101
|
Liang J, Bao AL, Ma HY, Dong W, Li WH, Wu X, Li HY, Hou HY, Chen YQ, Fu JL, Shao C. Prevention of polycystic ovary syndrome and postmenopausal osteoporosis by inhibiting apoptosis with Shenling Baizhu powder compound. PeerJ 2022; 10:e13939. [PMID: 36325179 PMCID: PMC9620975 DOI: 10.7717/peerj.13939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/02/2022] [Indexed: 01/20/2023] Open
Abstract
Objective Shenling Baizhu powder (SBP) has been shown to reverse the abnormal expression of the aromatic hydrocarbon receptor (AHR) mediated by air pollution. Our study aimed to understand the main ingredient of SBP and investigate its action mechanism in preventing polycystic ovary syndrome (POCS) and postmenopausal osteoporosis (PMO). Methods The active ingredients of SBP with the highest binding affinity to AHR were screened using a Chinese medicine database, and their binding mechanism was simulated using molecular dynamics simulation (MDS). Rutin was utilized to treat ovarian granulosa cell lines and osteoblast cell lines. The cell lines were treated with a gradient of rutin concentration (0.01 mmol/L, 0.05 mmol/L and 0.1 mmol/L) to find the optimal drug dose. PCR was used to detect AHR and apoptosis-related proteins, and WB to detect the expression of AHR, caspase-3 and cleaved-caspase-3. Finally, the CCK-8 cell proliferation assay detected the proliferation of cells. Results We obtained Rutin through the Chinese medicine database, and dynamics simulation determined its binding sites. Ovarian granulosa cell lines and osteoblast cell lines were treated with Rutin. RT-PCR and western blotting revealed that the expression of apoptosis-associated protein Bcl-2 was elevated, and the expression of AHR, Bax, caspase-3 and PARP were decreased. CCK-8 results showed accelerated proliferation in both cell types. Conclusion Rutin, the main ingredient of SBP compound, works by binding to AHR, which can improve POCS and PMO by inhibiting cell apoptosis and by promoting cell proliferation.
Collapse
Affiliation(s)
- Jing Liang
- Department of Gynecology, Guang’anmen South Area Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ai-li Bao
- Department of Gynecology, Guang’anmen South Area Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hong-yu Ma
- Hebei General Hospital, Department of Traditional Chinese Medicine, Hebei, Chinese
| | - Wei Dong
- Department of Gynecology, Guang’anmen South Area Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei-hua Li
- Department of Gynecology, Guang’anmen South Area Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xi Wu
- Department of Gynecology, Guang’anmen South Area Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Han-yu Li
- Department of Gynecology, Guang’anmen South Area Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hai-yan Hou
- Department of Obstetrics and Gynecology, Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin, China
| | - Ya-qiong Chen
- Department of Obstetrics and Gynecology, Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin, China
| | - Jia-lin Fu
- Department of Gynecology, Guang’anmen South Area Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chao Shao
- Department of Gynecology, Guang’anmen South Area Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
102
|
Aloisi M, Rossi G, Colafarina S, Guido M, Cecconi S, Poma AMG. The Impact of Metal Nanoparticles on Female Reproductive System: Risks and Opportunities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13748. [PMID: 36360633 PMCID: PMC9655349 DOI: 10.3390/ijerph192113748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Humans have always been exposed to tiny particles via dust storms, volcanic ash, and other natural processes, and our bodily systems are well adapted to protect us from these potentially harmful external agents. However, technological advancement has dramatically increased the production of nanometer-sized particles or nanoparticles (NPs), and many epidemiological studies have confirmed a correlation between NP exposure and the onset of cardiovascular diseases and various cancers. Among the adverse effects on human health, in recent years, potential hazards of nanomaterials on female reproductive organs have received increasing concern. Several animal and human studies have shown that NPs can translocate to the ovary, uterus, and placenta, thus negatively impacting female reproductive potential and fetal health. However, NPs are increasingly being used for therapeutic purposes as tools capable of modifying the natural history of degenerative diseases. Here we briefly summarize the toxic effects of few but widely diffused NPs on female fertility and also the use of nanotechnologies as a new molecular approach for either specific pathological conditions, such as ovarian cancer and infertility, or the cryopreservation of gametes and embryos.
Collapse
|
103
|
Liu D, Cheng K, Huang K, Ding H, Xu T, Chen Z, Sun Y. Visualization and Analysis of Air Pollution and Human Health Based on Cluster Analysis: A Bibliometric Review from 2001 to 2021. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12723. [PMID: 36232020 PMCID: PMC9566718 DOI: 10.3390/ijerph191912723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Bibliometric techniques and social network analysis are employed in this study to evaluate 14,955 papers on air pollution and health that were published from 2001 to 2021. To track the research hotspots, the principle of machine learning is applied in this study to divide 10,212 records of keywords into 96 clusters through OmniViz software. Our findings highlight strong research interests and the practical need to control air pollution to improve human health, as evidenced by an annual growth rate of over 15.8% in the related publications. The cluster analysis showed that clusters C22 (exposure, model, mortality) and C8 (health, environment, risk) are the most popular topics in this field of research. Furthermore, we develop co-occurrence networks based on the cluster analysis results in which a more specific keyword classification was obtained. These key areas include: "Air pollutant source", "Exposure-Response relationship", "Public & Occupational Health", and so on. Future research hotspots are analyzed through characteristics of the cluster groups, including the advancement of health risk assessment techniques, an interdisciplinary approach to quantifying human exposure to air pollution, and strategies in health risk assessment.
Collapse
Affiliation(s)
- Diyi Liu
- Zhou Enlai School of Government, Nankai University, Tianjin 300071, China
| | - Kun Cheng
- College of Management and Economy, Tianjin University, Tianjin 300072, China
| | - Kevin Huang
- School of Accounting, Economics and Finance, University of Wollongong, Sydney, NSW 2522, Australia
| | - Hui Ding
- School of Marxism, Hangzhou Medical College, Hangzhou 310053, China
| | - Tiantong Xu
- School of E-Business and Logistics, Beijing Technology and Business University, Beijing 100048, China
| | - Zhenni Chen
- School of Economics and Finance, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yanqi Sun
- School of Economics and Management, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| |
Collapse
|
104
|
Kress S, Kilanowski A, Wigmann C, Zhao Q, Zhao T, Abramson MJ, Gappa M, Standl M, Unfried K, Schikowski T. Airway inflammation in adolescents and elderly women: Chronic air pollution exposure and polygenic susceptibility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156655. [PMID: 35697214 DOI: 10.1016/j.scitotenv.2022.156655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIM The fractional exhaled nitric oxide (FeNO) concentration in the exhaled breath is a biomarker for eosinophilic airway inflammation. We explored the interplay between chronic air pollution exposure and polygenic susceptibility to airway inflammation at different critical age stages. METHODS Adolescents (15 yr) enrolled in the GINIplus/LISA birth cohorts (n = 2434) and 220 elderly women (75 yr on average) enrolled in the SALIA cohort with FeNO measurements available were investigated. Environmental main effects of the mean of ESCAPE land-use regression air pollutant concentrations within a time window of 15 years and main effects of the polygenic risk scores (PRS) using internal weights from elastic net regression of genome-wide derived single nucleotide polymorphisms were investigated. Furthermore, we examined gene-environment interaction (GxE) effects on natural log-transformed FeNO levels by adjusted linear regression models. RESULTS While we observed no significant environmental and polygenic main effects on airway inflammation in either age group, we found robust harmful effects of chronic nitrogen dioxide (NO2) exposure in the GxE models for elderly women (16.2 % increase in FeNO, p-value = 0.027). Stratified analyses found GxE effects between the PRS and chronic NO2 exposure in never-smoker elderly women and in adolescents without any inflammatory respiratory conditions. CONCLUSIONS FeNO measurement is a useful biomarker to detect higher risk of NO2-induced eosinophilic airway inflammation in the elderly. There was limited evidence for GxE effects on airway inflammation in adolescents or the elderly. Further GxE studies in subpopulations should be conducted to investigate the assumption that susceptibility to airway inflammation differs between age stages.
Collapse
Affiliation(s)
- Sara Kress
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, Düsseldorf 40225, Germany; Medical Research School Düsseldorf, Heinrich Heine University, Universitätsstraße 1, Düsseldorf 40225, Germany.
| | - Anna Kilanowski
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg 85764, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology; Pettenkofer School of Public Health, LMU Munich, Geschwister-Scholl-Platz 1, Munich 80539, Germany; Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, Lindwurmstr. 4, Munich 80337, Germany.
| | - Claudia Wigmann
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, Düsseldorf 40225, Germany.
| | - Qi Zhao
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, Düsseldorf 40225, Germany; Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan City 250012, Shandong Province, China; School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Rd, Melbourne, VIC 3004, Australia.
| | - Tianyu Zhao
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg 85764, Germany.
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Rd, Melbourne, VIC 3004, Australia.
| | - Monika Gappa
- Department of Paediatrics, Evangelisches Krankenhaus, Kirchfeldstraße 40, Düsseldorf 40217, Germany.
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg 85764, Germany; German Center for Lung Research (DZL), Aulweg 130, Gießen 35392, Germany.
| | - Klaus Unfried
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, Düsseldorf 40225, Germany.
| | - Tamara Schikowski
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, Düsseldorf 40225, Germany.
| |
Collapse
|
105
|
Lin S, Ryan I, Paul S, Deng X, Zhang W, Luo G, Dong GH, Nair A, Yu F. Particle surface area, ultrafine particle number concentration, and cardiovascular hospitalizations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119795. [PMID: 35863707 DOI: 10.1016/j.envpol.2022.119795] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
While the health impacts of larger particulate matter, such as PM10 and PM2.5, have been studied extensively, research regarding ultrafine particles (UFPs or PM0.1) and particle surface area concentration (PSC) is lacking. This case-crossover study assessed the associations between exposure to PSC and UFP number concentration (UFPnc) and hospital admissions for cardiovascular diseases (CVDs) in New York State (NYS), 2013-2018. We used a time-stratified case-crossover design to compare the PSC and UFPnc levels between hospitalization days and control days (similar days without admissions) for each CVD case. We utilized NYS hospital discharge data to identify all CVD cases who resided in NYS. UFP simulation data from GEOS-Chem-APM, a state-of-the-art chemical transport model, was used to define PSC and UFPnc. Using a multi-pollutant model and conditional logistic regression, we assessed excess risk (ER)% per inter-quartile change of PSC and UFPnc after controlling for meteorological factors, co-pollutants, and time-varying variables. We found immediate and lasting associations between PSC and overall CVDs (lag0-lag0-6: ERs% (95% CI%) ranges: 0.4 (0.1,0.7) - 0.9 (0.7-1.2), and delayed and prolonged ERs%: 0.1-0.3 (95% CIs: 0.1-0.5) between UFPnc and CVDs (lag0-3-lag0-6). Exposure to larger PSC was associated with immediate ER increases in stroke, hypertension, and ischemic heart diseases (1.1%, 0.7%, 0.8%, respectively, all p < 0.05). The adverse effects of PSC on CVDs were highest among children (5-17 years old), in the fall and winter, and during cold temperatures. In conclusion, we found an immediate, lasting effects of PSC on overall CVDs and a delayed, prolonged impact of UFPnc. PSC was a more sensitive indicator than UFPnc. The PSC effects were higher among certain CVD subtypes, in children, in certain seasons, and during cold days. Further studies are needed to validate our findings and evaluate the long-term effects.
Collapse
Affiliation(s)
- Shao Lin
- Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY, USA; Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, USA.
| | - Ian Ryan
- Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Sanchita Paul
- Department of Environmental & Sustainable Engineering, University at Albany, State University of New York, Albany, NY, USA
| | - Xinlei Deng
- Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Wangjian Zhang
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Gan Luo
- Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY, USA
| | - Guang-Hui Dong
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Arshad Nair
- Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY, USA
| | - Fangqun Yu
- Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY, USA
| |
Collapse
|
106
|
Russell HS, Frederickson LB, Kwiatkowski S, Emygdio APM, Kumar P, Schmidt JA, Hertel O, Johnson MS. Enhanced Ambient Sensing Environment-A New Method for Calibrating Low-Cost Gas Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:7238. [PMID: 36236337 PMCID: PMC9571921 DOI: 10.3390/s22197238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Accurate calibration of low-cost gas sensors is, at present, a time consuming and difficult process. Laboratory calibration and field calibration methods are currently used, but laboratory calibration is generally discounted due to poor transferability, and field methods requiring several weeks are standard. The Enhanced Ambient Sensing Environment (EASE) method described in this article, is a hybrid of the two, combining the advantages of a laboratory calibration with the increased accuracy of a field calibration. It involves calibrating sensors inside a duct, drawing in ambient air with similar properties to the site where the sensors will operate, but with the added feature of being able to artificially increases or decrease pollutant levels, thus condensing the calibration period required. Calibration of both metal-oxide (MOx) and electrochemical (EC) gas sensors for the measurement of NO2 and O3 (0-120 ppb) were conducted in EASE, laboratory and field environments, and validated in field environments. The EC sensors performed marginally better than MOx sensors for NO2 measurement and sensor performance was similar for O3 measurement, but the EC sensor nodes had less node inter-node variability and were more robust. For both gasses and sensor types the EASE calibration outperformed the laboratory calibration, and performed similarly to or better than the field calibration, whilst requiring a fraction of the time.
