101
|
Xu Y, Li Y, Xue M, Yang T, Luo X, Fan Y, Meng Y, Liu W, Lin G, Li B, Zeng L, Zhou Y. Effects of Dietary Saccharomyces cerevisiae YFI-SC2 on the Growth Performance, Intestinal Morphology, Immune Parameters, Intestinal Microbiota, and Disease Resistance of Crayfish (Procambarus clarkia). Animals (Basel) 2021; 11:ani11071963. [PMID: 34209070 PMCID: PMC8300296 DOI: 10.3390/ani11071963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/18/2022] Open
Abstract
The present study aimed to evaluate the effect of the dietary supplementation of Saccharomyces cerevisiae YFI-SC2 on the growth performance, intestinal morphology, immune parameters, intestinal microbiota, and disease resistance of crayfish (Procambarus clarkia). Crayfish were randomly assigned to six different boxes and two different groups in triplicate. The control group received a basal diet and the treatment group received a diet containing S. cerevisiae at 107 CFU/g. After feeding for 28 days, crayfish of the treatment group exhibited a significantly better weight gain ratio (WGR) and a specific growth rate (SGR) (p < 0.05) than crayfish of the control group. Compared to the treatment group, the control group intestines showed an oedema connective tissue layer and a weak muscle layer. For immune-related genes, Crustin2 expression was similar between the groups, whereas Lysozyme and prophenoloxidase from treatment group expression levels were upregulated significantly (p < 0.05) after 14 and 28 days of feeding. Prophenoloxidase showed the highest expression, with 10.5- and 8.2-fold higher expression than in the control group at 14 and 28 days, respectively. The intestinal microbiota community structure was markedly different between the two groups. After 14 and 28 days of feeding, the relative abundance of Cetobacterium and Lactobacillus increased, whereas Citrobacter and Bacteroides decreased in the treatment group compared with that of the control group. The challenge test showed that crayfish of the treatment group had a significantly enhanced resistance against Citrobacter freundii (p < 0.05). Our results suggest that a S. cerevisiae-containing diet positively influenced the health status, immune parameters, intestinal microbiota composition, and disease resistance of crayfish.
Collapse
Affiliation(s)
- Yan Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.X.); (Y.L.); (M.X.); (X.L.); (Y.F.); (Y.M.); (W.L.); (G.L.)
| | - Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.X.); (Y.L.); (M.X.); (X.L.); (Y.F.); (Y.M.); (W.L.); (G.L.)
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.X.); (Y.L.); (M.X.); (X.L.); (Y.F.); (Y.M.); (W.L.); (G.L.)
| | - Tao Yang
- Animal Health Research Institute, Tongwei Co., Ltd., Chengdu 610041, China;
| | - Xiaowen Luo
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.X.); (Y.L.); (M.X.); (X.L.); (Y.F.); (Y.M.); (W.L.); (G.L.)
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.X.); (Y.L.); (M.X.); (X.L.); (Y.F.); (Y.M.); (W.L.); (G.L.)
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.X.); (Y.L.); (M.X.); (X.L.); (Y.F.); (Y.M.); (W.L.); (G.L.)
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.X.); (Y.L.); (M.X.); (X.L.); (Y.F.); (Y.M.); (W.L.); (G.L.)
| | - Ge Lin
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.X.); (Y.L.); (M.X.); (X.L.); (Y.F.); (Y.M.); (W.L.); (G.L.)
| | - Bo Li
- Wuhan Academy of Agricultural Science, Wuhan 430207, China;
| | - Lingbing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.X.); (Y.L.); (M.X.); (X.L.); (Y.F.); (Y.M.); (W.L.); (G.L.)
- Correspondence: (L.Z.); (Y.Z.); Tel.: +86-18627783535 (L.Z.); +86-13554642560 (Y.Z.)
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.X.); (Y.L.); (M.X.); (X.L.); (Y.F.); (Y.M.); (W.L.); (G.L.)
- Correspondence: (L.Z.); (Y.Z.); Tel.: +86-18627783535 (L.Z.); +86-13554642560 (Y.Z.)
| |
Collapse
|
102
|
Zhu L, Zhang S, Hou C, Liang X, Saif Dehwah MA, Tan B, Shi L. The T cell factor, pangolin, from Litopenaeus vannamei play a positive role in the immune responses against white spot syndrome virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104041. [PMID: 33577842 DOI: 10.1016/j.dci.2021.104041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
As a downstream interactor of β-catenin, Pangolin which is the homologous protein of the T cell factor/lymphoid enhancer factor (TCF/LEF) in vertebrates is less understood in the research field of immunity. In this study, two isoforms of Litopenaeus vannamei Pangolin (LvPangolin1 and LvPangolin2) were identified. Phylogenetic tree analysis revealed that all of the Pangolin proteins from invertebrates were represented the same lineage. The mRNA expression profiles of the LvPangolin1 and LvPangolin2 genes differed across different tissues. The expression of LvPangolin1 and the amount of LvPangolin1and LvPangolin2 combined (LvPangolinComb) were significantly increased in the haemocyte, intestine and gill but reduced in the hepatopancreas after white spot syndrome virus (WSSV) challenge. The inhibition of LvPangolin1 but not LvPangolinComb significantly reduced the survival rates of L. vannamei after WSSV infection, while significantly higher WSSV viral loads in both LvPangolin1-inhibited and LvPangolinComb-inhibited L. vannamei were observed. Knockdown of LvPangolin by RNAi could distinctly decrease the expression of antimicrobial peptide (AMP) genes and their related transcription factors. All of these results indicate that LvPangolin plays a positive role in the response to WSSV infection and that this may be mediated through regulating the immune signalling pathways which control the expression of AMPs with antiviral abilities.
Collapse
Affiliation(s)
- Lulu Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China; Key Laboratory of Aquatic Non-grain-based Feed Resources, Ministry of Agriculture, Zhanjiang, China
| | - Cuihong Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Xueping Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Mustafa Abdo Saif Dehwah
- Department of Medical Laboratories, Faculty of Medical and Health Science, Taiz University/AL-Turba Branch, Taiz, 3191, Republic of Yemen
| | - Beiping Tan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China; Key Laboratory of Aquatic Non-grain-based Feed Resources, Ministry of Agriculture, Zhanjiang, China
| | - Lili Shi
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China; Key Laboratory of Aquatic Non-grain-based Feed Resources, Ministry of Agriculture, Zhanjiang, China.
| |
Collapse
|
103
|
Zhang Z, Aweya JJ, Yao D, Zheng Z, Tran NT, Li S, Zhang Y. Ubiquitination as an Important Host-Immune Response Strategy in Penaeid Shrimp: Inferences From Other Species. Front Immunol 2021; 12:697397. [PMID: 34122458 PMCID: PMC8191737 DOI: 10.3389/fimmu.2021.697397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/13/2021] [Indexed: 12/28/2022] Open
Abstract
Shrimp aquaculture is an essential economic venture globally, but the industry faces numerous challenges, especially pathogenic infections. As invertebrates, shrimp rely mainly on their innate immune system for protection. An increasing number of studies have shown that ubiquitination plays a vital role in the innate immune response to microbial pathogens. As an important form of posttranslational modification (PTM), both hosts and pathogens have exploited ubiquitination and the ubiquitin system as an immune response strategy to outwit the other. This short review brings together recent findings on ubiquitination and how this PTM plays a critical role in immune modulation in penaeid shrimps. Key findings inferred from other species would help guide further studies on ubiquitination as an immune response strategy in shrimp-pathogen interactions.
Collapse
Affiliation(s)
- Zhaoxue Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Zhihong Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Ngoc Tuan Tran
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Shengkang Li
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
104
|
Li C, Yang MC, Hong PP, Zhao XF, Wang JX. Metabolomic Profiles in the Intestine of Shrimp Infected by White Spot Syndrome Virus and Antiviral Function of the Metabolite Linoleic Acid in Shrimp. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:2075-2087. [PMID: 33863791 DOI: 10.4049/jimmunol.2001318] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/26/2021] [Indexed: 11/19/2022]
Abstract
White spot syndrome virus (WSSV) is a threatening pathogenic virus in shrimp culture, and at present, no effective strategy can prevent and control the disease. Intestinal flora and its metabolites are important for the resistance of shrimp to lethal pathogenic viruses. However, the changes of metabolites in the shrimp intestines after WSSV infection remain unclear. We established an artificial oral infection method to infect shrimp with WSSV and analyzed the metabolites in intestinal content of shrimp by HPLC and tandem mass spectrometry. A total of 78 different metabolites and five different metabolic pathways were identified. Among them, we found that the content of linoleic acid, an unsaturated fatty acid, increased significantly after WSSV infection, indicating that linoleic acid might be involved in antiviral immunity in shrimp. Further study showed that, after oral administration of linoleic acid, WSSV proliferation decreased evidently in the shrimp, and survival rate of the shrimp increased significantly. Mechanical analysis showed that linoleic acid directly bound to WSSV virions and inhibited the viral replication. Linoleic acid also promoted the expression of antimicrobial peptides and IFN-like gene Vago5 by activating the ERK-NF-κB signaling pathway. Our results indicated that WSSV infection caused metabolomic transformation of intestinal microbiota and that the metabolite linoleic acid participated in the immune response against WSSV in shrimp.
Collapse
Affiliation(s)
- Cang Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China; and
| | - Ming-Chong Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China; and
| | - Pan-Pan Hong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China; and
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China; and
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China; and
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
105
|
Tang D, Liu R, Shi X, Shen C, Bai Y, Tang B, Wang Z. Toxic effects of metal copper stress on immunity, metabolism and pathologic changes in Chinese mitten crab (Eriocheir japonica sinensis). ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:632-642. [PMID: 33728520 DOI: 10.1007/s10646-021-02367-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Copper (Cu2+), which represents a major physiological challenge for crab culture, is ubiquitous in the aquatic culture environment, and gills are the first organs that come into direct contact with the environment. However, the molecular basis of the response of crabs to Cu2+ stress remains unclear. Here, we conducted a transcriptome and differential expression analysis on the gills from Chinese mitten crab unexposed and exposed to Cu2+ for 24 h. The comparative transcriptome analysis identified 2486 differentially expressed genes (DEGs). GO functional analysis and KEGG pathway analysis revealed some DEGs, which were mostly related to immunity, metabolism, osmotic regulation, Cu2+ homeostasis regulation, antioxidant activity, and detoxification process. Some pathways related to humoral and cellular immunity, such as phagosome, peroxisome, lysosome, mTOR signaling pathway, PI3K-Akt signaling pathway, Toll-like receptor signaling pathway, and T cell receptor signaling pathway were enhanced under Cu2+ stress. In addition, Cu2+ stress altered the expression patterns of key phagocytosis and apoptosis genes (lectin, cathepsin L, Rab7, and HSP70), confirming that Cu2+ can induce oxidative stress and eventually even apoptosis. Histological analysis revealed that the copper can induce damage at the cellular level. This comparative transcriptome analysis provides valuable molecular information to aid future study of the immune mechanism of Chinese mitten crab in response to Cu2+ stress and provides a foundation for further understanding of the effects of metal toxicity.
Collapse
Affiliation(s)
- Dan Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, 224001, Jiangsu Province, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, Jiangsu Province, China
| | - Ruobing Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, 224001, Jiangsu Province, China
| | - Xueling Shi
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, 224001, Jiangsu Province, China
| | - Chenchen Shen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, 224001, Jiangsu Province, China
| | - Yuze Bai
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, 224001, Jiangsu Province, China
| | - Boping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, 224001, Jiangsu Province, China
| | - Zhengfei Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, 224001, Jiangsu Province, China.
| |
Collapse
|
106
|
A Lymphoid Organ Specific Anti-Lipopolysaccharide Factor from Litopenaeus vannamei Exhibits Strong Antimicrobial Activities. Mar Drugs 2021; 19:md19050250. [PMID: 33925052 PMCID: PMC8145222 DOI: 10.3390/md19050250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/30/2022] Open
Abstract
Different shrimp species are known to possess apparent distinct resistance to different pathogens in aquaculture. However, the molecular mechanism underlying this finding still remains unknown. One kind of important antimicrobial peptides, anti-lipopolysaccharide factors (ALF), exhibit broad-spectrum antimicrobial activities. Here, we reported a newly identified ALF from the shrimp Litopenaeus vannamei and compared the immune function with its counterpart in the shrimp Fenneropenaeus chinensis. The ALF, designated as LvALF8, was specifically expressed in the lymphoid organ of L. vannamei. The expression level of LvALF8 was apparently changed after white spot syndrome virus (WSSV) or Vibrio parahaemolyticus challenges. The synthetic LBD peptide of LvALF8 (LvALF8-LBD) showed strong antibacterial activities against most tested Gram-negative and Gram-positive bacteria. LvALF8-LBD could also inhibit the in vivo propagation of WSSV similar as FcALF8-LBD, the LBD of LvALF8 counterpart in F. chinensis. However, LvALF8-LBD and FcALF8-LBD exhibited apparently different antibacterial activity against V. parahaemolyticus, the main pathogen causing acute hepatopancreatic necrosis disease (AHPND) of affected shrimp. A structural analysis showed that the positive net charge and amphipathicity characteristics of LvALF8-LBD peptide were speculated as two important components for its enhanced antimicrobial activity compared to those of FcALF8-LBD. These new findings may not only provide some evidence to explain the distinct disease resistance among different shrimp species, but also lay out new research ground for the testing and development of LBD-originated antimicrobial peptides to control of shrimp diseases.
