101
|
Baple EL, Houlden H, Zollo M, Crosby AH. Reply: PRUNE1: a disease-causing gene for secondary microcephaly. Brain 2017; 140:e62. [PMID: 28969377 DOI: 10.1093/brain/awx199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Emma L Baple
- Medical Research (Level 4), RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Massimo Zollo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche DMMBM, Università di Napoli Federico II, Via Sergio Pansini 5, Naples, 80131, Italy.,CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, Naples, Italy.,European School of Molecular Medicine, SEMM, University of Milan, Italy
| | - Andrew H Crosby
- Medical Research (Level 4), RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| |
Collapse
|
102
|
Üretmen Kagıalı ZC, Şentürk A, Özkan Küçük NE, Qureshi MH, Özlü N. Proteomics in Cell Division. Proteomics 2017; 17. [PMID: 28548456 DOI: 10.1002/pmic.201600100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/07/2017] [Indexed: 11/08/2022]
Abstract
Cell division requires a coordinated action of the cell cycle machinery, cytoskeletal elements, chromosomes, and membranes. Cell division studies have greatly benefitted from the mass spectrometry (MS)-based proteomic approaches for probing the biochemistry of highly dynamic complexes and their coordination with each other as a cell progresses into division. In this review, the authors first summarize a wide-range of proteomic studies that focus on the identification of sub-cellular components/protein complexes of the cell division machinery including kinetochores, mitotic spindle, midzone, and centrosomes. The authors also highlight MS-based large-scale analyses of the cellular components that are largely understudied during cell division such as the cell surface and lipids. Then, the authors focus on posttranslational modification analyses, especially phosphorylation and the resulting crosstalk with other modifications as a cell undergoes cell division. Combining proteomic approaches that probe the biochemistry of cell division components with functional genomic assays will lead to breakthroughs toward a systems-level understanding of cell division.
Collapse
Affiliation(s)
| | - Aydanur Şentürk
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | | | - Mohammad Haroon Qureshi
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey.,Biomedical Sciences and Engineering, Koç University, Istanbul, Turkey
| | - Nurhan Özlü
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| |
Collapse
|
103
|
Bryja V, Červenka I, Čajánek L. The connections of Wnt pathway components with cell cycle and centrosome: side effects or a hidden logic? Crit Rev Biochem Mol Biol 2017; 52:614-637. [PMID: 28741966 DOI: 10.1080/10409238.2017.1350135] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Wnt signaling cascade has developed together with multicellularity to orchestrate the development and homeostasis of complex structures. Wnt pathway components - such as β-catenin, Dishevelled (DVL), Lrp6, and Axin-- are often dedicated proteins that emerged in evolution together with the Wnt signaling cascade and are believed to function primarily in the Wnt cascade. It is interesting to see that in recent literature many of these proteins are connected with cellular functions that are more ancient and not limited to multicellular organisms - such as cell cycle regulation, centrosome biology, or cell division. In this review, we summarize the recent literature describing this crosstalk. Specifically, we attempt to find the answers to the following questions: Is the response to Wnt ligands regulated by the cell cycle? Is the centrosome and/or cilium required to activate the Wnt pathway? How do Wnt pathway components regulate the centrosomal cycle and cilia formation and function? We critically review the evidence that describes how these connections are regulated and how they help to integrate cell-to-cell communication with the cell and the centrosomal cycle in order to achieve a fine-tuned, physiological response.
Collapse
Affiliation(s)
- Vítězslav Bryja
- a Department of Experimental Biology, Faculty of Science , Masaryk University , Brno , Czech Republic
| | - Igor Červenka
- b Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology , Karolinska Institutet , Stockholm , Sweden
| | - Lukáš Čajánek
- c Department of Histology and Embryology, Faculty of Medicine , Masaryk University , Brno , Czech Republic
| |
Collapse
|
104
|
Meitinger F, Anzola JV, Kaulich M, Richardson A, Stender JD, Benner C, Glass CK, Dowdy SF, Desai A, Shiau AK, Oegema K. 53BP1 and USP28 mediate p53 activation and G1 arrest after centrosome loss or extended mitotic duration. J Cell Biol 2017; 214:155-66. [PMID: 27432897 PMCID: PMC4949453 DOI: 10.1083/jcb.201604081] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/24/2016] [Indexed: 12/14/2022] Open
Abstract
In normal human cells, centrosome loss induced by centrinone-a specific centrosome duplication inhibitor-leads to irreversible, p53-dependent G1 arrest by an unknown mechanism. A genome-wide CRISPR/Cas9 screen for centrinone resistance identified genes encoding the p53-binding protein 53BP1, the deubiquitinase USP28, and the ubiquitin ligase TRIM37. Deletion of TP53BP1, USP28, or TRIM37 prevented p53 elevation in response to centrosome loss but did not affect cytokinesis failure-induced arrest or p53 elevation after doxorubicin-induced DNA damage. Deletion of TP53BP1 and USP28, but not TRIM37, prevented growth arrest in response to prolonged mitotic duration. TRIM37 knockout cells formed ectopic centrosomal-component foci that suppressed mitotic defects associated with centrosome loss. TP53BP1 and USP28 knockouts exhibited compromised proliferation after centrosome removal, suggesting that centrosome-independent proliferation is not conferred solely by the inability to sense centrosome loss. Thus, analysis of centrinone resistance identified a 53BP1-USP28 module as critical for communicating mitotic challenges to the p53 circuit and TRIM37 as an enforcer of the singularity of centrosome assembly.
Collapse
Affiliation(s)
- Franz Meitinger
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093 Ludwig Institute for Cancer Research, La Jolla, CA 92093
| | - John V Anzola
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093
| | - Manuel Kaulich
- Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Amelia Richardson
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093 Ludwig Institute for Cancer Research, La Jolla, CA 92093
| | - Joshua D Stender
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Christopher Benner
- Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093 Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Steven F Dowdy
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Arshad Desai
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093 Ludwig Institute for Cancer Research, La Jolla, CA 92093
| | - Andrew K Shiau
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093
| | - Karen Oegema
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093 Ludwig Institute for Cancer Research, La Jolla, CA 92093
| |
Collapse
|
105
|
van Tienen LM, Mieszczanek J, Fiedler M, Rutherford TJ, Bienz M. Constitutive scaffolding of multiple Wnt enhanceosome components by Legless/BCL9. eLife 2017; 6:e20882. [PMID: 28296634 PMCID: PMC5352222 DOI: 10.7554/elife.20882] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/07/2017] [Indexed: 12/30/2022] Open
Abstract
Wnt/β-catenin signaling elicits context-dependent transcription switches that determine normal development and oncogenesis. These are mediated by the Wnt enhanceosome, a multiprotein complex binding to the Pygo chromatin reader and acting through TCF/LEF-responsive enhancers. Pygo renders this complex Wnt-responsive, by capturing β-catenin via the Legless/BCL9 adaptor. We used CRISPR/Cas9 genome engineering of Drosophila legless (lgs) and human BCL9 and B9L to show that the C-terminus downstream of their adaptor elements is crucial for Wnt responses. BioID proximity labeling revealed that BCL9 and B9L, like PYGO2, are constitutive components of the Wnt enhanceosome. Wnt-dependent docking of β-catenin to the enhanceosome apparently causes a rearrangement that apposes the BCL9/B9L C-terminus to TCF. This C-terminus binds to the Groucho/TLE co-repressor, and also to the Chip/LDB1-SSDP enhanceosome core complex via an evolutionary conserved element. An unexpected link between BCL9/B9L, PYGO2 and nuclear co-receptor complexes suggests that these β-catenin co-factors may coordinate Wnt and nuclear hormone responses.
Collapse
Affiliation(s)
| | | | - Marc Fiedler
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Mariann Bienz
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
106
|
Conkar D, Culfa E, Odabasi E, Rauniyar N, Yates JR, Firat-Karalar EN. The centriolar satellite protein CCDC66 interacts with CEP290 and functions in cilium formation and trafficking. J Cell Sci 2017; 130:1450-1462. [PMID: 28235840 DOI: 10.1242/jcs.196832] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/16/2017] [Indexed: 01/08/2023] Open
Abstract
Centriolar satellites are membrane-less structures that localize and move around the centrosome and cilium complex in a microtubule-dependent manner. They play important roles in centrosome- and cilium-related processes, including protein trafficking to the centrosome and cilium complex, and ciliogenesis, and they are implicated in ciliopathies. Despite the important regulatory roles of centriolar satellites in the assembly and function of the centrosome and cilium complex, the molecular mechanisms of their functions remain poorly understood. To dissect the mechanism for their regulatory roles during ciliogenesis, we performed an analysis to determine the proteins that localize in close proximity to the satellite protein CEP72, among which was the retinal degeneration gene product CCDC66. We identified CCDC66 as a microtubule-associated protein that dynamically localizes to the centrosome, centriolar satellites and the primary cilium throughout the cell cycle. Like the BBSome component BBS4, CCDC66 distributes between satellites and the primary cilium during ciliogenesis. CCDC66 has extensive proximity interactions with centrosome and centriolar satellite proteins, and co-immunoprecipitation experiments revealed interactions between CCDC66, CEP290 and PCM1. Ciliogenesis, ciliary recruitment of BBS4 and centriolar satellite organization are impaired in cells depleted for CCDC66. Taken together, our findings identify CCDC66 as a targeting factor for centrosome and cilium proteins.
Collapse
Affiliation(s)
- Deniz Conkar
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey
| | - Efraim Culfa
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey
| | - Ezgi Odabasi
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey
| | - Navin Rauniyar
- Department of Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - John R Yates
- Department of Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Elif N Firat-Karalar
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
107
|
Stephen J, Vilboux T, Mian L, Kuptanon C, Sinclair CM, Yildirimli D, Maynard DM, Bryant J, Fischer R, Vemulapalli M, Mullikin JC, Huizing M, Gahl WA, Malicdan MCV, Gunay-Aygun M. Mutations in KIAA0753 cause Joubert syndrome associated with growth hormone deficiency. Hum Genet 2017; 136:399-408. [PMID: 28220259 DOI: 10.1007/s00439-017-1765-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/08/2017] [Indexed: 12/28/2022]
Abstract
Joubert syndrome and related disorders (JSRD) are a heterogeneous group of ciliopathies defined based on the mid-hindbrain abnormalities that result in the characteristic "molar tooth sign" on brain imaging. The core clinical findings of JSRD are hypotonia, developmental delay, abnormal eye movements and breathing abnormalities. To date, more than 30 JSRD genes that encode proteins important for structure and/or function of cilia have been identified. Here, we present 2 siblings with Joubert syndrome associated with growth hormone deficiency. Whole exome sequencing of the family identified compound heterozygous mutations in KIAA0753, i.e., a missense mutation (p.Arg257Gly) and an intronic mutation (c.2359-1G>C). The intronic mutation alters normal splicing by activating a cryptic acceptor splice site in exon 16. The novel acceptor site skips nine nucleotides, deleting three amino acids from the protein coding frame. KIAA0753 (OFIP) is a centrosome and pericentriolar satellite protein, previously not known to cause Joubert syndrome. We present comprehensive clinical descriptions of the Joubert syndrome patients as well as the cellular phenotype of defective ciliogenesis in the patients' fibroblasts.
