101
|
Lange P, Ahmed E, Lahmar ZM, Martinez FJ, Bourdin A. Natural history and mechanisms of COPD. Respirology 2021; 26:298-321. [PMID: 33506971 DOI: 10.1111/resp.14007] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
The natural history of COPD is complex, and the disease is best understood as a syndrome resulting from numerous interacting factors throughout the life cycle with smoking being the strongest inciting feature. Unfortunately, diagnosis is often delayed with several longitudinal cohort studies shedding light on the long 'preclinical' period of COPD. It is now accepted that individuals presenting with different COPD phenotypes may experience varying natural history of their disease. This includes its inception, early stages and progression to established disease. Several scenarios regarding lung function course are possible, but it may conceptually be helpful to distinguish between individuals with normal maximally attained lung function in their early adulthood who thereafter experience faster than normal FEV1 decline, and those who may achieve a lower than normal maximally attained lung function. This may be the main mechanism behind COPD in the latter group, as the decline in FEV1 during their adult life may be normal or only slightly faster than normal. Regardless of the FEV1 trajectory, continuous smoking is strongly associated with disease progression, development of structural lung disease and poor prognosis. In developing countries, factors such as exposure to biomass and sequelae after tuberculosis may lead to a more airway-centred COPD phenotype than seen in smokers. Mechanistically, COPD is characterized by a combination of structural and inflammatory changes. It is unlikely that all patients share the same individual or combined mechanisms given the heterogeneity of resultant phenotypes. Lung explants, bronchial biopsies and other tissue studies have revealed important features. At the small airway level, progression of COPD is clinically imperceptible, and the pathological course of the disease is poorly described. Asthmatic features can further add confusion. However, the small airway epithelium is likely to represent a key focus of the disease, combining impaired subepithelial crosstalk and structural/inflammatory changes. Insufficient resolution of inflammatory processes may facilitate these changes. Pathologically, epithelial metaplasia, inversion of the goblet to ciliated cell ratio, enlargement of the submucosal glands and neutrophil and CD8-T-cell infiltration can be detected. Evidence of type 2 inflammation is gaining interest in the light of new therapeutic agents. Alarmin biology is a promising area that may permit control of inflammation and partial reversal of structural changes in COPD. Here, we review the latest work describing the development and progression of COPD with a focus on lung function trajectories, exacerbations and survival. We also review mechanisms focusing on epithelial changes associated with COPD and lack of resolution characterizing the underlying inflammatory processes.
Collapse
Affiliation(s)
- Peter Lange
- Department of Internal Medicine, Section of Respiratory Medicine, Copenhagen University Hospital - Herlev, Herlev, Denmark.,Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Engi Ahmed
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France.,Department of Respiratory Diseases, University of Montpellier, CHU Montpellier, INSERM, Montpellier, France
| | - Zakaria Mohamed Lahmar
- Department of Respiratory Diseases, University of Montpellier, CHU Montpellier, INSERM, Montpellier, France
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Arnaud Bourdin
- Department of Respiratory Diseases, University of Montpellier, CHU Montpellier, INSERM, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| |
Collapse
|
102
|
Abstract
The lungs are constantly exposed to the external environment and are therefore vulnerable to insults that can cause infection and injury. Maintaining the integrity and barrier function of the lung epithelium requires complex interactions of multiple cell lineages. Elucidating the cellular players and their regulation mechanisms provides fundamental information to deepen understanding about the responses and contributions of lung stem cells. This Review focuses on advances in our understanding of mammalian alveolar epithelial stem cell subpopulations and discusses insights about the regeneration-specific cell status of alveolar epithelial stem cells. We also consider how these advances can inform our understanding of post-injury lung repair processes and lung diseases.
Collapse
Affiliation(s)
- Huijuan Wu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Nan Tang
- National Institute of Biological Sciences, Beijing 102206, China .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
103
|
Walentek P. Xenopus epidermal and endodermal epithelia as models for mucociliary epithelial evolution, disease, and metaplasia. Genesis 2021; 59:e23406. [PMID: 33400364 DOI: 10.1002/dvg.23406] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 11/08/2022]
Abstract
The Xenopus embryonic epidermis is a powerful model to study mucociliary biology, development, and disease. Particularly, the Xenopus system is being used to elucidate signaling pathways, transcription factor functions, and morphogenetic mechanisms regulating cell fate specification, differentiation and cell function. Thereby, Xenopus research has provided significant insights into potential underlying molecular mechanisms for ciliopathies and chronic airway diseases. Recent studies have also established the embryonic epidermis as a model for mucociliary epithelial remodeling, multiciliated cell trans-differentiation, cilia loss, and mucus secretion. Additionally, the tadpole foregut epithelium is lined by a mucociliary epithelium, which shows remarkable features resembling mammalian airway epithelia, including its endodermal origin and a variable cell type composition along the proximal-distal axis. This review aims to summarize the advantages of the Xenopus epidermis for mucociliary epithelial biology and disease modeling. Furthermore, the potential of the foregut epithelium as novel mucociliary model system is being highlighted. Additional perspectives are presented on how to expand the range of diseases that can be modeled in the frog system, including proton pump inhibitor-associated pneumonia as well as metaplasia in epithelial cells of the airway and the gastroesophageal region.
Collapse
Affiliation(s)
- Peter Walentek
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
104
|
Ren W, Wang L, Zhang X, Feng X, Zhuang L, Jiang N, Xu R, Li X, Wang P, Sun X, Yu H, Yu Y. Expansion of murine and human olfactory epithelium/mucosa colonies and generation of mature olfactory sensory neurons under chemically defined conditions. Am J Cancer Res 2021; 11:684-699. [PMID: 33391499 PMCID: PMC7738855 DOI: 10.7150/thno.46750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Olfactory dysfunctions, including hyposmia and anosmia, affect ~100 million people around the world and the underlying causes are not fully understood. Degeneration of olfactory sensory neurons and incapacity of globose basal cells to generate olfactory sensory neurons are found in elder people and patients with smell disorders. Thus, olfactory stem cell may function as a promising tool to replace inactivated globose basal cells and to generate sensory neurons. Methods: We established clonal expansion of cells from the murine olfactory epithelium as well as colony growth from human olfactory mucosa using Matrigel-based three-dimensional system. These colonies were characterized by immunostaining against olfactory epithelium cellular markers and by calcium imaging of responses to odors. Chemical addition was optimized to promote Lgr5 expression, colony growth and sensory neuron generation, tested by quantitative PCR and immunostaining against progenitor and neuronal markers. The differential transcriptomes in multiple signaling pathways between colonies under different base media and chemical cocktails were determined by RNA-Seq. Results: In defined culture media, we found that VPA and CHIR99021 induced the highest Lgr5 expression level, while LY411575 resulted in the most abundant yield of OMP+ mature sensory neurons in murine colonies. Different base culture media with drug cocktails led to apparent morphological alteration from filled to cystic appearance, accompanied with massive transcriptional changes in multiple signaling pathways. Generation of sensory neurons in human colonies was affected through TGF-β signaling, while Lgr5 expression and cell proliferation was regulated by VPA. Conclusion: Our findings suggest that targeting expansion of olfactory epithelium/mucosa colonies in vitro potentially results in discovery of new source to cell replacement-based therapy against smell loss.
Collapse
|
105
|
Hynds RE, Frese KK, Pearce DR, Grönroos E, Dive C, Swanton C. Progress towards non-small-cell lung cancer models that represent clinical evolutionary trajectories. Open Biol 2021; 11:200247. [PMID: 33435818 PMCID: PMC7881177 DOI: 10.1098/rsob.200247] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related deaths worldwide. Although advances are being made towards earlier detection and the development of impactful targeted therapies and immunotherapies, the 5-year survival of patients with advanced disease is still below 20%. Effective cancer research relies on pre-clinical model systems that accurately reflect the evolutionary course of disease progression and mimic patient responses to therapy. Here, we review pre-clinical models, including genetically engineered mouse models and patient-derived materials, such as cell lines, primary cell cultures, explant cultures and xenografts, that are currently being used to interrogate NSCLC evolution from pre-invasive disease through locally invasive cancer to the metastatic colonization of distant organ sites.
Collapse
Affiliation(s)
- Robert E. Hynds
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Kristopher K. Frese
- Cancer Research UK Lung Cancer Centre of Excellence, University of Manchester, Manchester, UK
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Alderley Park, Macclesfield, UK
| | - David R. Pearce
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, UK
| | - Eva Grönroos
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Caroline Dive
- Cancer Research UK Lung Cancer Centre of Excellence, University of Manchester, Manchester, UK
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Alderley Park, Macclesfield, UK
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
106
|
Engler AE, Ysasi AB, Pihl RMF, Villacorta-Martin C, Heston HM, Richardson HMK, Thapa BR, Moniz NR, Belkina AC, Mazzilli SA, Rock JR. Airway-Associated Macrophages in Homeostasis and Repair. Cell Rep 2020; 33:108553. [PMID: 33378665 PMCID: PMC8026077 DOI: 10.1016/j.celrep.2020.108553] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/13/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
There is an increasing appreciation for the heterogeneity of myeloid lineages in the lung, but relatively little is known about populations specifically associated with the conducting airways. We use single-cell RNA sequencing, flow cytometry, and immunofluorescence to characterize myeloid cells of the mouse trachea during homeostasis and epithelial injury/repair. We identify submucosal macrophages, similar to lung interstitial macrophages, and intraepithelial macrophages. Following injury, there are early increases in neutrophils and submucosal macrophages, including M2-like macrophages. Intraepithelial macrophages are lost after injury and later restored by CCR2+ monocytes. We show that repair of the tracheal epithelium is impaired in Ccr2-deficient mice. Mast cells and group 2 innate lymphoid cells are sources of interleukin-13 (IL-13) that polarize macrophages and directly influence basal cell behaviors. Their proximity to the airway epithelium establishes these myeloid populations as potential therapeutic targets for airway disease.
Collapse
Affiliation(s)
- Anna E Engler
- Center for Regenerative Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Alexandra B Ysasi
- Center for Regenerative Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Riley M F Pihl
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Hailey M Heston
- Center for Regenerative Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Hanne M K Richardson
- Center for Regenerative Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Bibek R Thapa
- Center for Regenerative Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Noah R Moniz
- Center for Regenerative Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anna C Belkina
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA 02118, USA; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Sarah A Mazzilli
- Department of Medicine and Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jason R Rock
- Center for Regenerative Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
107
|
Iverson E, Kaler L, Agostino EL, Song D, Duncan GA, Scull MA. Leveraging 3D Model Systems to Understand Viral Interactions with the Respiratory Mucosa. Viruses 2020; 12:E1425. [PMID: 33322395 PMCID: PMC7763686 DOI: 10.3390/v12121425] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory viruses remain a significant cause of morbidity and mortality in the human population, underscoring the importance of ongoing basic research into virus-host interactions. However, many critical aspects of infection are difficult, if not impossible, to probe using standard cell lines, 2D culture formats, or even animal models. In vitro systems such as airway epithelial cultures at air-liquid interface, organoids, or 'on-chip' technologies allow interrogation in human cells and recapitulate emergent properties of the airway epithelium-the primary target for respiratory virus infection. While some of these models have been used for over thirty years, ongoing advancements in both culture techniques and analytical tools continue to provide new opportunities to investigate airway epithelial biology and viral infection phenotypes in both normal and diseased host backgrounds. Here we review these models and their application to studying respiratory viruses. Furthermore, given the ability of these systems to recapitulate the extracellular microenvironment, we evaluate their potential to serve as a platform for studies specifically addressing viral interactions at the mucosal surface and detail techniques that can be employed to expand our understanding.