Collapse
|
107
|
Jiang H, Bao J, Xing Y, Feng C, Li X, Chen Q. Proteomic Analysis of the Hemolymph After Metschnikowia bicuspidata Infection in the Chinese Mitten Crab Eriocheir sinensis. Front Immunol 2021; 12:659723. [PMID: 33868309 PMCID: PMC8047416 DOI: 10.3389/fimmu.2021.659723] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022] Open
Abstract
The “milky disease” of the Chinese mitten crab, Eriocheir sinensis, is a highly lethal fungal disease caused by Metschnikowia bicuspidata infection. To elucidate the immune responses of the hemolymph of E. sinensis to M. bicuspidata infection, a comparative analysis of the hemolymph of E. sinensis infected with M. bicuspidata and that treated with phosphate buffered saline was performed using label-free quantitative proteomics. A total of 429 proteins were identified. Using a 1.5-fold change in expression as a physiologically significant benchmark, 62 differentially expressed proteins were identified, of which 38 were significantly upregulated and 24 were significantly downregulated. The upregulated proteins mainly included cytoskeleton-related proteins (myosin regulatory light chain 2, myosin light chain alkali, tubulin α-2 chain, and tubulin β-1 chain), serine protease and serine protease inhibitor (clip domain-containing serine protease, leukocyte elastase inhibitor, serine protein inhibitor 42Dd), catalase, transferrin, and heat shock protein 70. Upregulation of these proteins indicated that phenoloxidase system, phagocytosis and the ROS systems were induced by M. bicuspidata. The downregulated proteins were mainly organ and tissue regeneration proteins (PDGF/VEGF-related factor protein, integrin-linked protein kinase homing pat-4 gene) and hemagglutination-associated proteins (hemolymph clottable protein, hemocyte protein-glutamine gamma-glutamyltransferase). Downregulation of these proteins indicated that M. bicuspidata inhibited hemocyte regeneration and hemolymph agglutination. Fifteen differentially expressed proteins related to immunity were verified using a parallel reaction monitoring method. The expression trend of these proteins was similar to that of the proteome. To the best of our knowledge, this is the first report on the proteome of E. sinensis in response to M. bicuspidata infection. These results not only provide new and important information on the immune response of crustaceans to yeast infection but also provide a basis for further understanding the molecular mechanism of complex host pathogen interactions between crustaceans and fungi.
Collapse
Affiliation(s)
- Hongbo Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China
| | - Jie Bao
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China
| | - Yuenan Xing
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China
| | - Chengcheng Feng
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China
| | - Xiaodong Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
108
|
Yang H, Ji T, Xiong H, Zhang Y, Wei W. A trypsin-like serine protease domain of masquerade gene in crayfish Procambarus clarkii could activate prophenoloxidase and inhibit bacterial growth. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103980. [PMID: 33340591 DOI: 10.1016/j.dci.2020.103980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Masquerade (Mas) is a secreted trypsin-like serine protease (SPs) and involved in immune response in some arthropods. However, according to previous studies, Mas presents different functional activities. In the present study, the functional mechanisms of Mas in crayfish Procambarus clarkii immune defense were studied. A fragment cDNA sequence of PcMas was identified and characterized. From the structural analysis, it contains a trypsin-like serine protease domain. The highest expression level of PcMas was detected in hepatopancreas. The infection of A. hydrophila could induce the expression of PcMas, while the WSSV infection did not cause changes in the expression of PcMas. Through the prokaryotic expression system, the PcMas protein was expressed in E. coli. It was verified that PcMas can bind to bacteria in vitro and inhibit the growth of the bacteria. By dsRNA interference with the expression of PcMas, the decrease expression of PcMas led to a decrease in the activity of phenoloxidase in hemolymph and an increase of mortality caused by A. hydrophila infection. The injection of recombinant protein can enhance the activity of phenoloxidase and reduce mortality caused by A. hydrophila infections. Therefore, the present study confirmed that PcMas could improve the body's immune response to eliminate bacterial pathogens by binding with bacteria and activating the prophenoloxidase system. The results will enrich the molecular mechanisms of crustaceans immune defense.
Collapse
Affiliation(s)
- Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Tongwei Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Haoran Xiong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenzhi Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
109
|
Li C, Hong PP, Yang MC, Zhao XF, Wang JX. FOXO regulates the expression of antimicrobial peptides and promotes phagocytosis of hemocytes in shrimp antibacterial immunity. PLoS Pathog 2021; 17:e1009479. [PMID: 33798239 PMCID: PMC8046353 DOI: 10.1371/journal.ppat.1009479] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/14/2021] [Accepted: 03/16/2021] [Indexed: 01/11/2023] Open
Abstract
Invertebrates rely on innate immunity, including humoral and cellular immunity, to resist pathogenic infection. Previous studies showed that forkhead box transcription factor O (FOXO) participates in mucosal immune responses of mammals and the gut humoral immune regulation of invertebrates. However, whether FOXO is involved in systemic and cellular immunity regulation in invertebrates remains unknown. In the present study, we identified a FOXO from shrimp (Marsupenaeus japonicus) and found that it was expressed at relatively basal levels in normal shrimp, but was upregulated significantly in shrimp challenged by Vibrio anguillarum. FOXO played a critical role in maintaining hemolymph and intestinal microbiota homeostasis by promoting the expression of Relish, the transcription factor of the immune deficiency (IMD) pathway for expression of antimicrobial peptides (AMPs) in shrimp. We also found that pathogen infection activated FOXO and induced its nuclear translocation by reducing serine/threonine kinase AKT activity. In the nucleus, activated FOXO directly regulated the expression of its target Amp and Relish genes against bacterial infection. Furthermore, FOXO was identified as being involved in cellular immunity by promoting the phagocytosis of hemocytes through upregulating the expression of the phagocytotic receptor scavenger receptor C (Src), and two small GTPases, Rab5 and Rab7, which are related to phagosome trafficking to the lysosome in the cytoplasm. Taken together, our results indicated that FOXO exerts its effects on homeostasis of hemolymph and the enteric microbiota by activating the IMD pathway in normal shrimp, and directly or indirectly promoting AMP expression and enhancing phagocytosis of hemocytes against pathogens in bacteria-infected shrimp. This study revealed the different functions of FOXO in the mucosal (local) and systemic antibacterial immunity of invertebrates.
Collapse
Affiliation(s)
- Cang Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Pan-Pan Hong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Ming-Chong Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
110
|
Chen Q, Zhang Z, Tang H, Zhou L, Ao S, Zhou Y, Zhu X, Gao X, Jiang Q, Tu C, Zhang X. Aeromonas hydrophila associated with red spot disease in Macrobrachium nipponense and host immune-related gene expression profiles. J Invertebr Pathol 2021; 182:107584. [PMID: 33811849 DOI: 10.1016/j.jip.2021.107584] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/12/2021] [Accepted: 03/22/2021] [Indexed: 12/28/2022]
Abstract
In September 2018, a serious disease causing high mortality with red spot syndrome occurred in a Macrobrachium nipponense aquaculture farm in Jintan County, Jiangsu Province, China. In this study, a pathogenic isolate 5-S3 was isolated from diseased M. nipponense and was identified as Aeromonas hydrophila by phenotypically and molecularly. The pathogenicity of the isolate 5-S3 to M. nipponense was determined by challenge experiments. Results of artificial challenge showed A. hydrophila was pathogenic to M. nipponense, the LD50 was 9.58 × 104 CFU/mL, and histopathological analysis revealed that the hepatopancreas of infected M. nipponense exhibited obvious inflammatory responses to A. hydrophila infection. The isolate showed significant phenotypical activities such as the lecithinase, esterase, caseinase and hemolysin which are indicative of their virulence potential. Besides, virulence genes such as aerA, act, fla, ahpβ, alt, lip, eprCAI, hlyA, acg and gcaT were detected in the isolate 5-S3. Subsequently, the immune-related genes expression in M. nipponense were evaluated by quantitative real-time PCR (qRT-PCR), and the results showed that the expression levels of dorsal, relish, crustin1, crustin2, anti-lipopolysaccharide factors 1 (ALF1), anti-lipopolysaccharide factors 2 (ALF2), hemocyanin, i-lysozyme and prophenoloxidase were significantly up-regulated in hepatopancreas of M. nipponense after A. hydrophila infection, the stat, p38, crustin3, anti-lipopolysaccharide factors 3 (ALF3) genes had no significant change during the infection. The present results reveal that A. hydrophila was an etiological agent causing red spot syndrome and mass mortality of M. nipponense and the influence of A. hydrophila infection on host immune genes.
Collapse
Affiliation(s)
- Qiyun Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zirui Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Huanyu Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Liying Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shiqi Ao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yifan Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xinhai Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qun Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chuandeng Tu
- Marine Science & Technology Institute, College of Environmental Science & Engineering, Yangzhou University, 5 Yangzhou 225127, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
111
|
Li W, Wang Q. Recent progress in the research of exosomes and Dscam regulated crab antiviral immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103925. [PMID: 33217412 DOI: 10.1016/j.dci.2020.103925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Crustaceans, including crab and shrimp, generally lack lymphocytes or adaptive immunity, and they rely solely on innate immunity for pathogen defense. The white spot syndrome virus (WSSV) causes the most prevalent viral disease in penaeid shrimps, which are widely cultured species in coastal waters worldwide. Numerous studies have elucidated the role of the immune system in protecting shrimps from WSSV infection for the development of safe and effective defensive strategies against WSSV. Although WSSV has a wide host range, it appears to exhibit high pathogenicity and virulence in only penaeid shrimps. Crabs are interesting models for studying immune responses after WSSV infection. Therefore, we reviewed recent information on the innate immune responses of crabs to WSSV and mainly focused on the antiviral functions of exosome-mediated apoptosis and alternatively spliced Down syndrome cell adhesion molecule. Our review may provide novel insights into antiviral management for crustaceans, especially penaeid shrimps.
Collapse
Affiliation(s)
- Weiwei Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
112
|
Xu L, Zhou X, Wang P, Jin Q, Zhu T, Chen M, Xu H. The novel six LIM and one PET domain-containing protein Lmpt is involved in the immune response through activation of the NF-κB signalling pathway in the crustacean, Macrobrachium nipponense. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103948. [PMID: 33253750 DOI: 10.1016/j.dci.2020.103948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
The four-and-a-half LIM-only protein family of transcription co-factors participates in various cellular processes, such as cell proliferation, cell differentiation, apoptosis, cell adhesion, migration, transcription and signal transduction. However, the knowledge of the structural characteristics and immune functions of its ancestor Lmpt, which contains six LIM domains at the C-terminus and a PET domain at the N-terminus, is limited in invertebrates, especially in crustaceans. In the present study, a novel Lmpt from oriental river prawn (Macrobrachium nipponense) was identified, and its role in the immune response was investigated. Its full-length cDNA sequence was 6407 bp, which contained a 2595 bp ORF encoding 865 amino acids, exhibiting high similarity to the structure of Lmpt derived from other invertebrates. Tissue distribution analysis revealed that MnLmpt was widely expressed in all examined tissues, and high expression levels were observed in muscle, heart and intestine in M. nipponense. After experimental challenges with bacteria and virus, the transcription levels of MnLmpt significantly fluctuated in gill and hepatopancreas, indicating that it might play a role in the innate immune response in M. nipponense. Silencing of MnLmpt by dsRNA injection in vivo could promote bacterial growth, suggesting that MnLmpt exerted an antibacterial immune function in prawn. Immunocytochemistry assay results demonstrated that MnLmpt was able to translocate from the cytoplasm to the nucleus after being stimulated with pathogens. The expression levels of NF-κB signalling cascade members, such as dorsal, relish, TAK1, TAB1, Ikkβ, and Ikkε, and AMPs, including ALF4, Cru1, and Cru2, exhibited significant downregulation in the MnLmpt silenced group. Similarly, dual-luciferase reporter assays also demonstrated that MnLmpt could stimulate an NF-κB signalling cascade. Meanwhile, all of the LIM domains of MnLmpt could trigger NF-κB signalling; however, their cumulative effect on NF-κB promoter activation was hardly observed. These results showed that MnLmpt might play a crucial role in the innate immune response in M. nipponense, and these findings paved the way for a better understanding of the immune system in crustacean species.
