101
|
Ferrari F, Arrigoni L, Franz H, Izzo A, Butenko L, Trompouki E, Vogel T, Manke T. DOT1L-mediated murine neuronal differentiation associates with H3K79me2 accumulation and preserves SOX2-enhancer accessibility. Nat Commun 2020; 11:5200. [PMID: 33060580 PMCID: PMC7562744 DOI: 10.1038/s41467-020-19001-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 09/21/2020] [Indexed: 01/27/2023] Open
Abstract
During neuronal differentiation, the transcriptional profile and the epigenetic context of neural committed cells is subject to significant rearrangements, but a systematic quantification of global histone modification changes is still missing. Here, we show that H3K79me2 increases and H3K27ac decreases globally during in-vitro neuronal differentiation of murine embryonic stem cells. DOT1L mediates all three degrees of methylation of H3K79 and its enzymatic activity is critical to modulate cellular differentiation and reprogramming. In this context, we find that inhibition of DOT1L in neural progenitor cells biases the transcriptional state towards neuronal differentiation, resulting in transcriptional upregulation of genes marked with H3K27me3 on the promoter region. We further show that DOT1L inhibition affects accessibility of SOX2-bound enhancers and impairs SOX2 binding in neural progenitors. Our work provides evidence that DOT1L activity gates differentiation of progenitors by allowing SOX2-dependent transcription of stemness programs.
Collapse
Affiliation(s)
- Francesco Ferrari
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Laura Arrigoni
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Henriette Franz
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Annalisa Izzo
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludmila Butenko
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eirini Trompouki
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Tanja Vogel
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Basics in NeuroModulation (NeuroModul Basics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Thomas Manke
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
102
|
Tafessu A, Banaszynski LA. Establishment and function of chromatin modification at enhancers. Open Biol 2020; 10:200255. [PMID: 33050790 PMCID: PMC7653351 DOI: 10.1098/rsob.200255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
How a single genome can give rise to distinct cell types remains a fundamental question in biology. Mammals are able to specify and maintain hundreds of cell fates by selectively activating unique subsets of their genome. This is achieved, in part, by enhancers-genetic elements that can increase transcription of both nearby and distal genes. Enhancers can be identified by their unique chromatin signature, including transcription factor binding and the enrichment of specific histone post-translational modifications, histone variants, and chromatin-associated cofactors. How each of these chromatin features contributes to enhancer function remains an area of intense study. In this review, we provide an overview of enhancer-associated chromatin states, and the proteins and enzymes involved in their establishment. We discuss recent insights into the effects of the enhancer chromatin state on ongoing transcription versus their role in the establishment of new transcription programmes, such as those that occur developmentally. Finally, we highlight the role of enhancer chromatin in new conceptual advances in gene regulation such as condensate formation.
Collapse
Affiliation(s)
| | - Laura A. Banaszynski
- UT Southwestern Medical Center, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Research Institute, Hamon Center for Regenerative Science and Medicine, Dallas, TX 75390-8511, USA
| |
Collapse
|
103
|
Reinig J, Ruge F, Howard M, Ringrose L. A theoretical model of Polycomb/Trithorax action unites stable epigenetic memory and dynamic regulation. Nat Commun 2020; 11:4782. [PMID: 32963223 PMCID: PMC7508846 DOI: 10.1038/s41467-020-18507-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Polycomb and Trithorax group proteins maintain stable epigenetic memory of gene expression states for some genes, but many targets show highly dynamic regulation. Here we combine experiment and theory to examine the mechanistic basis of these different modes of regulation. We present a mathematical model comprising a Polycomb/Trithorax response element (PRE/TRE) coupled to a promoter and including Drosophila developmental timing. The model accurately recapitulates published studies of PRE/TRE mediated epigenetic memory of both silencing and activation. With minimal parameter changes, the same model can also recapitulate experimental data for a different PRE/TRE that allows dynamic regulation of its target gene. The model predicts that both cell cycle length and PRE/TRE identity are critical for determining whether the system gives stable memory or dynamic regulation. Our work provides a simple unifying framework for a rich repertoire of PRE/TRE functions, and thus provides insights into genome-wide Polycomb/Trithorax regulation. Polycomb (PcG) and Trithorax (TrxG) group regulate several hundred target genes with important roles in development and disease. Here the authors combine experiment and theory to provide evidence that the Polycomb/Trithorax system has the potential for a rich repertoire of regulatory modes beyond simple epigenetic memory.
Collapse
Affiliation(s)
- Jeannette Reinig
- Humboldt Universität zu Berlin, IRI- Lifesciences, Philippstr. 13, 10115, Berlin, Germany
| | - Frank Ruge
- IMBA, Institute of Molecular Biotechnology, Dr. Bohr- Gasse 3, 1030, Vienna, Austria
| | - Martin Howard
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Leonie Ringrose
- Humboldt Universität zu Berlin, IRI- Lifesciences, Philippstr. 13, 10115, Berlin, Germany. .,IMBA, Institute of Molecular Biotechnology, Dr. Bohr- Gasse 3, 1030, Vienna, Austria.
| |
Collapse
|
104
|
The Major Chromosome Condensation Factors Smc, HBsu, and Gyrase in Bacillus subtilis Operate via Strikingly Different Patterns of Motion. mSphere 2020; 5:5/5/e00817-20. [PMID: 32907955 PMCID: PMC7485690 DOI: 10.1128/msphere.00817-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
All types of cells need to compact their chromosomes containing their genomic information several-thousand-fold in order to fit into the cell. In eukaryotes, histones achieve a major degree of compaction and bind very tightly to DNA such that they need to be actively removed to allow access of polymerases to the DNA. Bacteria have evolved a basic, highly dynamic system of DNA compaction, accommodating rapid adaptability to changes in environmental conditions. We show that the Bacillus subtilis histone-like protein HBsu exchanges on DNA on a millisecond scale and moves through the entire nucleoid containing the genome as a slow-mobility fraction and a dynamic fraction, both having short dwell times. Thus, HBsu achieves compaction via short and transient DNA binding, thereby allowing rapid access of DNA replication or transcription factors to DNA. Topoisomerase gyrase and B. subtilis Smc show different interactions with DNA in vivo, displaying continuous loading or unloading from DNA, or using two fractions, one moving through the genome and one statically bound on a time scale of minutes, respectively, revealing three different modes of DNA compaction in vivo. Although DNA-compacting proteins have been extensively characterized in vitro, knowledge of their DNA binding dynamics in vivo is greatly lacking. We have employed single-molecule tracking to characterize the motion of the three major chromosome compaction factors in Bacillus subtilis, Smc (structural maintenance of chromosomes) proteins, topoisomerase DNA gyrase, and histone-like protein HBsu. We show that these three proteins display strikingly different patterns of interaction with DNA; while Smc displays two mobility fractions, one static and one moving through the chromosome in a constrained manner, gyrase operates as a single slow-mobility fraction, suggesting that all gyrase molecules are catalytically actively engaged in DNA binding. Conversely, bacterial histone-like protein HBsu moves through the nucleoid as a larger, slow-mobility fraction and a smaller, high-mobility fraction, with both fractions having relatively short dwell times. Turnover within the SMC complex that makes up the static fraction is shown to be important for its function in chromosome compaction. Our report reveals that chromosome compaction in bacteria can occur via fast, transient interactions in vivo, avoiding clashes with RNA and DNA polymerases. IMPORTANCE All types of cells need to compact their chromosomes containing their genomic information several-thousand-fold in order to fit into the cell. In eukaryotes, histones achieve a major degree of compaction and bind very tightly to DNA such that they need to be actively removed to allow access of polymerases to the DNA. Bacteria have evolved a basic, highly dynamic system of DNA compaction, accommodating rapid adaptability to changes in environmental conditions. We show that the Bacillus subtilis histone-like protein HBsu exchanges on DNA on a millisecond scale and moves through the entire nucleoid containing the genome as a slow-mobility fraction and a dynamic fraction, both having short dwell times. Thus, HBsu achieves compaction via short and transient DNA binding, thereby allowing rapid access of DNA replication or transcription factors to DNA. Topoisomerase gyrase and B. subtilis Smc show different interactions with DNA in vivo, displaying continuous loading or unloading from DNA, or using two fractions, one moving through the genome and one statically bound on a time scale of minutes, respectively, revealing three different modes of DNA compaction in vivo.
Collapse
|
105
|
Capp JP, Thomas F. A Similar Speciation Process Relying on Cellular Stochasticity in Microbial and Cancer Cell Populations. iScience 2020; 23:101531. [PMID: 33083761 PMCID: PMC7502340 DOI: 10.1016/j.isci.2020.101531] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Similarities between microbial and cancer cells were noticed in recent years and serve as a basis for an atavism theory of cancer. Cancer cells would rely on the reactivation of an ancestral "genetic program" that would have been repressed in metazoan cells. Here we argue that cancer cells resemble unicellular organisms mainly in their similar way to exploit cellular stochasticity to produce cell specialization and maximize proliferation. Indeed, the relationship between low stochasticity, specialization, and quiescence found in normal differentiated metazoan cells is lost in cancer. On the contrary, low stochasticity and specialization are associated with high proliferation among cancer cells, as it is observed for the "specialist" cells in microbial populations that fully exploit nutritional resources to maximize proliferation. Thus, we propose a model where the appearance of cancer phenotypes can be solely due to an adaptation and a speciation process based on initial increase in cellular stochasticity.
Collapse
Affiliation(s)
- Jean-Pascal Capp
- Toulouse Biotechnology Institute, University of Toulouse, INSA, CNRS, INRAE, 31077 Toulouse, France
| | - Frédéric Thomas
- CREEC, UMR IRD 224, CNRS 5290, University of Montpellier, 34394 Montpellier, France
| |
Collapse
|
106
|
Abstract
Regeneration is the process by which organisms replace lost or damaged tissue, and regenerative capacity can vary greatly among species, tissues and life stages. Tissue regeneration shares certain hallmarks of embryonic development, in that lineage-specific factors can be repurposed upon injury to initiate morphogenesis; however, many differences exist between regeneration and embryogenesis. Recent studies of regenerating tissues in laboratory model organisms - such as acoel worms, frogs, fish and mice - have revealed that chromatin structure, dedicated enhancers and transcriptional networks are regulated in a context-specific manner to control key gene expression programmes. A deeper mechanistic understanding of the gene regulatory networks of regeneration pathways might ultimately enable their targeted reactivation as a means to treat human injuries and degenerative diseases. In this Review, we consider the regeneration of body parts across a range of tissues and species to explore common themes and potentially exploitable elements.