Collapse
Affiliation(s)
- Ethan Iverson
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA; (E.I.); (E.L.A.)
| | - Logan Kaler
- Biophysics Program, University of Maryland, College Park, MD 20742, USA; (L.K.); (G.A.D.)
| | - Eva L. Agostino
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA; (E.I.); (E.L.A.)
| | - Daniel Song
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA;
| | - Gregg A. Duncan
- Biophysics Program, University of Maryland, College Park, MD 20742, USA; (L.K.); (G.A.D.)
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA;
| | - Margaret A. Scull
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA; (E.I.); (E.L.A.)
| |
Collapse
|
108
|
Pineau F, Shumyatsky G, Owuor N, Nalamala N, Kotnala S, Bolla S, Marchetti N, Kelsen S, Criner GJ, Sajjan US. Microarray analysis identifies defects in regenerative and immune response pathways in COPD airway basal cells. ERJ Open Res 2020; 6:00656-2020. [PMID: 33313308 PMCID: PMC7720690 DOI: 10.1183/23120541.00656-2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 01/07/2023] Open
Abstract
Background Airway basal cells are specialised stem cells and regenerate airway epithelium. Airway basal cells isolated from patients with COPD regenerate airway epithelium with an abnormal phenotype. We performed gene expression analysis to gain insights into the defective regenerative programme in COPD basal cells. Methods We conducted microarray analysis and compared COPD versus normal basal cells to identify differentially regulated genes (DEGs) and the enriched biological pathways. We determined the correlation of DEGs with cell polarisation and markers of ciliated and goblet cells. HOXB2 was knocked down in 16HBE14o− cells and monitored for polarisation of cells. HOXB2 expression in the lung sections was determined by immunofluorescence. Results Comparison of normal and COPD basal cell transcriptomic profiles highlighted downregulation of genes associated with tissue development, epithelial cell differentiation and antimicrobial humoral response. Expression of one of the tissue development genes, HOXB2 showed strong correlation with transepithelial resistance and this gene was downregulated in COPD basal cells. Knockdown of HOXB2, abrogated polarisation of epithelial cells in normal cells. Finally, HOXB2 expression was substantially reduced in the bronchial epithelium of COPD patients. Conclusions Defect in gene signatures involved in tissue development and epithelial differentiation were implicated in COPD basal cells. One of the tissue developmental genes, HOXB2, is substantially reduced in bronchial epithelium of COPD patients. Since HOXB2 contributes to airway epithelial cell polarisation, we speculate that reduced expression of HOXB2 in COPD may contribute to abnormal airway epithelial regeneration in COPD. COPD airway basal cells show downregulation of gene sets that are involved in intercellular junctions, epithelial differentiation and immune responses, highlighting the possible mechanisms of defective airway epithelial repair in COPDhttps://bit.ly/3kneloj
Collapse
Affiliation(s)
- Fanny Pineau
- Dept of Thoracic Surgery and Medicine, Temple University, Philadelphia, PA, USA
| | | | - Nicole Owuor
- Dept of Thoracic Surgery and Medicine, Temple University, Philadelphia, PA, USA
| | - Nisha Nalamala
- Dept of Thoracic Surgery and Medicine, Temple University, Philadelphia, PA, USA
| | - Sudhir Kotnala
- Dept of Thoracic Surgery and Medicine, Temple University, Philadelphia, PA, USA
| | - Sudhir Bolla
- Dept of Thoracic Surgery and Medicine, Temple University, Philadelphia, PA, USA
| | - Nathaniel Marchetti
- Dept of Thoracic Surgery and Medicine, Temple University, Philadelphia, PA, USA
| | - Steven Kelsen
- Dept of Thoracic Surgery and Medicine, Temple University, Philadelphia, PA, USA
| | - Gerard J Criner
- Dept of Thoracic Surgery and Medicine, Temple University, Philadelphia, PA, USA
| | - Uma S Sajjan
- Dept of Thoracic Surgery and Medicine, Temple University, Philadelphia, PA, USA.,Dept of Physiology, Lewis Katz Medical School, Temple University, Philadelphia, PA, USA
| |
Collapse
|
109
|
Carraro G, Mulay A, Yao C, Mizuno T, Konda B, Petrov M, Lafkas D, Arron JR, Hogaboam CM, Chen P, Jiang D, Noble PW, Randell SH, McQualter JL, Stripp BR. Single-Cell Reconstruction of Human Basal Cell Diversity in Normal and Idiopathic Pulmonary Fibrosis Lungs. Am J Respir Crit Care Med 2020; 202:1540-1550. [PMID: 32692579 PMCID: PMC7706153 DOI: 10.1164/rccm.201904-0792oc] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/21/2020] [Indexed: 01/02/2023] Open
Abstract
Rationale: Declining lung function in patients with interstitial lung disease is accompanied by epithelial remodeling and progressive scarring of the gas-exchange region. There is a need to better understand the contribution of basal cell hyperplasia and associated mucosecretory dysfunction to the development of idiopathic pulmonary fibrosis (IPF).Objectives: We sought to decipher the transcriptome of freshly isolated epithelial cells from normal and IPF lungs to discern disease-dependent changes within basal stem cells.Methods: Single-cell RNA sequencing was used to map epithelial cell types of the normal and IPF human airways. Organoid and air-liquid interface cultures were used to investigate functional properties of basal cell subtypes.Measurements and Main Results: We found that basal cells included multipotent and secretory primed subsets in control adult lung tissue. Secretory primed basal cells include an overlapping molecular signature with basal cells obtained from the distal lung tissue of IPF lungs. We confirmed that NOTCH2 maintains undifferentiated basal cells and restricts basal-to-ciliated differentiation, and we present evidence that NOTCH3 functions to restrain secretory differentiation.Conclusions: Basal cells are dynamically regulated in disease and are specifically biased toward the expansion of the secretory primed basal cell subset in IPF. Modulation of basal cell plasticity may represent a relevant target for therapeutic intervention in IPF.
Collapse
Affiliation(s)
- Gianni Carraro
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Apoorva Mulay
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Changfu Yao
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Takako Mizuno
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Bindu Konda
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Martin Petrov
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | | | | | - Cory M. Hogaboam
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Peter Chen
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Dianhua Jiang
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Paul W. Noble
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Scott H. Randell
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina; and
| | - Jonathan L. McQualter
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Barry R. Stripp
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
110
|
Tian L, Gao J, Garcia IM, Chen HJ, Castaldi A, Chen YW. Human pluripotent stem cell-derived lung organoids: Potential applications in development and disease modeling. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e399. [PMID: 33145915 DOI: 10.1002/wdev.399] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 09/09/2020] [Accepted: 10/07/2020] [Indexed: 01/01/2023]
Abstract
The pulmonary system is comprised of two main compartments, airways and alveolar space. Their tissue and cellular complexity ensure lung function and protection from external agents, for example, virus. Two-dimensional (2D) in vitro systems and animal models have been largely employed to elucidate the molecular mechanisms underlying human lung development, physiology, and pathogenesis. However, neither of these models accurately recapitulate the human lung environment and cellular crosstalk. More recently, human-derived three-dimensional (3D) models have been generated allowing for a deeper understanding of cell-to-cell communication. However, the availability and accessibility of primary human cell sources from which generate the 2D and 3D models may be limited. In the past few years, protocols have been developed to successfully employ human pluripotent stem cells (hPSCs) and differentiate them toward pulmonary fate in vitro. In the present review, we discuss the advantages and pitfalls of hPSC-derived lung 2D and 3D models, including the main characteristics and potentials for these models and their current and future applications for modeling development and diseases. Lung organoids currently represent the closest model to the human pulmonary system. We further focus on the applications of lung organoids for the study of human diseases such as pulmonary fibrosis, infectious diseases, and lung cancer. Finally, we discuss the present limitations and potential future applications of 3D lung organoids. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Disease Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cell Differentiation and Reversion.
Collapse
Affiliation(s)
- Lu Tian
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jinghui Gao
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Irving M Garcia
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Huanhuan Joyce Chen
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA.,Ben May department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Alessandra Castaldi
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ya-Wen Chen
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
111
|
Kuchibhotla VNS, Heijink IH. Join or Leave the Club: Jagged1 and Notch2 Dictate the Fate of Airway Epithelial Cells. Am J Respir Cell Mol Biol 2020; 63:4-6. [PMID: 32228394 PMCID: PMC7328256 DOI: 10.1165/rcmb.2020-0104ed] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Virinchi N S Kuchibhotla
- Department of Pathology and Medical BiologyUniversity Medical Center GroningenGroningen, the Netherlands.,School of Biomedical Sciences and PharmacyUniversity of NewcastleCallaghan, New South Wales, Australia.,Priority Research Centre for Healthy LungsHunter Medical Research InstituteNew Lambton Heights, New South Wales, Australia
| | - Irene H Heijink
- Department of Pathology and Medical BiologyDepartment of Pulmonologyand.,GRIAC Research InstituteUniversity of Groningen, University Medical Center GroningenGroningen, the Netherlands
| |
Collapse
|
112
|
Sprott RF, Ritzmann F, Langer F, Yao Y, Herr C, Kohl Y, Tschernig T, Bals R, Beisswenger C. Flagellin shifts 3D bronchospheres towards mucus hyperproduction. Respir Res 2020; 21:222. [PMID: 32847538 PMCID: PMC7448433 DOI: 10.1186/s12931-020-01486-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) are associated with acute and chronic bacterial infections of the lung. Excessive differentiation of basal cells to mucus-producing goblet cells can result in mucus hyperproduction and loss of mucociliary clearance in the airways of CF and COPD patients. Here, we aimed to investigate the effect of pathogen-associated molecular patterns (PAMPs) on the differentiation of human 3D bronchospheres. Primary human bronchial epithelial cells (HBECs) were differentiated to bronchospheres in the presence of bacterial flagellin and LPS and the synthetic Toll-like receptor (TLR) ligands Pam3CSK4 (TLR-2) and polyinosinic:polycytidylic acid (pIC, TLR-3). Electron and fluorescence microscopy showed that the differentiation of bronchospheres associated with the formation of lumina and appearance of cilia within 30 days after seeding. Incubation with flagellin resulted in a decreased formation of lumina and loss of cilia formation. Incubation with Pam3CSK, pIC, and LPS did not significantly affect formation of lumina and ciliation. Mucus production was strongly increased in response to flagellin and, to a lesser degree, in response to Pam3CSK4. Our results indicate that bacterial factors, such as flagellin, drive the differentiation of the respiratory epithelium towards mucus hyperproduction.