Collapse
Affiliation(s)
- Hugo Savill Russell
- Department of Environmental Science, Aarhus University, DK-4000 Roskilde, Denmark
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, DK-4000 Roskilde, Denmark
- AirLabs, Nannasgade 28, DK-2200 Copenhagen N, Denmark
| | - Louise Bøge Frederickson
- Department of Environmental Science, Aarhus University, DK-4000 Roskilde, Denmark
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, DK-4000 Roskilde, Denmark
- AirLabs, Nannasgade 28, DK-2200 Copenhagen N, Denmark
| | | | - Ana Paula Mendes Emygdio
- Global Center for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Surrey GU2 7XH, UK
| | - Prashant Kumar
- Global Center for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Surrey GU2 7XH, UK
| | | | - Ole Hertel
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, DK-4000 Roskilde, Denmark
- Department of Ecoscience, Aarhus University, DK-4000 Roskilde, Denmark
| | - Matthew Stanley Johnson
- AirLabs, Nannasgade 28, DK-2200 Copenhagen N, Denmark
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
107
|
Kress S, Wigmann C, Zhao Q, Herder C, Abramson MJ, Schwender H, Schikowski T. Chronic air pollution-induced subclinical airway inflammation and polygenic susceptibility. Respir Res 2022; 23:265. [PMID: 36151579 PMCID: PMC9508765 DOI: 10.1186/s12931-022-02179-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Background Air pollutants can activate low-grade subclinical inflammation which further impairs respiratory health. We aimed to investigate the role of polygenic susceptibility to chronic air pollution-induced subclinical airway inflammation. Methods We used data from 296 women (69–79 years) enrolled in the population-based SALIA cohort (Study on the influence of Air pollution on Lung function, Inflammation and Aging). Biomarkers of airway inflammation were measured in induced-sputum samples at follow-up investigation in 2007–2010. Chronic air pollution exposures at residential addresses within 15 years prior to the biomarker assessments were used to estimate main environmental effects on subclinical airway inflammation. Furthermore, we calculated internally weighted polygenic risk scores based on genome-wide derived single nucleotide polymorphisms. Polygenic main and gene-environment interaction (GxE) effects were investigated by adjusted linear regression models. Results Higher exposures to nitrogen dioxide (NO2), nitrogen oxides (NOx), particulate matter with aerodynamic diameters of ≤ 2.5 μm, ≤ 10 μm, and 2.5–10 µm significantly increased the levels of leukotriene (LT)B4 by 19.7% (p-value = 0.005), 20.9% (p = 0.002), 22.1% (p = 0.004), 17.4% (p = 0.004), and 23.4% (p = 0.001), respectively. We found significant effects of NO2 (25.9%, p = 0.008) and NOx (25.9%, p-value = 0.004) on the total number of cells. No significant GxE effects were observed. The trends were mostly robust in sensitivity analyses. Conclusions While this study confirms that higher chronic exposures to air pollution increase the risk of subclinical airway inflammation in elderly women, we could not demonstrate a significant role of polygenic susceptibility on this pathway. Further studies are required to investigate the role of polygenic susceptibility. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02179-3.
Collapse
Affiliation(s)
- Sara Kress
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.,Medical Research School Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Claudia Wigmann
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Qi Zhao
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.,Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.,School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany.,Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Holger Schwender
- Mathematical Institute, Heinrich Heine University, Düsseldorf, Germany
| | - Tamara Schikowski
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.
| |
Collapse
|
108
|
Chen CF, Hsu CH, Chang YJ, Lee CH, Lee DL. Efficacy of HEPA Air Cleaner on Improving Indoor Particulate Matter 2.5 Concentration. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11517. [PMID: 36141811 PMCID: PMC9516965 DOI: 10.3390/ijerph191811517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
High-efficiency particulate air (HEPA) filters is a potential tool used to remove fine particles and improve indoor air quality. This study aims to analyze the real-world efficacy of portable HEPA air cleaners in a household environment. Laser light dispersion PM2.5 sensors are used to continuously monitor the indoor and outdoor PM2.5 level before and after HEPA air cleaner filtration. Overall, HEPA air cleaners significantly reduce the indoor PM2.5 level (33.5 ± 10.3 vs. 17.2 ± 10.7 µg/m3, mean difference (MD) = -16.3 µg/m3, p < 0.001) and indoor/outdoor PM2.5% (76.3 ± 16.8 vs. 38.6 ± 19.8%, MD = -37.7%, p < 0.001). The efficacy to reduce PM2.5 is strongest in three machines with medium-flow setting group (indoor PM2.5 MD: -26.5 µg/m3, indoor/outdoor PM2.5 percentage MD: -56.4%). Multiple linear regression demonstrates that outdoor PM2.5, machine number, airflow speed, and window ventilation are significant factors associated with indoor PM2.5 concentrations (R = 0.879) and percentage of the indoor/outdoor PM2.5 ratio (R = 0.808). HEPA air cleaners can effectively improve indoor PM2.5 air pollution. Adequate air cleaner machine numbers, appropriate airflow, and window ventilation limitations are important to achieve the best efficacy of the HEPA air cleaner.
Collapse
Affiliation(s)
- Chiu-Fan Chen
- Division of Chest Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Chun-Hsiang Hsu
- Division of Chest Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Yu-Jung Chang
- Kaohsiung and Pingtung Branch, National Health Insurance Administration, Ministry of Health and Welfare, Kaohsiung 801, Taiwan
| | - Chao-Hsien Lee
- Department of Nursing, Meiho University, Pingtung 912, Taiwan
| | - David Lin Lee
- Division of Chest Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Department of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
109
|
Park H, Pappalardo AA. Invited Perspective: Call to Action-Reduce Immigrants' Disparities in Environmental Exposures and Health. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:91301. [PMID: 36053725 PMCID: PMC9438917 DOI: 10.1289/ehp11003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Henna Park
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Andrea A. Pappalardo
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Internal Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
110
|
Xu H, Wang X, Tian Y, Tian J, Zeng Y, Guo Y, Song F, Xu X, Ni X, Feng G. Short-term exposure to gaseous air pollutants and daily hospitalizations for acute upper and lower respiratory infections among children from 25 cities in China. ENVIRONMENTAL RESEARCH 2022; 212:113493. [PMID: 35618009 DOI: 10.1016/j.envres.2022.113493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/29/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
To examine the short-term association between gaseous air pollutants (CO, NO2, SO2, and O3) and all-cause respiratory disease, acute upper respiratory infections (AURIs) as well as acute lower respiratory infections (ALRIs) among children, we conducted the study from 25 major cities in China. Hospitalization records of children aged 0-18 years due to all-cause respiratory diseases (889,926), AURIs (97,858), and ALRIs (642,154) from 2016 to 2019 were extracted. Concentrations of CO, NO2, SO2, and O3 were averaged across monitoring stations. Generalized additive models were used to estimate the associations between gaseous air pollutants and daily hospitalizations for all-cause respiratory disease, AURIs, and ALRIs. The meta-analysis was used to combine the city-specific estimates. A 10 mg/m3 increase in CO at lag01, and a 10 μg/m3 increase in NO2, SO2, and O3 at lag01 were associated with 1.65% (95%CI, 0.41-2.91), 0.54% (95%CI, 0.30-0.79), 0.60% (95%CI, 0.22-0.99), and 0.23% (95%CI, 0.06-0.39) increase of hospitalizations due to all-cause respiratory disease, respectively. For the disease subtype, O3 only had adverse effects on AURIs, CO and SO2 mainly on ALRIs, and NO2 on both AURIs and ALRIs. Children aged 4-6years were more vulnerable to the effects of CO and NO2, but those aged <1year were more susceptible to SO2 and O3. Besides, the O3 effect was stronger in the warm season than in the cold season. The study indicated that short-term exposure to CO, NO2, SO2, and O3 was associated with increased hospitalization for pediatric respiratory disease, and the association may vary by position of the respiratory tract, age, and season.
Collapse
Affiliation(s)
- Hui Xu
- Big Data Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xinyu Wang
- Big Data Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yaohua Tian
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Tian
- Big Data Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yueping Zeng
- Medical Record Management Office, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Fei Song
- Medical Record Management Office, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xin Xu
- Big Data Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xin Ni
- Big Data Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, China; Department of Otolaryngology Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| | - Guoshuang Feng
- Big Data Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, China.
| |
Collapse
|
111
|
Outdoor Air Pollution and Pregnancy Loss: a Review of Recent Literature. CURR EPIDEMIOL REP 2022. [DOI: 10.1007/s40471-022-00304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Abstract
Purpose of Review
This review summarizes recent literature about the impacts of outdoor air pollution on pregnancy loss (spontaneous abortion/miscarriage and stillbirth), identifies challenges and opportunities, and provides recommendations for actions.
Recent Findings
Both short- and long-term exposures to ubiquitous air pollutants, including fine particulate matter < 2.5 and < 10 μm, may increase pregnancy loss risk. Windows of susceptibility include the entire gestational period, especially early pregnancy, and the week before event. Vulnerable subpopulations were not consistently explored, but some evidence suggests that pregnant parents from more disadvantaged populations may be more impacted even at the same exposure level.
Summary
Given environmental conditions conductive to high air pollution exposures become more prevalent as the climate shifts, air pollution’s impacts on pregnancy is expected to become a growing public health concern. While awaiting larger preconception studies to further understand causal impacts, multi-disciplinary efforts to minimize exposures among pregnant women are warranted.
Collapse
|
112
|
Zhou B, Liu T, Yi S, Huang Y, Guo Y, Huang S, Zhou C, Zhou R, Cao H. Reducing the Effectiveness of Ward Particulate Matter, Bacteria and Influenza Virus by Combining Two Complementary Air Purifiers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10446. [PMID: 36012090 PMCID: PMC9408449 DOI: 10.3390/ijerph191610446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Air purifiers should pay much attention to hospital-associated infections, but the role of a single air purifier is limited. The goal of this study was to evaluate the effectiveness of the combined application of the nonequilibrium positive and negative oxygen ion purifier (PNOI) and the high-efficiency particulate air filter (HEPA) on a complex, polluted environment. Two of the better performing purifiers were selected before the study. The efficacy of their use alone and in combination for purification of cigarette particulate matter (PM), Staphylococcus albicans, and influenza virus were then evaluated under a simulated contaminated ward. PNAI and HEPA alone are deficient. However, when they were combined, they achieved 98.44%, 99.75%, and 100% 30 min purification rates for cigarette PM, S. albus, and influenza virus, respectively. The purification of pollution of various particle sizes and positions was optimized and reduced differentials, and a subset of airborne influenza viruses is inactivated. Furthermore, they were superior to ultraviolet disinfection for microbial purification in air. This work demonstrates the strong purification capability of the combined application of these two air purifiers for complex air pollution, which provides a new idea for infection control in medical institutions.
Collapse
Affiliation(s)
- Bingliang Zhou
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Tiantian Liu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Siqi Yi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510180, China
| | - Yuanyuan Huang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yubing Guo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510180, China
| | - Si Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510180, China
| | - Chengxing Zhou
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510180, China
| | - Hong Cao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
113
|
Song Y, Xu T. The threshold and spatial effects of PM2.5 pollution on resident health: evidence from China. Front Public Health 2022; 10:908042. [PMID: 36062136 PMCID: PMC9436244 DOI: 10.3389/fpubh.2022.908042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/27/2022] [Indexed: 01/22/2023] Open
Abstract
Health capital investment is an integral aspect of human capital investment, and it is vitally important to improve residents' health by encouraging them to maintain insurance. This paper estimates the potential impact of particulate pollution (PM2.5) on health insurance buyers at the city level. Using PM2.5 as a representative air pollution indicator, we construct a threshold panel model and a spatial econometric model based on 2000-2019 panel data from 256 Chinese cities and the health production function to examine the impact mechanism through which PM2.5 pollution causes changes in the number of health insurance buyers. The results indicate that higher PM2.5 pollution significantly increases health insurance buyers in China. Considering the threshold effect, per capita GDP has a nonlinear relationship with an increasing marginal effect on the higher number of health insurance buyers. Due to spatial spillover effects, PM2.5 pollution has an additional impact on the number of health insurance buyers, indicating that a lack of awareness of the spatial correlation will result in underestimating the impact of PM2.5 pollution on residents' health. The robustness of adjacency and geographic distance matrices demonstrates that the regression results are robust and reliable. The findings of this study provide a practical reference for health insurers' development and policymakers' pollution control efforts.
Collapse
|
114
|
Valdés S, Doulatram-Gamgaram V, Maldonado-Araque C, Lago-Sampedro A, García-Escobar E, García-Serrano S, García-Vivanco M, Garrido Juan L, Theobald MR, Gil V, Martín-Llorente F, Ocon P, Calle-Pascual A, Castaño L, Delgado E, Menendez E, Franch-Nadal J, Gaztambide S, Girbés J, Chaves FJ, Galán-García JL, Aguilera-Venegas G, Gutierrez-Repiso C, Fernández-García JC, Colomo N, Soriguer F, García-Fuentes E, Rojo-Martínez G. Ambient air pollution and thyroid function in Spanish adults. A nationwide population-based study (Di@bet.es study). Environ Health 2022; 21:76. [PMID: 35978396 PMCID: PMC9387071 DOI: 10.1186/s12940-022-00889-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Recent reports have suggested that air pollution may impact thyroid function, although the evidence is still scarce and inconclusive. In this study we evaluated the association of exposure to air pollutants to thyroid function parameters in a nationwide sample representative of the adult population of Spain. METHODS The Di@bet.es study is a national, cross-sectional, population-based survey which was conducted in 2008-2010 using a random cluster sampling of the Spanish population. The present analyses included 3859 individuals, without a previous thyroid disease diagnosis, and with negative thyroid peroxidase antibodies (TPO Abs) and thyroid-stimulating hormone (TSH) levels of 0.1-20 mIU/L. Participants were assigned air pollution concentrations for particulate matter <2.5μm (PM2.5) and Nitrogen Dioxide (NO2), corresponding to the health examination year, obtained by means of modeling combined with measurements taken at air quality stations (CHIMERE chemistry-transport model). TSH, free thyroxine (FT4), free triiodothyronine (FT3) and TPO Abs concentrations were analyzed using an electrochemiluminescence immunoassay (Modular Analytics E170 Roche). RESULTS In multivariate linear regression models, there was a highly significant negative correlation between PM2.5 concentrations and both FT4 (p<0.001), and FT3 levels (p<0.001). In multivariate logistic regression, there was a significant association between PM2.5 concentrations and the odds of presenting high TSH [OR 1.24 (1.01-1.52) p=0.043], lower FT4 [OR 1.25 (1.02-1.54) p=0.032] and low FT3 levels [1.48 (1.19-1.84) p=<0.001] per each IQR increase in PM2.5 (4.86 μg/m3). There was no association between NO2 concentrations and thyroid hormone levels. No significant heterogeneity was seen in the results between groups of men, pre-menopausal and post-menopausal women. CONCLUSIONS Exposures to PM2.5 in the general population were associated with mild alterations in thyroid function.