Collapse
Affiliation(s)
- Joseph A Goldman
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA.
| | - Kenneth D Poss
- Regeneration Next, Duke University, Durham, NC, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
107
|
Climent-Cantó P, Carbonell A, Tatarski M, Reina O, Bujosa P, Font-Mateu J, Bernués J, Beato M, Azorín F. The embryonic linker histone dBigH1 alters the functional state of active chromatin. Nucleic Acids Res 2020; 48:4147-4160. [PMID: 32103264 PMCID: PMC7192587 DOI: 10.1093/nar/gkaa122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/30/2020] [Accepted: 02/25/2020] [Indexed: 11/13/2022] Open
Abstract
Linker histones H1 are principal chromatin components, whose contribution to the epigenetic regulation of chromatin structure and function is not fully understood. In metazoa, specific linker histones are expressed in the germline, with female-specific H1s being normally retained in the early-embryo. Embryonic H1s are present while the zygotic genome is transcriptionally silent and they are replaced by somatic variants upon activation, suggesting a contribution to transcriptional silencing. Here we directly address this question by ectopically expressing dBigH1 in Drosophila S2 cells, which lack dBigH1. We show that dBigH1 binds across chromatin, replaces somatic dH1 and reduces nucleosome repeat length (NRL). Concomitantly, dBigH1 expression down-regulates gene expression by impairing RNApol II binding and histone acetylation. These effects depend on the acidic N-terminal ED-domain of dBigH1 since a truncated form lacking this domain binds across chromatin and replaces dH1 like full-length dBigH1, but it does not affect NRL either transcription. In vitro reconstitution experiments using Drosophila preblastodermic embryo extracts corroborate these results. Altogether these results suggest that the negatively charged N-terminal tail of dBigH1 alters the functional state of active chromatin compromising transcription.
Collapse
Affiliation(s)
- Paula Climent-Cantó
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Albert Carbonell
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Milos Tatarski
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Oscar Reina
- Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Paula Bujosa
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Jofre Font-Mateu
- Centre de Regulació Genòmica (CRG). The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jordi Bernués
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Miguel Beato
- Centre de Regulació Genòmica (CRG). The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| |
Collapse
|
108
|
Pennarossa G, Manzoni EFM, Ledda S, deEguileor M, Gandolfi F, Brevini TAL. Use of a PTFE Micro-Bioreactor to Promote 3D Cell Rearrangement and Maintain High Plasticity in Epigenetically Erased Fibroblasts. Stem Cell Rev Rep 2020; 15:82-92. [PMID: 30397853 DOI: 10.1007/s12015-018-9862-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phenotype definition is driven by epigenetic mechanisms as well as directly influenced by the cell microenvironment and by biophysical signals deriving from the extracellular matrix. The possibility to interact with the epigenetic signature of an adult mature cell, reversing its differentiated state and inducing a short transient high plasticity window, was previously demonstrated. In parallel, in vitro studies have shown that 3D culture systems, mimicking cell native tissue, exert significant effects on cell behavior and functions. Here we report the production of "PTFE micro-bioreactors" for long-term culture of epigenetically derived high plasticity cells. The system promotes 3D cell rearrangement, global DNA demethylation and elevated transcription of pluripotency markers, that is dependent on WW domain containing transcription regulator 1 (TAZ) nuclear accumulation and SMAD family member 2 (SMAD2) co-shuttling. Our findings demonstrate that the use of 3D culture strategies greatly improves the induction and maintenance of a high plasticity state.
Collapse
Affiliation(s)
- Georgia Pennarossa
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, 20133, Milan, Italy
| | - Elena F M Manzoni
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, 20133, Milan, Italy
| | - Sergio Ledda
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Italy
| | - Magda deEguileor
- Department of Biotechnology and Life Sciences, Università degli Studi dell'Insubria, 21100, Varese, Italy
| | - Fulvio Gandolfi
- Laboratory of Biomedical Embryology, Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, 20133, Milan, Italy.,Unistem, Centre for Stem Cell Research, Universita' degli Studi di Milano, 20133, Milan, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, 20133, Milan, Italy. .,Unistem, Centre for Stem Cell Research, Universita' degli Studi di Milano, 20133, Milan, Italy.
| |
Collapse
|
109
|
Capp JP, Laforge B. A Darwinian and Physical Look at Stem Cell Biology Helps Understanding the Role of Stochasticity in Development. Front Cell Dev Biol 2020; 8:659. [PMID: 32793600 PMCID: PMC7391792 DOI: 10.3389/fcell.2020.00659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/01/2020] [Indexed: 11/27/2022] Open
Abstract
Single-cell analysis allows biologists to gain huge insight into cell differentiation and tissue structuration. Randomness of differentiation, both in vitro and in vivo, of pluripotent (multipotent) stem cells is now demonstrated to be mainly based on stochastic gene expression. Nevertheless, it remains necessary to incorporate this inherent stochasticity of developmental processes within a coherent scheme. We argue here that the theory called ontophylogenesis is more relevant and better fits with experimental data than alternative theories which have been suggested based on the notions of self-organization and attractor states. The ontophylogenesis theory considers the generation of a differentiated state as a constrained random process: randomness is provided by the stochastic dynamics of biochemical reactions while the environmental constraints, including cell inner structures and cell-cell interactions, drive the system toward a stabilized state of equilibrium. In this conception, biological organization during development can be seen as the result of multiscale constraints produced by the dynamical organization of the biological system which retroacts on the stochastic dynamics at lower scales. This scheme makes it possible to really understand how the generation of reproducible structures at higher organization levels can be fully compatible with probabilistic behavior at the lower levels. It is compatible with the second law of thermodynamics but allows the overtaking of the limitations exhibited by models only based on entropy exchanges which cannot cope with the description nor the dynamics of the mesoscopic and macroscopic organization of biological systems.
Collapse
Affiliation(s)
- Jean-Pascal Capp
- Toulouse Biotechnology Institute, University of Toulouse, INSA, CNRS, INRAE, Toulouse, France
| | - Bertrand Laforge
- LPNHE, UMR 7585, Sorbonne Université, CNRS/IN2P3, Université de Paris, Paris, France
| |
Collapse
|
110
|
Ribosomes: An Exciting Avenue in Stem Cell Research. Stem Cells Int 2020; 2020:8863539. [PMID: 32695182 PMCID: PMC7362291 DOI: 10.1155/2020/8863539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Stem cell research has focused on genomic studies. However, recent evidence has indicated the involvement of epigenetic regulation in determining the fate of stem cells. Ribosomes play a crucial role in epigenetic regulation, and thus, we focused on the role of ribosomes in stem cells. Majority of living organisms possess ribosomes that are involved in the translation of mRNA into proteins and promote cellular proliferation and differentiation. Ribosomes are stable molecular machines that play a role with changes in the levels of RNA during translation. Recent research suggests that specific ribosomes actively regulate gene expression in multiple cell types, such as stem cells. Stem cells have the potential for self-renewal and differentiation into multiple lineages and, thus, require high efficiency of translation. Ribosomes induce cellular transdifferentiation and reprogramming, and disrupted ribosome synthesis affects translation efficiency, thereby hindering stem cell function leading to cell death and differentiation. Stem cell function is regulated by ribosome-mediated control of stem cell-specific gene expression. In this review, we have presented a detailed discourse on the characteristics of ribosomes in stem cells. Understanding ribosome biology in stem cells will provide insights into the regulation of stem cell function and cellular reprogramming.
Collapse
|
111
|
Wang J, Liu J, Ye M, Liu F, Wu S, Huang J, Shi G. Ddx56 maintains proliferation of mouse embryonic stem cells via ribosome assembly and interaction with the Oct4/Sox2 complex. Stem Cell Res Ther 2020; 11:314. [PMID: 32703285 PMCID: PMC7376950 DOI: 10.1186/s13287-020-01800-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/07/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022] Open
Abstract
Background Embryonic stem cells (ESCs) are important source of clinical stem cells for therapy, so dissecting the functional gene regulatory network involved in their self-renewal and proliferation is an urgent task. We previously reported that Ddx56 interacts with the core transcriptional factor Oct4 by mass spectrometry analysis in ESCs. However, the exact function of Ddx56 in ESCs remains unclear. Methods We investigated the role of Ddx56 in mouse ESCs (mESCs) through both gain- and loss-of-function strategies. The effect of Ddx56 on mESCs was determined based on morphological changes, involvement in the network of pluripotency markers (Nanog, Oct4, Sox2), and altered lineage marker expression. In addition, the role of Ddx56 in mESCs was evaluated by polysome fractionation, qRT-PCR, and co-immunoprecipitation (co-IP). Finally, RNA sequencing was applied to explore potential network regulation by Ddx56 in mESCs. Result We found that Ddx56 participated in ribosome assembly, as knockout or RNAi knockdown of Ddx56 led to ribosome dysfunction and cell lethality. Surprisingly, exogenous expression of C-terminal domain truncated Ddx56 (Ddx56 ΔC-ter) did not affect ribosome assembly, but decreased mESC proliferation by downregulation of proliferation-related genes and cell cycle changing. In terms of mechanism, Ddx56 interacted with the Oct4 and Sox2 complex by binding to Sox2, whereas Ddx56 ΔC-ter showed weaker interaction with Sox2 and led to retardation of mESC proliferation. Conclusions Ddx56 maintains ESC proliferation by conventional regulation of ribosome assembly and interaction with the Oct4 and Sox2 complex.
Collapse
Affiliation(s)
- Jingwen Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiahui Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Miaoman Ye
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Su Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Guang Shi
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
112
|
Nucleosome binding by the pioneer transcription factor OCT4. Sci Rep 2020; 10:11832. [PMID: 32678275 PMCID: PMC7367260 DOI: 10.1038/s41598-020-68850-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/24/2020] [Indexed: 11/22/2022] Open
Abstract
Transcription factor binding to genomic DNA is generally prevented by nucleosome formation, in which the DNA is tightly wrapped around the histone octamer. In contrast, pioneer transcription factors efficiently bind their target DNA sequences within the nucleosome. OCT4 has been identified as a pioneer transcription factor required for stem cell pluripotency. To study the nucleosome binding by OCT4, we prepared human OCT4 as a recombinant protein, and biochemically analyzed its interactions with the nucleosome containing a natural OCT4 target, the LIN28B distal enhancer DNA sequence, which contains three potential OCT4 target sequences. By a combination of chemical mapping and cryo-electron microscopy single-particle analysis, we mapped the positions of the three target sequences within the nucleosome. A mutational analysis revealed that OCT4 preferentially binds its target DNA sequence located near the entry/exit site of the nucleosome. Crosslinking mass spectrometry consistently showed that OCT4 binds the nucleosome in the proximity of the histone H3 N-terminal region, which is close to the entry/exit site of the nucleosome. We also found that the linker histone H1 competes with OCT4 for the nucleosome binding. These findings provide important information for understanding the molecular mechanism by which OCT4 binds its target DNA in chromatin.