Collapse
Affiliation(s)
- Joshi Stephen
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thierry Vilboux
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Medical Genomics, Inova Translational Medicine Institute, Falls Church, VA, USA
| | - Luhe Mian
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Chulaluck Kuptanon
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Courtney M Sinclair
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Deniz Yildirimli
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dawn M Maynard
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joy Bryant
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Roxanne Fischer
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Meghana Vemulapalli
- NIH Intramural Sequencing Center (NISC), National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - James C Mullikin
- NIH Intramural Sequencing Center (NISC), National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marjan Huizing
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, USA
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - May Christine V Malicdan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, USA.
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Meral Gunay-Aygun
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
- Department of Pediatrics and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
108
|
Abstract
Anton van Leeuwenhoek's startling microscopic observations in the 1600s first stimulated fascination with the way that cells use cilia to generate currents and to swim in a fluid environment. Research in recent decades has yielded deep knowledge about the mechanical and biochemical nature of these organelles but only opened a greater fascination about how such beautifully intricate and multifunctional structures arose during evolution. Answers to this evolutionary puzzle are not only sought to satisfy basic curiosity, but also, as stated so eloquently by Dobzhansky (Am Zool 4: 443 [1964]), because "nothing in biology makes sense except in the light of evolution." Here I attempt to summarize current knowledge of what ciliary organelles of the last eukaryotic common ancestor (LECA) were like, explore the ways in which cilia have evolved since that time, and speculate on the selective processes that might have generated these organelles during early eukaryotic evolution.
Collapse
Affiliation(s)
- David R Mitchell
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
109
|
Lin Q, Zhou Z, Luo W, Fang M, Li M, Li H. Screening of Proximal and Interacting Proteins in Rice Protoplasts by Proximity-Dependent Biotinylation. FRONTIERS IN PLANT SCIENCE 2017; 8:749. [PMID: 28553299 PMCID: PMC5427108 DOI: 10.3389/fpls.2017.00749] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/21/2017] [Indexed: 05/20/2023]
Abstract
Proximity-dependent biotin identification (BioID), which detects physiologically relevant proteins based on the proximity-dependent biotinylation process, has been successfully used in different organisms. In this report, we established the BioID system in rice protoplasts. Biotin ligase BirAG was obtained by removing a cryptic intron site in the BirA∗ gene when expressed in rice protoplasts. We found that protein biotinylation in rice protoplasts increased with increased expression levels of BirAG. The biotinylation effects can also be achieved by exogenous supplementation of high concentrations of biotin and long incubation time with protoplasts. By using this system, multiple proteins were identified that associated with and/or were proximate to OsFD2 in vivo. Our results suggest that BioID is a useful and generally applicable method to screen for both interacting and neighboring proteins in their native cellular environment in plant cell.
Collapse
Affiliation(s)
- Qiupeng Lin
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, South China Normal UniversityGuangzhou, China
| | - Zejiao Zhou
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, South China Normal UniversityGuangzhou, China
| | - Wanbin Luo
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, South China Normal UniversityGuangzhou, China
| | - Maichun Fang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Meiru Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- *Correspondence: Meiru Li, Hongqing Li,
| | - Hongqing Li
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, South China Normal UniversityGuangzhou, China
- *Correspondence: Meiru Li, Hongqing Li,
| |
Collapse
|
110
|
Au FKC, Jia Y, Jiang K, Grigoriev I, Hau BKT, Shen Y, Du S, Akhmanova A, Qi RZ. GAS2L1 Is a Centriole-Associated Protein Required for Centrosome Dynamics and Disjunction. Dev Cell 2016; 40:81-94. [PMID: 28017616 DOI: 10.1016/j.devcel.2016.11.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 10/17/2016] [Accepted: 11/21/2016] [Indexed: 12/16/2022]
Abstract
Mitotic spindle formation and chromosome segregation require timely separation of the two duplicated centrosomes, and this process is initiated in late G2 by centrosome disjunction. Here we report that GAS2L1, a microtubule- and actin-binding protein, associates with the proximal end of mature centrioles and participates in centriole dynamics and centrosome disjunction. GAS2L1 attaches microtubules and actin to centrosomes, and the loss of GAS2L1 inhibits centrosome disjunction in G2 and centrosome splitting induced by depletion of the centrosome linker rootletin. Conversely, GAS2L1 overexpression induces premature centrosome separation, and this activity requires GAS2L1 association with actin, microtubules, and the microtubule end-binding proteins. The centrosome-splitting effect of GAS2L1 is counterbalanced by rootletin, reflecting the opposing actions of GAS2L1 and the centrosome linker. Our work reveals a GAS2L1-mediated centriole-tethering mechanism of microtubules and actin, which provide the forces required for centrosome dynamics and separation.
Collapse
Affiliation(s)
- Franco K C Au
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yue Jia
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Kai Jiang
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Ilya Grigoriev
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Bill K T Hau
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yuehong Shen
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shengwang Du
- Department of Physics and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Anna Akhmanova
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Robert Z Qi
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
111
|
Abstract
The centrosome is the main microtubule organizing center of animal cells. It contributes to spindle assembly and orientation during mitosis and to ciliogenesis in interphase. Numerical and structural defects in this organelle are known to be associated with developmental disorders such as dwarfism and microcephaly, but only recently, the molecular mechanisms linking centrosome aberrations to altered physiology are being elucidated. Defects in centrosome number or structure have also been described in cancer. These opposite clinical outcomes--arising from reduced proliferation and overproliferation respectively--can be explained in light of the tissue- and developmental-specific requirements for centrosome functions. The pathological outcomes of centrosome deficiencies have become clearer when considering its consequences. Among them, there are genetic instability (mainly aneuploidy, a defect in chromosome number), defects in the symmetry of cell division (important for cell fate specification and tissue architecture) and impaired ciliogenesis. In this review, we discuss the origins and the consequences of centrosome flaws, with particular attention on how they contribute to developmental diseases.
Collapse
Affiliation(s)
- Maddalena Nano
- Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, 75005, Paris, France
| | - Renata Basto
- Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, 75005, Paris, France.
| |
Collapse
|
112
|
Abstract
Here, we review how DNA damage affects the centrosome and how centrosomes communicate with the DNA damage response (DDR) apparatus. We discuss how several proteins of the DDR are found at centrosomes, including the ATM, ATR, CHK1 and CHK2 kinases, the BRCA1 ubiquitin ligase complex and several members of the poly(ADP-ribose) polymerase family. Stereotypical centrosome organisation, in which two centriole barrels are orthogonally arranged in a roughly toroidal pericentriolar material (PCM), is strongly affected by exposure to DNA-damaging agents. We describe the genetic dependencies and mechanisms for how the centrioles lose their close association, and the PCM both expands and distorts after DNA damage. Another consequence of genotoxic stress is that centrosomes undergo duplication outside the normal cell cycle stage, meaning that centrosome amplification is commonly seen after DNA damage. We discuss several potential mechanisms for how centrosome numbers become dysregulated after DNA damage and explore the links between the DDR and the PLK1- and separase-dependent mechanisms that drive centriole separation and reduplication. We also describe how centrosome components, such as centrin2, are directly involved in responding to DNA damage. This review outlines current questions on the involvement of centrosomes in the DDR.
Collapse
Affiliation(s)
- Lisa I Mullee
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Biosciences Building, Dangan, Galway, Ireland
| | - Ciaran G Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Biosciences Building, Dangan, Galway, Ireland.
| |
Collapse
|
113
|
Filling the Void: Proximity-Based Labeling of Proteins in Living Cells. Trends Cell Biol 2016; 26:804-817. [PMID: 27667171 DOI: 10.1016/j.tcb.2016.09.004] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 12/17/2022]
Abstract
There are inherent limitations with traditional methods to study protein behavior or to determine the constituency of proteins in discrete subcellular compartments. In response to these limitations, several methods have recently been developed that use proximity-dependent labeling. By fusing proteins to enzymes that generate reactive molecules, most commonly biotin, proximate proteins are covalently labeled to enable their isolation and identification. In this review we describe current methods for proximity-dependent labeling in living cells and discuss their applications and future use in the study of protein behavior.
Collapse
|
114
|
A centrosome interactome provides insight into organelle assembly and reveals a non-duplication role for Plk4. Nat Commun 2016; 7:12476. [PMID: 27558293 PMCID: PMC5007297 DOI: 10.1038/ncomms12476] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/05/2016] [Indexed: 02/06/2023] Open
Abstract
The centrosome is the major microtubule-organizing centre of many cells, best known for its role in mitotic spindle organization. How the proteins of the centrosome are accurately assembled to carry out its many functions remains poorly understood. The non-membrane-bound nature of the centrosome dictates that protein-protein interactions drive its assembly and functions. To investigate this massive macromolecular organelle, we generated a 'domain-level' centrosome interactome using direct protein-protein interaction data from a focused yeast two-hybrid screen. We then used biochemistry, cell biology and the model organism Drosophila to provide insight into the protein organization and kinase regulatory machinery required for centrosome assembly. Finally, we identified a novel role for Plk4, the master regulator of centriole duplication. We show that Plk4 phosphorylates Cep135 to properly position the essential centriole component Asterless. This interaction landscape affords a critical framework for research of normal and aberrant centrosomes.
Collapse
|
115
|
Lee SY, Lee H, Lee HK, Lee SW, Ha SC, Kwon T, Seo JK, Lee C, Rhee HW. Proximity-Directed Labeling Reveals a New Rapamycin-Induced Heterodimer of FKBP25 and FRB in Live Cells. ACS CENTRAL SCIENCE 2016; 2:506-16. [PMID: 27610411 PMCID: PMC4999972 DOI: 10.1021/acscentsci.6b00137] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Indexed: 05/23/2023]
Abstract
Mammalian target of rapamycin (mTOR) signaling is a core pathway in cellular metabolism, and control of the mTOR pathway by rapamycin shows potential for the treatment of metabolic diseases. In this study, we employed a new proximity biotin-labeling method using promiscuous biotin ligase (pBirA) to identify unknown elements in the rapamycin-induced interactome on the FK506-rapamycin binding (FRB) domain in living cells. FKBP25 showed the strongest biotin labeling by FRB-pBirA in the presence of rapamycin. Immunoprecipitation and immunofluorescence experiments confirmed that endogenous FKBP25 has a rapamycin-induced physical interaction with the FRB domain. Furthermore, the crystal structure of the ternary complex of FRB-rapamycin-FKBP25 was determined at 1.67-Å resolution. In this crystal structure we found that the conformational changes of FRB generate a hole where there is a methionine-rich space, and covalent metalloid coordination was observed at C2085 of FRB located at the bottom of the hole. Our results imply that FKBP25 might have a unique physiological role related to metallomics in mTOR signaling.
