101
|
Taoufik E, Kouroupi G, Zygogianni O, Matsas R. Synaptic dysfunction in neurodegenerative and neurodevelopmental diseases: an overview of induced pluripotent stem-cell-based disease models. Open Biol 2019; 8:rsob.180138. [PMID: 30185603 PMCID: PMC6170506 DOI: 10.1098/rsob.180138] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
Synaptic dysfunction in CNS disorders is the outcome of perturbations in physiological synapse structure and function, and can be either the cause or the consequence in specific pathologies. Accumulating data in the field of neuropsychiatric disorders, including autism spectrum disorders, schizophrenia and bipolar disorder, point to a neurodevelopmental origin of these pathologies. Due to a relatively early onset of behavioural and cognitive symptoms, it is generally acknowledged that mental illness initiates at the synapse level. On the other hand, synaptic dysfunction has been considered as an endpoint incident in neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's, mainly due to the considerably later onset of clinical symptoms and progressive appearance of cognitive deficits. This dichotomy has recently been challenged, particularly since the discovery of cell reprogramming technologies and the generation of induced pluripotent stem cells from patient somatic cells. The creation of 'disease-in-a-dish' models for multiple CNS pathologies has revealed unexpected commonalities in the molecular and cellular mechanisms operating in both developmental and degenerative conditions, most of which meet at the synapse level. In this review we discuss synaptic dysfunction in prototype neurodevelopmental and neurodegenerative diseases, emphasizing overlapping features of synaptopathy that have been suggested by studies using induced pluripotent stem-cell-based systems. These valuable disease models have highlighted a potential neurodevelopmental component in classical neurodegenerative diseases that is worth pursuing and investigating further. Moving from demonstration of correlation to understanding mechanistic causality forms the basis for developing novel therapeutics.
Collapse
Affiliation(s)
- Era Taoufik
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| | - Georgia Kouroupi
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| | - Ourania Zygogianni
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| |
Collapse
|
102
|
Zhou ZD, Selvaratnam T, Lee JCT, Chao YX, Tan EK. Molecular targets for modulating the protein translation vital to proteostasis and neuron degeneration in Parkinson's disease. Transl Neurodegener 2019; 8:6. [PMID: 30740222 PMCID: PMC6360798 DOI: 10.1186/s40035-019-0145-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/14/2019] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, which is characterized by the progressive loss of dopaminergic neurons in the Substantia Nigra pars compacta concomitant with Lewy body formation in affected brain areas. The detailed pathogenic mechanisms underlying the selective loss of dopaminergic neurons in PD are unclear, and no drugs or treatments have been developed to alleviate progressive dopaminergic neuron degeneration in PD. However, the formation of α-synuclein-positive protein aggregates in Lewy body has been identified as a common pathological feature of PD, possibly stemming from the consequence of protein misfolding and dysfunctional proteostasis. Proteostasis is the mechanism for maintaining protein homeostasis via modulation of protein translation, enhancement of chaperone capacity and the prompt clearance of misfolded protein by the ubiquitin proteasome system and autophagy. Deregulated protein translation and impaired capacities of chaperone or protein degradation can disturb proteostasis processes, leading to pathological protein aggregation and neurodegeneration in PD. In recent years, multiple molecular targets in the modulation of protein translation vital to proteostasis and dopaminergic neuron degeneration have been identified. The potential pathophysiological and therapeutic significance of these molecular targets to neurodegeneration in PD is highlighted.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
- Signature Research Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School Singapore, 8 College Road, Singapore, Singapore
| | - Thevapriya Selvaratnam
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Ji Chao Tristan Lee
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Yin Xia Chao
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Eng-King Tan
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
- Department of Neurology, Singapore General Hospital, Outram Road, Singapore, 169608 Singapore
- Signature Research Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School Singapore, 8 College Road, Singapore, Singapore
| |
Collapse
|
103
|
Paonessa F, Evans LD, Solanki R, Larrieu D, Wray S, Hardy J, Jackson SP, Livesey FJ. Microtubules Deform the Nuclear Membrane and Disrupt Nucleocytoplasmic Transport in Tau-Mediated Frontotemporal Dementia. Cell Rep 2019; 26:582-593.e5. [PMID: 30650353 PMCID: PMC6335264 DOI: 10.1016/j.celrep.2018.12.085] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/12/2018] [Accepted: 12/18/2018] [Indexed: 02/02/2023] Open
Abstract
The neuronal microtubule-associated protein tau, MAPT, is central to the pathogenesis of many dementias. Autosomal-dominant mutations in MAPT cause inherited frontotemporal dementia (FTD), but the underlying pathogenic mechanisms are unclear. Using human stem cell models of FTD due to MAPT mutations, we find that tau becomes hyperphosphorylated and mislocalizes to cell bodies and dendrites in cortical neurons, recapitulating a key early event in FTD. Mislocalized tau in the cell body leads to abnormal microtubule movements in FTD-MAPT neurons that grossly deform the nuclear membrane. This results in defective nucleocytoplasmic transport, which is corrected by microtubule depolymerization. Neurons in the post-mortem human FTD-MAPT cortex have a high incidence of nuclear invaginations, indicating that tau-mediated nuclear membrane dysfunction is an important pathogenic process in FTD. Defects in nucleocytoplasmic transport in FTD point to important commonalities in the pathogenic mechanisms of tau-mediated dementias and ALS-FTD due to TDP-43 and C9orf72 mutations.
Collapse
Affiliation(s)
- Francesco Paonessa
- Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK; Alzheimer's Research UK Stem Cell Research Centre, University of Cambridge, CB2 1QN, UK
| | - Lewis D Evans
- Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK; Alzheimer's Research UK Stem Cell Research Centre, University of Cambridge, CB2 1QN, UK
| | - Ravi Solanki
- Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK; Alzheimer's Research UK Stem Cell Research Centre, University of Cambridge, CB2 1QN, UK
| | - Delphine Larrieu
- Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Selina Wray
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - John Hardy
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Stephen P Jackson
- Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Frederick J Livesey
- Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK; Alzheimer's Research UK Stem Cell Research Centre, University of Cambridge, CB2 1QN, UK; UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
104
|
Li Y, Xue Y, Xu X, Wang G, Liu Y, Wu H, Li W, Wang Y, Chen Z, Zhang W, Zhu Y, Ji W, Xu T, Liu L, Chen Q. A mitochondrial FUNDC1/HSC70 interaction organizes the proteostatic stress response at the risk of cell morbidity. EMBO J 2018; 38:embj.201798786. [PMID: 30591555 DOI: 10.15252/embj.201798786] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 08/25/2018] [Accepted: 10/04/2018] [Indexed: 01/22/2023] Open
Abstract
Both protein quality and mitochondrial quality are vital for the cellular activity, and impaired proteostasis and mitochondrial dysfunction are common etiologies of aging and age-related disorders. Here, we report that the mitochondrial outer membrane protein FUNDC1 interacts with the chaperone HSC70 to promote the mitochondrial translocation of unfolded cytosolic proteins for degradation by LONP1 or for formation of non-aggresomal mitochondrion-associated protein aggregates (MAPAs) upon proteasome inhibition in cultured human cells. Integrative approaches including csCLEM, Apex, and biochemical analysis reveal that MAPAs contain ubiquitinated cytosolic proteins, autophagy receptor p62, and mitochondrial proteins. MAPAs are segregated from mitochondria in a FIS1-dependent manner and can subsequently be degraded via autophagy. Although the FUNDC1/HSC70 pathway promotes the degradation of unfolded cytosolic proteins, excessive accumulation of unfolded proteins on the mitochondria prior to MAPA formation impairs mitochondrial integrity and activates AMPK, leading to cellular senescence. We suggest that human mitochondria organize cellular proteostatic response at the risk of their own malfunction and cell lethality.
Collapse
Affiliation(s)
- Yanjun Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanhong Xue
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaojun Xu
- College of Life Science and Technology, HuaZhong University of Science and Technology, Wuhan, Hubei, China
| | - Guopeng Wang
- School of Life Sciences, Peking University, Beijing, China
| | - Yiqun Liu
- School of Life Sciences, Peking University, Beijing, China
| | - Hao Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wenhui Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yueying Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ziheng Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Weilin Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yushan Zhu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Wei Ji
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Science and Technology, HuaZhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Quan Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China .,College of Life Sciences, Nankai University, Tianjin, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
105
|
Yang S, Li S, Li XJ. Shortening the Half-Life of Cas9 Maintains Its Gene Editing Ability and Reduces Neuronal Toxicity. Cell Rep 2018; 25:2653-2659.e3. [PMID: 30517854 PMCID: PMC6314484 DOI: 10.1016/j.celrep.2018.11.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 09/20/2018] [Accepted: 11/01/2018] [Indexed: 12/22/2022] Open
Abstract
Virus-mediated expression of CRISPR/Cas9 is commonly used for genome editing in animal brains to model or treat neurological diseases, but the potential neurotoxicity of overexpressing bacterial Cas9 in the mammalian brain remains unknown. Through RNA sequencing (RNA-seq) analysis, we find that virus-mediated expression of Cas9 influences the expression of genes involved in neuronal functions. Reducing the half-life of Cas9 by tagging with geminin, whose expression is regulated by the cell cycle, maintains the genome editing capacity of Cas9 but significantly alleviates neurotoxicity. Thus, modification of Cas9 by shortening its half-life can help develop CRISPR/Cas9-based therapeutic approaches for treating neurological disorders.
Collapse
Affiliation(s)
- Su Yang
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Room 355, Atlanta, GA 30322, USA.
| | - Shihua Li
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Room 355, Atlanta, GA 30322, USA
| | - Xiao-Jiang Li
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Room 355, Atlanta, GA 30322, USA.
| |
Collapse
|
106
|
Sierra-Fonseca JA, Gosselink KL. Tauopathy and neurodegeneration: A role for stress. Neurobiol Stress 2018; 9:105-112. [PMID: 30450376 PMCID: PMC6234266 DOI: 10.1016/j.ynstr.2018.08.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 01/22/2023] Open
Abstract
Neurodegenerative diseases are characterized by an irreversible and progressive loss of neuronal structure and function. While many alterations to normal cellular processes occur during neurodegeneration, a pathological accumulation of aggregated proteins constitutes a hallmark of several neurodegenerative disorders. Alzheimer's disease, specifically, is pathologically defined by the formation of amyloid plaques and tangles of hyperphosphorylated tau protein. Stress has emerged as an important factor in the development and progression of neurodegenerative diseases, including Alzheimer's. Very little is known, however, regarding the effects of stress on the mechanisms controlling abnormal protein aggregation and clearance. Chronic stress activates the hypothalamic-pituitary-adrenal (HPA) axis, causing an excessive secretion of glucocorticoids that are capable of impacting diverse physiological and cellular processes. The present review focuses on the influence of stress on a key feature of Alzheimer's disease pathology, emphasizing the relationship between tau phosphorylation and accumulation and its connection to HPA axis dysfunction.
Collapse
Affiliation(s)
- Jorge A Sierra-Fonseca
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Kristin L Gosselink
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| |
Collapse
|
107
|
NLRP3 inflammasome activation in inflammaging. Semin Immunol 2018; 40:61-73. [PMID: 30268598 DOI: 10.1016/j.smim.2018.09.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023]
Abstract
The process of aging is associated with the appearance of low-grade subclinical inflammation, termed inflammaging, that can accelerate age-related diseases. In Western societies the age-related inflammatory response can additionally be aggravated by an inflammatory response related to modern lifestyles and excess calorie consumption, a pathophysiologic inflammatory response that was coined metaflammation. Here, we summarize the current knowledge of mechanisms that drive both of these processes and focus our discussion the emerging concept that a key innate immune pathway, the NLRP3 inflammasome, is centrally involved in the recognition of triggers that appear during physiological aging and during metabolic stress. We further discuss how these processes are involved in the pathogenesis of common age-related pathologies and highlight potential strategies by which the detrimental inflammatory responses could be pharmacologically addressed.
