101
|
Wind M, Gogolou A, Manipur I, Granata I, Butler L, Andrews PW, Barbaric I, Ning K, Guarracino MR, Placzek M, Tsakiridis A. Defining the signalling determinants of a posterior ventral spinal cord identity in human neuromesodermal progenitor derivatives. Development 2021; 148:dev194415. [PMID: 33658223 PMCID: PMC8015249 DOI: 10.1242/dev.194415] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
The anteroposterior axial identity of motor neurons (MNs) determines their functionality and vulnerability to neurodegeneration. Thus, it is a crucial parameter in the design of strategies aiming to produce MNs from human pluripotent stem cells (hPSCs) for regenerative medicine/disease modelling applications. However, the in vitro generation of posterior MNs corresponding to the thoracic/lumbosacral spinal cord has been challenging. Although the induction of cells resembling neuromesodermal progenitors (NMPs), the bona fide precursors of the spinal cord, offers a promising solution, the progressive specification of posterior MNs from these cells is not well defined. Here, we determine the signals guiding the transition of human NMP-like cells toward thoracic ventral spinal cord neurectoderm. We show that combined WNT-FGF activities drive a posterior dorsal pre-/early neural state, whereas suppression of TGFβ-BMP signalling pathways promotes a ventral identity and neural commitment. Based on these results, we define an optimised protocol for the generation of thoracic MNs that can efficiently integrate within the neural tube of chick embryos. We expect that our findings will facilitate the comparison of hPSC-derived spinal cord cells of distinct axial identities.
Collapse
Affiliation(s)
- Matthew Wind
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
- Department of Neuroscience, Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Antigoni Gogolou
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
- Department of Neuroscience, Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Ichcha Manipur
- Computational and Data Science Laboratory, High Performance Computing and Networking Institute, National Research Council of Italy, Napoli 80131, Italy
| | - Ilaria Granata
- Computational and Data Science Laboratory, High Performance Computing and Networking Institute, National Research Council of Italy, Napoli 80131, Italy
| | - Larissa Butler
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
| | - Peter W Andrews
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
| | - Ivana Barbaric
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
| | - Ke Ning
- Department of Neuroscience, Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | | | - Marysia Placzek
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
- Department of Neuroscience, Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
102
|
Wymeersch FJ, Wilson V, Tsakiridis A. Understanding axial progenitor biology in vivo and in vitro. Development 2021; 148:148/4/dev180612. [PMID: 33593754 DOI: 10.1242/dev.180612] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The generation of the components that make up the embryonic body axis, such as the spinal cord and vertebral column, takes place in an anterior-to-posterior (head-to-tail) direction. This process is driven by the coordinated production of various cell types from a pool of posteriorly-located axial progenitors. Here, we review the key features of this process and the biology of axial progenitors, including neuromesodermal progenitors, the common precursors of the spinal cord and trunk musculature. We discuss recent developments in the in vitro production of axial progenitors and their potential implications in disease modelling and regenerative medicine.
Collapse
Affiliation(s)
- Filip J Wymeersch
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Valerie Wilson
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield S10 2TN UK .,Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| |
Collapse
|
103
|
Nedelec S, Martinez-Arias A. In vitro models of spinal motor circuit's development in mammals: achievements and challenges. Curr Opin Neurobiol 2021; 66:240-249. [PMID: 33677159 DOI: 10.1016/j.conb.2020.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/12/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022]
Abstract
The connectivity patterns of neurons sustaining the functionality of spinal locomotor circuits rely on the specification of hundreds of motor neuron and interneuron subtypes precisely arrayed within the embryonic spinal cord. Knowledge acquired by developmental biologists on the molecular mechanisms underpinning this process in vivo has supported the development of 2D and 3D differentiation strategies to generate spinal neuronal diversity from mouse and human pluripotent stem cells (PSCs). Here, we review recent breakthroughs in this field and the perspectives opened up by models of in vitro embryogenesis to approach the mechanisms underlying neuronal diversification and the formation of functional mouse and human locomotor circuits. Beyond serving fundamental investigations, these new approaches should help engineering neuronal circuits differentially impacted in neuromuscular disorders, such as amyotrophic lateral sclerosis or spinal muscular atrophies, and thus open new avenues for disease modeling and drug screenings.