Collapse
Affiliation(s)
- Liaoyi Xu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang Province, China
| | - Xiefei Zhou
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang Province, China
| | - Peichen Wang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang Province, China
| | - Qian Jin
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang Province, China
| | - Tingyao Zhu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang Province, China
| | - Ming Chen
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang Province, China
| | - Haisheng Xu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang Province, China.
| |
Collapse
|
113
|
Ge Q, Wang J, Li J, Li J. Identification, characterization, and functional analysis of Toll and ECSIT in Exopalaemon carinicauda. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103926. [PMID: 33238179 DOI: 10.1016/j.dci.2020.103926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Toll and evolutionary conserved signaling intermediate in Toll pathways (ECSIT) are two essential molecules in Toll/Toll-like receptor (TLR)-mediated signaling pathway. In this study, Toll and ECSIT (named as EcToll and EcECSIT) were identified for the first time from Exopalaemon carinicauda. EcToll mRNA transcripts were high expressed in hemocytes and gill, and EcECSIT was mainly expressed in gill. The expression levels of EcToll and EcECSIT in gills both responded rapidly to Vibrio parahaemolyticus and WSSV stimulations and three types of antimicrobial peptide (AMP) genes were significantly up-regulated by challenge with V. parahaemolyticus. Knockdown of EcToll or EcECSIT increased the sensitivity of E. carinicauda to V. parahaemolyticus challenge and double knockdown of both EcToll and EcECSIT significantly suppressed the bacterial clearance ability of E. carinicauda in vivo. Furthermore, suppressing EcToll restrained the upregulation of EcECSIT and AMPs and suppressing EcECSIT impaired expression of AMPs by V. parahaemolyticus injection, which indicated that EcToll restricted V. parahaemolyticus infection through activating EcECSIT to induce AMPs. This study provides valuable information about the function of Toll-ECSIT pathway in the innate immunity in crustacean.
Collapse
Affiliation(s)
- Qianqian Ge
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jiajia Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jitao Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| | - Jian Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| |
Collapse
|
114
|
AftabUddin S, Siddique MAM, Habib A, Akter S, Hossen S, Tanchangya P, Abdullah Al M. Effects of seaweeds extract on growth, survival, antibacterial activities, and immune responses of Penaeus monodon against Vibrio parahaemolyticus. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1878943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Sheikh AftabUddin
- Institute of Marine Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Mohammad Abdul Momin Siddique
- Department of Oceanography, Noakhali Science and Technology University, Noakhali, Bangladesh
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Ahasan Habib
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Terengganu, Malaysia
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Shahinur Akter
- Institute of Marine Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Shipan Hossen
- Institute of Marine Sciences, University of Chittagong, Chittagong, Bangladesh
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Protiva Tanchangya
- Institute of Marine Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Mamun Abdullah Al
- Institute of Marine Sciences, University of Chittagong, Chittagong, Bangladesh
- Department of Environmental Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
115
|
Cho H, Park KH, Jang Y, Cho Y, Heo YK, Kim M, Kim YB. Identification and characterization of a Toll-like receptor gene from Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2021; 108:109-115. [PMID: 33301932 DOI: 10.1016/j.fsi.2020.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Outbreaks of infectious disease in shrimp pose a serious threat to shrimp agriculture worldwide. Shrimp lack adaptive immunity and depend only on innate immunity as a defense system against infectious disease. Toll-like receptors (TLR) are reported to play a critical role in the innate immune system. In this study, we identified a Toll-like receptor gene of a species of freshwater shrimp, Macrobrachium nipponense, designated MnToll, for the first time. The sequence of MnToll encoded 935 residues arranged as 10 leucine-rich repeat (LRR) domains, a leucine-rich repeat C-terminal (LRR CT) domain and a Toll/interleukin-1 receptor (TIR) domain and displayed 90% amino acid similarity to previously identified TLRs (Toll 1 and 2) of Macrobrachium rosenbergii. We additionally evaluated mRNA expression of MnToll in various tissues, including heart, gills, stomach, digestive gland, ventral nerve cord, antennal gland and muscle. Following infection with a viral pathogen, white spot syndrome virus (WSSV), MnToll expression was significantly upregulated between 12 and 72 h. Our data collectively suggest that the newly identified MnToll gene belongs to the TLR family in shrimp and is potentially involved in innate host defense, especially against WSSV.
Collapse
Affiliation(s)
- Hansam Cho
- Department of Bio-industrial Technologies, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea; Department of Biomedical Science and Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ki Hoon Park
- Department of Bio-industrial Technologies, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yuyeon Jang
- Department of Bio-industrial Technologies, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yeondong Cho
- Department of Bio-industrial Technologies, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yoon-Ki Heo
- Department of Bio-industrial Technologies, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Minjee Kim
- Department of Bio-industrial Technologies, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Young Bong Kim
- Department of Biomedical Science and Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
116
|
Cui C, Liang Q, Tang X, Xing J, Sheng X, Zhan W. Differential Apoptotic Responses of Hemocyte Subpopulations to White Spot Syndrome Virus Infection in Fenneropenaeus chinensis. Front Immunol 2020; 11:594390. [PMID: 33365030 PMCID: PMC7750459 DOI: 10.3389/fimmu.2020.594390] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/05/2020] [Indexed: 11/13/2022] Open
Abstract
The apoptosis of hemocytes plays an essential function in shrimp immune defense against pathogen invasions. In order to further elucidate the differential apoptotic responses of the granulocytes and the hyalinocytes in Fenneropenaeus chinensis post WSSV infection, the characteristics of apoptotic dynamics and viral proliferation in total hemocytes and hemocyte subpopulations were respectively investigated in the present work. The results showed that the apoptotic rate of hemocytes changed significantly, and the apoptosis-related genes also showed significantly differential expression responses during WSSV infection. Interestingly, we found that the apoptotic rate of virus-negative hemocytes was significantly higher than that of virus-positive hemocytes in the early stage of WSSV infection, while it was significantly lower than that of virus-positive cells in the middle and late infection stages. The difference of apoptosis between virus-positive and virus-negative hemocytes seems to be an important way for the WSSV to destroy the host’s immune system and facilitate the virus spread at different infection stages. It was further found that the apoptosis rate of granulocytes was always significantly higher than that of hyalinocytes during WSSV infection, indicating that granulocytes have a stronger apoptotic response to WSSV infection. Moreover, a higher viral load was detected in granulocytes, and the density of granulocytes decreased more rapidly post WSSV infection, indicating that the granulocytes are more susceptible and vulnerable to WSSV infection compared with the hyalinocytes. These results collectively demonstrated that the apoptotic response in shrimp hemocytes was significantly influenced by the WSSV infection, and the differential apoptotic response of granulocytes and hyalinocytes to WSSV indicated the differences of antiviral mechanisms between the two hemocyte subpopulations.
Collapse
Affiliation(s)
- Chuang Cui
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Qianrong Liang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
117
|
Transcriptomic analysis of Procambarus clarkii affected by "Black May" disease. Sci Rep 2020; 10:21225. [PMID: 33277587 PMCID: PMC7719172 DOI: 10.1038/s41598-020-78191-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/12/2020] [Indexed: 12/29/2022] Open
Abstract
Each year from April to May, high mortality rates are reported in red swamp crayfish (Procambarus clarkii) cultured in Jiangsu and other regions, in China, and this phenomenon has come to be known as “Black May” disease (BMD). Therefore, in order to investigate the possible causes of this disease, this study gathered BMD-affected P. clarkii samples and performed transcriptome analysis on hepatopancreas, gill, and muscle tissues. A total of 19,995,164, 149,212,804, and 222,053,848 clean reads were respectively obtained from the gills, muscle, and hepatopancreas of BMD-affected P. clarkii, and 114,024 unigenes were identified. The number of differentially expressed genes (DEGs) in gill, muscle, and hepatopancreas was 1703, 964, and 476, respectively. GO and KEGG enrichment analyses of the DEGs were then conducted. Based on KEGG pathway enrichment analysis, the most significantly differentially expressed pathways were mainly those involved with metabolism, human disease, and cellular processes. Further analysis of the significantly DEGs revealed that they were mainly related to the mitochondrial-mediated apoptosis pathway and that the expression of these DEGs was mostly down-regulated. Moreover, the expression of genes related to immune and metabolism-related pathways was also significantly down-regulated, and these significantly-inhibited pathways were the likely causes of P. clarkii death. Therefore, our results provide a basis for the identification of BMD causes.
Collapse
|
118
|
Angela C, Wang W, Lyu H, Zhou Y, Huang X. The effect of dietary supplementation of Astragalus membranaceus and Bupleurum chinense on the growth performance, immune-related enzyme activities and genes expression in white shrimp, Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2020; 107:379-384. [PMID: 33059009 DOI: 10.1016/j.fsi.2020.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
A 56-day feeding trial was conducted to investigate the effects of dietary supplementation of Astragalus membranaceus or/and Bupleurum chinense on the growth performance, immune enzymes, and related gene expression of Pacific white shrimp (Litopenaeus vanammei). Six experimental diets were formulated and supplemented with two levels (0.25% and 0.5%) of each herb and their combination. At the end of the trial, the specific growth rate and feed conversion ratio of shrimp were significantly (P < 0.05) improved by herbal diets. Besides, the activities of immune-related enzymes such as superoxide dismutase (SOD), alkaline phosphatase (AKP), and lysozyme in serum and hepatopancreas were significantly (P < 0.05) elevated in shrimp fed A. membranaceus or/and B. chinense. The high expression levels of immune deficiency (IMD), lysozyme, and Toll-like receptor mRNA directly or indirectly reflected the activation effect of innate immune in shrimp by dietary A. membranaceus or/and B. chinense. However, no significant difference (P > 0.05) among the herbal incorporated treatments was detected on the growth performance and immune response. In conclusion, the results suggest that A. membranaceus and B. chinense could be used as a beneficial feed additives and alternatives to antibiotics for white shrimp aquaculture.
Collapse
Affiliation(s)
- Cornel Angela
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, China
| | - Weilong Wang
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, China
| | - Hongyu Lyu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, China
| | - Yue Zhou
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, China
| | - Xuxiong Huang
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China.
| |
Collapse
|
119
|
Li Y, Liu Z, Li M, Jiang Q, Wu D, Huang Y, Jiao Y, Zhang M, Zhao Y. Effects of nanoplastics on antioxidant and immune enzyme activities and related gene expression in juvenile Macrobrachium nipponense. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122990. [PMID: 32516731 DOI: 10.1016/j.jhazmat.2020.122990] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Nanoplastics are widely distributed in aquatic environments, and nanoplastic pollution has become a global concern. However, few studies have evaluated the toxicity of nanoplastics to freshwater crustaceans. In this study, by adding different concentrations of nanoplastics to water, we explored the effects of nanoplastics on the survival, antioxidant activity, immune enzyme activity, and related gene expression levels in juvenile Macrobrachium nipponense. The results showed that the 96 -h half-lethal concentration of nanoplastics to juvenile shrimp was 396.391 mg/L. As the concentration of nanoplastics increased, the activities of antioxidant enzymes generally decreased, while the contents of hydrogen peroxide and lipid peroxidation products increased. The activities of non-specific immune enzymes first increased and then decreased with increasing nanoplastic concentration. The trends in the expressions of antioxidant-related genes were generally consistent with those in the activities of antioxidant enzymes. As the nanoplastic concentration increased, the expressions of immune-related genes generally increased at first and then decreased. These results indicate that low concentrations of nanoplastics (5 mg/L) may enhance the viability of juvenile shrimp, whereas high concentrations (10,20, 40 mg/L) have inhibitory and/or toxic effects. The findings provide basic information on the toxic effects of nanoplastics in juvenile shrimp.