Collapse
|
108
|
Chatterjee D, Bhatt M, Butler D, De Genst E, Dobson CM, Messer A, Kordower JH. Proteasome-targeted nanobodies alleviate pathology and functional decline in an α-synuclein-based Parkinson's disease model. NPJ PARKINSONS DISEASE 2018; 4:25. [PMID: 30155513 PMCID: PMC6105584 DOI: 10.1038/s41531-018-0062-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 01/02/2023]
Abstract
Therapeutics designed to target α-synuclein (α-syn) aggregation may be critical in halting the progression of pathology in Parkinson's disease (PD) patients. Nanobodies are single-domain antibody fragments that bind with antibody specificity, but allow readier genetic engineering and delivery. When expressed intracellularly as intrabodies, anti-α-syn nanobodies fused to a proteasome-targeting proline, aspartate or glutamate, serine, and threonine (PEST) motif can modulate monomeric concentrations of target proteins. Here we aimed to validate and compare the in vivo therapeutic potential of gene therapy delivery of two proteasome-directed nanobodies selectively targeting α-syn in a synuclein overexpression-based PD model: VH14*PEST (non-amyloid component region) and NbSyn87*PEST (C-terminal region). Stereotaxic injections of adeno-associated viral 5-α-syn (AAV5-α-syn) into the substantia nigra (SN) were performed in Sprague-Dawley rats that were sorted into three cohorts based on pre-operative behavioral testing. Rats were treated with unilateral SN injections of vectors for VH14*PEST, NbSyn87*PEST, or injected with saline 3 weeks post lesion. Post-mortem assessments of the SN showed that both nanobodies markedly reduced the level of phosphorylated Serine-129 α-syn labeling relative to saline-treated animals. VH14*PEST showed considerable maintenance of striatal dopaminergic tone in comparison to saline-treated and NbSyn87*PEST-treated animals as measured by tyrosine hydroxylase immunoreactivity (optical density), DAT immunoreactivity (optical density), and dopamine concentration (high-performance liquid chromatography). Microglial accumulation and inflammatory response, assessed by stereological counts of Iba-1-labeled cells, was modestly increased in NbSyn87*PEST-injected rats but not in VH14*PEST-treated or saline-treated animals. Modest behavioral rescue was also observed, although there was pronounced variability among individual animals. These data validate in vivo therapeutic efficacy of vector-delivered intracellular nanobodies targeting α-syn misfolding and aggregation in synucleinopathies such as PD.
Collapse
Affiliation(s)
- Diptaman Chatterjee
- 1Department of Neurological Sciences, Rush University Medical Center, Chicago, IL c60612 USA
| | - Mansi Bhatt
- 1Department of Neurological Sciences, Rush University Medical Center, Chicago, IL c60612 USA
| | - David Butler
- 2Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144 USA.,3Department of Biomedical Sciences, University at Albany, Albany, NY 12208 USA
| | - Erwin De Genst
- 4Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW UK
| | - Christopher M Dobson
- 4Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW UK
| | - Anne Messer
- 2Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144 USA.,3Department of Biomedical Sciences, University at Albany, Albany, NY 12208 USA
| | - Jeffrey H Kordower
- 1Department of Neurological Sciences, Rush University Medical Center, Chicago, IL c60612 USA.,5Van Andel Research Institute, Grand Rapids, MI 49503 USA
| |
Collapse
|
109
|
Liu W, Duan X, Fang X, Shang W, Tong C. Mitochondrial protein import regulates cytosolic protein homeostasis and neuronal integrity. Autophagy 2018; 14:1293-1309. [PMID: 29909722 DOI: 10.1080/15548627.2018.1474991] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Neurodegeneration is characterized by protein aggregate deposits and mitochondrial malfunction. Reduction in Tom40 (translocase of outer membrane 40) expression, a key subunit of the translocase of the outer mitochondrial membrane complex, led to accumulation of ubiquitin (Ub)-positive protein aggregates engulfed by Atg8a-positive membranes. Other macroautophagy markers were also abnormally accumulated. Autophagy was induced but the majority of autophagosomes failed to fuse with lysosomes when Tom40 was downregulated. In Tom40 RNAi tissues, autophagosome-like (AL) structures, often not sealed, were 10 times larger than starvation induced autophagosomes. Atg5 downregulation abolished Tom40 RNAi induced AL structure formation, but the Ub-positive aggregates remained, whereas knock down of Syx17, a gene required for autophagosome-lysosome fusion, led to the disappearance of giant AL structures and accumulation of small autophagosomes and phagophores near the Ub-positive aggregates. The protein aggregates contained many mitochondrial preproteins, cytosolic proteins, and proteasome subunits. Proteasome activity and ATP levels were reduced and the ROS levels was increased in Tom40 RNAi tissues. The simultaneous inhibition of proteasome activity, reduction in ATP production, and increase in ROS, but none of these conditions alone, can mimic the imbalanced proteostasis phenotypes observed in Tom40 RNAi cells. Knockdown of ref(2)P or ectopic expression of Pink1 and park greatly reduced aggregate formation in Tom40 RNAi tissues. In nerve tissues, reduction in Tom40 activity leads to aggregate formation and neurodegeneration. Rather than diminishing the neurodegenerative phenotypes, overexpression of Pink1 enhanced them. We proposed that defects in mitochondrial protein import may be the key to linking imbalanced proteostasis and mitochondrial defects. ABBREVIATIONS AL: autophagosome-like; Atg12: Autophagy-related 12; Atg14: Autophagy-related 14; Atg16: Autophagy-related 16; Atg5: Autophagy-related 5; Atg6: Autophagy-related 6; Atg8a: Autophagy-related 8a; Atg9: Autophagy-related 9; ATP: adenosine triphosphate; Cas9: CRISPR associated protein 9; cDNA: complementary DNA; COX4: Cytochrome c oxidase subunit 4; CRISPR: clustered regularly interspaced short palindromic repeats; Cyt-c1: Cytochrome c1; DAPI: 4,6-diamidino-2-phenylindole dihydrochloride; Dcr-2: Dicer-2; FLP: Flippase recombination enzyme; FRT: FLP recombination target; GFP: green fluorescent protein; GO: gene ontology; gRNA: guide RNA; Hsp60: Heat shock protein 60A; HDAC6: Histone deacetylase 6; htt: huntingtin; Idh: Isocitrate dehydrogenase; IFA: immunofluorescence assay; Irp-1A: Iron regulatory protein 1A; kdn: knockdown; Marf: Mitochondrial assembly regulatory factor; MitoGFP: Mitochondrial-GFP; MS: mass spectrometry; MTPAP: mitochondrial poly(A) polymerase; Nmnat: Nicotinamide mononucleotide adenylyltransferase; OE: overexpression; Pink1/PINK1: PTEN-induced putative kinase 1; polyQ: polyglutamine; PRKN: parkin RBR E3 ubiquitin protein ligase; Prosα4: proteasome α4 subunit; Prosβ1: proteasome β1 subunit; Prosβ5: proteasome β5 subunit; Prosβ7: proteasome β7 subunit; ref(2)P: refractory to sigma P; RFP: red fluorescent protein; RNAi: RNA interference; ROS: reactive oxygen species; Rpn11: Regulatory particle non-ATPase 11; Rpt2: Regulatory particle triple-A ATPase 2; scu: scully; sicily: severe impairment of CI with lengthened youth; sesB: stress-sensitive B; Syx17: Syntaxin17; TEM: transmission electron microscopy; ttm50: tiny tim 50; Tom: translocase of the outer membrane; Tom20: translocase of outer membrane 20; Tom40: translocase of outer membrane 40; Tom70: translocase of outer membrane 70; UAS: upstream active sequence; Ub: ubiquitin; VNC: ventral nerve cord; ZFYVE1: zinc finger FYVE-type containing 1.
Collapse
Affiliation(s)
- Wei Liu
- a Life Sciences Institute and Innovation Center for Cell Signaling Network , Zhejiang University , Hangzhou , China
| | - Xiuying Duan
- a Life Sciences Institute and Innovation Center for Cell Signaling Network , Zhejiang University , Hangzhou , China
| | - Xuefei Fang
- a Life Sciences Institute and Innovation Center for Cell Signaling Network , Zhejiang University , Hangzhou , China
| | - Weina Shang
- a Life Sciences Institute and Innovation Center for Cell Signaling Network , Zhejiang University , Hangzhou , China
| | - Chao Tong
- a Life Sciences Institute and Innovation Center for Cell Signaling Network , Zhejiang University , Hangzhou , China
| |
Collapse
|
110
|
Bojungikgi-tang Improves Muscle and Spinal Cord Function in an Amyotrophic Lateral Sclerosis Model. Mol Neurobiol 2018; 56:2394-2407. [PMID: 30030751 DOI: 10.1007/s12035-018-1236-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a motor neuron disease characterized by progressive motor function impairment, dysphagia, and respiratory failure. Owing to the complexity of its pathogenic mechanisms, an effective therapy for ALS is lacking. Herbal medicines with multiple targets have good efficacy and low adverse reactions for the treatment of neurodegenerative diseases. In this study, the effects of Bojungikgi-tang (BJIGT), an herbal medicine with eight component herbs, on muscle and spinal cord function were evaluated in an ALS animal model. Animals were randomly divided into three groups: a non-transgenic group (nTg, n = 24), a hSOD1G93A transgenic group (Tg, n = 24), and a hSOD1G93A transgenic group in which 8-week-old mice were orally administered BJIGT (1 mg/g) once daily for 6 weeks (Tg+BJIGT, n = 24). The effects of BJIGT were evaluated using a rotarod test, foot-printing, and survival analyses based on Kaplan-Meier survival curves. To determine the biological mechanism underlying the effects of BJIGT in hSOD1G93A mice, western blotting, transmission electron microscopy, and Bungarotoxin staining were used. BJIGT improved motor function and extended the survival duration of hSOD1G93A mice. In addition, BJIGT had protective effects, including anti-oxidative and anti-inflammatory effects, in both the spinal cord and muscle of hSOD1G93A mice. Our results demonstrated that BJIGT causes muscle atrophy and the denervation of neuromuscular junctions in the gastrocnemius of hSOD1G93A mice. The components of BJIGT may alleviate the symptoms of ALS via different mechanisms, and accordingly, BJIGT treatment may be an effective therapeutic approach.
Collapse
|
111
|
|
112
|
Kim Y, Meade SM, Chen K, Feng H, Rayyan J, Hess-Dunning A, Ereifej ES. Nano-Architectural Approaches for Improved Intracortical Interface Technologies. Front Neurosci 2018; 12:456. [PMID: 30065623 PMCID: PMC6056633 DOI: 10.3389/fnins.2018.00456] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/14/2018] [Indexed: 12/19/2022] Open
Abstract
Intracortical microelectrodes (IME) are neural devices that initially were designed to function as neuroscience tools to enable researchers to understand the nervous system. Over the years, technology that aids interfacing with the nervous system has allowed the ability to treat patients with a wide range of neurological injuries and diseases. Despite the substantial success that has been demonstrated using IME in neural interface applications, these implants eventually fail due to loss of quality recording signals. Recent strategies to improve interfacing with the nervous system have been inspired by methods that mimic the native tissue. This review focusses on one strategy in particular, nano-architecture, a term we introduce that encompasses the approach of roughening the surface of the implant. Various nano-architecture approaches have been hypothesized to improve the biocompatibility of IMEs, enhance the recording quality, and increase the longevity of the implant. This review will begin by introducing IME technology and discuss the challenges facing the clinical deployment of IME technology. The biological inspiration of nano-architecture approaches will be explained as well as leading fabrication methods used to create nano-architecture and their limitations. A review of the effects of nano-architecture surfaces on neural cells will be examined, depicting the various cellular responses to these modified surfaces in both in vitro and pre-clinical models. The proposed mechanism elucidating the ability of nano-architectures to influence cellular phenotype will be considered. Finally, the frontiers of next generation nano-architecture IMEs will be identified, with perspective given on the future impact of this interfacing approach.
