101
|
Sims SG, Meares GP. Janus Kinase 1 Is Required for Transcriptional Reprograming of Murine Astrocytes in Response to Endoplasmic Reticulum Stress. Front Cell Neurosci 2019; 13:446. [PMID: 31680865 PMCID: PMC6797841 DOI: 10.3389/fncel.2019.00446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative diseases are associated with the accumulation of misfolded proteins in the endoplasmic reticulum (ER), leading to ER stress. To adapt, cells initiate the unfolded protein response (UPR). However, severe or unresolved UPR activation leads to cell death and inflammation. The UPR is initiated, in part, by the trans-ER membrane kinase PKR-like ER kinase (PERK). Recent evidence indicates ER stress and inflammation are linked, and we have shown that this involves PERK-dependent signaling via Janus Kinase (JAK) 1. This signaling provokes the production of soluble inflammatory mediators such as interleukin-6 (IL-6) and chemokine C-C motif ligand 2 (CCL2). We, therefore, hypothesized that JAK1 may control widespread transcriptional changes in response to ER stress. Here, using RNA sequencing of primary murine astrocytes, we demonstrate that JAK1 regulates approximately 10% of ER stress-induced gene expression and is required for a subset of PERK-dependent genes. Additionally, ER stress synergizes with tumor necrosis factor-α (TNF-α) to drive inflammatory gene expression in a JAK1-dependent fashion. We identified that JAK1 contributes to activating transcription factor (ATF) 4-dependent gene expression, including expression of the genes growth arrest and DNA damage (GADD) 45α and tribbles (TRIB) 3 that have not previously been associated with JAK signaling. While these genes are JAK1 dependent in response to ER stress, expression of GADD45α and TRIB3 are not induced by the JAK1-activating cytokine, oncostatin M (OSM). Transcriptomic analysis revealed that JAK1 drives distinct transcriptional programs in response to OSM stimulation versus ER stress. Interestingly, JAK1-dependent genes induced by ER stress in an ATF4-dependent mechanism were unaffected by small molecule inhibition of JAK1, suggesting that, in response to UPR activation, JAK1 initiates gene expression using non-canonical mechanisms. Overall, we have identified that JAK1 is a major regulator of ER stress-induced gene expression.
Collapse
Affiliation(s)
- Savannah G. Sims
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
| | - Gordon P. Meares
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Department of Neuroscience, West Virginia University, Morgantown, WV, United States
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
102
|
Ling SC, Wu K, Zhang DG, Luo Z. Endoplasmic Reticulum Stress-Mediated Autophagy and Apoptosis Alleviate Dietary Fat-Induced Triglyceride Accumulation in the Intestine and in Isolated Intestinal Epithelial Cells of Yellow Catfish. J Nutr 2019; 149:1732-1741. [PMID: 31204781 DOI: 10.1093/jn/nxz135] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The intestine is the main organ for absorbing dietary fat. High dietary lipid intake leads to fat deposition in the intestine and adversely influences fat absorption and health, but the underlying mechanism is unknown. OBJECTIVES We used yellow catfish and their isolated intestinal epithelial cells to test the hypothesis that endoplasmic reticulum (ER) stress, autophagy, and apoptosis mediate fat-induced changes in lipid metabolism. METHODS Male and female yellow catfish (weight: 3.79 ± 0.16 g; age: 3 mo) were fed diets containing lipid at 6.98% (low-fat diet; LFD), 11.3% (middle-fat diet; MFD), or 15.4% (high-fat diet; HFD) (by weight) for 8 wk. Each dietary group had 3 replicates, 30 fish per replicate. Their intestinal epithelial cells were isolated and incubated for 24 h in control solution or various concentrations of fatty acids (FAs) with or without 2-h pretreatment with an inhibitor [3-methyladenine (3-MA), 4-phenyl butyric acid (4-PBA), or Ac-DVED-CHO (AC)]. Triglyceride (TG) contents, genes, and enzymes involved in lipid metabolism, ER stress, autophagy, and apoptosis were determined in intestinal tissue and cells; immunoblotting, BODIPY 493/503 staining, ultrastructural observation, and the detection of autophagic and apoptotic vesicles were performed on intestinal cells. RESULTS Compared with the LFD and MFD, the HFD increased intestinal TG content by 120-226%, activities of lipogenic enzymes by 19.0-245%, expression of genes related to lipogenesis (0.77-8.4-fold), lipolysis (0.36-6.0-fold), FA transport proteins (0.79-1.7-fold), ER stress (0.55-7.5-fold), autophagy (0.56-4.2-fold), and apoptosis (0.80-5.2-fold). Using isolated intestinal epithelial cells and inhibitors (4-PBA, 3-MA, and AC), we found that ER stress mediated FA-induced activation of autophagy (11.0-50.1%) and apoptosis (10.4-32.0%), and lipophagy and apoptosis mediated FA-induced lipolysis (3.40-41.6%). CONCLUSIONS An HFD upregulated lipogenesis, lipolysis, and FA transport, induced ER stress, and activated autophagy and apoptosis. ER stress, autophagy, and apoptosis play important regulatory roles in fat-induced changes in lipid metabolism in the intestine and intestinal epithelial cells of yellow catfish.
Collapse
Affiliation(s)
- Shi-Cheng Ling
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Kun Wu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Dian-Guang Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
103
|
Mu K, Sun Y, Zhao Y, Zhao T, Li Q, Zhang M, Li H, Zhang R, Hu C, Wang C, Jia W. Hepatic nitric oxide synthase 1 adaptor protein regulates glucose homeostasis and hepatic insulin sensitivity in obese mice depending on its PDZ binding domain. EBioMedicine 2019; 47:352-364. [PMID: 31473185 PMCID: PMC6796549 DOI: 10.1016/j.ebiom.2019.08.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/11/2019] [Accepted: 08/16/2019] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND NOS1AP is an adaptor protein and its SNP rs12742393 was associated with type 2 diabetes (T2D). However, it remains uncertain whether NOS1AP plays a role in regulation of insulin sensitivity. Hepatic insulin resistance contributed to the development of T2D. Here, our investigation was focused on whether NOS1AP is involved in the regulation of hepatic insulin sensitivity and its underlying mechanisms. METHODS Liver specific NOS1AP condition knockout (CKO) and NOS1AP overexpression mice were generated and given a high fat diet. SNPs of NOS1AP gene were genotyped in 86 human subjects. FINDINGS NOS1AP protein is expressed in human and mouse liver. CKO mice exhibited impaired pyruvate, glucose and insulin tolerance, and increased lipid deposits in the liver. Conversely, NOS1AP overexpression in livers of obese mice improved pyruvate and/or glucose, and insulin tolerance, and attenuated liver lipid accumulation. Moreover, hepatocytes from CKO mice exhibited an elevated glucose production and mRNA expressions of Pc and Pck1. Overexpression of NOS1AP potentiated insulin-stimulated activation of IR/Akt in livers from obese mice. The insulin sensitizing effect of NOS1AP could be mimicked by overexpression of C-terminal domain of NOS1AP in ob/ob mice. Furthermore, NOS1AP overexpression in liver significantly inhibited p38 MAPK phosphorylation, and maintained ER homeostasis through p-eIF2a-ATF4-CHOP pathway. Subjects with rsl2742393 of NOS1AP have higher risk to develop hepatic steatosis. INTERPRETATION Our data demonstrate a novel role of NOS1AP in regulating hepatic insulin sensitivity and p38 MAPK inactivation in obese mice, which makes NOS1AP a potential therapeutic target for the prevention and treatment of T2D. FUND: This work was supported by the National Natural Science Foundation of China (81670707, 31340072) (to C. Wang), and National Basic Research Program of China (Nation 973 Program) (2011CB504001) (to W. Jia).
Collapse
Affiliation(s)
- Kaida Mu
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Yun Sun
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Yu Zhao
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Tianxue Zhao
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Qian Li
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Mingliang Zhang
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Huating Li
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Rong Zhang
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Cheng Hu
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Chen Wang
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China.
| | - Weiping Jia
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| |
Collapse
|
104
|
Velázquez KT, Enos RT, Bader JE, Sougiannis AT, Carson MS, Chatzistamou I, Carson JA, Nagarkatti PS, Nagarkatti M, Murphy EA. Prolonged high-fat-diet feeding promotes non-alcoholic fatty liver disease and alters gut microbiota in mice. World J Hepatol 2019; 11:619-637. [PMID: 31528245 PMCID: PMC6717713 DOI: 10.4254/wjh.v11.i8.619] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/05/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) has become an epidemic largely due to the worldwide increase in obesity. While lifestyle modifications and pharmacotherapies have been used to alleviate NAFLD, successful treatment options are limited. One of the main barriers to finding safe and effective drugs for long-term use in NAFLD is the fast initiation and progression of disease in the available preclinical models. Therefore, we are in need of preclinical models that (1) mimic the human manifestation of NAFLD and (2) have a longer progression time to allow for the design of superior treatments.
AIM To characterize a model of prolonged high-fat diet (HFD) feeding for investigation of the long-term progression of NAFLD.
METHODS In this study, we utilized prolonged HFD feeding to examine NAFLD features in C57BL/6 male mice. We fed mice with a HFD (60% fat, 20% protein, and 20% carbohydrate) for 80 wk to promote obesity (Old-HFD group, n = 18). A low-fat diet (LFD) (14% fat, 32% protein, and 54% carbohydrate) was administered for the same duration to age-matched mice (Old-LFD group, n = 15). An additional group of mice was maintained on the LFD (Young-LFD, n = 20) for a shorter duration (6 wk) to distinguish between age-dependent and age-independent effects. Liver, colon, adipose tissue, and feces were collected for histological and molecular assessments.
RESULTS Prolonged HFD feeding led to obesity and insulin resistance. Histological analysis in the liver of HFD mice demonstrated steatosis, cell injury, portal and lobular inflammation and fibrosis. In addition, molecular analysis for markers of endoplasmic reticulum stress established that the liver tissue of HFD mice have increased phosphorylated Jnk and CHOP. Lastly, we evaluated the gut microbial composition of Old-LFD and Old-HFD. We observed that prolonged HFD feeding in mice increased the relative abundance of the Firmicutes phylum. At the genus level, we observed a significant increase in the abundance of Adercreutzia, Coprococcus, Dorea, and Ruminococcus and decreased relative abundance of Turicibacter and Anaeroplasma in HFD mice.
CONCLUSION Overall, these data suggest that chronic HFD consumption in mice can mimic pathophysiological and some microbial events observed in NAFLD patients.
Collapse
Affiliation(s)
- Kandy T Velázquez
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, United States
| | - Reilly T Enos
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, United States
| | - Jackie E Bader
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, United States
| | - Alexander T Sougiannis
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, United States
| | - Meredith S Carson
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, United States
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, United States
| | - James A Carson
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, United States
- College of Health Professions, University of Tennessee Health Sciences Center, Memphis, TN 38163, United States
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, United States
| | - E Angela Murphy
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, United States
| |
Collapse
|
105
|
Hong T, Ge Z, Zhang B, Meng R, Zhu D, Bi Y. Erythropoietin suppresses hepatic steatosis and obesity by inhibiting endoplasmic reticulum stress and upregulating fibroblast growth factor 21. Int J Mol Med 2019; 44:469-478. [PMID: 31173165 PMCID: PMC6605699 DOI: 10.3892/ijmm.2019.4210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022] Open
Abstract
Erythropoietin (EPO), known primarily for its role in erythropoiesis, was recently reported to play a beneficial role in regulating lipid metabolism; however, the underlying mechanism through which EPO decreases hepatic lipid accumulation requires further investigation. Endoplasmic reticulum (ER) stress may contribute to the progression of hepatic steatosis. The present study investigated the effects of EPO on regulating ER stress in fatty liver. It was demonstrated that EPO inhibited hepatic ER stress and steatosis in vivo and in vitro. Interestingly, these beneficial effects were abrogated in liver-specific sirtuin 1 (SIRT1)-knockout mice compared with wild-type littermates. In addition, in palmitate-treated hepatocytes, small interfering RNA-mediated SIRT1 silencing suppressed the effects of EPO on lipid-induced ER stress. Additionally, EPO stimulated hepatic fibroblast growth factor 21 (FGF21) expression and secretion in a SIRT1-dependent manner in mice. Furthermore, the sensitivity of hepatocytes from obese mice to FGF21 was restored following treatment with EPO. Collectively, the results of the present study revealed a new mechanism underlying the regulation of hepatic ER stress and FGF21 expression induced by EPO; thus, EPO may be considered as a potential therapeutic agent for the treatment of fatty liver and obesity.