Collapse
|
113
|
Lerner J, Gomez-Garcia PA, McCarthy RL, Liu Z, Lakadamyali M, Zaret KS. Two-Parameter Mobility Assessments Discriminate Diverse Regulatory Factor Behaviors in Chromatin. Mol Cell 2020; 79:677-688.e6. [PMID: 32574554 DOI: 10.1016/j.molcel.2020.05.036] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 04/06/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022]
Abstract
Enzymatic probes of chromatin structure reveal accessible versus inaccessible chromatin states, while super-resolution microscopy reveals a continuum of chromatin compaction states. Characterizing histone H2B movements by single-molecule tracking (SMT), we resolved chromatin domains ranging from low to high mobility and displaying different subnuclear localizations patterns. Heterochromatin constituents correlated with the lowest mobility chromatin, whereas transcription factors varied widely with regard to their respective mobility with low- or high-mobility chromatin. Pioneer transcription factors, which bind nucleosomes, can access the low-mobility chromatin domains, whereas weak or non-nucleosome binding factors are excluded from the domains and enriched in higher mobility domains. Nonspecific DNA and nucleosome binding accounted for most of the low mobility of strong nucleosome interactor FOXA1. Our analysis shows how the parameters of the mobility of chromatin-bound factors, but not their diffusion behaviors or SMT-residence times within chromatin, distinguish functional characteristics of different chromatin-interacting proteins.
Collapse
Affiliation(s)
- Jonathan Lerner
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Pablo Aurelio Gomez-Garcia
- Center for Genomic Regulation, Barcelona Biomedical Research Park, 08003 Barcelona, Spain; ICFO-Institute of Photonics Sciences, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ryan L McCarthy
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Zhe Liu
- HHMI Janelia Research Campus, Ashburn, VA 20147, USA
| | - Melike Lakadamyali
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; University of Pennsylvania, Department of Physiology, Philadelphia, PA 19104-6058, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
114
|
Molugu K, Harkness T, Carlson-Stevermer J, Prestil R, Piscopo NJ, Seymour SK, Knight GT, Ashton RS, Saha K. Tracking and Predicting Human Somatic Cell Reprogramming Using Nuclear Characteristics. Biophys J 2020; 118:2086-2102. [PMID: 31699335 PMCID: PMC7203070 DOI: 10.1016/j.bpj.2019.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023] Open
Abstract
Reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) generates valuable resources for disease modeling, toxicology, cell therapy, and regenerative medicine. However, the reprogramming process can be stochastic and inefficient, creating many partially reprogrammed intermediates and non-reprogrammed cells in addition to fully reprogrammed iPSCs. Much of the work to identify, evaluate, and enrich for iPSCs during reprogramming relies on methods that fix, destroy, or singularize cell cultures, thereby disrupting each cell's microenvironment. Here, we develop a micropatterned substrate that allows for dynamic live-cell microscopy of hundreds of cell subpopulations undergoing reprogramming while preserving many of the biophysical and biochemical cues within the cells' microenvironment. On this substrate, we were able to both watch and physically confine cells into discrete islands during the reprogramming of human somatic cells from skin biopsies and blood draws obtained from healthy donors. Using high-content analysis, we identified a combination of eight nuclear characteristics that can be used to generate a computational model to predict the progression of reprogramming and distinguish partially reprogrammed cells from those that are fully reprogrammed. This approach to track reprogramming in situ using micropatterned substrates could aid in biomanufacturing of therapeutically relevant iPSCs and be used to elucidate multiscale cellular changes (cell-cell interactions as well as subcellular changes) that accompany human cell fate transitions.
Collapse
Affiliation(s)
- Kaivalya Molugu
- Graduate Program in Biophysics, University of Wisconsin-Madison, Madison, Wisconsin; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ty Harkness
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jared Carlson-Stevermer
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ryan Prestil
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nicole J Piscopo
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Stephanie K Seymour
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Gavin T Knight
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Randolph S Ashton
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
115
|
Maeshima K, Tamura S, Hansen JC, Itoh Y. Fluid-like chromatin: Toward understanding the real chromatin organization present in the cell. Curr Opin Cell Biol 2020; 64:77-89. [PMID: 32283330 DOI: 10.1016/j.ceb.2020.02.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/16/2020] [Accepted: 02/22/2020] [Indexed: 12/23/2022]
Abstract
Eukaryotic chromatin is a negatively charged polymer consisting of genomic DNA, histones, and various nonhistone proteins. Because of its highly charged character, the structure of chromatin varies greatly depending on the surrounding environment (i.e. cations etc.): from an extended 10-nm fiber, to a folded 30-nm fiber, to chromatin condensates/liquid-droplets. Over the last ten years, newly developed technologies have drastically shifted our view on chromatin from a static regular structure to a more irregular and dynamic one, locally like a fluid. Since no single imaging (or genomics) method can tell us everything and beautiful images (or models) can fool our minds, comprehensive analyses based on many technical approaches are important to capture actual chromatin organization inside the cell. Here we critically discuss our current view on chromatin and methodology used to support the view.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan; Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka, 411-8540, Japan.
| | - Sachiko Tamura
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Jeffrey C Hansen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Yuji Itoh
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| |
Collapse
|
116
|
Liu H, Liu Z, Gao M, Hu X, Sun R, Shen X, Liu F, Shen J, Shan Z, Lei L. The Effects of Daxx Knockout on Pluripotency and Differentiation of Mouse Induced Pluripotent Stem Cells. Cell Reprogram 2020; 22:90-98. [PMID: 32150692 DOI: 10.1089/cell.2019.0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Induced pluripotent stem cell (iPSC) technology refers to the reprogramming of terminally differentiated somatic cells into pluripotent stem cells by introducing specific transcription factors that are known to regulate pluripotency, including Oct4, Sox2, Klf4, and c-Myc. In this study, we reprogrammed the primary fibroblasts isolated from the Daxxflox/flox mice, which carry the Oct4-green fluorescent protein reporter, and employed wild-type littermates as a control to induce iPSCs, then knocked out Daxx by infecting with Cre virus at the cellular level. The pluripotency and self-renewal capacity of iPSCs were determined. In addition, Daxx deletion altered the pluripotency marker (Nanog, Oct4) expression and displayed neural differentiation defects. Particularly, by performing transcriptome analysis, we observed that numerous ribosome biogenesis-related genes were altered, and quantitative polymerase chain reaction revealed that the expression of rDNA-related genes, 47S and 18S, was elevated after Daxx deletion. Finally, we illustrated that the expression of the neurodevelopment-related gene was upregulated both in iPSCs and differentiated neurospheres. Taken together, we demonstrated that Daxx knockout promotes the expression of rDNA, pluripotency, and neurodevelopment genes, which may improve the differentiation abilities of mouse iPSCs (miPSCs).
Collapse
Affiliation(s)
- Hui Liu
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Zhaojun Liu
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Meng Gao
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Xinglin Hu
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Ruizhen Sun
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Xinghui Shen
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Feng Liu
- Department of Breast Surgery, Cancer Hospital Affiliated to Harbin Medical University, Harbin, China
| | - Jingling Shen
- Institute of Life Science, Wenzhou University, Wenzhou, China
| | - Zhiyan Shan
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| |
Collapse
|
117
|
Distinct features of nucleolus-associated domains in mouse embryonic stem cells. Chromosoma 2020; 129:121-139. [PMID: 32219510 DOI: 10.1007/s00412-020-00734-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 10/24/2022]
Abstract
Heterochromatin in eukaryotic interphase cells frequently localizes to the nucleolar periphery (nucleolus-associated domains (NADs)) and the nuclear lamina (lamina-associated domains (LADs)). Gene expression in somatic cell NADs is generally low, but NADs have not been characterized in mammalian stem cells. Here, we generated the first genome-wide map of NADs in mouse embryonic stem cells (mESCs) via deep sequencing of chromatin associated with biochemically purified nucleoli. As we had observed in mouse embryonic fibroblasts (MEFs), the large type I subset of NADs overlaps with constitutive LADs and is enriched for features of constitutive heterochromatin, including late replication timing and low gene density and expression levels. Conversely, the type II NAD subset overlaps with loci that are not lamina-associated, but in mESCs, type II NADs are much less abundant than in MEFs. mESC NADs are also much less enriched in H3K27me3 modified regions than are NADs in MEFs. Additionally, comparision of MEF and mESC NADs revealed enrichment of developmentally regulated genes in cell-type-specific NADs. Together, these data indicate that NADs are a developmentally dynamic component of heterochromatin. These studies implicate association with the nucleolar periphery as a mechanism for developmentally regulated gene expression and will facilitate future studies of NADs during mESC differentiation.
Collapse
|
118
|
Nakagawa T, Wada Y, Katada S, Kishi Y. Epigenetic regulation for acquiring glial identity by neural stem cells during cortical development. Glia 2020; 68:1554-1567. [PMID: 32163194 DOI: 10.1002/glia.23818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/09/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022]
Abstract
The nervous system consists of several hundred neuronal subtypes and glial cells that show specific gene expression and are generated from common ancestors, neural stem cells (NSCs). As the experimental techniques and molecular tools to analyze epigenetics and chromatin structures are rapidly advancing, the comprehensive events and genome-wide states of DNA methylation, histone modifications, and chromatin accessibility in developing NSCs are gradually being unveiled. Here, we review recent advances in elucidating the role of epigenetic and chromatin regulation in NSCs, especially focusing on the acquisition of glial identity and how epigenetic regulation enables the temporal regulation of NSCs during murine cortical development.
Collapse
Affiliation(s)
- Takumi Nakagawa
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshikuni Wada
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Sayako Katada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Kishi
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
119
|
Chen K, Long Q, Xing G, Wang T, Wu Y, Li L, Qi J, Zhou Y, Ma B, Schöler HR, Nie J, Pei D, Liu X. Heterochromatin loosening by the Oct4 linker region facilitates Klf4 binding and iPSC reprogramming. EMBO J 2020; 39:e99165. [PMID: 31571238 PMCID: PMC6939195 DOI: 10.15252/embj.201899165] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 01/13/2023] Open
Abstract
The success of Yamanaka factor reprogramming of somatic cells into induced pluripotent stem cells suggests that some factor(s) must remodel the nuclei from a condensed state to a relaxed state. How factor-dependent chromatin opening occurs remains unclear. Using FRAP and ATAC-seq, we found that Oct4 acts as a pioneer factor that loosens heterochromatin and facilitates the binding of Klf4 and the expression of epithelial genes in early reprogramming, leading to enhanced mesenchymal-to-epithelial transition. A mutation in the Oct4 linker, L80A, which shows impaired interaction with the BAF complex component Brg1, is inactive in heterochromatin loosening. Oct4-L80A also blocks the binding of Klf4 and retards MET. Finally, vitamin C or Gadd45a could rescue the reprogramming deficiency of Oct4-L80A by enhancing chromatin opening and Klf4 binding. These studies reveal a cooperation between Oct4 and Klf4 at the chromatin level that facilitates MET at the cellular level and shed light into the research of multiple factors in cell fate determination.