Collapse
Affiliation(s)
- Stéphane Nedelec
- Institut du Fer à Moulin, 75005, Paris, France; Inserm, UMR-S 1270, 75005 Paris, France; Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France.
| | | |
Collapse
|
104
|
Sambasivan R, Steventon B. Neuromesodermal Progenitors: A Basis for Robust Axial Patterning in Development and Evolution. Front Cell Dev Biol 2021; 8:607516. [PMID: 33520989 PMCID: PMC7843932 DOI: 10.3389/fcell.2020.607516] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
During early development the vertebrate embryo elongates through a combination of tissue shape change, growth and progenitor cell expansion across multiple regions of the body axis. How these events are coordinated across the length of the embryo to generate a well-proportioned body axis is unknown. Understanding the multi-tissue interplay of morphogenesis, growth and cell fate specification is essential for us to gain a complete understanding how diverse body plans have evolved in a robust manner. Within the posterior region of the embryo, a population of bipotent neuromesodermal progenitors generate both spinal cord and paraxial mesoderm derivatives during the elongation of the vertebrate body. Here we summarize recent data comparing neuromesodermal lineage and their underlying gene-regulatory networks between species and through development. We find that the common characteristic underlying this population is a competence to generate posterior neural and paraxial mesoderm cells, with a conserved Wnt/FGF and Sox2/T/Tbx6 regulatory network. We propose the hypothesis that by maintaining a population of multi-germ layer competent progenitors at the posterior aspect of the embryo, a flexible pool of progenitors is maintained whose contribution to the elongating body axis varies as a consequence of the relative growth rates occurring within anterior and posterior regions of the body axis. We discuss how this capacity for variation in the proportions and rates of NM specification might have been important allowing for alterations in the timing of embryo growth during evolution.
Collapse
Affiliation(s)
- Ramkumar Sambasivan
- Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Benjamin Steventon
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
105
|
Guibentif C, Griffiths JA, Imaz-Rosshandler I, Ghazanfar S, Nichols J, Wilson V, Göttgens B, Marioni JC. Diverse Routes toward Early Somites in the Mouse Embryo. Dev Cell 2021; 56:141-153.e6. [PMID: 33308481 PMCID: PMC7808755 DOI: 10.1016/j.devcel.2020.11.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/08/2020] [Accepted: 11/11/2020] [Indexed: 01/04/2023]
Abstract
Somite formation is foundational to creating the vertebrate segmental body plan. Here, we describe three transcriptional trajectories toward somite formation in the early mouse embryo. Precursors of the anterior-most somites ingress through the primitive streak before E7 and migrate anteriorly by E7.5, while a second wave of more posterior somites develops in the vicinity of the streak. Finally, neuromesodermal progenitors (NMPs) are set aside for subsequent trunk somitogenesis. Single-cell profiling of T-/- chimeric embryos shows that the anterior somites develop in the absence of T and suggests a cell-autonomous function of T as a gatekeeper between paraxial mesoderm production and the building of the NMP pool. Moreover, we identify putative regulators of early T-independent somites and challenge the T-Sox2 cross-antagonism model in early NMPs. Our study highlights the concept of molecular flexibility during early cell-type specification, with broad relevance for pluripotent stem cell differentiation and disease modeling.
Collapse
Affiliation(s)
- Carolina Guibentif
- Department of Haematology, University of Cambridge, CB2 0AW Cambridge, UK; Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, CB2 0AW Cambridge, UK; Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Jonathan A Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE Cambridge, UK
| | - Ivan Imaz-Rosshandler
- Department of Haematology, University of Cambridge, CB2 0AW Cambridge, UK; Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, CB2 0AW Cambridge, UK
| | - Shila Ghazanfar
- Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE Cambridge, UK
| | - Jennifer Nichols
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, CB2 0AW Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - Valerie Wilson
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of the Biological Sciences, University of Edinburgh, EH16 4UU Edinburgh, UK.
| | - Berthold Göttgens
- Department of Haematology, University of Cambridge, CB2 0AW Cambridge, UK; Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, CB2 0AW Cambridge, UK.