Collapse
Affiliation(s)
- Youjoung Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Seth M. Meade
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Keying Chen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - He Feng
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Jacob Rayyan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Allison Hess-Dunning
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Evon S. Ereifej
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| |
Collapse
|
113
|
Guo X, Jiang X, Xu J, Quan X, Wu M, Zhang H. Ensemble Consensus-Guided Unsupervised Feature Selection to Identify Huntington's Disease-Associated Genes. Genes (Basel) 2018; 9:genes9070350. [PMID: 30002337 PMCID: PMC6071299 DOI: 10.3390/genes9070350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022] Open
Abstract
Due to the complexity of the pathological mechanisms of neurodegenerative diseases, traditional differentially-expressed gene selection methods cannot detect disease-associated genes accurately. Recent studies have shown that consensus-guided unsupervised feature selection (CGUFS) performs well in feature selection for identifying disease-associated genes. Since the random initialization of the feature selection matrix in CGUFS results in instability of the final disease-associated gene set, for the purposes of this study we proposed an ensemble method based on CGUFS-namely, ensemble consensus-guided unsupervised feature selection (ECGUFS) in order to further improve the accuracy of disease-associated genes and the stability of feature gene sets. We also proposed a bagging integration strategy to integrate the results of CGUFS. Lastly, we conducted experiments with Huntington's disease RNA sequencing (RNA-Seq) data and obtained the final feature gene set, where we detected 287 disease-associated genes. Enrichment analysis on these genes has shown that postsynaptic density and the postsynaptic membrane, synapse, and cell junction are all affected during the disease's progression. However, ECGUFS greatly improved the accuracy of disease-associated gene prediction and the stability of the disease-associated gene set. We conducted a classification of samples with labels based on the linear support vector machine with 10-fold cross-validation. The average accuracy is 0.9, which suggests the effectiveness of the feature gene set.
Collapse
Affiliation(s)
- Xia Guo
- College of Computer and Control Engineering, Nankai University, Tianjin 300350, China.
| | - Xue Jiang
- College of Computer and Control Engineering, Nankai University, Tianjin 300350, China.
| | - Jing Xu
- College of Computer and Control Engineering, Nankai University, Tianjin 300350, China.
| | - Xiongwen Quan
- College of Computer and Control Engineering, Nankai University, Tianjin 300350, China.
| | - Min Wu
- College of Computer and Control Engineering, Nankai University, Tianjin 300350, China.
| | - Han Zhang
- College of Computer and Control Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
114
|
Autophagy defects and related genetic variations in renal cell carcinoma with eosinophilic cytoplasmic inclusions. Sci Rep 2018; 8:9972. [PMID: 29967346 PMCID: PMC6028630 DOI: 10.1038/s41598-018-28369-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022] Open
Abstract
The relationship between autophagy and tumour is well studied, but tumour cell morphological changes associated with autophagy defects are rarely reported, especially in renal cell carcinoma (RCC). We collected 10 renal tumour samples with characteristic eosinophilic cytoplasmic inclusions (ECIs) and found that the ECIs were majorly composed of sequestosome 1/P62, neighbor of BRCA1 gene 1 (NBR1), PEX14, and CATALASE1 (CAT1). Further, transmission electron microscopy analysis revealed that ECIs were aggregates of proteinaceous material and peroxisomes. These results confirmed that ECIs in RCCs were the products of autophagy defects. The presence of ECIs was correlated with high Fuhrman grade components of RCCs. Whole-exome sequencing (WES) and Sanger sequencing confirmed that tumours with ECIs showed somatic mutations or high frequency of genetic variations in autophagy-related (ATG) genes, such as ATG7, ATG5, and ATG10. These results indicate that nucleotide changes in ATG genes are associated with autophagy defect, ECI formation, and even tumour grade in RCCs.
Collapse
|
115
|
Adiutori R, Aarum J, Zubiri I, Bremang M, Jung S, Sheer D, Pike I, Malaspina A. The proteome of neurofilament-containing protein aggregates in blood. Biochem Biophys Rep 2018; 14:168-177. [PMID: 29872749 PMCID: PMC5986704 DOI: 10.1016/j.bbrep.2018.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/15/2018] [Accepted: 04/26/2018] [Indexed: 11/24/2022] Open
Abstract
Protein aggregation in biofluids is a poorly understood phenomenon. Under normal physiological conditions, fluid-borne aggregates may contain plasma or cell proteins prone to aggregation. Recent observations suggest that neurofilaments (Nf), the building blocks of neurons and a biomarker of neurodegeneration, are included in high molecular weight complexes in circulation. The composition of these Nf-containing hetero-aggregates (NCH) may change in systemic or organ-specific pathologies, providing the basis to develop novel disease biomarkers. We have tested ultracentrifugation (UC) and a commercially available protein aggregate binder, Seprion PAD-Beads (SEP), for the enrichment of NCH from plasma of healthy individuals, and then characterised the Nf content of the aggregate fractions using gel electrophoresis and their proteome by mass spectrometry (MS). Western blot analysis of fractions obtained by UC showed that among Nf isoforms, neurofilament heavy chain (NfH) was found within SDS-stable high molecular weight aggregates. Shotgun proteomics of aggregates obtained with both extraction techniques identified mostly cell structural and to a lesser extent extra-cellular matrix proteins, while functional analysis revealed pathways involved in inflammatory response, phagosome and prion-like protein behaviour. UC aggregates were specifically enriched with proteins involved in endocrine, metabolic and cell-signalling regulation. We describe the proteome of neurofilament-containing aggregates isolated from healthy individuals biofluids using different extraction methods.
Collapse
Affiliation(s)
- Rocco Adiutori
- Centre for Neuroscience and Trauma, Queen Mary University of London, Blizard Institute, Barts and The School of Medicine and Dentistry, London, United Kingdom
| | - Johan Aarum
- Centre for Genomics and Child Health, Queen Mary University of London, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Irene Zubiri
- Centre for Neuroscience and Trauma, Queen Mary University of London, Blizard Institute, Barts and The School of Medicine and Dentistry, London, United Kingdom
| | - Michael Bremang
- Proteome Sciences Plc, Hamilton House, Mabledon Place, London, United Kingdom
| | - Stephan Jung
- ProteomeSciencesR&DGmbH&Co.KG, Frankfurt, Germany
| | - Denise Sheer
- Centre for Genomics and Child Health, Queen Mary University of London, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Ian Pike
- Proteome Sciences Plc, Hamilton House, Mabledon Place, London, United Kingdom
| | - Andrea Malaspina
- Centre for Neuroscience and Trauma, Queen Mary University of London, Blizard Institute, Barts and The School of Medicine and Dentistry, London, United Kingdom
| |
Collapse
|
116
|
Suresh SN, Verma V, Sateesh S, Clement JP, Manjithaya R. Neurodegenerative diseases: model organisms, pathology and autophagy. J Genet 2018; 97:679-701. [PMID: 30027903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A proteostasis view of neurodegeneration (ND) identifies protein aggregation as a leading causative reason for damage seen at the cellular and organ levels. While investigative therapies that aim at dissolving aggregates have failed, and the promises of silencing expression of ND associated pathogenic proteins or the deployment of engineered induced pluripotent stem cells (iPSCs) are still in the horizon, emerging literature suggests degrading aggregates through autophagy-related mechanisms hold the current potential for a possible cure. Macroautophagy (hereafter autophagy) is an intracellular degradative pathway where superfluous or unwanted cellular cargoes (such as peroxisomes, mitochondria, ribosomes, intracellular bacteria and misfolded protein aggregates) are wrapped in double membrane vesicles called autophagosomes that eventually fuses with lysosomes for their degradation. The selective branch of autophagy that deals with identification, capture and degradation of protein aggregates is called aggrephagy. Here, we cover the workings of aggrephagy detailing its selectivity towards aggregates. The diverse cellular adaptors that bridge the aggregates with the core autophagy machinery in terms of autophagosome formation are discussed. In ND, essential protein quality control mechanisms fail as the constituent components also find themselves trapped in the aggregates. Thus, although cellular aggrephagy has the potential to be upregulated, its dysfunction further aggravates the pathogenesis. This phenomenonwhen combined with the fact that neurons can neither dilute out the aggregates by cell division nor the dead neurons can be replaced due to low neurogenesis, makes a compelling case for aggrephagy pathway as a potential therapeutic option.
Collapse
Affiliation(s)
- S N Suresh
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560 064, India.
| | | | | | | | | |
Collapse
|
117
|
Wang Y, Song M, Song F. Neuronal autophagy and axon degeneration. Cell Mol Life Sci 2018; 75:2389-2406. [PMID: 29675785 PMCID: PMC11105516 DOI: 10.1007/s00018-018-2812-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/13/2018] [Accepted: 04/03/2018] [Indexed: 02/08/2023]
Abstract
Axon degeneration is a pathophysiological process of axonal dying and breakdown, which is characterized by several morphological features including the accumulation of axoplasmic organelles, disassembly of microtubules, and fragmentation of the axonal cytoskeleton. Autophagy, a highly conserved lysosomal-degradation machinery responsible for the control of cellular protein quality, is widely believed to be essential for the maintenance of axonal homeostasis in neurons. In recent years, more and more evidence suggests that dysfunctional autophagy is associated with axonal degeneration in many neurodegenerative diseases. Here, we review the core machinery of autophagy in neuronal cells, and provide several major steps that interfere with autophagy flux in neurodegenerative conditions. Furthermore, this review highlights the potential role of neuronal autophagy in axon degeneration, and presents some possible molecular mechanisms by which dysfunctional autophagy leads to axon degeneration in pathological conditions.
Collapse
Affiliation(s)
- Yu Wang
- Department of Toxicology, School of Public Health, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Mingxue Song
- School of Public Health, Fujian Medical University, 1 Xueyuan Road, Fuzhou, 350108, Fujian, People's Republic of China
| | - Fuyong Song
- Department of Toxicology, School of Public Health, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
118
|
Active Site Gate Dynamics Modulate the Catalytic Activity of the Ubiquitination Enzyme E2-25K. Sci Rep 2018; 8:7002. [PMID: 29725124 PMCID: PMC5934386 DOI: 10.1038/s41598-018-25476-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/23/2018] [Indexed: 12/13/2022] Open
Abstract
The ubiquitin proteasome system (UPS) signals for degradation of proteins through attachment of K48-linked polyubiquitin chains, or alterations in protein-protein recognition through attachment of K63-linked chains. Target proteins are ubiquitinated in three sequential chemical steps by a three-component enzyme system. Ubiquitination, or E2 enzymes, catalyze the central step by facilitating reaction of a target protein lysine with the C-terminus of Ub that is attached to the active site cysteine of the E2 through a thioester bond. E2 reactivity is modulated by dynamics of an active site gate, whose central residue packs against the active site cysteine in a closed conformation. Interestingly, for the E2 Ubc13, which specifically catalyzes K63-linked ubiquitination, the central gate residue adopts an open conformation. We set out to determine if active site gate dynamics play a role in catalysis for E2-25K, which adopts the canonical, closed gate conformation, and which selectively synthesizes K48-linked ubiquitin chains. Gate dynamics were characterized using mutagenesis of key residues, combined with enzyme kinetics measurements, and main chain NMR relaxation. The experimental data were interpreted with all atom MD simulations. The data indicate that active site gate opening and closing rates for E2-25K are precisely balanced.
Collapse
|
119
|
Mizushima N. A brief history of autophagy from cell biology to physiology and disease. Nat Cell Biol 2018; 20:521-527. [PMID: 29686264 DOI: 10.1038/s41556-018-0092-5] [Citation(s) in RCA: 501] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/20/2018] [Indexed: 02/06/2023]
Abstract
The field of autophagy research has developed rapidly since the first description of the process in the 1960s and the identification of autophagy genes in the 1990s. Autophagy is now increasingly studied at the level of organismal pathophysiology and is being connected to the medical sciences. This Historical Perspective describes a brief history of autophagy and discusses unanswered cell biological questions in the field.
Collapse
Affiliation(s)
- Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
120
|
Zink A, Priller J, Prigione A. Pluripotent Stem Cells for Uncovering the Role of Mitochondria in Human Brain Function and Dysfunction. J Mol Biol 2018; 430:891-903. [PMID: 29458125 DOI: 10.1016/j.jmb.2018.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 02/06/2023]
Abstract
Mitochondrial dysfunctions are a known pathogenetic mechanism of a number of neurological and psychiatric disorders. At the same time, mutations in genes encoding for components of the mitochondrial respiratory chain cause mitochondrial diseases, which commonly exhibit neurological symptoms. Mitochondria are therefore critical for the functionality of the human nervous system. The importance of mitochondria stems from their key roles in cellular metabolism, calcium handling, redox and protein homeostasis, and overall cellular homeostasis through their dynamic network. Here, we describe how the use of pluripotent stem cells (PSCs) may help in addressing the physiological and pathological relevance of mitochondria for the human nervous system. PSCs allow the generation of patient-derived neurons and glia and the identification of gene-specific and mutation-specific cellular phenotypes via genome engineering approaches. We discuss the recent advances in PSC-based modeling of brain diseases and the current challenges of the field. We anticipate that the careful use of PSCs will improve our understanding of the impact of mitochondria in neurological and psychiatric disorders and the search for effective therapeutic avenues.