Collapse
Affiliation(s)
- Yiming Li
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Zhiquan Liu
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Maofeng Li
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Donglei Wu
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Youhui Huang
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Yang Jiao
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Meng Zhang
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
120
|
Zheng J, Wang P, Mao Y, Su Y, Wang J. Full-length transcriptome analysis provides new insights into the innate immune system of Marsupenaeus japonicus. FISH & SHELLFISH IMMUNOLOGY 2020; 106:283-295. [PMID: 32755684 DOI: 10.1016/j.fsi.2020.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
As invertebrates, shrimp are generally thought to solely rely on their innate immune system to combat invading pathogens. Recently, an increasing number of studies have revealed that the innate immune response of invertebrates exhibits diversity and specificity based on their diverse immune molecules. Herein, a full-length transcriptome analysis of several immune-related tissues (hepatopancreas, gill, hemocytes, stomach and intestine) in the kuruma shrimp (Marsupenaeus japonicus) was conducted to identify immune-related molecules with a focus on transcript variations. In total, 11,222 nonredundant full-length transcripts with an N50 length of 5174 were obtained, and most of these transcripts (94.84%) were successfully annotated. In addition, a total of 147 long noncoding RNAs (lncRNAs) were also predicted. Importantly, transcript variants of several vital immune-related genes were observed, including twenty-five alpha-2-macroglobulins (α2-Ms), ten Toll-like receptors (TLRs), six C-type lectins (CTLs), five M-type lectins (MTLs) and three Down syndrome cell adhesion molecules (Dscams). Furthermore, 509 nonredundant full-length transcripts were predicted to be generated from alternative splicing (AS) events, which contribute to the diversity of immune molecules. Overall, our study provides valuable data on the full-length transcripts of M. japonicus, which will facilitate the exploration of immune molecules in this species. Moreover, numerous transcript variants of immune molecules detected in this study provide clues for further investigating the diversity and specificity of the innate immune response in shrimp.
Collapse
Affiliation(s)
- Jinbin Zheng
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Panpan Wang
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102, China.
| | - Yongquan Su
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Jun Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
121
|
Su C, Fan D, Pan L, Lu Y, Wang Y, Zhang M. Effects of Yu-Ping-Feng polysaccharides (YPS) on the immune response, intestinal microbiota, disease resistance and growth performance of Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2020; 105:104-116. [PMID: 32629103 PMCID: PMC7333637 DOI: 10.1016/j.fsi.2020.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 05/02/2023]
Abstract
A 28-day feeding trial was conducted to investigate the effects of Yu-Ping-Feng polysaccharides (YPS) containing Astragalus polysaccharides (APS), Atractylodes macrocephala polysaccharides (AMP) and Saposhnikoviae polysaccharides (SPS) on the immune response, intestinal microbiota, disease resistance and growth performance of Litopenaeus vannamei. Seven hundred and twenty shrimp (3.04 ± 0.33 g) were fed the following diets: Control, YPS1 (0.13% APS + 0.0325% AMP + 0.0325% SPS), YPS2 (0.13% APS + 0.0325% AMP + 0.065% SPS) and YPS3 (0.13% APS + 0.0325% AMP+0.0975% SPS). After 14 and 28 days of feeding, the immune responses of hemocytes and intestine were measured. Intestinal microbiota and growth performance were measured after 28 days of feeding, after that, a 7-day challenge test against Vibrio harveyi was conducted. A significant (P < 0.05) increase of the total haemocyte count (THC), phagocytic activity, antibacterial activity and phenoloxidase (PO) activity was observed in shrimp fed YPS diets compared to the control. Also, dietary YPS supplementation particularly YPS3 group significantly increased the expressions of immune-related genes in the hemocytes and intestine. Regarding the intestinal microbiota, the microbial diversity and richness decreased and functional genes associated with short-chain fatty acids metabolism increased in YPS groups. After Vibrio harveyi challenge, the cumulative mortality in YPS groups was significantly lower than that of the control. Besides, dietary YPS had no significant effect on growth performance of shrimp (P > 0.05). The present results suggested that YPS could be considered as potential prebiotics for aquaculture farmed shrimp.
Collapse
Affiliation(s)
- Chen Su
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, Shandong, 266003, China
| | - Depeng Fan
- Bio-Form Biotechnology (Guangdong) Co., LTD, Foshan, Guangdong, 528200, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, Shandong, 266003, China.
| | - Yusong Lu
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, Shandong, 266003, China
| | - Yuxuan Wang
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, Shandong, 266003, China
| | - Mengyu Zhang
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, Shandong, 266003, China
| |
Collapse
|
122
|
Lv X, Li S, Yu Y, Xiang J, Li F. The immune function of a novel crustin with an atypical WAP domain in regulating intestinal microbiota homeostasis in Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 111:103756. [PMID: 32485179 DOI: 10.1016/j.dci.2020.103756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Crustins are a family of antimicrobial peptides (AMP) with multiple functions, including antimicrobial activity, capability of protease inhibition, phagocytosis promotion, and wound healing in crustaceans. Till present, several members of crustins have been identified and their activities were studied. However, there are still less investigations on how they play functions in vivo. Here, we identified a novel crustin with an atypical WAP domain, LvCrustin Ⅰ-1, which is mainly distributed in tissues, including intestine, gill, epidermis and stomach of the shrimp Litopenaeus vannamei. The expression level of LvCrustin Ⅰ-1 was significantly up-regulated at 3 h, 6 h, 12 h, and 24 h after Vibrio parahaemolyticus infection. Knockdown of LvCrustin Ⅰ-1 with dsRNA resulted in a significant increase of the bacteria number in hepatopancreas of shrimp upon V. parahaemolyticus infection, showing that LvCrustin Ⅰ-1 participated in pathogen infection process. Recombinant LvCrustin Ⅰ-1 protein showed microorganism-binding activity rather than antibacterial activity against tested bacteria. Furthermore, significant difference existed between the intestinal microbiota in shrimp before and after LvCrustin Ⅰ-1 knockdown based on the result of alpha and NMDS analyses. Knockdown of LvCrustin Ⅰ-1 increased the proportion of Demequina, Nautella, Propionibacterium, Anaerospora and decreased the proportion of Bacteroidia and Vibrio. These data suggest that LvCrustin Ⅰ-1 might perform its immunological function through modulation of the intestinal microbiota homeostasis rather than direct inhibition of bacterial growth in shrimp.
Collapse
Affiliation(s)
- Xinjia Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Yang Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
123
|
Li B, Zhou YL, Gu WB, Wang LZ, Xu YP, Cheng YX, Chen DY, Li BW, Xiao Y, Dong WR, Shu MA. Identification and functional analysis of transforming growth factor-β type III receptor (TβR3) from Scylla paramamosain: The first evidence of TβR3 involved in development and innate immunity in invertebrates. FISH & SHELLFISH IMMUNOLOGY 2020; 105:41-52. [PMID: 32629101 DOI: 10.1016/j.fsi.2020.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Transforming growth factor-β type III receptor (TβR3), as a co-receptor of TGF-β superfamily, plays critical roles in development and growth as well as some disease pathogeneses by presenting ligands to other receptors in vertebrates. However, the identification and functional characterization of TβR3 had not been reported yet in invertebrates. In the present study, TβR3 was first identified and characterized in mud crab Scylla paramamosain. The obtained cDNA length of SpTβR3 was 2, 424 bp with a 1, 854 bp open reading frame, which encoded a putative peptide of 617 amino acids containing a typical transmembrane region and a Zona pellucida (ZP) domain. Real-time PCR results showed that SpTβR3 was predominantly expressed at early embryonic development stage and early postmolt stage, suggesting its participation in development and growth. We report, for the first time in invertebrates, the challenge of both Vibro alginolyticus and Poly (I:C) could alter the expression patterns of SpTβR3. Notably, the expression levels of SpIKK, two NF-κB members (SpRelish and SpDorsal), and five antimicrobial peptide genes (SpCrustin and SpALF1-4) were significantly suppressed when SpTβR3 was interfered in vivo. Secondly, the overexpression of SpTβR3 in vitro could activate NF-κB signaling through the dual-luciferase reporter assays. Furthermore, the bacterial clearance assay after SpTβR3 was silenced in vivo highlighted the potential of SpTβR3 in activating the innate immune responses. These results implied the involvement of SpTβR3 in the innate immune responses by regulating the NF-κB pathway. This study first indicated that TβR3 was present in invertebrate, and it participated in not only the development and growth but also the innate immunity of S. paramamosain. It also provided new insights into the origin or evolution of TGF-β receptors in crustacean species and even in invertebrates.
Collapse
Affiliation(s)
- Bo Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Lian Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Bin Gu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lan-Zhi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ya-Ping Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuan-Xin Cheng
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Da-Yong Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bing-Wu Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi Xiao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei-Ren Dong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
124
|
Identification and functional characterization of a novel C-type lectin from the kuruma shrimp, Marsupenaeus japonicus. Biochem Biophys Res Commun 2020; 530:547-553. [PMID: 32747089 DOI: 10.1016/j.bbrc.2020.07.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 01/19/2023]
Abstract
C-type lectins (CTLs) are immune molecules that are crucial to the invertebrate innate immune system with the primary function of recognizing invading pathogens. In the present study, a novel CTL was cloned from Marsupenaeus japonicus (MjCTL), and its tissue distribution and expression patterns over time in response to white spot syndrome virus (WSSV) and Vibrio parahaemolyticus were further investigated. The open reading frame (ORF) of MjCTL was 513 bp and encoded a polypeptide of 170 amino acids, which contained a signal peptide and a carbohydrate recognition domain (CRD) that are typical for CTLs. MjCTL was primarily expressed in the hepatopancreas and weakly expressed in hemocytes, gill, stomach, intestine, heart, muscle and eyestalk. The expression level of MjCTL in the hepatopancreas was dramatically increased at 48 h post-injection with WSSV at a dosage of 1 × 105 virions. Glutathione-S-transferase (GST) pull-down assays showed that MjCTL could directly bind to several WSSV envelope proteins, including VP19, VP24, VP26 and VP28. Moreover, MjCTL displayed antibacterial activity against V. parahaemolyticus. Our results indicated that MjCTL exhibited multiple functions in innate immune response against pathogens.
Collapse
|
125
|
Liu M, Jiang X, Chen A, Chen T, Cheng Y, Wu X. Transcriptome analysis reveals the potential mechanism of dietary carotenoids improving antioxidative capability and immunity of juvenile Chinese mitten crabs Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2020; 104:359-373. [PMID: 32553983 DOI: 10.1016/j.fsi.2020.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/05/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Carotenoids are known to be involved in the regulation of the antioxidative capability, immune response and stress resistance in crustacean species; however, very limited information is available on their underlying molecular mechanisms. This study performed transcriptome sequencing of hemolymph and hepatopancreas of juvenile Chinese mitten crabs (Eriocheir sinensis) that fed with three diets, i.e. diet A containing 90 mg kg-1 dry weight of astaxanthin, diet B containing 200 mg kg-1 dry weight of β-carotene and control diet without supplementation of dietary carotenoids. The results showed that there were 2955 and 497 differentially expressed genes (DEGs) in the hemolymph between the astaxanthin treatment and control groups, and between the β-carotene treatment and control groups, respectively. Moreover, compared with the control group, 833 and 1886 DEGs were obtained in the hepatopancreas of the astaxanthin treatment and the β-carotene treatment groups, respectively. The DEGs in the three groups were enriched in 255 specific KEGG metabolic pathways according to KEGG enrichment analysis. Through this study, a series of key genes involved in Nrf2 signalling, ROS production, intracellular antioxidant enzymes and chaperones were significantly affected by dietary carotenoids. Dietary carotenoids also significantly altered the expression levels of immune-related molecules associated with signal transduction, prophenoloxidase cascade, apoptosis, pattern recognition proteins/receptors and antimicrobial peptides. In conclusion, this transcriptomic study provides valuable information for understanding the molecular mechanism and potential pathway of dietary carotenoids improved the antioxidative capability and immunity of juvenile E. sinensis.