Collapse
Affiliation(s)
- Ting Hong
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Zhijuan Ge
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Bingjie Zhang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Ran Meng
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Dalong Zhu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Yan Bi
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
106
|
Yogalakshmi B, Sathiya Priya C, Anuradha CV. Grape seed proanthocyanidins and metformin combination attenuate hepatic endoplasmic reticulum stress in rats subjected to nutrition excess. Arch Physiol Biochem 2019; 125:174-183. [PMID: 29482356 DOI: 10.1080/13813455.2018.1444058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
CONTEXT Endoplasmic reticulum (ER) stress in the liver is a pathological outcome of nutrient excess and is suggested to be one of the hits for progressive liver injury. OBJECTIVE This study investigated whether grape seed proanthocyanidins (GSP) and metformin (MET) alone or in combination can relieve hepatic ER stress induced in rats subjected to calorie excess. MATERIAL AND METHODS Male albino Wistar rats were given high calorie diet (HCD) for 45 days, while GSP (100 mg/kg body weight) and MET (50 mg/kg body weight) were administered either alone or in combination for last 15 days. RESULTS GSP, MET or both had reduced the levels of ER stress markers and chaperons, and suppressed the activation of lipogenic and inflammatory mediators in rat liver. DISCUSSION Though GSP and MET had reduced ER stress and inflammation individually, combination treatment with GSP + MET was more effective. CONCLUSION We suggest intervention with GSP and MET intake has to be considered for the management of liver disorders.
Collapse
Affiliation(s)
- Baskaran Yogalakshmi
- a Department of Biochemistry and Biotechnology , Annamalai University , Annamalai Nagar , India
| | | | | |
Collapse
|
107
|
Abstract
Endoplasmic reticulum (ER) stress is a major contributor to liver disease and hepatic fibrosis, but the role it plays varies depending on the cause and progression of the disease. Furthermore, ER stress plays a distinct role in hepatocytes versus hepatic stellate cells (HSCs), which adds to the complexity of understanding ER stress and its downstream signaling through the unfolded protein response (UPR) in liver disease. Here, the authors focus on the current literature of ER stress in nonalcoholic and alcoholic fatty liver diseases, how ER stress impacts hepatocyte injury, and the role of ER stress in HSC activation and hepatic fibrosis. This review provides insight into the complex signaling and regulation of the UPR, parallels and distinctions between different liver diseases, and how ER stress may be targeted as an antisteatotic or antifibrotic therapy to limit the progression of liver disease.
Collapse
Affiliation(s)
- Jessica L. Maiers
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
108
|
Fun XH, Thibault G. Lipid bilayer stress and proteotoxic stress-induced unfolded protein response deploy divergent transcriptional and non-transcriptional programmes. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158449. [PMID: 31028913 DOI: 10.1016/j.bbalip.2019.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/14/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
The unfolded protein response (UPR) is activated by endoplasmic reticulum (ER) stress and is designed to restore cellular homeostasis through multiple intracellular signalling pathways. In mammals, the UPR programme regulates the expression of hundreds of genes in response to signalling from ATF6, IRE1, and PERK. These three highly conserved stress sensors are activated by the accumulation of unfolded proteins within the ER. Alternatively, IRE1 and PERK sense generalised lipid bilayer stress (LBS) at the ER while ATF6 is activated by an increase of specific sphingolipids. As a result, the UPR supports cellular robustness as a broad-spectrum compensatory pathway that is achieved by deploying a tailored transcriptional programme adapted to the source of ER stress. This review summarises the current understanding of the three ER stress transducers in sensing proteotoxic stress and LBS. The plasticity of the UPR programme in the context of different sources of ER stress will also be discussed.
Collapse
Affiliation(s)
- Xiu Hui Fun
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| |
Collapse
|
109
|
Gu M, Zhao P, Zhang S, Fan S, Yang L, Tong Q, Ji G, Huang C. Betulinic acid alleviates endoplasmic reticulum stress-mediated nonalcoholic fatty liver disease through activation of farnesoid X receptors in mice. Br J Pharmacol 2019; 176:847-863. [PMID: 30635917 PMCID: PMC6433649 DOI: 10.1111/bph.14570] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/04/2018] [Accepted: 12/09/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE The molecular mechanism for the pathogenesis of nonalcoholic fatty liver disease (NAFLD) remains elusive. Both farnesoid X receptor (FXR) signalling and endoplasmic reticulum (ER) stress contribute to the progression of NAFLD; however, it is not clear whether the actions of these two pathways are dependent on each other. Moreover, the pharmacological benefits and mechanism of betulinic acid (BA) in controlling metabolic syndrome and NAFLD are largely unknown. EXPERIMENTAL APPROACH A reporter assay and a time-resolved FRET assay were used to identify BA as an agonist of the FXR. NAFLD was induced by a methionine and choline-deficient L-amino acid diet (MCD) and high-fat diet (HFD). The pharmacological effects of BA (100 mg·kg-1 ·day-1 ) and potential interactions between hepatic FXR activation and ER stress pathways were evaluated by FXR silencing, Western blot and RT-PCR analyses using control and FXR-/- mice. KEY RESULTS Activation of the FXR inhibited intracellular PERK/EIF2α/ATF4 and CHOP signalling, thereby alleviating hepatic ER stress, whereas FXR silencing resulted in an opposite effect. Furthermore, we identified BA as an FXR agonist that effectively attenuated the progression of NAFLD and metabolic disorders in both HFD- and MCD diet-fed mice and restored the hepatocellular ER homeostasis by stimulating the FXR signalling pathway and blocking PERK/EIF2α signalling. In contrast, the effects of BA were attenuated in FXR-/- mice. CONCLUSIONS AND IMPLICATIONS Our data demonstrate that pharmacological activation of the FXR by BA reduces hepatocellular ER stress and attenuates NAFLD in an animal model of hepatic steatosis.
Collapse
Affiliation(s)
- Ming Gu
- Institute of Digestive Disease, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ping Zhao
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Shiying Zhang
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Shengjie Fan
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Li Yang
- Research Center for Traditional Chinese Medicine of Complexity SystemsShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine and Program in Neuroscience, Graduate School of Biological SciencesUniversity of Texas McGovern Medical SchoolHoustonTexasUSA
| | - Guang Ji
- Institute of Digestive Disease, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Cheng Huang
- School of PharmacyShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
110
|
Séité S, Pioche T, Ory N, Plagnes-Juan E, Panserat S, Seiliez I. The Autophagic Flux Inhibitor Bafilomycine A1 Affects the Expression of Intermediary Metabolism-Related Genes in Trout Hepatocytes. Front Physiol 2019; 10:263. [PMID: 30936838 PMCID: PMC6431650 DOI: 10.3389/fphys.2019.00263] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/28/2019] [Indexed: 12/28/2022] Open
Abstract
Autophagy is an evolutionarily conserved process of cellular self-eating which emerged these last years as a major adaptive metabolic response to various stresses such as fasting, hypoxia, or environmental pollutants. However, surprisingly very few data is currently available on its role in fish species which are directly exposed to frequent environmental perturbations. Here, we report that the treatment of fasted trout hepatocytes with the autophagy inhibitor Bafilomycine A1 lowered the mRNA levels of many of the gluconeogenesis-related genes and increased those of genes involved in intracellular lipid stores. Concurrently, intracellular free amino acid levels dropped and the expression of the main genes involved in the endoplasmic reticulum (ER) stress exhibited a sharp increase in autophagy inhibited cells. Together these results highlight the strong complexity of the crosstalk between ER, autophagy and metabolism and support the importance of considering this function in future studies on metabolic adaptation of fish to environmental stresses.
Collapse
Affiliation(s)
- Sarah Séité
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, University of Pau and Pays de l’Adour, Saint-Pée-sur-Nivelle, France
- Evonik Rexim, Ham, France
- Evonik Nutrition and Care GmbH, Hanau, Germany
| | - Tracy Pioche
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, University of Pau and Pays de l’Adour, Saint-Pée-sur-Nivelle, France
| | - Nicolas Ory
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, University of Pau and Pays de l’Adour, Saint-Pée-sur-Nivelle, France
| | - Elisabeth Plagnes-Juan
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, University of Pau and Pays de l’Adour, Saint-Pée-sur-Nivelle, France
| | - Stéphane Panserat
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, University of Pau and Pays de l’Adour, Saint-Pée-sur-Nivelle, France
| | - Iban Seiliez
- INRA, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, University of Pau and Pays de l’Adour, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
111
|
Abstract
Endoplasmic reticulum (ER) stress occurs when ER homeostasis is perturbed with accumulation of unfolded/misfolded protein or calcium depletion. The unfolded protein response (UPR), comprising of inositol-requiring enzyme 1α (IRE1α), PKR-like ER kinase (PERK) and activating transcription factor 6 (ATF6) signaling pathways, is a protective cellular response activated by ER stress. However, UPR activation can also induce cell death upon persistent ER stress. The liver is susceptible to ER stress given its synthetic and other biological functions. Numerous studies from human liver samples and animal disease models have indicated a crucial role of ER stress and UPR signaling pathways in the pathogenesis of liver diseases, including non-alcoholic fatty liver disease, alcoholic liver disease, alpha-1 antitrypsin deficiency, cholestatic liver disease, drug-induced liver injury, ischemia/reperfusion injury, viral hepatitis and hepatocellular carcinoma. Extensive investigations have demonstrated the potential underlying mechanisms of the induction of ER stress and the contribution of UPR pathways during the development of the diseases. Moreover ER stress and the UPR proteins and genes have become emerging therapeutic targets to treat liver diseases.
Collapse
Affiliation(s)
- Xiaoying Liu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tarry Building 15-709, 303 East Superior Street, Chicago, IL 60611, Northwestern University Feinberg School of Medicine, Chicago, IL, USA, Corresponding author: Xiaoying-liu@northwestern
| | - Richard M. Green
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tarry Building 15-709, 303 East Superior Street, Chicago, IL 60611, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
112
|
Patel V, Bidault G, Chambers JE, Carobbio S, Everden AJT, Garcés C, Dalton LE, Gribble FM, Vidal-Puig A, Marciniak SJ. Inactivation of Ppp1r15a minimises weight gain and insulin resistance during caloric excess in female mice. Sci Rep 2019; 9:2903. [PMID: 30814564 PMCID: PMC6393541 DOI: 10.1038/s41598-019-39562-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/09/2019] [Indexed: 02/02/2023] Open
Abstract
Phosphorylation of the translation initiation factor eIF2α within the mediobasal hypothalamus is known to suppress food intake, but the role of the eIF2α phosphatases in regulating body weight is poorly understood. Mice deficient in active PPP1R15A, a stress-inducible eIF2α phosphatase, are healthy and more resistant to endoplasmic reticulum stress than wild type controls. We report that when female Ppp1r15a mutant mice are fed a high fat diet they gain less weight than wild type littermates owing to reduced food intake. This results in healthy leaner Ppp1r15a mutant animals with reduced hepatic steatosis and improved insulin sensitivity, albeit with a possible modest defect in insulin secretion. By contrast, no weight differences are observed between wild type and Ppp1r15a deficient mice fed a standard diet. We conclude that female mice lacking the C-terminal PP1-binding domain of PPP1R15A show reduced dietary intake and preserved glucose tolerance. Our data indicate that this results in reduced weight gain and protection from diet-induced obesity.