Collapse
Affiliation(s)
- Annika Zink
- Max Delbrueck Center for Molecular Medicine (MDC), 13125 Berlin, Germany; Department of Neuropsychiatry, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Josef Priller
- Department of Neuropsychiatry, Charité-Universitätsmedizin, 10117 Berlin, Germany; Berlin Institute of Health (BIH), 10178 Berlin, Germany; Cluster of Excellence NeuroCure and German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany; UK Dementia Research Institute and University of Edinburgh, Edinburgh EH16 4SB, UK
| | | |
Collapse
|
121
|
Penke B, Bogár F, Crul T, Sántha M, Tóth ME, Vígh L. Heat Shock Proteins and Autophagy Pathways in Neuroprotection: from Molecular Bases to Pharmacological Interventions. Int J Mol Sci 2018; 19:E325. [PMID: 29361800 PMCID: PMC5796267 DOI: 10.3390/ijms19010325] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease and Huntington's disease (HD), amyotrophic lateral sclerosis, and prion diseases are all characterized by the accumulation of protein aggregates (amyloids) into inclusions and/or plaques. The ubiquitous presence of amyloids in NDDs suggests the involvement of disturbed protein homeostasis (proteostasis) in the underlying pathomechanisms. This review summarizes specific mechanisms that maintain proteostasis, including molecular chaperons, the ubiquitin-proteasome system (UPS), endoplasmic reticulum associated degradation (ERAD), and different autophagic pathways (chaperon mediated-, micro-, and macro-autophagy). The role of heat shock proteins (Hsps) in cellular quality control and degradation of pathogenic proteins is reviewed. Finally, putative therapeutic strategies for efficient removal of cytotoxic proteins from neurons and design of new therapeutic targets against the progression of NDDs are discussed.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Dóm Square 8, Hungary.
| | - Ferenc Bogár
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Dóm Square 8, Hungary.
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Dóm Square 8, Hungary.
| | - Tim Crul
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| | - Miklós Sántha
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| | - Melinda E Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| |
Collapse
|
122
|
Medina R, Richly H. The dire side of autophagy in aging: Lessons from C. elegans. Commun Integr Biol 2018. [PMCID: PMC5824937 DOI: 10.1080/19420889.2017.1395120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Autophagy is an essential cellular process that eliminates cellular debris, dysfunctional organelles and misfolded proteins thereby maintaining cellular metabolism and homeostasis. Functional autophagy is generally thought to counteract aging and is crucial for the prolonged lifespan and health of an animal. Whereas this statement is true for young animals, we have recently shown that autophagy becomes dysfunctional in post-reproductive C. elegans contributing to aging and neurodegeneration. Downregulation of autophagy nucleation in post-reproductive nematodes causes a lifespan extension and preservation of neuronal integrity putting the generally accepted view of the role of autophagy in aging into question. Here we discuss specific cellular degradation programs in young and old animals and speculate on molecular mechanisms that might explain this unexpected role of autophagy in aged animals.
Collapse
Affiliation(s)
- Rebeca Medina
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Holger Richly
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology (IMB), Mainz, Germany
| |
Collapse
|
123
|
Hampel H, Toschi N, Babiloni C, Baldacci F, Black KL, Bokde AL, Bun RS, Cacciola F, Cavedo E, Chiesa PA, Colliot O, Coman CM, Dubois B, Duggento A, Durrleman S, Ferretti MT, George N, Genthon R, Habert MO, Herholz K, Koronyo Y, Koronyo-Hamaoui M, Lamari F, Langevin T, Lehéricy S, Lorenceau J, Neri C, Nisticò R, Nyasse-Messene F, Ritchie C, Rossi S, Santarnecchi E, Sporns O, Verdooner SR, Vergallo A, Villain N, Younesi E, Garaci F, Lista S. Revolution of Alzheimer Precision Neurology. Passageway of Systems Biology and Neurophysiology. J Alzheimers Dis 2018; 64:S47-S105. [PMID: 29562524 PMCID: PMC6008221 DOI: 10.3233/jad-179932] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The Precision Neurology development process implements systems theory with system biology and neurophysiology in a parallel, bidirectional research path: a combined hypothesis-driven investigation of systems dysfunction within distinct molecular, cellular, and large-scale neural network systems in both animal models as well as through tests for the usefulness of these candidate dynamic systems biomarkers in different diseases and subgroups at different stages of pathophysiological progression. This translational research path is paralleled by an "omics"-based, hypothesis-free, exploratory research pathway, which will collect multimodal data from progressing asymptomatic, preclinical, and clinical neurodegenerative disease (ND) populations, within the wide continuous biological and clinical spectrum of ND, applying high-throughput and high-content technologies combined with powerful computational and statistical modeling tools, aimed at identifying novel dysfunctional systems and predictive marker signatures associated with ND. The goals are to identify common biological denominators or differentiating classifiers across the continuum of ND during detectable stages of pathophysiological progression, characterize systems-based intermediate endophenotypes, validate multi-modal novel diagnostic systems biomarkers, and advance clinical intervention trial designs by utilizing systems-based intermediate endophenotypes and candidate surrogate markers. Achieving these goals is key to the ultimate development of early and effective individualized treatment of ND, such as Alzheimer's disease. The Alzheimer Precision Medicine Initiative (APMI) and cohort program (APMI-CP), as well as the Paris based core of the Sorbonne University Clinical Research Group "Alzheimer Precision Medicine" (GRC-APM) were recently launched to facilitate the passageway from conventional clinical diagnostic and drug development toward breakthrough innovation based on the investigation of the comprehensive biological nature of aging individuals. The APMI movement is gaining momentum to systematically apply both systems neurophysiology and systems biology in exploratory translational neuroscience research on ND.
Collapse
Affiliation(s)
- Harald Hampel
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Department of Radiology, “Athinoula A. Martinos” Center for Biomedical Imaging, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “Vittorio Erspamer”, University of Rome “La Sapienza”, Rome, Italy
- Institute for Research and Medical Care, IRCCS “San Raffaele Pisana”, Rome, Italy
| | - Filippo Baldacci
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Keith L. Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Arun L.W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - René S. Bun
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Francesco Cacciola
- Unit of Neurosurgery, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Enrica Cavedo
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
- IRCCS “San Giovanni di Dio-Fatebenefratelli”, Brescia, Italy
| | - Patrizia A. Chiesa
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Olivier Colliot
- Inserm, U1127, Paris, France; CNRS, UMR 7225 ICM, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France; Institut du Cerveau et de la Moelle Épinière (ICM) Paris, France; Inria, Aramis project-team, Centre de Recherche de Paris, France; Department of Neuroradiology, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Neurology, AP-HP, Hôpital de la Pitié-Salpêtrière, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Paris, France
| | - Cristina-Maria Coman
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Bruno Dubois
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
| | - Andrea Duggento
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Stanley Durrleman
- Inserm, U1127, Paris, France; CNRS, UMR 7225 ICM, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France; Institut du Cerveau et de la Moelle Épinière (ICM) Paris, France; Inria, Aramis project-team, Centre de Recherche de Paris, France
| | - Maria-Teresa Ferretti
- IREM, Institute for Regenerative Medicine, University of Zurich, Zürich, Switzerland
- ZNZ Neuroscience Center Zurich, Zürich, Switzerland
| | - Nathalie George
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle Épinière, ICM, Ecole Normale Supérieure, ENS, Centre MEG-EEG, F-75013, Paris, France
| | - Remy Genthon
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
| | - Marie-Odile Habert
- Département de Médecine Nucléaire, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France
- Laboratoire d’Imagerie Biomédicale, Sorbonne Universités, UPMC Univ Paris 06, Inserm U 1146, CNRS UMR 7371, Paris, France
| | - Karl Herholz
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Wolfson Molecular Imaging Centre, Manchester, UK
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Foudil Lamari
- AP-HP, UF Biochimie des Maladies Neuro-métaboliques, Service de Biochimie Métabolique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | - Stéphane Lehéricy
- Centre de NeuroImagerie de Recherche - CENIR, Institut du Cerveau et de la Moelle Épinière - ICM, F-75013, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, F-75013, Paris, France
| | - Jean Lorenceau
- Institut de la Vision, INSERM, Sorbonne Universités, UPMC Univ Paris 06, UMR_S968, CNRS UMR7210, Paris, France
| | - Christian Neri
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, CNRS UMR 8256, Institut de Biologie Paris-Seine (IBPS), Place Jussieu, F-75005, Paris, France
| | - Robert Nisticò
- Department of Biology, University of Rome “Tor Vergata” & Pharmacology of Synaptic Disease Lab, European Brain Research Institute (E.B.R.I.), Rome, Italy
| | - Francis Nyasse-Messene
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
| | - Craig Ritchie
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Simone Rossi
- Department of Medicine, Surgery and Neurosciences, Unit of Neurology and Clinical Neurophysiology, Brain Investigation & Neuromodulation Lab. (Si-BIN Lab.), University of Siena, Siena, Italy
- Department of Medicine, Surgery and Neurosciences, Section of Human Physiology University of Siena, Siena, Italy
| | - Emiliano Santarnecchi
- Department of Medicine, Surgery and Neurosciences, Unit of Neurology and Clinical Neurophysiology, Brain Investigation & Neuromodulation Lab. (Si-BIN Lab.), University of Siena, Siena, Italy
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- IU Network Science Institute, Indiana University, Bloomington, IN, USA
| | | | - Andrea Vergallo
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Nicolas Villain
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | | | - Francesco Garaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Casa di Cura “San Raffaele Cassino”, Cassino, Italy
| | - Simone Lista
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| |
Collapse
|
124
|
Kwon YT, Ciechanover A. The Ubiquitin Code in the Ubiquitin-Proteasome System and Autophagy. Trends Biochem Sci 2017; 42:873-886. [DOI: 10.1016/j.tibs.2017.09.002] [Citation(s) in RCA: 374] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022]
|
125
|
Jiang X, Zhang H, Duan F, Quan X. Identify Huntington's disease associated genes based on restricted Boltzmann machine with RNA-seq data. BMC Bioinformatics 2017; 18:447. [PMID: 29020921 PMCID: PMC5637347 DOI: 10.1186/s12859-017-1859-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/02/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Predicting disease-associated genes is helpful for understanding the molecular mechanisms during the disease progression. Since the pathological mechanisms of neurodegenerative diseases are very complex, traditional statistic-based methods are not suitable for identifying key genes related to the disease development. Recent studies have shown that the computational models with deep structure can learn automatically the features of biological data, which is useful for exploring the characteristics of gene expression during the disease progression. RESULTS In this paper, we propose a deep learning approach based on the restricted Boltzmann machine to analyze the RNA-seq data of Huntington's disease, namely stacked restricted Boltzmann machine (SRBM). According to the SRBM, we also design a novel framework to screen the key genes during the Huntington's disease development. In this work, we assume that the effects of regulatory factors can be captured by the hierarchical structure and narrow hidden layers of the SRBM. First, we select disease-associated factors with different time period datasets according to the differentially activated neurons in hidden layers. Then, we select disease-associated genes according to the changes of the gene energy in SRBM at different time periods. CONCLUSIONS The experimental results demonstrate that SRBM can detect the important information for differential analysis of time series gene expression datasets. The identification accuracy of the disease-associated genes is improved to some extent using the novel framework. Moreover, the prediction precision of disease-associated genes for top ranking genes using SRBM is effectively improved compared with that of the state of the art methods.