Collapse
Affiliation(s)
- Meimei Liu
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaodong Jiang
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Aqin Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Ting Chen
- The Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences, South China Sea Institute of Oceanology, CAS, Guangzhou, 510301, China.
| | - Yongxu Cheng
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Xugan Wu
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
126
|
Lan W, Zhao Y, Hu X, Zhang X, Xie J. Effects of carrageenan oligosaccharide on lipid, protein oxidative changes, and moisture migration of
Litopenaeus vannamei
during freeze–thaw cycles. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University Shanghai China
| | - Yanan Zhao
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Xiaoyu Hu
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Xi Zhang
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Jing Xie
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University Shanghai China
| |
Collapse
|
127
|
Yang Q, Sun Z, Zhou Y, Tran NT, Zhang X, Lin Q, Zhou C, Zhang Y, Li S. SpATF2 participates in maintaining the homeostasis of hemolymph microbiota by regulating dual oxidase expression in mud crab. FISH & SHELLFISH IMMUNOLOGY 2020; 104:252-261. [PMID: 32497727 DOI: 10.1016/j.fsi.2020.05.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Activating transcription factors 2 (ATF2) is a transcription factor of the members of ATF/CREB family that is phosphorylated and activated by the mitogen-activated protein kinase (MAPK) in responding to the stimulation of stimuli. In present study, SpATF2 from mud crab (Scylla paramamosain) was identified and studied. The open reading frame of SpATF2 with 2136 bp in length encodes a protein with 711 amino acids. The SpATF2 protein includes the putative zinc finger domain in the N-terminus and bZIP type DNA-binding domain in the C-terminal. Tissue distribution of SpATF2 transcripts showed that SpATF2 was ubiquitously expressed in all examined tissues of the untreated mud crabs, with the highest expression levels in muscle and hepatopancreas. The transcriptional level of SpATF2 was up-regulated in the hemocytes after Vibrio parahemolyticus or WSSV infection. Reporter gene assays indicated that SpATF2 could activate the expression of dual oxidase (SpDuox1) in S. paramamosain. The RNA interference (RNAi) of SpATF2 significantly decreased the expression of SpDuox1, and consequently reduced reactive oxygen species production thereby significantly increased the bacterial load in the hemolymph of mud crabs. Similarly, significant reduction in bacterial clearance of hemolymph was observed after the V. parahemolyticus infection in SpATF2 knockdown mud crabs. This study showed that SpATF2 played a vital role in maintaining homeostasis of the hemolymph microbiota through regulating the expression of dual oxidase of mud crab.
Collapse
Affiliation(s)
- Qiuhua Yang
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen, 361021, China
| | - Zaiqiao Sun
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Yanlian Zhou
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Ngoc Tuan Tran
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Xusheng Zhang
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Qi Lin
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen, 361021, China
| | - Chen Zhou
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen, 361021, China
| | - Yueling Zhang
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
128
|
Xing K, Liu Y, Yan C, Zhou Y, Sun Y, Su N, Yang F, Xie S, Zhang J. Transcriptome analysis of Neocaridina denticulate sinensis under copper exposure. Gene 2020; 764:145098. [PMID: 32861881 DOI: 10.1016/j.gene.2020.145098] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/23/2022]
Abstract
Neocaridina denticulate sinensis is a small freshwater economic shrimp, as well as excellent laboratory model for their short life cycle and easy availability. However, the response of N. denticulate sinensis to pervasive copper pollution in aquatic environments has not been deeply investigated yet. Herein, we preformed Illumina sequencing technology to mine the alterations of cephalothorax transcriptome under 2.5 μmol/L of Cu2+ after 48 h. 122,512 unigenes were assembled and 219 unigenes were identified as significantly differentially expressed genes (DEGs) between control and Cu2+ treatment groups. Functional enrichment analysis revealed that DEGs were mostly associated with immune responses and molting, such as endocytosis, Fc gamma R-mediated phagocytosis and chitin metabolic process. Seven genes were chosen for qPCR verification, and the results showed that the transcriptome sequencing data were consistent with the qPCR results. This is the first report of transcriptome information about N. denticulate sinensis. These results provided a direction for the future research of resistance to Cu2+ in this shrimp, and simultaneously enriched gene information of N. denticulate sinensis.
Collapse
Affiliation(s)
- Kefan Xing
- College of Life Science, Institute of Life and Green Development, Hebei University, Baoding 071002, China
| | - Yujie Liu
- College of Life Science, Institute of Life and Green Development, Hebei University, Baoding 071002, China
| | - Congcong Yan
- College of Life Science, Institute of Life and Green Development, Hebei University, Baoding 071002, China
| | - Yongzhao Zhou
- College of Life Science, Institute of Life and Green Development, Hebei University, Baoding 071002, China
| | - Yuying Sun
- College of Life Science, Institute of Life and Green Development, Hebei University, Baoding 071002, China
| | - Naike Su
- College of Life Science, Institute of Life and Green Development, Hebei University, Baoding 071002, China
| | - Fusheng Yang
- Xiaoshan Donghai Aquaculture Co., Ltd, Xiaoshan 310012, China
| | - Song Xie
- College of Life Science, Institute of Life and Green Development, Hebei University, Baoding 071002, China.
| | - Jiquan Zhang
- College of Life Science, Institute of Life and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
129
|
Zhang Y, Mi K, Xue W, Wei W, Yang H. Acute BPA exposure-induced oxidative stress, depressed immune genes expression and damage of hepatopancreas in red swamp crayfish Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2020; 103:95-102. [PMID: 32325215 DOI: 10.1016/j.fsi.2020.04.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A is a typical endocrine disrupting chemicals (EDCs) and produce various toxic effects on animals due to its potential endocrine disruption, oxidative damage effect, mutagenic effect and hypomethylation. To study its effect on the immune system of crustaceans, the Procambarus clarkii were utilized to detect the immune related indicators after 225 μg/L BPA exposure for 1 week. Hepatopancreatic histology and ultrastructure analysis showed that the brush border disappeared, the lumen increased, and the connection between the hepatic tubules fade away in BPA treated group. BPA could significantly increase the level of ROS, inhibit the activities of antioxidant-related enzymes (SOD, POD, and CAT), and thereby cause the oxidative stress. The enzyme activities of AKP, ACP and lysozyme in hepatopancreas after BPA exposure were also depressed even after Aeromonas hydrophila infections. The relative expression profiles of immune-related genes after BPA exposure and bacterial infection showed suppressed trends of most selected genes. Under A. hydrophila infections, the cumulative mortality of 225 μg/L BPA-treated crayfish was significantly higher than other groups. All these results indicated that BPA exposure had adverse effects on the immune ability of P. clarkii. The present study will provide an important foundation for further understanding the effects of EDCs on crustacean immune functions.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Kaihang Mi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wen Xue
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenzhi Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
130
|
Jiang Z, Li X, Gao X, Jiang Q, Chen Q, Zhang S, Tong S, Liu X, Zhu J, Zhang X. Pathogenicity of Aeromonas hydrophila causing mass mortalities of Procambarus clarkia and its induced host immune response. Microb Pathog 2020; 147:104376. [PMID: 32645422 DOI: 10.1016/j.micpath.2020.104376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 11/16/2022]
Abstract
Outbreaks of mass mortalities among cultured Procambarus clarkia occurred in a commercial hatchery during the spring of 2019 in Jiangsu province of China. Here, we exploit the pathogenicity and immune response of Aeromonas hydrophila (GPC1-2), which was isolated from diseased P. clarkia. Crayfish challenged showed similar pathological signs to the naturally diseased P. clarkia, lethal dose 50% (LD50) of the strain GPC1-2 to P. clarkia was 3.8 × 106 CFU/mL. Detection of virulence-associated genes by PCR indicated that the strain GPC1-2 carried hlyA, aerA, alt, ast, act, aha, ahp, ahpA, and ahpB. Histopathological analysis of hepatopancreas revealed that the hepatic tubule lumen and the gap between the hepatic tubules became larger, and the brush border disappeared in the P. clarkia infected by GPC1-2. Quantitive real-time PCR (qRT-PCR) was undertaken to measure mRNA expression levels for six immune-related genes in P. clarkia after A. hydrophila infection. The expression level of proPO, NOS, ALF1, TLR2, PX, and AST were detected in hemolymph, hepatopancreas, gill and intestine tissues, and clear transcriptional activation of these genes were observed in the infected individuals. These results revealed pathogenicity of A. hydrophila and its activation of host immune response, which will provide a scientific reference for the breeding and disease prevention in P. clarkia culture.
Collapse
Affiliation(s)
- Ziyan Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xixi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qun Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qiyun Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Shuangming Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Shuaiqi Tong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaodan Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jian Zhu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, 214081, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
131
|
Jiang X, Zu L, Wang Z, Cheng Y, Yang Y, Wu X. Micro-algal astaxanthin could improve the antioxidant capability, immunity and ammonia resistance of juvenile Chinese mitten crab, Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2020; 102:499-510. [PMID: 32408019 DOI: 10.1016/j.fsi.2020.05.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Green alga Haematococcus pluvialis is an important source of natural astaxanthin (Ast), which have been shown to be beneficial for the color formulation, survival, antioxidation, immunity and stress resistance of many crustacean. This study was conducted to investigate the effects of dietary supplementation of H. pluvialis meal on growth, antioxidant status, ammonia resistance, color parameters, and carotenoids composition of juvenile Chinese mitten crab Eriocheir sinensis. Five diets were formulated to contain 0, 30, 60, 90 and 120 mg/kg dry diets of natural Ast (defined as Diet 1-5) using H. pluvialis meal as astaxanthin source. The results showed that: (1) Although all treatments with Ast supplementation had the relatively higher growth performance and survival than the control (Diet 1 treatment), no significant differences were found on growth performance, feed conversion ratio and hepatosomatic index among all treatments. (2) The highest total antioxidant capacity (T-AOC) in hepatopancreas and hemolymph were observed in Diet 4 and 3 treatments respectively, while the lowest malondialdehyde (MDA) contents in hepatopancreas and hemolymph were also found in these two treatments. Furthermore, the significantly positive relationships were detected on acid phosphatase (ACP) activities and dietary Ast contents for hepatopancreas and hemolymph. (3) Diet 3 treatment had the highest mRNA levels of EsLecA, EsTrx, and EsPrx6 in hepatopancreas, while both Diet 3 and 4 treatments reached the peaks for mRNA expression levels of EsMyd88 and EsHc, respectively. (4) The stress test with ammonia-N indicated Diet 1 treatment had the highest mortality among all treatments, and the lowest mortality was found on Diet 3 treatment during the stress test. (5) Dietary Ast significantly improved the redness (a*) of carapace and hepatopancreas, which were consistent with the Ast contents in these tissues from the different treatments. Ast concentrations in carapace reached the plateau for Diet 3 treatment while hepatopancreatic Ast concentration kept increasing with elevating dietary Ast contents. In conclusion, natural astaxanthin could enhance the antioxidative capability, non-specific immunity, tissue Ast contents and stress resistance to ammonia-N, and these results suggested the optimal diet micro-algal astaxanthin was around 60 mg/kg for juvenile E. sinensis.
Collapse
Affiliation(s)
- Xiaodong Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150036, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Lu Zu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhiyan Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yongxu Cheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuhong Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150036, China.
| | - Xugan Wu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
132
|
Lan W, Hu X, Sun X, Zhang X, Xie J. Effect of the number of freeze-thaw cycles number on the quality of Pacific white shrimp (Litopenaeus vannamei): An emphasis on moisture migration and microstructure by LF-NMR and SEM. AQUACULTURE AND FISHERIES 2020. [DOI: 10.1016/j.aaf.2019.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
133
|
Zhang H, Cheng W, Zheng L, Wang P, Liu Q, Li Z, Li T, Wei Y, Mao Y, Yu X. Identification of a group D anti-lipopolysaccharide factor (ALF) from kuruma prawn (Marsupenaeus japonicus) with antibacterial activity against Vibrio parahaemolyticus. FISH & SHELLFISH IMMUNOLOGY 2020; 102:368-380. [PMID: 32360914 DOI: 10.1016/j.fsi.2020.04.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Anti-lipopolysaccharide factor (ALF), which belongs to the antimicrobial peptide (AMP) family, has become a relatively new weapon to combat severe infections and has been demonstrated to be active against bacteria, fungi and some viruses. In the present study, a new ALF of group D (MjALF-D; GenBank accession No. MN416688) from Marsupenaeus japonicus was detected. MjALF-D encodes a polypeptide with 124 aa, and the peptide contains a 26-residue signal peptide and a lipopolysaccharide-binding domain (LBD). The structure of MjALF-D was found to consist of three α-helices, four β-sheets and random coils. qRT-PCR analysis revealed that MjALF-D expression was primarily observed in the stomach and was universally upregulated in both the gill and stomach after challenge by lipopolysaccharide (LPS) and Vibrio parahaemolyticus. Moreover, rMjALF-D can inhibit the growth of V. parahaemolyticus. rMjALF-D could destroy the bacterial membrane and lead to cytoplasmic leakage investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which may be the mechanism by which rMjALF-D inhibits V. parahaemolyticus. Additionally, rMjALF-D showed distinct binding or antibacterial ability after direct incubation with V. parahaemolyticus or bacterial genomic DNA and a certain effect on the protein expression of it. Together, these results indicated that rMjALF-D possessed the antibacterial activity against V. parahaemolyticus and the potential involvement in the innate immune response of M. japonicus.