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE Cambridge, UK; Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Cambridge, UK; European Molecular Biology Laboratory, European Bioinformatics Institute, European Molecular Biology Laboratory, EBI), Wellcome Genome Campus, CB10 1SD Cambridge, UK.
| |
Collapse
|
106
|
Ye Z, Kimelman D. Hox13 genes are required for mesoderm formation and axis elongation during early zebrafish development. Development 2020; 147:dev.185298. [PMID: 33154036 DOI: 10.1242/dev.185298] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/19/2020] [Indexed: 12/16/2022]
Abstract
The early vertebrate embryo extends from anterior to posterior due to the addition of neural and mesodermal cells from a neuromesodermal progenitor (NMp) population located at the most posterior end of the embryo. In order to produce mesoderm throughout this time, the NMps produce their own niche, which is high in Wnt and low in retinoic acid. Using a loss-of-function approach, we demonstrate here that the two most abundant Hox13 genes in zebrafish have a novel role in providing robustness to the NMp niche by working in concert with the niche-establishing factor Brachyury to allow mesoderm formation. Mutants lacking both hoxa13b and hoxd13a in combination with reduced Brachyury activity have synergistic posterior body defects, in the strongest case producing embryos with severe mesodermal defects that phenocopy brachyury null mutants. Our results provide a new way of understanding the essential role of the Hox13 genes in early vertebrate development.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Zhi Ye
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | - David Kimelman
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| |
Collapse
|
107
|
Rocha M, Beiriger A, Kushkowski EE, Miyashita T, Singh N, Venkataraman V, Prince VE. From head to tail: regionalization of the neural crest. Development 2020; 147:dev193888. [PMID: 33106325 PMCID: PMC7648597 DOI: 10.1242/dev.193888] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The neural crest is regionalized along the anteroposterior axis, as demonstrated by foundational lineage-tracing experiments that showed the restricted developmental potential of neural crest cells originating in the head. Here, we explore how recent studies of experimental embryology, genetic circuits and stem cell differentiation have shaped our understanding of the mechanisms that establish axial-specific populations of neural crest cells. Additionally, we evaluate how comparative, anatomical and genomic approaches have informed our current understanding of the evolution of the neural crest and its contribution to the vertebrate body.
Collapse
Affiliation(s)
- Manuel Rocha
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Anastasia Beiriger
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Elaine E Kushkowski
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Tetsuto Miyashita
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
- Canadian Museum of Nature, Ottawa, ON K1P 6P4, Canada
| | - Noor Singh
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Vishruth Venkataraman
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Victoria E Prince
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
108
|
Sox2 and Canonical Wnt Signaling Interact to Activate a Developmental Checkpoint Coordinating Morphogenesis with Mesoderm Fate Acquisition. Cell Rep 2020; 33:108311. [PMID: 33113369 PMCID: PMC7653682 DOI: 10.1016/j.celrep.2020.108311] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/11/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Animal embryogenesis requires a precise coordination between morphogenesis and cell fate specification. During mesoderm induction, mesodermal fate acquisition is tightly coordinated with the morphogenetic process of epithelial-to-mesenchymal transition (EMT). In zebrafish, cells exist transiently in a partial EMT state during mesoderm induction. Here, we show that cells expressing the transcription factor Sox2 are held in the partial EMT state, stopping them from completing the EMT and joining the mesoderm. This is critical for preventing the formation of ectopic neural tissue. The mechanism involves synergy between Sox2 and the mesoderm-inducing canonical Wnt signaling pathway. When Wnt signaling is inhibited in Sox2-expressing cells trapped in the partial EMT, cells exit into the mesodermal territory but form an ectopic spinal cord instead of mesoderm. Our work identifies a critical developmental checkpoint that ensures that morphogenetic movements establishing the mesodermal germ layer are accompanied by robust mesodermal cell fate acquisition.
Collapse
|
109
|
Rayon T, Stamataki D, Perez-Carrasco R, Garcia-Perez L, Barrington C, Melchionda M, Exelby K, Lazaro J, Tybulewicz VLJ, Fisher EMC, Briscoe J. Species-specific pace of development is associated with differences in protein stability. Science 2020; 369:eaba7667. [PMID: 32943498 PMCID: PMC7116327 DOI: 10.1126/science.aba7667] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Although many molecular mechanisms controlling developmental processes are evolutionarily conserved, the speed at which the embryo develops can vary substantially between species. For example, the same genetic program, comprising sequential changes in transcriptional states, governs the differentiation of motor neurons in mouse and human, but the tempo at which it operates differs between species. Using in vitro directed differentiation of embryonic stem cells to motor neurons, we show that the program runs more than twice as fast in mouse as in human. This is not due to differences in signaling, nor the genomic sequence of genes or their regulatory elements. Instead, there is an approximately two-fold increase in protein stability and cell cycle duration in human cells compared with mouse cells. This can account for the slower pace of human development and suggests that differences in protein turnover play a role in interspecies differences in developmental tempo.