Collapse
Affiliation(s)
- Vruti Patel
- 0000000121885934grid.5335.0Cambridge Institute for Medical Research (CIMR), University of Cambridge Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY UK ,0000000121885934grid.5335.0Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Rd, Cambridge, CB2 0SP UK
| | - Guillaume Bidault
- 0000 0004 0622 5016grid.120073.7Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, CB2 0QQ UK
| | - Joseph E. Chambers
- 0000000121885934grid.5335.0Cambridge Institute for Medical Research (CIMR), University of Cambridge Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY UK
| | - Stefania Carobbio
- 0000 0004 0622 5016grid.120073.7Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, CB2 0QQ UK
| | - Angharad J. T. Everden
- 0000000121885934grid.5335.0Cambridge Institute for Medical Research (CIMR), University of Cambridge Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY UK
| | - Concepción Garcés
- 0000000121885934grid.5335.0Cambridge Institute for Medical Research (CIMR), University of Cambridge Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY UK
| | - Lucy E. Dalton
- 0000000121885934grid.5335.0Cambridge Institute for Medical Research (CIMR), University of Cambridge Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY UK
| | - Fiona M. Gribble
- 0000 0004 0622 5016grid.120073.7Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, CB2 0QQ UK
| | - Antonio Vidal-Puig
- 0000 0004 0622 5016grid.120073.7Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, CB2 0QQ UK ,0000 0004 0427 7672grid.52788.30Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA UK
| | - Stefan J. Marciniak
- 0000000121885934grid.5335.0Cambridge Institute for Medical Research (CIMR), University of Cambridge Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY UK ,0000000121885934grid.5335.0Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Rd, Cambridge, CB2 0SP UK
| |
Collapse
|
113
|
Sasako T, Ohsugi M, Kubota N, Itoh S, Okazaki Y, Terai A, Kubota T, Yamashita S, Nakatsukasa K, Kamura T, Iwayama K, Tokuyama K, Kiyonari H, Furuta Y, Shibahara J, Fukayama M, Enooku K, Okushin K, Tsutsumi T, Tateishi R, Tobe K, Asahara H, Koike K, Kadowaki T, Ueki K. Hepatic Sdf2l1 controls feeding-induced ER stress and regulates metabolism. Nat Commun 2019; 10:947. [PMID: 30814508 PMCID: PMC6393527 DOI: 10.1038/s41467-019-08591-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 01/15/2019] [Indexed: 01/11/2023] Open
Abstract
Dynamic metabolic changes occur in the liver during the transition between fasting and feeding. Here we show that transient ER stress responses in the liver following feeding terminated by Sdf2l1 are essential for normal glucose and lipid homeostasis. Sdf2l1 regulates ERAD through interaction with a trafficking protein, TMED10. Suppression of Sdf2l1 expression in the liver results in insulin resistance and increases triglyceride content with sustained ER stress. In obese and diabetic mice, Sdf2l1 is downregulated due to decreased levels of nuclear XBP-1s, whereas restoration of Sdf2l1 expression ameliorates glucose intolerance and fatty liver with decreased ER stress. In diabetic patients, insufficient induction of Sdf2l1 correlates with progression of insulin resistance and steatohepatitis. Therefore, failure to build an ER stress response in the liver may be a causal factor in obesity-related diabetes and nonalcoholic steatohepatitis, for which Sdf2l1 could serve as a therapeutic target and sensitive biomarker.
Collapse
Affiliation(s)
- Takayoshi Sasako
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Translational Systems Biology and Medicine Initiative (TSBMI), The University of Tokyo, Tokyo, 113-8655, Japan.,Department of Molecular Diabetic Medicine, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan.,Division for Health Service Promotion, The University of Tokyo, Tokyo, 113-0033, Japan.,Department of Molecular Sciences on Diabetes, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Mitsuru Ohsugi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Translational Systems Biology and Medicine Initiative (TSBMI), The University of Tokyo, Tokyo, 113-8655, Japan.,Department of Clinical Nutrition Therapy, The University of Tokyo Hospital, The University of Tokyo, Tokyo, 113-865, Japan
| | - Shinsuke Itoh
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Kowa Company Limited, Nagoya, 460-0003, Japan
| | - Yukiko Okazaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Department of Molecular Diabetic Medicine, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Ai Terai
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Department of Molecular Diabetic Medicine, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Tetsuya Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Clinical Nutrition Program, National Institute of Health and Nutrition, Tokyo, 162-8636, Japan.,Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, 143-8541, Japan
| | - Satoshi Yamashita
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Kunio Nakatsukasa
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, 464-8601, Japan.,Graduate School of Natural Sciences, Nagoya City University, Nagoya, 464-8601, Japan
| | - Takumi Kamura
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, 464-8601, Japan
| | - Kaito Iwayama
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Kumpei Tokuyama
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan
| | - Yasuhide Furuta
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan
| | - Junji Shibahara
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Kenichiro Enooku
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Kazuya Okushin
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Takeya Tsutsumi
- Department of Infectious Disease, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Ryosuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Kazuyuki Tobe
- The First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Sciences of Research, The University of Toyama, Toyama, 930-8555, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan. .,Translational Systems Biology and Medicine Initiative (TSBMI), The University of Tokyo, Tokyo, 113-8655, Japan. .,Department of Prevention of Diabetes and Lifestyle-Related Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan. .,Department of Metabolism and Nutrition, Mizonokuchi Hospital, Faculty of Medicine, Teikyo University, Tokyo, 213-8507, Japan.
| | - Kohjiro Ueki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan. .,Translational Systems Biology and Medicine Initiative (TSBMI), The University of Tokyo, Tokyo, 113-8655, Japan. .,Department of Molecular Diabetic Medicine, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan.
| |
Collapse
|
114
|
Zhou ZD, Selvaratnam T, Lee JCT, Chao YX, Tan EK. Molecular targets for modulating the protein translation vital to proteostasis and neuron degeneration in Parkinson's disease. Transl Neurodegener 2019; 8:6. [PMID: 30740222 PMCID: PMC6360798 DOI: 10.1186/s40035-019-0145-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/14/2019] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, which is characterized by the progressive loss of dopaminergic neurons in the Substantia Nigra pars compacta concomitant with Lewy body formation in affected brain areas. The detailed pathogenic mechanisms underlying the selective loss of dopaminergic neurons in PD are unclear, and no drugs or treatments have been developed to alleviate progressive dopaminergic neuron degeneration in PD. However, the formation of α-synuclein-positive protein aggregates in Lewy body has been identified as a common pathological feature of PD, possibly stemming from the consequence of protein misfolding and dysfunctional proteostasis. Proteostasis is the mechanism for maintaining protein homeostasis via modulation of protein translation, enhancement of chaperone capacity and the prompt clearance of misfolded protein by the ubiquitin proteasome system and autophagy. Deregulated protein translation and impaired capacities of chaperone or protein degradation can disturb proteostasis processes, leading to pathological protein aggregation and neurodegeneration in PD. In recent years, multiple molecular targets in the modulation of protein translation vital to proteostasis and dopaminergic neuron degeneration have been identified. The potential pathophysiological and therapeutic significance of these molecular targets to neurodegeneration in PD is highlighted.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
- Signature Research Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School Singapore, 8 College Road, Singapore, Singapore
| | - Thevapriya Selvaratnam
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Ji Chao Tristan Lee
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Yin Xia Chao
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Eng-King Tan
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
- Department of Neurology, Singapore General Hospital, Outram Road, Singapore, 169608 Singapore
- Signature Research Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School Singapore, 8 College Road, Singapore, Singapore
| |
Collapse
|
115
|
Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi B, Luís A, McCarthy N, Montibeller L, More S, Papaioannou A, Püschel F, Sassano ML, Skoko J, Agostinis P, de Belleroche J, Eriksson LA, Fulda S, Gorman AM, Healy S, Kozlov A, Muñoz‐Pinedo C, Rehm M, Chevet E, Samali A. Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. FEBS J 2019; 286:241-278. [PMID: 30027602 PMCID: PMC7379631 DOI: 10.1111/febs.14608] [Citation(s) in RCA: 650] [Impact Index Per Article: 108.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/24/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) is a membranous intracellular organelle and the first compartment of the secretory pathway. As such, the ER contributes to the production and folding of approximately one-third of cellular proteins, and is thus inextricably linked to the maintenance of cellular homeostasis and the fine balance between health and disease. Specific ER stress signalling pathways, collectively known as the unfolded protein response (UPR), are required for maintaining ER homeostasis. The UPR is triggered when ER protein folding capacity is overwhelmed by cellular demand and the UPR initially aims to restore ER homeostasis and normal cellular functions. However, if this fails, then the UPR triggers cell death. In this review, we provide a UPR signalling-centric view of ER functions, from the ER's discovery to the latest advancements in the understanding of ER and UPR biology. Our review provides a synthesis of intracellular ER signalling revolving around proteostasis and the UPR, its impact on other organelles and cellular behaviour, its multifaceted and dynamic response to stress and its role in physiology, before finally exploring the potential exploitation of this knowledge to tackle unresolved biological questions and address unmet biomedical needs. Thus, we provide an integrated and global view of existing literature on ER signalling pathways and their use for therapeutic purposes.
Collapse
Affiliation(s)
- Aitor Almanza
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | - Antonio Carlesso
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGöteborgSweden
| | - Chetan Chintha
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | | | - Dimitrios Doultsinos
- INSERM U1242University of RennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Brian Leuzzi
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | - Andreia Luís
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyAUVA Research CentreViennaAustria
| | - Nicole McCarthy
- Institute for Experimental Cancer Research in PaediatricsGoethe‐UniversityFrankfurtGermany
| | - Luigi Montibeller
- Neurogenetics GroupDivision of Brain SciencesFaculty of MedicineImperial College LondonUK
| | - Sanket More
- Department Cellular and Molecular MedicineLaboratory of Cell Death and TherapyKU LeuvenBelgium
| | - Alexandra Papaioannou
- INSERM U1242University of RennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Franziska Püschel
- Cell Death Regulation GroupOncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
| | - Maria Livia Sassano
- Department Cellular and Molecular MedicineLaboratory of Cell Death and TherapyKU LeuvenBelgium
| | - Josip Skoko
- Institute of Cell Biology and ImmunologyUniversity of StuttgartGermany
| | - Patrizia Agostinis
- Department Cellular and Molecular MedicineLaboratory of Cell Death and TherapyKU LeuvenBelgium
| | - Jackie de Belleroche
- Neurogenetics GroupDivision of Brain SciencesFaculty of MedicineImperial College LondonUK
| | - Leif A. Eriksson
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGöteborgSweden
| | - Simone Fulda
- Institute for Experimental Cancer Research in PaediatricsGoethe‐UniversityFrankfurtGermany
| | | | - Sandra Healy
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | - Andrey Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyAUVA Research CentreViennaAustria
| | - Cristina Muñoz‐Pinedo
- Cell Death Regulation GroupOncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
| | - Markus Rehm
- Institute of Cell Biology and ImmunologyUniversity of StuttgartGermany
| | - Eric Chevet
- INSERM U1242University of RennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Afshin Samali
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| |
Collapse
|
116
|
Pinto BAS, França LM, Laurindo FRM, Paes AMDA. Unfolded Protein Response: Cause or Consequence of Lipid and Lipoprotein Metabolism Disturbances? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1127:67-82. [DOI: 10.1007/978-3-030-11488-6_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
117
|
Inhibition of endoplasmic reticulum stress in high-fat-diet-induced obese C57BL/6 mice: Efficacy of a novel extract from mulberry ( Morus alba) leaves fermented with Cordyceps militaris. Lab Anim Res 2018; 34:288-294. [PMID: 30671117 PMCID: PMC6333616 DOI: 10.5625/lar.2018.34.4.288] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/08/2018] [Accepted: 12/09/2018] [Indexed: 12/22/2022] Open
Abstract
A few clues about correlation between endoplasmic reticulum (ER) stress and mulberry (Morus alba) leaves were investigated in only the experimental autoimmune myocarditis and streptozotocin-induced diabetes. To investigate whether a novel extract of mulberry leaves fermented with Cordyceps militaris (EMfC) could suppress ER in fatty liver, alterations in the key parameters for ER stress response were measured in high fat diet (HFD)-induced obese C57L/6 mice treated with EMfC for 12 weeks. The area of adipocytes in the liver section were significantly decreased in the HFD+EMfC treated group as compared to the HFD+Vehicle treated group, while their level was higher in HFD+Vehicle treated group than No treated group. The level of the eukaryotic initiation factor 2 alpha (eIF2α) and inositol-requiring enzyme 1 beta (IRE1α) phosphorylation and CCAAT-enhancer-binding protein homologous protein (CHOP) expression were remarkably enhanced in the HFD+Vehicle treated group. However, their levels were restored in the HFD+EMfC treated group, although some differences were detected in the decrease rate. Similar recovery was observed on the ER stress-induced apoptosis. The level of Caspase-3, Bcl-2 and Bax were decreased in the HFD+EMfC and HFD+orlistat (OT) treated group compared to the HFD+Vehicle treated group. The results of the present study therefore provide first evidence that EMfC with the anti-obesity effects can be suppressed ER stress and ER stress-induced apoptosis in the hepatic steatosis of HFD-induced obesity model.