Collapse
Affiliation(s)
- Heqian Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenzhi Cheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102, China
| | - Libing Zheng
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Panpan Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102, China
| | - Qinghui Liu
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhen Li
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Tianjiao Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102, China
| | - Yiming Wei
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102, China.
| | - Xiangyong Yu
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
134
|
Lai Y, Luo M, Zhu F. Dietary Bacillus amyloliquefaciens enhance survival of white spot syndrome virus infected crayfish. FISH & SHELLFISH IMMUNOLOGY 2020; 102:161-168. [PMID: 32325213 DOI: 10.1016/j.fsi.2020.04.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/12/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Bacillus amyloliquefaciens, which is closely related to Bacillus subtilis, produces a series of metabolites that can inhibit the growth of fungi and bacteria. Here, we investigated the effect of B. amyloliquefaciens used as a probiotic on the innate immunity of the crayfish Procambarus clarkii when challenged with white spot syndrome virus (WSSV). Dietary B. amyloliquefaciens supplement significantly reduced the mortality of WSSV-challenged crayfish and reduced copy numbers of WSSV. The quantitative reverse transcription-polymerase chain reaction results showed that B. amyloliquefaciens supplement increased the expression of several immune-related genes, including Toll-like receptor, NF-κB and C-type-lectin. Further analysis showed that B. amyloliquefaciens supplement also had an effect on three immune parameters, including total hemocyte count, phenoloxidase activity and superoxide dismutase activity. In both infected and uninfected crayfish, B. amyloliquefaciens supplement significantly decreased hemocyte apoptosis. Our results showed that B. amyloliquefaciens can regulate innate immunity of crayfish and reduce the mortality following WSSV challenge. This study provides a novel insight into the potential for therapeutic or prophylactic intervention with B. amyloliquefaciens to regulate crayfish immunity and protect against WSSV infection, and also provides a theoretical basis for the use of probiotics as aquatic feed additives.
Collapse
Affiliation(s)
- Yongyong Lai
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Ming Luo
- Baiju Avenue 12, Meilan District, Haikou, Hainan Academy of Ocean and Fisheries Sciences, China
| | - Fei Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
135
|
Sun M, Li S, Zhang X, Xiang J, Li F. Isolation and transcriptome analysis of three subpopulations of shrimp hemocytes reveals the underlying mechanism of their immune functions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103689. [PMID: 32224106 DOI: 10.1016/j.dci.2020.103689] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/21/2020] [Accepted: 03/22/2020] [Indexed: 06/10/2023]
Abstract
Hemocytes in shrimp play important roles in innate immune responses against pathogens. Although three types of hemocytes including hyalinocytes, semi-granulocytes and granulocytes were identified based on their morphological characters in penaeid shrimp, knowledge about the molecular basis of their functions in the immunity is still very limited. In the present study, three subpopulations of hemocytes were firstly separated by Percoll gradient centrifugation, and their transcriptomes were analyzed. The data showed that significantly differential gene expression patterns existed in different types of hemocytes. The genes encoding phagocytic receptors, lectins and actin cytoskeleton involved in phagocytosis were highly expressed in hyalinocytes, while genes involved in the humoral immunity signaling pathways were highly expressed in semi-granulocytes, and genes encoding prophenoloxidase (proPO)-activating enzyme and serine proteases involved in proPO system activation were highly expressed in granulocytes. Further flow cytometry analysis indicated that hyalinocytes were the main hemocytes subpopulation responsible for ingesting foreign fluorescent beads, and this ingestion process mainly depends on the endocytic way of macropinocytosis. These data provide valuable information for understanding the molecular basis of distinct shrimp hemocytes subpopulations of shrimp in cellular and humoral immunity.
Collapse
Affiliation(s)
- Mingzhe Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
136
|
Qin N, Sun H, Lu M, Wang J, Tang T, Liu F. A single von Willebrand factor C-domain protein acts as an extracellular pattern-recognition receptor in the river prawn Macrobrachium nipponense. J Biol Chem 2020; 295:10468-10477. [PMID: 32532819 DOI: 10.1074/jbc.ra120.013270] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/02/2020] [Indexed: 01/08/2023] Open
Abstract
The single von Willebrand factor C-domain proteins (SVWCs) are mainly found in arthropods. Their expression may be regulated by several environmental stresses, including nutritional status and bacterial and viral infections. However, the underlying regulatory mechanism is unclear. In the present study, we identified a member of the SVWC family from the river prawn Macrobrachium nipponense as a soluble and bacteria-inducible pattern-recognition receptor (designated MnSVWC). In vitro, recombinant MnSVWC exhibited pronounced binding and Ca2+-dependent agglutinating abilities against diverse microbes, including Gram-negative bacteria (i.e. Escherichia coli and Aeromonas victoria), Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), and yeast (Pichia pastoris). ELISA assays revealed that recombinant MnSVWC recognizes a broad range of various pathogen-associated molecular patterns (PAMPs) and has high affinity to lipopolysaccharide and lysine-type and diaminopimelic acid-type peptidylglycan and d-galactose and low affinity to d-mannan and β-1,3-glucan. Mutant MnSVWCP57A with an impaired Glu-Pro-Asn (EPN) motif displayed reduced affinity to all these PAMPs to varying extent. Moreover, MnSVWC bound to the surface of hemocytes and promoted their phagocytic activity and clearance of invasive bacteria. RNAi-mediated MnSVWC knockdown in prawn reduced the ability to clear invading bacteria, but did not block the activities of the Toll pathway or the arthropod immune deficiency (IMD) pathway, or the expression of antimicrobial peptide genes. These results indicate that MnSVWC functions as an extracellular pattern-recognition receptor in M. nipponense that mediates cellular immune responses by recognizing PAMPs, agglutinating invasive microbes, and promoting phagocytosis in hemocytes.
Collapse
Affiliation(s)
- Nan Qin
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, China
| | - Hehe Sun
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, China
| | - Meike Lu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, China
| | - Jianhui Wang
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ting Tang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, China .,Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Fengsong Liu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, China .,Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
137
|
Wang X, Gao S, Hao Z, Tang T, Liu F. Involvement of TRAF6 in regulating immune defense and ovarian development in Musca domestica. Int J Biol Macromol 2020; 153:1262-1271. [DOI: 10.1016/j.ijbiomac.2019.10.259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 12/30/2022]
|
138
|
Yang P, Aweya JJ, Yao D, Wang F, Lun J, Hong Y, Sun K, Zhang Y. The krüppel-like factor of Penaeus vannamei negatively regulates transcription of the small subunit hemocyanin gene as part of shrimp immune response. FISH & SHELLFISH IMMUNOLOGY 2020; 100:397-406. [PMID: 32201349 DOI: 10.1016/j.fsi.2020.03.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
Hemocyanin is a multifunctional respiratory glycoprotein, which has also been implicated in other biological functions in shrimp. Moreover, recent studies have revealed that hemocyanin is also involved in a broad range of immune-related activities in shrimp. However, in spite of the considerable interest in unraveling the reasons behind the multiple immune-related functions of hemocyanin, little is known about its transcriptional regulation. Here, DNA pull-down and Liquid Chromatography - Tandem Mass Spectrometry (LC-MS/MS) analyses were used to isolate and identify the putative transcription factor(s) that are involved in the transcriptional regulation of the small subunit hemocyanin gene of Penaeus vannamei (PvHMCs). Krüppel-like factor (designated PvKruppel), a zinc finger transcription factor homolog in P. vannamei, was identified among the putative transcription factors, while bioinformatics analysis revealed the presence of Krüppel-like factor binding site (KLF motif) on the core promoter region of PvHMCs. Mutational analysis and electrophoretic mobility shift assay (EMSA) confirmed that PvKruppel could bind to the KLF motif on the core promoter region of PvHMCs. Moreover, in response to lipopolysaccharide (LPS), Vibrio parahaemolyticus and white spot syndrome virus (WSSV) challenge, transcript levels of PvKruppel and PvHMCs were negatively correlated. Furthermore, overexpression of PvKruppel significantly reduced the promoter activity of PvHMCs, while PvKruppel knockdown by RNA interference or lipopolysaccharides (LPS) stimulation resulted in a significant increase in the transcript level of PvHMCs. Taken together, our present study provides mechanistic insights into the transcriptional regulation of PvHMCs by PvKruppel during shrimp immune response to pathogens.
Collapse
Affiliation(s)
- Peikui Yang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China; School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Fan Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Jingsheng Lun
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yujian Hong
- Guangdong Yuequn Marine Biological Research and Development Co., Ltd., Jieyang, 515200, China
| | - Kaihui Sun
- Guangdong Yuequn Marine Biological Research and Development Co., Ltd., Jieyang, 515200, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
139
|
Wei Y, Lin D, Xu Z, Gao X, Zeng C, Ye H. A Possible Role of Crustacean Cardioactive Peptide in Regulating Immune Response in Hepatopancreas of Mud Crab. Front Immunol 2020; 11:711. [PMID: 32425935 PMCID: PMC7204942 DOI: 10.3389/fimmu.2020.00711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 12/29/2022] Open
Abstract
Crustacean cardioactive peptide (CCAP), a cyclic amidated non-apeptide, is widely found in arthropods. The functions of CCAP have been revealed to include regulation of heart rate, intestinal peristalsis, molting, and osmotic pressure. However, to date, there has not been any report on the possible involvement of CCAP in immunoregulation in crustaceans. In this study, a CCAP precursor (designated as Sp-CCAP) was identified in the commercially important mud crab Scylla paramamosain, which could be processed into four CCAP-associated peptides and one mature peptide (PFCNAFTGC-NH2). Bioinformatics analysis indicated that Sp-CCAP was highly conserved in crustaceans. RT-PCR results revealed that Sp-CCAP was expressed in nerve tissues and gonads, whereas the Sp-CCAP receptor gene (Sp-CCAPR) was expressed in 12 tissues of S. paramamosain, including hepatopancreas. In situ hybridization further showed that an Sp-CCAPR-positive signal is mainly localized in the F-cells of hepatopancreas. Moreover, the mRNA expression level of Sp-CCAPR in the hepatopancreas was significantly up-regulated after lipopolysaccharide (LPS) or polyriboinosinic polyribocytidylic acid [Poly (I:C)] challenge. Meanwhile, the mRNA expression level of Sp-CCAPR, nuclear transcription factor NF-κB homologs (Sp-Dorsal and Sp-Relish), member of mitogen-activated protein kinase (MAPK) signaling pathway (Sp-P38), pro-inflammatory cytokines factor (Sp-TNFSF and Sp-IL16), and antimicrobial peptide (Sp-Lysozyme, Sp-ALF, Sp-ALF4, and Sp-ALF5) in the hepatopancreas were all up-regulated after the administration of synthetic Sp-CCAP mature peptide both in vivo and in vitro. The addition of synthetic Sp-CCAP mature peptide in vitro also led to an increase in nitric oxide (NO) concentration and an improved bacterial clearance ability in the hepatopancreas culture medium. The present study suggested that Sp-CCAP signaling system might be involved in the immune responses of S. paramamosain by activating immune molecules on the hepatopancreas. Collectively, our findings shed new light on neuroendocrine-immune regulatory system in arthropods and could potentially provide a new strategy for disease prevention and control for mud crab aquaculture.
Collapse
Affiliation(s)
- Yujie Wei
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Dongdong Lin
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zhanning Xu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xiaoman Gao
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Chaoshu Zeng
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
140
|
Wang P, Wang J, Su Y, Liu Z, Mao Y. Air Exposure Affects Physiological Responses, Innate Immunity, Apoptosis and DNA Methylation of Kuruma Shrimp, Marsupenaeus japonicus. Front Physiol 2020; 11:223. [PMID: 32226395 PMCID: PMC7081841 DOI: 10.3389/fphys.2020.00223] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Air exposure stress is a common phenomenon for commercial crustacean species in aquaculture and during waterless transportation. However, the antioxidant responses to air exposure discussed in previous studies may be insufficient to present the complexities involved in this process. The comprehensive immune responses, especially considering the immune genes, cell apoptosis, and epigenetic changes, are still unknown. Accordingly, we investigated the multifaceted responses of Marsupenaeus japonicus to air exposure. The results showed that the expression profiles of the apoptosis genes (e.g., IAP, TXNIP, caspase, and caspase-3) and the hypoxia-related genes (e.g., hsp70, hif-1α, and HcY) were all dramatically induced in the hepatopancreas and gills of M. japonicus. Heart rates, T-AOC (total antioxidant capacity) and lactate contents showed time-dependent changes upon air exposure. Air exposure significantly induced apoptosis in hepatopancreas and gills. Compared with the control group, the apoptosis index (AI) of the 12.5 h experimental group increased significantly (p < 0.05) in the hepatopancreas and gills. Most individuals in the experimental group (EG, 12.5 h) had lower methylation ratios than the control group (CG). Air exposure markedly reduced the full-methylation and total-methylation ratios (31.39% for the CG and 26.46% for the EG). This study provided a comprehensive understanding of the antioxidant responses of M. japonicus considering its physiology, innate immunity, apoptosis, and DNA methylation levels, and provided theoretical guidance for waterless transportation.