Collapse
Affiliation(s)
- Teresa Rayon
- The Francis Crick Institute, London NW1 1AT, UK.
| | | | - Ruben Perez-Carrasco
- The Francis Crick Institute, London NW1 1AT, UK
- Department of Mathematics, University College London, London WC1E 6BT, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | | - Victor L J Tybulewicz
- The Francis Crick Institute, London NW1 1AT, UK
- Department of Immunology and Inflammation, Imperial College, London W12 0NN, UK
| | - Elizabeth M C Fisher
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | | |
Collapse
|
110
|
Bardot ES, Hadjantonakis AK. Mouse gastrulation: Coordination of tissue patterning, specification and diversification of cell fate. Mech Dev 2020; 163:103617. [PMID: 32473204 PMCID: PMC7534585 DOI: 10.1016/j.mod.2020.103617] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
Abstract
During mouse embryonic development a mass of pluripotent epiblast tissue is transformed during gastrulation to generate the three definitive germ layers: endoderm, mesoderm, and ectoderm. During gastrulation, a spatiotemporally controlled sequence of events results in the generation of organ progenitors and positions them in a stereotypical fashion throughout the embryo. Key to the correct specification and differentiation of these cell fates is the establishment of an axial coordinate system along with the integration of multiple signals by individual epiblast cells to produce distinct outcomes. These signaling domains evolve as the anterior-posterior axis is established and the embryo grows in size. Gastrulation is initiated at the posteriorly positioned primitive streak, from which nascent mesoderm and endoderm progenitors ingress and begin to diversify. Advances in technology have facilitated the elaboration of landmark findings that originally described the epiblast fate map and signaling pathways required to execute those fates. Here we will discuss the current state of the field and reflect on how our understanding has shifted in recent years.
Collapse
Affiliation(s)
- Evan S Bardot
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
111
|
Tambalo M, Lodato S. Brain organoids: Human 3D models to investigate neuronal circuits assembly, function and dysfunction. Brain Res 2020; 1746:147028. [PMID: 32717276 DOI: 10.1016/j.brainres.2020.147028] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
The human brain is characterized by an extraordinary complexity of neuronal and nonneuronal cell types, wired together into patterned neuronal circuits, which represent the anatomical substrates for the execution of high-order cognitive functions. Brain circuits' development and function is metabolically supported by an intricate network of selectively permeable blood vessels and finely tuned by short-range interactions with immune factors and immune cells. The coordinated cellular and molecular events governing the assembly of this unique and complex structure are at the core of intense investigation and pose legitimate questions about the best modeling strategies. Unceasing advancements in stem cell technologies coupled with recent demonstration of cell self-assembly capacity have enabled the exponential growth of brain organoid protocols in the past decade. This provides a compelling solution to investigate human brain development, a quest often halted by the inaccessibility of brain tissues and the lack of suitable models. We review the current state-of-the-art on the generation of brain organoids, describing the latest progresses in unguided, guided, and assembloids protocols, as well as organoid-on-a-chip strategies and xenograft approaches. High resolution genome wide sequencing technologies, both at the transcriptional and epigenomic level, enable the molecular comparative analysis of multiple brain organoid protocols, as well as to benchmark them against the human fetal brain. Coupling the molecular profiling with increasingly detailed analyses of the electrophysiological properties of several of these systems now allows a more accurate estimation of the protocol of choice for a given biological question. Thus, we summarize strengths and weaknesses of several brain organoid protocols and further speculate on some potential future endeavors to model human brain development, evolution and neurodevelopmental and neuropsychiatric diseases.
Collapse
Affiliation(s)
- M Tambalo
- Humanitas Clinical and Research Center-IRCCS, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - S Lodato
- Humanitas Clinical and Research Center-IRCCS, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy.