Collapse
|
118
|
Xu X, Krumm C, So JS, Bare CJ, Holman C, Gromada J, Cohen DE, Lee AH. Preemptive Activation of the Integrated Stress Response Protects Mice From Diet-Induced Obesity and Insulin Resistance by Fibroblast Growth Factor 21 Induction. Hepatology 2018; 68:2167-2181. [PMID: 29698569 PMCID: PMC6203669 DOI: 10.1002/hep.30060] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/23/2018] [Indexed: 12/11/2022]
Abstract
Integrated stress response (ISR) is a signaling system in which phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) by stress-specific kinases and subsequent activation of activation transcription factor (ATF) 4 help restore cellular homeostasis following exposure to environmental stresses. ISR activation has been observed in metabolic diseases, including hepatic steatosis (HS), steatohepatitis (SH), and insulin resistance (IR), but it remains unclear whether ISR contributes to disease pathogenesis or represents an innate defense mechanism against metabolic stresses. Constitutive repressor of eIF2α phosphorylation (CReP) is a critical regulatory subunit of the eIF2α phosphatase complex. Here, we show that CReP ablation causes constitutive eIF2α phosphorylation in the liver, which leads to activation of the ATF4 transcriptional program including increased fibroblast growth factor 21 (FGF21) production. Liver-specific CReP knockout (CRePLKO ) mice exhibited marked browning of white adipose tissue (WAT) and increased energy expenditure and insulin sensitivity in an FGF21-dependent manner. Furthermore, CRePLKO mice were protected from high-fat diet (HFD)-induced obesity, HS, and IR. Acute CReP ablation in liver of HFD-induced obese mice also reduced adiposity and improved glucose homeostasis. Conclusion: These data suggest that CReP abundance is a critical determinant for eIF2α phosphorylation and ensuing ISR activation in the liver. Constitutive ISR activation in the liver induces FGF21 and confers protection from HFD-induced adiposity, IR, and HS in mice. Augmenting hepatic ISR may represent a therapeutic approach to treat metabolic disorders.
Collapse
Affiliation(s)
- Xu Xu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Christopher Krumm
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jae-Seon So
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065
- Department of Medical Biotechnology, Dongguk University Gyeongju, Gyeongju-si, Korea
| | - Curtis J. Bare
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Corey Holman
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jesper Gromada
- Regeneron Pharmaceuticals, Tarrytown, New York 10591, USA
| | - David E. Cohen
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ann-Hwee Lee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065
- Regeneron Pharmaceuticals, Tarrytown, New York 10591, USA
| |
Collapse
|
119
|
Henkel AS. Harnessing the Integrated Stress Response to Counteract Metabolic Disease. Hepatology 2018; 68:2056-2058. [PMID: 30004129 DOI: 10.1002/hep.30152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/22/2018] [Indexed: 12/07/2022]
Affiliation(s)
- Anne S Henkel
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
120
|
Villalobos-Labra R, Subiabre M, Toledo F, Pardo F, Sobrevia L. Endoplasmic reticulum stress and development of insulin resistance in adipose, skeletal, liver, and foetoplacental tissue in diabesity. Mol Aspects Med 2018; 66:49-61. [PMID: 30472165 DOI: 10.1016/j.mam.2018.11.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/27/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
Abstract
Diabesity is an abnormal metabolic condition shown by patients with obesity that develop type 2 diabetes mellitus. Patients with diabesity present with insulin resistance, reduced vascular response to insulin, and vascular endothelial dysfunction. Along with the several well-described mechanisms of insulin resistance, a state of endoplasmic reticulum (ER) stress, where the primary human targets are the adipose tissue, liver, skeletal muscle, and the foetoplacental vasculature, is apparent. ER stress characterises by the activation of the unfolded protein response via three canonical ER stress sensors, i.e., the protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6. Slightly different cell signalling mechanisms preferentially enable in diabesity in the ER stress-associated insulin resistance for adipose tissue (IRE1α/X-box binding protein 1 mRNA splicing/c-jun N-terminal kinase 1 activation), skeletal muscle (tribbles-like protein 3 (TRB3)/proinflammatory cytokines activation), and liver (PERK/activating transcription factor 4/TRB3 activation). There is no information in human subjects with diabesity in the foetoplacental vasculature. However, the available literature shows that pregnant women with pre-pregnancy obesity or overweight that develop gestational diabetes mellitus (GDM) and their newborn show insulin resistance. ER stress is recently reported to be triggered in endothelial cells from the human umbilical vein from mothers with pre-pregnancy obesity. However, whether a different metabolic alteration to obesity in pregnancy or GDM is present in women with pre-pregnancy obesity that develop GDM, is unknown. In this review, we summarised the findings on diabesity-associated mechanisms of insulin resistance with emphasis in the primary targets adipose, skeletal muscle, liver, and foetoplacental tissues. We also give evidence on the possibility of a new GDM-associated metabolic condition triggered in pregnancy by maternal obesity, i.e. gestational diabesity, leading to ER stress-associated insulin resistance in the human foetoplacental vasculature.
Collapse
Affiliation(s)
- Roberto Villalobos-Labra
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile.
| | - Mario Subiabre
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, 3780000, Chile
| | - Fabián Pardo
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile; Metabolic Diseases Research Laboratory, Interdisciplinary Center of Territorial Health Research (CIISTe), San Felipe Campus, School of Medicine, Faculty of Medicine, Universidad de Valparaíso, 2172972, San Felipe, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Queensland, Australia.
| |
Collapse
|
121
|
Jiang H, Guan Q, Xiao Y, Feng Z, Yu G, Pan Q. Strontium Alleviates Endoplasmic Reticulum Stress in a Nonalcoholic Fatty Liver Disease Model. J Med Food 2018; 21:1228-1237. [PMID: 30457429 DOI: 10.1089/jmf.2018.4186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The purpose of this study was to explore the effects of strontium on fatty liver, and to clarify the possible mechanisms by which strontium improves nonalcoholic fatty liver disease (NAFLD). We also evaluated how strontium affected the endoplasmic reticulum stress (ERS) pathways. We established an in vitro model of NAFLD using a human hepatocyte cell line (L02) treated with 0.2 mM palmitic acid. The Sprague-Dawley rats were fed with a high-fat diet (HFD) to establish NAFLD model in vivo. After strontium treatment, the total cholesterol (TC), triglyceride (TG), and lipid deposition in L02 cells and liver tissues were determined. Strontium treatment suppressed intracellular TC and TG levels and lipid accumulation in L02 cells, and the effect of high concentrations of strontium were more obvious. Strontium significantly reduced the mRNA and protein expression of glucose-regulated protein 78 (GRP78), activating transcription factor 6 (ATF6), inositol requiring enzyme 1 (IRE1), SREBP cleavage activator protein (SCAP), sterol regulatory element binding protein 1c (SREBP-1c), and SREBP-2 in L02 cells. In HFD-fed rats, strontium treatment reduced serum TC, TG, and low density lipoprotein cholesterol (LDL-C) levels, concurrent with a decrease in hepatic lipid accumulation. Furthermore, strontium treatment reduced the expression of GRP78 and SREBP-2 protein in liver tissues. Overall, strontium alleviated hepatic steatosis by decreasing ERS-related protein expression in vivo and in vitro models. The results indicated that strontium has the potential to become a new therapy for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Huiling Jiang
- 1 Department of Physiology, Southwest Medical University, Luzhou, China
| | - Qiaowei Guan
- 2 Department of Basic Medicine, Medical College of Shaoguan University, Shaoguan, China
| | - Yewei Xiao
- 1 Department of Physiology, Southwest Medical University, Luzhou, China
| | - Zhiqiang Feng
- 1 Department of Physiology, Southwest Medical University, Luzhou, China
| | - Guang Yu
- 1 Department of Physiology, Southwest Medical University, Luzhou, China
| | - Qiangwen Pan
- 1 Department of Physiology, Southwest Medical University, Luzhou, China
| |
Collapse
|
122
|
Lebeaupin C, Vallée D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol 2018; 69:927-947. [PMID: 29940269 DOI: 10.1016/j.jhep.2018.06.008] [Citation(s) in RCA: 638] [Impact Index Per Article: 91.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/22/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022]
Abstract
The global epidemic of obesity has been accompanied by a rising burden of non-alcoholic fatty liver disease (NAFLD), with manifestations ranging from simple steatosis to non-alcoholic steatohepatitis, potentially developing into hepatocellular carcinoma. Although much attention has focused on NAFLD, its pathogenesis remains largely obscure. The hallmark of NAFLD is the hepatic accumulation of lipids, which subsequently leads to cellular stress and hepatic injury, eventually resulting in chronic liver disease. Abnormal lipid accumulation often coincides with insulin resistance in steatotic livers and is associated with perturbed endoplasmic reticulum (ER) proteostasis in hepatocytes. In response to chronic ER stress, an adaptive signalling pathway known as the unfolded protein response is triggered to restore ER proteostasis. However, the unfolded protein response can cause inflammation, inflammasome activation and, in the case of non-resolvable ER stress, the death of hepatocytes. Experimental data suggest that the unfolded protein response influences hepatic tumour development, aggressiveness and response to treatment, offering novel therapeutic avenues. Herein, we provide an overview of the evidence linking ER stress to NAFLD and discuss possible points of intervention.
Collapse
Affiliation(s)
| | - Deborah Vallée
- Université Côte d'Azur, INSERM, U1065, C3M, 06200 Nice, France
| | - Younis Hazari
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, 02115 Boston, MA, USA
| | - Eric Chevet
- "Chemistry, Oncogenesis, Stress, Signaling", Inserm U1242, Université de Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | | |
Collapse
|
123
|
Liu S, Yuan J, Yue W, Bi Y, Shen X, Gao J, Xu X, Lu Z. GCN2 deficiency protects against high fat diet induced hepatic steatosis and insulin resistance in mice. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3257-3267. [PMID: 30006154 DOI: 10.1016/j.bbadis.2018.07.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/27/2018] [Accepted: 07/09/2018] [Indexed: 02/05/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid deposition and oxidative stress. It has been demonstrated that general control nonderepressible 2 (GCN2) is required to maintain hepatic fatty acid homeostasis under conditions of amino acid deprivation. However, the impact of GCN2 on the development of NAFLD has not been investigated. In this study, we used Gcn2-/- mice to investigate the effect of GCN2 on high fat diet (HFD)-induced hepatic steatosis. After HFD feeding for 12 weeks, Gcn2-/- mice were less obese than wild-type (WT) mice, and Gcn2-/- significantly attenuated HFD-induced liver dysfunction, hepatic steatosis and insulin resistance. In the livers of the HFD-fed mice, GCN2 deficiency resulted in higher levels of lipolysis genes, lower expression of genes related to FA synthesis, transport and lipogenesis, and less induction of oxidative stress. Furthermore, we found that knockdown of GCN2 attenuated, whereas overexpression of GCN2 exacerbated, palmitic acid-induced steatosis, oxidative & ER stress, and changes of peroxisome proliferator-activated receptor gamma (PPARγ), fatty acid synthase (FAS) and metallothionein (MT) expression in HepG2 cells. Collectively, our data provide evidences that GCN2 deficiency protects against HFD-induced hepatic steatosis by inhibiting lipogenesis and reducing oxidative stress. Our findings suggest that strategies to inhibit GCN2 activity in the liver may provide a novel approach to attenuate NAFLD development.
Collapse
Affiliation(s)
- Shasha Liu
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juntao Yuan
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Yue
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Yanwei Bi
- Shantou University Medical College, Shantou 515041, China
| | - Xiyue Shen
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junling Gao
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Xu
- Department of Exercise Rehabilitation, Shanghai University of Sport, Shanghai 200438, China.
| | - Zhongbing Lu
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
124
|
Flister KFT, Pinto BAS, França LM, Coêlho CFF, Dos Santos PC, Vale CC, Kajihara D, Debbas V, Laurindo FRM, Paes AMDA. Long-term exposure to high-sucrose diet down-regulates hepatic endoplasmic reticulum-stress adaptive pathways and potentiates de novo lipogenesis in weaned male mice. J Nutr Biochem 2018; 62:155-166. [PMID: 30300835 DOI: 10.1016/j.jnutbio.2018.09.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/27/2018] [Accepted: 09/12/2018] [Indexed: 01/06/2023]
Abstract
Childhood consumption of added sugars, such as sucrose, has been associated to increased risk of metabolic syndrome (MetS) and nonalcoholic fatty liver disease (NAFLD). Although the mechanisms underlying NAFLD onset are incompletely defined, recent evidence has proposed a role for the endoplasmic reticulum (ER) stress. Thus, the present study sought to investigate the metabolic outcomes of high-sucrose intake on weaned Swiss mice fed a 25% sucrose diet for 30, 60 and 90 days in comparison to regular chow-fed controls. High-sucrose feeding promoted progressive metabolic and oxidative disturbances, starting from fasting and fed hyperglycemia, hyperinsulinemia, glucose intolerance and increased adiposity at 30-days; passing by insulin resistance, hypertriglyceridemia and NAFLD onset at 60 days; until late hepatic oxidative damage at 90 days. In parallel, assessment of transcriptional and/or translational levels of de novo lipogenesis (DNL) and ER stress markers showed up-regulation of both fatty acid synthesis (ChREBP and SCD1) and oxidation (PPARα and CPT-1α), as well as overexpression of unfolded protein response sensors (IRE1α, PERK and ATF6), chaperones (GRP78 and PDIA1) and antioxidant defense (NRF2) genes at 30 days. At 60 days, fatty acid oxidation genes were down-regulated, and ER stress switched over toward a proapoptotic pattern via up-regulation of BAK protein and CHOP gene levels. Finally, down-regulation of both NRF2 and CPT-1α protein levels led to late up-regulation of SREBP-1c and exponential raise of fatty acids synthesis. In conclusion, our study originally demonstrates a temporal relationship between DNL and ER stress pathways toward MetS and NAFLD development on weaned rats fed a high-sucrose diet.