Collapse
Affiliation(s)
- Panpan Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Jun Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yongquan Su
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zhixin Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| |
Collapse
|
141
|
Zhang H, Cheng W, Zheng J, Wang P, Liu Q, Li Z, Shi T, Zhou Y, Mao Y, Yu X. Identification and Molecular Characterization of a Pellino Protein in Kuruma Prawn ( Marsupenaeus Japonicus) in Response to White Spot Syndrome Virus and Vibrio Parahaemolyticus Infection. Int J Mol Sci 2020; 21:ijms21041243. [PMID: 32069894 PMCID: PMC7072872 DOI: 10.3390/ijms21041243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
Kuruma prawn, Marsupenaeus japonicus, has the third largest annual yield among shrimp species with vital economic significance in China. White spot syndrome virus (WSSV) is a great threat to the global shrimp farming industry and results in high mortality. Pellino, a highly conserved E3 ubiquitin ligase, has been found to be an important modulator of the Toll-like receptor (TLR) signaling pathways that participate in the innate immune response and ubiquitination. In the present study, the Pellino gene from Marsupenaeus japonicus was identified. A qRT-PCR assay showed the presence of MjPellino in all the tested tissues and revealed that the transcript level of this gene was significantly upregulated in both the gills and hemocytes after challenge with WSSV and Vibrio parahaemolyticus. The function of MjPellino was further verified at the protein level. The results of the three-dimensional modeling and protein-protein docking analyses and a GST pull-down assay revealed that the MjPellino protein was able to bind to the WSSV envelope protein VP26. In addition, the knockdown of MjPellino in vivo significantly decreased the expression of MjAMPs. These results suggest that MjPellino might play an important role in the immune response of kuruma prawn.
Collapse
Affiliation(s)
- Heqian Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (Q.L.); (Z.L.)
| | - Wenzhi Cheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.C.); (J.Z.); (P.W.); (T.S.); (Y.Z.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Jinbin Zheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.C.); (J.Z.); (P.W.); (T.S.); (Y.Z.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Panpan Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.C.); (J.Z.); (P.W.); (T.S.); (Y.Z.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Qinghui Liu
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (Q.L.); (Z.L.)
| | - Zhen Li
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (Q.L.); (Z.L.)
| | - Tianyi Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.C.); (J.Z.); (P.W.); (T.S.); (Y.Z.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Yijian Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.C.); (J.Z.); (P.W.); (T.S.); (Y.Z.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.C.); (J.Z.); (P.W.); (T.S.); (Y.Z.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
- Correspondence: (Y.M.); (X.Y.)
| | - Xiangyong Yu
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (Q.L.); (Z.L.)
- Correspondence: (Y.M.); (X.Y.)
| |
Collapse
|
142
|
Zhang D, Zhao P, Liu J, Qi T, Liu Q, Jiang S, Zhang H, Wang Z, Tang B, Ding G. Transcriptome Analysis Reveals the Tolerance Mechanism of Mantis Shrimp ( Oratosquilla oratoria) under a Lipopolysaccharide Challenge. ACS OMEGA 2020; 5:2310-2317. [PMID: 32064393 PMCID: PMC7017407 DOI: 10.1021/acsomega.9b03629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/16/2020] [Indexed: 05/12/2023]
Abstract
Lipopolysaccharide (LPS), a major cell wall component of Gram-negative bacteria, is considered to lead to some disease development in commercial crustaceans. However, mantis shrimps Oratosquilla oratoria (Crustacea: Stomatopoda) have a strong vitality and ability to resist disease. To study the tolerance mechanism of mantis shrimp, transcriptome analyses were conducted in hepatopancreas of O. oratoria under LPS challenge investigation. Totally, 84 547 044 clean reads were obtained from transcriptomes (43 159 230 in OP (control), 41 387 814 in OL (treatment), respectively). Unigenes, the longest transcript of each gene, with a total length of 68 318 880 bp and the total number of 100 978 were obtained. 8369 (8.28%) of unigenes were successfully annotated in all databases and 54 888 (54.35%) were annotated in at least one database. Finally, 1012 differentially expressed genes (DEGs) including 439 and 573 showed significantly upregulated and downregulated were determined between OL and OP, respectively. Moreover, those DEGs only expressed in OL or OP accounted for 8.99%. The functional classification based on GO and KEGG indicated that the common enrichment categories for the DEGs are "amino sugar metabolic" and "cellular homeostasis" and that the progress of nutrient metabolic and homeostasis in cells is important in facing variable environmental conditions. Protein-protein interaction analysis elucidated proteins, β-actin (ACTB_G1), T-complex protein subunits (TCPs), heat shock proteins (HSPs), hydroxysteroid dehydrogenase-like protein 2 (HSDL2), kinesin family member 5 (KIF5), methylglutaconyl-CoA hydratase (AUH), and myosin heavy chain (MYH) may play key roles in response to an LPS challenge. This study laid a foundation to further investigate the possible adaptation way that O. oratoria survives in a bacterial challenge.
Collapse
Affiliation(s)
- Daizhen Zhang
- Jiangsu
Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial
Key Laboratory of Coastal Wetland Bioresources and Environmental Protection,
Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng 224051, China
| | - Peisong Zhao
- Jiangsu
Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial
Key Laboratory of Coastal Wetland Bioresources and Environmental Protection,
Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng 224051, China
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jun Liu
- Key
Laboratory of Biotechnology in Lianyungang Normal College, Lianyungang 222006, China
| | - Tingting Qi
- Jiangsu
Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial
Key Laboratory of Coastal Wetland Bioresources and Environmental Protection,
Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng 224051, China
| | - Qiuning Liu
- Jiangsu
Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial
Key Laboratory of Coastal Wetland Bioresources and Environmental Protection,
Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng 224051, China
| | - Senhao Jiang
- Jiangsu
Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial
Key Laboratory of Coastal Wetland Bioresources and Environmental Protection,
Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng 224051, China
| | - Huabin Zhang
- Jiangsu
Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial
Key Laboratory of Coastal Wetland Bioresources and Environmental Protection,
Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng 224051, China
| | - Zhengfei Wang
- Jiangsu
Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial
Key Laboratory of Coastal Wetland Bioresources and Environmental Protection,
Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng 224051, China
| | - Boping Tang
- Jiangsu
Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial
Key Laboratory of Coastal Wetland Bioresources and Environmental Protection,
Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng 224051, China
| | - Ge Ding
- Chemical
and Biological Engineering College, Yancheng
Institute of Technology, Yancheng 224003, China
| |
Collapse
|
143
|
Yan M, Wang W, Huang X, Wang X, Wang Y. Interactive effects of dietary cholesterol and phospholipids on the growth performance, expression of immune-related genes and resistance against Vibrio alginolyticus in white shrimp (Litopenaeus vannamei). FISH & SHELLFISH IMMUNOLOGY 2020; 97:100-107. [PMID: 31756453 DOI: 10.1016/j.fsi.2019.11.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
A 56-day feeding trial was done to investigate the interactive effects of cholesterol (CHO) and phospholipids (PL) on the growth performance, immune response, expression of immune-related genes, and resistance against Vibrio alginolyticus of freshwater cultured white shrimp (Litopenaeus vannamei). A 3 × 3 experimental design was conducted with nine experimental diets containing three levels of CHO (0, 0.2%, and 0.4%) and three levels of PL (0, 2%, and 4%). The results indicated that the growth performance significantly (P < 0.05) increased with the increase in dietary CHO levels. Interactive effects between dietary CHO and PL on the growth parameters were not observed. Superoxide dismutase (SOD) and lysozyme activities were also significantly affected by dietary CHO levels. Furthermore, the interaction between these two additives was only detected in SOD activity. Shrimp fed experimental diet with CHO and PL supplementation showed better tolerance against Vibrio alginolyticus compared to the control, interactive effects (P < 0.05) were also detected on these two factors. The expression of immune deficiency (IMD) and lysozyme mRNA was up-regulated in shrimp fed diets with CHO and PL. The expression level of Toll-like receptor mRNA directly reflected the dietary CHO levels, which was not affected by dietary PL. The interaction between dietary CHO and PL was shown as the significant factor (P < 0.05) both in the expression of IMD and lysozyme mRNA, which indicated that different dietary levels of CHO and PL could strongly affect expression levels of some immune-relevant genes of the juvenile freshwater cultured L. vannamei.
Collapse
Affiliation(s)
- Minglei Yan
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Weilong Wang
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Lingang New City, Shanghai, China
| | - Xuxiong Huang
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, China; Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Lingang New City, Shanghai, China.
| | - Xinlei Wang
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Yi Wang
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
144
|
Wang Y, Zhao S, Zhang B, Ma HY, Fang WH, Sheng WQ, Yang LG, Li XC. A novel ML domain-containing protein (SpMD2) functions as a potential LPS receptor involved in anti-Vibrio immune response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103529. [PMID: 31669309 DOI: 10.1016/j.dci.2019.103529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
The myeloid differentiation protein 2 (MD2)-related lipid-recognition (ML) proteins display diverse biological functions in host immunity and lipid metabolism by interacting with different lipids. Human MD2, an indispensable accessory protein in TLR4 signaling pathway, specifically recognizes lipopolysaccharides (LPS), thereby leading to the activation of TLR4 signaling pathway to produce many effectors that participate in inflammatory and immuneresponses against Gram-negative bacteria. Toll and immune deficiency (IMD) pathways are first characterized in Drosophila and are reportedly present in crustaceans, but the recognition and activation mechanism of these signaling pathways in crustaceans remains unclear. In the present study, a novel ML protein was characterized in mud crab (Scylla paramamosain) and designated as SpMD2. The complete SpMD2 cDNA sequence is 1114 bp long with a 465 bp open reading frame; it encodes a protein that contains 154 amino acids (aa). In the deduced protein, a signal peptide (1-21 aa residues) and a ML domain (43-151 aa residues) were predicted. SpMD2 shared a similar three-dimensional structure and a close evolutionary relationship with human MD2. SpMD2 was highly expressed in gills, hemocytes, intestine, and hepatopancreas and was upregulated in gills and hemocytes after challenges with bacteria, thereby suggesting its involvement in antibacterial defense. Western blot assay showed that SpMD2 possesses strong binding activities to different bacteria and two fungi. ELISA demonstrated that SpMD2 exhibits binding abilities to LPS, lipid A, peptidoglycan (PGN), and lipoteichoic acid (LTA). Its binding ability to LPS and lipid A were stronger than to PGN or LTA, implying that SpMD2 was an important LPS-binding protein in mud crab. Bacterial clearance assay revealed that the pre-incubation of Vibrio parahemolyticus with SpMD2 facilitates bacterial clearance in vivo and that knockdown of SpMD2 dramatically suppresses the bacterial clearance and decreases the expression of several antimicrobial peptides (AMPs). Furthermore, SpMD2 overexpression could enhance the promoter activity of SpALF2. These results revealed that SpMD2 affects bacterial clearance by regulating AMPs. Thus, by binding to LPS and by regulating AMPs, SpMD2 may function as a potential receptor, which is involved in the recognition and activation of a certain immune signaling pathway against Gram-negative bacteria. This study provides new insights into the diverse functions of ML proteins and into the antibacterial mechanisms of crustaceans.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Shu Zhao
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Bin Zhang
- School of Business, Yantai Nanshan University, Yantai, 265706, China
| | - Hong-Yu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Wen-Hong Fang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Wen-Quan Sheng
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Li-Guo Yang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Xin-Cang Li
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China.
| |
Collapse
|
145
|
Yang H, Xiong H, Mi K, Zhang Y, Zhang X, Chen G. The surface syndecan protein from Macrobrachium rosenbergii could function as mediator in bacterial infections. FISH & SHELLFISH IMMUNOLOGY 2020; 96:62-68. [PMID: 31704203 DOI: 10.1016/j.fsi.2019.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/26/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Due to the aquatic animal pathogens are numerous and specific, the pathogen invasion mechanisms are more complicated. The cell surface receptors play vital roles to understand these mechanisms. Syndecan is a cell surface protein and could function as a receptor involved bacteria and virus infections. But there are few studies on the function of syndecan in shrimp and their interaction with aquatic bacterial pathogens. In the present study, we identified a syndecan receptor gene from Macrobrachium rosenbergii and analyzed its functions during the bacterial infections. The MrSDC was expressed in various tissues and presented a constitutive expression distribution except in eyestalk. Recombinant MrSDC-his tag protein was expressed in the E. coli BL21 with pET30a/MrSDC plasmid and exhibited a broad bacterial binding activities. The inhibition of MrSDC expression by dsRNA interference and antibody blocked could significantly reduce the number of Aeromonas hydrophila in hepatopancreas compared with the control. The overexpression of MrSDC by mRNA injection could significantly increase the number of A. hydrophila. In addition, the functional role of syndecan heparan sulfate chains in bacterial recognition was also studied. After extra injection of heparan sulfate in vivo, the bacterial numbers and accumulative mortality of M. rosenbergii were significantly higher than control groups and exhibit a dose effect. All these data could indicate that the cell surface syndecan protein could function as mediator in bacterial infections by the heparan sulfate chains. Our present study will provide new insights into the functions of shrimp syndecan.