Collapse
Affiliation(s)
- Keshi Chen
- CAS Key Laboratory of Regenerative BiologyJoint School of Life SciencesHefei Institute of Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineSouth China Institute for Stem Cell Biology and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhouChina
| | - Qi Long
- CAS Key Laboratory of Regenerative BiologyJoint School of Life SciencesHefei Institute of Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineSouth China Institute for Stem Cell Biology and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhouChina
| | - Guangsuo Xing
- CAS Key Laboratory of Regenerative BiologyJoint School of Life SciencesHefei Institute of Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineSouth China Institute for Stem Cell Biology and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhouChina
- Institute of Physical Science and Information TechnologyAnhui UniversityHefeiChina
| | - Tianyu Wang
- CAS Key Laboratory of Regenerative BiologyJoint School of Life SciencesHefei Institute of Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineSouth China Institute for Stem Cell Biology and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhouChina
| | - Yi Wu
- CAS Key Laboratory of Regenerative BiologyJoint School of Life SciencesHefei Institute of Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineSouth China Institute for Stem Cell Biology and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhouChina
| | - Linpeng Li
- CAS Key Laboratory of Regenerative BiologyJoint School of Life SciencesHefei Institute of Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineSouth China Institute for Stem Cell Biology and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhouChina
| | - Juntao Qi
- CAS Key Laboratory of Regenerative BiologyJoint School of Life SciencesHefei Institute of Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineSouth China Institute for Stem Cell Biology and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhouChina
| | - Yanshuang Zhou
- CAS Key Laboratory of Regenerative BiologyJoint School of Life SciencesHefei Institute of Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineSouth China Institute for Stem Cell Biology and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhouChina
| | - Bochao Ma
- CAS Key Laboratory of Regenerative BiologyJoint School of Life SciencesHefei Institute of Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineSouth China Institute for Stem Cell Biology and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhouChina
| | - Hans R Schöler
- Department for Cell and Developmental BiologyMax Planck Institute for Molecular BiomedicineMünsterGermany
| | - Jinfu Nie
- CAS Key Laboratory of Regenerative BiologyJoint School of Life SciencesHefei Institute of Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineSouth China Institute for Stem Cell Biology and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhouChina
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative BiologyJoint School of Life SciencesHefei Institute of Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineSouth China Institute for Stem Cell Biology and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhouChina
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative BiologyJoint School of Life SciencesHefei Institute of Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineSouth China Institute for Stem Cell Biology and Regenerative MedicineInstitute for Stem Cell and RegenerationGuangzhou Institutes of Biomedicine and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesGuangzhouChina
| |
Collapse
|
120
|
Erenpreisa J, Giuliani A. Resolution of Complex Issues in Genome Regulation and Cancer Requires Non-Linear and Network-Based Thermodynamics. Int J Mol Sci 2019; 21:E240. [PMID: 31905791 PMCID: PMC6981914 DOI: 10.3390/ijms21010240] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/22/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
The apparent lack of success in curing cancer that was evidenced in the last four decades of molecular medicine indicates the need for a global re-thinking both its nature and the biological approaches that we are taking in its solution. The reductionist, one gene/one protein method that has served us well until now, and that still dominates in biomedicine, requires complementation with a more systemic/holistic approach, to address the huge problem of cross-talk between more than 20,000 protein-coding genes, about 100,000 protein types, and the multiple layers of biological organization. In this perspective, the relationship between the chromatin network organization and gene expression regulation plays a fundamental role. The elucidation of such a relationship requires a non-linear thermodynamics approach to these biological systems. This change of perspective is a necessary step for developing successful 'tumour-reversion' therapeutic strategies.
Collapse
Affiliation(s)
- Jekaterina Erenpreisa
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV1067 Riga, Latvia
| | - Alessandro Giuliani
- Environmental and Health Department, Istituto Superiore di Sanità, 00161 Rome, Italy;
| |
Collapse
|
121
|
Fang J, Ma Q, Chu C, Huang B, Li L, Cai P, Batista PJ, Tolentino KEM, Xu J, Li R, Du P, Qu K, Chang HY. PIRCh-seq: functional classification of non-coding RNAs associated with distinct histone modifications. Genome Biol 2019; 20:292. [PMID: 31862000 PMCID: PMC6924075 DOI: 10.1186/s13059-019-1880-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/05/2019] [Indexed: 01/10/2023] Open
Abstract
We develop PIRCh-seq, a method which enables a comprehensive survey of chromatin-associated RNAs in a histone modification-specific manner. We identify hundreds of chromatin-associated RNAs in several cell types with substantially less contamination by nascent transcripts. Non-coding RNAs are found enriched on chromatin and are classified into functional groups based on the patterns of their association with specific histone modifications. We find single-stranded RNA bases are more chromatin-associated, and we discover hundreds of allele-specific RNA-chromatin interactions. These results provide a unique resource to globally study the functions of chromatin-associated lncRNAs and elucidate the basic mechanisms of chromatin-RNA interactions.
Collapse
Affiliation(s)
- Jingwen Fang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Qing Ma
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, CCSR 2155c, 269 Campus Drive, Stanford, CA, 94305-5168, USA
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ci Chu
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, CCSR 2155c, 269 Campus Drive, Stanford, CA, 94305-5168, USA
| | - Beibei Huang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Lingjie Li
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, CCSR 2155c, 269 Campus Drive, Stanford, CA, 94305-5168, USA
| | - Pengfei Cai
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Pedro J Batista
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, CCSR 2155c, 269 Campus Drive, Stanford, CA, 94305-5168, USA
- Present Address: Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Karen Erisse Martin Tolentino
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, CCSR 2155c, 269 Campus Drive, Stanford, CA, 94305-5168, USA
| | - Jin Xu
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, CCSR 2155c, 269 Campus Drive, Stanford, CA, 94305-5168, USA
| | - Rui Li
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, CCSR 2155c, 269 Campus Drive, Stanford, CA, 94305-5168, USA
| | - Pengcheng Du
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Kun Qu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, CCSR 2155c, 269 Campus Drive, Stanford, CA, 94305-5168, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
122
|
Kang S, Long K, Wang S, Sada A, Tumbar T. Histone H3 K4/9/27 Trimethylation Levels Affect Wound Healing and Stem Cell Dynamics in Adult Skin. Stem Cell Reports 2019; 14:34-48. [PMID: 31866458 PMCID: PMC6962642 DOI: 10.1016/j.stemcr.2019.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 01/03/2023] Open
Abstract
Epigenetic mechanisms controlling adult mammalian stem cell (SC) dynamics might be critical for tissue regeneration but are poorly understood. Mouse skin and hair follicle SCs (HFSCs) display reduced histone H3 K4me3, K9me3, and K27me3 methylation levels (hypomethylation) preceding hair growth. Chemical inhibition of relevant histone demethylases impairs subsequent differentiation and growth of HFs and delays wound healing. In wounding, this impairs epithelial cell differentiation and blood vessel recruitment, but not proliferation and fibroblast recruitment. With Aspm-CreER as a newfound inter-follicular epidermis lineage-labeling tool, and Lgr5-CreER for hair follicles, we demonstrate a reduced contribution of both lineages to wound healing after interfering with hypomethylation. Blocked hypomethylation increases BMP4 expression and selectively upregulates H3 K4me3 on the Bmp4 promoter, which may explain the effects on HFSC quiescence, hair cycle, and injury repair. Thus, transient hypomethylation of histone H3 K4/9/27me3 is essential for adult skin epithelial SC dynamics for proper tissue homeostasis and repair. H3 K4/9/27me3 hypomethylation is necessary for proper subsequent wound healing Hypomethylation affects dynamics of both hair follicle and inter-follicular lineages Hypomethylation affects hair follicle stem cell activation and differentiation Aspm-CreER, a genetic driver specific to inter-follicular epidermis in mouse skin
Collapse
Affiliation(s)
- Sangjo Kang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Kylie Long
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Sherry Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Aiko Sada
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; International Research Center for Medical Sciences, Kumamoto University, Kumamoto City 860-0811, Japan
| | - Tudorita Tumbar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
123
|
Garza-Manero S, Sindi AAA, Mohan G, Rehbini O, Jeantet VHM, Bailo M, Latif FA, West MP, Gurden R, Finlayson L, Svambaryte S, West AG, West KL. Maintenance of active chromatin states by HMGN2 is required for stem cell identity in a pluripotent stem cell model. Epigenetics Chromatin 2019; 12:73. [PMID: 31831052 PMCID: PMC6907237 DOI: 10.1186/s13072-019-0320-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/03/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Members of the HMGN protein family modulate chromatin structure and influence epigenetic modifications. HMGN1 and HMGN2 are highly expressed during early development and in the neural stem/progenitor cells of the developing and adult brain. Here, we investigate whether HMGN proteins contribute to the chromatin plasticity and epigenetic regulation that is essential for maintaining pluripotency in stem cells. RESULTS We show that loss of Hmgn1 or Hmgn2 in pluripotent embryonal carcinoma cells leads to increased levels of spontaneous neuronal differentiation. This is accompanied by the loss of pluripotency markers Nanog and Ssea1, and increased expression of the pro-neural transcription factors Neurog1 and Ascl1. Neural stem cells derived from these Hmgn-knockout lines also show increased spontaneous neuronal differentiation and Neurog1 expression. The loss of HMGN2 leads to a global reduction in H3K9 acetylation, and disrupts the profile of H3K4me3, H3K9ac, H3K27ac and H3K122ac at the Nanog and Oct4 loci. At endodermal/mesodermal genes, Hmgn2-knockout cells show a switch from a bivalent to a repressive chromatin configuration. However, at neuronal lineage genes whose expression is increased, no epigenetic changes are observed and their bivalent states are retained following the loss of HMGN2. CONCLUSIONS We conclude that HMGN1 and HMGN2 maintain the identity of pluripotent embryonal carcinoma cells by optimising the pluripotency transcription factor network and protecting the cells from precocious differentiation. Our evidence suggests that HMGN2 regulates active and bivalent genes by promoting an epigenetic landscape of active histone modifications at promoters and enhancers.