Collapse
Affiliation(s)
- Xue Jiang
- College of Computer and Control Engineering, Nankai University, Tongyan Road, Tianjin, 300350, China.,Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tongyan Road, Tianjin, 300350, China
| | - Han Zhang
- College of Computer and Control Engineering, Nankai University, Tongyan Road, Tianjin, 300350, China.,Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tongyan Road, Tianjin, 300350, China
| | - Feng Duan
- College of Computer and Control Engineering, Nankai University, Tongyan Road, Tianjin, 300350, China.,Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tongyan Road, Tianjin, 300350, China
| | - Xiongwen Quan
- College of Computer and Control Engineering, Nankai University, Tongyan Road, Tianjin, 300350, China. .,Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tongyan Road, Tianjin, 300350, China.
| |
Collapse
|
126
|
Chen LL, Wang YB, Song JX, Deng WK, Lu JH, Ma LL, Yang CB, Li M, Xue Y. Phosphoproteome-based kinase activity profiling reveals the critical role of MAP2K2 and PLK1 in neuronal autophagy. Autophagy 2017; 13:1969-1980. [PMID: 28933595 PMCID: PMC5788482 DOI: 10.1080/15548627.2017.1371393] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 07/25/2017] [Accepted: 08/21/2017] [Indexed: 01/03/2023] Open
Abstract
Recent studies have demonstrated that dysregulation of macroautophagy/autophagy may play a central role in the pathogenesis of neurodegenerative disorders, and the induction of autophagy protects against the toxic insults of aggregate-prone proteins by enhancing their clearance. Thus, autophagy has become a promising therapeutic target against neurodegenerative diseases. In this study, quantitative phosphoproteomic profiling together with a computational analysis was performed to delineate the phosphorylation signaling networks regulated by 2 natural neuroprotective autophagy enhancers, corynoxine (Cory) and corynoxine B (Cory B). To identify key regulators, namely, protein kinases, we developed a novel network-based algorithm of in silico Kinome Activity Profiling (iKAP) to computationally infer potentially important protein kinases from phosphorylation networks. Using this algorithm, we observed that Cory or Cory B potentially regulated several kinases. We predicted and validated that Cory, but not Cory B, downregulated a well-documented autophagy kinase, RPS6KB1/p70S6K (ribosomal protein S6 kinase, polypeptide 1). We also discovered 2 kinases, MAP2K2/MEK2 (mitogen-activated protein kinase kinase 2) and PLK1 (polo-like kinase 1), to be potentially upregulated by Cory, whereas the siRNA-mediated knockdown of Map2k2 and Plk1 significantly inhibited Cory-induced autophagy. Furthermore, Cory promoted the clearance of Alzheimer disease-associated APP (amyloid β [A4] precursor protein) and Parkinson disease-associated SNCA/α-synuclein (synuclein, α) by enhancing autophagy, and these effects were dramatically diminished by the inhibition of the kinase activities of MAP2K2 and PLK1. As a whole, our study not only developed a powerful method for the identification of important regulators from the phosphoproteomic data but also identified the important role of MAP2K2 and PLK1 in neuronal autophagy.
Collapse
Affiliation(s)
- Lei-Lei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson Disease Research, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, Shandong, China
| | - Yong-Bo Wang
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, and the Collaborative Innovation Center for Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ju-Xian Song
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson Disease Research, Hong Kong Baptist University, Hong Kong SAR, China
| | - Wan-Kun Deng
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, and the Collaborative Innovation Center for Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Li-Li Ma
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, and the Collaborative Innovation Center for Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chuan-Bin Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson Disease Research, Hong Kong Baptist University, Hong Kong SAR, China
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson Disease Research, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yu Xue
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, and the Collaborative Innovation Center for Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
127
|
Marín M, Fernández-Calero T, Ehrlich R. Protein folding and tRNA biology. Biophys Rev 2017; 9:573-588. [PMID: 28944442 PMCID: PMC5662057 DOI: 10.1007/s12551-017-0322-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022] Open
Abstract
Polypeptides can fold into tertiary structures while they are synthesized by the ribosome. In addition to the amino acid sequence, protein folding is determined by several factors within the cell. Among others, the folding pathway of a nascent polypeptide can be affected by transient interactions with other proteins, ligands, or the ribosome, as well as by the translocation through membrane pores. Particularly, the translation machinery and the population of tRNA under different physiological or adaptive responses can dramatically affect protein folding. This review summarizes the scientific evidence describing the role of translation kinetics and tRNA populations on protein folding and addresses current efforts to better understand tRNA biology. It is organized into three main parts, which are focused on: (i) protein folding in the cellular context; (ii) tRNA biology and the complexity of the tRNA population; and (iii) available methods and technical challenges in the characterization of tRNA pools. In this manner, this work illustrates the ways by which functional properties of proteins may be modulated by cellular tRNA populations.
Collapse
Affiliation(s)
- Mónica Marín
- Biochemistry-Molecular Biology Section, Cellular and Molecular Biology Department, Faculty of Sciences, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Tamara Fernández-Calero
- Biochemistry-Molecular Biology Section, Cellular and Molecular Biology Department, Faculty of Sciences, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
- Bioinformatics Unit, Institut Pasteur Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay
| | - Ricardo Ehrlich
- Biochemistry-Molecular Biology Section, Cellular and Molecular Biology Department, Faculty of Sciences, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
- Institut Pasteur Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay
| |
Collapse
|
128
|
Induced Pluripotent Stem Cell Neuronal Models for the Study of Autophagy Pathways in Human Neurodegenerative Disease. Cells 2017; 6:cells6030024. [PMID: 28800101 PMCID: PMC5617970 DOI: 10.3390/cells6030024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are invaluable tools for research into the causes of diverse human diseases, and have enormous potential in the emerging field of regenerative medicine. Our ability to reprogramme patient cells to become hiPSCs, and to subsequently direct their differentiation towards those classes of neurons that are vulnerable to stress, is revealing how genetic mutations cause changes at the molecular level that drive the complex pathogeneses of human neurodegenerative diseases. Autophagy dysregulation is considered to be a major contributor in neural decline during the onset and progression of many human neurodegenerative diseases, meaning that a better understanding of the control of non-selective and selective autophagy pathways (including mitophagy) in disease-affected classes of neurons is needed. To achieve this, it is essential that the methodologies commonly used to study autophagy regulation under basal and stressed conditions in standard cell-line models are accurately applied when using hiPSC-derived neuronal cultures. Here, we discuss the roles and control of autophagy in human stem cells, and how autophagy contributes to neural differentiation in vitro. We also describe how autophagy-monitoring tools can be applied to hiPSC-derived neurons for the study of human neurodegenerative disease in vitro.
Collapse
|
129
|
Xu N, Bitan G, Schrader T, Klärner FG, Osinska H, Robbins J. Inhibition of Mutant αB Crystallin-Induced Protein Aggregation by a Molecular Tweezer. J Am Heart Assoc 2017; 6:JAHA.117.006182. [PMID: 28862927 PMCID: PMC5586456 DOI: 10.1161/jaha.117.006182] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Compromised protein quality control causes the accumulation of misfolded proteins and intracellular aggregates, contributing to cardiac disease and heart failure. The development of therapeutics directed at proteotoxicity‐based pathology in heart disease is just beginning. The molecular tweezer CLR01 is a broad‐spectrum inhibitor of abnormal self‐assembly of amyloidogenic proteins, including amyloid β‐protein, tau, and α‐synuclein. This small molecule interferes with aggregation by binding selectively to lysine side chains, changing the charge distribution of aggregation‐prone proteins and thereby disrupting aggregate formation. However, the effects of CLR01 in cardiomyocytes undergoing proteotoxic stress have not been explored. Here we assess whether CLR01 can decrease cardiac protein aggregation catalyzed by cardiomyocyte‐specific expression of mutated αB‐crystallin (CryABR120G). Methods and Results A proteotoxic model of desmin‐related cardiomyopathy caused by cardiomyocyte‐specific expression of CryABR120G was used to test the efficacy of CLR01 therapy in the heart. Neonatal rat cardiomyocytes were infected with adenovirus expressing either wild‐type CryAB or CryABR120G. Subsequently, the cells were treated with different doses of CLR01 or a closely related but inactive derivative, CLR03. CLR01 decreased aggregate accumulation and attenuated cytotoxicity caused by CryABR120G expression in a dose‐dependent manner, whereas CLR03 had no effect. Ubiquitin‐proteasome system function was analyzed using a ubiquitin‐proteasome system reporter protein consisting of a short degron, CL1, fused to the COOH‐terminus of green fluorescent protein. CLR01 improved proteasomal function in CryABR120G cardiomyocytes but did not alter autophagic flux. In vivo, CLR01 administration also resulted in reduced protein aggregates in CryABR120G transgenic mice. Conclusions CLR01 can inhibit CryABR120G aggregate formation and decrease cytotoxicity in cardiomyocytes undergoing proteotoxic stress, presumably through clearance of the misfolded protein via increased proteasomal function. CLR01 or related compounds may be therapeutically useful in treating the pathogenic sequelae resulting from proteotoxic heart disease.
Collapse
Affiliation(s)
- Na Xu
- Division of Molecular Cardiovascular Biology, the Heart Institute, Cincinnati Children's Hospital, Cincinnati, OH
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, Brain Research Institute, and Molecular Biology Institute, University of California at Los Angeles, CA
| | - Thomas Schrader
- Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | | | - Hanna Osinska
- Division of Molecular Cardiovascular Biology, the Heart Institute, Cincinnati Children's Hospital, Cincinnati, OH
| | - Jeffrey Robbins
- Division of Molecular Cardiovascular Biology, the Heart Institute, Cincinnati Children's Hospital, Cincinnati, OH
| |
Collapse
|
130
|
Stryeck S, Birner-Gruenberger R, Madl T. Integrative metabolomics as emerging tool to study autophagy regulation. MICROBIAL CELL (GRAZ, AUSTRIA) 2017; 4:240-258. [PMID: 28845422 PMCID: PMC5568430 DOI: 10.15698/mic2017.08.584] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/01/2017] [Indexed: 12/15/2022]
Abstract
Recent technological developments in metabolomics research have enabled in-depth characterization of complex metabolite mixtures in a wide range of biological, biomedical, environmental, agricultural, and nutritional research fields. Nuclear magnetic resonance spectroscopy and mass spectrometry are the two main platforms for performing metabolomics studies. Given their broad applicability and the systemic insight into metabolism that can be obtained it is not surprising that metabolomics becomes increasingly popular in basic biological research. In this review, we provide an overview on key metabolites, recent studies, and future opportunities for metabolomics in studying autophagy regulation. Metabolites play a pivotal role in autophagy regulation and are therefore key targets for autophagy research. Given the recent success of metabolomics, it can be expected that metabolomics approaches will contribute significantly to deciphering the complex regulatory mechanisms involved in autophagy in the near future and promote understanding of autophagy and autophagy-related diseases in living cells and organisms.
Collapse
Affiliation(s)
- Sarah Stryeck
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Ruth Birner-Gruenberger
- Research Unit for Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Tobias Madl
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
131
|
Reversal of Pathologic Lipid Accumulation in NPC1-Deficient Neurons by Drug-Promoted Release of LAMP1-Coated Lamellar Inclusions. J Neurosci 2017; 36:8012-25. [PMID: 27466344 DOI: 10.1523/jneurosci.0900-16.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/15/2016] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Aging and pathologic conditions cause intracellular aggregation of macromolecules and the dysfunction and degeneration of neurons, but the mechanisms are largely unknown. Prime examples are lysosomal storage disorders such as Niemann-Pick type C (NPC) disease, where defects in the endosomal-lysosomal protein NPC1 or NPC2 cause intracellular accumulation of unesterified cholesterol and other lipids leading to neurodegeneration and fatal neurovisceral symptoms. Here, we investigated the impact of NPC1 deficiency on rodent neurons using pharmacologic and genetic models of the disease. Improved ultrastructural detection of lipids and correlative light and electron microscopy identified lamellar inclusions as the subcellular site of cholesterol accumulation in neurons with impaired NPC1 activity. Immunogold labeling combined with transmission electron microscopy revealed the presence of CD63 on internal lamellae and of LAMP1 on the membrane surrounding the inclusions, indicating their origins from intraluminal vesicles of late endosomes and of a lysosomal compartment, respectively. Lamellar inclusions contained cell-intrinsic cholesterol and surface-labeled GM1, indicating the incorporation of plasma membrane components. Scanning electron microscopy revealed that the therapeutic drug candidate β-cyclodextrin induces the subplasmalemmal location of lamellar inclusions and their subsequent release to the extracellular space. In parallel, β-cyclodextrin mediated the NPC1-independent redistribution of cholesterol within neurons and thereby abolished a deleterious cycle of enhanced cholesterol synthesis and its intracellular accumulation, which was indicated by neuron-specific transcript analysis. Our study provides new mechanistic insight into the pathologic aggregation of macromolecules in neurons and suggests exocytosis as cellular target for its therapeutic reversal. SIGNIFICANCE STATEMENT Many neurodegenerative diseases involve pathologic accumulation of molecules within neurons, but the subcellular location and the cellular impact are often unknown and therapeutic approaches lacking. We investigated these questions in the lysosomal storage disorder Niemann-Pick type C (NPC), where a defect in intracellular cholesterol transport causes loss of neurons and fatal neurovisceral symptoms. Here, we identify lamellar inclusions as the subcellular site of lipid accumulation in neurons, we uncover a vicious cycle of cholesterol synthesis and accretion, which may cause gradual neurodegeneration, and we reveal how β-cyclodextrin, a potential therapeutic drug, reverts these changes. Our study provides new mechanistic insight in NPC disease and uncovers new targets for therapeutic approaches.