Collapse
Affiliation(s)
- Karla Frida Torres Flister
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, (MA), Brazil
| | - Bruno Araújo Serra Pinto
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, (MA), Brazil
| | - Lucas Martins França
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, (MA), Brazil
| | - Caio Fernando Ferreira Coêlho
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, (MA), Brazil
| | - Pâmela Costa Dos Santos
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, (MA), Brazil
| | - Caroline Castro Vale
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, (MA), Brazil
| | - Daniela Kajihara
- Laboratory of Vascular Biology, Heart Institute of the School of Medicine, University of São Paulo, São Paulo, (SP), Brazil
| | - Victor Debbas
- Laboratory of Vascular Biology, Heart Institute of the School of Medicine, University of São Paulo, São Paulo, (SP), Brazil
| | | | - Antonio Marcus de Andrade Paes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, (MA), Brazil.
| |
Collapse
|
125
|
Tong X, Zhang Q, Wang L, Ji Y, Zhang L, Xie L, Chen W, Zhang H. RNF186 impairs insulin sensitivity by inducing ER stress in mouse primary hepatocytes. Cell Signal 2018; 52:155-162. [PMID: 30223017 DOI: 10.1016/j.cellsig.2018.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 09/09/2018] [Accepted: 09/13/2018] [Indexed: 12/12/2022]
Abstract
RING finger 186 (RNF186) is involved in the process of endoplasmic reticulum (ER)-stress-mediated apoptosis and inflammation of different cell types, such as HeLa cells and colon epithelial cells. However, the physiological and functional roles of RNF186 in peripheral tissues remain largely unknown. In the current study, we investigate the physiological function of RNF186 in the regulation of ER stress with respect to its biological roles in regulating insulin sensitivity in mouse primary hepatocytes. RNF186 expression is induced in the livers of diabetic, obese and diet-induced obese (DIO) mice. Mouse primary hepatocytes were isolated and treated with Ad-RNF186 or Ad-GFP. The results suggest that overexpression of RNF186 increases the protein levels of the ER stress sensors inositol requiring kinase 1 (IRE1) and C/EBP homologous protein (CHOP) protein, as well as the phosphorylation level of eukaryotic initiation factor 2α (eIF2α), in mouse primary hepatocytes. This effect impedes the action of insulin through c-Jun N-terminal kinase (JNK)-mediated phosphorylation of insulin receptor substrate 1 (IRS1). Furthermore, overexpression of RNF186 also significantly increases the levels of proinflammatory cytokines, including TNFα, IL-6 and MCP1. In addition, tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor, alleviates the expression of ER stress markers induced by RNF186 overexpression. Taken together, the results of the present study show that overexpression of RNF186 induces ER stress and impairs insulin signalling in mouse primary hepatocytes, suggesting that RNF186 merits further investigation as a potential therapeutic target for treatment of insulin-resistance-associated metabolic diseases.
Collapse
Affiliation(s)
- Xin Tong
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Qifan Zhang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Lu Wang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Yizhong Ji
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Lei Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100005, China
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Wei Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China.
| | - Huabing Zhang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
126
|
Kim JY, Garcia-Carbonell R, Yamachika S, Zhao P, Dhar D, Loomba R, Kaufman RJ, Saltiel AR, Karin M. ER Stress Drives Lipogenesis and Steatohepatitis via Caspase-2 Activation of S1P. Cell 2018; 175:133-145.e15. [PMID: 30220454 DOI: 10.1016/j.cell.2018.08.020] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 05/11/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) progresses to nonalcoholic steatohepatitis (NASH) in response to elevated endoplasmic reticulum (ER) stress. Whereas the onset of simple steatosis requires elevated de novo lipogenesis, progression to NASH is triggered by accumulation of hepatocyte-free cholesterol. We now show that caspase-2, whose expression is ER-stress inducible and elevated in human and mouse NASH, controls the buildup of hepatic-free cholesterol and triglycerides by activating sterol regulatory element-binding proteins (SREBP) in a manner refractory to feedback inhibition. Caspase-2 colocalizes with site 1 protease (S1P) and cleaves it to generate a soluble active fragment that initiates SCAP-independent SREBP1/2 activation in the ER. Caspase-2 ablation or pharmacological inhibition prevents diet-induced steatosis and NASH progression in ER-stress-prone mice. Caspase-2 inhibition offers a specific and effective strategy for preventing or treating stress-driven fatty liver diseases, whereas caspase-2-generated S1P proteolytic fragments, which enter the secretory pathway, are potential NASH biomarkers.
Collapse
Affiliation(s)
- Ju Youn Kim
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Ricard Garcia-Carbonell
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Shinichiro Yamachika
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Peng Zhao
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Debanjan Dhar
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Randal J Kaufman
- Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alan R Saltiel
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
127
|
Zhang C, Seo J, Murakami K, Salem ESB, Bernhard E, Borra VJ, Choi K, Yuan CL, Chan CC, Chen X, Huang T, Weirauch MT, Divanovic S, Qi NR, Thomas HE, Mercer CA, Siomi H, Nakamura T. Hepatic Ago2-mediated RNA silencing controls energy metabolism linked to AMPK activation and obesity-associated pathophysiology. Nat Commun 2018; 9:3658. [PMID: 30201950 PMCID: PMC6131149 DOI: 10.1038/s41467-018-05870-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022] Open
Abstract
RNA silencing inhibits mRNA translation. While mRNA translation accounts for the majority of cellular energy expenditure, it is unclear if RNA silencing regulates energy homeostasis. Here, we report that hepatic Argonaute 2 (Ago2)-mediated RNA silencing regulates both intrinsic energy production and consumption and disturbs energy metabolism in the pathogenesis of obesity. Ago2 regulates expression of specific miRNAs including miR-802, miR-103/107, and miR-148a/152, causing metabolic disruption, while simultaneously suppressing the expression of genes regulating glucose and lipid metabolism, including Hnf1β, Cav1, and Ampka1. Liver-specific Ago2-deletion enhances mitochondrial oxidation and ATP consumption associated with mRNA translation, which results in AMPK activation, and improves obesity-associated pathophysiology. Notably, hepatic Ago2-deficiency improves glucose metabolism in conditions of insulin receptor antagonist treatment, high-fat diet challenge, and hepatic AMPKα1-deletion. The regulation of energy metabolism by Ago2 provides a novel paradigm in which RNA silencing plays an integral role in determining basal metabolic activity in obesity-associated sequelae.
Collapse
Affiliation(s)
- Cai Zhang
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Joonbae Seo
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kazutoshi Murakami
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Esam S B Salem
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Elise Bernhard
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vishnupriya J Borra
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Celvie L Yuan
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Calvin C Chan
- Medical Scientist Training Program, Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Xiaoting Chen
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Taosheng Huang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nathan R Qi
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hala Einakat Thomas
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Carol A Mercer
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Takahisa Nakamura
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
128
|
Tan N, Li X, Zhai L, Liu D, Li J, Yokota H, Zhang P. Effects of knee loading on obesity-related non-alcoholic fatty liver disease in an ovariectomized mouse model with high-fat diet. Hepatol Res 2018; 48:839-849. [PMID: 29601135 PMCID: PMC6143407 DOI: 10.1111/hepr.13076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 12/27/2022]
Abstract
AIM Hormonal and nutritional disorders are the main causes of obesity and non-alcoholic fatty liver disease, especially in the elderly and in postmenopausal women. Although physical activity might alleviate these disorders, the elderly may often have difficulty in carrying out physical exercise. The purpose of this study was to investigate the therapeutic effect of knee loading, a new form of physical stimulation, on the symptoms of obesity and fatty liver. METHODS Using ovariectomized mice fed a high-fat diet, we evaluated the effect of knee loading that applies gentle cyclic loads to the knee. Female C57BL/6 mice were divided into five groups: control (SCD), high-fat diet (HF), HF with loading (HF + L), HF with ovariectomy (HF + OVX), and HF + OVX with loading (HF + OVX + L). Except for SCD, mice underwent sham operation or ovariectomy and were maintained on HF diet. After 6 weeks, the mice in the HF + L and HF + OVX + L groups were treated with knee loading for 6 weeks. RESULTS Compared to the obesity groups (HF and HF + OVX), knee loading significantly decreased a gain in body weight, liver weight, and white adipose tissue (all P < 0.01). It also reduced the lipid level in the serum (P < 0.01) and histological severity of hepatic steatosis (P < 0.01). Furthermore, knee loading downregulated biomarkers related to endoplasmic reticulum (ER) stress (GRP78, p-eIF2α, and ATF4) and altered biomarkers in autophagy (LC3 and p62). CONCLUSIONS Knee loading suppressed obesity-associated metabolic alterations and hepatic steatosis. These effects with knee loading might be associated with suppression of ER stress and promotion of autophagy.
Collapse
Affiliation(s)
- Nian Tan
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China,TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300457, China,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Lidong Zhai
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China,TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300457, China,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China,TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300457, China,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN 46202, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China,TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300457, China,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China,Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN 46202, USA,Corresponding Author: Ping Zhang, MD, Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China, Phone: 86-22-83336818, Fax: 86-22-83336810,
| |
Collapse
|
129
|
So JS. Roles of Endoplasmic Reticulum Stress in Immune Responses. Mol Cells 2018; 41:705-716. [PMID: 30078231 PMCID: PMC6125421 DOI: 10.14348/molcells.2018.0241] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/03/2018] [Accepted: 07/19/2018] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) is a critical organelle for protein synthesis, folding and modification, and lipid synthesis and calcium storage. Dysregulation of ER functions leads to the accumulation of misfolded- or unfolded-protein in the ER lumen, and this triggers the unfolded protein response (UPR), which restores ER homeostasis. The UPR is characterized by three distinct downstream signaling pathways that promote cell survival or apoptosis depending on the stressor, the intensity and duration of ER stress, and the cell type. Mammalian cells express the UPR transducers IRE1, PERK, and ATF6, which control transcriptional and translational responses to ER stress. Direct links between ER stress and immune responses are also evident, but the mechanisms by which UPR signaling cascades are coordinated with immunity remain unclear. This review discusses recent investigations of the roles of ER stress in immune responses that lead to differentiation, maturation, and cytokine expression in immune cells. Further understanding of how ER stress contributes to the pathogenesis of immune disorders will facilitate the development of novel therapies that target UPR pathways.
Collapse
Affiliation(s)
- Jae-Seon So
- Department of Medical Biotechnology, Dongguk University Gyeongju, Gyeongju 38066,
Korea
| |
Collapse
|
130
|
Liao X, Song L, Zhang L, Wang H, Tong Q, Xu J, Yang G, Yang S, Zheng H. LAMP3 regulates hepatic lipid metabolism through activating PI3K/Akt pathway. Mol Cell Endocrinol 2018; 470:160-167. [PMID: 29056532 DOI: 10.1016/j.mce.2017.10.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/11/2017] [Accepted: 10/16/2017] [Indexed: 02/06/2023]
Abstract
Lysosome associated membrane protein 3 (LAMP3), a highly glycosylated protein, is one member of the LAMPs family. LAMPs family plays a critical role in the autolysosome fusion process. Autophagy was recently confirmed to regulate hepatic lipolysis. However, the physiological function of LAMP3 in lipid metabolism is not clear. In the current study, we discovered that the LAMP3 expression level was higher in the liver tissues of non-alcoholic fatty liver disease (NAFLD) patients and high-fat diet and ob/ob mice than in the matched control groups. LAMP3 expression was also obviously increased in hepatocellular carcinoma (HCC) cells treated with free fatty acids. Moreover, marked accumulation of intracellular lipid droplets and triglycerides (TG) was observed after LAMP3 overexpression in HCC cells. Further study showed that LAMP3 overexpression activated Akt and upregulated the expression of the lipogenic enzymes FASN and SCD-1 in HepG2 cells. Additionally, the increased TG content induced by LAMP3 overexpression was attenuated by treatment with a PI3K/Akt pathway inhibitor. Our findings demonstrated that LAMP3 is an important regulator of hepatic lipid metabolism, which provides a line of evidence for taking LAMP3 as a drug target in lipid metabolism disorder-associated diseases, such as NAFLD and obesity.