Collapse
Affiliation(s)
- Sergio Valdés
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga/Universidad de Málaga, Instituto de Investigación Biomedica de Málaga-IBIMA, Málaga, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| | - Viyey Doulatram-Gamgaram
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga/Universidad de Málaga, Instituto de Investigación Biomedica de Málaga-IBIMA, Málaga, Spain
| | - Cristina Maldonado-Araque
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga/Universidad de Málaga, Instituto de Investigación Biomedica de Málaga-IBIMA, Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Lago-Sampedro
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga/Universidad de Málaga, Instituto de Investigación Biomedica de Málaga-IBIMA, Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Eva García-Escobar
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga/Universidad de Málaga, Instituto de Investigación Biomedica de Málaga-IBIMA, Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Sara García-Serrano
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga/Universidad de Málaga, Instituto de Investigación Biomedica de Málaga-IBIMA, Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta García-Vivanco
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) - División de Contaminación Atmosférica, Madrid, Spain
| | - Luis Garrido Juan
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) - División de Contaminación Atmosférica, Madrid, Spain
| | - Mark Richard Theobald
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) - División de Contaminación Atmosférica, Madrid, Spain
| | - Victoria Gil
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) - División de Contaminación Atmosférica, Madrid, Spain
| | - Fernando Martín-Llorente
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) - División de Contaminación Atmosférica, Madrid, Spain
| | - Pilar Ocon
- UGC de Laboratorio (Bioquímica), Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Alfonso Calle-Pascual
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition and Instituto de Investigación, Department Medicine II, Sanitaria University Hospital S. Carlos (IdISSC), Universidad Complutense (UCM), Madrid, Spain
| | - Luis Castaño
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Hospital Universitario Cruces, UPV/EHU, BioCrucesBarakaldo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Elías Delgado
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias / University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Edelmiro Menendez
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias / University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Josep Franch-Nadal
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- EAP Raval Sud, Institut Català de la Salut, Unitat de Suport a la Recerca (IDIAP - Fundació Jordi Gol), Red GEDAPS, Primary Care, Barcelona, Spain
| | - Sonia Gaztambide
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- EAP Raval Sud, Institut Català de la Salut, Unitat de Suport a la Recerca (IDIAP - Fundació Jordi Gol), Red GEDAPS, Primary Care, Barcelona, Spain
| | - Joan Girbés
- Genomic Studies and Genetic Diagnosis Unit, Fundación de Investigación del Hospital Clínico de Valencia - INCLIVA, Valencia, Spain
| | - F Javier Chaves
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Genomic Studies and Genetic Diagnosis Unit, Fundación de Investigación del Hospital Clínico de Valencia - INCLIVA, Valencia, Spain
| | | | | | - Carolina Gutierrez-Repiso
- UGC de Endocrinología y Nutrición. Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomedica de Málaga-IBIMA, Málaga, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - José Carlos Fernández-García
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga/Universidad de Málaga, Instituto de Investigación Biomedica de Málaga-IBIMA, Málaga, Spain
| | - Natalia Colomo
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga/Universidad de Málaga, Instituto de Investigación Biomedica de Málaga-IBIMA, Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga - IBIMA, Málaga, Spain
- CIBER Enfermedades Hepáticas y Digestivas - CIBEREHD, Instituto de Salud Carlos III, Málaga, Spain
| | - Gemma Rojo-Martínez
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga/Universidad de Málaga, Instituto de Investigación Biomedica de Málaga-IBIMA, Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
115
|
Parenteau AM, Alen NV, La J, Luck AT, Teichrow DJ, Daang EM, Nissen AT, Deer LK, Hostinar CE. Associations of air pollution with peripheral inflammation and cardiac autonomic physiology in children. New Dir Child Adolesc Dev 2022; 2022:125-154. [PMID: 35921508 DOI: 10.1002/cad.20474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Climate change-related disasters have drawn increased attention to the impact of air pollution on health. 122 children ages 9-11 years old, M(SD) = 9.91(.56), participated. Levels of particulate matter (PM2.5) near participants' homes were obtained from the Environmental Protection Agency. Cytokines were assayed from 100 child serum samples: IL-6, IL-8, IL-10, and TNFα. Autonomic physiology was indexed by pre-ejection period (PEP), respiratory sinus arrhythmia (RSA), cardiac autonomic regulation (CAR), and cardiac autonomic balance (CAB). IL-6 was positively related to daily PM2.5 (r = .26, p = .009). IL-8 was negatively associated with monthly PM2.5 (r = -.23, p = .02). PEP was positively related to daily (r = .29, p = .001) and monthly PM2.5 (r = .18, p = .044). CAR was negatively associated with daily PM2.5 (r = -.29, p = .001). IL-10, TNFα, RSA, and CAB were not associated with PM2.5. Air pollution may increase risk of inflammation in children.
Collapse
Affiliation(s)
| | | | - Jennifer La
- University of California-San Francisco, San Francisco, California, USA
| | | | | | - Enya M Daang
- University of California-Davis, Davis, California, USA
| | - Adam T Nissen
- University of California-Davis, Davis, California, USA
| | | | | |
Collapse
|
116
|
Fitoussi R, Faure MO, Beauchef G, Achard S. Human skin responses to environmental pollutants: A review of current scientific models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119316. [PMID: 35469928 DOI: 10.1016/j.envpol.2022.119316] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Whatever the exposure route, chemical, physical and biological pollutants modify the whole organism response, leading to nerve, cardiac, respiratory, reproductive, and skin system pathologies. Skin acts as a barrier for preventing pollutant modifications. This review aims to present the available scientific models, which help investigate the impact of pollution on the skin. The research question was "Which experimental models illustrate the impact of pollution on the skin in humans?" The review covered a period of 10 years following a PECO statement on in vitro, ex vivo, in vivo and in silico models. Of 582 retrieved articles, 118 articles were eligible. In oral and inhalation routes, dermal exposure had an important impact at both local and systemic levels. Healthy skin models included primary cells, cell lines, co-cultures, reconstructed human epidermis, and skin explants. In silico models estimated skin exposure and permeability. All pollutants affected the skin by altering elasticity, thickness, the structure of epidermal barrier strength, and dermal extracellular integrity. Some specific models concerned wound healing or the skin aging process. Underlying mechanisms were an exacerbated inflammatory skin reaction with the modulation of several cytokines and oxidative stress responses, ending with apoptosis. Pathological skin models revealed the consequences of environmental pollutants on psoriasis, atopic dermatitis, and tumour development. Finally, scientific models were used for evaluating the safety and efficacy of potential skin formulations in preventing the skin aging process or skin irritation after repeated contact. The review gives an overview of scientific skin models used to assess the effects of pollutants. Chemical and physical pollutants were mainly represented while biological contaminants were little studied. In future developments, cell hypoxia and microbiota models may be considered as more representative of clinical situations. Models considering humidity and temperature variations may reflect the impact of these changes.
Collapse
Affiliation(s)
| | - Marie-Odile Faure
- Scientific Consulting For You, 266 avenue Daumesnil, 75012, PARIS, France
| | | | - Sophie Achard
- HERA Team (Health Environmental Risk Assessment), INSERM UMR1153, CRESS-INRAE, Université Paris Cité, Faculté de Pharmacie, 4 avenue de l'Observatoire, 75270 CEDEX 06, PARIS, France.
| |
Collapse
|
117
|
Zhou Q, Kang SL, Lin X, Zhang XY. Impact of air pollutants on hospital visits for pediatric asthma in Fuzhou city, southeast China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58664-58674. [PMID: 35366721 DOI: 10.1007/s11356-022-19928-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Rapid social development in China has resulted in severe air pollution and adverse impacts on people's health. Although studies have been conducted on the relationship between exposure to air pollutants and asthma exacerbation, most studies were performed in relatively heavily polluted areas, while little is known about the effect of air pollutants in less polluted areas. We assessed the effects of air pollutants on the risk of asthma-related outpatient and emergency visits of infants and children aged from 0 to 13 years during 2018 to 2020 in Fuzhou city, southeast China. Data of six air pollutants: sulfur dioxide (SO2), nitrogen dioxides (NO2), carbon monoxide (CO), daily maximum 8-h average ozone (O3-8 h), particulate matter with an aerodynamic diameter ≤ 10 μm (PM10), and particulate matter with an aerodynamic diameter ≤ 2.5 μm (PM2.5), were obtained from the Environmental Protection Administration of Fuzhou. Data of temperature, humidity, and wind speed were provided by the Meteorological Bureau of Fuzhou. Results revealed that on lag day 6, NO2, SO2, and CO were positively associated with the number of outpatient and emergency visits. Among the pollutants, SO2 had the highest effects on both outpatient visits (RR = 1.672, 95%CI 1.545, 1.809) and emergency visits (RR = 1.495, 95%CI 1.241, 1.800), and its effect on outpatient visits was stronger in children aged 0-4 years than in those aged 5-13 years (RR = 2.331 vs. 1.439). In conclusion, SO2 contributes substantially to the adverse effects of air pollutants on pediatric respiratory health in Fuzhou. Younger children were more affected by air pollution than their older counterparts.
Collapse
Affiliation(s)
- Quan Zhou
- Fuzhou Center for Disease Control and Prevention, Fuzhou, 350004, Fujian, China
- Fuzhou Center for Disease Control and Prevention affiliated to Fujian Medical University, Fuzhou, China
| | - Shu-Ling Kang
- Fuzhou Center for Disease Control and Prevention, Fuzhou, 350004, Fujian, China
- Fuzhou Center for Disease Control and Prevention affiliated to Fujian Medical University, Fuzhou, China
| | - Xin Lin
- Fuzhou Center for Disease Control and Prevention, Fuzhou, 350004, Fujian, China.
- Fuzhou Center for Disease Control and Prevention affiliated to Fujian Medical University, Fuzhou, China.
| | - Xiao-Yang Zhang
- Fuzhou Center for Disease Control and Prevention, Fuzhou, 350004, Fujian, China.
- Fuzhou Center for Disease Control and Prevention affiliated to Fujian Medical University, Fuzhou, China.
| |
Collapse
|
118
|
Label-free detection and quantification of ultrafine particulate matter in lung and heart of mouse and evaluation of tissue injury. Part Fibre Toxicol 2022; 19:51. [PMID: 35883088 PMCID: PMC9316794 DOI: 10.1186/s12989-022-00493-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022] Open
Abstract
While it is known that air borne ultrafine particulate matter (PM) may pass through the pulmonary circulation of blood at the alveolar level between lung and heart and cross the air-blood barrier, the mechanism and effects are not completely clear. In this study the imaging method fluorescence lifetime imaging microscopy is adopted for visualization with high spatial resolution and quantification of ultrafine PM particles in mouse lung and heart tissues. The results showed that the median numbers of particles in lung of mice exposed to ultrafine particulate matter of diameter less than 2.5 µm was about 2.0 times more than that in the filtered air (FA)-treated mice, and about 1.3 times more in heart of ultrafine PM-treated mice than in FA-treated mice. Interestingly, ultrafine PM particles were more abundant in heart than lung, likely due to how ultrafine PM particles are cleared by phagocytosis and transport via circulation from lungs. Moreover, heart tissues showed inflammation and amyloid deposition. The component analysis of concentrated airborne ultrafine PM particles suggested traffic exhausts and industrial emissions as predominant sources. Our results suggest association of ultrafine PM exposure to chronic lung and heart tissue injuries. The current study supports the contention that industrial air pollution is one of the causative factors for rising levels of chronic pulmonary and cardiac diseases.
Collapse
|
119
|
Suel E, Sorek-Hamer M, Moise I, von Pohle M, Sahasrabhojanee A, Asanjan AA, Arku RE, Alli AS, Barratt B, Clark SN, Middel A, Deardorff E, Lingenfelter V, Oza N, Yadav N, Ezzati M, Brauer M. What you see is what you breathe? Estimating air pollution spatial variation using street level imagery. REMOTE SENSING 2022; 14:3429. [PMID: 37719470 PMCID: PMC7615101 DOI: 10.3390/rs14143429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
High spatial resolution information on urban air pollution levels is unavailable in many areas globally, partially due to high input data needs of existing estimation approaches. Here we introduce a computer vision method to estimate annual means for air pollution levels from street level images. We used annual mean estimates of NO2 and PM2.5 concentrations from locally calibrated models as labels from London, New York, and Vancouver to allow for compilation of a sufficiently large dataset (~250k images for each city). Our experimental setup is designed to quantify intra and intercity transferability of image-based model estimates. Performances were high and comparable to traditional land-use regression (LUR) and dispersion models when training and testing on images from the same city (R2 values between 0.51 and 0.95 when validated on data from ground monitoring stations). Like LUR models, transferability of models between cities in different geographies is more difficult. Specifically, transferability between the three cities i.e., London, New York, and Vancouver, which have similar pollution source profiles were moderately successful (R2 values between zero and 0.67). Comparatively, performances when transferring models trained on these cities with very different source profiles i.e., Accra in Ghana and Hong Kong were lower (R2 between zero and 0.21) suggesting the need for local calibration with local calibration using additional measurement data from cities that share similar source profiles.
Collapse
Affiliation(s)
| | | | | | - Michael von Pohle
- Universities Space Research Association (USRA)
- NASA Ames Research Center
| | | | | | | | | | | | | | | | - Emily Deardorff
- Universities Space Research Association (USRA)
- NASA Ames Research Center
- San Diego State University
| | - Violet Lingenfelter
- Universities Space Research Association (USRA)
- NASA Ames Research Center
- UC Berkeley
| | | | - Nishant Yadav
- Universities Space Research Association (USRA)
- NASA Ames Research Center
| | | | | |
Collapse
|
120
|
Koshko L, Scofield S, Mor G, Sadagurski M. Prenatal Pollutant Exposures and Hypothalamic Development: Early Life Disruption of Metabolic Programming. Front Endocrinol (Lausanne) 2022; 13:938094. [PMID: 35909533 PMCID: PMC9327615 DOI: 10.3389/fendo.2022.938094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Environmental contaminants in ambient air pollution pose a serious risk to long-term metabolic health. Strong evidence shows that prenatal exposure to pollutants can significantly increase the risk of Type II Diabetes (T2DM) in children and all ethnicities, even without the prevalence of obesity. The central nervous system (CNS) is critical in regulating whole-body metabolism. Within the CNS, the hypothalamus lies at the intersection of the neuroendocrine and autonomic systems and is primarily responsible for the regulation of energy homeostasis and satiety signals. The hypothalamus is particularly sensitive to insults during early neurodevelopmental periods and may be susceptible to alterations in the formation of neural metabolic circuitry. Although the precise molecular mechanism is not yet defined, alterations in hypothalamic developmental circuits may represent a leading cause of impaired metabolic programming. In this review, we present the current knowledge on the links between prenatal pollutant exposure and the hypothalamic programming of metabolism.
Collapse
Affiliation(s)
- Lisa Koshko
- Integrative Biosciences Center, Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Sydney Scofield
- Integrative Biosciences Center, Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology School of Medicine, Wayne State University, Detroit, MI, United States
| | - Marianna Sadagurski
- Integrative Biosciences Center, Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
121
|
Keswani A, Akselrod H, Anenberg SC. Health and Clinical Impacts of Air Pollution and Linkages with Climate Change. NEJM EVIDENCE 2022; 1:EVIDra2200068. [PMID: 38319260 DOI: 10.1056/evidra2200068] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Air Pollution Impacts and Climate Change LinksAs part of the NEJM Group series on climate change, Keswani and colleagues review the linkages between climate change and air pollution and suggest strategies that clinicians may use to mitigate the adverse health impacts of air pollution.