Collapse
Affiliation(s)
- Song-Yi Lee
- Department of Chemistry, Department of Biological
Sciences, UNIST Central Research Facilities
(UCRF), and Deparment of Biomedical Engineering, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Hakbong Lee
- Department of Chemistry, Department of Biological
Sciences, UNIST Central Research Facilities
(UCRF), and Deparment of Biomedical Engineering, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Hye-Kyeong Lee
- Department of Chemistry, Department of Biological
Sciences, UNIST Central Research Facilities
(UCRF), and Deparment of Biomedical Engineering, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Seung-Won Lee
- Department of Chemistry, Department of Biological
Sciences, UNIST Central Research Facilities
(UCRF), and Deparment of Biomedical Engineering, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Sung Chul Ha
- Pohang
Accelerator Laboratory, Pohang University
of Science and Technology, Pohang, Kyungbuk 37673, Korea
| | - Taejoon Kwon
- Department of Chemistry, Department of Biological
Sciences, UNIST Central Research Facilities
(UCRF), and Deparment of Biomedical Engineering, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jeong Kon Seo
- Department of Chemistry, Department of Biological
Sciences, UNIST Central Research Facilities
(UCRF), and Deparment of Biomedical Engineering, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Changwook Lee
- Department of Chemistry, Department of Biological
Sciences, UNIST Central Research Facilities
(UCRF), and Deparment of Biomedical Engineering, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Department of Biological
Sciences, UNIST Central Research Facilities
(UCRF), and Deparment of Biomedical Engineering, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
116
|
Cervenka I, Valnohova J, Bernatik O, Harnos J, Radsetoulal M, Sedova K, Hanakova K, Potesil D, Sedlackova M, Salasova A, Steinhart Z, Angers S, Schulte G, Hampl A, Zdrahal Z, Bryja V. Dishevelled is a NEK2 kinase substrate controlling dynamics of centrosomal linker proteins. Proc Natl Acad Sci U S A 2016; 113:9304-9. [PMID: 27486244 PMCID: PMC4995965 DOI: 10.1073/pnas.1608783113] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dishevelled (DVL) is a key scaffolding protein and a branching point in Wnt signaling pathways. Here, we present conclusive evidence that DVL regulates the centrosomal cycle. We demonstrate that DVL dishevelled and axin (DIX) domain, but not DIX domain-mediated multimerization, is essential for DVL's centrosomal localization. DVL accumulates during the cell cycle and associates with NIMA-related kinase 2 (NEK2), which is able to phosphorylate DVL at a multitude of residues, as detected by a set of novel phospho-specific antibodies. This creates interfaces for efficient binding to CDK5 regulatory subunit-associated protein 2 (CDK5RAP2) and centrosomal Nek2-associated protein 1 (C-NAP1), two proteins of the centrosomal linker. Displacement of DVL from the centrosome and its release into the cytoplasm on NEK2 phosphorylation is coupled to the removal of linker proteins, an event necessary for centrosomal separation and proper formation of the mitotic spindle. Lack of DVL prevents NEK2-controlled dissolution of loose centrosomal linker and subsequent centrosomal separation. Increased DVL levels, in contrast, sequester centrosomal NEK2 and mimic monopolar spindle defects induced by a dominant negative version of this kinase. Our study thus uncovers molecular crosstalk between centrosome and Wnt signaling.
Collapse
Affiliation(s)
- Igor Cervenka
- Department of Experimental Biology, Faculty of Science, Masaryk University, 61 137 Brno, Czech Republic
| | - Jana Valnohova
- Department of Experimental Biology, Faculty of Science, Masaryk University, 61 137 Brno, Czech Republic
| | - Ondrej Bernatik
- Department of Experimental Biology, Faculty of Science, Masaryk University, 61 137 Brno, Czech Republic; Institute of Biophysics, Academy of Sciences of Czech Republic, 61 200 Brno, Czech Republic
| | - Jakub Harnos
- Department of Experimental Biology, Faculty of Science, Masaryk University, 61 137 Brno, Czech Republic
| | - Matej Radsetoulal
- Department of Experimental Biology, Faculty of Science, Masaryk University, 61 137 Brno, Czech Republic
| | - Katerina Sedova
- Research Group Proteomics, Central European Institute of Technology, 62 500 Brno, Czech Republic
| | - Katerina Hanakova
- Research Group Proteomics, Central European Institute of Technology, 62 500 Brno, Czech Republic
| | - David Potesil
- Research Group Proteomics, Central European Institute of Technology, 62 500 Brno, Czech Republic
| | - Miroslava Sedlackova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62 500 Brno, Czech Republic
| | - Alena Salasova
- Department of Experimental Biology, Faculty of Science, Masaryk University, 61 137 Brno, Czech Republic; Department of Biochemistry and Biophysics, Karolinska Institutet Stockholm, 171 77, Sweden
| | - Zachary Steinhart
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Gunnar Schulte
- Department of Experimental Biology, Faculty of Science, Masaryk University, 61 137 Brno, Czech Republic; Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, 17 177 Stockholm, Sweden
| | - Ales Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62 500 Brno, Czech Republic
| | - Zbynek Zdrahal
- Research Group Proteomics, Central European Institute of Technology, 62 500 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Vitezslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, 61 137 Brno, Czech Republic; Institute of Biophysics, Academy of Sciences of Czech Republic, 61 200 Brno, Czech Republic;
| |
Collapse
|
117
|
Hori A, Toda T. Regulation of centriolar satellite integrity and its physiology. Cell Mol Life Sci 2016; 74:213-229. [PMID: 27484406 PMCID: PMC5219025 DOI: 10.1007/s00018-016-2315-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/14/2016] [Accepted: 07/21/2016] [Indexed: 01/01/2023]
Abstract
Centriolar satellites comprise cytoplasmic granules that are located around the centrosome. Their molecular identification was first reported more than a quarter of a century ago. These particles are not static in the cell but instead constantly move around the centrosome. Over the last decade, significant advances in their molecular compositions and biological functions have been achieved due to comprehensive proteomics and genomics, super-resolution microscopy analyses and elegant genetic manipulations. Centriolar satellites play pivotal roles in centrosome assembly and primary cilium formation through the delivery of centriolar/centrosomal components from the cytoplasm to the centrosome. Their importance is further underscored by the fact that mutations in genes encoding satellite components and regulators lead to various human disorders such as ciliopathies. Moreover, the most recent findings highlight dynamic structural remodelling in response to internal and external cues and unexpected positive feedback control that is exerted from the centrosome for centriolar satellite integrity.
Collapse
Affiliation(s)
- Akiko Hori
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK.,Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Takashi Toda
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK. .,Department of Molecular Biotechnology, Hiroshima Research Center for Healthy Aging (HiHA), Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan.
| |
Collapse
|
118
|
Varnaitė R, MacNeill SA. Meet the neighbors: Mapping local protein interactomes by proximity-dependent labeling with BioID. Proteomics 2016; 16:2503-2518. [PMID: 27329485 PMCID: PMC5053326 DOI: 10.1002/pmic.201600123] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/23/2016] [Accepted: 06/16/2016] [Indexed: 12/13/2022]
Abstract
Proximity-dependent biotin identification (BioID) is a recently developed method that allows the identification of proteins in the close vicinity of a protein of interest in living cells. BioID relies on fusion of the protein of interest with a mutant form of the biotin ligase enzyme BirA (BirA*) that is capable of promiscuously biotinylating proximal proteins irrespective of whether these interact directly or indirectly with the fusion protein or are merely located in the same subcellular neighborhood. The covalent addition of biotin allows the labeled proteins to be purified from cell extracts on the basis of their affinity for streptavidin and identified by mass spectrometry. To date, BioID has been successfully applied to study a variety of proteins and processes in mammalian cells and unicellular eukaryotes and has been shown to be particularly suited to the study of insoluble or inaccessible cellular structures and for detecting weak or transient protein associations. Here, we provide an introduction to BioID, together with a detailed summary of where and how the method has been applied to date, and briefly discuss technical aspects involved in the planning and execution of a BioID study.
Collapse
Affiliation(s)
- Renata Varnaitė
- School of Biology, University of St Andrews, North Haugh, St Andrews, Scotland, UK
| | - Stuart A MacNeill
- School of Biology, University of St Andrews, North Haugh, St Andrews, Scotland, UK.
| |
Collapse
|
119
|
Dong JM, Tay FPL, Swa HLF, Gunaratne J, Leung T, Burke B, Manser E. Proximity biotinylation provides insight into the molecular composition of focal adhesions at the nanometer scale. Sci Signal 2016; 9:rs4. [PMID: 27303058 DOI: 10.1126/scisignal.aaf3572] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Focal adhesions are protein complexes that link metazoan cells to the extracellular matrix through the integrin family of transmembrane proteins. Integrins recruit many proteins to these complexes, referred to as the "adhesome." We used proximity-dependent biotinylation (BioID) in U2OS osteosarcoma cells to label proteins within 15 to 25 nm of paxillin, a cytoplasmic focal adhesion protein, and kindlin-2, which directly binds β integrins. Using mass spectrometry analysis of the biotinylated proteins, we identified 27 known adhesome proteins and 8 previously unknown components close to paxillin. However, only seven of these proteins interacted directly with paxillin, one of which was the adaptor protein Kank2. The proteins in proximity to β integrin included 15 of the adhesion proteins identified in the paxillin BioID data set. BioID also correctly established kindlin-2 as a cell-cell junction protein. By focusing on this smaller data set, new partners for kindlin-2 were found, namely, the endocytosis-promoting proteins liprin β1 and EFR3A, but, contrary to previous reports, not the filamin-binding protein migfilin. A model adhesome based on both data sets suggests that focal adhesions contain fewer components than previously suspected and that paxillin lies away from the plasma membrane. These data not only illustrate the power of using BioID and stable isotope-labeled mass spectrometry to define macromolecular complexes but also enable the correct identification of therapeutic targets within the adhesome.
Collapse
Affiliation(s)
- Jing-Ming Dong
- sGSK Group, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Proteos Building, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Felicia Pei-Ling Tay
- sGSK Group, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Proteos Building, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Hannah Lee-Foon Swa
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore 138673, Singapore
| | - Jayantha Gunaratne
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore 138673, Singapore. Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Thomas Leung
- sGSK Group, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Proteos Building, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Brian Burke
- Institute of Medical Biology, 8A Biomedical Grove, #06-06 Immunos Building, Singapore 138648, Singapore
| | - Ed Manser
- sGSK Group, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Proteos Building, 61 Biopolis Drive, Singapore 138673, Singapore. Institute of Medical Biology, 8A Biomedical Grove, #06-06 Immunos Building, Singapore 138648, Singapore. Department of Pharmacology, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
120
|
Proximity-dependent biotin labelling in yeast using the engineered ascorbate peroxidase APEX2. Biochem J 2016; 473:2463-9. [PMID: 27274088 DOI: 10.1042/bcj20160106] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/07/2016] [Indexed: 11/17/2022]
Abstract
The engineered ascorbate peroxidase (APEX2) has been effectively employed in mammalian cells to identify protein-protein interactions. APEX2 fused to a protein of interest covalently tags nearby proteins with biotin-phenol (BP) when H2O2 is added to the cell culture medium. Subsequent affinity purification of biotinylated proteins allows for identification by MS. BP labelling occurs in 1 min, providing temporal control of labelling. The APEX2 tool enables proteomic mapping of subcellular compartments as well as identification of dynamic protein complexes, and has emerged as a new methodology for proteomic analysis. Despite these advantages, a related APEX2 approach has not been developed for yeast. Here we report methods to enable APEX2-mediated biotin labelling in yeast. Our work demonstrated that high osmolarity and disruption of cell wall integrity permits live-cell biotin labelling in Schizosaccharomyces pombe and Saccharomyces cerevisiae respectively. Under these conditions, APEX2 permitted targeted and proximity-dependent labelling of proteins. The methods described herein set the stage for large-scale proteomic studies in yeast. With modifications, the method is also expected to be effective in other organisms with cell walls, such as bacteria and plants.