Collapse
Affiliation(s)
- Sylvia Garza-Manero
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Abdulmajeed Abdulghani A Sindi
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Albaha University, Albaha-Alaqiq, Saudi Arabia
| | - Gokula Mohan
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Ohoud Rehbini
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Valentine H M Jeantet
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Mariarca Bailo
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Faeezah Abdul Latif
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Maureen P West
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Ross Gurden
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Lauren Finlayson
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Silvija Svambaryte
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Adam G West
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Katherine L West
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK.
- School of Life Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK.
| |
Collapse
|
124
|
Zhao S, Wang F, Liu L. Alternative Lengthening of Telomeres (ALT) in Tumors and Pluripotent Stem Cells. Genes (Basel) 2019; 10:genes10121030. [PMID: 31835618 PMCID: PMC6947546 DOI: 10.3390/genes10121030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/22/2022] Open
Abstract
A telomere consists of repeated DNA sequences (TTAGGG)n as part of a nucleoprotein structure at the end of the linear chromosome, and their progressive shortening induces DNA damage response (DDR) that triggers cellular senescence. The telomere can be maintained by telomerase activity (TA) in the majority of cancer cells (particularly cancer stem cells) and pluripotent stem cells (PSCs), which exhibit unlimited self-proliferation. However, some cells, such as telomerase-deficient cancer cells, can add telomeric repeats by an alternative lengthening of the telomeres (ALT) pathway, showing telomere length heterogeneity. In this review, we focus on the mechanisms of the ALT pathway and potential clinical implications. We also discuss the characteristics of telomeres in PSCs, thereby shedding light on the therapeutic significance of telomere length regulation in age-related diseases and regenerative medicine.
Collapse
Affiliation(s)
- Shuang Zhao
- College of Life Sciences, Nankai University, Tianjin 300071, China;
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China;
| | - Lin Liu
- College of Life Sciences, Nankai University, Tianjin 300071, China;
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Correspondence:
| |
Collapse
|
125
|
Abstract
Cancer stem cells (CSC) are a subpopulation of tumor cells that have superior capacities of self-renewal, metastatic dissemination, and chemoresistance. These characteristics resemble, to some extent, the outcome of certain biological processes, including epithelial-mesenchymal transition (EMT), autophagy, and cellular stress response. Indeed, it has been shown that the stimuli that induce these processes and CSC are overlapping, and CSC and tumor cells that underwent EMT or autophagy are much alike. However, as the cross talk between CSC, EMT, autophagy, and cellular stress is further explored, these processes are also found to have an opposing role in CSC, depending on the condition and status of cells. This contextual effect is likely due to overwhelming reliance on CSC markers for their identification, and/or discrepancies in recognition of CSC as a particular cell population or cellular state. In this review, we summarize how EMT, autophagy, and cellular stress response are tied or unwound with CSC. We also discuss the current view of CSC theory evolved from the emphasis of heterogenicity and plasticity of CSC.
Collapse
Affiliation(s)
- Kai-Feng Hung
- Department of Medical Research, Division of Translational Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Ting Yang
- Department of Medical Research, Division of Translational Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shou-Yen Kao
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan, ROC
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
126
|
Gandolfi F, Arcuri S, Pennarossa G, Brevini TAL. New tools for cell reprogramming and conversion: Possible applications to livestock. Anim Reprod 2019; 16:475-484. [PMID: 32435291 PMCID: PMC7234139 DOI: 10.21451/1984-3143-ar2019-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Somatic cell nuclear transfer and iPS are both forms of radical cell reprogramming able to transform a fully differentiated cell type into a totipotent or pluripotent cell. Both processes, however, are hampered by low efficiency and, in the case of iPS, the application to livestock species is uncertain. Epigenetic manipulation has recently emerged as an efficient and robust alternative method for cell reprogramming. It is based upon the use of small molecules that are able to modify the levels of DNA methylation with 5-azacitidyne as one of the most widely used. Among a number of advantages, it includes the fact that it can be applied to domestic species including pig, dog and cat. Treated cells undergo a widespread demethylation which is followed by a renewed methylation pattern induced by specific chemical stimuli that lead to the desired phenotype. A detailed study of the mechanisms of epigenetic manipulation revealed that cell plasticity is achieved through the combined action of a reduced DNA methyl transferase activity with an active demethylation driven by the TET protein family. Surprisingly the same combination of molecular processes leads to the transformation of fibroblasts into iPS and regulate the epigenetic changes that take place during early development and, hence, during reprogramming following SCNT. Finally, it has recently emerged that mechanic stimuli in the form of a 3D cell rearrangement can significantly enhance the efficiency of epigenetic reprogramming as well as of maintenance of pluripotency. Interestingly these mechanic stimuli act on the same mechanisms both in epigenetic cell conversion with 5-Aza-CR and in iPS. We suggest that the balanced combination of epigenetic erasing, 3D cell rearrangement and chemical induction can go a long way to obtain ad hoc cell types that can fully exploit the current exiting development brought by gene editing and animal cloning in livestock production.
Collapse
Affiliation(s)
- Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Italy
| | - Sharon Arcuri
- Department of Health, Animal Science and Food Safety, University of Milan, Italy
| | - Georgia Pennarossa
- Department of Health, Animal Science and Food Safety, University of Milan, Italy
| | - Tiziana A L Brevini
- Department of Health, Animal Science and Food Safety, University of Milan, Italy
| |
Collapse
|
127
|
Mallm JP, Windisch P, Biran A, Gal Z, Schumacher S, Glass R, Herold-Mende C, Meshorer E, Barbus M, Rippe K. Glioblastoma initiating cells are sensitive to histone demethylase inhibition due to epigenetic deregulation. Int J Cancer 2019; 146:1281-1292. [PMID: 31456217 DOI: 10.1002/ijc.32649] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/11/2019] [Accepted: 07/30/2019] [Indexed: 12/30/2022]
Abstract
Tumor-initiating cells are a subpopulation of cells that have self-renewal capacity to regenerate a tumor. Here, we identify stem cell-like chromatin features in human glioblastoma initiating cells (GICs) and link them to a loss of the repressive histone H3 lysine 9 trimethylation (H3K9me3) mark. Increasing H3K9me3 levels by histone demethylase inhibition led to cell death in GICs but not in their differentiated counterparts. The induction of apoptosis was accompanied by a loss of the activating H3 lysine 9 acetylation (H3K9ac) modification and accumulation of DNA damage and downregulation of DNA damage response genes. Upon knockdown of histone demethylases, KDM4C and KDM7A both differentiation and DNA damage were induced. Thus, the H3K9me3-H3K9ac equilibrium is crucial for GIC viability and represents a chromatin feature that can be exploited to specifically target this tumor subpopulation.
Collapse
Affiliation(s)
- Jan-Philipp Mallm
- Division of Chromatin Networks, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paul Windisch
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alva Biran
- Department of Genetics, Institute of Life Sciences, and the Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zoltan Gal
- Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Sabrina Schumacher
- Division of Chromatin Networks, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer Glass
- Neurosurgical Research, University Hospital, LMU Munich, Munich, Germany
| | - Christel Herold-Mende
- Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Eran Meshorer
- Department of Genetics, Institute of Life Sciences, and the Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Martje Barbus
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
128
|
Harvey A, Caretti G, Moresi V, Renzini A, Adamo S. Interplay between Metabolites and the Epigenome in Regulating Embryonic and Adult Stem Cell Potency and Maintenance. Stem Cell Reports 2019; 13:573-589. [PMID: 31597110 PMCID: PMC6830055 DOI: 10.1016/j.stemcr.2019.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022] Open
Abstract
The environment surrounding stem cells has the ability to elicit profound, heritable epigenetic changes orchestrated by multiple epigenetic mechanisms, which can be modulated by the level of specific metabolites. In this review, we highlight the significance of metabolism in regulating stem cell homeostasis, cell state, and differentiation capacity, using metabolic regulation of embryonic and adult muscle stem cells as examples, and cast light on the interaction between cellular metabolism and epigenetics. These new regulatory networks, based on the dynamic interplay between metabolism and epigenetics in stem cell biology, are important, not only for understanding tissue homeostasis, but to determine in vitro culture conditions which accurately support normal cell physiology.
Collapse
Affiliation(s)
- Alexandra Harvey
- School of BioSciences, University of Melbourne, Parkville, VIC 2010, Australia
| | - Giuseppina Caretti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Viviana Moresi
- Department of Anatomy, Histology, Forensic Medicine & Orthopedics, Histology & Medical Embryology Section, Sapienza University of Rome and Interuniversity Institute of Myology, Rome, Italy.
| | - Alessandra Renzini
- Department of Anatomy, Histology, Forensic Medicine & Orthopedics, Histology & Medical Embryology Section, Sapienza University of Rome and Interuniversity Institute of Myology, Rome, Italy
| | - Sergio Adamo
- Department of Anatomy, Histology, Forensic Medicine & Orthopedics, Histology & Medical Embryology Section, Sapienza University of Rome and Interuniversity Institute of Myology, Rome, Italy
| |
Collapse
|
129
|
Gökbuget D, Blelloch R. Epigenetic control of transcriptional regulation in pluripotency and early differentiation. Development 2019; 146:dev164772. [PMID: 31554624 PMCID: PMC6803368 DOI: 10.1242/dev.164772] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pluripotent stem cells give rise to all cells of the adult organism, making them an invaluable tool in regenerative medicine. In response to differentiation cues, they can activate markedly distinct lineage-specific gene networks while turning off or rewiring pluripotency networks. Recent innovations in chromatin and nuclear structure analyses combined with classical genetics have led to novel insights into the transcriptional and epigenetic mechanisms underlying these networks. Here, we review these findings in relation to their impact on the maintenance of and exit from pluripotency and highlight the many factors that drive these processes, including histone modifying enzymes, DNA methylation and demethylation, nucleosome remodeling complexes and transcription factor-mediated enhancer switching.
Collapse
Affiliation(s)
- Deniz Gökbuget
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Urology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Robert Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Urology, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
130
|
Liu S, Zhang L, Quan H, Tian H, Meng L, Yang L, Feng H, Gao YQ. From 1D sequence to 3D chromatin dynamics and cellular functions: a phase separation perspective. Nucleic Acids Res 2019; 46:9367-9383. [PMID: 30053116 PMCID: PMC6182157 DOI: 10.1093/nar/gky633] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/12/2018] [Indexed: 11/28/2022] Open
Abstract
The high-order chromatin structure plays a non-negligible role in gene regulation. However, the mechanism, especially the sequence dependence for the formation of varied chromatin structures in different cells remains to be elucidated. As the nucleotide distributions in human and mouse genomes are highly uneven, we identified CGI (CpG island) forest and prairie genomic domains based on CGI densities of a species, dividing the genome into two sequentially, epigenetically, and transcriptionally distinct regions. These two megabase-sized domains also spatially segregate to different extents in different cell types. Forests and prairies show enhanced segregation from each other in development, differentiation, and senescence, meanwhile the multi-scale forest-prairie spatial intermingling is cell-type specific and increases in differentiation, helping to define cell identity. We propose that the phase separation of the 1D mosaic sequence in space serves as a potential driving force, and together with cell type specific epigenetic marks and transcription factors, shapes the chromatin structure in different cell types. The mosaicity in genome of different species in terms of forests and prairies could relate to observations in their biological processes like development and aging. In this way, we provide a bottoms-up theory to explain the chromatin structural and epigenetic changes in different processes.