| |
Collapse
|
112
|
Dias A, Lozovska A, Wymeersch FJ, Nóvoa A, Binagui-Casas A, Sobral D, Martins GG, Wilson V, Mallo M. A Tgfbr1/Snai1-dependent developmental module at the core of vertebrate axial elongation. eLife 2020; 9:56615. [PMID: 32597756 PMCID: PMC7324159 DOI: 10.7554/elife.56615] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022] Open
Abstract
Formation of the vertebrate postcranial body axis follows two sequential but distinct phases. The first phase generates pre-sacral structures (the so-called primary body) through the activity of the primitive streak on axial progenitors within the epiblast. The embryo then switches to generate the secondary body (post-sacral structures), which depends on axial progenitors in the tail bud. Here we show that the mammalian tail bud is generated through an independent functional developmental module, concurrent but functionally different from that generating the primary body. This module is triggered by convergent Tgfbr1 and Snai1 activities that promote an incomplete epithelial to mesenchymal transition on a subset of epiblast axial progenitors. This EMT is functionally different from that coordinated by the primitive streak, as it does not lead to mesodermal differentiation but brings axial progenitors into a transitory state, keeping their progenitor activity to drive further axial body extension.
Collapse
Affiliation(s)
- André Dias
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Filip J Wymeersch
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Ana Nóvoa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Anahi Binagui-Casas
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Gabriel G Martins
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Valerie Wilson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Moises Mallo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
113
|
Saito S, Suzuki T. How do signaling and transcription factors regulate both axis elongation and Hox gene expression along the anteroposterior axis? Dev Growth Differ 2020; 62:363-375. [DOI: 10.1111/dgd.12682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Seiji Saito
- Division of Biological Science Graduate School of Science Nagoya University Nagoya Japan
| | - Takayuki Suzuki
- Avian Bioscience Research Center Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| |
Collapse
|
114
|
Miao K, Liu SD, Huang WX, Dong H. MiR-224 Executes a Tumor Accelerative Role during Hepatocellular Carcinoma Malignancy by Targeting Cytoplasmic Polyadenylation Element-Binding Protein 3. Pharmacology 2020; 105:477-487. [PMID: 32454494 DOI: 10.1159/000506711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/21/2020] [Indexed: 11/19/2022]
Abstract
PURPOSE The purpose of our study was to probe the mechanism of how miR-224/cytoplasmic polyadenylation element-binding protein 3 (CPEB3) axis is concerned with hepatocellular carcinoma (HCC). METHODS The expressions and prognostic values of miR-224 and CPEB3 in HCC patients were analyzed based on the data acquired from the TCGA and GEO databases. qRT-PCR was conducted to test the mRNA expression levels of miR-224 and CPEB3. The expression level of miR-224 in SMMC-7721/HuH-7 cells was up-/downregulated by miR-224 mimic/inhibitor to explore its influence on HCC cell proliferation and motility by utilizing CCK8 and transwell assays, respectively. Luciferase activity assay was applied for verifying the target of miR-224. The relationship between miR-224 and CPEB3 was analyzed utilizing Pearson's correlation coefficient. The protein level of CPEB3 was tested by Western blotting. Rescue assay was performed to determine whether CPEB3 involved in the process of HCC cell phenotype changes caused by miR-224 alteration. RESULTS MiR-224 was highly expressed and CPEB3 was lowly expressed in HCC tissues. Besides, the high expression of miR-224 and low expression of CPEB3 were correlated with worse prognosis in HCC patients. Up-/downregulation of miR-224 accelerated/restrained SMMC-7721/HuH-7 cell proliferation and motility. CPEB3 was predicted and proofed as a target gene of miR-224. We discovered that CPEB3 was negatively modulated by miR-224. We also found a sharply negative correlation between CPEB3 and miR-224. Using rescue assay, we showed that overexpression of CPEB3 suppressed the proliferation and motility of SMMC-7721 cells with overexpressed miR-224, while knockdown of CPEB3 facilitated the proliferation and motility of HuH-7 cells with downregulated miR-224. CONCLUSION Our data provided evidences that miR-224 is implicated in HCC cell proliferation and motility via targeting CPEB3. The relationship between miR-224 and CPEB3 might be a novel finding, and miR-224/CPEB3 axis might be markers for providing therapeutic and prognostic information in HCC.