Collapse
|
121
|
Aldiri I, Ajioka I, Xu B, Zhang J, Chen X, Benavente C, Finkelstein D, Johnson D, Akiyama J, Pennacchio LA, Dyer MA. Brg1 coordinates multiple processes during retinogenesis and is a tumor suppressor in retinoblastoma. Development 2016; 142:4092-106. [PMID: 26628093 PMCID: PMC4712833 DOI: 10.1242/dev.124800] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Retinal development requires precise temporal and spatial coordination of cell cycle exit, cell fate specification, cell migration and differentiation. When this process is disrupted, retinoblastoma, a developmental tumor of the retina, can form. Epigenetic modulators are central to precisely coordinating developmental events, and many epigenetic processes have been implicated in cancer. Studying epigenetic mechanisms in development is challenging because they often regulate multiple cellular processes; therefore, elucidating the primary molecular mechanisms involved can be difficult. Here we explore the role of Brg1 (Smarca4) in retinal development and retinoblastoma in mice using molecular and cellular approaches. Brg1 was found to regulate retinal size by controlling cell cycle length, cell cycle exit and cell survival during development. Brg1 was not required for cell fate specification but was required for photoreceptor differentiation and cell adhesion/polarity programs that contribute to proper retinal lamination during development. The combination of defective cell differentiation and lamination led to retinal degeneration in Brg1-deficient retinae. Despite the hypocellularity, premature cell cycle exit, increased cell death and extended cell cycle length, retinal progenitor cells persisted in Brg1-deficient retinae, making them more susceptible to retinoblastoma. ChIP-Seq analysis suggests that Brg1 might regulate gene expression through multiple mechanisms. Summary: The SWI/SNF protein Brg1 controls cell cycle length, cell cycle exit and cell survival, and is required for cell differentiation and retinal lamination, in the developing mouse retina.
Collapse
Affiliation(s)
- Issam Aldiri
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Itsuki Ajioka
- Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jiakun Zhang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Claudia Benavente
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dianna Johnson
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jennifer Akiyama
- Lawrence Berkeley National Laboratory, Genomics Division, Berkeley, CA 94701, USA Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Len A Pennacchio
- Lawrence Berkeley National Laboratory, Genomics Division, Berkeley, CA 94701, USA Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
122
|
Abstract
Protein-protein interactions (PPIs) underlie most, if not all, cellular functions. The comprehensive mapping of these complex networks of stable and transient associations thus remains a key goal, both for systems biology-based initiatives (where it can be combined with other 'omics' data to gain a better understanding of functional pathways and networks) and for focused biological studies. Despite the significant challenges of such an undertaking, major strides have been made over the past few years. They include improvements in the computation prediction of PPIs and the literature curation of low-throughput studies of specific protein complexes, but also an increase in the deposition of high-quality data from non-biased high-throughput experimental PPI mapping strategies into publicly available databases.
Collapse
Affiliation(s)
- Virja Mehta
- Department of Cellular and Molecular Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Laura Trinkle-Mulcahy
- Department of Cellular and Molecular Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
123
|
Abstract
The microcephaly protein, Cep215, contributes to the engagement of duplicated centrioles in interphase. Now two distinct pools of Cep215 at centrosomes are identified, one bound to Cep68 and the other to pericentrin. Plk1-mediated degradation of Cep68 and separase-mediated cleavage of pericentrin release both pools of Cep215, thereby promoting centriole disengagement.
Collapse
|
124
|
A Dynamic Protein Interaction Landscape of the Human Centrosome-Cilium Interface. Cell 2016; 163:1484-99. [PMID: 26638075 DOI: 10.1016/j.cell.2015.10.065] [Citation(s) in RCA: 385] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/24/2015] [Accepted: 10/27/2015] [Indexed: 10/24/2022]
Abstract
The centrosome is the primary microtubule organizing center of the cells and templates the formation of cilia, thereby operating at a nexus of critical cellular functions. Here, we use proximity-dependent biotinylation (BioID) to map the centrosome-cilium interface; with 58 bait proteins we generate a protein topology network comprising >7,000 interactions. Analysis of interaction profiles coupled with high resolution phenotypic profiling implicates a number of protein modules in centriole duplication, ciliogenesis, and centriolar satellite biogenesis and highlights extensive interplay between these processes. By monitoring dynamic changes in the centrosome-cilium protein interaction landscape during ciliogenesis, we also identify satellite proteins that support cilia formation. Systematic profiling of proximity interactions combined with functional analysis thus provides a rich resource for better understanding human centrosome and cilia biology. Similar strategies may be applied to other complex biological structures or pathways.
Collapse
|
125
|
Kim DI, Jensen SC, Noble KA, Kc B, Roux KH, Motamedchaboki K, Roux KJ. An improved smaller biotin ligase for BioID proximity labeling. Mol Biol Cell 2016; 27:1188-96. [PMID: 26912792 PMCID: PMC4831873 DOI: 10.1091/mbc.e15-12-0844] [Citation(s) in RCA: 575] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/16/2016] [Indexed: 12/20/2022] Open
Abstract
A smaller promiscuous biotin ligase for proximity biotinylation called BioID2 enables more-selective targeting of fusion proteins, requires less biotin supplementation, exhibits enhanced labeling of proximate proteins, and demonstrates the use of a flexible linker to modulate the biotin-labeling radius. The BioID method uses a promiscuous biotin ligase to detect protein–protein associations as well as proximate proteins in living cells. Here we report improvements to the BioID method centered on BioID2, a substantially smaller promiscuous biotin ligase. BioID2 enables more-selective targeting of fusion proteins, requires less biotin supplementation, and exhibits enhanced labeling of proximate proteins. Thus BioID2 improves the efficiency of screening for protein–protein associations. We also demonstrate that the biotinylation range of BioID2 can be considerably modulated using flexible linkers, thus enabling application-specific adjustment of the biotin-labeling radius.
Collapse
Affiliation(s)
- Dae In Kim
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Samuel C Jensen
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Kyle A Noble
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Birendra Kc
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Kenneth H Roux
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Khatereh Motamedchaboki
- Sanford-Burnham Proteomics Facility, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Kyle J Roux
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104 Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105
| |
Collapse
|
126
|
Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2. Nat Protoc 2016; 11:456-75. [PMID: 26866790 DOI: 10.1038/nprot.2016.018] [Citation(s) in RCA: 388] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This protocol describes a method to obtain spatially resolved proteomic maps of specific compartments within living mammalian cells. An engineered peroxidase, APEX2, is genetically targeted to a cellular region of interest. Upon the addition of hydrogen peroxide for 1 min to cells preloaded with a biotin-phenol substrate, APEX2 generates biotin-phenoxyl radicals that covalently tag proximal endogenous proteins. Cells are then lysed, and biotinylated proteins are enriched with streptavidin beads and identified by mass spectrometry. We describe the generation of an appropriate APEX2 fusion construct, proteomic sample preparation, and mass spectrometric data acquisition and analysis. A two-state stable isotope labeling by amino acids in cell culture (SILAC) protocol is used for proteomic mapping of membrane-enclosed cellular compartments from which APEX2-generated biotin-phenoxyl radicals cannot escape. For mapping of open cellular regions, we instead use a 'ratiometric' three-state SILAC protocol for high spatial specificity. Isotopic labeling of proteins takes 5-7 cell doublings. Generation of the biotinylated proteomic sample takes 1 d, acquiring the mass spectrometric data takes 2-5 d and analysis of the data to obtain the final proteomic list takes 1 week.
Collapse
|
127
|
Hori A, Barnouin K, Snijders AP, Toda T. A non-canonical function of Plk4 in centriolar satellite integrity and ciliogenesis through PCM1 phosphorylation. EMBO Rep 2016; 17:326-37. [PMID: 26755742 PMCID: PMC4772974 DOI: 10.15252/embr.201541432] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/30/2015] [Indexed: 12/13/2022] Open
Abstract
Centrioles are the major constituents of the animal centrosome, in which Plk4 kinase serves as a master regulator of the duplication cycle. Many eukaryotes also contain numerous peripheral particles known as centriolar satellites. While centriolar satellites aid centriole assembly and primary cilium formation, it is unknown whether Plk4 plays any regulatory roles in centriolar satellite integrity. Here we show that Plk4 is a critical determinant of centriolar satellite organisation. Plk4 depletion leads to the dispersion of centriolar satellites and perturbed ciliogenesis. Plk4 interacts with the satellite component PCM1, and its kinase activity is required for phosphorylation of the conserved S372. The nonphosphorylatable PCM1 mutant recapitulates phenotypes of Plk4 depletion, while the phosphomimetic mutant partially rescues the dispersed centriolar satellite patterns and ciliogenesis in cells depleted of PCM1. We show that S372 phosphorylation occurs during the G1 phase of the cell cycle and is important for PCM1 dimerisation and interaction with other satellite components. Our findings reveal that Plk4 is required for centriolar satellite function, which may underlie the ciliogenesis defects caused by Plk4 dysfunction.
Collapse
Affiliation(s)
- Akiko Hori
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London, UK Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma Nara, Japan
| | - Karin Barnouin
- The Francis Crick Institute, Clare Hall Laboratory, London, UK
| | | | - Takashi Toda
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London, UK Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
128
|
Abstract
The nuclear envelope (NE) is a critical cellular structure whose constituents and roles in a myriad of cellular processes seem ever expanding. To determine the underlying mechanisms by which the NE constituents participate in various cellular events, it is necessary to understand the nature of their protein-protein associations. BioID (proximity-dependent biotin identification) is a recently established method to generate a history of protein-protein associations as they occur over time in living cells. BioID is based on fusion of a bait protein to a promiscuous biotin ligase. Expression of the BioID fusion protein in a relevant cellular environment enables biotinylation of vicinal and interacting proteins of the bait protein, permitting isolation and identification by conventional biotin-affinity capture and mass-spec analysis. In this way, BioID provides unique capabilities to identify protein-protein associations at the NE. In this chapter we provide a detailed protocol for the application of BioID to the study of NE proteins.