Collapse
Affiliation(s)
- Sirui Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ling Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Quan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hao Tian
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Luming Meng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lijiang Yang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Huajie Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yi Qin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
131
|
Sun J, Shi Y, Yildirim E. The Nuclear Pore Complex in Cell Type-Specific Chromatin Structure and Gene Regulation. Trends Genet 2019; 35:579-588. [PMID: 31213386 DOI: 10.1016/j.tig.2019.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022]
Abstract
Nuclear pore complex (NPC)-mediated nucleocytoplasmic trafficking is essential for key cellular processes, such as cell growth, cell differentiation, and gene regulation. The NPC has also been viewed as a nuclear architectural platform that impacts genome function and gene expression by mediating spatial and temporal coordination between transcription factors, chromatin regulatory proteins, and transcription machinery. Recent findings have uncovered differential and cell type-specific expression and distinct chromatin-binding patterns of individual NPC components known as nucleoporins (Nups). Here, we examine recent studies that investigate the functional roles of NPCs and Nups in transcription, chromatin organization, and epigenetic gene regulation in the context of development and disease.
Collapse
Affiliation(s)
- Jiayu Sun
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Cancer Institute, Durham, NC 27710, USA
| | - Yuming Shi
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Cancer Institute, Durham, NC 27710, USA
| | - Eda Yildirim
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Cancer Institute, Durham, NC 27710, USA.
| |
Collapse
|
132
|
Barrington C, Georgopoulou D, Pezic D, Varsally W, Herrero J, Hadjur S. Enhancer accessibility and CTCF occupancy underlie asymmetric TAD architecture and cell type specific genome topology. Nat Commun 2019; 10:2908. [PMID: 31266948 PMCID: PMC6606583 DOI: 10.1038/s41467-019-10725-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/24/2019] [Indexed: 01/07/2023] Open
Abstract
Cohesin and CTCF are master regulators of genome topology. How these ubiquitous proteins contribute to cell-type specific genome structure is poorly understood. Here, we explore quantitative aspects of topologically associated domains (TAD) between pluripotent embryonic stem cells (ESC) and lineage-committed cells. ESCs exhibit permissive topological configurations which manifest themselves as increased inter- TAD interactions, weaker intra-TAD interactions, and a unique intra-TAD connectivity whereby one border makes pervasive interactions throughout the domain. Such 'stripe' domains are associated with both poised and active chromatin landscapes and transcription is not a key determinant of their structure. By tracking the developmental dynamics of stripe domains, we show that stripe formation is linked to the functional state of the cell through cohesin loading at lineage-specific enhancers and developmental control of CTCF binding site occupancy. We propose that the unique topological configuration of stripe domains represents a permissive landscape facilitating both productive and opportunistic gene regulation and is important for cellular identity.
Collapse
Affiliation(s)
- Christopher Barrington
- Research Department of Cancer Biology, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
- Bioinformatics, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Dimitra Georgopoulou
- Research Department of Cancer Biology, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Dubravka Pezic
- Research Department of Cancer Biology, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Wazeer Varsally
- Research Department of Cancer Biology, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Javier Herrero
- Bill Lyons Informatics Centre, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Suzana Hadjur
- Research Department of Cancer Biology, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK.
| |
Collapse
|
133
|
Dvoriantchikova G, Seemungal RJ, Ivanov D. Development and epigenetic plasticity of murine Müller glia. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1584-1594. [PMID: 31276697 DOI: 10.1016/j.bbamcr.2019.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/24/2019] [Accepted: 06/30/2019] [Indexed: 12/14/2022]
Abstract
The ability to regenerate the entire retina and restore lost sight after injury is found in some species and relies mostly on the epigenetic plasticity of Müller glia. To understand the role of mammalian Müller glia as a source of progenitors for retinal regeneration, we investigated changes in gene expression during differentiation of retinal progenitor cells (RPCs) into Müller glia and analyzed the global epigenetic profile of adult Müller glia. We observed significant changes in gene expression during differentiation of RPCs into Müller glia in only a small group of genes and found a high similarity between RPCs and Müller glia on the transcriptomic and epigenomic levels. Our findings also indicate that Müller glia are epigenetically very close to late-born retinal neurons, but not early-born retinal neurons. Importantly, we found that key genes required for phototransduction were highly methylated. Thus, our data suggest that Müller glia are epigenetically very similar to late RPCs; however, obstacles for regeneration of the entire mammalian retina from Müller glia may consist of repressive chromatin and highly methylated DNA in the promoter regions of many genes required for the development of early-born retinal neurons. In addition, DNA demethylation may be required for proper reprogramming and differentiation of Müller glia into rod photoreceptors.
Collapse
Affiliation(s)
- Galina Dvoriantchikova
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Rajeev J Seemungal
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Dmitry Ivanov
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
134
|
Soft culture substrates favor stem-like cellular phenotype and facilitate reprogramming of human mesenchymal stem/stromal cells (hMSCs) through mechanotransduction. Sci Rep 2019; 9:9086. [PMID: 31235788 PMCID: PMC6591285 DOI: 10.1038/s41598-019-45352-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 06/04/2019] [Indexed: 01/26/2023] Open
Abstract
Biophysical cues influence many aspects of cell behavior. Stiffness of the extracellular matrix is probed by cells and transduced into biochemical signals through mechanotransduction protein networks, strongly influencing stem cell behavior. Cellular stemness is intimately related with mechanical properties of the cell, like intracellular contractility and stiffness, which in turn are influenced by the microenvironment. Pluripotency is associated with soft and low-contractility cells. Hence, we postulated that soft cell culture substrates, presumably inducing low cellular contractility and stiffness, increase the reprogramming efficiency of mesenchymal stem/stromal cells (MSCs) into induced pluripotent stem cells (iPSCs). We demonstrate that soft substrates (1.5 or 15 kPa polydimethylsiloxane – PDMS) caused modulation of several cellular features of MSCs into a phenotype closer to pluripotent stem cells (PSCs). MSCs cultured on soft substrates presented more relaxed nuclei, lower maturation of focal adhesions and F-actin assembling, more euchromatic and less heterochromatic nuclear DNA regions, and increased expression of pluripotency-related genes. These changes correlate with the reprogramming of MSCs, with a positive impact on the kinetics, robustness of colony formation and reprogramming efficiency. Additionally, substrate stiffness influences several phenotypic features of iPS cells and colonies, and data indicates that soft substrates favor full iPSC reprogramming.
Collapse
|
135
|
Cancer Stem Cells: From Historical Roots to a New Perspective. JOURNAL OF ONCOLOGY 2019; 2019:5189232. [PMID: 31308849 PMCID: PMC6594320 DOI: 10.1155/2019/5189232] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/15/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022]
Abstract
The relationships between cancer and stemness have a long history that is traced here. From the mid-19th century when the first theory on the embryonic origin of cancer was formulated to works on embryonal carcinoma cells in the mid-20th century, many steps have been crossed leading to the current cancer stem cell theory postulating that tumor growth is supported by a small fraction of the tumoral cells that have stem-like properties. However, in the last fifteen years, many works regularly encourage us to revise the concept of cancer stem cell. This article mentions key results that lead to a new perspective where cancer stem cells are primarily seen as cells exhibiting increased epigenetic plasticity and increased gene expression variability. This perspective suggests new therapeutical interventions consisting in stabilizing gene expression to control cancer cell proliferation and prevent stochastic gene expression variations that could lead to therapeutic resistance.
Collapse
|
136
|
Human osteogenic differentiation in Space: proteomic and epigenetic clues to better understand osteoporosis. Sci Rep 2019; 9:8343. [PMID: 31171801 PMCID: PMC6554341 DOI: 10.1038/s41598-019-44593-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022] Open
Abstract
In the frame of the VITA mission of the Italian Space Agency (ASI), we addressed the problem of Space osteoporosis by using human blood-derived stem cells (BDSCs) as a suitable osteogenic differentiation model. In particular, we investigated proteomic and epigenetic changes in BDSCs during osteoblastic differentiation induced by rapamycin under microgravity conditions. A decrease in the expression of 4 embryonic markers (Sox2, Oct3/4, Nanog and E-cadherin) was found to occur to a larger extent on board the ISS than on Earth, along with an earlier activation of the differentiation process towards the osteogenic lineage. The changes in the expression of 4 transcription factors (Otx2, Snail, GATA4 and Sox17) engaged in osteogenesis supported these findings. We then ascertained whether osteogenic differentiation of BDSCs could depend on epigenetic regulation, and interrogated changes of histone H3 that is crucial in this type of gene control. Indeed, we found that H3K4me3, H3K27me2/3, H3K79me2/3 and H3K9me2/3 residues are engaged in cellular reprogramming that drives gene expression. Overall, we suggest that rapamycin induces transcriptional activation of BDSCs towards osteogenic differentiation, through increased GATA4 and Sox17 that modulate downstream transcription factors (like Runx2), critical for bone formation. Additional studies are warranted to ascertain the possible exploitation of these data to identify new biomarkers and therapeutic targets to treat osteoporosis, not only in Space but also on Earth.
Collapse
|
137
|
van der Weide RH, de Wit E. Developing landscapes: genome architecture during early embryogenesis. Curr Opin Genet Dev 2019; 55:39-45. [PMID: 31112906 DOI: 10.1016/j.gde.2019.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/21/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022]
Abstract
Early in development embryos undergo a transition, during which maternally deposited transcripts are replaced by zygotic transcripts. During this transition the zygotic genome is activated. Recently, the three-dimensional organization of the genome (3D genome) has been charted surrounding this transition phase in a number of species. A common feature of the 3D genome in all these species is that they go through a phase, during which architectural features of the 3D genome, such as TADs and compartments are lost and a uniform chromatin architecture is established. Here, we review the data regarding this enigmatic phase and discuss similarities and differences between species. We also consider mechanisms that may be responsible for the formation of the uniform chromatin architecture. The uniform organization of chromosomes during early development may serve as an important in vivo paradigm for the general study of the 3D genome.