Collapse
|
132
|
Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F, Choi AM, Chu CT, Codogno P, Colombo MI, Cuervo AM, Debnath J, Deretic V, Dikic I, Eskelinen EL, Fimia GM, Fulda S, Gewirtz DA, Green DR, Hansen M, Harper JW, Jäättelä M, Johansen T, Juhasz G, Kimmelman AC, Kraft C, Ktistakis NT, Kumar S, Levine B, Lopez-Otin C, Madeo F, Martens S, Martinez J, Melendez A, Mizushima N, Münz C, Murphy LO, Penninger JM, Piacentini M, Reggiori F, Rubinsztein DC, Ryan KM, Santambrogio L, Scorrano L, Simon AK, Simon HU, Simonsen A, Tavernarakis N, Tooze SA, Yoshimori T, Yuan J, Yue Z, Zhong Q, Kroemer G. Molecular definitions of autophagy and related processes. EMBO J 2017; 36:1811-1836. [PMID: 28596378 PMCID: PMC5494474 DOI: 10.15252/embj.201796697] [Citation(s) in RCA: 1220] [Impact Index Per Article: 152.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/15/2022] Open
Abstract
Over the past two decades, the molecular machinery that underlies autophagic responses has been characterized with ever increasing precision in multiple model organisms. Moreover, it has become clear that autophagy and autophagy-related processes have profound implications for human pathophysiology. However, considerable confusion persists about the use of appropriate terms to indicate specific types of autophagy and some components of the autophagy machinery, which may have detrimental effects on the expansion of the field. Driven by the overt recognition of such a potential obstacle, a panel of leading experts in the field attempts here to define several autophagy-related terms based on specific biochemical features. The ultimate objective of this collaborative exchange is to formulate recommendations that facilitate the dissemination of knowledge within and outside the field of autophagy research.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Université Paris Descartes/Paris V, Paris, France
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Medical Genetics, Department of Pediatrics, Federico II University, Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - José Manuel Bravo-San Pedro
- Université Paris Descartes/Paris V, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Francesco Cecconi
- Department of Biology, University of Tor Vergata, Rome, Italy
- Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Augustine M Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Charleen T Chu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patrice Codogno
- Université Paris Descartes/Paris V, Paris, France
- Institut Necker-Enfants Malades (INEM), Paris, France
- INSERM, U1151, Paris, France
- CNRS, UMR8253, Paris, France
| | - Maria Isabel Colombo
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jayanta Debnath
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Vojo Deretic
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Ivan Dikic
- Institute of Biochemistry II, School of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt Main, Germany
- Department of Immunology and Medical Genetics, University of Split School of Medicine, Split, Croatia
| | | | - Gian Maria Fimia
- National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Rome, Italy
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David A Gewirtz
- Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, VA, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Malene Hansen
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Marja Jäättelä
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Terje Johansen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Gabor Juhasz
- Department of Anatomy, Cell and Developmental Biology, Eotvos Lorand University, Budapest, Hungary
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Alec C Kimmelman
- Department of Radiation Oncology, Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, USA
| | - Claudine Kraft
- Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | | | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Beth Levine
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute (HHMI), Dallas, TX, USA
| | - Carlos Lopez-Otin
- Department de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación en Red de Cáncer, Oviedo, Spain
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Sascha Martens
- Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Alicia Melendez
- Department of Biology, Queens College, Queens, NY, USA
- Graduate Center, City University of New York, New York, NY, USA
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland
| | - Leon O Murphy
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Campus Vienna BioCentre, Vienna, Austria
| | - Mauro Piacentini
- Department of Biology, University of Tor Vergata, Rome, Italy
- National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Rome, Italy
| | - Fulvio Reggiori
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Laura Santambrogio
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Luca Scorrano
- Department of Biology, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Anna Katharina Simon
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences Osaka University, Osaka, Japan
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Ludwig Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Zhenyu Yue
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qing Zhong
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
- Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, Paris, France
| |
Collapse
|
133
|
Deng Z, Purtell K, Lachance V, Wold MS, Chen S, Yue Z. Autophagy Receptors and Neurodegenerative Diseases. Trends Cell Biol 2017; 27:491-504. [DOI: 10.1016/j.tcb.2017.01.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/24/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022]
|
134
|
Ishii T, Kawakami E, Endo K, Misawa H, Watabe K. Formation and spreading of TDP-43 aggregates in cultured neuronal and glial cells demonstrated by time-lapse imaging. PLoS One 2017; 12:e0179375. [PMID: 28599005 PMCID: PMC5466347 DOI: 10.1371/journal.pone.0179375] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 05/30/2017] [Indexed: 02/07/2023] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is a main constituent of cytoplasmic aggregates in neuronal and glial cells in cases of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We have previously demonstrated that adenovirus-transduced artificial TDP-43 cytoplasmic aggregates formation is enhanced by proteasome inhibition in vitro and in vivo. However, the relationship between cytoplasmic aggregate formation and cell death remains unclear. In the present study, rat neural stem cell lines stably transfected with EGFP- or Sirius-expression vectors under the control of tubulin beta III, glial fibrillary acidic protein, or 2',3'-cyclic nucleotide 3'-phosphodiesterase promoter were differentiated into neurons, astrocytes, and oligodendrocytes, respectively, in the presence of retinoic acid. The differentiated cells were then transduced with adenoviruses expressing DsRed-tagged human wild type and C-terminal fragment TDP-43 under the condition of proteasome inhibition. Time-lapse imaging analyses revealed growing cytoplasmic aggregates in the transduced neuronal and glial cells, followed by collapse of the cell. The aggregates remained insoluble in culture media, consisted of sarkosyl-insoluble granular materials, and contained phosphorylated TDP-43. Moreover, the released aggregates were incorporated into neighboring neuronal cells, suggesting cell-to-cell spreading. The present study provides a novel tool for analyzing the detailed molecular mechanisms of TDP-43 proteinopathy in vitro.
Collapse
Affiliation(s)
- Tomohiro Ishii
- Laboratory for Neurodegenerative Pathology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Emiko Kawakami
- Laboratory for Neurodegenerative Pathology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kentaro Endo
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hidemi Misawa
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, Japan
- * E-mail: (HM); (KW)
| | - Kazuhiko Watabe
- Laboratory for Neurodegenerative Pathology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Medical Technology (Neuropathology), Kyorin University Faculty of Health Sciences, Tokyo, Japan
- * E-mail: (HM); (KW)
| |
Collapse
|
135
|
Mitochondrial dysfunction induced by a SH2 domain-targeting STAT3 inhibitor leads to metabolic synthetic lethality in cancer cells. Proc Natl Acad Sci U S A 2017; 114:E4924-E4933. [PMID: 28584133 DOI: 10.1073/pnas.1615730114] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In addition to its canonical role in nuclear transcription, signal transducer and activator of transcription 3 (STAT3) is emerging as an important regulator of mitochondrial function. Here, we demonstrate that a novel inhibitor that binds with high affinity to the STAT3 SH2 domain triggers a complex cascade of events initiated by interference with mitochondrial STAT3 (mSTAT3). The mSTAT3-drug interaction leads to mitochondrial dysfunction, accumulation of proteotoxic STAT3 aggregates, and cell death. The cytotoxic effects depend directly on the drug's ability to interfere with mSTAT3 and mitochondrial function, as demonstrated by site-directed mutagenesis and use of STAT3 knockout and mitochondria-depleted cells. Importantly, the lethal consequences of mSTAT3 inhibition are enhanced by glucose starvation and by increased reliance of cancer cells and tumor-initiating cells on mitochondria, resulting in potent activity in cell cultures and tumor xenografts in mice. These findings can be exploited for eliciting synthetic lethality in metabolically stressed cancer cells using high-affinity STAT3 inhibitors. Thus, this study provides insights on the role of mSTAT3 in cancer cells and a conceptual framework for developing more effective cancer therapies.
Collapse
|
136
|
Jiang X, Zhang H, Quan X, Liu Z, Yin Y. Disease-related gene module detection based on a multi-label propagation clustering algorithm. PLoS One 2017; 12:e0178006. [PMID: 28542379 PMCID: PMC5438150 DOI: 10.1371/journal.pone.0178006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 05/06/2017] [Indexed: 01/11/2023] Open
Abstract
Detecting disease-related gene modules by analyzing gene expression data is of great significance. It is helpful for exploratory analysis of the interaction mechanisms of genes under complex disease phenotypes. The multi-label propagation algorithm (MLPA) has been widely used in module detection for its fast and easy implementation. The accuracy of MLPA greatly depends on the connections between nodes, and most existing research focuses on measuring the similarity between nodes. However, MLPA does not perform well with loose connections between disease-related genes. Moreover, the biological significance of modules obtained by MLPA has not been demonstrated. To solve these problems, we designed a double label propagation clustering algorithm (DLPCA) based on MLPA to study Huntington's disease. In DLPCA, in addition to category labels, we introduced pathogenic labels to supervise the process of multi-label propagation clustering. The pathogenic labels contain pathogenic information about disease genes and the hierarchical structure of gene expression data. Experimental results demonstrated the superior performance of DLPCA compared with other conventional gene-clustering algorithms.
Collapse
Affiliation(s)
- Xue Jiang
- College of Computer and Control Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China
| | - Han Zhang
- College of Computer and Control Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China
| | - Xiongwen Quan
- College of Computer and Control Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China
| | - Zhandong Liu
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX 77030, United States of America
| | - Yanbin Yin
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, United States of America
| |
Collapse
|
137
|
Lazarev VF, Mikhaylova ER, Guzhova IV, Margulis BA. Possible Function of Molecular Chaperones in Diseases Caused by Propagating Amyloid Aggregates. Front Neurosci 2017; 11:277. [PMID: 28559794 PMCID: PMC5433261 DOI: 10.3389/fnins.2017.00277] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 04/30/2017] [Indexed: 12/14/2022] Open
Abstract
The vast majority of neurodegenerative pathologies stem from the formation of toxic oligomers and aggregates composed of wrongly folded proteins. These protein complexes can be released from pathogenic cells and enthralled by other cells, causing the formation of new aggregates in a prion-like manner. By this mechanism, migrating complexes can transmit a disorder to distant regions of the brain and promote gradually transmitting degenerative processes. Molecular chaperones can counteract the toxicity of misfolded proteins. In this review, we discuss recent data on the possible cytoprotective functions of chaperones in horizontally transmitting neurological disorders.