Collapse
Affiliation(s)
- Dae In Kim
- Sanford Research, Sanford Children's Health Research Center, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA
| | - Samuel C Jensen
- Sanford Research, Sanford Children's Health Research Center, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA
| | - Kyle J Roux
- Sanford Research, Sanford Children's Health Research Center, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, 57105, USA.
| |
Collapse
|
129
|
Chevrier V, Bruel AL, Van Dam TJP, Franco B, Lo Scalzo M, Lembo F, Audebert S, Baudelet E, Isnardon D, Bole A, Borg JP, Kuentz P, Thevenon J, Burglen L, Faivre L, Rivière JB, Huynen MA, Birnbaum D, Rosnet O, Thauvin-Robinet C. OFIP/KIAA0753 forms a complex with OFD1 and FOR20 at pericentriolar satellites and centrosomes and is mutated in one individual with oral-facial-digital syndrome. Hum Mol Genet 2015; 25:497-513. [PMID: 26643951 DOI: 10.1093/hmg/ddv488] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/20/2015] [Indexed: 11/13/2022] Open
Abstract
Oral-facial-digital (OFD) syndromes are rare heterogeneous disorders characterized by the association of abnormalities of the face, the oral cavity and the extremities, some due to mutations in proteins of the transition zone of the primary cilia or the closely associated distal end of centrioles. These two structures are essential for the formation of functional cilia, and for signaling events during development. We report here causal compound heterozygous mutations of KIAA0753/OFIP in a patient with an OFD VI syndrome. We show that the KIAA0753/OFIP protein, whose sequence is conserved in ciliated species, associates with centrosome/centriole and pericentriolar satellites in human cells and forms a complex with FOR20 and OFD1. The decreased expression of any component of this ternary complex in RPE1 cells causes a defective recruitment onto centrosomes and satellites. The OFD KIAA0753/OFIP mutant loses its capacity to interact with FOR20 and OFD1, which may be the molecular basis of the defect. We also show that KIAA0753/OFIP has microtubule-stabilizing activity. OFD1 and FOR20 are known to regulate the integrity of the centriole distal end, confirming that this structural element is a target of importance for pathogenic mutations in ciliopathies.
Collapse
Affiliation(s)
- Véronique Chevrier
- Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, Institut Paoli-Calmettes and CNRS U7258, F-13009 Marseille, France, Aix-Marseille Université, F-13007 Marseille, France
| | - Ange-Line Bruel
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université Fédérale Bourgogne - Franche Comté, F-21079 Dijon, France, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD)
| | - Teunis J P Van Dam
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine, Naples, Italy, Medical Genetics, Department of Medical Translational Sciences, University of Napoli Federico II, Naples, Italy
| | | | - Frédérique Lembo
- Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, Institut Paoli-Calmettes and CNRS U7258, F-13009 Marseille, France, Aix-Marseille Université, F-13007 Marseille, France
| | - Stéphane Audebert
- Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, Institut Paoli-Calmettes and CNRS U7258, F-13009 Marseille, France, Aix-Marseille Université, F-13007 Marseille, France
| | - Emilie Baudelet
- Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, Institut Paoli-Calmettes and CNRS U7258, F-13009 Marseille, France, Aix-Marseille Université, F-13007 Marseille, France
| | - Daniel Isnardon
- Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, Institut Paoli-Calmettes and CNRS U7258, F-13009 Marseille, France, Aix-Marseille Université, F-13007 Marseille, France
| | | | - Jean-Paul Borg
- Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, Institut Paoli-Calmettes and CNRS U7258, F-13009 Marseille, France, Aix-Marseille Université, F-13007 Marseille, France
| | - Paul Kuentz
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université Fédérale Bourgogne - Franche Comté, F-21079 Dijon, France, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD)
| | - Julien Thevenon
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université Fédérale Bourgogne - Franche Comté, F-21079 Dijon, France, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est
| | - Lydie Burglen
- Centre de Référence des Malformations et Maladies Congénitales du Cervelet and Service de Génétique, Hôpital Armand Trousseau, AP-HP, Paris, France
| | - Laurence Faivre
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université Fédérale Bourgogne - Franche Comté, F-21079 Dijon, France, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est
| | - Jean-Baptiste Rivière
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université Fédérale Bourgogne - Franche Comté, F-21079 Dijon, France, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Laboratoire de Génétique Moléculaire, Plateau Technique de Biologie, Centre Hospitalier Universitaire Dijon, Dijon F-21079, France
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Daniel Birnbaum
- Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, Institut Paoli-Calmettes and CNRS U7258, F-13009 Marseille, France, Aix-Marseille Université, F-13007 Marseille, France
| | - Olivier Rosnet
- Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, Institut Paoli-Calmettes and CNRS U7258, F-13009 Marseille, France, Aix-Marseille Université, F-13007 Marseille, France,
| | - Christel Thauvin-Robinet
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université Fédérale Bourgogne - Franche Comté, F-21079 Dijon, France, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est,
| |
Collapse
|
130
|
Yang J, Wagner SA, Beli P. Illuminating Spatial and Temporal Organization of Protein Interaction Networks by Mass Spectrometry-Based Proteomics. Front Genet 2015; 6:344. [PMID: 26648978 PMCID: PMC4665136 DOI: 10.3389/fgene.2015.00344] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/20/2015] [Indexed: 11/13/2022] Open
Abstract
Protein–protein interactions are at the core of all cellular functions and dynamic alterations in protein interactions regulate cellular signaling. In the last decade, mass spectrometry (MS)-based proteomics has delivered unprecedented insights into human protein interaction networks. Affinity purification-MS (AP-MS) has been extensively employed for focused and high-throughput studies of steady state protein–protein interactions. Future challenges remain in mapping transient protein interactions after cellular perturbations as well as in resolving the spatial organization of protein interaction networks. AP-MS can be combined with quantitative proteomics approaches to determine the relative abundance of purified proteins in different conditions, thereby enabling the identification of transient protein interactions. In addition to affinity purification, methods based on protein co-fractionation have been combined with quantitative MS to map transient protein interactions during cellular signaling. More recently, approaches based on proximity tagging that preserve the spatial dimension of protein interaction networks have been introduced. Here, we provide an overview of MS-based methods for analyzing protein–protein interactions with a focus on approaches that aim to dissect the temporal and spatial aspects of protein interaction networks.
Collapse
Affiliation(s)
- Jiwen Yang
- Institute of Molecular Biology , Mainz, Germany
| | - Sebastian A Wagner
- Department of Medicine, Hematology and Oncology, Goethe University , Frankfurt, Germany
| | - Petra Beli
- Institute of Molecular Biology , Mainz, Germany
| |
Collapse
|
131
|
Tollenaere MAX, Villumsen BH, Blasius M, Nielsen JC, Wagner SA, Bartek J, Beli P, Mailand N, Bekker-Jensen S. p38- and MK2-dependent signalling promotes stress-induced centriolar satellite remodelling via 14-3-3-dependent sequestration of CEP131/AZI1. Nat Commun 2015; 6:10075. [PMID: 26616734 PMCID: PMC4674683 DOI: 10.1038/ncomms10075] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/30/2015] [Indexed: 12/26/2022] Open
Abstract
Centriolar satellites (CS) are small granular structures that cluster in the vicinity of centrosomes. CS are highly susceptible to stress stimuli, triggering abrupt displacement of key CS factors. Here we discover a linear p38-MK2-14-3-3 signalling pathway that specifically targets CEP131 to trigger CS remodelling after cell stress. We identify CEP131 as a substrate of the p38 effector kinase MK2 and pinpoint S47 and S78 as critical MK2 phosphorylation sites in CEP131. Ultraviolet-induced phosphorylation of these residues generates direct binding sites for 14-3-3 proteins, which sequester CEP131 in the cytoplasm to block formation of new CS, thereby leading to rapid depletion of these structures. Mutating S47 and S78 in CEP131 is sufficient to abolish stress-induced CS reorganization, demonstrating that CEP131 is the key regulatory target of MK2 and 14-3-3 in these structures. Our findings reveal the molecular mechanism underlying dynamic CS remodelling to modulate centrosome functions on cell stress. Centriolar satellites (CS) dynamically remodel in response to cellular stress. Here the authors describe a mechanism for stress-mediated remodelling, whereby CEP131 is phosphorylated downstream of p38, creating binding sites for 14-3-3 that lead to the sequestration of CEP131 in the cytoplasm and disassembly of CS.
Collapse
Affiliation(s)
- Maxim A X Tollenaere
- Ubiquitin Signaling Group, Protein Signaling Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen DK-2200, Denmark
| | - Bine H Villumsen
- Ubiquitin Signaling Group, Protein Signaling Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen DK-2200, Denmark
| | - Melanie Blasius
- Danish Cancer Society Research Center, Strandboulevarden 49, Copenhagen DK-2100, Denmark
| | - Julie C Nielsen
- Ubiquitin Signaling Group, Protein Signaling Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen DK-2200, Denmark
| | - Sebastian A Wagner
- Department of Medicine, Hematology/Oncology, Goethe University Medical School, Theodor-Stern-Kai 7, Frankfurt DE-60590, Germany
| | - Jiri Bartek
- Danish Cancer Society Research Center, Strandboulevarden 49, Copenhagen DK-2100, Denmark.,Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm SE-17176, Sweden
| | - Petra Beli
- Institute of Molecular Biology, Ackermannweg 4, Mainz DE-55128, Germany
| | - Niels Mailand
- Ubiquitin Signaling Group, Protein Signaling Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen DK-2200, Denmark
| | - Simon Bekker-Jensen
- Ubiquitin Signaling Group, Protein Signaling Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen DK-2200, Denmark
| |
Collapse
|
132
|
Fu Y, Lv P, Yan G, Fan H, Cheng L, Zhang F, Dang Y, Wu H, Wen B. MacroH2A1 associates with nuclear lamina and maintains chromatin architecture in mouse liver cells. Sci Rep 2015; 5:17186. [PMID: 26603343 PMCID: PMC4658601 DOI: 10.1038/srep17186] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/26/2015] [Indexed: 12/26/2022] Open
Abstract
In the interphase nucleus, chromatin is organized into three-dimensional conformation to coordinate genome functions. The lamina-chromatin association is important to facilitate higher-order chromatin in mammalian cells, but its biological significances and molecular mechanisms remain poorly understood. One obstacle is that the list of lamina-associated proteins remains limited, presumably due to the inherent insolubility of lamina proteins. In this report, we identified 182 proteins associated with lamin B1 (a constitutive component of lamina) in mouse hepatocytes, by adopting virus-based proximity-dependent biotin identification. These proteins are functionally related to biological processes such as chromatin organization. As an example, we validated the association between lamin B1 and core histone macroH2A1, a histone associated with repressive chromatin. Furthermore, we mapped Lamina-associated domains (LADs) in mouse liver cells and found that boundaries of LADs are enriched for macroH2A. More interestingly, knocking-down of macroH2A1 resulted in the release of heterochromatin foci marked by histone lysine 9 trimethylation (H3K9me3) and the decondensation of global chromatin structure. However, down-regulation of lamin B1 led to redistribution of macroH2A1. Taken together, our data indicated that macroH2A1 is associated with lamina and is required to maintain chromatin architecture in mouse liver cells.