Collapse
Affiliation(s)
- Richard F Sprott
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Kirrberger Str. 100, Building 41M, 66421, Homburg/Saar, Germany
| | - Felix Ritzmann
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Kirrberger Str. 100, Building 41M, 66421, Homburg/Saar, Germany
| | - Frank Langer
- Department of Thoracic and Cardiovascular Surgery, Saarland University, 66421, Homburg, Germany
| | - Yiwen Yao
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Kirrberger Str. 100, Building 41M, 66421, Homburg/Saar, Germany
| | - Christian Herr
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Kirrberger Str. 100, Building 41M, 66421, Homburg/Saar, Germany
| | - Yvonne Kohl
- Department Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, 66421, Homburg, Germany
| | - Robert Bals
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Kirrberger Str. 100, Building 41M, 66421, Homburg/Saar, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Kirrberger Str. 100, Building 41M, 66421, Homburg/Saar, Germany.
| |
Collapse
|
113
|
Notch Transduction in Non-Small Cell Lung Cancer. Int J Mol Sci 2020; 21:ijms21165691. [PMID: 32784481 PMCID: PMC7461113 DOI: 10.3390/ijms21165691] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
The evolutionarily-conserved Notch signaling pathway plays critical roles in cell communication, function and homeostasis equilibrium. The pathway serves as a cell-to-cell juxtaposed molecular transducer and is crucial in a number of cell processes including cell fate specification, asymmetric cell division and lateral inhibition. Notch also plays critical roles in organismal development, homeostasis, and regeneration, including somitogenesis, left-right asymmetry, neurogenesis, tissue repair, self-renewal and stemness, and its dysregulation has causative roles in a number of congenital and acquired pathologies, including cancer. In the lung, Notch activity is necessary for cell fate specification and expansion, and its aberrant activity is markedly linked to various defects in club cell formation, alveologenesis, and non-small cell lung cancer (NSCLC) development. In this review, we focus on the role this intercellular signaling device plays during lung development and on its functional relevance in proximo-distal cell fate specification, branching morphogenesis, and alveolar cell determination and maturation, then revise its involvement in NSCLC formation, progression and treatment refractoriness, particularly in the context of various mutational statuses associated with NSCLC, and, lastly, conclude by providing a succinct outlook of the therapeutic perspectives of Notch targeting in NSCLC therapy, including an overview on prospective synthetic lethality approaches.
Collapse
|
114
|
Danahay H, Fox R, Lilley S, Charlton H, Adley K, Christie L, Ansari E, Ehre C, Flen A, Tuvim MJ, Dickey BF, Williams C, Beaudoin S, Collingwood SP, Gosling M. Potentiating TMEM16A does not stimulate airway mucus secretion or bronchial and pulmonary arterial smooth muscle contraction. FASEB Bioadv 2020; 2:464-477. [PMID: 32821878 PMCID: PMC7429354 DOI: 10.1096/fba.2020-00035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/11/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
The calcium-activated chloride channel (CaCC) TMEM16A enables chloride secretion across several transporting epithelia, including in the airways. Additional roles for TMEM16A have been proposed, which include regulating mucus production and secretion and stimulating smooth muscle contraction. The aim of the present study was to test whether the pharmacological regulation of TMEM16A channel function, could affect any of these proposed biological roles in the airways. In vitro, neither a potent and selective TMEM16A potentiator (ETX001) nor the potent TMEM16A inhibitor (Ani9) influenced either baseline mucin release or goblet cell numbers in well-differentiated primary human bronchial epithelial (HBE) cells. In vivo, a TMEM16A potentiator was without effect on goblet cell emptying in an IL-13 stimulated goblet cell metaplasia model. Using freshly isolated human bronchi and pulmonary arteries, neither ETX001 or Ani9 had any effect on the contractile or relaxant responses of the tissues. In vivo, ETX001 also failed to influence either lung or cardiovascular function when delivered directly into the airways of telemetered rats. Together, these studies do not support a role for TMEM16A in the regulation of goblet cell numbers or baseline mucin release, or on the regulation of airway or pulmonary artery smooth muscle contraction.
Collapse
Affiliation(s)
- Henry Danahay
- Enterprise Therapeutics Ltd, Science Park SquareBrightonUK
| | - Roy Fox
- School of Life SciencesUniversity of SussexBrightonUK
| | - Sarah Lilley
- School of Life SciencesUniversity of SussexBrightonUK
| | | | - Kathryn Adley
- School of Life SciencesUniversity of SussexBrightonUK
| | - Lee Christie
- REPROCELL Europe Ltd, West of Scotland Science ParkGlasgowUK
| | - Ejaz Ansari
- REPROCELL Europe Ltd, West of Scotland Science ParkGlasgowUK
| | - Camille Ehre
- Marsico Lung InstituteUniversity of North CarolinaChapel HillNCUSA
| | - Alexis Flen
- Marsico Lung InstituteUniversity of North CarolinaChapel HillNCUSA
| | - Michael J. Tuvim
- Department of Pulmonary MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Burton F. Dickey
- Department of Pulmonary MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | | | | | | | - Martin Gosling
- Enterprise Therapeutics Ltd, Science Park SquareBrightonUK
- School of Life SciencesUniversity of SussexBrightonUK
| |
Collapse
|
115
|
Lo YH, Karlsson K, Kuo CJ. Applications of Organoids for Cancer Biology and Precision Medicine. NATURE CANCER 2020; 1:761-773. [PMID: 34142093 PMCID: PMC8208643 DOI: 10.1038/s43018-020-0102-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
Organoid technologies enable the creation of in vitro physiologic systems that model tissues of origin more accurately than classical culture approaches. Seminal characteristics, including three-dimensional structure and recapitulation of self-renewal, differentiation, and disease pathology, render organoids eminently suited as hybrids that combine the experimental tractability of traditional 2D cell lines with cellular attributes of in vivo model systems. Here, we describe recent advances in this rapidly evolving field and their applications in cancer biology, clinical translation and precision medicine.
Collapse
Affiliation(s)
- Yuan-Hung Lo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Kasper Karlsson
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Calvin J. Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|
116
|
Reid AT, Nichol KS, Chander Veerati P, Moheimani F, Kicic A, Stick SM, Bartlett NW, Grainge CL, Wark PAB, Hansbro PM, Knight DA. Blocking Notch3 Signaling Abolishes MUC5AC Production in Airway Epithelial Cells from Individuals with Asthma. Am J Respir Cell Mol Biol 2020; 62:513-523. [PMID: 31922915 DOI: 10.1165/rcmb.2019-0069oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In asthma, goblet cell numbers are increased within the airway epithelium, perpetuating the production of mucus that is more difficult to clear and results in airway mucus plugging. Notch1, Notch2, or Notch3, or a combination of these has been shown to influence the differentiation of airway epithelial cells. How the expression of specific Notch isoforms differs in fully differentiated adult asthmatic epithelium and whether Notch influences mucin production after differentiation is currently unknown. We aimed to quantify different Notch isoforms in the airway epithelium of individuals with severe asthma and to examine the impact of Notch signaling on mucin MUC5AC. Human lung sections and primary bronchial epithelial cells from individuals with and without asthma were used in this study. Primary bronchial epithelial cells were differentiated at the air-liquid interface for 28 days. Notch isoform expression was analyzed by Taqman quantitative PCR. Immunohistochemistry was used to localize and quantify Notch isoforms in human airway sections. Notch signaling was inhibited in vitro using dibenzazepine or Notch3-specific siRNA, followed by analysis of MUC5AC. NOTCH3 was highly expressed in asthmatic airway epithelium compared with nonasthmatic epithelium. Dibenzazepine significantly reduced MUC5AC production in air-liquid interface cultures of primary bronchial epithelial cells concomitantly with suppression of NOTCH3 intracellular domain protein. Specific knockdown using NOTCH3 siRNA recapitulated the dibenzazepine-induced reduction in MUC5AC. We demonstrate that NOTCH3 is a regulator of MUC5AC production. Increased NOTCH3 signaling in the asthmatic airway epithelium may therefore be an underlying driver of excess MUC5AC production.
Collapse
Affiliation(s)
- Andrew T Reid
- School of Biomedical Sciences and Pharmacy.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and
| | - Kristy S Nichol
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and.,School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Punnam Chander Veerati
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and.,School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Fatemeh Moheimani
- School of Biomedical Sciences and Pharmacy.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and
| | - Anthony Kicic
- School of Paediatrics and Child Health.,Telethon Kids Institute, and.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia.,Occupation and Environment, School of Public Health, Curtin University, Bentley, Western Australia, Australia
| | - Stephen M Stick
- School of Paediatrics and Child Health.,Telethon Kids Institute, and.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | - Nathan W Bartlett
- School of Biomedical Sciences and Pharmacy.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and
| | - Chris L Grainge
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and.,School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia; and
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and.,School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia; and
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
117
|
Jose SS, De Zuani M, Tidu F, Hortová Kohoutková M, Pazzagli L, Forte G, Spaccapelo R, Zelante T, Frič J. Comparison of two human organoid models of lung and intestinal inflammation reveals Toll-like receptor signalling activation and monocyte recruitment. Clin Transl Immunology 2020; 9:e1131. [PMID: 32377340 PMCID: PMC7200218 DOI: 10.1002/cti2.1131] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/28/2022] Open
Abstract
Objectives The activation of immune responses in mucosal tissues is a key factor for the development and sustainment of several pathologies including infectious diseases and autoimmune diseases. However, translational research and personalised medicine struggle to advance because of the lack of suitable preclinical models that successfully mimic the complexity of human tissues without relying on in vivo mouse models. Here, we propose two in vitro human 3D tissue models, deprived of any resident leucocytes, to model mucosal tissue inflammatory processes. Methods We developed human 3D lung and intestinal organoids differentiated from induced pluripotent stem cells to model mucosal tissues. We then compared their response to a panel of microbial ligands and investigated their ability to attract and host human primary monocytes. Results Mature lung and intestinal organoids comprised epithelial (EpCAM+) and mesenchymal (CD73+) cells which responded to Toll‐like receptor stimulation by releasing pro‐inflammatory cytokines and expressing tissue inflammatory markers including MMP9, COX2 and CRP. When added to the organoid culture, primary human monocytes migrated towards the organoids and began to differentiate to an ‘intermediate‐like’ phenotype characterised by increased levels of CD14 and CD16. Conclusion We show that human mucosal organoids exhibit proper immune functions and successfully mimic an immunocompetent tissue microenvironment able to host patient‐derived immune cells. Our experimental set‐up provides a novel tool to tackle the complexity of immune responses in mucosal tissues which can be tailored to different human pathologies.
Collapse
Affiliation(s)
- Shyam Sushama Jose
- International Clinical Research Center St. Anne's University Hospital Brno Brno Czech Republic
| | - Marco De Zuani
- International Clinical Research Center St. Anne's University Hospital Brno Brno Czech Republic
| | - Federico Tidu
- International Clinical Research Center St. Anne's University Hospital Brno Brno Czech Republic.,Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
| | | | - Lucia Pazzagli
- Department of Experimental Medicine and University Research Center for Functional Genomic (C.U.R.Ge.F) University of Perugia Perugia Italy
| | - Giancarlo Forte
- International Clinical Research Center St. Anne's University Hospital Brno Brno Czech Republic
| | - Roberta Spaccapelo
- Department of Experimental Medicine and University Research Center for Functional Genomic (C.U.R.Ge.F) University of Perugia Perugia Italy
| | - Teresa Zelante
- Department of Experimental Medicine and University Research Center for Functional Genomic (C.U.R.Ge.F) University of Perugia Perugia Italy
| | - Jan Frič
- International Clinical Research Center St. Anne's University Hospital Brno Brno Czech Republic.,Institute of Hematology and Blood Transfusion Prague Czech Republic
| |
Collapse
|
118
|
Bourguignon C, Vernisse C, Mianné J, Fieldès M, Ahmed E, Petit A, Vachier I, Bertrand TL, Assou S, Bourdin A, De Vos J. [Lung organoids]. Med Sci (Paris) 2020; 36:382-388. [PMID: 32356715 DOI: 10.1051/medsci/2020056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
As burden of chronic respiratory diseases is constantly increasing, improving in vitro lung models is essential in order to reproduce as closely as possible the complex pulmonary architecture, responsible for oxygen uptake and carbon dioxide clearance. The study of diseases that affect the respiratory system has benefited from in vitro reconstructions of the respiratory epithelium with inserts in air/liquid interface (2D) or in organoids able to mimic up to the arborescence of the respiratory tree (3D). Recent development in the fields of pluripotent stem cells-derived organoids and genome editing technologies has provided new insights to better understand pulmonary diseases and to find new therapeutic perspectives.