Collapse
Affiliation(s)
- Robin H van der Weide
- Division of Gene Regulation, Oncode Institute and Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, Oncode Institute and Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
138
|
Transcription factors and 3D genome conformation in cell-fate decisions. Nature 2019; 569:345-354. [PMID: 31092938 DOI: 10.1038/s41586-019-1182-7] [Citation(s) in RCA: 320] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/19/2019] [Indexed: 12/31/2022]
Abstract
How cells adopt different identities has long fascinated biologists. Signal transduction in response to environmental cues results in the activation of transcription factors that determine the gene-expression program characteristic of each cell type. Technological advances in the study of 3D chromatin folding are bringing the role of genome conformation in transcriptional regulation to the fore. Characterizing this role of genome architecture has profound implications, not only for differentiation and development but also for diseases including developmental malformations and cancer. Here we review recent studies indicating that the interplay between transcription and genome conformation is a driving force for cell-fate decisions.
Collapse
|
139
|
Zhou J, Sun J. A Revolution in Reprogramming: Small Molecules. Curr Mol Med 2019; 19:77-90. [DOI: 10.2174/1566524019666190325113945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/07/2018] [Accepted: 02/18/2019] [Indexed: 02/08/2023]
Abstract
Transplantation of reprogrammed cells from accessible sources and in vivo
reprogramming are potential therapies for regenerative medicine. During the last
decade, genetic approaches, which mostly involved transcription factors and
microRNAs, have been shown to affect cell fates. However, their potential
carcinogenicity and other unexpected effects limit their translation into clinical
applications. Recently, with the power of modern biology-oriented design and synthetic
chemistry, as well as high-throughput screening technology, small molecules have been
shown to enhance reprogramming efficiency, replace genetic factors, and help elucidate
the molecular mechanisms underlying cellular plasticity and degenerative diseases. As a
non-viral and non-integrating approach, small molecules not only show revolutionary
capacities in generating desired exogenous cell types but also have potential as drugs
that can restore tissues through repairing or reprogramming endogenous cells. Here, we
focus on the recent progress made to use small molecules in cell reprogramming along
with some related mechanisms to elucidate these issues.
Collapse
Affiliation(s)
- Jin Zhou
- Shanghai Children's Medical Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Jie Sun
- Shanghai Children's Medical Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| |
Collapse
|
140
|
Battle SL, Doni Jayavelu N, Azad RN, Hesson J, Ahmed FN, Overbey EG, Zoller JA, Mathieu J, Ruohola-Baker H, Ware CB, Hawkins RD. Enhancer Chromatin and 3D Genome Architecture Changes from Naive to Primed Human Embryonic Stem Cell States. Stem Cell Reports 2019; 12:1129-1144. [PMID: 31056477 PMCID: PMC6524944 DOI: 10.1016/j.stemcr.2019.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/01/2022] Open
Abstract
During mammalian embryogenesis, changes in morphology and gene expression are concurrent with epigenomic reprogramming. Using human embryonic stem cells representing the preimplantation blastocyst (naive) and postimplantation epiblast (primed), our data in 2iL/I/F naive cells demonstrate that a substantial portion of known human enhancers are premarked by H3K4me1, providing an enhanced open chromatin state in naive pluripotency. The 2iL/I/F enhancer repertoire occupies 9% of the genome, three times that of primed cells, and can exist in broad chromatin domains over 50 kb. Enhancer chromatin states are largely poised. Seventy-seven percent of 2iL/I/F enhancers are decommissioned in a stepwise manner as cells become primed. While primed topologically associating domains are largely unaltered upon differentiation, naive 2iL/I/F domains expand across primed boundaries, affecting three-dimensional genome architecture. Differential topologically associating domain edges coincide with 2iL/I/F H3K4me1 enrichment. Our results suggest that naive-derived 2iL/I/F cells have a unique chromatin landscape, which may reflect early embryogenesis.
Collapse
Affiliation(s)
- Stephanie L Battle
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Naresh Doni Jayavelu
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Robert N Azad
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Jennifer Hesson
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA; Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Faria N Ahmed
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Eliah G Overbey
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Joseph A Zoller
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, USA
| | - Hannele Ruohola-Baker
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, USA
| | - Carol B Ware
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, USA
| | - R David Hawkins
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
141
|
Maslon MM, Braunschweig U, Aitken S, Mann AR, Kilanowski F, Hunter CJ, Blencowe BJ, Kornblihtt AR, Adams IR, Cáceres JF. A slow transcription rate causes embryonic lethality and perturbs kinetic coupling of neuronal genes. EMBO J 2019; 38:embj.2018101244. [PMID: 30988016 PMCID: PMC6484407 DOI: 10.15252/embj.2018101244] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
The rate of RNA polymerase II (RNAPII) elongation has an important role in the control of alternative splicing (AS); however, the in vivo consequences of an altered elongation rate are unknown. Here, we generated mouse embryonic stem cells (ESCs) knocked in for a slow elongating form of RNAPII We show that a reduced transcriptional elongation rate results in early embryonic lethality in mice. Focusing on neuronal differentiation as a model, we observed that slow elongation impairs development of the neural lineage from ESCs, which is accompanied by changes in AS and in gene expression along this pathway. In particular, we found a crucial role for RNAPII elongation rate in transcription and splicing of long neuronal genes involved in synapse signaling. The impact of the kinetic coupling of RNAPII elongation rate with AS is greater in ESC-differentiated neurons than in pluripotent cells. Our results demonstrate the requirement for an appropriate transcriptional elongation rate to ensure proper gene expression and to regulate AS during development.
Collapse
Affiliation(s)
- Magdalena M Maslon
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ulrich Braunschweig
- Donnelly Centre, Department of Molecular Genetics University of Toronto, Toronto, ON, Canada
| | - Stuart Aitken
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Abigail R Mann
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Fiona Kilanowski
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Chris J Hunter
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Benjamin J Blencowe
- Donnelly Centre, Department of Molecular Genetics University of Toronto, Toronto, ON, Canada
| | - Alberto R Kornblihtt
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Ian R Adams
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
142
|
MKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation. Nat Commun 2019; 10:1695. [PMID: 30979898 PMCID: PMC6461646 DOI: 10.1038/s41467-019-09636-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 03/01/2019] [Indexed: 12/19/2022] Open
Abstract
Actin cytoskeleton is well-known for providing structural/mechanical support, but whether and how it regulates chromatin and cell fate reprogramming is far less clear. Here, we report that MKL1, the key transcriptional co-activator of many actin cytoskeletal genes, regulates genomic accessibility and cell fate reprogramming. The MKL1-actin pathway weakens during somatic cell reprogramming by pluripotency transcription factors. Cells that reprogram efficiently display low endogenous MKL1 and inhibition of actin polymerization promotes mature pluripotency activation. Sustained MKL1 expression at a level seen in typical fibroblasts yields excessive actin cytoskeleton, decreases nuclear volume and reduces global chromatin accessibility, stalling cells on their trajectory toward mature pluripotency. In addition, the MKL1-actin imposed block of pluripotency can be bypassed, at least partially, when the Sun2-containing linker of the nucleoskeleton and cytoskeleton (LINC) complex is inhibited. Thus, we unveil a previously unappreciated aspect of control on chromatin and cell fate reprogramming exerted by the MKL1-actin pathway. MKL1 is a key transcriptional co-activator of actin cytoskeleton genes. Here the authors show that MKL1 activation in somatic cells reduces chromatin accessibility and hinders full reprogramming to pluripotency. Reduction of MKL1, disruption of actin cytoskeleton and its links to the nucleus relieve this repression.
Collapse
|
143
|
Wiese M, Bannister AJ, Basu S, Boucher W, Wohlfahrt K, Christophorou MA, Nielsen ML, Klenerman D, Laue ED, Kouzarides T. Citrullination of HP1γ chromodomain affects association with chromatin. Epigenetics Chromatin 2019; 12:21. [PMID: 30940194 PMCID: PMC6444592 DOI: 10.1186/s13072-019-0265-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/19/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Stem cell differentiation involves major chromatin reorganisation, heterochromatin formation and genomic relocalisation of structural proteins, including heterochromatin protein 1 gamma (HP1γ). As the principal reader of the repressive histone marks H3K9me2/3, HP1 plays a key role in numerous processes including heterochromatin formation and maintenance. RESULTS We find that HP1γ is citrullinated in mouse embryonic stem cells (mESCs) and this diminishes when cells differentiate, indicating that it is a dynamically regulated post-translational modification during stem cell differentiation. Peptidylarginine deiminase 4, a known regulator of pluripotency, citrullinates HP1γ in vitro. This requires R38 and R39 within the HP1γ chromodomain, and the catalytic activity is enhanced by trimethylated H3K9 (H3K9me3) peptides. Mutation of R38 and R39, designed to mimic citrullination, affects HP1γ binding to H3K9me3-containing peptides. Using live-cell single-particle tracking, we demonstrate that R38 and R39 are important for HP1γ binding to chromatin in vivo. Furthermore, their mutation reduces the residence time of HP1γ on chromatin in differentiating mESCs. CONCLUSION Citrullination is a novel post-translational modification of the structural heterochromatin protein HP1γ in mESCs that is dynamically regulated during mESC differentiation. The citrullinated residues lie within the HP1γ chromodomain and are important for H3K9me3 binding in vitro and chromatin association in vivo.
Collapse
Affiliation(s)
- Meike Wiese
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP UK
- Max Planck Institute for Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Andrew J. Bannister
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP UK
| | - Srinjan Basu
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 1QR UK
| | - Wayne Boucher
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| | - Kai Wohlfahrt
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| | - Maria A. Christophorou
- Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU UK
| | - Michael L. Nielsen
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Ernest D. Laue
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| | - Tony Kouzarides
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP UK
| |
Collapse
|
144
|
Starkova TY, Artamonova TO, Ermakova VV, Chikhirzhina EV, Khodorkovskii MA, Tomilin AN. The Profile of Post-translational Modifications of Histone H1 in Chromatin of Mouse Embryonic Stem Cells. Acta Naturae 2019; 11:82-91. [PMID: 31413884 PMCID: PMC6643340 DOI: 10.32607/20758251-2019-11-2-82-91] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Indexed: 01/10/2023] Open
Abstract
Linker histone H1 is one of the main chromatin proteins which plays an important role in organizing eukaryotic DNA into a compact structure. There is data indicating that cell type-specific post-translational modifications of H1 modulate chromatin activity. Here, we compared histone H1 variants from NIH/3T3, mouse embryonic fibroblasts (MEFs), and mouse embryonic stem (ES) cells using matrix-assisted laser desorption/ ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FT-ICR-MS). We found significant differences in the nature and positions of the post-translational modifications (PTMs) of H1.3-H1.5 variants in ES cells compared to differentiated cells. For instance, methylation of K75 in the H1.2-1.4 variants; methylation of K108, K148, K151, K152 K154, K155, K160, K161, K179, and K185 in H1.1, as well as of K168 in H1.2; phosphorylation of S129, T146, T149, S159, S163, and S180 in H1.1, T180 in H1.2, and T155 in H1.3 were identified exclusively in ES cells. The H1.0 and H1.2 variants in ES cells were characterized by an enhanced acetylation and overall reduced expression levels. Most of the acetylation sites of the H1.0 and H1.2 variants from ES cells were located within their C-terminal tails known to be involved in the stabilization of the condensed chromatin. These data may be used for further studies aimed at analyzing the functional role played by the revealed histone H1 PTMs in the self-renewal and differentiation of pluripotent stem cells.