Collapse
Affiliation(s)
- Xiaoyu Liao
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Lingyu Song
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Linlin Zhang
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hui Wang
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qiang Tong
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jing Xu
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Hongting Zheng
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
131
|
Gasparin FRS, Carreño FO, Mewes JM, Gilglioni EH, Pagadigorria CLS, Natali MRM, Utsunomiya KS, Constantin RP, Ouchida AT, Curti C, Gaemers IC, Elferink RPJO, Constantin J, Ishii-Iwamoto EL. Sex differences in the development of hepatic steatosis in cafeteria diet-induced obesity in young mice. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2495-2509. [DOI: 10.1016/j.bbadis.2018.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 02/08/2023]
|
132
|
Kristensen CM, Olsen MA, Jessen H, Brandt N, Meldgaard JN, Pilegaard H. PGC-1α in exercise and fasting-induced regulation of hepatic UPR in mice. Pflugers Arch 2018; 470:1431-1447. [PMID: 29961149 PMCID: PMC6153608 DOI: 10.1007/s00424-018-2159-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/02/2018] [Accepted: 05/23/2018] [Indexed: 11/26/2022]
Abstract
The aim of the present study was to test the hypothesis that PGC-1α is involved in the regulation of hepatic UPR and autophagy in response to both exercise and fasting in mice. Liver-specific PGC-1α knockout (LKO) mice and their floxed littermates (lox/lox) were used in two experimental parts. Liver and plasma were obtained from (1) fed and 18 h fasted mice and (2) immediately after, 2, 6, and 10 h after 1-h treadmill running as well as from resting mice, where one resting group was euthanized at time points corresponding to 0 and 2 h and another corresponding to 6 and 10 h of recovery. Hepatic eIF2α phosphorylation and sXBP1 mRNA content increased immediately after exercise and IRE1α phosphorylation as well as cleaved ATF6 protein content was higher 2 h into recovery than at rest in both genotypes. Fasting reduced hepatic IRE1α phosphorylation and protein content as well as PERK protein and sXBP1 mRNA content similarly in lox/lox and LKO mice. In addition, the hepatic LC3II/LC3I protein ratio increased immediately after exercise and with fasting in both genotypes, while fasting decreased p62 protein content in lox/lox mice. Liver-specific PGC-1α knockout did not affect these responses, but the LC3II/LC3I protein ratio was higher in LKO than lox/lox mice in both rest groups. In conclusion, the present study provides evidence for pathway-specific exercise-induced activation and fasting-induced downregulation of the UPR as well as exercise and fasting-induced regulation of autophagy in mouse liver. In addition, overall PGC-1α does not seem to be required for the fasting and exercise-induced regulation of UPR and autophagy, but may be involved in regulating basal hepatic autophagy.
Collapse
Affiliation(s)
- Caroline M Kristensen
- Department of Biology, University of Copenhagen, August Krogh Building, Universitetsparken 13, 4th floor, Copenhagen, Denmark
| | - Mette A Olsen
- Department of Biology, University of Copenhagen, August Krogh Building, Universitetsparken 13, 4th floor, Copenhagen, Denmark
| | - Henrik Jessen
- Department of Biology, University of Copenhagen, August Krogh Building, Universitetsparken 13, 4th floor, Copenhagen, Denmark
| | - Nina Brandt
- Department of Biology, University of Copenhagen, August Krogh Building, Universitetsparken 13, 4th floor, Copenhagen, Denmark
| | - Jacob N Meldgaard
- Department of Biology, University of Copenhagen, August Krogh Building, Universitetsparken 13, 4th floor, Copenhagen, Denmark
| | - Henriette Pilegaard
- Department of Biology, University of Copenhagen, August Krogh Building, Universitetsparken 13, 4th floor, Copenhagen, Denmark.
| |
Collapse
|
133
|
Sun P, Zhu JJ, Wang T, Huang Q, Zhou YR, Yu BW, Jiang HL, Wang HY. Benzbromarone aggravates hepatic steatosis in obese individuals. Biochim Biophys Acta Mol Basis Dis 2018. [DOI: 10.1016/j.bbadis.2018.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
134
|
Wang N, Liu Y, Ma Y, Wen D. Hydroxytyrosol ameliorates insulin resistance by modulating endoplasmic reticulum stress and prevents hepatic steatosis in diet-induced obesity mice. J Nutr Biochem 2018; 57:180-188. [PMID: 29747118 DOI: 10.1016/j.jnutbio.2018.03.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/06/2018] [Accepted: 03/10/2018] [Indexed: 11/28/2022]
Abstract
Endoplasmic reticulum (ER) is a principal organelle responsible for energy and nutrient management. Its dysfunction has been viewed in the context of obesity and related glucolipid metabolic disorders. However, therapeutic approaches to improve ER adaptation and systemic energy balance in obesity are limited. Thus, we examined whether hydroxytyrosol (HT), an important polyphenolic compound found in virgin olive oil, could correct the metabolic impairments in diet-induced obesity (DIO) mice. Here, we found that HT gavage for 10 weeks significantly ameliorated glucose homeostasis and chronic inflammation and decreased hepatic steatosis in DIO mice. At the molecular level, ER stress indicators, inflammatory and insulin signaling markers demonstrated that high-fat diet (HFD)-induced ER stress and insulin resistance (IR) in insulin sensitive tissue were corrected by HT. In vitro studies confirmed that HT supplementation (100 μM) attenuated palmitate-evoked ER stress, thus rescuing the downstream JNK/IRS pathway. As a result from suppression of ER stress in the liver, HT further decreased hepatic sterol regulatory element-binding protein-1 expression (SREBP1). Additionally, aberrant expression of genes involved in hepatic lipogenesis (SREBP1, ACC, FAS, SCD1) caused by HFD was restored by HT. These findings suggested that HT ameliorated chronic inflammation and IR and decreased hepatic steatosis in obesity by beneficial modulation of ER stress.
Collapse
Affiliation(s)
- Ningning Wang
- School of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Yang Liu
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yanan Ma
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Deliang Wen
- School of Public Health, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
135
|
Yamaoka Y, Choi BY, Kim H, Shin S, Kim Y, Jang S, Song WY, Cho CH, Yoon HS, Kohno K, Lee Y. Identification and functional study of the endoplasmic reticulum stress sensor IRE1 in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:91-104. [PMID: 29385296 DOI: 10.1111/tpj.13844] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 01/07/2018] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
In many eukaryotes, endoplasmic reticulum (ER) stress activates the unfolded protein response (UPR) via the transmembrane endoribonuclease IRE1 to maintain ER homeostasis. The ER stress response in microalgae has not been studied in detail. Here, we identified Chlamydomonas reinhardtii IRE1 (CrIRE1) and characterized two independent knock-down alleles of this gene. CrIRE1 is similar to IRE1s identified in budding yeast, plants, and humans, in terms of conserved domains, but differs in having the tandem zinc-finger domain at the C terminus. CrIRE1 was highly induced under ER stress conditions, and the expression of a chimeric protein consisting of the luminal N-terminal region of CrIRE1 fused to the cytosolic C-terminal region of yeast Ire1p rescued the yeast ∆ire1 mutant. Both allelic ire1 knock-down mutants ire1-1 and ire1-2 were much more sensitive than their parental strain CC-4533 to the ER stress inducers tunicamycin, dithiothreitol and brefeldin A. Treatment with a low concentration of tunicamycin resulted in growth arrest and cytolysis in ire1 mutants, but not in CC-4533 cells. Furthermore, in the mutants, ER stress marker gene expression was reduced, and reactive oxygen species (ROS) marker gene expression was increased. The survival of ire1 mutants treated with tunicamycin improved in the presence of the ROS scavenger glutathione, suggesting that ire1 mutants failed to maintain ROS levels under ER stress. Together, these results indicate that CrIRE1 functions as an important component of the ER stress response in Chlamydomonas, and suggest that the ER stress sensor IRE1 is highly conserved during the evolutionary history.
Collapse
Affiliation(s)
- Yasuyo Yamaoka
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Bae Young Choi
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Hanul Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Seungjun Shin
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Yeongho Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Sunghoon Jang
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Won-Yong Song
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Chung H Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Kenji Kohno
- Graduate School of Biological Sciences and Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Youngsook Lee
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| |
Collapse
|
136
|
Vildagliptin Can Alleviate Endoplasmic Reticulum Stress in the Liver Induced by a High Fat Diet. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5045182. [PMID: 29721506 PMCID: PMC5867538 DOI: 10.1155/2018/5045182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022]
Abstract
Purpose. We investigated whether a DDP-4 inhibitor, vildagliptin, alleviated ER stress induced by a high fat diet and improved hepatic lipid deposition. Methods. C57BL/6 mice received standard chow diet (CD), high fat diet (HFD), and HFD administered with vildagliptin (50 mg/Kg) (V-HFD). After administration for 12 weeks, serum alanine aminotransferase, glucose, cholesterol, triglyceride, and insulin levels were analyzed. Samples of liver underwent histological examination and transmission electron microscopy, real-time PCR for gene expression levels, and western blots for protein expression levels. ER stress was induced in HepG2 cells with palmitic acid and the effects of vildagliptin were investigated. Results. HFD mice showed increased liver weight/body weight (20.27%) and liver triglycerides (314.75%) compared to CD mice, but these decreased by 9.27% and 21.83%, respectively, in V-HFD mice. In the liver, HFD induced the expression of ER stress indicators significantly, which were obviously decreased by vildagliptin. In vitro, the expressions of molecular indicators of ER stress were reduced in HepG2 when vildagliptin was administered. Conclusions. Vildagliptin alleviates hepatic ER stress in a mouse high fat diet model. In HepG2 cells, vildagliptin directly reduced ER stress. Therefore, vildagliptin may be a potential agent for nonalcoholic fatty liver disease.
Collapse
|
137
|
Estrada AL, Hudson WM, Kim PY, Stewart CM, Peelor FF, Wei Y, Wang D, Hamilton KL, Miller BF, Pagliassotti MJ. Short-term changes in diet composition do not affect in vivo hepatic protein synthesis in rats. Am J Physiol Endocrinol Metab 2018; 314:E241-E250. [PMID: 28851736 PMCID: PMC5899216 DOI: 10.1152/ajpendo.00209.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 11/22/2022]
Abstract
Protein synthesis is critical to protein homeostasis (proteostasis), and modifications in protein synthesis influence lifespan and the development of comorbidities associated with obesity. In the present study, we examined the acute response of liver protein synthesis to either high-fat or high-sucrose diets in order to elucidate nutrient-mediated regulation of hepatic protein synthesis in the absence of body fat accumulation. Total and endoplasmic reticulum-associated protein syntheses were assessed by use of the stable isotope, deuterium oxide (2H2O), in rats provided a control diet or diets enriched in polyunsaturated fat, saturated fat, or sucrose for 2, 4, or 7 days. The three experimental diets increased hepatic triglycerides 46-91% on day 7 and fasting insulin levels 83-117% on day 7, but did not result in differences in body weight when compared with control ( n = 6/diet/time). The fraction of newly synthesized proteins in total liver lysates and microsomes was not significantly different among dietary groups ( n = 3/diet/time). To determine whether the experimental diets provoked a transcriptional response to enhance the capacity for protein synthesis, we also measured a panel of genes linked to amino acid transport, synthesis, and processing. There were no significant differences in any of the genes measured among groups. Therefore, dietary treatments that have been linked to impaired proteostasis and that promote hepatic steatosis and insulin resistance, did not result in significant changes in total or ER-associated protein synthesis in the liver over a 7-day period.