Collapse
Affiliation(s)
- Chloé Bourguignon
- IRMB, Univ Montpellier, CHU de Montpellier, Hôpital Saint Eloi, Inserm, 80 avenue Augustin Fliche, 34295 Montpellier, France
| | - Charlotte Vernisse
- PhyMedExp, Univ Montpellier, CHU de Montpellier, Inserm, Montpellier, France
| | - Joffrey Mianné
- IRMB, Univ Montpellier, CHU de Montpellier, Hôpital Saint Eloi, Inserm, 80 avenue Augustin Fliche, 34295 Montpellier, France
| | - Mathieu Fieldès
- IRMB, Univ Montpellier, CHU de Montpellier, Hôpital Saint Eloi, Inserm, 80 avenue Augustin Fliche, 34295 Montpellier, France
| | - Engi Ahmed
- IRMB, Univ Montpellier, CHU de Montpellier, Hôpital Saint Eloi, Inserm, 80 avenue Augustin Fliche, 34295 Montpellier, France - Département de pneumologie, CHU de Montpellier, Montpellier, France
| | - Aurélie Petit
- PhyMedExp, Univ Montpellier, CHU de Montpellier, Inserm, Montpellier, France
| | - Isabelle Vachier
- PhyMedExp, Univ Montpellier, CHU de Montpellier, Inserm, Montpellier, France
| | | | - Said Assou
- IRMB, Univ Montpellier, CHU de Montpellier, Hôpital Saint Eloi, Inserm, 80 avenue Augustin Fliche, 34295 Montpellier, France
| | - Arnaud Bourdin
- PhyMedExp, Univ Montpellier, CHU de Montpellier, Inserm, Montpellier, France - Département de pneumologie, CHU de Montpellier, Montpellier, France
| | - John De Vos
- IRMB, Univ Montpellier, CHU de Montpellier, Hôpital Saint Eloi, Inserm, 80 avenue Augustin Fliche, 34295 Montpellier, France - Département d'ingénierie cellulaire et tissulaire, CHU de Montpellier, Montpellier, France
| |
Collapse
|
119
|
Frey A, Lunding LP, Ehlers JC, Weckmann M, Zissler UM, Wegmann M. More Than Just a Barrier: The Immune Functions of the Airway Epithelium in Asthma Pathogenesis. Front Immunol 2020; 11:761. [PMID: 32411147 PMCID: PMC7198799 DOI: 10.3389/fimmu.2020.00761] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
Allergic bronchial asthma is a chronic disease of the airways that is characterized by symptoms like respiratory distress, chest tightness, wheezing, productive cough, and acute episodes of broncho-obstruction. This symptom-complex arises on the basis of chronic allergic inflammation of the airway wall. Consequently, the airway epithelium is central to the pathogenesis of this disease, because its multiple abilities directly have an impact on the inflammatory response and thus the formation of the disease. In turn, its structure and functions are markedly impaired by the inflammation. Hence, the airway epithelium represents a sealed, self-cleaning barrier, that prohibits penetration of inhaled allergens, pathogens, and other noxious agents into the body. This barrier is covered with mucus that further contains antimicrobial peptides and antibodies that are either produced or specifically transported by the airway epithelium in order to trap these particles and to remove them from the body by a process called mucociliary clearance. Once this first line of defense of the lung is overcome, airway epithelial cells are the first cells to get in contact with pathogens, to be damaged or infected. Therefore, these cells release a plethora of chemokines and cytokines that not only induce an acute inflammatory reaction but also have an impact on the alignment of the following immune reaction. In case of asthma, all these functions are impaired by the already existing allergic immune response that per se weakens the barrier integrity and self-cleaning abilities of the airway epithelium making it more vulnerable to penetration of allergens as well as of infection by bacteria and viruses. Recent studies indicate that the history of allergy- and pathogen-derived insults can leave some kind of memory in these cells that can be described as imprinting or trained immunity. Thus, the airway epithelium is in the center of processes that lead to formation, progression and acute exacerbation of asthma.
Collapse
Affiliation(s)
- Andreas Frey
- Division of Mucosal Immunology and Diagnostics, Research Center Borstel, Borstel, Germany.,Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| | - Lars P Lunding
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Division of Asthma Exacerbation & Regulation, Research Center Borstel, Borstel, Germany
| | - Johanna C Ehlers
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Division of Experimental Pneumology, Research Center Borstel, Borstel, Germany
| | - Markus Weckmann
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Department of Pediatric Pulmonology and Allergology, University Children's Hospital, Lübeck, Germany
| | - Ulrich M Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.,Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Michael Wegmann
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Division of Asthma Exacerbation & Regulation, Research Center Borstel, Borstel, Germany
| |
Collapse
|
120
|
Cores J, Dinh PUC, Hensley T, Adler KB, Lobo LJ, Cheng K. A pre-investigational new drug study of lung spheroid cell therapy for treating pulmonary fibrosis. Stem Cells Transl Med 2020; 9:786-798. [PMID: 32304182 PMCID: PMC7308638 DOI: 10.1002/sctm.19-0167] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a lethal interstitial lung disease with unknown etiology, no cure, and few treatment options. Herein, a therapy option is presented that makes use of a heterogeneous population of lung cells, including progenitor cells and supporting cells lines, cultured in adherent and suspension conditions, the latter of which induces spontaneous spheroid formation. Within these spheroids, progenitor marker expression is augmented. The cells, called lung spheroid cells, are isolated from fibrotic lungs, expanded, and delivered in single cell suspensions into rat models of pulmonary fibrosis via tail-vein injections. Two bleomycin-induced fibrotic rat models are used; a syngeneic Wistar-Kyoto rat model, treated with syngeneic cells, and a xenogeneic nude rat model, treated with human cells. The first objective was to study the differences in fibrotic progression in the two rat models after bleomycin injury. Nude rat fibrosis formed quickly and extended for 30 days with no self-resolution. Wistar-Kyoto rat fibrosis was more gradual and began to decrease in severity between days 14 and 30. The second goal was to find the minimum effective dose of cells that demonstrated safe and effective therapeutic value. The resultant minimum effective therapeutic dose, acquired from the nude rat model, was 3 × 106 human cells. Histological analysis revealed no evidence of tumorigenicity, increased local immunological activity in the lungs, or an increase in liver enzyme production. These data demonstrate the safety and efficacy of lung spheroid cells in their application as therapeutic agents for pulmonary fibrosis, as well as their potential for clinical translation.
Collapse
Affiliation(s)
- Jhon Cores
- Joint Department of Biomedical Engineering, University of North Carolina, and North Carolina State University, Chapel Hill and Raleigh, North Carolina, USA.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Phuong-Uyen C Dinh
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Taylor Hensley
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Kenneth B Adler
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Leonard J Lobo
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ke Cheng
- Joint Department of Biomedical Engineering, University of North Carolina, and North Carolina State University, Chapel Hill and Raleigh, North Carolina, USA.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA.,Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
121
|
Rizzo P, Vieceli Dalla Sega F, Fortini F, Marracino L, Rapezzi C, Ferrari R. COVID-19 in the heart and the lungs: could we "Notch" the inflammatory storm? Basic Res Cardiol 2020; 115:31. [PMID: 32274570 PMCID: PMC7144545 DOI: 10.1007/s00395-020-0791-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 03/30/2020] [Indexed: 01/08/2023]
Abstract
From January 2020, coronavirus disease (COVID-19) originated in China has spread around the world. The disease is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The presence of myocarditis, cardiac arrest, and acute heart failure in COVID-19 patients suggests the existence of a relationship between SARS-CoV-2 infection and cardiac disease. The Notch signalling is a major regulator of cardiovascular function and it is also implicated in several biological processes mediating viral infections. In this report we discuss the possibility to target Notch signalling to prevent SARS-CoV-2 infection and interfere with the progression of COVID-19- associated heart and lungs disease.
Collapse
Affiliation(s)
- Paola Rizzo
- Department of Morphology, Surgery and Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy.
| | | | | | - Luisa Marracino
- Department of Morphology, Surgery and Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Claudio Rapezzi
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
- Cardiovascular Center, University Hospital of Cona, Ferrara, Italy
| | - Roberto Ferrari
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
- Cardiovascular Center, University Hospital of Cona, Ferrara, Italy
| |
Collapse
|
122
|
Yun J, Yang H, Li X, Sun H, Xu J, Meng Q, Wu S, Zhang X, Yang X, Li B, Chen R. Up-regulation of miR-297 mediates aluminum oxide nanoparticle-induced lung inflammation through activation of Notch pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113839. [PMID: 31918133 DOI: 10.1016/j.envpol.2019.113839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/23/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Exposure to Aluminum oxide nanoparticles (Al2O3 NPs) has been associated with pulmonary inflammation in recent years; however, the underlying mechanism that causes adverse effects remains unclear. In the present study, we characterized microRNA (miRNA) expression profiling in human bronchial epithelial (HBE) cells exposed to Al2O3 NPs by miRNA microarray. Among the differentially expressed miRNAs, miR-297, a homologous miRNA in Homo sapiens and Mus musculus, was significantly up-regulated following exposure to Al2O3 NPs, compared with that in control. On combined bioinformatic analysis, proteomics analysis, and mRNA microarray, NF-κB-activating protein (NKAP) was found to be a target gene of miR-297 and it was significantly down-regulated in Al2O3 NPs-exposed HBE cells and murine lungs, compared with that in control. Meanwhile, inflammatory cytokines, including IL-1β and TNF-α, were significantly increased in bronchoalveolar lavage fluid (BALF) from mice exposed to Al2O3 NPs. Then we set up a mouse model with intranasal instillation of antagomiR-297 to further confirm that inhibition of miR-297 expression can rescue pulmonary inflammation via Notch pathway suppression. Collectively, our findings suggested that up-regulation of miR-297 expression was an upstream driver of Notch pathway activation, which might be the underlying mechanism involved in lung inflammation induced by exposure to Al2O3 NPs.
Collapse
Affiliation(s)
- Jun Yun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Hongbao Yang
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaobo Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Hao Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jie Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Qingtao Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Shenshen Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xinwei Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xi Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Bin Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Rui Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
123
|
Feldman MB, Wood M, Lapey A, Mou H. SMAD Signaling Restricts Mucous Cell Differentiation in Human Airway Epithelium. Am J Respir Cell Mol Biol 2020; 61:322-331. [PMID: 30848657 DOI: 10.1165/rcmb.2018-0326oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mucin-secreting goblet cell metaplasia and hyperplasia (GCMH) is a common pathological phenotype in many human respiratory diseases, including asthma, chronic obstructive pulmonary disease, cystic fibrosis, primary ciliary dyskinesia, and infections. A better understanding of how goblet cell quantities or proportions in the airway epithelium are regulated may provide novel therapeutic targets to mitigate GCMH in these devastating diseases. We identify canonical SMAD signaling as the principal pathway restricting goblet cell differentiation in human airway epithelium. Differentiated goblet cells express low levels of phosphorylated SMAD. Accordingly, inhibition of SMAD signaling markedly amplifies GCMH induced by mucous mediators. In contrast, SMAD signaling activation impedes goblet cell generation and accelerates the resolution of preexisting GCMH. SMAD signaling inhibition can override the suppressive effects imposed by a GABAergic receptor inhibitor, suggesting the GABAergic pathway likely operates through inhibition of SMAD signaling in regulating mucous differentiation. Collectively, our data demonstrate that SMAD signaling plays a determining role in mucous cell differentiation, and thus raise the possibility that dysregulation of this pathway contributes to respiratory pathophysiology during airway inflammation and pulmonary diseases. In addition, our study also highlights the potential for SMAD modulation as a therapeutic target in mitigating GCMH.