Collapse
Affiliation(s)
- Vladimir F Lazarev
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of the Russian Academy of SciencesSt. Petersburg, Russia
| | - Elena R Mikhaylova
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of the Russian Academy of SciencesSt. Petersburg, Russia
| | - Irina V Guzhova
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of the Russian Academy of SciencesSt. Petersburg, Russia
| | - Boris A Margulis
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of the Russian Academy of SciencesSt. Petersburg, Russia
| |
Collapse
|
138
|
Wang Y, MacDonald RG, Thinakaran G, Kar S. Insulin-Like Growth Factor-II/Cation-Independent Mannose 6-Phosphate Receptor in Neurodegenerative Diseases. Mol Neurobiol 2017; 54:2636-2658. [PMID: 26993302 PMCID: PMC5901910 DOI: 10.1007/s12035-016-9849-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/09/2016] [Indexed: 12/11/2022]
Abstract
The insulin-like growth factor II/mannose 6-phosphate (IGF-II/M6P) receptor is a multifunctional single transmembrane glycoprotein. Recent studies have advanced our understanding of the structure, ligand-binding properties, and trafficking of the IGF-II/M6P receptor. This receptor has been implicated in a variety of important cellular processes including growth and development, clearance of IGF-II, proteolytic activation of enzymes, and growth factor precursors, in addition to its well-known role in the delivery of lysosomal enzymes. The IGF-II/M6P receptor, distributed widely in the central nervous system, has additional roles in mediating neurotransmitter release and memory enhancement/consolidation, possibly through activating IGF-II-related intracellular signaling pathways. Recent studies suggest that overexpression of the IGF-II/M6P receptor may have an important role in regulating the levels of transcripts and proteins involved in the development of Alzheimer's disease (AD)-the prevalent cause of dementia affecting the elderly population in our society. It is reported that IGF-II/M6P receptor overexpression can increase the levels/processing of amyloid precursor protein leading to the generation of β-amyloid peptide, which is associated with degeneration of neurons and subsequent development of AD pathology. Given the significance of the receptor in mediating the transport and functioning of the lysosomal enzymes, it is being considered for therapeutic delivery of enzymes to the lysosomes to treat lysosomal storage disorders. Notwithstanding these results, additional studies are required to validate and fully characterize the function of the IGF-II/M6P receptor in the normal brain and its involvement in various neurodegenerative disorders including AD. It is also critical to understand the interaction between the IGF-II/M6P receptor and lysosomal enzymes in neurodegenerative processes, which may shed some light on developing approaches to detect and prevent neurodegeneration through the dysfunction of the receptor and the endosomal-lysosomal system.
Collapse
Affiliation(s)
- Y Wang
- Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2M8, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - R G MacDonald
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - G Thinakaran
- Departments of Neurobiology, Neurology, and Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - S Kar
- Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2M8, Canada.
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, T6G 2M8, Canada.
| |
Collapse
|
139
|
Jung J, Michalak M, Agellon LB. Endoplasmic Reticulum Malfunction in the Nervous System. Front Neurosci 2017; 11:220. [PMID: 28487627 PMCID: PMC5403925 DOI: 10.3389/fnins.2017.00220] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/31/2017] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases often have multifactorial causes and are progressive diseases. Some are inherited while others are acquired, and both vary greatly in onset and severity. Impaired endoplasmic reticulum (ER) proteostasis, involving Ca2+ signaling, protein synthesis, processing, trafficking, and degradation, is now recognized as a key risk factor in the pathogenesis of neurological disorders. Lipidostasis involves lipid synthesis, quality control, membrane assembly as well as sequestration of excess lipids or degradation of damaged lipids. Proteostasis and lipidostasis are maintained by interconnected pathways within the cellular reticular network, which includes the ER and Ca2+ signaling. Importantly, lipidostasis is important in the maintenance of membranes and luminal environment that enable optimal protein processing. Accumulating evidence suggest that the loss of coordinate regulation of proteostasis and lipidostasis has a direct and negative impact on the health of the nervous system.
Collapse
Affiliation(s)
- Joanna Jung
- Department of Biochemistry, University of AlbertaEdmonton, AB, Canada
| | - Marek Michalak
- Department of Biochemistry, University of AlbertaEdmonton, AB, Canada
| | - Luis B Agellon
- School of Dietetics and Human Nutrition, McGill UniversitySte. Anne de Bellevue, QC, Canada
| |
Collapse
|
140
|
Mao J, Xia Q, Liu C, Ying Z, Wang H, Wang G. A critical role of Hrd1 in the regulation of optineurin degradation and aggresome formation. Hum Mol Genet 2017; 26:1877-1889. [DOI: 10.1093/hmg/ddx096] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/08/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Jiahui Mao
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
- Department of Pathophysiology, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Qin Xia
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Chunfeng Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Zheng Ying
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Hongfeng Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| |
Collapse
|
141
|
Ordoñez MP, Steele JW. Modeling Niemann Pick type C1 using human embryonic and induced pluripotent stem cells. Brain Res 2017; 1656:63-67. [PMID: 26972536 PMCID: PMC5018240 DOI: 10.1016/j.brainres.2016.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 03/02/2016] [Accepted: 03/07/2016] [Indexed: 11/16/2022]
Abstract
Data generated in Niemann Pick type C1 (NPC1) human embryonic and human induced pluripotent stem cell derived neurons complement on-going studies in animal models and provide the first example, in disease-relevant human cells, of processes that underlie preferential neuronal defects in a NPC1. Our work and that of other investigators in human neurons derived from stem cells highlight the importance of performing rigorous mechanistic studies in relevant cell types to guide drug discovery and therapeutic development, alongside of existing animal models. Through the use of human stem cell-derived models of disease, we can identify and discover or repurpose drugs that revert early events that lead to neuronal failure in NPC1. Together with the study of disease pathogenesis and efficacy of therapies in animal models, these strategies will fulfill the promise of stem cell technology in the development of new treatments for human diseases. This article is part of a Special Issue entitled SI: Exploiting human neurons.
Collapse
Affiliation(s)
- M Paulina Ordoñez
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, United States; Department of Pediatric Gastroenterology, Hepatology, and Nutrition, University of California, San Diego, La Jolla, CA 92037, United States.
| | - John W Steele
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, United States
| |
Collapse
|
142
|
Levin J, Kurz A, Arzberger T, Giese A, Höglinger GU. The Differential Diagnosis and Treatment of Atypical Parkinsonism. DEUTSCHES ARZTEBLATT INTERNATIONAL 2017; 113:61-9. [PMID: 26900156 DOI: 10.3238/arztebl.2016.0061] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 11/20/2015] [Accepted: 11/20/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Aside from idiopathic Parkinson syndrome (Parkinson's disease), there are a number of other, so-called atypical parkinsonian syndromes: dementia with Lewy bodies (DLB), multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD). DLB is a common disease, with a prevalence of 0.4% (400 cases per 100 000 persons) in the elderly; MSA and PSP both have a prevalence of 5 to 10 per 100 000 persons, while the prevalence of CBD is about 1 per 100 000. METHODS This review is based on pertinent publications retrieved by a selective literature search. RESULTS The atypical parkinsonian syndromes are synucleinopathies and tauopathies, i.e., disorders characterized by the abnormal deposition of the proteins α-synuclein and tau. The site of deposition is correlated with the clinical features. In DLB, synuclein is mainly deposited in neocortical neurons, with some brain stem involvement as well. The main clinical features are dementia and, later on, parkinsonism. In MSA, synuclein is deposited in oligodendrocytes, mainly in the cerebellum but also in the brain stem; the main clinical feature is autonomic dysfunction combined with parkinsonism or cerebellar ataxia. Synucleinopathies often impair REM (rapid eye movement) sleep. PSP and CBD, on the other hand, are primary tauopathies. PSP usually causes predominantly supranuclear vertical gaze palsy and early postural instability with falls, less commonly parkinsonism (PSP-P) or frontotemporal dementia (PSP-FTD) as its most prominent feature. CBD typically manifests itself as markedly asymmetrical parkinsonism with apraxia or cortical sensory disturbance. At present, there is no accepted causal treatment for any of these disorders; the available symptomatic treatments are of limited efficacy and are supported only by low-level evidence. CONCLUSION Causal treatments for neurodegenerative diseases are now being developed and tested, and thus a molecular diagnosis is desirable. This will require the cooperation of primary care physicians with specialized centers.
Collapse
Affiliation(s)
- Johannes Levin
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München and Chair for Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Department of Neurology, Ludwig-Maximilians-Universität München, German Center for Neurodegenerative Diseases (DZNE), Munich, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Center for Neuropathology and Prion Research (ZNP), Ludwig-Maximilians-Universität München, Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München
| | | | | | | | | |
Collapse
|
143
|
Bryan MR, Bowman AB. Manganese and the Insulin-IGF Signaling Network in Huntington's Disease and Other Neurodegenerative Disorders. ADVANCES IN NEUROBIOLOGY 2017; 18:113-142. [PMID: 28889265 PMCID: PMC6559248 DOI: 10.1007/978-3-319-60189-2_6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease resulting in motor impairment and death in patients. Recently, several studies have demonstrated insulin or insulin-like growth factor (IGF) treatment in models of HD, resulting in potent amelioration of HD phenotypes via modulation of the PI3K/AKT/mTOR pathways. Administration of IGF and insulin can rescue microtubule transport, metabolic function, and autophagy defects, resulting in clearance of Huntingtin (HTT) aggregates, restoration of mitochondrial function, amelioration of motor abnormalities, and enhanced survival. Manganese (Mn) is an essential metal to all biological systems but, in excess, can be toxic. Interestingly, several studies have revealed the insulin-mimetic effects of Mn-demonstrating Mn can activate several of the same metabolic kinases and increase peripheral and neuronal insulin and IGF-1 levels in rodent models. Separate studies have shown mouse and human striatal neuroprogenitor cell (NPC) models exhibit a deficit in cellular Mn uptake, indicative of a Mn deficiency. Furthermore, evidence from the literature reveals a striking overlap between cellular consequences of Mn deficiency (i.e., impaired function of Mn-dependent enzymes) and known HD endophenotypes including excitotoxicity, increased reactive oxygen species (ROS) accumulation, and decreased mitochondrial function. Here we review published evidence supporting a hypothesis that (1) the potent effect of IGF or insulin treatment on HD models, (2) the insulin-mimetic effects of Mn, and (3) the newly discovered Mn-dependent perturbations in HD may all be functionally related. Together, this review will present the intriguing possibility that intricate regulatory cross-talk exists between Mn biology and/or toxicology and the insulin/IGF signaling pathways which may be deeply connected to HD pathology and, perhaps, other neurodegenerative diseases (NDDs) and other neuropathological conditions.
Collapse
Affiliation(s)
- Miles R Bryan
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| | - Aaron B Bowman
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
144
|
Cornils A, Maurya AK, Tereshko L, Kennedy J, Brear AG, Prahlad V, Blacque OE, Sengupta P. Structural and Functional Recovery of Sensory Cilia in C. elegans IFT Mutants upon Aging. PLoS Genet 2016; 12:e1006325. [PMID: 27906968 PMCID: PMC5131903 DOI: 10.1371/journal.pgen.1006325] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/25/2016] [Indexed: 01/28/2023] Open
Abstract
The majority of cilia are formed and maintained by the highly conserved process of intraflagellar transport (IFT). Mutations in IFT genes lead to ciliary structural defects and systemic disorders termed ciliopathies. Here we show that the severely truncated sensory cilia of hypomorphic IFT mutants in C. elegans transiently elongate during a discrete period of adult aging leading to markedly improved sensory behaviors. Age-dependent restoration of cilia morphology occurs in structurally diverse cilia types and requires IFT. We demonstrate that while DAF-16/FOXO is dispensable, the age-dependent suppression of cilia phenotypes in IFT mutants requires cell-autonomous functions of the HSF1 heat shock factor and the Hsp90 chaperone. Our results describe an unexpected role of early aging and protein quality control mechanisms in suppressing ciliary phenotypes of IFT mutants, and suggest possible strategies for targeting subsets of ciliopathies. Cilia are ‘antenna-like’ structures that are present on nearly all cell types in animals. These structures are important for sensing and signaling external cues to the cell. Most cilia are formed by a protein transport process called ‘intraflagellar transport’ or IFT. Mutations in IFT genes result in severe cilia defects, and are causal to a large number of diverse human disorders called ciliopathies. Since the genes and processes by which cilia are formed are similar across species, studies in experimental models such as the nematode C. elegans can greatly inform our overall understanding of cilia formation and function. Here we report the surprising observation that the structures and functions of severely defective cilia in nematodes with disrupted IFT genes markedly improve upon aging. We find that protein quality control mechanisms that normally decline in aging are required for this age-dependent recovery of cilia structure. Our results raise the possibility that the effects of some mutations in IFT genes can be bypassed under specific conditions, thereby restoring cilia functions.