Collapse
Affiliation(s)
- Andrea Lee Estrada
- Department of Food Science and Human Nutrition, Colorado State University , Fort Collins, Colorado
| | - William Max Hudson
- Department of Food Science and Human Nutrition, Colorado State University , Fort Collins, Colorado
| | - Paul Y Kim
- Department of Biology, Grambling State University, Grambling, Louisiana
| | - Claire Marie Stewart
- Department of Food Science and Human Nutrition, Colorado State University , Fort Collins, Colorado
| | - Frederick F Peelor
- Department of Health and Exercise Science, Colorado State University , Fort Collins, Colorado
| | - Yuren Wei
- Department of Food Science and Human Nutrition, Colorado State University , Fort Collins, Colorado
| | - Dong Wang
- Department of Food Science and Human Nutrition, Colorado State University , Fort Collins, Colorado
| | - Karyn L Hamilton
- Department of Health and Exercise Science, Colorado State University , Fort Collins, Colorado
| | - Benjamin F Miller
- Department of Health and Exercise Science, Colorado State University , Fort Collins, Colorado
| | - Michael J Pagliassotti
- Department of Food Science and Human Nutrition, Colorado State University , Fort Collins, Colorado
| |
Collapse
|
138
|
Sharma RS, Harrison DJ, Kisielewski D, Cassidy DM, McNeilly AD, Gallagher JR, Walsh SV, Honda T, McCrimmon RJ, Dinkova-Kostova AT, Ashford ML, Dillon JF, Hayes JD. Experimental Nonalcoholic Steatohepatitis and Liver Fibrosis Are Ameliorated by Pharmacologic Activation of Nrf2 (NF-E2 p45-Related Factor 2). Cell Mol Gastroenterol Hepatol 2018; 5:367-398. [PMID: 29552625 PMCID: PMC5852394 DOI: 10.1016/j.jcmgh.2017.11.016] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic steatohepatitis (NASH) is associated with oxidative stress. We surmised that pharmacologic activation of NF-E2 p45-related factor 2 (Nrf2) using the acetylenic tricyclic bis(cyano enone) TBE-31 would suppress NASH because Nrf2 is a transcriptional master regulator of intracellular redox homeostasis. METHODS Nrf2+/+ and Nrf2-/- C57BL/6 mice were fed a high-fat plus fructose (HFFr) or regular chow diet for 16 weeks or 30 weeks, and then treated for the final 6 weeks, while still being fed the same HFFr or regular chow diets, with either TBE-31 or dimethyl sulfoxide vehicle control. Measures of whole-body glucose homeostasis, histologic assessment of liver, and biochemical and molecular measurements of steatosis, endoplasmic reticulum (ER) stress, inflammation, apoptosis, fibrosis, and oxidative stress were performed in livers from these animals. RESULTS TBE-31 treatment reversed insulin resistance in HFFr-fed wild-type mice, but not in HFFr-fed Nrf2-null mice. TBE-31 treatment of HFFr-fed wild-type mice substantially decreased liver steatosis and expression of lipid synthesis genes, while increasing hepatic expression of fatty acid oxidation and lipoprotein assembly genes. Also, TBE-31 treatment decreased ER stress, expression of inflammation genes, and markers of apoptosis, fibrosis, and oxidative stress in the livers of HFFr-fed wild-type mice. By comparison, TBE-31 did not decrease steatosis, ER stress, lipogenesis, inflammation, fibrosis, or oxidative stress in livers of HFFr-fed Nrf2-null mice. CONCLUSIONS Pharmacologic activation of Nrf2 in mice that had already been rendered obese and insulin resistant reversed insulin resistance, suppressed hepatic steatosis, and mitigated against NASH and liver fibrosis, effects that we principally attribute to inhibition of ER, inflammatory, and oxidative stress.
Collapse
Key Words
- ACACA, acetyl-CoA carboxylase alpha
- ACLY, ATP citrate lyase
- ACOT7, acetyl-CoA thioesterase 7
- ACOX2, acetyl-CoA oxidase 2
- ADRP, adipose differentiation-related protein
- AP-1, activator protein 1
- ATF4, activating transcription factor-4
- ATF6, activating transcription factor-6
- ApoB, apolipoprotein B
- BCL-2, B-cell lymphoma
- BIP, binding immunoglobulin protein
- C/EBP, CCAAT/enhancer-binding protein
- CAT, catalase
- CD36, cluster of differentiation 36
- CDDO, 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid
- CES1G, carboxylesterase 1g
- CHOP, C/EBP homologous protein
- COL1A1, collagen, type I, alpha-1
- COX2, cyclooxygenase-2
- CPT1A, carnitine palmitoyltransferase 1a
- ChREBP, carbohydrate-responsive element-binding protein
- DGAT2, diacylglycerol acyltransferase-2
- DMSO, dimethyl sulfoxide
- ER, endoplasmic reticulum
- FASN, fatty acid synthase
- FXR, farnesoid X receptor
- GCLC, glutamate-cysteine ligase catalytic
- GCLM, glutamate-cysteine ligase modifier
- GPX2, glutathione peroxidase-2
- GSH, reduced glutathione
- GSSG, oxidized glutathione
- GSTA4, glutathione S-transferase Alpha-4
- GSTM1, glutathione S-transferase Mu-1
- GTT, glucose tolerance test
- H&E, hematoxylin and eosin
- HF, high-fat
- HF30Fr, high-fat diet with 30% fructose in drinking water
- HF55Fr, high-fat diet with 55% fructose in drinking water
- HFFr, high-fat diet with fructose in drinking water
- HMOX1, heme oxygenase-1
- IKK, IκB kinase
- IRE1α, inositol requiring kinase-1α
- ITT, insulin tolerance test
- IκB, inhibitor of NF-κB
- JNK1, c-Jun N-terminal kinase 1
- Keap1, Kelch-like ECH-associated protein-1
- LXRα, liver X receptor α
- MCD, methionine- and choline-deficient
- MCP-1, monocyte chemotactic protein-1
- MGPAT, mitochondrial glycerol-3-phosphate acetyltransferase
- MPO, myeloperoxidase
- MTTP, microsomal triglyceride transfer protein
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH
- NASH, nonalcoholic steatohepatitis
- NF-κB, nuclear factor-κB
- NOS2, nitric oxide synthase-2
- NQO1, NAD(P)H:quinone oxidoreductase 1
- Nrf2
- Nrf2, NF-E2 p45-related factor 2
- PARP, poly ADP ribose polymerase
- PCR, polymerase chain reaction
- PDI, protein disulfide isomerase
- PERK, PRK-like endoplasmic reticulum kinase
- PPARα, peroxisome proliferator-activated receptor α
- PPARγ, peroxisome proliferator-activated receptor γ
- PRDX6, peroxiredoxin 6
- PTGR1, prostaglandin reductase-1
- PTT, pyruvate tolerance test
- RC, regular chow
- SCAD, short-chain acyl-CoA dehydrogenase
- SCD1, stearoyl-CoA desaturase-1
- SFN, sulforaphane
- SHP, small heterodimer partner
- SLC7A11, solute carrier family 7 member 11
- SREBP-1c, sterol regulatory element-binding protein-1c
- TBE-31
- TGFβ, transforming growth factor beta-1
- TNF-α, tumor necrosis factor-α
- TXN1, thioredoxin-1
- TXNRD1, thioredoxin reductase-1
- UPR, unfolded protein response
- XBP1, X-box binding protein-1
- eIf2α, eukaryotic translation initiation factor 2A
- p58IPK, p58 inhibitor of the PKR kinase
- qRT-PCR, quantitative reverse transcriptase PCR
- α-SMA, alpha smooth muscle actin
Collapse
Affiliation(s)
- Ritu S. Sharma
- Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - David J. Harrison
- School of Medicine, University of St Andrews, St Andrews, Scotland, United Kingdom
| | - Dorothy Kisielewski
- Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - Diane M. Cassidy
- Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - Alison D. McNeilly
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - Jennifer R. Gallagher
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - Shaun V. Walsh
- Department of Pathology, Ninewells Hospital and Medical School, Tayside NHS Trust, Dundee, Scotland, United Kingdom
| | - Tadashi Honda
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York
| | - Rory J. McCrimmon
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - Albena T. Dinkova-Kostova
- Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - Michael L.J. Ashford
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - John F. Dillon
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - John D. Hayes
- Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| |
Collapse
|
139
|
Tian S, Li B, Lei P, Yang X, Zhang X, Bao Y, Shan Y. Sulforaphane Improves Abnormal Lipid Metabolism via Both ERS-Dependent XBP1/ACC &SCD1 and ERS-Independent SREBP/FAS Pathways. Mol Nutr Food Res 2018; 62:e1700737. [DOI: 10.1002/mnfr.201700737] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/14/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Sicong Tian
- Department of Food Science and Engineering; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin China
| | - Baolong Li
- Heilongjiang University of Chinese Medicine; Harbin China
| | - Peng Lei
- Department of Food Science and Engineering; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin China
| | - Xiuli Yang
- Department of Food Science and Engineering; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin China
| | - Xiaohong Zhang
- Institute of Preventative Medicine and Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology; School of Medicine; Ningbo University; Zhejiang China
| | - Yongping Bao
- Norwich Medical School; University of East Anglia; Norwich UK
| | - Yujuan Shan
- Department of Food Science and Engineering; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin China
| |
Collapse
|
140
|
Ho N, Xu C, Thibault G. From the unfolded protein response to metabolic diseases - lipids under the spotlight. J Cell Sci 2018; 131:131/3/jcs199307. [PMID: 29439157 DOI: 10.1242/jcs.199307] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The unfolded protein response (UPR) is classically viewed as a stress response pathway to maintain protein homeostasis at the endoplasmic reticulum (ER). However, it has recently emerged that the UPR can be directly activated by lipid perturbation, independently of misfolded proteins. Comprising primarily phospholipids, sphingolipids and sterols, individual membranes can contain hundreds of distinct lipids. Even with such complexity, lipid distribution in a cell is tightly regulated by mechanisms that remain incompletely understood. It is therefore unsurprising that lipid dysregulation can be a key factor in disease development. Recent advances in analysis of lipids and their regulators have revealed remarkable mechanisms and connections to other cellular pathways including the UPR. In this Review, we summarize the current understanding in UPR transducers functioning as lipid sensors and the interplay between lipid metabolism and ER homeostasis in the context of metabolic diseases. We attempt to provide a framework consisting of a few key principles to integrate the different lines of evidence and explain this rather complicated mechanism.
Collapse
Affiliation(s)
- Nurulain Ho
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551
| | - Chengchao Xu
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142-1479, USA
| | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551
| |
Collapse
|
141
|
Rutkowski DT. Liver function and dysfunction - a unique window into the physiological reach of ER stress and the unfolded protein response. FEBS J 2018; 286:356-378. [PMID: 29360258 DOI: 10.1111/febs.14389] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/08/2018] [Accepted: 01/17/2018] [Indexed: 02/06/2023]
Abstract
The unfolded protein response (UPR) improves endoplasmic reticulum (ER) protein folding in order to alleviate stress. Yet it is becoming increasingly clear that the UPR regulates processes well beyond those directly involved in protein folding, in some cases by mechanisms that fall outside the realm of canonical UPR signaling. These pathways are highly specific from one cell type to another, implying that ER stress signaling affects each tissue in a unique way. Perhaps nowhere is this more evident than in the liver, which-beyond being a highly secretory tissue-is a key regulator of peripheral metabolism and a uniquely proliferative organ upon damage. The liver provides a powerful model system for exploring how and why the UPR extends its reach into physiological processes that occur outside the ER, and how ER stress contributes to the many systemic diseases that involve liver dysfunction. This review will highlight the ways in which the study of ER stress in the liver has expanded the view of the UPR to a response that is a key guardian of cellular homeostasis outside of just the narrow realm of ER protein folding.
Collapse
Affiliation(s)
- D Thomas Rutkowski
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, IA, USA.,Department of Internal Medicine, University of Iowa Carver College of Medicine, IA, USA
| |
Collapse
|
142
|
Abstract
Circadian clocks help control the unfolded protein response (UPR). In a recent issue of Nature Cell Biology, Bu et al. (2017) show that the interaction is reciprocal, with miRNA-211 providing a signal from the UPR to the clock component BMAL1, affecting circadian timing, global translational control, and cancer cell survival.
Collapse
Affiliation(s)
- Nikolay B Milev
- Center for Integrative Genomics, University of Lausanne, Génopode, 1015 Lausanne, Switzerland
| | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, Génopode, 1015 Lausanne, Switzerland.
| |
Collapse
|
143
|
Lee YS, Park JS, Lee DH, Lee DK, Kwon SW, Lee BW, Bae SH. The Antidiabetic Drug Lobeglitazone Protects Mice From Lipogenesis-Induced Liver Injury via Mechanistic Target of Rapamycin Complex 1 Inhibition. Front Endocrinol (Lausanne) 2018; 9:539. [PMID: 30298052 PMCID: PMC6161559 DOI: 10.3389/fendo.2018.00539] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/28/2018] [Indexed: 12/31/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder closely linked with type II diabetes (T2D). The progression of NAFLD is associated with the induction of lipogenesis through hyperactivation of the mechanistic target of rapamycin complex 1 (mTORC1) pathway. An increase in lipogenesis induces endoplasmic reticulum (ER) stress and accelerates oxidative liver injury in the pathogenesis of NAFLD. Lobeglitazone, one of thiazolidinediones (TZDs), is used as an antidiabetic drug to lower serum glucose level through an increase in insulin sensitivity. It is known to improve pathological symptoms in animals and humans with NAFLD. However, the underlying molecular mechanism of the protective effects of lobeglitazone against NAFLD has not been elucidated. Here, we show that under the physiological condition of acute lipogenesis, lobeglitazone inhibits hepatic lipid synthesis, the subsequent ER stress, and ω-oxidation of fatty acids by inhibiting the mTORC1 pathway. As a result, lobeglitazone protected mice from lipogenesis-induced oxidative liver injury. Taken together, lobeglitazone might be a suitable drug for the treatment of patients with diabetes and NAFLD.