Collapse
Affiliation(s)
- Michael B Feldman
- Division of Pulmonary and Critical Care Medicine and.,Harvard Medical School, Boston, Massachusetts
| | - Michael Wood
- the Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Allen Lapey
- Division of Pediatric Pulmonary Medicine, Massachusetts General Hospital for Children, Boston, Massachusetts; and
| | - Hongmei Mou
- the Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts.,Division of Pediatric Pulmonary Medicine, Massachusetts General Hospital for Children, Boston, Massachusetts; and.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
124
|
Choi W, Choe S, Lau GW. Inactivation of FOXA2 by Respiratory Bacterial Pathogens and Dysregulation of Pulmonary Mucus Homeostasis. Front Immunol 2020; 11:515. [PMID: 32269574 PMCID: PMC7109298 DOI: 10.3389/fimmu.2020.00515] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/06/2020] [Indexed: 01/21/2023] Open
Abstract
Forkhead box (FOX) proteins are transcriptional factors that regulate various cellular processes. This minireview provides an overview of FOXA2 functions, with a special emphasis on the regulation airway mucus homeostasis in both healthy and diseased lungs. FOXA2 plays crucial roles during lung morphogenesis, surfactant protein production, goblet cell differentiation and mucin expression. In healthy airways, FOXA2 exerts a tight control over goblet cell development and mucin biosynthesis. However, in diseased airways, microbial infections and proinflammatory responses deplete FOXA2 expression, resulting in uncontrolled goblet cell hyperplasia and metaplasia, mucus hypersecretion, and impaired mucociliary clearance of pathogens. Furthermore, accumulated mucus clogs the airways and creates a niche environment for persistent microbial colonization and infection, leading to acute exacerbation and deterioration of pulmonary function in patients with chronic lung diseases. Various studies have shown that FOXA2 inhibition is mediated through induction of antagonistic EGFR and IL-13R-STAT6 signaling pathways as well as through posttranslational modifications induced by microbial infections. An improved understanding of how bacterial pathogens inactivate FOXA2 may pave the way for developing therapeutics that preserve the protein's function, which in turn, will improve the mucus status and mucociliary clearance of pathogens, reduce microbial-mediated acute exacerbation and restore lung function in patients with chronic lung diseases.
Collapse
Affiliation(s)
- Woosuk Choi
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Shawn Choe
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
125
|
Dye BR, Youngblood RL, Oakes RS, Kasputis T, Clough DW, Spence JR, Shea LD. Human lung organoids develop into adult airway-like structures directed by physico-chemical biomaterial properties. Biomaterials 2020; 234:119757. [PMID: 31951973 PMCID: PMC6996062 DOI: 10.1016/j.biomaterials.2020.119757] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/15/2019] [Accepted: 01/03/2020] [Indexed: 12/17/2022]
Abstract
Tissues derived from human pluripotent stem cells (hPSCs) often represent early stages of fetal development, but mature at the molecular and structural level when transplanted into immunocompromised mice. hPSC-derived lung organoids (HLOs) transplantation has been further enhanced with biomaterial scaffolds, where HLOs had improved tissue structure and cellular differentiation. Here, our goal was to define the physico-chemical biomaterial properties that maximally enhanced transplant efficiency, including features such as the polymer type, degradation, and pore interconnectivity of the scaffolds. We found that transplantation of HLOs on microporous scaffolds formed from poly (ethylene glycol) (PEG) hydrogel scaffolds inhibit growth and maturation, and the transplanted HLOs possessed mostly immature lung progenitors. On the other hand, HLOs transplanted on poly (lactide-co-glycolide) (PLG) scaffolds or polycaprolactone (PCL) led to tube-like structures that resembled both the structure and cellular diversity of an adult airway. Our data suggests that scaffold pore interconnectivity and polymer degradation contributed to the maturation, and we found that the size of the airway structures and the total size of the transplanted tissue was influenced by the material degradation rate. Collectively, these biomaterial platforms provide a set of tools to promote maturation of the tissues and to control the size and structure of the organoids.
Collapse
Affiliation(s)
| | | | | | | | | | - Jason R Spence
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
126
|
Barbry P, Cavard A, Chanson M, Jaffe AB, Plasschaert LW. Regeneration of airway epithelial cells to study rare cell states in cystic fibrosis. J Cyst Fibros 2020; 19 Suppl 1:S42-S46. [DOI: 10.1016/j.jcf.2019.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 01/09/2023]
|
127
|
Shrestha J, Razavi Bazaz S, Aboulkheyr Es H, Yaghobian Azari D, Thierry B, Ebrahimi Warkiani M, Ghadiri M. Lung-on-a-chip: the future of respiratory disease models and pharmacological studies. Crit Rev Biotechnol 2020; 40:213-230. [PMID: 31906727 DOI: 10.1080/07388551.2019.1710458] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recently, organ-on-a-chip models, which are microfluidic devices that mimic the cellular architecture and physiological environment of an organ, have been developed and extensively investigated. The chips can be tailored to accommodate the disease conditions pertaining to many organs; and in the case of this review, the lung. Lung-on-a-chip models result in a more accurate reflection compared to conventional in vitro models. Pharmaceutical drug testing methods traditionally use animal models in order to evaluate pharmacological and toxicological responses to a new agent. However, these responses do not directly reflect human physiological responses. In this review, current and future applications of the lung-on-a-chip in the respiratory system will be discussed. Furthermore, the limitations of current conventional in vitro models used for respiratory disease modeling and drug development will be addressed. Highlights of additional translational aspects of the lung-on-a-chip will be discussed in order to demonstrate the importance of this subject for medical research.
Collapse
Affiliation(s)
- Jesus Shrestha
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia.,Faculty of Medicine and Health, Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | | | | | - Benjamin Thierry
- Future Industries Institute and ARC Centre of Excellence in Convergent Bio and Nano Science and Technology, University of South Australia, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia.,Institute of Molecular Medicine, Sechenov University, Moscow, Russia
| | - Maliheh Ghadiri
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia.,Faculty of Medicine and Health, Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia.,School of Medicine and Public Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
128
|
Lee DDH, Petris A, Hynds RE, O'Callaghan C. Ciliated Epithelial Cell Differentiation at Air-Liquid Interface Using Commercially Available Culture Media. Methods Mol Biol 2020; 2109:275-291. [PMID: 31707647 PMCID: PMC7116769 DOI: 10.1007/7651_2019_269] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
The human nasal epithelium contains basal stem/progenitor cells that produce differentiated multiciliated and mucosecretory progeny. Basal epithelial cells can be expanded in cell culture and instructed to differentiate at an air-liquid interface using transwell membranes and differentiation media. For basal cell expansion, we have used 3T3-J2 co-culture in epithelial culture medium containing EGF, insulin, and a RHO-associated protein kinase (ROCK) inhibitor, Y-27632 (3T3 + Y). Here we describe our protocols for ciliated differentiation of these cultures at air-liquid interface and compare four commercially available differentiation media, across nine donor cell cultures (six healthy, two patients with chronic obstructive pulmonary disease (COPD), and one with primary ciliary dyskinesia (PCD)). Bright-field and immunofluorescence imaging suggested broad similarity between differentiation protocols. Subtle differences were seen in transepithelial electrical resistance (TEER), ciliary beat frequency, mucus production, and the extent to which basal cells are retained in differentiated cultures. Overall, the specific differentiation medium used in our air-liquid interface culture protocol was not a major determinant of ciliation, and our data suggest that the differentiation potential of basal cells at the outset is a more critical factor in air-liquid interface culture outcome. Detailed information on the constituents of the differentiation media was only available from one of the four manufacturers, a factor that may have profound implications in the interpretation of some research studies.
Collapse
Affiliation(s)
- Dani Do Hyang Lee
- Respiratory, Critical Care & Anaesthesia, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Alina Petris
- Respiratory, Critical Care & Anaesthesia, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Christopher O'Callaghan
- Respiratory, Critical Care & Anaesthesia, UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
129
|
Abstract
A spectrum of intrapulmonary airway diseases, for example, cigarette smoke-induced bronchitis, cystic fibrosis, primary ciliary dyskinesia, and non-cystic fibrosis bronchiectasis, can be categorized as "mucoobstructive" airway diseases. A common theme for these diseases appears to be the failure to properly regulate mucus concentration, producing mucus hyperconcentration that slows mucus transport and, importantly, generates plaque/plug adhesion to airway surfaces. These mucus plaques/plugs generate long diffusion distances for oxygen, producing hypoxic niches within adherent airway mucus and subjacent epithelia. Data suggest that concentrated mucus plaques/plugs are proinflammatory, in part mediated by release of IL-1α from hypoxic cells. The infectious component of mucoobstructive diseases may be initiated by anaerobic bacteria that proliferate within the nutrient-rich hypoxic mucus environment. Anaerobes ultimately may condition mucus to provide the environment for a succession to classic airway pathogens, including Staphylococcus aureus, Haemophilus influenzae, and ultimately Pseudomonas aeruginosa. Novel therapies to treat mucoobstructive diseases focus on restoring mucus concentration. Strategies to rehydrate mucus range from the inhalation of osmotically active solutes, designed to draw water into airway surfaces, to strategies designed to manipulate the relative rates of sodium absorption versus chloride secretion to endogenously restore epithelial hydration. Similarly, strategies designed to reduce the mucin burden in the airways, either by reducing mucin production/secretion or by clearing accumulated mucus (e.g., reducing agents), are under development. Thus, the new insights into a unifying process, that is, mucus hyperconcentration, that drives a significant component of the pathogenesis of mucoobstructive diseases promise multiple new therapeutic strategies to aid patients with this syndrome.
Collapse
|
130
|
Osteopontin Expression in Small Airway Epithelium in Copd is Dependent on Differentiation and Confined to Subsets of Cells. Sci Rep 2019; 9:15566. [PMID: 31664154 PMCID: PMC6820743 DOI: 10.1038/s41598-019-52208-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022] Open
Abstract
Osteopontin (OPN) plays a role in inflammation via recruitment of neutrophils and tissue remodeling. In this study, we investigated the distribution of OPN-expressing cells in the airway epithelium of normal lung tissue and that from patients with chronic obstructive pulmonary disease (COPD). OPN was detected on the epithelial cell surface of small airways and in scattered cells within the epithelial cell layer. Staining revealed higher OPN concentrations in tissue showing moderate to severe COPD compared to that in controls. In addition, OPN expression was confined to goblet and club cells, and was absent from ciliated and basal cells as detected via immunohistochemistry. However, OPN expression was up-regulated in submerged basal cells cultures exposed to cigarette smoke (CS) extract. Cell fractioning of air-liquid interface cultures revealed increased OPN production from basal compartment cells compared to that in luminal fraction cells. Furthermore, both constitutive and CS-induced expression of OPN decreased during differentiation. In contrast, cultures stimulated with interleukin (IL)-13 to promote goblet cell hyperplasia showed increased OPN production in response to CS exposure. These results indicate that the cellular composition of the airway epithelium plays an important role in OPN expression and that these levels may reflect disease endotypes in COPD.