Collapse
Affiliation(s)
- T. Yu. Starkova
- Institute of Cytology of the Russian Academy of Sciences, Laboratory of Molecular Biology of Stem Cells, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russia
| | - T. O. Artamonova
- Peter the Great St.Petersburg Polytechnic University, Politekhnicheskaya Str. 29, St. Petersburg, 195251 , Russia
| | - V. V. Ermakova
- Institute of Cytology of the Russian Academy of Sciences, Laboratory of Molecular Biology of Stem Cells, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russia
| | - E. V. Chikhirzhina
- Institute of Cytology of the Russian Academy of Sciences, Laboratory of Molecular Biology of Stem Cells, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russia
| | - M. A. Khodorkovskii
- Peter the Great St.Petersburg Polytechnic University, Politekhnicheskaya Str. 29, St. Petersburg, 195251 , Russia
| | - A. N. Tomilin
- Institute of Cytology of the Russian Academy of Sciences, Laboratory of Molecular Biology of Stem Cells, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russia
- Saint Petersburg State University, 13B Universitetskaya Emb., St. Petersburg, 199034, Russia
| |
Collapse
|
145
|
Kang S, Chovatiya G, Tumbar T. Epigenetic control in skin development, homeostasis and injury repair. Exp Dermatol 2019; 28:453-463. [PMID: 30624812 PMCID: PMC6488370 DOI: 10.1111/exd.13872] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/11/2018] [Accepted: 01/05/2019] [Indexed: 12/14/2022]
Abstract
Cell-type- and cell-state-specific patterns of covalent modifications on DNA and histone tails form global epigenetic profiles that enable spatiotemporal regulation of gene expression. These epigenetic profiles arise from coordinated activities of transcription factors and epigenetic modifiers, which result in cell-type-specific outputs in response to dynamic environmental conditions and signalling pathways. Recent mouse genetic and functional studies have highlighted the physiological significance of global DNA and histone epigenetic modifications in skin. Importantly, specific epigenetic profiles are emerging for adult skin stem cells that are associated with their cell fate plasticity and proper activity in tissue regeneration. We can now begin to draw a more comprehensive picture of how epigenetic modifiers orchestrate their cell-intrinsic role with microenvironmental cues for proper skin development, homeostasis and wound repair. The field is ripe to begin to implement these findings from the laboratory into skin therapies.
Collapse
Affiliation(s)
- Sangjo Kang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Gopal Chovatiya
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Tudorita Tumbar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| |
Collapse
|
146
|
Di Bona M, Mancini MA, Mazza D, Vicidomini G, Diaspro A, Lanzanò L. Measuring Mobility in Chromatin by Intensity-Sorted FCS. Biophys J 2019; 116:987-999. [PMID: 30819566 PMCID: PMC6428914 DOI: 10.1016/j.bpj.2019.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/14/2019] [Accepted: 02/08/2019] [Indexed: 12/12/2022] Open
Abstract
The architectural organization of chromatin can play an important role in genome regulation by affecting the mobility of molecules within its surroundings via binding interactions and molecular crowding. The diffusion of molecules at specific locations in the nucleus can be studied by fluorescence correlation spectroscopy (FCS), a well-established technique based on the analysis of fluorescence intensity fluctuations detected in a confocal observation volume. However, detecting subtle variations of mobility between different chromatin regions remains challenging with currently available FCS methods. Here, we introduce a method that samples multiple positions by slowly scanning the FCS observation volume across the nucleus. Analyzing the data in short time segments, we preserve the high temporal resolution of single-point FCS while probing different nuclear regions in the same cell. Using the intensity level of the probe (or a DNA marker) as a reference, we efficiently sort the FCS segments into different populations and obtain average correlation functions that are associated to different chromatin regions. This sorting and averaging strategy renders the method statistically robust while preserving the observation of intranuclear variations of mobility. Using this approach, we quantified diffusion of monomeric GFP in high versus low chromatin density regions. We found that GFP mobility was reduced in heterochromatin, especially within perinucleolar heterochromatin. Moreover, we found that modulation of chromatin compaction by ATP depletion, or treatment with solutions of different osmolarity, differentially affected the ratio of diffusion in both regions. Then, we used the approach to probe the mobility of estrogen receptor-α in the vicinity of an integrated multicopy prolactin gene array. Finally, we discussed the coupling of this method with stimulated emission depletion FCS for performing FCS at subdiffraction spatial scales.
Collapse
Affiliation(s)
- Melody Di Bona
- Nanoscopy and Nikon Imaging Center, Istituto Italiano di Tecnologia, Genoa, Italy; Department of Physics, University of Genoa, Genoa, Italy
| | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Davide Mazza
- Experimental Imaging Center Ospedale San Raffaele, Milano, Italy; The European Center for Nanomedicine, Milano, Italy
| | - Giuseppe Vicidomini
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Alberto Diaspro
- Nanoscopy and Nikon Imaging Center, Istituto Italiano di Tecnologia, Genoa, Italy; Department of Physics, University of Genoa, Genoa, Italy.
| | - Luca Lanzanò
- Nanoscopy and Nikon Imaging Center, Istituto Italiano di Tecnologia, Genoa, Italy.
| |
Collapse
|
147
|
Hah J, Kim DH. Deciphering Nuclear Mechanobiology in Laminopathy. Cells 2019; 8:E231. [PMID: 30862117 PMCID: PMC6468464 DOI: 10.3390/cells8030231] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/23/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
Extracellular mechanical stimuli are translated into biochemical signals inside the cell via mechanotransduction. The nucleus plays a critical role in mechanoregulation, which encompasses mechanosensing and mechanotransduction. The nuclear lamina underlying the inner nuclear membrane not only maintains the structural integrity, but also connects the cytoskeleton to the nuclear envelope. Lamin mutations, therefore, dysregulate the nuclear response, resulting in abnormal mechanoregulations, and ultimately, disease progression. Impaired mechanoregulations even induce malfunction in nuclear positioning, cell migration, mechanosensation, as well as differentiation. To know how to overcome laminopathies, we need to understand the mechanisms of laminopathies in a mechanobiological way. Recently, emerging studies have demonstrated the varying defects from lamin mutation in cellular homeostasis within mechanical surroundings. Therefore, this review summarizes recent findings highlighting the role of lamins, the architecture of nuclear lamina, and their disease relevance in the context of nuclear mechanobiology. We will also provide an overview of the differentiation of cellular mechanics in laminopathy.
Collapse
Affiliation(s)
- Jungwon Hah
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.
| |
Collapse
|
148
|
Dvoriantchikova G, Seemungal RJ, Ivanov D. The epigenetic basis for the impaired ability of adult murine retinal pigment epithelium cells to regenerate retinal tissue. Sci Rep 2019; 9:3860. [PMID: 30846751 PMCID: PMC6405859 DOI: 10.1038/s41598-019-40262-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 02/12/2019] [Indexed: 11/12/2022] Open
Abstract
The epigenetic plasticity of amphibian retinal pigment epithelium (RPE) allows them to regenerate the entire retina, a trait known to be absent in mammals. In this study, we investigated the epigenetic plasticity of adult murine RPE to identify possible mechanisms that prevent mammalian RPE from regenerating retinal tissue. RPE were analyzed using microarray, ChIP-seq, and whole-genome bisulfite sequencing approaches. We found that the majority of key genes required for progenitor phenotypes were in a permissive chromatin state and unmethylated in RPE. We observed that the majority of non-photoreceptor genes had promoters in a repressive chromatin state, but these promoters were in unmethylated or low-methylated regions. Meanwhile, the majority of promoters for photoreceptor genes were found in a permissive chromatin state, but were highly-methylated. Methylome states of photoreceptor-related genes in adult RPE and embryonic retina (which mostly contain progenitors) were very similar. However, promoters of these genes were demethylated and activated during retinal development. Our data suggest that, epigenetically, adult murine RPE cells are a progenitor-like cell type. Most likely two mechanisms prevent adult RPE from reprogramming and differentiating into retinal neurons: 1) repressive chromatin in the promoter regions of non-photoreceptor retinal neuron genes; 2) highly-methylated promoters of photoreceptor-related genes.
Collapse
Affiliation(s)
- Galina Dvoriantchikova
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Rajeev J Seemungal
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Dmitry Ivanov
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
149
|
Kat6b Modulates Oct4 and Nanog Binding to Chromatin in Embryonic Stem Cells and Is Required for Efficient Neural Differentiation. J Mol Biol 2019; 431:1148-1159. [DOI: 10.1016/j.jmb.2019.02.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 11/21/2022]
|
150
|
Genome-wide stability of the DNA replication program in single mammalian cells. Nat Genet 2019; 51:529-540. [PMID: 30804559 DOI: 10.1038/s41588-019-0347-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/09/2019] [Indexed: 11/09/2022]
Abstract
Here, we report a single-cell DNA replication sequencing method, scRepli-seq, a genome-wide methodology that measures copy number differences between replicated and unreplicated DNA. Using scRepli-seq, we demonstrate that replication-domain organization is conserved among individual mouse embryonic stem cells (mESCs). Differentiated mESCs exhibited distinct profiles, which were also conserved among cells. Haplotype-resolved scRepli-seq revealed similar replication profiles of homologous autosomes, while the inactive X chromosome was clearly replicated later than its active counterpart. However, a small degree of cell-to-cell replication-timing heterogeneity was present, which was smallest at the beginning and the end of S phase. In addition, developmentally regulated domains were found to deviate from others and showed a higher degree of heterogeneity, thus suggesting a link to developmental plasticity. Moreover, allelic expression imbalance was found to strongly associate with replication-timing asynchrony. Our results form a foundation for single-cell-level understanding of DNA replication regulation and provide insights into three-dimensional genome organization.
Collapse
|