Collapse
Affiliation(s)
- Astrid Cornils
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts
| | - Ashish K. Maurya
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts
| | - Lauren Tereshko
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts
| | - Julie Kennedy
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Andrea G. Brear
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, University of Iowa, Iowa City, Iowa
| | - Oliver E. Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts
- * E-mail:
| |
Collapse
|
145
|
Hubbs AF, Fluharty KL, Edwards RJ, Barnabei JL, Grantham JT, Palmer SM, Kelly F, Sargent LM, Reynolds SH, Mercer RR, Goravanahally MP, Kashon ML, Honaker JC, Jackson MC, Cumpston AM, Goldsmith WT, McKinney W, Fedan JS, Battelli LA, Munro T, Bucklew-Moyers W, McKinstry K, Schwegler-Berry D, Friend S, Knepp AK, Smith SL, Sriram K. Accumulation of Ubiquitin and Sequestosome-1 Implicate Protein Damage in Diacetyl-Induced Cytotoxicity. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2887-2908. [PMID: 27643531 PMCID: PMC5222965 DOI: 10.1016/j.ajpath.2016.07.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/09/2016] [Accepted: 07/21/2016] [Indexed: 01/12/2023]
Abstract
Inhaled diacetyl vapors are associated with flavorings-related lung disease, a potentially fatal airway disease. The reactive α-dicarbonyl group in diacetyl causes protein damage in vitro. Dicarbonyl/l-xylulose reductase (DCXR) metabolizes diacetyl into acetoin, which lacks this α-dicarbonyl group. To investigate the hypothesis that flavorings-related lung disease is caused by in vivo protein damage, we correlated diacetyl-induced airway damage in mice with immunofluorescence for markers of protein turnover and autophagy. Western immunoblots identified shifts in ubiquitin pools. Diacetyl inhalation caused dose-dependent increases in bronchial epithelial cells with puncta of both total ubiquitin and K63-ubiquitin, central mediators of protein turnover. This response was greater in Dcxr-knockout mice than in wild-type controls inhaling 200 ppm diacetyl, further implicating the α-dicarbonyl group in protein damage. Western immunoblots demonstrated decreased free ubiquitin in airway-enriched fractions. Transmission electron microscopy and colocalization of ubiquitin-positive puncta with lysosomal-associated membrane proteins 1 and 2 and with the multifunctional scaffolding protein sequestosome-1 (SQSTM1/p62) confirmed autophagy. Surprisingly, immunoreactive SQSTM1 also accumulated in the olfactory bulb of the brain. Olfactory bulb SQSTM1 often congregated in activated microglial cells that also contained olfactory marker protein, indicating neuronophagia within the olfactory bulb. This suggests the possibility that SQSTM1 or damaged proteins may be transported from the nose to the brain. Together, these findings strongly implicate widespread protein damage in the etiology of flavorings-related lung disease.
Collapse
Affiliation(s)
- Ann F Hubbs
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia.
| | - Kara L Fluharty
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Rebekah J Edwards
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia; Department of Forensic and Investigative Science, West Virginia University, Morgantown, West Virginia
| | - Jamie L Barnabei
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia; College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - John T Grantham
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia; School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Scott M Palmer
- Duke University School of Medicine, Durham, North Carolina
| | - Francine Kelly
- Duke University School of Medicine, Durham, North Carolina
| | - Linda M Sargent
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Steven H Reynolds
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Robert R Mercer
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Madhusudan P Goravanahally
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia; Centers for Neuroscience, West Virginia University, Morgantown, West Virginia
| | - Michael L Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - John C Honaker
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Mark C Jackson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Amy M Cumpston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - William T Goldsmith
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Walter McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Jeffrey S Fedan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Lori A Battelli
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Tiffany Munro
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Winnie Bucklew-Moyers
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Kimberly McKinstry
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Diane Schwegler-Berry
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Sherri Friend
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Alycia K Knepp
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia; Department of Forensic and Investigative Science, West Virginia University, Morgantown, West Virginia
| | - Samantha L Smith
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia; Department of Forensic and Investigative Science, West Virginia University, Morgantown, West Virginia
| | - Krishnan Sriram
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| |
Collapse
|
146
|
Proteostasis regulation by the ubiquitin system. Essays Biochem 2016; 60:143-151. [DOI: 10.1042/ebc20160001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/29/2016] [Indexed: 12/14/2022]
Abstract
Cells have developed an evolutionary obligation to survey and maintain proteome fidelity and avoid the possible toxic consequences of protein misfolding and aggregation. Disturbances to protein homoeostasis (proteostasis) can result in severe cellular phenotypes and are closely linked with the accumulation of microscopically visible deposits of aggregated proteins. These include inclusion bodies found in AD (Alzheimer's disease), HD (Huntington's disease) and ALS (amyotrophic lateral sclerosis) patient neurons. Protein aggregation is intimately linked with the ubiquitin and ubiquitin-like post-translational modifier system, which manages cellular protein folding stress and promotes the restoration of proteostasis. This is achieved in large part through the action of the UPS (ubiquitin–proteasome system), which is responsible for directing the proteasomal destruction of misfolded and damaged proteins tagged with ubiquitin chains. There are other less well understood ways in which ubiquitin family members can help to maintain proteostasis that complement, but are independent of, the UPS. This article discusses our current understanding of how the ubiquitin family regulates the protein misfolding pathways that threaten proteome fidelity, and how this is achieved by the key players in this process.
Collapse
|
147
|
He M, Ding Y, Chu C, Tang J, Xiao Q, Luo ZG. Autophagy induction stabilizes microtubules and promotes axon regeneration after spinal cord injury. Proc Natl Acad Sci U S A 2016; 113:11324-11329. [PMID: 27638205 PMCID: PMC5056063 DOI: 10.1073/pnas.1611282113] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Remodeling of cytoskeleton structures, such as microtubule assembly, is believed to be crucial for growth cone initiation and regrowth of injured axons. Autophagy plays important roles in maintaining cellular homoeostasis, and its dysfunction causes neuronal degeneration. The role of autophagy in axon regeneration after injury remains speculative. Here we demonstrate a role of autophagy in regulating microtubule dynamics and axon regeneration. We found that autophagy induction promoted neurite outgrowth, attenuated the inhibitory effects of nonpermissive substrate myelin, and decreased the formation of retraction bulbs following axonal injury in cultured cortical neurons. Interestingly, autophagy induction stabilized microtubules by degrading SCG10, a microtubule disassembly protein in neurons. In mice with spinal cord injury, local administration of a specific autophagy-inducing peptide, Tat-beclin1, to lesion sites markedly attenuated axonal retraction of spinal dorsal column axons and cortical spinal tract and promoted regeneration of descending axons following long-term observation. Finally, administration of Tat-beclin1 improved the recovery of motor behaviors of injured mice. These results show a promising effect of an autophagy-inducing reagent on injured axons, providing direct evidence supporting a beneficial role of autophagy in axon regeneration.
Collapse
Affiliation(s)
- Miao He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuetong Ding
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chen Chu
- Institute of Biochemistry and Cell Biology, State Key Laboratory of Molecular Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Tang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Xiao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Ge Luo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
148
|
Puppala AK, French RL, Matthies D, Baxa U, Subramaniam S, Simonović M. Structural basis for early-onset neurological disorders caused by mutations in human selenocysteine synthase. Sci Rep 2016; 6:32563. [PMID: 27576344 PMCID: PMC5006159 DOI: 10.1038/srep32563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/09/2016] [Indexed: 01/09/2023] Open
Abstract
Selenocysteine synthase (SepSecS) catalyzes the terminal reaction of selenocysteine, and is vital for human selenoproteome integrity. Autosomal recessive inheritance of mutations in SepSecS-Ala239Thr, Thr325Ser, Tyr334Cys and Tyr429*-induced severe, early-onset, neurological disorders in distinct human populations. Although harboring different mutant alleles, patients presented remarkably similar phenotypes typified by cerebellar and cerebral atrophy, seizures, irritability, ataxia, and extreme spasticity. However, it has remained unclear how these genetic alterations affected the structure of SepSecS and subsequently elicited the development of a neurological pathology. Herein, our biophysical and structural characterization demonstrates that, with the exception of Tyr429*, pathogenic mutations decrease protein stability and trigger protein misfolding. We propose that the reduced stability and increased propensity towards misfolding are the main causes for the loss of SepSecS activity in afflicted patients, and that these factors contribute to disease progression. We also suggest that misfolding of enzymes regulating protein synthesis should be considered in the diagnosis and study of childhood neurological disorders.
Collapse
Affiliation(s)
- Anupama K Puppala
- Department of Biochemistry an Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Rachel L French
- Department of Biochemistry an Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Doreen Matthies
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ulrich Baxa
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Miljan Simonović
- Department of Biochemistry an Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
149
|
Coulthart MB, Jansen GH, Cashman NR. Evidence for transmissibility of Alzheimer disease pathology: Cause for concern? CMAJ 2016; 188:E210-E212. [PMID: 26833733 PMCID: PMC4938704 DOI: 10.1503/cmaj.151257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Michael B Coulthart
- Canadian Creuztfeldt-Jakob Disease Surveillance System (Coulthart), Public Health Agency of Canada, Ottawa, Ont.; Department of Pathology and Laboratory Medicine (Jansen), The Ottawa Hospital - Civic Campus, Ottawa, Ont.; Brain Research Centre (Cashman), University of British Columbia, Vancouver, BC
| | - Gerard H Jansen
- Canadian Creuztfeldt-Jakob Disease Surveillance System (Coulthart), Public Health Agency of Canada, Ottawa, Ont.; Department of Pathology and Laboratory Medicine (Jansen), The Ottawa Hospital - Civic Campus, Ottawa, Ont.; Brain Research Centre (Cashman), University of British Columbia, Vancouver, BC
| | - Neil R Cashman
- Canadian Creuztfeldt-Jakob Disease Surveillance System (Coulthart), Public Health Agency of Canada, Ottawa, Ont.; Department of Pathology and Laboratory Medicine (Jansen), The Ottawa Hospital - Civic Campus, Ottawa, Ont.; Brain Research Centre (Cashman), University of British Columbia, Vancouver, BC
| |
Collapse
|
150
|
Kawasaki F, Koonce NL, Guo L, Fatima S, Qiu C, Moon MT, Zheng Y, Ordway RW. Small heat shock proteins mediate cell-autonomous and -nonautonomous protection in a Drosophila model for environmental-stress-induced degeneration. Dis Model Mech 2016; 9:953-64. [PMID: 27483356 PMCID: PMC5047692 DOI: 10.1242/dmm.026385] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/05/2016] [Indexed: 12/28/2022] Open
Abstract
Cell and tissue degeneration, and the development of degenerative diseases, are influenced by genetic and environmental factors that affect protein misfolding and proteotoxicity. To better understand the role of the environment in degeneration, we developed a genetic model for heat shock (HS)-stress-induced degeneration in Drosophila. This model exhibits a unique combination of features that enhance genetic analysis of degeneration and protection mechanisms involving environmental stress. These include cell-type-specific failure of proteostasis and degeneration in response to global stress, cell-nonautonomous interactions within a simple and accessible network of susceptible cell types, and precise temporal control over the induction of degeneration. In wild-type flies, HS stress causes selective loss of the flight ability and degeneration of three susceptible cell types comprising the flight motor: muscle, motor neurons and associated glia. Other motor behaviors persist and, accordingly, the corresponding cell types controlling leg motor function are resistant to degeneration. Flight motor degeneration was preceded by a failure of muscle proteostasis characterized by diffuse ubiquitinated protein aggregates. Moreover, muscle-specific overexpression of a small heat shock protein (HSP), HSP23, promoted proteostasis and protected muscle from HS stress. Notably, neurons and glia were protected as well, indicating that a small HSP can mediate cell-nonautonomous protection. Cell-autonomous protection of muscle was characterized by a distinct distribution of ubiquitinated proteins, including perinuclear localization and clearance of protein aggregates associated with the perinuclear microtubule network. This network was severely disrupted in wild-type preparations prior to degeneration, suggesting that it serves an important role in muscle proteostasis and protection. Finally, studies of resistant leg muscles revealed that they sustain proteostasis and the microtubule cytoskeleton after HS stress. These findings establish a model for genetic analysis of degeneration and protection mechanisms involving contributions of environmental factors, and advance our understanding of the protective functions and therapeutic potential of small HSPs. Summary: A Drosophila model for environmental-stress-induced degeneration exhibits key features for genetic analysis of degenerative disease mechanisms and reveals new forms of protection mediated by small heat shock proteins.
Collapse
Affiliation(s)
- Fumiko Kawasaki
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| | - Noelle L Koonce
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| | - Linda Guo
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shahroz Fatima
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| | - Catherine Qiu
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mackenzie T Moon
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yunzhen Zheng
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| | - Richard W Ordway
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|