Collapse
Affiliation(s)
- Yu Seol Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
- Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeong Su Park
- Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Da Hyun Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
- Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Dong-Kyu Lee
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Sung Won Kwon
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Byung-Wan Lee
- Graduate School, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Soo Han Bae
- Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Soo Han Bae
| |
Collapse
|
144
|
Machado MV, Diehl AM. Pathogenesis of Nonalcoholic Fatty Liver Disease. ZAKIM AND BOYER'S HEPATOLOGY 2018:369-390.e14. [DOI: 10.1016/b978-0-323-37591-7.00025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
145
|
MARUYAMA R, SHIMIZU M, HASHIDUME T, INOUE J, ITOH N, SATO R. FGF21 Alleviates Hepatic Endoplasmic Reticulum Stress under Physiological Conditions. J Nutr Sci Vitaminol (Tokyo) 2018; 64:200-208. [DOI: 10.3177/jnsv.64.200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ryuto MARUYAMA
- Laboratory of Food Biochemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Makoto SHIMIZU
- Laboratory of Food Biochemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Tsutomu HASHIDUME
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka
| | - Jun INOUE
- Laboratory of Food Biochemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Nobuyuki ITOH
- Medical Innovation Center, Graduate School of Medicine, Kyoto University
| | - Ryuichiro SATO
- Laboratory of Food Biochemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo
- Nutri-Life Science, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
146
|
Rius B, Duran‐Güell M, Flores‐Costa R, López‐Vicario C, Lopategi A, Alcaraz‐Quiles J, Casulleras M, José Lozano J, Titos E, Clària J. The specialized proresolving lipid mediator maresin 1 protects hepatocytes from lipotoxic and hypoxia‐induced endoplasmic reticulum stress. FASEB J 2017; 31:5384-5398. [DOI: 10.1096/fj.201700394r] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Bibiana Rius
- Department of Biochemistry and Molecular Genetics Hospital Clínic Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
| | - Marta Duran‐Güell
- Department of Biochemistry and Molecular Genetics Hospital Clínic Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
| | - Roger Flores‐Costa
- Department of Biochemistry and Molecular Genetics Hospital Clínic Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
| | - Cristina López‐Vicario
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Barcelona Spain
| | - Aritz Lopategi
- Department of Biochemistry and Molecular Genetics Hospital Clínic Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
| | - José Alcaraz‐Quiles
- Department of Biochemistry and Molecular Genetics Hospital Clínic Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
| | - Mireia Casulleras
- Department of Biochemistry and Molecular Genetics Hospital Clínic Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
| | - Juan José Lozano
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Barcelona Spain
| | - Esther Titos
- Department of Biochemistry and Molecular Genetics Hospital Clínic Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Barcelona Spain
| | - Joan Clària
- Department of Biochemistry and Molecular Genetics Hospital Clínic Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Barcelona Spain
- European Foundation for the Study of Chronic Liver Failure (EF‐CLIF) Barcelona Spain
- Department of Biomedical Sciences University of Barcelona Barcelona Spain
| |
Collapse
|
147
|
Kozuka C, Shimizu-Okabe C, Takayama C, Nakano K, Morinaga H, Kinjo A, Fukuda K, Kamei A, Yasuoka A, Kondo T, Abe K, Egashira K, Masuzaki H. Marked augmentation of PLGA nanoparticle-induced metabolically beneficial impact of γ-oryzanol on fuel dyshomeostasis in genetically obese-diabetic ob/ob mice. Drug Deliv 2017; 24:558-568. [PMID: 28181829 PMCID: PMC8241037 DOI: 10.1080/10717544.2017.1279237] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/01/2017] [Accepted: 01/03/2017] [Indexed: 12/19/2022] Open
Abstract
Our previous works demonstrated that brown rice-specific bioactive substance, γ-oryzanol acts as a chaperone, attenuates exaggerated endoplasmic reticulum (ER) stress in brain hypothalamus and pancreatic islets, thereby ameliorating metabolic derangement in high fat diet (HFD)-induced obese diabetic mice. However, extremely low absorption efficiency from intestine of γ-oryzanol is a tough obstacle for the clinical application. Therefore, in this study, to overcome extremely low bioavailability of γ-oryzanol with super-high lipophilicity, we encapsulated γ-oryzanol in polymer poly (DL-lactide-co-glycolide) (PLGA) nanoparticles (Nano-Orz), and evaluated its metabolically beneficial impact in genetically obese-diabetic ob/ob mice, the best-known severest diabetic model in mice. To our surprise, Nano-Orz markedly ameliorated fuel metabolism with an unexpected magnitude (∼1000-fold lower dose) compared with regular γ-oryzanol. Furthermore, such a conspicuous impact was achievable by its administration once every 2 weeks. Besides the excellent impact on dysfunction of hypothalamus and pancreatic islets, Nano-Orz markedly decreased ER stress and inflammation in liver and adipose tissue. Collectively, nanotechnology-based developments of functional foods oriented toward γ-oryzanol shed light on the novel approach for the treatment of a variety of metabolic diseases in humans.
Collapse
Affiliation(s)
- Chisayo Kozuka
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine and
| | - Chigusa Shimizu-Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Chitoshi Takayama
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kaku Nakano
- Department of Cardiovascular Medicine and
- Department of Cardiovascular Research, Development, and Translational Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | | | | | - Asuka Kamei
- Kanagawa Academy of Science and Technology, Kanagawa, Japan, and
| | - Akihito Yasuoka
- Kanagawa Academy of Science and Technology, Kanagawa, Japan, and
| | - Takashi Kondo
- Kanagawa Academy of Science and Technology, Kanagawa, Japan, and
| | - Keiko Abe
- Kanagawa Academy of Science and Technology, Kanagawa, Japan, and
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kensuke Egashira
- Department of Cardiovascular Medicine and
- Department of Cardiovascular Research, Development, and Translational Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- SENTAN Pharma Inc., Fukuoka, Japan
| | - Hiroaki Masuzaki
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine and
| |
Collapse
|
148
|
Hou X, Yang Z, Zhang K, Fang D, Sun F. SUMOylation represses the transcriptional activity of the Unfolded Protein Response transducer ATF6. Biochem Biophys Res Commun 2017; 494:446-451. [PMID: 29061306 DOI: 10.1016/j.bbrc.2017.10.103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/19/2017] [Indexed: 11/28/2022]
Abstract
The Unfolded Protein Response (UPR) is a cascade of intracellular stress signaling from the endoplasmic reticulum (ER) that protect the cells from the stress caused by accumulation of unfolded or misfolded proteins in the ER. Activating transcription factor 6 (ATF6) is one of primary UPR transducers that remodels the stressed cells through transcriptional regulation. Although the activation mechanism and biological roles of ATF6 have been well studied, the understanding of the negative or feedback regulation of ATF6 remains elusive. In this report, we showed that ATF6 protein can be modified by small ubiquitin-like modification (SUMOylation) and that the transcriptional activity of ATF6 is negatively regulated by SUMOylation. We identified that SUMOylation of ATF6 is significantly increased in the cells expressing misfolded cystic fibrosis transmembrane conductance regulator (CFTR) encoded by the mutant human CFTR gene (dF508CFTR). Further analyses revealed two highly conserved SUMOylation motifs within the trans-activation domain of ATF6 protein of human, mouse, or rat specie. The human ATF6 protein can be SUMOylated mediated through the small ubiquitin-like modifier protein 1 (SUMO-1) and E3 SUMO-protein ligase 1 (PIAS1) at the conserved sumoylation residue Lys149 that is located at the N-terminal of the activated form of ATF6 protein. Bimolecular fluorescence complementation (BiFC) analysis confirmed that the activated ATF6 protein can be SUMOylated and that the ATF6 sumoylation occurs in the nuclei. Moreover, trans-activation reporter analysis demonstrated that SUMOylation of the ATF6 protein at the conserved residue Lys149 represses the transcriptional activity of ATF6. In summary, our study revealed a negative regulation of the UPR transducer ATF6 through post-translational SUMOylation. The information from this study will not only increase our understanding of the fine-tuning regulation of the UPR signaling but will also be informative to the modulation of the UPR for therapeutic benefits.
Collapse
Affiliation(s)
- Xia Hou
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medicine, Jiamusi, Heilongjiang, 154007, China
| | - Zhao Yang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Fei Sun
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
149
|
Ma C, Zhang Q, Greten TF. Nonalcoholic fatty liver disease promotes hepatocellular carcinoma through direct and indirect effects on hepatocytes. FEBS J 2017; 285:752-762. [DOI: 10.1111/febs.14209] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/25/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Chi Ma
- GI-Malignancy Section; Thoracic and GI Oncology Branch; Center for Cancer Research; National Cancer Institute; National Institutes of Health; Bethesda MD USA
| | - Qianfei Zhang
- GI-Malignancy Section; Thoracic and GI Oncology Branch; Center for Cancer Research; National Cancer Institute; National Institutes of Health; Bethesda MD USA
| | - Tim F. Greten
- GI-Malignancy Section; Thoracic and GI Oncology Branch; Center for Cancer Research; National Cancer Institute; National Institutes of Health; Bethesda MD USA
| |
Collapse
|
150
|
Zheng X, Xu F, Liang H, Cao H, Cai M, Xu W, Weng J. SIRT1/HSF1/HSP pathway is essential for exenatide-alleviated, lipid-induced hepatic endoplasmic reticulum stress. Hepatology 2017; 66:809-824. [PMID: 28439947 DOI: 10.1002/hep.29238] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 04/17/2017] [Accepted: 04/20/2017] [Indexed: 12/22/2022]
Abstract
UNLABELLED Recent studies have indicated that lipid-induced endoplasmic reticulum (ER) stress is a major contributor to the progression of hepatic steatosis. Exenatide (exendin-4), a glucagon-like peptide-1 receptor agonist, is known to improve hepatic steatosis, with accumulating evidence. In this study, we investigated whether exenatide could alleviate lipid-induced hepatic ER stress through mammal sirtuin 1 (SIRT1) and illustrated the detailed mechanisms. Male C57BL/6J mice challenged with a high-fat diet (HFD) were treated with exenatide or normal saline by intraperitoneal injection for 4 weeks. We observed that HFD feeding induced hepatic ER stress as indicated by increased expression of glucose-regulated protein 78, phosphorylated protein kinase-like ER kinase, and phosphorylated eukaryotic initiation factor 2α, while these increases were significantly inhibited by exenatide. Exenatide notably decreased the liver weight and hepatic steatosis induced by HFD challenge. Consistently, in human HepG2 cells and primary murine hepatocytes, exendin-4 also significantly alleviated the ER stress and lipid accumulation induced by palmitate. Importantly, further studies showed that exendin-4 enhanced the binding of heat shock factor 1 to the promoter of heat shock protein (HSP) genes through SIRT1-mediated deacetylation, which then increased the expression of molecular chaperones HSP70 and HSP40 to alleviate hepatic ER stress. Finally, inhibition of SIRT1 by genetic whole-body heterozygous knockout or by lentiviral short hairpin RNA knockdown greatly diminished the effect of exenatide on deacetylating heat shock factor 1, increasing HSP expression and alleviating ER stress and hepatic steatosis in HFD-fed mice. CONCLUSION The SIRT1/heat shock factor 1/HSP pathway is essential for exenatide-alleviated, lipid-induced ER stress and hepatic steatosis, which provides evidence for a molecular mechanism to support exenatide and incretin mimetics as promising therapeutics for obesity-induced hepatic steatosis. (Hepatology 2017;66:809-824).
Collapse
Affiliation(s)
- Xiaobin Zheng
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, and Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Fen Xu
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, and Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Hua Liang
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, and Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Huanyi Cao
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, and Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Mengyin Cai
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, and Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Wen Xu
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, and Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Jianping Weng
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, and Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| |
Collapse
|