Collapse
Affiliation(s)
- Anjeni Keswani
- Division of Allergy/Immunology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Hana Akselrod
- Division of Infectious Diseases, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Susan C Anenberg
- George Washington University Milken Institute School of Public Health, Washington, DC
| |
Collapse
|
122
|
Oates GR, Schechter MS. Socioeconomic determinants of respiratory health in patients with cystic fibrosis: implications for treatment strategies. Expert Rev Respir Med 2022; 16:637-650. [PMID: 35705523 DOI: 10.1080/17476348.2022.2090928] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Great variation exists in the progression and outcomes of cystic fibrosis (CF) lung disease, due to both genetic and environmental influences. Social determinants mediate environmental exposures and treatment success; people with CF from socioeconomically disadvantaged backgrounds have worse health and die younger than those in more advantaged positions. AREAS COVERED This paper reviews the literature on the mechanisms that are responsible for generating and sustaining disparities in CF health, and the ways by which social determinants translate into health advantages or disadvantages in people with CF. The authors make recommendations for addressing social risk factors in CF clinical practice. EXPERT OPINION Socioeconomic factors are not dichotomous and their impact is felt at every step of the social ladder. CF care programs need to adopt a systematic protocol to screen for health-related social risk factors, and then connect patients to available resources to meet individual needs. Considerations such as daycare, schooling options, living and working conditions, and opportunities for physical exercise and recreation as well as promotion of self-efficacy are often overlooked. In addition, advocacy for changes in public policies on health insurance, environmental regulations, social welfare, and education would all help address the root causes of CF health inequities.
Collapse
Affiliation(s)
- Gabriela R Oates
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael S Schechter
- Division of Pulmonary Medicine, Department of Pediatrics, Virginia Commonwealth University and Children's Hospital of Richmond at VCU, USA
| |
Collapse
|
123
|
Lee HY, You DJ, Taylor-Just AJ, Linder KE, Atkins HM, Ralph LM, De la Cruz G, Bonner JC. Pulmonary exposure of mice to ammonium perfluoro(2-methyl-3-oxahexanoate) (GenX) suppresses the innate immune response to carbon black nanoparticles and stimulates lung cell proliferation. Inhal Toxicol 2022; 34:244-259. [PMID: 35704474 DOI: 10.1080/08958378.2022.2086651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) have been associated with respiratory diseases in humans, yet the mechanisms through which PFAS cause susceptibility to inhaled agents is unknown. Herein, we investigated the effects of ammonium perfluoro(2-methyl-3-oxahexanoate) (GenX), an emerging PFAS, on the pulmonary immune response of mice to carbon black nanoparticles (CBNP). We hypothesized that pulmonary exposure to GenX would increase susceptibility to CBNP through suppression of innate immunity. METHODS Male C57BL/6 mice were exposed to vehicle, 4 mg/kg CBNP, 10 mg/kg GenX, or CBNP and GenX by oropharyngeal aspiration. Bronchoalveolar lavage fluid (BALF) was collected at 1 and 14 days postexposure for cytokines and total protein. Lung tissue was harvested for histopathology, immunohistochemistry (Ki67 and phosphorylated (p)-STAT3), western blotting (p-STAT3 and p-NF-κB), and qRT-PCR for cytokine mRNAs. RESULTS CBNP increased CXCL-1 and neutrophils in BALF at both time points evaluated. However, GenX/CBNP co-exposure reduced CBNP-induced CXCL-1 and neutrophils in BALF. Moreover, CXCL-1, CXCL-2 and IL-1β mRNAs were increased by CBNP in lung tissue but reduced by GenX. Western blotting showed that CBNP induced p-NF-κB in lung tissue, while the GenX/CBNP co-exposed group displayed decreased p-NF-κB. Furthermore, mice exposed to GenX or GenX/CBNP displayed increased numbers of BALF macrophages undergoing mitosis and increased Ki67 immunostaining. This was correlated with increased p-STAT3 by western blotting and immunohistochemistry in lung tissue from mice co-exposed to GenX/CBNP. CONCLUSIONS Pulmonary exposure to GenX suppressed CBNP-induced innate immune response in the lungs of mice yet promoted the proliferation of macrophages and lung epithelial cells.
Collapse
Affiliation(s)
- Ho Young Lee
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Dorothy J You
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Alexia J Taylor-Just
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Keith E Linder
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
| | - Hannah M Atkins
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Lauren M Ralph
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Gabriela De la Cruz
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - James C Bonner
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
124
|
Liu S, Lim YH, Chen J, Strak M, Wolf K, Weinmayr G, Rodopolou S, de Hoogh K, Bellander T, Brandt J, Concin H, Zitt E, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann B, Hvidtfeldt UA, Verschuren WMM, Jöckel KH, Jørgensen JT, So R, Amini H, Cole-Hunter T, Mehta AJ, Mortensen LH, Ketzel M, Lager A, Leander K, Ljungman P, Severi G, Boutron-Ruault MC, Magnusson PKE, Nagel G, Pershagen G, Peters A, Raaschou-Nielsen O, Rizzuto D, van der Schouw YT, Schramm S, Sørensen M, Stafoggia M, Tjønneland A, Katsouyanni K, Huang W, Samoli E, Brunekreef B, Hoek G, Andersen ZJ. Long-term Air Pollution Exposure and Pneumonia-related Mortality in a Large Pooled European Cohort. Am J Respir Crit Care Med 2022; 205:1429-1439. [PMID: 35258439 DOI: 10.1164/rccm.202106-1484oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Ambient air pollution exposure has been linked to mortality from chronic cardiorespiratory diseases, while evidence on respiratory infections remains more limited. Objectives: We examined the association between long-term exposure to air pollution and pneumonia-related mortality in adults in a pool of eight European cohorts. Methods: Within the multicenter project ELAPSE (Effects of Low-Level Air Pollution: A Study in Europe), we pooled data from eight cohorts among six European countries. Annual mean residential concentrations in 2010 for fine particulate matter, nitrogen dioxide (NO2), black carbon (BC), and ozone were estimated using Europe-wide hybrid land-use regression models. We applied stratified Cox proportional hazard models to investigate the associations between air pollution and pneumonia, influenza, and acute lower respiratory infections (ALRI) mortality. Measurements and Main Results: Of 325,367 participants, 712 died from pneumonia and influenza combined, 682 from pneumonia, and 695 from ALRI during a mean follow-up of 19.5 years. NO2 and BC were associated with 10-12% increases in pneumonia and influenza combined mortality, but 95% confidence intervals included unity (hazard ratios, 1.12 [0.99-1.26] per 10 μg/m3 for NO2; 1.10 [0.97-1.24] per 0.5 10-5m-1 for BC). Associations with pneumonia and ALRI mortality were almost identical. We detected effect modification suggesting stronger associations with NO2 or BC in overweight, employed, or currently smoking participants compared with normal weight, unemployed, or nonsmoking participants. Conclusions: Long-term exposure to combustion-related air pollutants NO2 and BC may be associated with mortality from lower respiratory infections, but larger studies are needed to estimate these associations more precisely.
Collapse
Affiliation(s)
| | | | - Jie Chen
- Institute for Risk Assessment Sciences and
| | - Maciek Strak
- Institute for Risk Assessment Sciences and.,National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Sophia Rodopolou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Tom Bellander
- Institute of Environmental Medicine.,Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Jørgen Brandt
- Department of Environmental Science.,iClimate, Interdisciplinary Centre for Climate Change, and
| | - Hans Concin
- Agency for Preventive and Social Medicine (aks), Bregenz, Austria
| | - Emanuel Zitt
- Agency for Preventive and Social Medicine (aks), Bregenz, Austria.,Department of Internal Medicine 3, Landeskrankenhaus Feldkirch, Feldkirch, Austria
| | - Daniela Fecht
- Medical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Francesco Forastiere
- Department of Epidemiology, Lazio Region Health Service/Azienda Sanitaria Locale Roma 1, Rome, Italy.,Science Policy & Epidemiology Environmental Research Group King's College London, London, United Kingdom
| | - John Gulliver
- Medical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom.,Centre for Environmental Health and Sustainability & School of Geography, Geology and the Environment, University of Leicester, Leicester, United Kingdom
| | - Ole Hertel
- Department of Ecoscience, Aarhus University, Roskilde, Denmark, Aarhus University, Roskilde, Denmark
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | | | - W M Monique Verschuren
- Julius Center for Health Sciences and Primary Care, Utrecht University, Utrecht, The Netherlands.,National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | | | - Rina So
- Section of Environmental Health
| | | | | | - Amar J Mehta
- Section of Epidemiology, and.,Statistics Denmark, Copenhagen, Denmark
| | - Laust H Mortensen
- Section of Epidemiology, and.,Statistics Denmark, Copenhagen, Denmark
| | - Matthias Ketzel
- Department of Environmental Science.,Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, United Kingdom
| | | | | | - Petter Ljungman
- Institute of Environmental Medicine.,Department of Cardiology, Danderyd University Hospital, Stockholm, Sweden
| | - Gianluca Severi
- University Paris-Saclay, University of Versailles Saint-Quentin, Inserm, Gustave Roussy, "Exposome and Heredity" team, The Centre de Recherche en Epidémiologie et Santé des Populations UMR1018, Villejuif, France.,Department of Statistics, Computer Science and Applications "G. Parenti" (DISIA), University of Florence, Florence, Italy
| | - Marie-Christine Boutron-Ruault
- University Paris-Saclay, University of Versailles Saint-Quentin, Inserm, Gustave Roussy, "Exposome and Heredity" team, The Centre de Recherche en Epidémiologie et Santé des Populations UMR1018, Villejuif, France
| | | | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Göran Pershagen
- Institute of Environmental Medicine.,Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany.,Chair of Epidemiology, Ludwig Maximilians Universität München, Germany
| | - Ole Raaschou-Nielsen
- Department of Environmental Science.,Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Debora Rizzuto
- Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden.,Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, Utrecht University, Utrecht, The Netherlands
| | - Sara Schramm
- Institute for Medical Informatics, Biometry and Epidemiology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Mette Sørensen
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Massimo Stafoggia
- Institute of Environmental Medicine.,Department of Epidemiology, Lazio Region Health Service/Azienda Sanitaria Locale Roma 1, Rome, Italy
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Diet, Genes and Environment (DGE), Copenhagen, Denmark; and
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Science Policy & Epidemiology Environmental Research Group King's College London, London, United Kingdom
| | - Wei Huang
- Department of Occupational and Environmental Health, School of Public Health, Peking University, Beijing, China
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Zorana J Andersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
125
|
Saleh S, Sambakunsi H, Makina D, Kumwenda M, Rylance J, Chinouya M, Mortimer K. "We threw away the stones": a mixed method evaluation of a simple cookstove intervention in Malawi. Wellcome Open Res 2022; 7:52. [PMID: 35330615 PMCID: PMC8933645 DOI: 10.12688/wellcomeopenres.17544.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Air pollution exposure is responsible for a substantial burden of respiratory disease globally. Household air pollution from cooking using biomass is a major contributor to overall exposure in rural low-income settings. Previous research in Malawi has revealed how precarity and food insecurity shape individuals' daily experiences, contributing to perceptions of health. Aiming to avoid a mismatch between research intervention and local context, we introduced a simple cookstove intervention in rural Malawi, analysing change in fine particulate matter (PM 2.5) exposures, and community perceptions. Methods: Following a period of baseline ethnographic research, we distributed 'chitetezo mbaula', locally-made cookstoves, to all households (n=300) in a rural Malawian village. Evaluation incorporated village-wide participant observation and concurrent exposure monitoring using portable PM 2.5 monitors at baseline and follow-up (three months post-intervention). Qualitative data were thematically analysed. Quantitative analysis of exposure data included pre-post intervention comparisons, with datapoints divided into periods of combustion activity (almost exclusively cooking) and non-combustion periods. Findings were integrated at the interpretation stage, using a convergent design mode of synthesis. Results: Individual exposure monitoring pre- and post-cookstove intervention involved a sample of 18 participants (15 female; mean age 43). Post-intervention PM 2.5 exposures (median 9.9μg/m 3 [interquartile range: 2.2-46.5]) were not significantly different to pre-intervention (11.8μg/m 3 [3.8-44.4]); p=0.71. On analysis by activity, background exposures were found to be reduced post-intervention (from 8.2μg/m 3 [2.5-22.0] to 4.6μg/m 3 [1.0-12.6]; p=0.01). Stoves were well-liked and widely used by residents as substitutes for previous cooking methods (mainly three-stone fires). Commonly cited benefits related to fuel saving and shorter cooking times. Conclusions: The cookstove intervention had no impact on cooking-related PM 2.5 exposures. A significant reduction in background exposures may relate to reduced smouldering emissions. Uptake and continued use of the stoves was high amongst community members, who preferred using the stoves to cooking over open fires.
Collapse
Affiliation(s)
- Sepeedeh Saleh
- Department of International Public Health, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Malawi-Liverpool Wellcome trust Clinical Research Programme, Blantyre, Malawi
| | - Henry Sambakunsi
- Malawi-Liverpool Wellcome trust Clinical Research Programme, Blantyre, Malawi
| | - Debora Makina
- Malawi-Liverpool Wellcome trust Clinical Research Programme, Blantyre, Malawi
| | - Moses Kumwenda
- Malawi-Liverpool Wellcome trust Clinical Research Programme, Blantyre, Malawi
| | - Jamie Rylance
- Department of International Public Health, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Malawi-Liverpool Wellcome trust Clinical Research Programme, Blantyre, Malawi
| | - Martha Chinouya
- Department of International Public Health, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Kevin Mortimer
- Department of International Public Health, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| |
Collapse
|
126
|
Michikawa T, Sasaki J, Yamazaki S, Takami A, Asakura K, Imamura H, Ueda K, Saito S, Hoshi J, Yoshino A, Sugata S, Nitta H, Nishiwaki Y. A Case-Crossover Analysis of the Association between Exposure to Total PM 2.5 and Its Chemical Components and Emergency Ambulance Dispatches in Tokyo. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7319-7327. [PMID: 35608996 DOI: 10.1021/acs.est.1c08219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A limited number of studies have investigated the association between short-term exposure to PM2.5 components and morbidity. The present case-crossover study explored the association between exposure to total PM2.5 and its components and emergency ambulance dispatches, which is one of the indicators of morbidity, in the 23 Tokyo wards. Between 2016 and 2018 (mean mass concentrations of total PM2.5 13.5 μg/m3), we obtained data, from the Tokyo Fire Department, on the daily cases of ambulance dispatches. Fine particles were collected at a fixed monitoring site and were analyzed to estimate the daily mean concentrations of carbons and ions. We analyzed 1038301 cases of health-based all-cause ambulance dispatches by using a conditional logistic regression model. The average concentrations of total PM2.5 over one and the previous day were positively associated with the number of ambulance dispatches. In terms of PM2.5 components, the percentage increase per interquartile range (IQR) increase was 0.8% for elemental carbon (IQR = 0.8 μg/m3; 95% CI = 0.3-1.3%), 0.9% for sulfate (2.1 μg/m3; 0.5-1.4%), and 1.1% for ammonium (1.3 μg/m3; 0.4-1.8%) in the PM2.5-adjusted models. This is the first study to find an association between some specific components in PM2.5 and ambulance dispatches.