Collapse
Affiliation(s)
- Yuhua Fu
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Pin Lv
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Guoquan Yan
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Chemistry, Fudan University, Shanghai, 200433
| | - Hui Fan
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lu Cheng
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Feng Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yongjun Dang
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Bo Wen
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
133
|
Mick DU, Rodrigues RB, Leib RD, Adams CM, Chien AS, Gygi SP, Nachury MV. Proteomics of Primary Cilia by Proximity Labeling. Dev Cell 2015; 35:497-512. [PMID: 26585297 DOI: 10.1016/j.devcel.2015.10.015] [Citation(s) in RCA: 300] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/26/2015] [Accepted: 10/19/2015] [Indexed: 11/17/2022]
Abstract
While cilia are recognized as important signaling organelles, the extent of ciliary functions remains unknown because of difficulties in cataloguing proteins from mammalian primary cilia. We present a method that readily captures rapid snapshots of the ciliary proteome by selectively biotinylating ciliary proteins using a cilia-targeted proximity labeling enzyme (cilia-APEX). Besides identifying known ciliary proteins, cilia-APEX uncovered several ciliary signaling molecules. The kinases PKA, AMPK, and LKB1 were validated as bona fide ciliary proteins and PKA was found to regulate Hedgehog signaling in primary cilia. Furthermore, proteomics profiling of Ift27/Bbs19 mutant cilia correctly detected BBSome accumulation inside Ift27(-/-) cilia and revealed that β-arrestin 2 and the viral receptor CAR are candidate cargoes of the BBSome. This work demonstrates that proximity labeling can be applied to proteomics of non-membrane-enclosed organelles and suggests that proteomics profiling of cilia will enable a rapid and powerful characterization of ciliopathies.
Collapse
Affiliation(s)
- David U Mick
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Rachel B Rodrigues
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan D Leib
- Stanford University Mass Spectrometry, Stanford University, Stanford, CA 94305, USA
| | - Christopher M Adams
- Stanford University Mass Spectrometry, Stanford University, Stanford, CA 94305, USA
| | - Allis S Chien
- Stanford University Mass Spectrometry, Stanford University, Stanford, CA 94305, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Maxence V Nachury
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA.
| |
Collapse
|
134
|
Batsios P, Meyer I, Gräf R. Proximity-Dependent Biotin Identification (BioID) in Dictyostelium Amoebae. Methods Enzymol 2015; 569:23-42. [PMID: 26778551 DOI: 10.1016/bs.mie.2015.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The identification of a bona fide lamin-like protein in Dictyostelium made this lower eukaryote an attractive model organism to study evolutionarily conserved nuclear envelope (NE) proteins important for nuclear organization and human laminopathies. Proximity-dependent biotin identification (BioID), reported by Roux and colleagues, is a powerful discovery tool for lamin-associated proteins. In this method, living cells express a bait protein (e.g., lamin) fused to an R118G-mutated version of BirA, an Escherichia coli biotinylase. In the presence of biotin, BirA-R118G biotinylates target proteins in close proximity in vivo, which are purified using streptavidin and identified by immunoblotting or mass spectrometry. We adapted the BioID method for use in Dictyostelium amoebae. The protocols described here successfully revealed Dictyostelium lamin-like protein NE81 proximity to Sun1, a conserved inner nuclear membrane protein.
Collapse
Affiliation(s)
- Petros Batsios
- Institute for Biochemistry and Biology, Department of Cell Biology, University of Potsdam, Potsdam, Germany
| | - Irene Meyer
- Institute for Biochemistry and Biology, Department of Cell Biology, University of Potsdam, Potsdam, Germany
| | - Ralph Gräf
- Institute for Biochemistry and Biology, Department of Cell Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
135
|
Hadley KC, Rakhit R, Guo H, Sun Y, Jonkman JEN, McLaurin J, Hazrati LN, Emili A, Chakrabartty A. Determining composition of micron-scale protein deposits in neurodegenerative disease by spatially targeted optical microproteomics. eLife 2015; 4. [PMID: 26418743 PMCID: PMC4630677 DOI: 10.7554/elife.09579] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 09/15/2015] [Indexed: 12/12/2022] Open
Abstract
Spatially targeted optical microproteomics (STOMP) is a novel proteomics technique for interrogating micron-scale regions of interest (ROIs) in mammalian tissue, with no requirement for genetic manipulation. Methanol or formalin-fixed specimens are stained with fluorescent dyes or antibodies to visualize ROIs, then soaked in solutions containing the photo-tag: 4-benzoylbenzyl-glycyl-hexahistidine. Confocal imaging along with two photon excitation are used to covalently couple photo-tags to all proteins within each ROI, to a resolution of 0.67 µm in the xy-plane and 1.48 µm axially. After tissue solubilization, photo-tagged proteins are isolated and identified by mass spectrometry. As a test case, we examined amyloid plaques in an Alzheimer's disease (AD) mouse model and a post-mortem AD case, confirming known plaque constituents and discovering new ones. STOMP can be applied to various biological samples including cell lines, primary cell cultures, ex vivo specimens, biopsy samples, and fixed post-mortem tissue. DOI:http://dx.doi.org/10.7554/eLife.09579.001 Neurodegenerative diseases such as Alzheimer's disease affect millions of people worldwide. In many of these diseases, toxic proteins accumulate in the brain and build up as small ‘plaques’ in the gaps, or synapses, that cells called neurons communicate across. Eventually, the plaques prevent the neurons signaling to each other correctly, leading to problems such as memory loss. Identifying the proteins present in plaques is technically challenging, partly because the plaques are very small. Hadley, Rakhit et al. have now developed a new method called spatially targeted optical microproteomics (or STOMP) that can collect proteins from small areas of cells. In this method, plaques are identified under a light microscope, and their contents are attached to a molecule called a photo-affinity tag using lasers. The photo-tagged proteins are then pulled out using beads that specifically bind to the photo-affinity tag. The proteins can then be identified using a well-established method called mass spectrometry. Hadley, Rakhit et al. used STOMP to analyze plaques present in the brains of mice that develop similar symptoms to those seen in humans with Alzheimer's disease. This revealed that these plaques contain more than 50 different proteins, some of which had not previously been found in plaques. In particular, several proteins from the ‘presynaptic’ neuron that sends signals across the synapse were found in the plaques. However, no proteins from the receiving (‘postsynaptic’) neuron on the other side of the synapse were present in the plaque. Fixed human brain tissue is more difficult to analyze than mouse samples because it is modified for storage. In spite of these issues, Hadley, Rakhit et al. successfully also used STOMP to identify the proteins in human plaques. STOMP can be used to identify the proteins present in any area of a cell and thus has the potential to be widely used by scientists, not just those studying plaques. DOI:http://dx.doi.org/10.7554/eLife.09579.002
Collapse
Affiliation(s)
- Kevin C Hadley
- Department of Medical Biophysics, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Rishi Rakhit
- Department of Chemical and Systems Biology, Stanford University, Stanford, United States
| | - Hongbo Guo
- The Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular & Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Yulong Sun
- Department of Medical Biophysics, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - James E N Jonkman
- Advanced Optical Microscopy Facility, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Joanne McLaurin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Lili-Naz Hazrati
- Tanz Centre for Research in Neurodegenerative Diseases, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Andrew Emili
- The Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular & Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Avijit Chakrabartty
- Departments of Biochemistry and Medical Biophysics, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
136
|
Abstract
A- and B-type lamins support the nuclear envelope, contribute to heterochromatin organization, and regulate a myriad of nuclear processes. The mechanisms by which lamins function in different cell types and the mechanisms by which lamin mutations cause over a dozen human diseases (laminopathies) remain unclear. The identification of proteins associated with lamins is likely to provide fundamental insight into these mechanisms. BioID (proximity-dependent biotin identification) is a unique and powerful method for identifying protein-protein and proximity-based interactions in living cells. BioID utilizes a mutant biotin ligase from bacteria that is fused to a protein of interest (bait). When expressed in living cells and stimulated with excess biotin, this BioID-fusion protein promiscuously biotinylates directly interacting and vicinal endogenous proteins. Following biotin-affinity capture, the biotinylated proteins can be identified using mass spectrometry. BioID thus enables screening for physiologically relevant protein associations that occur over time in living cells. BioID is applicable to insoluble proteins such as lamins that are often refractory to study by other methods and can identify weak and/or transient interactions. We discuss the use of BioID to elucidate novel lamin-interacting proteins and its applications in a broad range of biological systems, and provide detailed protocols to guide new applications.
Collapse
Affiliation(s)
- Aaron A Mehus
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota, USA
| | - Ruthellen H Anderson
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota, USA
| | - Kyle J Roux
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA.
| |
Collapse
|
137
|
Einarsdottir E, Svensson I, Darki F, Peyrard-Janvid M, Lindvall JM, Ameur A, Jacobsson C, Klingberg T, Kere J, Matsson H. Mutation in CEP63 co-segregating with developmental dyslexia in a Swedish family. Hum Genet 2015; 134:1239-48. [PMID: 26400686 PMCID: PMC4628622 DOI: 10.1007/s00439-015-1602-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/15/2015] [Indexed: 01/17/2023]
Abstract
Developmental dyslexia is the most common learning disorder in children. Problems in reading and writing are likely due to a complex interaction of genetic and environmental factors, resulting in reduced power of studies of the genetic factors underlying developmental dyslexia. Our approach in the current study was to perform exome sequencing of affected and unaffected individuals within an extended pedigree with a familial form of developmental dyslexia. We identified a two-base mutation, causing a p.R229L amino acid substitution in the centrosomal protein 63 kDa (CEP63), co-segregating with developmental dyslexia in this pedigree. This mutation is novel, and predicted to be highly damaging for the function of the protein. 3D modelling suggested a distinct conformational change caused by the mutation. CEP63 is localised to the centrosome in eukaryotic cells and is required for maintaining normal centriole duplication and control of cell cycle progression. We found that a common polymorphism in the CEP63 gene had a significant association with brain white matter volume. The brain regions were partly overlapping with the previously reported region influenced by polymorphisms in the dyslexia susceptibility genes DYX1C1 and KIAA0319. We hypothesise that CEP63 is particularly important for brain development and might control the proliferation and migration of cells when those two events need to be highly coordinated.