Collapse
Affiliation(s)
- Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Haoran Xiong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Kaihang Mi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
146
|
Zhang Z, Han K, Dai X, Zhang R, Cao X, Zhang C, Wang K, Huang X, Ren Q. Identification of two LGBPs (isoform1 and isoform2) and their function in AMP expression and PO activation in male hepatopancreas. FISH & SHELLFISH IMMUNOLOGY 2019; 95:624-634. [PMID: 31698072 DOI: 10.1016/j.fsi.2019.10.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/19/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Two lipopolysaccharides (LPS) and β-1, 3-glucan binding protein (LGBP), designated as PcLGBP isoform1 and PcLGBP isoform2, respectively, were identified from Procambarus clarkii in this study. The full-length cDNA of PcLGBP isoform1 was 1308 bp containing an open reading frame (ORF) of 1113 bp encoding a protein of 370 amino acids. The full-length cDNA of PcLGBP isoform2 was 1440 bp containing an ORF of 1245 bp encoding a protein of 414 amino acids. Predicted PcLGBP isoform1 and PcLGBP isoform 2 proteins contained a signal peptide, a glycoside hydrolase domain, and a low-complexity region. The difference between the two LGBP isoforms was that PcLGBP isoform2 had 44 more amino acids behind the signal peptide than the PcLGBP isoform1. The PcLGBP isoform1 and PcLGBP isoform2 transcripts mainly expressed in the hepatopancreas in female and male crayfish. Moreover, the expression levels of the two genes in the hepatopancreas were higher in male than that in female crayfish. Upon being challenged with Vibrio parahaemolyticus or LPS, the expression levels of PcLGBP isoform1 and PcLGBP isoform2 in the hepatopancreas of female and male crayfish were most significantly up-regulated at different time points. The transcripts of anti-lipopolysaccharide factors (ALF5, ALF6, ALF8, and ALF9) and crustins (CRU1, CRU2, CRU3, and CRU4) were evidently down-regulated in the hepatopancreas of V. parahaemolyticus-challenged total PcLGBP (including PcLGBP isoform1 and PcLGBP isoform2)-silenced male crayfish. In addition, the phenoloxidase (PO) activity in the hepatopancreas of male crayfish was evidently higher than that of female crayfish. PcLGBP knock down could significantly decrease the PO activity in the hepatopancreas lysate (HLS) in male crayfish. The PO activity of male crayfish HLS was significantly increased when incubated with a mixture of recombinant LGBP protein and LPS or β-1, 3 glucan. We conclude that LGBP isoforms from P. clarkii function as a pattern recognition protein for recognizing and binding LPS and β-1, 3 glucan, and thus regulate the synthesis of antimicrobial peptides and activate the prophenoloxidase system.
Collapse
Affiliation(s)
- Zhuoxing Zhang
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China
| | - Keke Han
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China
| | - Xiaoling Dai
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China
| | - Ruidong Zhang
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China
| | - Xueying Cao
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China
| | - Chao Zhang
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China
| | - Kaiqiang Wang
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China
| | - Xin Huang
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China.
| | - Qian Ren
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China; College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China.
| |
Collapse
|
147
|
Gu WB, Liu ZP, Zhou YL, Li B, Wang LZ, Dong WR, Chen YY, Shu MA. The nuclear factor interleukin 3-regulated (NFIL3) transcription factor involved in innate immunity by activating NF-κB pathway in mud crab Scylla paramamosain. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 101:103452. [PMID: 31319087 DOI: 10.1016/j.dci.2019.103452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
NFIL3 is a transcriptional activator of the IL-3 promoter in T cells. In vertebrates, it has been characterized as an essential regulator of several cellular processes such as immunity response, apoptosis and NK cells maturation. However, the identification and functional characterization of NFIL3 still remains unclear in arthropods. In this study, the NFIL3 homologue was firstly cloned and characterized in mud crab Scylla paramamosain. The full-length of SpNFIL3 was 2, 041 bp in length with an open reading frame of 1, 509 bp, containing a conserved basic region of leucin zipper domain. The qRT-PCR analysis indicated that SpNFIL3 was significantly highly expressed in hepatopancreas and in hemocytes. Moreover, the SpNFIL3 transcription could be up-regulated after the challenge of Vibrio alginolyticus or virus-analog Poly (I:C). The dual-luciferase reporter assays revealed that SpNFIL3 could activate NF-κB pathway. The immunofluorescence assay indicated SpNFIL3 was located in nucleus. After NFIL3 was interfered in vivo and in vitro, the expressions of two NF-κB members (SpRelish and SpDorsal), six antimicrobial peptide genes (SpCrustin and SpALF2-6) and pro-inflammatory cytokine SpIL-16 were suppressed, and the bacteria clearance capacity of crabs was also markedly impaired in NFIL3 silenced crabs. These results indicated that SpNFIL3 played crucial role in the innate immunity of S. paramamosain and it also brought new insight into the origin and evolution of NFIL3 in arthropods and even in invertebrates.
Collapse
Affiliation(s)
- Wen-Bin Gu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ze-Peng Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yi-Lian Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Bo Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lan-Zhi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Wei-Ren Dong
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yu-Yin Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
148
|
Guo Y, Xu Y, Kang X, Meng C, Gu D, Zhou Y, Xiong D, Geng S, Jiao X, Pan Z. Molecular cloning and functional analysis of TRAF6 from Yangzhou great white goose Anser anser. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 101:103435. [PMID: 31288047 DOI: 10.1016/j.dci.2019.103435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 06/09/2023]
Abstract
TNF receptor-associated factor 6 (TRAF6) is an adaptor protein and an E3 ubiquitin ligase mediating multiple cell signaling pathway activation in a context-dependent manner. TRAF6 plays critical roles in innate immune response and regulates function of antigen-presenting cells. Here, we cloned the goose TRAF6 (goTRAF6) gene from a healthy Yangzhou great white goose (Anser anser), which had a typical TRAF structure and shared a high-sequence identity with TRAF6 of other birds. Quantitative real-time PCR revealed that goTRAF6 mRNA was broadly expressed in all the studied tissues, with highest expression in the heart and pectoral muscle. Overexpression of goTRAF6 caused NF-κB activation in a dose-dependent manner and substantially upregulated IFN-β expression in HEK293T cells. Following Toll-like receptor (TLR) ligand stimulation of goose peripheral blood mononuclear cells, goTRAF6 and downstream inflammatory cytokine mRNA levels considerably up-regulated, especially at early stages. Salmonella Enteritidis challenge caused overexpression of goTRAF6 and cytokine mRNA in all the examined organs. These findings demonstrated that goTRAF6 played a substantial role in TLR-TRAF6 signaling cascade, and further contributed to the antibacterial-responses in host.
Collapse
Affiliation(s)
- Yaxin Guo
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Ying Xu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Xilong Kang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Chuang Meng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Dan Gu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Yingying Zhou
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Dan Xiong
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Shizhong Geng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Xinan Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China.
| | - Zhiming Pan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China.
| |
Collapse
|
149
|
Yang W, Liu C, Xu Q, Qu C, Lv X, Li H, Wu Z, Li M, Yi Q, Wang L, Song L. A novel nuclear factor Akirin regulating the expression of antimicrobial peptides in Chinese mitten crab Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 101:103451. [PMID: 31306698 DOI: 10.1016/j.dci.2019.103451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Akirin, a recently discovered nuclear factor, participates in regulating various processes, including cell proliferation and differentiation, embryonic development, and immunity. In the present study, a novel Akirin was identified from Chinese mitten crab Eriocheir sinensis (designated as EsAkirin), and its primary functions in regulating antimicrobial peptides were explored. The open reading frame of EsAkirin was of 615 bp, encoding a polypeptide of 204 amino acid residues. The deduced amino acid sequence of EsAkirin shared high similarities ranging from 44.1% to 89.2% with other Akirins. In the phylogenetic tree, EsAkirin was firstly clustered with Akirins from shrimp and then assigned into the invertebrate branch. The mRNA transcripts of EsAkirin were constitutively expressed in all the tested tissues, with the highest expression level (5.07-fold compared to the stomach, p < 0.01) in hepatopancreas. The mRNA expression of EsAkirin in hemocytes was significantly increased at 6 h, and reached the maximum level at 24 h post stimulations with either lipopolysaccharide (LPS) (5.04-fold, p < 0.01) or Aeromonas hydrophila (3.10-fold, p < 0.01). After the injection of EsAkirin-dsRNA, the mRNA expressions of EsALF2, EsLYZ, EsCrus2 and EsDWD1 were significantly decreased (p < 0.01) upon LPS stimulation. EsAkirin protein was prominently distributed in the nucleus of E. sinensis hemocytes after LPS and A. hydrophila stimulations. The relative luciferase reporter system analysis revealed that the activity of nuclear factor-κB was significantly up-regulated (2.64-fold, p < 0.01) in human embryonic kidney (HEK293T) cells after the over-expression of EsAkirin. Collectively, these results suggested that EsAkirin might play an important role in the immune responses of E. sinensis by regulating the expression of antimicrobial peptides.
Collapse
Affiliation(s)
- Wen Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Chao Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Qingsong Xu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Chen Qu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Xiaojing Lv
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Huan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Zhaojun Wu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
150
|
Zhou YL, Li B, Xu YP, Wang LZ, Gu WB, Liu ZP, Dong WR, Shu MA. The Activin-like ligand Dawdle regulates innate immune responses through modulating NF-κB signaling in mud crab Scylla paramamosain. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 101:103450. [PMID: 31306697 DOI: 10.1016/j.dci.2019.103450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Activins, members of transforming growth factor β (TGF-β) superfamily, are pleiotropic cytokines with critical roles in mediating cell proliferation, differentiation, homeostasis, apoptosis and immune response. However, the structural characteristics and specific functions of Activins remain largely unknown in invertebrates. In the present study, an Activin-like ligand Dawdle (Daw) was firstly identified and characterized from mud crab Scylla paramamosain. The obtained cDNA sequence of SpDaw was 2, 196 bp long with a 1, 149 bp open reading fame, which encoded a putative protein of 382 amino acids. The putative SpDaw protein contained a signal peptide, a TGF-β propeptide region and a TGF-β domain. Real-time PCR analysis demonstrated that SpDaw was predominantly expressed at early embryonic development stage and premolt stages, implying its participation in development and growth. Furthermore, SpDaw responded to both Vibro alginolyticus and Poly (I:C) challenges, suggesting the involvement of SpDaw in innate immune responses. Knockdown of SpDaw in vivo dramatically increased the expressions of NF-κB signaling genes and anti-lipopolysaccharide factor (ALF) genes, and the bacteria clearance efficiency was also markedly enhanced in SpDaw-silenced crabs. Moreover, the in vitro experiment further demonstrated that recombinant SpDaw protein could block the increased transcription of IKKs, NF-κBs and ALFs induced by pathogen challenges. Taken together, these results indicated that SpDaw not only participated in development and growth processes but also played an immune-regulatory role in crabs' innate immunity, which may pave the way for a better understanding of TGF-β superfamily members in crustacean species.
Collapse
Affiliation(s)
- Yi-Lian Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ya-Ping Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lan-Zhi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Bin Gu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ze-Peng Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei-Ren Dong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|