Collapse
Affiliation(s)
- Takehiro Michikawa
- Department of Environmental and Occupational Health, School of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo143-8540, Japan
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Junichi Sasaki
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo160-8582, Japan
| | - Shin Yamazaki
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Akinori Takami
- Regional Environment Conservation Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Keiko Asakura
- Department of Environmental and Occupational Health, School of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo143-8540, Japan
| | - Haruhiko Imamura
- Department of Environmental and Occupational Health, School of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo143-8540, Japan
| | - Kayo Ueda
- Department of Hygiene, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
- Environmental Health Sciences, Kyoto University Graduate School of Global Environmental Studies, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Shinji Saito
- Tokyo Metropolitan Research Institute for Environmental Protection, 1-7-5 Shinsuna, Koto-ku, Tokyo136-0075, Japan
| | - Junya Hoshi
- Tokyo Metropolitan Research Institute for Environmental Protection, 1-7-5 Shinsuna, Koto-ku, Tokyo136-0075, Japan
| | - Ayako Yoshino
- Regional Environment Conservation Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Seiji Sugata
- Regional Environment Conservation Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Hiroshi Nitta
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Yuji Nishiwaki
- Department of Environmental and Occupational Health, School of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo143-8540, Japan
| |
Collapse
|
127
|
The Impact of Air Pollution on Pulmonary Diseases: A Case Study from Brasov County, Romania. ATMOSPHERE 2022. [DOI: 10.3390/atmos13060902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Air pollution is considered one of the most significant risk factors for human health. To ensure air quality and prevent and reduce the harmful impact on human health, it is necessary to identify and measure the main air pollutants (sulfur and nitrogen oxides, PM10 and PM2.5 particles, lead, benzene, carbon monoxide, etc.), their maximum values, as well as the impact they have on mortality/morbidity rates caused by respiratory diseases. This paper aims to assess the influence of air pollution on respiratory diseases based on an analysis of principal pollutants and mortality/morbidity data sets. In this respect, four types of data are used: pollution sources inventory, air quality data sets, mortality/morbidity data at the local and national level, and clinical data of patients diagnosed with different forms of lung malignancies. The results showed an increased number of deaths caused by respiratory diseases for the studied period, correlated with the decreased air quality due to industrial and commercial activities, households, transportation, and energy production.
Collapse
|
128
|
Mookherjee N, Ryu MH, Hemshekhar M, Orach J, Spicer V, Carlsten C. Defining the effects of traffic-related air pollution on the human plasma proteome using an aptamer proteomic array: A dose-dependent increase in atherosclerosis-related proteins. ENVIRONMENTAL RESEARCH 2022; 209:112803. [PMID: 35120890 DOI: 10.1016/j.envres.2022.112803] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Traffic-related air pollution (TRAP) is a critical risk factor and major contributor to respiratory and cardiovascular disease (CVD). The effects of TRAP beyond the lungs can be related to changes in circulatory proteins. However, such TRAP-mediated changes have not been defined in an unbiased manner using a controlled human model. OBJECTIVE To detail global protein changes (the proteome) in plasma following exposure to inhaled diesel exhaust (DE), a paradigm of TRAP, using controlled human exposures. METHODS In one protocol, ex-smokers and never-smokers were exposed to filtered air (FA) and DE (300 μg PM2.5/m3), on order-randomized days, for 2 h. In a second protocol, independent never-smoking participants were exposed to lower concentrations of DE (20, 50 or 150 μg PM2.5/m3) and FA, for 4 h, on order-randomized days. Each exposure was separated by 4 weeks of washout. Plasma samples obtained 24 h post-exposure from ex-smokers (n = 6) were first probed using Slow off-rate modified aptamer proteomic array. Plasma from never-smokers (n = 11) was used for independent assessment of proteins selected from the proteomics study by immunoblotting. RESULTS Proteomics analyses revealed that DE significantly altered 342 proteins in plasma of ex-smokers (n = 6). The top 20 proteins therein were primarily associated with inflammation and CVD. Plasma from never-smokers (n = 11) was used for independent assessment of 6 proteins, amongst the top 10 proteins increased by DE in the proteomics study, for immunoblotting. The abundance of all six proteins (fractalkine, apolipoproteins (APOB and APOM), IL18R1, MIP-3 and MMP-12) was significantly increased by DE in plasma of these never-smokers. DE-mediated increase was shown to be concentration-dependent for fractalkine, APOB and MMP-12, all biomarkers of atherosclerosis, which correlated with plasma levels of IL-6, a subclinical marker of CVD, in independent participants. CONCLUSION This investigation details changes in the human plasma proteome due to TRAP. We identify specific atherosclerosis-related proteins that increase concentration-dependently across a range of TRAP levels applicable worldwide.
Collapse
Affiliation(s)
- Neeloffer Mookherjee
- Manitoba Center for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada; Department of Immunology, University of Manitoba, Winnipeg, MB, Canada; The Canadian Respiratory Research Network, Ottawa, ON, Canada
| | - Min Hyung Ryu
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada; The Canadian Respiratory Research Network, Ottawa, ON, Canada
| | - Mahadevappa Hemshekhar
- Manitoba Center for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Juma Orach
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Victor Spicer
- Manitoba Center for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Christopher Carlsten
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada; The Canadian Respiratory Research Network, Ottawa, ON, Canada.
| |
Collapse
|
129
|
Wei S, Wei Y, Gong Y, Chen Y, Cui J, Li L, Yan H, Yu Y, Lin X, Li G, Yi L. Metabolomics as a valid analytical technique in environmental exposure research: application and progress. Metabolomics 2022; 18:35. [PMID: 35639180 DOI: 10.1007/s11306-022-01895-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND In recent years, studies have shown that exposure to environmental pollutants (e.g., radiation, heavy metal substances, air pollutants, organic pollutants) is a leading cause of human non-communicable diseases. The key to disease prevention is to clarify the harmful mechanisms and toxic effects of environmental pollutants on the body. Metabolomics is a high-sensitivity, high-throughput omics technology that can obtain detailed metabolite information of an organism. It is a crucial tool for gaining a comprehensive understanding of the pathway network regulation mechanism of the organism. Its application is widespread in many research fields such as environmental exposure assessment, medicine, systems biology, and biomarker discovery. AIM OF REVIEW Recent findings show that metabolomics can be used to obtain molecular snapshots of organisms after environmental exposure, to help understand the interaction between environmental exposure and organisms, and to identify potential biomarkers and biological mechanisms. KEY SCIENTIFIC CONCEPTS OF REVIEW This review focuses on the application of metabolomics to understand the biological effects of radiation, heavy metals, air pollution, and persistent organic pollutants exposure, and examines some potential biomarkers and toxicity mechanisms.
Collapse
Affiliation(s)
- Shuang Wei
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yuanyun Wei
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yaqi Gong
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yonglin Chen
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jian Cui
- Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Linwei Li
- Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Hongxia Yan
- Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Yueqiu Yu
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiang Lin
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Guoqing Li
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Lan Yi
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
130
|
Kim A, Wang S, McCunn L, Bramono NT. Occupant trust in indoor air quality in a large office building after an emergent wildfire. JOURNAL OF FACILITIES MANAGEMENT 2022. [DOI: 10.1108/jfm-11-2021-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
This paper aims to establish a reliable scale measuring occupants’ levels of environmental trust in their work settings’ indoor air quality and explore the relationship between occupants’ levels of environmental trust and their perceived control over the air quality in their workspace.
Design/methodology/approach
The authors conducted occupant surveys concerning indoor air quality in an office building, and collected corresponding indoor air quality measurements. Descriptive statistics and correlation analysis results are reported to reveal occupants’ levels of environmental trust and perceived control.
Findings
Results reveal that psychological perceptions of indoor air quality can be quite neutral, even shortly after an extreme wildfire event resulting in very poor air quality in an urban area. Occupants’ sense of trust that their office building could protect them from harmful air outside, and their belief that the building could protect them from seasonal smoky conditions, each correlated positively with employees’ sense of control over the indoor air quality in their personal workspace.
Originality/value
This case study adds to an interdisciplinary understanding for facility managers and organizational leaders concerning a way to measure occupants’ sense of control over the indoor air quality in their building, as well as their environmental trust in terms of how protected they feel from harmful air quality conditions.
Collapse
|
131
|
Pathak N, Pollard KJ, McKinney A. Lifestyle Medicine Interventions for Personal and Planetary Health: The Urgent Need for Action. Am J Lifestyle Med 2022; 16:589-593. [PMID: 36072683 PMCID: PMC9442470 DOI: 10.1177/15598276221090887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The deterioration of planetary health—from threats such as climate change, environmental pollution, biodiversity loss, and ocean acidification—are a growing hazard to the foundation of health and the “healthspan.” For those with chronic conditions—a large and growing subset of the global population—the health dangers are even greater. Climate change is a threat to the very pillars of lifestyle medicine that we rely on to prevent and manage chronic disease. Already, the planetary crisis is limiting our ability to prescribe healthy nutrition, safe outdoor physical activity, stress management strategies, social connection, restorative sleep, and toxic substance avoidance. In this article, we discuss the proceedings of our workshop at the American College of Lifestyle Medicine (ACLM) annual conference LM2021, “Lifestyle Medicine for Personal and Planetary Health.” We examine how lifestyle medicine (LM) interventions are a prescription for individual, community, and planetary health. Our prescriptions work to not only restore the health of individuals and families, but also to bolster health equity while allowing us to mitigate and adapt to the health impacts of the planetary crises.
Collapse
Affiliation(s)
- Neha Pathak
- Global Sustainability Committee, American College of Lifestyle Medicine, Atlanta, GA, USA (NP)
- Global Sustainability Committee, American College of Lifestyle Medicine, Chesterfield, MO, USA (KJP)
- Global Sustainability Committee, American College of Lifestyle Medicine, USA (AM)
| | - Kathryn J. Pollard
- Global Sustainability Committee, American College of Lifestyle Medicine, Atlanta, GA, USA (NP)
- Global Sustainability Committee, American College of Lifestyle Medicine, Chesterfield, MO, USA (KJP)
- Global Sustainability Committee, American College of Lifestyle Medicine, USA (AM)
| | - Amanda McKinney
- Global Sustainability Committee, American College of Lifestyle Medicine, Atlanta, GA, USA (NP)
- Global Sustainability Committee, American College of Lifestyle Medicine, Chesterfield, MO, USA (KJP)
- Global Sustainability Committee, American College of Lifestyle Medicine, USA (AM)
| |
Collapse
|
132
|
Sousa AC, Pastorinho MR, Masjedi MR, Urrutia-Pereira M, Arrais M, Nunes E, To T, Ferreira AJ, Robalo-Cordeiro C, Borrego C, Teixeira JP, Taborda-Barata L. Issue 1 - "Update on adverse respiratory effects of outdoor air pollution" Part 2): Outdoor air pollution and respiratory diseases: Perspectives from Angola, Brazil, Canada, Iran, Mozambique and Portugal. Pulmonology 2022; 28:376-395. [PMID: 35568650 DOI: 10.1016/j.pulmoe.2021.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE To analyse the GARD perspective on the health effects of outdoor air pollution, and to synthesise the Portuguese epidemiological contribution to knowledge on its respiratory impact. RESULTS Ambient air pollution has deleterious respiratory effects which are more apparent in larger, densely populated and industrialised countries, such as Canada, Iran, Brazil and Portugal, but it also affects people living in low-level exposure areas. While low- and middle-income countries (LMICs), are particularly affected, evidence based on epidemiological studies from LMICs is both limited and heterogeneous. While nationally, Portugal has a relatively low level of air pollution, many major cities face with substantial air pollution problems. Time series and cross-sectional epidemiological studies have suggested increased respiratory hospital admissions, and increased risk of respiratory diseases in people who live in urban areas and are exposed to even a relatively low level of air pollution. CONCLUSIONS Adverse respiratory effects due to air pollution, even at low levels, have been confirmed by epidemiological studies. However, evidence from LMICs is heterogeneous and relatively limited. Furthermore, longitudinal cohort studies designed to study and quantify the link between exposure to air pollutants and respiratory diseases are needed. Worldwide, an integrated approach must involve multi-level stakeholders including governments (in Portugal, the Portuguese Ministry of Health, which hosts GARD-Portugal), academia, health professionals, scientific societies, patient associations and the community at large. Such an approach not only will garner a robust commitment, establish strong advocacy and clear objectives, and raise greater awareness, it will also support a strategy with adequate measures to be implemented to achieve better air quality and reduce the burden of chronic respiratory diseases (CRDs).