Collapse
|
131
|
Kiyokawa H, Morimoto M. Notch signaling in the mammalian respiratory system, specifically the trachea and lungs, in development, homeostasis, regeneration, and disease. Dev Growth Differ 2019; 62:67-79. [PMID: 31613406 PMCID: PMC7028093 DOI: 10.1111/dgd.12628] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022]
Abstract
The respiratory system has ideal tissue structure and cell types for efficient gas exchange to intake oxygen and release carbon dioxide. This complex system develops through orchestrated intercellular signaling among various cell types, such as club, ciliated, basal, neuroendocrine, AT1, AT2, endothelial, and smooth muscle cells. Notch signaling is a highly conserved cell-cell signaling pathway ideally suited for very short-range cellular communication because Notch signals are transmitted by direct contact with an adjacent cell. Enthusiastic efforts by Notch researchers over the last two decades have led to the identification of critical roles of this signaling pathway during development, homeostasis, and regeneration of the respiratory system. The dysregulation of Notch signaling results in a wide range of respiratory diseases such as pulmonary artery hypertension (PAH), chronic obstructive pulmonary disease (COPD), interstitial pulmonary fibrosis (IPF), and lung cancer. Thus, a deep understanding of the biological functions of Notch signaling will help identify novel treatment targets in various respiratory diseases.
Collapse
Affiliation(s)
- Hirofumi Kiyokawa
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Mitsuru Morimoto
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
132
|
A cellular census of human lungs identifies novel cell states in health and in asthma. Nat Med 2019; 25:1153-1163. [PMID: 31209336 DOI: 10.1038/s41591-019-0468-5] [Citation(s) in RCA: 591] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 04/25/2019] [Indexed: 11/09/2022]
Abstract
Human lungs enable efficient gas exchange and form an interface with the environment, which depends on mucosal immunity for protection against infectious agents. Tightly controlled interactions between structural and immune cells are required to maintain lung homeostasis. Here, we use single-cell transcriptomics to chart the cellular landscape of upper and lower airways and lung parenchyma in healthy lungs, and lower airways in asthmatic lungs. We report location-dependent airway epithelial cell states and a novel subset of tissue-resident memory T cells. In the lower airways of patients with asthma, mucous cell hyperplasia is shown to stem from a novel mucous ciliated cell state, as well as goblet cell hyperplasia. We report the presence of pathogenic effector type 2 helper T cells (TH2) in asthmatic lungs and find evidence for type 2 cytokines in maintaining the altered epithelial cell states. Unbiased analysis of cell-cell interactions identifies a shift from airway structural cell communication in healthy lungs to a TH2-dominated interactome in asthmatic lungs.
Collapse
|
133
|
Thorsvik S, van Beelen Granlund A, Svendsen TD, Bakke I, Røyset ES, Flo TH, Damås JK, Østvik AE, Bruland T, Sandvik AK. Ulcer-associated cell lineage expresses genes involved in regeneration and is hallmarked by high neutrophil gelatinase-associated lipocalin (NGAL) levels. J Pathol 2019; 248:316-325. [PMID: 30746716 PMCID: PMC6618036 DOI: 10.1002/path.5258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/13/2019] [Accepted: 02/07/2019] [Indexed: 01/16/2023]
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL), also known as Lipocalin 2, is an antimicrobial protein, encoded by the gene LCN2, strongly upregulated in inflammatory bowel disease (IBD) and a promising biomarker for IBD. Here we demonstrate that NGAL is highly expressed in all parts of pyloric metaplasia, also known as the ulcer-associated cell lineage (UACL), a metaplastic cell lineage suggested to play a role in wound healing in Crohn's disease (CD). We further show NGAL expression in regenerative intestinal crypts and in undifferentiated patient-derived colonoids. This indicates that NGAL is important in the tissue regeneration process. The remarkable overexpression of NGAL in UACL led us to explore the pathobiology of these cells by transcriptome-wide RNA sequencing. This study is, to our knowledge, the first to characterize the UACL at this level. Biopsies with UACL and inflamed non-UACL epithelium from the terminal ileum of CD patients and epithelium from healthy controls were laser capture microdissected for RNA sequencing. Among the 180 genes differentially expressed between UACL and control epithelium, the ten most-upregulated genes specific for UACL were MUC5AC, PGC, MUC6, MUC5B, LCN2, POU2AF1, MUC1, SDC3, IGFBP5, and SLC7A5. PDX1 was among the most upregulated in both UACL and inflamed non-UACL epithelium. Immunohistochemistry and iDisco 3D visualization was used to characterize UACL histo-morphologically, and to validate protein expression of 11 selected differentially expressed genes. Among these genes, LCN2, NOTCH2, PHLDA1, IGFBP5, SDC3, BPIFB1, and RCN1 have previously not been linked to UACL. Gene expression results were analyzed for functional implications using MetaCore, showing that differentially expressed genes are enriched for genes involved in cell migration and motility, and for biomarkers of gastrointestinal neoplasia. These results support a role for UACL as part of the reepithelialization process during and after destructive intestinal inflammation. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Silje Thorsvik
- Centre of Molecular Inflammation Research, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Gastroenterology and Hepatology, St Olav's University Hospital, Trondheim, Norway
| | - Atle van Beelen Granlund
- Centre of Molecular Inflammation Research, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tarjei D Svendsen
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingunn Bakke
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Medicine, St Olav's University Hospital, Trondheim, Norway
| | - Elin S Røyset
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Pathology, St Olav's University Hospital, Trondheim, Norway
| | - Trude H Flo
- Centre of Molecular Inflammation Research, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jan K Damås
- Centre of Molecular Inflammation Research, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Infectious Diseases, St Olav's University Hospital, Trondheim, Norway
| | - Ann E Østvik
- Centre of Molecular Inflammation Research, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Gastroenterology and Hepatology, St Olav's University Hospital, Trondheim, Norway
| | - Torunn Bruland
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Medicine, St Olav's University Hospital, Trondheim, Norway
| | - Arne K Sandvik
- Centre of Molecular Inflammation Research, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Gastroenterology and Hepatology, St Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
134
|
Kunzelmann K, Ousingsawat J, Benedetto R, Cabrita I, Schreiber R. Contribution of Anoctamins to Cell Survival and Cell Death. Cancers (Basel) 2019; 11:E382. [PMID: 30893776 PMCID: PMC6468699 DOI: 10.3390/cancers11030382] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 02/07/2023] Open
Abstract
Before anoctamins (TMEM16 proteins) were identified as a family of Ca2+-activated chloride channels and phospholipid scramblases, the founding member anoctamin 1 (ANO1, TMEM16A) was known as DOG1, a marker protein for gastrointestinal stromal tumors (GIST). Meanwhile, ANO1 has been examined in more detail, and the role of ANO1 in cell proliferation and the development of different types of malignomas is now well established. While ANO5, ANO7, and ANO9 may also be relevant for growth of cancers, evidence has been provided for a role of ANO6 (TMEM16F) in regulated cell death. The cellular mechanisms by which anoctamins control cell proliferation and cell death, respectively, are just emerging; however, the pronounced effects of anoctamins on intracellular Ca2+ levels are likely to play a significant role. Recent results suggest that some anoctamins control membrane exocytosis by setting Ca2+i levels near the plasma membrane, and/or by controlling the intracellular Cl- concentration. Exocytosis and increased membrane trafficking induced by ANO1 and ANO6 may enhance membrane expression of other chloride channels, such as CFTR and volume activated chloride channels (VRAC). Notably, ANO6-induced phospholipid scrambling with exposure of phosphatidylserine is pivotal for the sheddase function of disintegrin and metalloproteinase (ADAM). This may support cell death and tumorigenic activity of IL-6 by inducing IL-6 trans-signaling. The reported anticancer effects of the anthelminthic drug niclosamide are probably related to the potent inhibitory effect on ANO1, apart from inducing cell cycle arrest through the Let-7d/CDC34 axis. On the contrary, pronounced activation of ANO6 due to a large increase in intracellular calcium, activation of phospholipase A2 or lipid peroxidation, can lead to ferroptotic death of cancer cells. It therefore appears reasonable to search for both inhibitors and potent activators of TMEM16 in order to interfere with cancer growth and metastasis.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Jiraporn Ousingsawat
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Roberta Benedetto
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Ines Cabrita
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
135
|
Hamilton NJ, Hynds RE, Gowers KH, Tait A, Butler CR, Hopper C, Burns AJ, Birchall MA, Lowdell M, Janes SM. Using a Three-Dimensional Collagen Matrix to Deliver Respiratory Progenitor Cells to Decellularized Trachea In Vivo. Tissue Eng Part C Methods 2019; 25:93-102. [PMID: 30648458 PMCID: PMC6389769 DOI: 10.1089/ten.tec.2018.0241] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/14/2019] [Indexed: 10/27/2022] Open
Abstract
IMPACT STATEMENT This article describes a method for engrafting epithelial progenitor cells to a revascularized scaffold in a protective and supportive collagen-rich environment. This method has the potential to overcome two key limitations of existing grafting techniques as epithelial cells are protected from mechanical shear and the relatively hypoxic phase that occurs while grafts revascularize, offering the opportunity to provide epithelial cells to decellularized allografts at the point of implantation. Advances in this area will improve the safety and efficacy of bioengineered organ transplantation.
Collapse
Affiliation(s)
- Nick J.I. Hamilton
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
- UCL Ear Institute, The Royal National Throat Nose and Ear Hospital, London, United Kingdom
| | - Robert E. Hynds
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Kate H.C. Gowers
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Angela Tait
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Colin R. Butler
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Colin Hopper
- Maxillofacial Surgery, Eastman Dental Institute, London, United Kingdom
| | - Alan J. Burns
- Stem Cell and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Institute of Child Health, London, United Kingdom
| | - Martin A. Birchall
- UCL Ear Institute, The Royal National Throat Nose and Ear Hospital, London, United Kingdom
| | - Mark Lowdell
- Institute of Immunity and Transplantation, Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital, London, United Kingdom
| | - Sam M. Janes
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
136
|
Hynds RE, Butler CR, Janes SM, Giangreco A. Expansion of Human Airway Basal Stem Cells and Their Differentiation as 3D Tracheospheres. Methods Mol Biol 2019; 1576:43-53. [PMID: 27539459 DOI: 10.1007/7651_2016_5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although basal cells function as human airway epithelial stem cells, analysis of these cells is limited by in vitro culture techniques that permit only minimal cell growth and differentiation. Here, we report a protocol that dramatically increases the long-term expansion of primary human airway basal cells while maintaining their genomic stability using 3T3-J2 fibroblast coculture and ROCK inhibition. We also describe techniques for the differentiation and imaging of these expanded airway stem cells as three-dimensional tracheospheres containing basal, ciliated, and mucosecretory cells. These procedures allow investigation of the airway epithelium under more physiologically relevant conditions than those found in undifferentiated monolayer cultures. Together these methods represent a novel platform for improved airway stem cell growth and differentiation that is compatible with high-throughput, high-content translational lung research as well as human airway tissue engineering and clinical cellular therapy.