Collapse
Affiliation(s)
- Elisabet Einarsdottir
- Department of Biosciences and Nutrition, and Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden.
| | - Idor Svensson
- Department of Psychology, Linneaus University, Växjö, Sweden
| | - Fahimeh Darki
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Myriam Peyrard-Janvid
- Department of Biosciences and Nutrition, and Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Jessica M Lindvall
- Department of Biosciences and Nutrition, and Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden.,Bioinformatics Infrastructure for Life Sciences (BILS), Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Stockholm, Sweden.,Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Adam Ameur
- Uppsala Genome Center, Uppsala University, Uppsala, Sweden
| | | | - Torkel Klingberg
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, and Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden.,Science for Life Laboratory, Stockholm University, Stockholm, Sweden.,Molecular Neurology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland.,Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Hans Matsson
- Department of Biosciences and Nutrition, and Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
138
|
Rees JS, Li XW, Perrett S, Lilley KS, Jackson AP. Protein Neighbors and Proximity Proteomics. Mol Cell Proteomics 2015; 14:2848-56. [PMID: 26355100 PMCID: PMC4638030 DOI: 10.1074/mcp.r115.052902] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Indexed: 12/31/2022] Open
Abstract
Within cells, proteins can co-assemble into functionally integrated and spatially restricted multicomponent complexes. Often, the affinities between individual proteins are relatively weak, and proteins within such clusters may interact only indirectly with many of their other protein neighbors. This makes proteomic characterization difficult using methods such as immunoprecipitation or cross-linking. Recently, several groups have described the use of enzyme-catalyzed proximity labeling reagents that covalently tag the neighbors of a targeted protein with a small molecule such as fluorescein or biotin. The modified proteins can then be isolated by standard pulldown methods and identified by mass spectrometry. Here we will describe the techniques as well as their similarities and differences. We discuss their applications both to study protein assemblies and to provide a new way for characterizing organelle proteomes. We stress the importance of proteomic quantitation and independent target validation in such experiments. Furthermore, we suggest that there are biophysical and cell-biological principles that dictate the appropriateness of enzyme-catalyzed proximity labeling methods to address particular biological questions of interest.
Collapse
Affiliation(s)
- Johanna S Rees
- From the ‡Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom CB2 1QW, the §Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom CB2 1QR, and
| | - Xue-Wen Li
- the ‖National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Sarah Perrett
- the ‖National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Kathryn S Lilley
- the §Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom CB2 1QR, and
| | - Antony P Jackson
- From the ‡Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom CB2 1QW,
| |
Collapse
|
139
|
Van de Mark D, Kong D, Loncarek J, Stearns T. MDM1 is a microtubule-binding protein that negatively regulates centriole duplication. Mol Biol Cell 2015; 26:3788-802. [PMID: 26337392 PMCID: PMC4626064 DOI: 10.1091/mbc.e15-04-0235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/28/2015] [Indexed: 12/03/2022] Open
Abstract
MDM1 is a microtubule-binding protein that localizes to centrioles. 3D-SIM microscopy shows MDM1 to be closely associated with the centriole barrel, likely residing in the centriole lumen. MDM1 overexpression and depletion experiments suggest that MDM1 is a negative regulator of centriole duplication. Mouse double-minute 1 (Mdm1) was originally identified as a gene amplified in transformed mouse cells and more recently as being highly up-regulated during differentiation of multiciliated epithelial cells, a specialized cell type having hundreds of centrioles and motile cilia. Here we show that the MDM1 protein localizes to centrioles of dividing cells and differentiating multiciliated cells. 3D-SIM microscopy showed that MDM1 is closely associated with the centriole barrel, likely residing in the centriole lumen. Overexpression of MDM1 suppressed centriole duplication, whereas depletion of MDM1 resulted in an increase in granular material that likely represents early intermediates in centriole formation. We show that MDM1 binds microtubules in vivo and in vitro. We identified a repeat motif in MDM1 that is required for efficient microtubule binding and found that these repeats are also present in CCSAP, another microtubule-binding protein. We propose that MDM1 is a negative regulator of centriole duplication and that its function is mediated through microtubule binding.
Collapse
Affiliation(s)
| | - Dong Kong
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research-Frederick, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research-Frederick, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA 94305 Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305
| |
Collapse
|
140
|
Yeh C, Coyaud É, Bashkurov M, van der Lelij P, Cheung SWT, Peters JM, Raught B, Pelletier L. The Deubiquitinase USP37 Regulates Chromosome Cohesion and Mitotic Progression. Curr Biol 2015; 25:2290-9. [PMID: 26299517 DOI: 10.1016/j.cub.2015.07.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 06/08/2015] [Accepted: 07/09/2015] [Indexed: 12/31/2022]
Abstract
A bipolar mitotic spindle facilitates the equal segregation of chromosomes to two daughter cells. To achieve bipolar attachment of microtubules to kinetochores of sister chromatids, chromatids must remain paired after replication. This cohesion is mediated by the conserved cohesin complex comprised of SMC1, SMC3, SCC1, and either SA1 or SA2 in humans. Because defects in spindle assembly or sister chromatid cohesion can lead to aneuploidy in daughter cells, proper regulation of these processes is essential for fidelity in chromosome segregation. In an RNAi screen for regulators of spindle assembly, we identify the deubiquitinase USP37 as a regulator of mitotic progression, centrosome integrity, and chromosome alignment. USP37 associates with cohesin and contributes to sister chromatid resolution. Cohesion defects are rescued by expression of an RNAi-resistant USP37, but not the catalytically impaired USP37(C350A) mutant. Further, USP37 associates with WAPL, a negative regulator of cohesion necessary for cohesin release in prophase, in a manner dependent on USP37's second and third ubiquitin-interacting motifs. Depletion of USP37 reduces the stability of chromatin-associated WAPL and increases the fraction of WAPL that is more heavily ubiquitylated in mitosis. Consistently, overexpression of USP37(C350A) results in increased modification of WAPL, and addition of purified USP37(WT), but not USP37(C350A), to WAPL immunoprecipitates results in a reduction of ubiquitylated products. Taken together, our results ascribe a novel function for USP37 in mitotic progression and further suggest that USP37 positively regulates the stability of chromatin-associated WAPL to facilitate sister chromatid resolution.
Collapse
Affiliation(s)
- Christina Yeh
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Étienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Mikhail Bashkurov
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Petra van der Lelij
- Research Institute of Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Sally W T Cheung
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Jan Michael Peters
- Research Institute of Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
141
|
Kodani A, Yu TW, Johnson JR, Jayaraman D, Johnson TL, Al-Gazali L, Sztriha L, Partlow JN, Kim H, Krup AL, Dammermann A, Krogan NJ, Walsh CA, Reiter JF. Centriolar satellites assemble centrosomal microcephaly proteins to recruit CDK2 and promote centriole duplication. eLife 2015; 4:e07519. [PMID: 26297806 PMCID: PMC4574112 DOI: 10.7554/elife.07519] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/21/2015] [Indexed: 12/23/2022] Open
Abstract
Primary microcephaly (MCPH) associated proteins CDK5RAP2, CEP152, WDR62 and CEP63 colocalize at the centrosome. We found that they interact to promote centriole duplication and form a hierarchy in which each is required to localize another to the centrosome, with CDK5RAP2 at the apex, and CEP152, WDR62 and CEP63 at sequentially lower positions. MCPH proteins interact with distinct centriolar satellite proteins; CDK5RAP2 interacts with SPAG5 and CEP72, CEP152 with CEP131, WDR62 with MOONRAKER, and CEP63 with CEP90 and CCDC14. These satellite proteins localize their cognate MCPH interactors to centrosomes and also promote centriole duplication. Consistent with a role for satellites in microcephaly, homozygous mutations in one satellite gene, CEP90, may cause MCPH. The satellite proteins, with the exception of CCDC14, and MCPH proteins promote centriole duplication by recruiting CDK2 to the centrosome. Thus, centriolar satellites build a MCPH complex critical for human neurodevelopment that promotes CDK2 centrosomal localization and centriole duplication.
Collapse
Affiliation(s)
- Andrew Kodani
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Timothy W Yu
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
| | - Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Divya Jayaraman
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
| | - Tasha L Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Lihadh Al-Gazali
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Lāszló Sztriha
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Jennifer N Partlow
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
| | - Hanjun Kim
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Alexis L Krup
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | | | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Christopher A Walsh
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
142
|
Dong G. Building a ninefold symmetrical barrel: structural dissections of centriole assembly. Open Biol 2015; 5:150082. [PMID: 26269428 PMCID: PMC4554922 DOI: 10.1098/rsob.150082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/21/2015] [Indexed: 01/27/2023] Open
Abstract
Centrioles are short microtubule-based organelles with a conserved ninefold symmetry. They are essential for both centrosome formation and cilium biogenesis in most eukaryotes. A core set of five centriolar proteins has been identified and their sequential recruitment to procentrioles has been established. However, structures at atomic resolution for most of the centriolar components were scarce, and the underlying molecular mechanisms for centriole assembly had been a mystery--until recently. In this review, I briefly summarize recent advancements in high-resolution structural characterization of the core centriolar components and discuss perspectives in the field.
Collapse
Affiliation(s)
- Gang Dong
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna 1030, Austria
| |
Collapse
|
143
|
Madarampalli B, Yuan Y, Liu D, Lengel K, Xu Y, Li G, Yang J, Liu X, Lu Z, Liu DX. ATF5 Connects the Pericentriolar Materials to the Proximal End of the Mother Centriole. Cell 2015. [PMID: 26213385 DOI: 10.1016/j.cell.2015.06.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although it is known that the centrioles play instructive roles in pericentriolar material (PCM) assembly and that the PCM is essential for proper centriole formation, the mechanism that governs centriole-PCM interaction is poorly understood. Here, we show that ATF5 forms a characteristic 9-fold symmetrical ring structure in the inner layer of the PCM outfitting the proximal end of the mother centriole. ATF5 controls the centriole-PCM interaction in a cell-cycle- and centriole-age-dependent manner. Interaction of ATF5 with polyglutamylated tubulin (PGT) on the mother centriole and with PCNT in the PCM renders ATF5 as a required molecule in mother centriole-directed PCM accumulation and in PCM-dependent centriole formation. ATF5 depletion blocks PCM accumulation at the centrosome and causes fragmentation of centrioles, leading to the formation of multi-polar mitotic spindles and genomic instability. These data show that ATF5 is an essential structural protein that is required for the interaction between the mother centriole and the PCM.
Collapse
Affiliation(s)
- Bhanupriya Madarampalli
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99202, USA
| | - Yunsheng Yuan
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99202, USA
| | - Dan Liu
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99202, USA
| | - Kathleen Lengel
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99202, USA
| | - Yidi Xu
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99202, USA
| | - Guangfu Li
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99202, USA
| | - Jinming Yang
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Xinyuan Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Xinyuan Institute of Medicine and Biotechnology, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhimin Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David X Liu
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99202, USA.
| |
Collapse
|
144
|
Arquint C, Gabryjonczyk AM, Imseng S, Böhm R, Sauer E, Hiller S, Nigg EA, Maier T. STIL binding to Polo-box 3 of PLK4 regulates centriole duplication. eLife 2015; 4. [PMID: 26188084 PMCID: PMC4530586 DOI: 10.7554/elife.07888] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/17/2015] [Indexed: 01/14/2023] Open
Abstract
Polo-like kinases (PLK) are eukaryotic regulators of cell cycle progression, mitosis and cytokinesis; PLK4 is a master regulator of centriole duplication. Here, we demonstrate that the SCL/TAL1 interrupting locus (STIL) protein interacts via its coiled-coil region (STIL-CC) with PLK4 in vivo. STIL-CC is the first identified interaction partner of Polo-box 3 (PB3) of PLK4 and also uses a secondary interaction site in the PLK4 L1 region. Structure determination of free PLK4-PB3 and its STIL-CC complex via NMR and crystallography reveals a novel mode of Polo-box-peptide interaction mimicking coiled-coil formation. In vivo analysis of structure-guided STIL mutants reveals distinct binding modes to PLK4-PB3 and L1, as well as interplay of STIL oligomerization with PLK4 binding. We suggest that the STIL-CC/PLK4 interaction mediates PLK4 activation as well as stabilization of centriolar PLK4 and plays a key role in centriole duplication.