Collapse
Affiliation(s)
- A C Sousa
- Comprehensive Health Research Centre (CHRC) and Department of Biology, University of Évora, Pólo da Mitra, Apartado 94, Évora 7002-554, Portugal; NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, Covilhã 6200-506, Portugal
| | - M R Pastorinho
- NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, Covilhã 6200-506, Portugal; Comprehensive Health Research Centre (CHRC), Department of Medical and Health Sciences, University of Évora, Colégio Luís António Verney, Rua Romão Ramalho, 59, Évora 7000-671, Portugal
| | - M R Masjedi
- Department of Pulmonary Medicine, Shahid Beheshti University of Medical Sciences, 7th Floor, Bldg n 2, SBUMS, Arabi Avenue, Daneshjoo Boulevard, Velenjak, Tehran 19839-63113, Iran
| | - M Urrutia-Pereira
- Universidade Federal do Pampa, BR 472 - Km 585, Caixa Postal 118, Uruguaiana (RS) CEP 97501-970, Brazil
| | - M Arrais
- Department of Pulmonology, Military Hospital, Rua 17 de Setembro, 27/29, Cidade Alta, Luanda, Angola; Centro de Investigação em Saúde de Angola - CISA, Caxito, Bengo, Angola
| | - E Nunes
- Department of Pulmonology, Central Hospital of Maputo, Agostinho Neto, 64, Maputo 1100, Mozambique; Faculty of Medicine, Eduardo Mondlane University, Avenida Dr. Salvador Allende, Caixa Postal 257, Maputo, Mozambique
| | - T To
- The Hospital for Sick Children, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5G 1 × 8, Canada
| | - A J Ferreira
- Department of Pulmonology, Centro Hospitalar Universitário de Coimbra, Praceta Prof. Mota Pinto, Coimbra 3004-561, Portugal; Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, Coimbra 3000-548, Portugal
| | - C Robalo-Cordeiro
- Department of Pulmonology, Centro Hospitalar Universitário de Coimbra, Praceta Prof. Mota Pinto, Coimbra 3004-561, Portugal; Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, Coimbra 3000-548, Portugal
| | - C Borrego
- CESAM & Department of Environment and Planning, University of Aveiro, Aveiro 3810-193, Portugal; IDAD - Instituto do Ambiente e Desenvolvimento, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - J P Teixeira
- EPIUnit - Instituto de Saúde Pública, University of Porto, Rua das Taipas, 135, Porto 4050-091, Portugal; Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, Porto 4000-055, Portugal
| | - L Taborda-Barata
- NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, Covilhã 6200-506, Portugal; UBIAir-Clinical & Experimental Lung Centre, UBIMedical, University of Beira Interior, EM506 Covilhã 6200-000, Portugal; CICS-Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, Covilhã 6200-506, Portugal.
| |
Collapse
|
133
|
Orru H, Olstrup H, Hagenbjörk A, Nordin S, Orru K. Exposures, Symptoms and Risk Perception among Office Workers in Relation to Nanoparticles in the Work Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19105789. [PMID: 35627326 PMCID: PMC9141247 DOI: 10.3390/ijerph19105789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 12/10/2022]
Abstract
Submicroscopic nanoparticles (NPs) in air have received much attention due to their possible effects on health and wellbeing. Adverse health impacts of air pollution may not only be associated with level of exposure, but also mediated by the perception of the pollution and by beliefs of the exposure being hazardous. The aim of this study was to test a model that describes interrelations between NP pollution, perceived air quality, health risk perception, stress, and sick building syndrome. In the NanoOffice study, the level of NPs was measured and a survey on health risk perception was conducted among 260 employees in twelve office buildings in northern Sweden. Path analyses were performed to test the validity of the model. The data refute the model proposing that the NP exposure level significantly influences stress, chronic diseases, or SBS symptoms. Instead, the perceived exposure influences the perceived risk of NP, and the effect of perceived exposure on SBS and chronic disease is mediated by stress. There was little concern about nanoparticles, despite relatively high levels in some facilities. Perceived pollution and health risk perception may explain a large part of the environmentally induced symptoms and diseases, particularly in relatively low levels of pollution. The research results raise important questions on the physiologically or psychologically mediated health effects of air pollution.
Collapse
Affiliation(s)
- Hans Orru
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Faculty of Medicine, Umeå University, 901 87 Umeå, Sweden;
- Institute of Family Medicine and Public Health, Faculty of Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
- Correspondence: (H.O.); (H.O.); Tel.: +372-737-4203 (H.O.); +46-70-614-33-66 (H.O.)
| | - Henrik Olstrup
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Faculty of Medicine, Umeå University, 901 87 Umeå, Sweden;
- Institute of Family Medicine and Public Health, Faculty of Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
- Correspondence: (H.O.); (H.O.); Tel.: +372-737-4203 (H.O.); +46-70-614-33-66 (H.O.)
| | - Annika Hagenbjörk
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Faculty of Medicine, Umeå University, 901 87 Umeå, Sweden;
| | - Steven Nordin
- Department of Psychology, Faculty of Social Sciences, Umeå University, 901 87 Umeå, Sweden;
| | - Kati Orru
- Institute of Social Studies, University of Tartu, Lossi 36, 51003 Tartu, Estonia;
| |
Collapse
|
134
|
Ugalde-Resano R, Riojas-Rodríguez H, Texcalac-Sangrador JL, Cruz JC, Hurtado-Díaz M. Short term exposure to ambient air pollutants and cardiovascular emergency department visits in Mexico city. ENVIRONMENTAL RESEARCH 2022; 207:112600. [PMID: 34990608 DOI: 10.1016/j.envres.2021.112600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Available data on the acute cardiovascular effect of ambient air pollution (AAP) in Latin America is limited considering that over 80% of its 1 billion inhabitants live in urban settlements with poor air quality. The study aim was to evaluate the association between Cardiovascular Emergency Department Visits (CEDVs) and AAP in Mexico City from 2016 to 2019 using generalized additive models with distributed lags to examine the percentage change of CEDVs and a backward approach of time-series model to calculate attributable fractions. A total of 48,891 CEDVs were recorded in a period of 1019 days. We estimated a significant percentage increase for each 10 μg/m3 of PM10 at Lag0-5 (2.8%, 95%CI 0.6-5.0), PM2.5 at Lag0-6 (3.7%, 95%CI 0.1-7.6), O3 at Lag0-5 (1.1%, 95%CI 0.2-2.0), NO2 at Lag0-4 (2.5%, 95%CI 0.3-4.7) and for each 1 mg/m3 of CO at Lag0 (6.6%, 95%CI 0.3-13.2). Overall, 10.3% of CEDVs in Mexico City may be related to PM10 exposure, 9.5% to PM2.5, 10.3% to O3, 11% to NO2 and 5.7% to CO. AAP significantly increase cardiovascular morbidity impacting on emergency medical services.
Collapse
Affiliation(s)
- Rodrigo Ugalde-Resano
- Department of Environmental Health, Center for Population Health Research, National Institute of Public Health, 655 Avenida Universidad, Santa María Ahuacatitlan, Cuernavaca, Morelos, 62100, Mexico
| | - Horacio Riojas-Rodríguez
- Department of Environmental Health, Center for Population Health Research, National Institute of Public Health, 655 Avenida Universidad, Santa María Ahuacatitlan, Cuernavaca, Morelos, 62100, Mexico
| | - José Luis Texcalac-Sangrador
- Department of Environmental Health, Center for Population Health Research, National Institute of Public Health, 655 Avenida Universidad, Santa María Ahuacatitlan, Cuernavaca, Morelos, 62100, Mexico
| | - Julio C Cruz
- Department of Environmental Health, Center for Population Health Research, National Institute of Public Health, 655 Avenida Universidad, Santa María Ahuacatitlan, Cuernavaca, Morelos, 62100, Mexico
| | - Magali Hurtado-Díaz
- Department of Environmental Health, Center for Population Health Research, National Institute of Public Health, 655 Avenida Universidad, Santa María Ahuacatitlan, Cuernavaca, Morelos, 62100, Mexico.
| |
Collapse
|
135
|
Vohra K, Marais EA, Bloss WJ, Schwartz J, Mickley LJ, Van Damme M, Clarisse L, Coheur PF. Rapid rise in premature mortality due to anthropogenic air pollution in fast-growing tropical cities from 2005 to 2018. SCIENCE ADVANCES 2022; 8:eabm4435. [PMID: 35394832 PMCID: PMC8993110 DOI: 10.1126/sciadv.abm4435] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/18/2022] [Indexed: 05/19/2023]
Abstract
Tropical cities are experiencing rapid growth but lack routine air pollution monitoring to develop prescient air quality policies. Here, we conduct targeted sampling of recent (2000s to 2010s) observations of air pollutants from space-based instruments over 46 fast-growing tropical cities. We quantify significant annual increases in nitrogen dioxide (NO2) (1 to 14%), ammonia (2 to 12%), and reactive volatile organic compounds (1 to 11%) in most cities, driven almost exclusively by emerging anthropogenic sources rather than traditional biomass burning. We estimate annual increases in urban population exposure to air pollutants of 1 to 18% for fine particles (PM2.5) and 2 to 23% for NO2 from 2005 to 2018 and attribute 180,000 (95% confidence interval: -230,000 to 590,000) additional premature deaths in 2018 (62% increase relative to 2005) to this increase in exposure. These cities are predicted to reach populations of up to 80 million people by 2100, so regulatory action targeting emerging anthropogenic sources is urgently needed.
Collapse
Affiliation(s)
- Karn Vohra
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, UK
- Department of Geography, University College London, London, UK
- Corresponding author. (E.A.M.); (K.V.)
| | - Eloise A. Marais
- Department of Geography, University College London, London, UK
- Corresponding author. (E.A.M.); (K.V.)
| | - William J. Bloss
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Loretta J. Mickley
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Martin Van Damme
- Université libre de Bruxelles (ULB), Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES), Brussels, Belgium
| | - Lieven Clarisse
- Université libre de Bruxelles (ULB), Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES), Brussels, Belgium
| | - Pierre-F. Coheur
- Université libre de Bruxelles (ULB), Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES), Brussels, Belgium
| |
Collapse
|
136
|
Luna-Carrascal J, Quintana-Sosa M, Olivero-Verbel J. Genotoxicity biomarkers in car repair workers from Barranquilla, a Colombian Caribbean City. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:263-275. [PMID: 34839807 DOI: 10.1080/15287394.2021.2000542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exposure to chemicals and particles generated in automotive repair shops is a common and underestimated problem. The objective of this study was to assess the genotoxic status of auto repair workers with (1) a questionnaire to gather sociodemographic information and self-reported exposure to hazardous chemicals and (2) measurement of various biochemical parameters. Blood and oral mucosa samples were collected from 174 male volunteers from Barranquilla, Colombia, aged 18-55 years: 87 were active car repairmen and 87 were individuals with no known exposure to hazardous chemicals. Peripheral blood lymphocytes were collected for the comet and cytokinesis-blocking micronucleus (CBMN) assays, while oral mucosal epithelium extracted to quantify micronucleated cells (MNC). DNA was extracted to assess polymorphisms in the DNA repair (XRCC1) and metabolism-related genes (GSTT1 and GSTM1) using PCR-RFLP. DNA damage and frequency of micronuclei (MN) in lymphocytes and oral mucosa were significantly higher in exposed compared to control group. In both groups genotypes and allelic variants for XRCC1 and GSTT1 met the Hardy-Weinberg equilibrium (HWE). In contrast, GSTM1 deviated from HWE. In the exposed group genotypic variants were not correlated with DNA damage or MN presence in cells. DNA damage and occurrence of MN in mucosa and lymphocytes correlated with age and time of service (occupational exposure ≥ 3 years). In summary, workers in car repair shops exhibited genotoxic effects depending upon exposure duration in the workplace which occurred independent of DNA repair XRCC1 gene and metabolism genes GSTT1 and GSTM1. Date demonstrate that health authorities improve air quality in auto repair facilities to avoid occupational DNA damage.
Collapse
Affiliation(s)
- Jaime Luna-Carrascal
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla, Colombia
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
| | - Milton Quintana-Sosa
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
137
|
LPS Response Is Impaired by Urban Fine Particulate Matter. Int J Mol Sci 2022; 23:ijms23073913. [PMID: 35409273 PMCID: PMC8998903 DOI: 10.3390/ijms23073913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Fine particulate matter (PM2.5) is a complex mixture of components with diverse chemical and physical characteristics associated with increased respiratory and cardiovascular diseases mortality. Our study aimed to investigate the effects of exposure to concentrated PM2.5 on LPS-induced lung injury onset. BALB/c male mice were exposed to either filtered air or ambient fine PM2.5 in an ambient particle concentrator for 5 weeks. Then, an acute lung injury was induced with nebulized LPS. The animals were euthanized 24 h after the nebulization to either LPS or saline. Inflammatory cells and cytokines (IL-1β, IL-4, IL-5, IL-6, IL-10, IL-17, TNF) were assessed in the blood, bronchoalveolar lavage fluid (BALF), and lung tissue. In addition, lung morphology was assessed by stereological methods. Our results showed that the PM+LPS group showed histological evidence of injury, leukocytosis with increased neutrophils and macrophages, and a mixed inflammatory response profile, with increased KC, IL-6, IL-1β, IL-4, and IL-17. Our analysis shows that there is an interaction between the LPS nebulization and PM2.5 exposure, differently modulating the inflammatory response, with a distinct response pattern as compared to LPS or PM2.5 exposure alone. Further studies are required to explain the mechanism of immune modulation caused by PM2.5 exposure.
Collapse
|
138
|
Frampton MW, Balmes JR, Bromberg PA, Arjomandi M, Hazucha MJ, Thurston SW, Alexis NE, Ganz P, Zareba W, Koutrakis P, Thevenet-Morrison K, Rich DQ. Effects of short-term increases in personal and ambient pollutant concentrations on pulmonary and cardiovascular function: A panel study analysis of the Multicenter Ozone Study in oldEr subjects (MOSES 2). ENVIRONMENTAL RESEARCH 2022; 205:112522. [PMID: 34919956 DOI: 10.1016/j.envres.2021.112522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The cardiovascular effects of ozone exposure are unclear. Using measurements from the 87 participants in the Multicenter Ozone Study of oldEr Subjects (MOSES), we examined whether personal and ambient pollutant exposures before the controlled exposure sessions would be associated with adverse changes in pulmonary and cardiovascular function. METHODS We used mixed effects linear regression to evaluate associations between increased personal exposures and ambient pollutant concentrations in the 96 h before the pre-exposure visit, and 1) biomarkers measured at pre-exposure, and 2) changes in biomarkers from pre-to post-exposure. RESULTS Decreases in pre-exposure forced expiratory volume in 1 s (FEV1) were associated with interquartile-range increases in concentrations of particulate matter ≤2.5 μm (PM2.5) 1 h before the pre-exposure visit (-0.022 L; 95% CI -0.037 to -0.006; p = 0.007), carbon monoxide (CO) in the prior 3 h (-0.046 L; 95% CI -0.076 to -0.016; p = 0.003), and nitrogen dioxide (NO2) in the prior 72 h (-0.030 L; 95% CI -0.052 to -0.008; p = 0.007). From pre-to post-exposure, increases in FEV1 were marginally significantly associated with increases in personal ozone exposure (0.010 L; 95% CI 0.004 to 0.026; p = 0.010), and ambient PM2.5 and CO at all lag times. Ambient ozone concentrations in the prior 96 h were associated with both decreased pre-exposure high frequency (HF) heart rate variability (HRV) and increases in HF HRV from pre-to post-exposure. CONCLUSIONS We observed associations between increased ambient PM2.5, NO2, and CO levels and reduced pulmonary function, and increased ambient ozone concentrations and reduced HRV. Pulmonary function and HRV increased across the exposure sessions in association with these same pollutant increases, suggesting a "recovery" during the exposure sessions. These findings support an association between short term increases in ambient PM2.5, NO2, and CO and decreased pulmonary function, and increased ambient ozone and decreased HRV.