Collapse
Affiliation(s)
- Ke Miao
- Department of Hepatobiliary Surgery, Yiwu Central Hospital, Zhejiang, China
| | - Si-Da Liu
- Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei-Xin Huang
- Department of Geriatric Medicine, The First Hospital of Jilin University, Jilin, China
| | - Han Dong
- Department of Geriatric Medicine, The First Hospital of Jilin University, Jilin, China,
| |
Collapse
|
115
|
Berenguer M, Meyer KF, Yin J, Duester G. Discovery of genes required for body axis and limb formation by global identification of retinoic acid-regulated epigenetic marks. PLoS Biol 2020; 18:e3000719. [PMID: 32421711 PMCID: PMC7259794 DOI: 10.1371/journal.pbio.3000719] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/29/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Identification of target genes that mediate required functions downstream of transcription factors is hampered by the large number of genes whose expression changes when the factor is removed from a specific tissue and the numerous binding sites for the factor in the genome. Retinoic acid (RA) regulates transcription via RA receptors bound to RA response elements (RAREs) of which there are thousands in vertebrate genomes. Here, we combined chromatin immunoprecipitation sequencing (ChIP-seq) for epigenetic marks and RNA-seq on trunk tissue from wild-type and Aldh1a2-/- embryos lacking RA synthesis that exhibit body axis and forelimb defects. We identified a relatively small number of genes with altered expression when RA is missing that also have nearby RA-regulated deposition of histone H3 K27 acetylation (H3K27ac) (gene activation mark) or histone H3 K27 trimethylation (H3K27me3) (gene repression mark) associated with conserved RAREs, suggesting these genes function downstream of RA. RA-regulated epigenetic marks were identified near RA target genes already known to be required for body axis and limb formation, thus validating our approach; plus, many other candidate RA target genes were found. Nuclear receptor 2f1 (Nr2f1) and nuclear receptor 2f2 (Nr2f2) in addition to Meis homeobox 1 (Meis1) and Meis homeobox 2 (Meis2) gene family members were identified by our approach, and double knockouts of each family demonstrated previously unknown requirements for body axis and/or limb formation. A similar epigenetic approach can be used to determine the target genes for any transcriptional regulator for which a knockout is available.
Collapse
Affiliation(s)
- Marie Berenguer
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Karolin F. Meyer
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Jun Yin
- Bioinformatics Core Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Gregg Duester
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| |
Collapse
|
116
|
Kawachi T, Shimokita E, Kudo R, Tadokoro R, Takahashi Y. Neural-fated self-renewing cells regulated by Sox2 during secondary neurulation in chicken tail bud. Dev Biol 2020; 461:160-171. [DOI: 10.1016/j.ydbio.2020.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 12/24/2022]
|
117
|
Garriock RJ, Chalamalasetty RB, Zhu J, Kennedy MW, Kumar A, Mackem S, Yamaguchi TP. A dorsal-ventral gradient of Wnt3a/β-catenin signals controls mouse hindgut extension and colon formation. Development 2020; 147:dev.185108. [PMID: 32156757 DOI: 10.1242/dev.185108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/19/2020] [Indexed: 12/20/2022]
Abstract
Despite the importance of Wnt signaling for adult intestinal stem cell homeostasis and colorectal cancer, relatively little is known about its role in colon formation during embryogenesis. The development of the colon starts with the formation and extension of the hindgut. We show that Wnt3a is expressed in the caudal embryo in a dorsal-ventral (DV) gradient across all three germ layers, including the hindgut. Using genetic and lineage-tracing approaches, we describe novel dorsal and ventral hindgut domains, and show that ventrolateral hindgut cells populate the majority of the colonic epithelium. A Wnt3a-β-catenin-Sp5/8 pathway, which is active in the dorsal hindgut endoderm, is required for hindgut extension and colon formation. Interestingly, the absence of Wnt activity in the ventral hindgut is crucial for proper hindgut morphogenesis, as ectopic stabilization of β-catenin in the ventral hindgut via gain- or loss-of-function mutations in Ctnnb1 or Apc, respectively, leads to severe colonic hyperplasia. Thus, the DV Wnt gradient is required to coordinate growth between dorsal and ventral hindgut domains to regulate the extension of the hindgut that leads to colon formation.