Collapse
Affiliation(s)
- Robert E Hynds
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Colin R Butler
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Adam Giangreco
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK.
| |
Collapse
|
137
|
Awatade NT, Wong SL, Hewson CK, Fawcett LK, Kicic A, Jaffe A, Waters SA. Human Primary Epithelial Cell Models: Promising Tools in the Era of Cystic Fibrosis Personalized Medicine. Front Pharmacol 2018; 9:1429. [PMID: 30581387 PMCID: PMC6293199 DOI: 10.3389/fphar.2018.01429] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022] Open
Abstract
Cystic fibrosis (CF) is an inherited disorder where individual disease etiology and response to therapeutic intervention is impacted by CF transmembrane regulator (CFTR) mutations and other genetic modifiers. CFTR regulates multiple mechanisms in a diverse range of epithelial tissues. In this Review, we consolidate the latest updates in the development of primary epithelial cellular model systems relevant for CF. We discuss conventional two-dimensional (2-D) airway epithelial cell cultures, the backbone of in vitro cellular models to date, as well as improved expansion protocols to overcome finite supply of the cellular source. We highlight a range of strategies for establishment of three dimensional (3-D) airway and intestinal organoid models and evaluate the limitations and potential improvements in each system, focusing on their application in CF. The in vitro CFTR functional assays in patient-derived organoids allow for preclinical pharmacotherapy screening to identify responsive patients. It is likely that organoids will be an invaluable preclinical tool to unravel disease mechanisms, design novel treatments, and enable clinicians to provide personalized management for patients with CF.
Collapse
Affiliation(s)
- Nikhil T. Awatade
- Faculty of Medicine, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Sharon L. Wong
- Faculty of Medicine, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Chris K. Hewson
- Faculty of Medicine, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Laura K. Fawcett
- Faculty of Medicine, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Anthony Kicic
- Centre for Child Health Research, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
- Occupation and Environment, School of Public Health, Curtin University, Bentley, WA, Australia
- Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, WA, Australia
| | - Adam Jaffe
- Faculty of Medicine, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Shafagh A. Waters
- Faculty of Medicine, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
138
|
Gkatzis K, Taghizadeh S, Huh D, Stainier DYR, Bellusci S. Use of three-dimensional organoids and lung-on-a-chip methods to study lung development, regeneration and disease. Eur Respir J 2018; 52:13993003.00876-2018. [PMID: 30262579 DOI: 10.1183/13993003.00876-2018] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 09/16/2018] [Indexed: 11/05/2022]
Abstract
Differences in lung anatomy between mice and humans, as well as frequently disappointing results when using animal models for drug discovery, emphasise the unmet need for in vitro models that can complement animal studies and improve our understanding of human lung physiology, regeneration and disease. Recent papers have highlighted the use of three-dimensional organoids and organs-on-a-chip to mimic tissue morphogenesis and function in vitro Here, we focus on the respiratory system and provide an overview of these in vitro models, which can be derived from primary lung cells and pluripotent stem cells, as well as healthy or diseased lungs. We emphasise their potential application in studies of respiratory development, regeneration and disease modelling.
Collapse
Affiliation(s)
- Konstantinos Gkatzis
- Dept of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sara Taghizadeh
- Dept of Internal Medicine, Justus-Liebig University Giessen, Giessen, Germany
| | - Dongeun Huh
- Dept of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Didier Y R Stainier
- Dept of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Saverio Bellusci
- Dept of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Excellence Cluster Cardio-Pulmonary System, Justus-Liebig University Giessen, Giessen, Germany and German Center for Lung Research (DZL)
| |
Collapse
|
139
|
Amatngalim GD, Hiemstra PS. Airway Epithelial Cell Function and Respiratory Host Defense in Chronic Obstructive Pulmonary Disease. Chin Med J (Engl) 2018; 131:1099-1107. [PMID: 29692382 PMCID: PMC5937320 DOI: 10.4103/0366-6999.230743] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Gimano D Amatngalim
- Department of Pulmonology, Leiden University Medical Center, Leiden; Department of Pediatrics, Wilhelmina Children's Hospital, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
140
|
|
141
|
Lin B, Srikanth P, Castle AC, Nigwekar S, Malhotra R, Galloway JL, Sykes DB, Rajagopal J. Modulating Cell Fate as a Therapeutic Strategy. Cell Stem Cell 2018; 23:329-341. [PMID: 29910150 PMCID: PMC6128730 DOI: 10.1016/j.stem.2018.05.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In injured tissues, regeneration is often associated with cell fate plasticity, in that cells deviate from their normal lineage paths. It is becoming increasingly clear that this plasticity often creates alternative strategies to restore damaged or lost cells. Alternatively, cell fate plasticity is also part and parcel of pathologic tissue transformations that accompany disease. In this Perspective, we summarize a few illustrative examples of physiologic and aberrant cellular plasticity. Then, we speculate on how one could enhance endogenous plasticity to promote regeneration and reverse pathologic plasticity, perhaps inspiring interest in a new class of therapies targeting cell fate modulation.
Collapse
Affiliation(s)
- Brian Lin
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Priya Srikanth
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Pathways Program, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alison C Castle
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Pathways Program, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sagar Nigwekar
- Pathways Program, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Rajeev Malhotra
- Pathways Program, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Cardiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jenna L Galloway
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Pathways Program, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Pediatric Pulmonary Medicine, Massachusetts General Hospital for Children, Boston, MA 02114, USA.
| |
Collapse
|
142
|
Plasschaert LW, Žilionis R, Choo-Wing R, Savova V, Knehr J, Roma G, Klein AM, Jaffe AB. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 2018; 560:377-381. [PMID: 30069046 PMCID: PMC6108322 DOI: 10.1038/s41586-018-0394-6] [Citation(s) in RCA: 722] [Impact Index Per Article: 103.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 06/21/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Lindsey W Plasschaert
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA, USA.,Respiratory Diseases, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Rapolas Žilionis
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.,Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Rayman Choo-Wing
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA, USA.,Respiratory Diseases, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Virginia Savova
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.,Precision Immunology, Immunology & Inflammation Research Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Judith Knehr
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Guglielmo Roma
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - Aron B Jaffe
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA, USA. .,Respiratory Diseases, Novartis Institutes for BioMedical Research, Cambridge, MA, USA.
| |
Collapse
|
143
|
Montoro DT, Haber AL, Biton M, Vinarsky V, Lin B, Birket SE, Yuan F, Chen S, Leung HM, Villoria J, Rogel N, Burgin G, Tsankov AM, Waghray A, Slyper M, Waldman J, Nguyen L, Dionne D, Rozenblatt-Rosen O, Tata PR, Mou H, Shivaraju M, Bihler H, Mense M, Tearney GJ, Rowe SM, Engelhardt JF, Regev A, Rajagopal J. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 2018; 560:319-324. [PMID: 30069044 PMCID: PMC6295155 DOI: 10.1038/s41586-018-0393-7] [Citation(s) in RCA: 832] [Impact Index Per Article: 118.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 06/21/2018] [Indexed: 12/16/2022]
Abstract
The airways of the lung are the primary sites of disease in asthma and cystic fibrosis. Here we study the cellular composition and hierarchy of the mouse tracheal epithelium by single-cell RNA-sequencing (scRNA-seq) and in vivo lineage tracing. We identify a rare cell type, the Foxi1+ pulmonary ionocyte; functional variations in club cells based on their location; a distinct cell type in high turnover squamous epithelial structures that we term 'hillocks'; and disease-relevant subsets of tuft and goblet cells. We developed 'pulse-seq', combining scRNA-seq and lineage tracing, to show that tuft, neuroendocrine and ionocyte cells are continually and directly replenished by basal progenitor cells. Ionocytes are the major source of transcripts of the cystic fibrosis transmembrane conductance regulator in both mouse (Cftr) and human (CFTR). Knockout of Foxi1 in mouse ionocytes causes loss of Cftr expression and disrupts airway fluid and mucus physiology, phenotypes that are characteristic of cystic fibrosis. By associating cell-type-specific expression programs with key disease genes, we establish a new cellular narrative for airways disease.
Collapse
Affiliation(s)
- Daniel T Montoro
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Departments of Internal Medicine and Pediatrics, Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam L Haber
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Moshe Biton
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Vladimir Vinarsky
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Departments of Internal Medicine and Pediatrics, Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Brian Lin
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Departments of Internal Medicine and Pediatrics, Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Susan E Birket
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Gregory Fleming James Cystic Fibrosis Research Center, Birmingham, AL, USA
| | - Feng Yuan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Sijia Chen
- Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Hui Min Leung
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jorge Villoria
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Departments of Internal Medicine and Pediatrics, Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Noga Rogel
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Grace Burgin
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexander M Tsankov
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Avinash Waghray
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Departments of Internal Medicine and Pediatrics, Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michal Slyper
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julia Waldman
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lan Nguyen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Purushothama Rao Tata
- Department of Cell Biology, Duke University, Durham, NC, USA
- Duke Cancer Institute, Duke University, Durham, NC, USA
- Division of Pulmonary Critical Care, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Regeneration Next, Duke University, Durham, NC, USA
| | - Hongmei Mou
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Manjunatha Shivaraju
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Departments of Internal Medicine and Pediatrics, Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Hermann Bihler
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA, USA
| | - Martin Mense
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA, USA
| | - Guillermo J Tearney
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Gregory Fleming James Cystic Fibrosis Research Center, Birmingham, AL, USA
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute and Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Departments of Internal Medicine and Pediatrics, Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
144
|
Kothe TB, Royse E, Kemp MW, Usuda H, Saito M, Musk GC, Jobe AH, Hillman NH. Epidermal growth factor receptor inhibition with Gefitinib does not alter lung responses to mechanical ventilation in fetal, preterm lambs. PLoS One 2018; 13:e0200713. [PMID: 30005089 PMCID: PMC6044532 DOI: 10.1371/journal.pone.0200713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/02/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) is important for airway branching and lung maturation. Mechanical ventilation of preterm lambs causes increases in EGFR and EGFR ligand mRNA in the lung. Abnormal EGFR signaling may contribute to the development of bronchopulmonary dysplasia. HYPOTHESIS Inhibition of EGFR signaling will decrease airway epithelial cell proliferation and lung inflammation caused by mechanical ventilation in preterm, fetal sheep. METHODS Following exposure of the fetal head and chest at 123±1 day gestational age and with placental circulation intact, fetal lambs (n = 4-6/group) were randomized to either: 1) Gefitinib 15 mg IV and 1 mg intra-tracheal or 2) saline IV and IT. Lambs were further assigned to 15 minutes of either: a) Injurious mechanical ventilation (MV) or b) Continuous positive airway pressure (CPAP) 5 cmH2O. After the 15 minute intervention, the animals were returned to the uterus and delivered after i) 6 or ii) 24 hours in utero. RESULTS MV caused lung injury and inflammation, increased lung mRNA for cytokines and EGFR ligands, caused airway epithelial cell proliferation, and decreased airway epithelial phosphorylated ERK1/2. Responses to MV were unchanged by Gefitinib. Gefitinib altered expression of EGFR mRNA in the lung and liver of both CPAP and MV animals. Gefitinib decreased the liver SAA3 mRNA response to MV at 6 hours. There were no differences in markers of lung injury or inflammation between CPAP animals receiving Gefitinib or saline. CONCLUSION Inhibition of the EGFR pathway did not alter acute lung inflammation or injury from mechanical ventilation in preterm sheep.