Collapse
Affiliation(s)
- M W Frampton
- University of Rochester Medical Center, Rochester, NY, USA.
| | - J R Balmes
- University of California at San Francisco, San Francisco, CA, USA
| | - P A Bromberg
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Arjomandi
- University of California at San Francisco, San Francisco, CA, USA
| | - M J Hazucha
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - S W Thurston
- University of Rochester Medical Center, Rochester, NY, USA
| | - N E Alexis
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - P Ganz
- University of California at San Francisco, San Francisco, CA, USA
| | - W Zareba
- University of Rochester Medical Center, Rochester, NY, USA
| | - P Koutrakis
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - D Q Rich
- University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
139
|
Lee KY, Wu SM, Kou HY, Chen KY, Chuang HC, Feng PH, Chung KF, Ito K, Chen TT, Sun WL, Liu WT, Tseng CH, Ho SC. Association of air pollution exposure with exercise-induced oxygen desaturation in COPD. Respir Res 2022; 23:77. [PMID: 35361214 PMCID: PMC8973558 DOI: 10.1186/s12931-022-02000-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is a link between exposure to air pollution and the increased prevalence of chronic obstructive pulmonary disease (COPD) and declining pulmonary function, but the association with O2 desaturation during exercise in COPD patients with emphysema is unclear. Our aims were to estimate the prevalence of O2 desaturation during exercise in patients with COPD, and determine the association of exposure to air pollution with exercise-induced desaturation (EID), the degree of emphysema, and dynamic hyperinflation (DH). METHODS We assessed the effects of 10-year prior to the HRCT assessment and 7 days prior to the six-minute walking test exposure to particulate matter with an aerodynamic diameter of < 10 µm (PM10) or of < 2.5 µM (PM2.5), nitrogen dioxide (NO2), and ozone (O3) in patients with emphysema in this retrospective cohort study. EID was defined as a nadir standard pulse oximetry (SpO2) level of < 90% or a delta (△)SpO2 level of ≥ 4%. Ambient air pollutant (PM2.5, PM10, O3, and NO2) data were obtained from Taiwan Environmental Protection Administration (EPA) air-monitoring stations, usually within 10 km to each participant's home address. RESULTS We recruited 141 subjects with emphysema. 41.1% of patients with emphysema exhibited EID, and patients with EID had more dyspnea, worse lung function, more severe emphysema, more frequent acute exacerbations, managed a shorter walking distance, had DH, and greater long-term exposure to air pollution than those without EID. We observed that levels of 10-year concentrations of PM10, PM2.5, and NO2 were significantly associated with EID, PM10 and PM2.5 were associated with the severity of emphysema, and associated with DH in patients with emphysema. In contrast, short-term exposure did not have any effect on patients. CONCLUSION Long-term exposure to ambient PM10, PM2.5 and NO2, but not O3, was associated with EID.
Collapse
Affiliation(s)
- Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Yun Kou
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Hsiao-Chi Chuang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Cell Physiology and Molecular Image Research Center, Taipei Municipal Wan Fang Hospital, Taipei, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Kazuhiro Ito
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Tzu-Tao Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Wei-Lun Sun
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Wen-Te Liu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-Hua Tseng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Shu-Chuan Ho
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan. .,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
140
|
Hou W, Zhang H, Jiang M, Wu Y, Li T, Cong L, Duan J. Gu-Ben-Zhi-Ke-Zhong-Yao Alleviated PM2.5-Induced Lung Injury via HMGB1/NF- κB Axis. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8450673. [PMID: 35399858 PMCID: PMC8986406 DOI: 10.1155/2022/8450673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/18/2022]
Abstract
Background Inhalation of particles with a diameter of less than 2.5 μm (PM2.5) among air pollutants may cause lung damage. Gu-Ben-Zhi-Ke-Zhong-Yao (GBZK) is a traditional Chinese medicine prescription that has a beneficial effect on the treatment of chronic obstructive pulmonary disease (COPD). However, the effect of GBZK on PM2.5-induced lung injury remains to be elucidated. Methods We constructed a mice lung injury model through PM2.5 stimulation and simultaneously performed GBZK gavage treatment. After 4 weeks, the lung tissues of the mice were collected for pathological staining to analyze the degree of damage. The activities of myeloperoxidase (MPO), malondialdehyde (MDA), and oxidative stress-related factors (superoxide dismutase, SOD; glutathione peroxidase, GSH-Px) were detected by commercial kit in lung tissue. Furthermore, the number of neutrophils and related inflammatory factors (interleukin-1, IL-1β; tumor necrosis factor α, TNF-α; interleukin-6, IL-6) in bronchoalveolar lavage fluid (BALF) and serum were collected and tested to evaluate the effect of GBZK on inflammation. Masson staining was used to detect the level of lung fibrosis in mice. The activation of HMGB1 (high-mobility group protein 1) and NFκBp65 (nucleus factor kappa B) in lung tissue was evaluated by immunohistochemistry and western blot. Results The result revealed that PM2.5 induces lung damage, and GBZK gavage treatment could reduce the degree of injury in a concentration-dependent manner in mice. After GBZK treatment, the MPO activity, MDA content, and oxidative stress level in the lung tissues of mice decreased. And after GBZK treatment, the expression levels of inflammatory cytokines in BALF and blood were decreased. GBZK treatment also improved pulmonary fibrosis in mice. In addition, we also found that GBZK prevented the up-regulation of the HMGB1/NF-κB axis in the lungs of mice. Conclusion These results indicated that GBZK might protect mice from PM2.5-induced lung injury by inhibiting the HMGB1/NFκB pathway, thus repressing inflammation and pulmonary fibrosis.
Collapse
Affiliation(s)
- Wenxiao Hou
- Graduate School of Beijing University of Traditional Chinese Medicine, Beijing 100029, China
- Surgical Intensive Care Unit, China Japan Friendship Hospital, Beijing 100029, China
| | - Hongchun Zhang
- Department of Health Care, China Japan Friendship Hospital, Beijing 100029, China
- National Respiratory Center, Beijing 100029, China
| | - Meng Jiang
- Yunnan University of Traditional Chinese Medicine, Kunming 650011, China
| | - Yina Wu
- Surgical Intensive Care Unit, China Japan Friendship Hospital, Beijing 100029, China
| | - Tao Li
- Surgical Intensive Care Unit, China Japan Friendship Hospital, Beijing 100029, China
| | - Luhong Cong
- Surgical Intensive Care Unit, China Japan Friendship Hospital, Beijing 100029, China
- Department of Emergency, China Japan Friendship Hospital, Beijing 100029, China
| | - Jun Duan
- Surgical Intensive Care Unit, China Japan Friendship Hospital, Beijing 100029, China
- Department of Emergency, China Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
141
|
Green Fences for Buenos Aires: Implementing Green Infrastructure for (More than) Air Quality. SUSTAINABILITY 2022. [DOI: 10.3390/su14074129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Schoolyards in North America and Europe are increasingly using green fences as one measure to protect vulnerable populations from localised air pollution. This paper assesses the possibilities and limits for mobilising this format of site-specific green infrastructure in cities in low- and middle-income countries beset by air pollution and multiple other socio-environmental challenges, and particularly questions the definition of green fences as a green infrastructure for air quality (GI4AQ). We applied several qualitative and action research methods to the question of green fence implementation in Buenos Aires, Argentina—a Latin American city with weak air-quality policies, limited green infrastructure, and little experience with nature-based solutions. Firstly, we conducted a literature review of the role that urban vegetation and ecosystem services may play in AQ policy and the implementation barriers to such approaches globally and in the city. Secondly, we planned, designed, constructed, maintained, and evaluated a pilot green fence in a school playground. Thirdly, we carried out supplementary interviews with stakeholders and expert informants and compiled project members’ narratives to respectively characterise the barriers that the project encountered and delineate its attributes based on the associated actions that we took to overcome such barriers to implementation and complete the pilot. Our findings identify multiple barriers across seven known categories (institutional, engagement, political, socio-cultural, built environment and natural landscape, knowledge base and financial) and highlight examples not previously considered in the extant international literature. Furthermore, learning from this experience, the paper proposes an expanded model of green infrastructure for air quality plus multi-dimensional co-benefits (GI4AQ+) to increase implementation chances by attending to local needs and priorities.
Collapse
|
142
|
Zhou Y, Liu Y, Zhang M, Feng Z, Yu DG, Wang K. Electrospun Nanofiber Membranes for Air Filtration: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1077. [PMID: 35407195 PMCID: PMC9000692 DOI: 10.3390/nano12071077] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022]
Abstract
Nanomaterials for air filtration have been studied by researchers for decades. Owing to the advantages of high porosity, small pore size, and good connectivity, nanofiber membranes prepared by electrospinning technology have been considered as an outstanding air-filter candidate. To satisfy the requirements of material functionalization, electrospinning can provide a simple and efficient one-step process to fabricate the complex structures of functional nanofibers such as core-sheath structures, Janus structures, and other multilayered structures. Additionally, as a nanoparticle carrier, electrospun nanofibers can easily achieve antibacterial properties, flame-retardant properties, and the adsorption properties of volatile gases, etc. These simple and effective approaches have benefited from the significate development of electrospun nanofibers for air-filtration applications. In this review, the research progress on electrospun nanofibers as air filters in recent years is summarized. The fabrication methods, filtration performances, advantages, and disadvantages of single-polymer nanofibers, multipolymer composite nanofibers, and nanoparticle-doped hybrid nanofibers are investigated. Finally, the basic principles of air filtration are concluded upon and prospects for the application of complex-structured nanofibers in the field of air filtration are proposed.
Collapse
Affiliation(s)
- Yangjian Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (Y.L.); (M.Z.); (Z.F.)
| | - Yanan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (Y.L.); (M.Z.); (Z.F.)
| | - Mingxin Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (Y.L.); (M.Z.); (Z.F.)
| | - Zhangbin Feng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (Y.L.); (M.Z.); (Z.F.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (Y.L.); (M.Z.); (Z.F.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (Y.L.); (M.Z.); (Z.F.)
| |
Collapse
|
143
|
Saleh S, Sambakunsi H, Makina D, Kumwenda M, Rylance J, Chinouya M, Mortimer K. "We threw away the stones": a mixed method evaluation of a simple cookstove intervention in Malawi. Wellcome Open Res 2022; 7:52. [PMID: 35330615 PMCID: PMC8933645 DOI: 10.12688/wellcomeopenres.17544.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Air pollution exposure is responsible for a substantial burden of respiratory disease globally. Household air pollution from cooking using biomass is a major contributor to overall exposure in rural low-income settings. Previous research in Malawi has revealed how precarity and food insecurity shape individuals' daily experiences, contributing to perceptions of health. Aiming to avoid a mismatch between research intervention and local context, we introduced a simple cookstove intervention in rural Malawi, analysing change in fine particulate matter (PM 2.5) exposures, and community perceptions. Methods: Following a period of baseline ethnographic research, we distributed 'chitetezo mbaula', locally-made cookstoves, to all households (n=300) in a rural Malawian village. Evaluation incorporated village-wide participant observation and concurrent exposure monitoring using portable PM 2.5 monitors at baseline and follow-up (three months post-intervention). Qualitative data were thematically analysed. Quantitative analysis of exposure data included pre-post intervention comparisons, with datapoints divided into periods of combustion activity (almost exclusively cooking) and non-combustion periods. Findings were integrated at the interpretation stage, using a convergent design mode of synthesis. Results: Individual exposure monitoring pre- and post-cookstove intervention involved a sample of 18 participants (15 female; mean age 43). Post-intervention PM 2.5 exposures (median 9.9μg/m 3 [interquartile range: 2.2-46.5]) were not significantly different to pre-intervention (11.8μg/m 3 [3.8-44.4]); p=0.71. On analysis by activity, background exposures were found to be reduced post-intervention (from 8.2μg/m 3 [2.5-22.0] to 4.6μg/m 3 [1.0-12.6]; p=0.01). Stoves were well-liked and widely used by residents as substitutes for previous cooking methods (mainly three-stone fires). Commonly cited benefits related to fuel saving and shorter cooking times. Conclusions: The cookstove intervention had no impact on cooking-related PM 2.5 exposures. A significant reduction in background exposures may relate to reduced smouldering emissions. Uptake and continued use of the stoves was high amongst community members, who preferred using the stoves to cooking over open fires.
Collapse
Affiliation(s)
- Sepeedeh Saleh
- Department of International Public Health, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Malawi-Liverpool Wellcome trust Clinical Research Programme, Blantyre, Malawi
| | - Henry Sambakunsi
- Malawi-Liverpool Wellcome trust Clinical Research Programme, Blantyre, Malawi
| | - Debora Makina
- Malawi-Liverpool Wellcome trust Clinical Research Programme, Blantyre, Malawi
| | - Moses Kumwenda
- Malawi-Liverpool Wellcome trust Clinical Research Programme, Blantyre, Malawi
| | - Jamie Rylance
- Department of International Public Health, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Malawi-Liverpool Wellcome trust Clinical Research Programme, Blantyre, Malawi
| | - Martha Chinouya
- Department of International Public Health, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Kevin Mortimer
- Department of International Public Health, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| |
Collapse
|
144
|
Vonk JM, Roukema J. Air pollution susceptibility in children with asthma and obesity: tidal volume as key player? Eur Respir J 2022; 59:59/3/2102505. [PMID: 35241459 DOI: 10.1183/13993003.02505-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/03/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Judith M Vonk
- University of Groningen, University Medical Center Groningen, Dept of Epidemiology, Groningen, The Netherlands .,University of Groningen, University Medical Center Groningen, Groningen Research Center for Asthma and COPD (GRIAC), Groningen, The Netherlands.,Both authors contributed equally
| | - Jolt Roukema
- Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, The Netherlands.,Both authors contributed equally
| |
Collapse
|
145
|
Bauleo L, Giannini S, Ranzi A, Nobile F, Stafoggia M, Ancona C, Iavarone I. A Methodological Approach to Use Contextual Factors for Epidemiological Studies on Chronic Exposure to Air Pollution and COVID-19 in Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2859. [PMID: 35270551 PMCID: PMC8910469 DOI: 10.3390/ijerph19052859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023]
Abstract
The large availability of both air pollution and COVID-19 data, and the simplicity to make geographical correlations between them, led to a proliferation of ecological studies relating the levels of pollution in administrative areas to COVID-19 incidence, mortality or lethality rates. However, the major drawback of these studies is the ecological fallacy that can lead to spurious associations. In this frame, an increasing concern has been addressed to clarify the possible role of contextual variables such as municipalities' characteristics (including urban, rural, semi-rural settings), those of the resident communities, the network of social relations, the mobility of people, and the responsiveness of the National Health Service (NHS), to better clarify the dynamics of the phenomenon. The objective of this paper is to identify and collect the municipalities' and community contextual factors and to synthesize their information content to produce suitable indicators in national environmental epidemiological studies, with specific emphasis on assessing the possible role of air pollution on the incidence and severity of the COVID-19 disease. A first step was to synthesize the content of spatial information, available at the municipal level, in a smaller set of "summary indexes" that can be more easily viewed and analyzed. For the 7903 Italian municipalities (1 January 2020-ISTAT), 44 variables were identified, collected, and grouped into five information dimensions a priori defined: (i) geographic characteristics of the municipality, (ii) demographic and anthropogenic characteristics, (iii) mobility, (iv) socio-economic-health area, and (v) healthcare offer (source: ISTAT, EUROSTAT or Ministry of Health, and further ad hoc elaborations (e.g., OpenStreetMaps)). Principal component analysis (PCA) was carried out for the five identified dimensions, with the aim of reducing the large number of initial variables into a smaller number of components, limiting as much as possible the loss of information content (variability). We also included in the analysis PM2.5, PM10 and NO2 population weighted exposure (PWE) values obtained using a four-stage approach based on the machine learning method, "random forest", which uses space-time predictors, satellite data, and air quality monitoring data estimated at the national level. Overall, the PCA made it possible to extract twelve components: three for the territorial characteristics dimension of the municipality (variance explained 72%), two for the demographic and anthropogenic characteristics dimension (variance explained 62%), three for the mobility dimension (variance explained 83%), two for the socio-economic-health sector (variance explained 58%) and two for the health offer dimension (variance explained 72%). All the components of the different dimensions are only marginally correlated with each other, demonstrating their potential ability to grasp different aspects of the spatial distribution of the COVID-19 pathology. This work provides a national repository of contextual variables at the municipality level collapsed into twelve informative factors suitable to be used in studies on the association between chronic exposure to air pollution and COVID-19 pathology, as well as for investigations on the role of air pollution on the health of the Italian population.