Collapse
Affiliation(s)
| | | | | | - Raphael Böhm
- Biozentrum, University of Basel, Basel, Switzerland
| | - Evelyn Sauer
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Erich A Nigg
- Biozentrum, University of Basel, Basel, Switzerland
| | - Timm Maier
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
145
|
Abstract
As a large, nonmembrane bound organelle, the centrosome must rely heavily on protein-protein interactions to assemble itself in the cytoplasm and perform its functions as a microtubule-organizing center. Therefore, to understand how this organelle is built and functions, one must understand the protein-protein interactions made by each centrosome protein. Unfortunately, the highly interconnected nature of the centrosome, combined with its predicted unstructured, coil-rich proteins, has made the use of many standard approaches to studying protein-protein interactions very challenging. The yeast-two hybrid (Y2H) system is well suited for studying the centrosome and is an important complement to other biochemical approaches. In this chapter we describe how to carry out a directed Y2H screen to identify the direct interactions between a given centrosome protein and a library of others. Specifically, we detail using a bioinformatics-based approach (structure prediction programs) to subdivide proteins and screen for interactions using an array-based Y2H approach. We also describe how to use the interaction information garnered from this screen to generate mutations to disrupt specific interactions using mutagenic-PCR and a "reverse" Y2H screen. Finally, we discuss how information from such a screen can be integrated into existing models of centrosome assembly and how it can initiate and guide extensive in vitro and in vivo experimentation to test these models.
Collapse
|
146
|
Firat-Karalar EN, Stearns T. Probing mammalian centrosome structure using BioID proximity-dependent biotinylation. Methods Cell Biol 2015; 129:153-170. [PMID: 26175438 DOI: 10.1016/bs.mcb.2015.03.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Understanding the structure and function of the centrosome will require identification of its constituent components and a detailed characterization of the interactions among these components. Here, we describe the application of proximity-dependent biotin identification (BioID) to identify spatial and temporal relationships among centrosome proteins. The BioID method relies on protein fusions to a promiscuous mutant of the Escherichia coli biotin ligase BirA, which biotinylates proteins that are in a ∼10 nm labeling radius of the enzyme. The biotinylated proteins are captured by affinity and are identified by mass spectrometry. Proteins identified in this way are referred to as "proximity interactors." Application of BioID to a set of centrosome proteins demonstrated the utility of this approach in overcoming inherent limitations in probing centrosome structure. These studies also demonstrated the potential of BioID for building large-scale proximity interaction maps among centrosome proteins. In this chapter, we describe the work flow for identification of proximity interactions of centrosome proteins, including materials and methods for the generation and characterization of a BirA*-fusion protein expression plasmid, expression of BirA*-fusion proteins in cells, and purification and identification of proximity partners by mass spectrometry.
Collapse
Affiliation(s)
| | - Tim Stearns
- Department of Biology and Department of Genetics, Stanford University, Stanford, CA, USA
| |
Collapse
|
147
|
Coyaud E, Mis M, Laurent EMN, Dunham WH, Couzens AL, Robitaille M, Gingras AC, Angers S, Raught B. BioID-based Identification of Skp Cullin F-box (SCF)β-TrCP1/2 E3 Ligase Substrates. Mol Cell Proteomics 2015; 14:1781-95. [PMID: 25900982 DOI: 10.1074/mcp.m114.045658] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Indexed: 11/06/2022] Open
Abstract
The identification of ubiquitin E3 ligase substrates has been challenging, due in part to low-affinity, transient interactions, the rapid degradation of targets and the inability to identify proteins from poorly soluble cellular compartments. SCF(β-TrCP1) and SCF(β-TrCP2) are well-studied ubiquitin E3 ligases that target substrates for proteasomal degradation, and play important roles in Wnt, Hippo, and NFκB signaling. Combining 26S proteasome inhibitor (MG132) treatment with proximity-dependent biotin labeling (BioID) and semiquantitative mass spectrometry, here we identify SCF(β-TrCP1/2) interacting partners. Based on their enrichment in the presence of MG132, our data identify over 50 new putative SCF(β-TrCP1/2) substrates. We validate 12 of these new substrates and reveal previously unsuspected roles for β-TrCP in the maintenance of nuclear membrane integrity, processing (P)-body turnover and translational control. Together, our data suggest that β-TrCP is an important hub in the cellular stress response. The technique presented here represents a complementary approach to more standard IP-MS methods and should be broadly applicable for the identification of substrates for many ubiquitin E3 ligases.
Collapse
Affiliation(s)
- Etienne Coyaud
- From the ‡Princess Margaret Cancer Centre, University Health Network
| | - Monika Mis
- §Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto
| | | | - Wade H Dunham
- ¶Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital
| | - Amber L Couzens
- ¶Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital
| | - Melanie Robitaille
- §Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto
| | - Anne-Claude Gingras
- ¶Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital; ‖Department of Molecular Genetics, University of Toronto
| | - Stephane Angers
- §Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto; **Department of Biochemistry, University of Toronto
| | - Brian Raught
- From the ‡Princess Margaret Cancer Centre, University Health Network; ‡‡Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| |
Collapse
|
148
|
Katanin p80 regulates human cortical development by limiting centriole and cilia number. Neuron 2015; 84:1240-57. [PMID: 25521379 DOI: 10.1016/j.neuron.2014.12.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2014] [Indexed: 11/20/2022]
Abstract
Katanin is a microtubule-severing complex whose catalytic activities are well characterized, but whose in vivo functions are incompletely understood. Human mutations in KATNB1, which encodes the noncatalytic regulatory p80 subunit of katanin, cause severe microlissencephaly. Loss of Katnb1 in mice confirms essential roles in neurogenesis and cell survival, while loss of zebrafish katnb1 reveals specific roles for katnin p80 in early and late developmental stages. Surprisingly, Katnb1 null mutant mouse embryos display hallmarks of aberrant Sonic hedgehog signaling, including holoprosencephaly. KATNB1-deficient human cells show defective proliferation and spindle structure, while Katnb1 null fibroblasts also demonstrate a remarkable excess of centrioles, with supernumerary cilia but deficient Hedgehog signaling. Our results reveal unexpected functions for KATNB1 in regulating overall centriole, mother centriole, and cilia number, and as an essential gene for normal Hedgehog signaling during neocortical development.
Collapse
|
149
|
Hori A, Peddie CJ, Collinson LM, Toda T. Centriolar satellite- and hMsd1/SSX2IP-dependent microtubule anchoring is critical for centriole assembly. Mol Biol Cell 2015; 26:2005-19. [PMID: 25833712 PMCID: PMC4472012 DOI: 10.1091/mbc.e14-11-1561] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/27/2015] [Indexed: 01/05/2023] Open
Abstract
Human Msd1/SSX2IP is a component of centriolar satellites and essential for microtubule anchoring to the centrosome. Anchoring defects lead to abnormal accumulation of centriolar components at centriolar satellites, which interferes with centriole assembly. Loss of Msd1/SSX2IP produces supernumerary centriole precursors specifically in tumor cells. Centriolar satellites are numerous electron-dense granules dispersed around the centrosome. Mutations in their components are linked to various human diseases, but their molecular roles remain elusive. In particular, the significance of spatial communication between centriolar satellites and the centrosome is unknown. hMsd1/SSX2IP localizes to both the centrosome and centriolar satellites and is required for tethering microtubules to the centrosome. Here we show that hMsd1/SSX2IP-mediated microtubule anchoring is essential for proper centriole assembly and duplication. On hMsd1/SSX2IP knockdown, the centriolar satellites become stuck at the microtubule minus end near the centrosome. Intriguingly, these satellites contain many proteins that normally localize to the centrosome. Of importance, microtubule structures, albeit not being anchored properly, are still required for the emergence of abnormal satellites, as complete microtubule depolymerization results in the disappearance of these aggregates from the vicinity of the centrosome. We highlighted, using superresolution and electron microscopy, that under these conditions, centriole structures are faulty. Remarkably, these cells are insensitive to Plk4 overproduction–induced ectopic centriole formation, yet they accelerate centrosome reduplication upon hydroxyurea arrest. Finally, the appearance of satellite aggregates is cancer cell specific. Together our findings provide novel insights into the mechanism of centriole assembly and microtubule anchoring.
Collapse
Affiliation(s)
- Akiko Hori
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, United Kingdom
| | - Christopher J Peddie
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, United Kingdom
| | - Lucy M Collinson
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, United Kingdom
| | - Takashi Toda
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, United Kingdom
| |
Collapse
|
150
|
Abstract
The inner membrane complex (IMC) of Toxoplasma gondii is a peripheral membrane system that is composed of flattened alveolar sacs that underlie the plasma membrane, coupled to a supporting cytoskeletal network. The IMC plays important roles in parasite replication, motility, and host cell invasion. Despite these central roles in the biology of the parasite, the proteins that constitute the IMC are largely unknown. In this study, we have adapted a technique named proximity-dependent biotin identification (BioID) for use in T. gondii to identify novel components of the IMC. Using IMC proteins in both the alveoli and the cytoskeletal network as bait, we have uncovered a total of 19 new IMC proteins in both of these suborganellar compartments, two of which we functionally evaluate by gene knockout. Importantly, labeling of IMC proteins using this approach has revealed a group of proteins that localize to the sutures of the alveolar sacs that have been seen in their entirety in Toxoplasma species only by freeze fracture electron microscopy. Collectively, our study greatly expands the repertoire of known proteins in the IMC and experimentally validates BioID as a strategy for discovering novel constituents of specific cellular compartments of T. gondii. The identification of binding partners is critical for determining protein function within cellular compartments. However, discovery of protein-protein interactions within membrane or cytoskeletal compartments is challenging, particularly for transient or unstable interactions that are often disrupted by experimental manipulation of these compartments. To circumvent these problems, we adapted an in vivo biotinylation technique called BioID for Toxoplasma species to identify binding partners and proximal proteins within native cellular environments. We used BioID to identify 19 novel proteins in the parasite IMC, an organelle consisting of fused membrane sacs and an underlying cytoskeleton, whose protein composition is largely unknown. We also demonstrate the power of BioID for targeted discovery of proteins within specific compartments, such as the IMC cytoskeleton. In addition, we uncovered a new group of proteins localizing to the alveolar sutures of the IMC. BioID promises to reveal new insights on protein constituents and interactions within cellular compartments of Toxoplasma.
Collapse
|