Collapse
Affiliation(s)
- T. Brett Kothe
- Division of Neonatology, Cardinal Glennon Children’s Hospital, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Emily Royse
- Division of Neonatology, Cardinal Glennon Children’s Hospital, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Matthew W. Kemp
- School of Women’s and Infants’ Health, University of Western Australia, Perth, Western Australia, Australia
| | - Haruo Usuda
- School of Women’s and Infants’ Health, University of Western Australia, Perth, Western Australia, Australia
| | - Masatoshi Saito
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Gabrielle C. Musk
- Animal Care Services, University of Western Australia, Perth, Western Australia, Australia
| | - Alan H. Jobe
- School of Women’s and Infants’ Health, University of Western Australia, Perth, Western Australia, Australia
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Noah H. Hillman
- Division of Neonatology, Cardinal Glennon Children’s Hospital, Saint Louis University, Saint Louis, Missouri, United States of America
| |
Collapse
|
145
|
Jing Y, Gimenes JA, Mishra R, Pham D, Comstock AT, Yu D, Sajjan U. NOTCH3 contributes to rhinovirus-induced goblet cell hyperplasia in COPD airway epithelial cells. Thorax 2018; 74:18-32. [PMID: 29991510 DOI: 10.1136/thoraxjnl-2017-210593] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 05/15/2018] [Accepted: 06/11/2018] [Indexed: 11/04/2022]
Abstract
RATIONALE Goblet cell hyperplasia (GCH) is one of the cardinal features of chronic obstructive pulmonary disease (COPD) and contributes to airways obstruction. Rhinovirus (RV), which causes acute exacerbations in patients with COPD, also causes prolonged airways obstruction. Previously, we showed that RV enhances mucin gene expression and increases goblet cell number in a COPD mouse model. This study examines whether RV causes sustained GCH in relevant models of COPD. METHODS Mucociliary-differentiated COPD and normal airway epithelial cell cultures and mice with normal or COPD phenotype were infected with RV or sham and examined for GCH by immunofluorescence and/or mucin gene expression. In some experiments, RV-infected COPD cells and mice with COPD phenotype were treated with γ-secretase inhibitor or interleukin-13 neutralising antibody and assessed for GCH. To determine the contribution of NOTCH1/3 in RV-induced GCH, COPD cells transduced with NOTCH1/3 shRNA were used. RESULTS RV-infected COPD, but not normal cell cultures, showed sustained GCH and increased mucin genes expression. Microarray analysis indicated increased expression of NOTCH1, NOTCH3 and HEY1 only in RV-infected COPD cells. Blocking NOTCH3, but not NOTCH1, attenuated RV-induced GCH in vitro. Inhibition of NOTCH signalling by γ-secretase inhibitor, but not neutralising antibody to IL-13, abrogated RV-induced GCH and mucin gene expression. CONCLUSIONS RV induces sustained GCH via NOTCH3 particularly in COPD cells or mice with COPD phenotype. This may be one of the mechanisms that may contribute to RV-induced prolonged airways obstruction in COPD.
Collapse
Affiliation(s)
- Yaxun Jing
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Joao Antonio Gimenes
- Department of Thoracic Surgery and Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Rahul Mishra
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Duc Pham
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Adam T Comstock
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Daohai Yu
- Department of Clinical Sciences, Temple University, Philadelphia, Pennsylvania, USA
| | - Umadevi Sajjan
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA.,Department of Thoracic Surgery and Medicine, Temple University, Philadelphia, Pennsylvania, USA.,Department of Physiology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
146
|
Faber SC, McCullough SD. Through the Looking Glass: In Vitro Models for Inhalation Toxicology and Interindividual Variability in the Airway. ACTA ACUST UNITED AC 2018; 4:115-128. [PMID: 31380467 DOI: 10.1089/aivt.2018.0002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With 7 million deaths reported annually from air pollution alone, it is evident that adverse effects of inhaled toxicant exposures remain a major public health concern in the 21st century. Assessment and characterization of the impacts of air pollutants on human health stems from epidemiological and clinical studies, which have linked both outdoor and indoor air contaminant exposure to adverse pulmonary and cardiovascular health outcomes. Studies in animal models support epidemiological findings and have been critical in identifying systemic effects of environmental chemicals on cognitive abilities, liver disease, and metabolic dysfunction following inhalation exposure. Likewise, traditional monoculture systems have aided in identifying biomarkers of susceptibility to inhaled toxicants and served as a screening platform for safety assessment of pulmonary toxicants. Despite their contributions, in vivo and classic in vitro models have not been able to accurately represent the heterogeneity of the human population and account for interindividual variability in response to inhaled toxicants and susceptibility to the adverse health effects. Development of new technologies that can investigate genetic predisposition, are cost and time efficient, and are ethically sound, will enhance elucidation of mechanisms of inhalation toxicity, and aid in the development of novel pharmaceuticals and/or safety evaluation. This review will describe the classic and novel cell-based inhalation toxicity models and how these emerging technologies can be incorporated into regulatory or nonregulatory testing to address interindividual variability and improve overall human health.
Collapse
Affiliation(s)
- Samantha C Faber
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Shaun D McCullough
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina
| |
Collapse
|
147
|
Svensson M, Chen P. Human Organotypic Respiratory Models. Curr Top Microbiol Immunol 2018:29-54. [PMID: 29808337 DOI: 10.1007/82_2018_91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Biomedical research aiming to understand the molecular basis of human lung tissue development, homeostasis and disease, or to develop new therapies for human respiratory diseases, requires models that faithfully recapitulate the human condition. This has stimulated biologists and engineers to develop in vitro organotypic models mimicking human respiratory tissues. In this chapter, we provide examples of different types of model systems ranging from simple unicellular cultures to more complex multicellular systems. The models contain, in varying degree, cell types present in real tissue in combination with different extracellular matrix components that can critically affect cell phenotype and function. We also describe how organotypic respiratory models can be combined with human innate immune cells, to better recapitulate tissue inflammation, a key component in, for example, infectious diseases. These models have the potential to provide new insights into lung physiology, tissue infection and inflammation, disease mechanisms, as well as provide a platform for identification of novel targets and screening of candidate drugs in human lung disorders.
Collapse
Affiliation(s)
- Mattias Svensson
- F59, Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, 141 86, Stockholm, Sweden.
| | - Puran Chen
- F59, Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, 141 86, Stockholm, Sweden
| |
Collapse
|
148
|
Eenjes E, Mertens TCJ, Buscop-van Kempen MJ, van Wijck Y, Taube C, Rottier RJ, Hiemstra PS. A novel method for expansion and differentiation of mouse tracheal epithelial cells in culture. Sci Rep 2018; 8:7349. [PMID: 29743551 PMCID: PMC5943313 DOI: 10.1038/s41598-018-25799-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/25/2018] [Indexed: 12/12/2022] Open
Abstract
Air-liquid interface (ALI) cultures of mouse tracheal epithelial cells (MTEC) are a well-established model to study airway epithelial cells, but current methods require large numbers of animals which is unwanted in view of the 3R principle and introduces variation. Moreover, stringent breeding schemes are frequently needed to generate sufficient numbers of genetically modified animals. Current protocols do not incorporate expansion of MTEC, and therefore we developed a protocol to expand MTEC while maintaining their differentiation capacity. MTEC were isolated and expanded using the ROCK inhibitor Y-27632 in presence or absence of the γ-secretase inhibitor DAPT, a Notch pathway inhibitor. Whereas MTEC proliferated without DAPT, growth rate and cell morphology improved in presence of DAPT. ALI-induced differentiation of expanded MTEC resulted in an altered capacity of basal cells to differentiate into ciliated cells, whereas IL-13-induced goblet cell differentiation remained unaffected. Ciliated cell differentiation improved by prolonging the ALI differentiation or by adding DAPT, suggesting that basal cells retain their ability to differentiate. This technique using expansion of MTEC and subsequent ALI differentiation drastically reduces animal numbers and costs for in vitro experiments, and will reduce biological variation. Additionally, we provide novel insights in the dynamics of basal cell populations in vitro.
Collapse
Affiliation(s)
- Evelien Eenjes
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Tinne C J Mertens
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Marjon J Buscop-van Kempen
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Yolanda van Wijck
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christian Taube
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pulmonary Medicine, West German Lung Center, Essen University Hospital, Ruhrlandklinik, University Duisburg-Essen, Essen, Germany
| | - Robbert J Rottier
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands.
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
149
|
Nadkarni RR, Abed S, Draper JS. Stem Cells in Pulmonary Disease and Regeneration. Chest 2018; 153:994-1003. [DOI: 10.1016/j.chest.2017.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/23/2017] [Accepted: 07/14/2017] [Indexed: 01/02/2023] Open
|
150
|
Wang Z, Plasschaert LW, Aryal S, Renaud NA, Yang Z, Choo-Wing R, Pessotti AD, Kirkpatrick ND, Cochran NR, Carbone W, Maher R, Lindeman A, Russ C, Reece-Hoyes J, McAllister G, Hoffman GR, Roma G, Jaffe AB. TRRAP is a central regulator of human multiciliated cell formation. J Cell Biol 2018; 217:1941-1955. [PMID: 29588376 PMCID: PMC5987713 DOI: 10.1083/jcb.201706106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 02/07/2018] [Accepted: 03/08/2018] [Indexed: 12/24/2022] Open
Abstract
Multiciliated cells (MCCs) function to promote directional fluid flow across epithelial tissues. Wang et al. show that TRRAP, a component of multiple histone acetyltransferase complexes, is required for airway MCC formation and regulates a network of genes involved in MCC differentiation and function. The multiciliated cell (MCC) is an evolutionarily conserved cell type, which in vertebrates functions to promote directional fluid flow across epithelial tissues. In the conducting airway, MCCs are generated by basal stem/progenitor cells and act in concert with secretory cells to perform mucociliary clearance to expel pathogens from the lung. Studies in multiple systems, including Xenopus laevis epidermis, murine trachea, and zebrafish kidney, have uncovered a transcriptional network that regulates multiple steps of multiciliogenesis, ultimately leading to an MCC with hundreds of motile cilia extended from their apical surface, which beat in a coordinated fashion. Here, we used a pool-based short hairpin RNA screening approach and identified TRRAP, an essential component of multiple histone acetyltransferase complexes, as a central regulator of MCC formation. Using a combination of immunofluorescence, signaling pathway modulation, and genomic approaches, we show that (a) TRRAP acts downstream of the Notch2-mediated basal progenitor cell fate decision and upstream of Multicilin to control MCC differentiation; and (b) TRRAP binds to the promoters and regulates the expression of a network of genes involved in MCC differentiation and function, including several genes associated with human ciliopathies.
Collapse
Affiliation(s)
- Zhao Wang
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA
| | - Lindsey W Plasschaert
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA
| | - Shivani Aryal
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA
| | - Nicole A Renaud
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA
| | - Zinger Yang
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA
| | - Rayman Choo-Wing
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA
| | - Angelica D Pessotti
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA
| | | | - Nadire R Cochran
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA
| | - Walter Carbone
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Rob Maher
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA
| | - Alicia Lindeman
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA
| | - Carsten Russ
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA
| | - John Reece-Hoyes
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA
| | - Gregory McAllister
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA
| | - Gregory R Hoffman
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA
| | - Guglielmo Roma
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Aron B Jaffe
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA
| |
Collapse
|