Collapse
Affiliation(s)
- Lisa Bauleo
- Department of Epidemiology, Lazio Regional Health Service, ASL Roma 1, 00147 Rome, Italy; (L.B.); (F.N.); (M.S.); (C.A.)
| | - Simone Giannini
- Environmental Health Reference Centre, Regional Agency for Environmental Prevention of Emilia-Romagna, 41124 Modena, Italy;
| | - Andrea Ranzi
- Environmental Health Reference Centre, Regional Agency for Environmental Prevention of Emilia-Romagna, 41124 Modena, Italy;
| | - Federica Nobile
- Department of Epidemiology, Lazio Regional Health Service, ASL Roma 1, 00147 Rome, Italy; (L.B.); (F.N.); (M.S.); (C.A.)
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Regional Health Service, ASL Roma 1, 00147 Rome, Italy; (L.B.); (F.N.); (M.S.); (C.A.)
| | - Carla Ancona
- Department of Epidemiology, Lazio Regional Health Service, ASL Roma 1, 00147 Rome, Italy; (L.B.); (F.N.); (M.S.); (C.A.)
| | - Ivano Iavarone
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | | |
Collapse
|
146
|
Nishida C, Yatera K. The Impact of Ambient Environmental and Occupational Pollution on Respiratory Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2788. [PMID: 35270479 PMCID: PMC8910713 DOI: 10.3390/ijerph19052788] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
Ambient pollutants and occupational pollutants may cause and exacerbate various lung and respiratory diseases. This review describes lung and respiratory diseases in relation to ambient pollutants, particularly particulate matter (PM2.5), and occupational air pollutants, excluding communicable diseases and indoor pollutants, including tobacco smoke exposure. PM2.5 produced by combustion is an important ambient pollutant. PM2.5 can cause asthma attacks and exacerbations of chronic obstructive pulmonary disease in the short term. Further, it not only carries a risk of lung cancer and death, but also hinders the development of lung function in children in the long term. It has recently been suggested that air pollution, such as PM2.5, is a risk factor for severe coronavirus disease (COVID-19). Asbestos, which causes asbestosis, lung cancer, and malignant mesothelioma, and crystalline silica, which cause silicosis, are well-known traditional occupational pollutants leading to pneumoconiosis. While work-related asthma (WRA) is the most common occupational lung disease in recent years, many different agents cause WRA, including natural and synthetic chemicals and irritant gases. Primary preventive interventions that increase awareness of pollutants and reduce the development and exacerbation of diseases caused by air pollutants are paramount to addressing ambient and occupational pollution.
Collapse
Affiliation(s)
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Fukuoka 807-8555, Japan;
| |
Collapse
|
147
|
Saleh S, Sambakunsi H, Makina D, Kumwenda M, Rylance J, Chinouya M, Mortimer K. "We threw away the stones": a mixed method evaluation of a simple cookstove intervention in Malawi. Wellcome Open Res 2022; 7:52. [PMID: 35330615 PMCID: PMC8933645 DOI: 10.12688/wellcomeopenres.17544.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Exposure to air pollution is responsible for a substantial burden of respiratory disease globally. Household air pollution from cooking using biomass is a major contributor to overall exposure in rural low-income settings. Previous research in Malawi has revealed how precarity and food insecurity shape individuals' daily experiences, contributing to perceptions of health. Aiming to avoid a mismatch between research intervention and local context, we introduced a simple cookstove intervention in rural Malawi, analysing change in fine particulate matter (PM 2.5) exposures, and community perceptions. Methods: Following a period of baseline ethnographic research, we distributed 'chitetezo mbaula', locally made clay cookstoves, to all households (n=300) in a rural Malawian village. Evaluation incorporated village-wide participant observation and concurrent exposure monitoring using portable PM 2.5 monitors at baseline and follow-up (three months post-intervention). Qualitative data were thematically analysed. Quantitative analysis of exposure data included pre-post intervention comparisons, with datapoints divided into cooking and non-cooking ('baseline') periods. Findings were integrated at the interpretation stage, using a convergent design mode of synthesis. Results: Individual exposure monitoring pre- and post-cookstove intervention involved a sample of 18 participants (15 female; mean age 43). Post-intervention PM 2.5 exposures (median 9.9μg/m 3 [interquartile range: 2.2-46.5]) were not significantly different to pre-intervention (11.8μg/m 3 [3.8-44.4]); p=0.71. On analysis by activity, 'baseline' exposures were found to be reduced post-intervention (from 8.2μg/m 3 [2.5-22.0] to 4.6μg/m 3 [1.0-12.6]; p=0.01). Stoves were well-liked and widely used by residents as substitutes for previous cooking methods (mainly three-stone fires). Most cited benefits related to fuel saving and shorter cooking times. Conclusions: The cookstove intervention had no impact on cooking-related PM 2.5 exposures. A significant reduction in baseline exposures may relate to reduced smouldering emissions. Uptake and continued use of the stoves was high amongst community members, who preferred using the stoves to cooking over open fires.
Collapse
Affiliation(s)
- Sepeedeh Saleh
- Department of International Public Health, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Malawi-Liverpool Wellcome trust Clinical Research Programme, Blantyre, Malawi
| | - Henry Sambakunsi
- Malawi-Liverpool Wellcome trust Clinical Research Programme, Blantyre, Malawi
| | - Debora Makina
- Malawi-Liverpool Wellcome trust Clinical Research Programme, Blantyre, Malawi
| | - Moses Kumwenda
- Malawi-Liverpool Wellcome trust Clinical Research Programme, Blantyre, Malawi
| | - Jamie Rylance
- Department of International Public Health, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Malawi-Liverpool Wellcome trust Clinical Research Programme, Blantyre, Malawi
| | - Martha Chinouya
- Department of International Public Health, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Kevin Mortimer
- Department of International Public Health, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| |
Collapse
|
148
|
Martinez FJ, Agusti A, Celli BR, Han MK, Allinson JP, Bhatt SP, Calverley P, Chotirmall SH, Chowdhury B, Darken P, Da Silva CA, Donaldson G, Dorinsky P, Dransfield M, Faner R, Halpin DM, Jones P, Krishnan JA, Locantore N, Martinez FD, Mullerova H, Price D, Rabe KF, Reisner C, Singh D, Vestbo J, Vogelmeier CF, Wise RA, Tal-Singer R, Wedzicha JA. Treatment Trials in Young Patients with Chronic Obstructive Pulmonary Disease and Pre-Chronic Obstructive Pulmonary Disease Patients: Time to Move Forward. Am J Respir Crit Care Med 2022; 205:275-287. [PMID: 34672872 PMCID: PMC8886994 DOI: 10.1164/rccm.202107-1663so] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/19/2021] [Indexed: 02/03/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the end result of a series of dynamic and cumulative gene-environment interactions over a lifetime. The evolving understanding of COPD biology provides novel opportunities for prevention, early diagnosis, and intervention. To advance these concepts, we propose therapeutic trials in two major groups of subjects: "young" individuals with COPD and those with pre-COPD. Given that lungs grow to about 20 years of age and begin to age at approximately 50 years, we consider "young" patients with COPD those patients in the age range of 20-50 years. Pre-COPD relates to individuals of any age who have respiratory symptoms with or without structural and/or functional abnormalities, in the absence of airflow limitation, and who may develop persistent airflow limitation over time. We exclude from the current discussion infants and adolescents because of their unique physiological context and COPD in older adults given their representation in prior randomized controlled trials (RCTs). We highlight the need of RCTs focused on COPD in young patients or pre-COPD to reduce disease progression, providing innovative approaches to identifying and engaging potential study subjects. We detail approaches to RCT design, including potential outcomes such as lung function, patient-reported outcomes, exacerbations, lung imaging, mortality, and composite endpoints. We critically review study design components such as statistical powering and analysis, duration of study treatment, and formats to trial structure, including platform, basket, and umbrella trials. We provide a call to action for treatment RCTs in 1) young adults with COPD and 2) those with pre-COPD at any age.
Collapse
Affiliation(s)
| | - Alvar Agusti
- Catedra Salut Respiratoria and
- Institut Respiratorio, Hospital Clinic, Barcelona, Spain
- Institut d’investigacions biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Bartolome R. Celli
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - MeiLan K. Han
- University of Michigan Health System, Ann Arbor, Michigan
| | - James P. Allinson
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Surya P. Bhatt
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Peter Calverley
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | - Carla A. Da Silva
- Clinical Development, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Gavin Donaldson
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | | - Mark Dransfield
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rosa Faner
- Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain
| | | | - Paul Jones
- St. George’s University of London, London, United Kingdom
| | | | | | | | | | - David Price
- Observational and Pragmatic Research Institute, Singapore
- Centre of Academic Primary Care, Division of Applied Health Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Klaus F. Rabe
- LungenClinic Grosshansdorf, Member of the German Center for Lung Research, Grosshansdorf, Germany
- Department of Medicine, Christian Albrechts University Kiel, Member of the German Center for Lung Research Kiel, Germany
| | | | | | - Jørgen Vestbo
- Manchester University NHS Trust, Manchester, United Kingdom
| | - Claus F. Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University of Marburg, Member of the German Center for Lung Research, Marburg, Germany
| | | | | | | |
Collapse
|
149
|
Bai X, Chen H, Oliver BG. The health effects of traffic-related air pollution: A review focused the health effects of going green. CHEMOSPHERE 2022; 289:133082. [PMID: 34843836 DOI: 10.1016/j.chemosphere.2021.133082] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/03/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Traffic-related air pollution (TRAP) is global concern due to both the ecological damage of TRAP and the adverse health effects in Humans. Several strategies to reduce TRAP have been implemented, including the use of sustainable fuels, after-treatment technologies, and new energy vehicles. Such approaches can reduce the exhaust of particulate matter, adsorbed chemicals and a range of gases, but from a health perspective these approaches are not always successful. This review aims to discuss the approaches taken, and to then describe the likely health effects of these changes.
Collapse
Affiliation(s)
- Xu Bai
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW, 2037, Australia.
| |
Collapse
|
150
|
Chowdhury S, Pozzer A, Haines A, Klingmüller K, Münzel T, Paasonen P, Sharma A, Venkataraman C, Lelieveld J. Global health burden of ambient PM 2.5 and the contribution of anthropogenic black carbon and organic aerosols. ENVIRONMENT INTERNATIONAL 2022; 159:107020. [PMID: 34894485 DOI: 10.1016/j.envint.2021.107020] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Chronic exposure to fine particulate matter (PM2.5) poses a major global health risk, commonly assessed by assuming equivalent toxicity for different PM2.5 constituents. We used a data-informed global atmospheric model and recent exposure-response functions to calculate the health burden of ambient PM2.5 from ten source categories. We estimate 4.23 (95% confidence interval 3.0-6.14) million excess deaths annually from the exposure to ambient PM2.5. We distinguished contributions and major sources of black carbon (BC), primary organic aerosols (POA) and anthropogenic secondary organic aerosols (aSOA). These components make up to ∼20% of the total PM2.5 in South and East Asia and East Africa. We find that domestic energy use by the burning of solid biofuels is the largest contributor to ambient BC, POA and aSOA globally. Epidemiological and toxicological studies indicate that these compounds may be relatively more hazardous than other PM2.5 compounds such as soluble salts, related to their high potential to inflict oxidative stress. We performed sensitivity analyses by considering these species to be more harmful compared to other compounds in PM2.5, as suggested by their oxidative potential using a range of potential relative risks. These analyses show that domestic energy use emerges as the leading cause of excess mortality attributable to ambient PM2.5, notably in Asia and Africa. We acknowledge the uncertainties inherent in our assumed enhanced toxicity of the anthropogenic organic and BC aerosol components, which suggest the need to better understand the mechanisms and magnitude of the associated health risks and the consequences for regulatory policies. However our assessment of the importance of emissions from domestic energy use as a cause of premature mortality is robust to a range of assumptions about the magnitude of the excess risk.
Collapse
Affiliation(s)
- Sourangsu Chowdhury
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, 55128 Mainz, Germany.
| | - Andrea Pozzer
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Andy Haines
- Centre on Climate Change and Planetary Health, Department of Public Health, Environments and Society and Department of Population Health, London School of Hygiene and Tropical Medicine, London WC1 9SH, United Kingdom
| | - Klaus Klingmüller
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Thomas Münzel
- University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; German Center for Cardiovascular Research, 55131 Mainz, Germany
| | - Pauli Paasonen
- Institute for Atmospheric and Earth System Research (INAR) / Physics, Faculty of Science, University of Helsinki, 00560 Helsinki, Finland
| | - Arushi Sharma
- Interdisciplinary Programme in Climate Studies, and Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Chandra Venkataraman
- Interdisciplinary Programme in Climate Studies, and Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Jos Lelieveld
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, 55128 Mainz, Germany; Climate and Atmosphere Research Center, The Cyprus Institute, 1645 Nicosia, Cyprus.
| |
Collapse
|