skorik YA. Synthesis of novel 1H-tetrazole derivatives of chitosan via metal-catalyzed 1,3-dipolar cycloaddition. Catalytic and antibacterial properties of [3-(1H-tetrazole-5-yl)ethyl]chitosan and its nanoparticles. Int J Biol Macromol 2019; 132:340-350. [DOI: 10.1016/j.ijbiomac.2019.03.153] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/11/2019] [Accepted: 03/21/2019] [Indexed: 11/29/2022]
|
150
|
A dual synergistic of curcumin and gelatin on thermal-responsive hydrogel based on Chitosan-P123 in wound healing application. Biomed Pharmacother 2019; 117:109183. [PMID: 31261029 DOI: 10.1016/j.biopha.2019.109183] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/16/2019] [Accepted: 06/26/2019] [Indexed: 11/30/2022] Open
Abstract
This study aimed to fabricate the potential therapeutic scaffold to efficiently and safely fastening skin wound healing. A biocompatible grafting polymer-based thermal sensitive hybrid hydrogel (Chitosan-P123, CP) containing gelatin and curcumin was designed to be suitable stiffness for tissue regeneration. A detailed in the rheological study found that the encapsulated agents induced the change in the stiffness of the hydrogel from the hard to the soft. Especial, the thermally induced phase transition of CP hydrogel was governed by the participant of gelatin rather than curcumin. For example, at 25 wt% gelatin, CP hydrogel exhibited a unique gel-sol-gel transition following the function of temperature. Moreover, in vitro investigation revealed that the hybrid hydrogel provides the capacity of especially induced curcumin release with a sustainable rate as well as the excellent biocompatibility scaffold. Altogether with in vivo study, the hybrid hydrogel highlighted the advance of the dual synergistic of curcumin and gelatin in development of smart scaffold system, which promoted the efficacy in the regeneration of the structure and the barrier's function of damaged skin such as wound or skin cancer.
Collapse
|