Collapse
Affiliation(s)
- Robert J Garriock
- Center for Cancer Research, Cancer and Developmental Biology Laboratory, Cell Signaling in Vertebrate Development Section, NCI-Frederick, NIH, Frederick, MD 21702, USA
| | - Ravindra B Chalamalasetty
- Center for Cancer Research, Cancer and Developmental Biology Laboratory, Cell Signaling in Vertebrate Development Section, NCI-Frederick, NIH, Frederick, MD 21702, USA
| | - JianJian Zhu
- Center for Cancer Research, Cancer and Developmental Biology Laboratory, Cell Signaling in Vertebrate Development Section, NCI-Frederick, NIH, Frederick, MD 21702, USA
| | - Mark W Kennedy
- Center for Cancer Research, Cancer and Developmental Biology Laboratory, Cell Signaling in Vertebrate Development Section, NCI-Frederick, NIH, Frederick, MD 21702, USA
| | - Amit Kumar
- Center for Cancer Research, Cancer and Developmental Biology Laboratory, Cell Signaling in Vertebrate Development Section, NCI-Frederick, NIH, Frederick, MD 21702, USA
| | - Susan Mackem
- Center for Cancer Research, Cancer and Developmental Biology Laboratory, Cell Signaling in Vertebrate Development Section, NCI-Frederick, NIH, Frederick, MD 21702, USA
| | - Terry P Yamaguchi
- Center for Cancer Research, Cancer and Developmental Biology Laboratory, Cell Signaling in Vertebrate Development Section, NCI-Frederick, NIH, Frederick, MD 21702, USA
| |
Collapse
|
118
|
Roberts C. Regulating Retinoic Acid Availability during Development and Regeneration: The Role of the CYP26 Enzymes. J Dev Biol 2020; 8:jdb8010006. [PMID: 32151018 PMCID: PMC7151129 DOI: 10.3390/jdb8010006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
This review focuses on the role of the Cytochrome p450 subfamily 26 (CYP26) retinoic acid (RA) degrading enzymes during development and regeneration. Cyp26 enzymes, along with retinoic acid synthesising enzymes, are absolutely required for RA homeostasis in these processes by regulating availability of RA for receptor binding and signalling. Cyp26 enzymes are necessary to generate RA gradients and to protect specific tissues from RA signalling. Disruption of RA homeostasis leads to a wide variety of embryonic defects affecting many tissues. Here, the function of CYP26 enzymes is discussed in the context of the RA signalling pathway, enzymatic structure and biochemistry, human genetic disease, and function in development and regeneration as elucidated from animal model studies.
Collapse
Affiliation(s)
- Catherine Roberts
- Developmental Biology of Birth Defects, UCL-GOS Institute of Child Health, 30 Guilford St, London WC1N 1EH, UK;
- Institute of Medical and Biomedical Education St George’s, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| |
Collapse
|
119
|
Mallo M. The vertebrate tail: a gene playground for evolution. Cell Mol Life Sci 2020; 77:1021-1030. [PMID: 31559446 PMCID: PMC11104866 DOI: 10.1007/s00018-019-03311-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/25/2022]
Abstract
The tail of all vertebrates, regardless of size and anatomical detail, derive from a post-anal extension of the embryo known as the tail bud. Formation, growth and differentiation of this structure are closely associated with the activity of a group of cells that derive from the axial progenitors that build the spinal cord and the muscle-skeletal case of the trunk. Gdf11 activity switches the development of these progenitors from a trunk to a tail bud mode by changing the regulatory network that controls their growth and differentiation potential. Recent work in the mouse indicates that the tail bud regulatory network relies on the interconnected activities of the Lin28/let-7 axis and the Hox13 genes. As this network is likely to be conserved in other mammals, it is possible that the final length and anatomical composition of the adult tail result from the balance between the progenitor-promoting and -repressing activities provided by those genes. This balance might also determine the functional characteristics of the adult tail. Particularly relevant is its regeneration potential, intimately linked to the spinal cord. In mammals, known for their complete inability to regenerate the tail, the spinal cord is removed from the embryonic tail at late stages of development through a Hox13-dependent mechanism. In contrast, the tail of salamanders and lizards keep a functional spinal cord that actively guides the tail's regeneration process. I will argue that the distinct molecular networks controlling tail bud development provided a collection of readily accessible gene networks that were co-opted and combined during evolution either to end the active life of those progenitors or to make them generate the wide diversity of tail shapes and sizes observed among vertebrates.
Collapse
Affiliation(s)
- Moisés Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.
| |
Collapse
|
120
|
Prajapati RS, Mitter R, Vezzaro A, Ish-Horowicz D. Greb1 is required for axial elongation and segmentation in vertebrate embryos. Biol Open 2020; 9:bio047290. [PMID: 31988092 PMCID: PMC7044451 DOI: 10.1242/bio.047290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/06/2020] [Indexed: 01/08/2023] Open
Abstract
During vertebrate embryonic development, the formation of axial structures is driven by a population of stem-like cells that reside in a region of the tailbud called the chordoneural hinge (CNH). We have compared the mouse CNH transcriptome with those of surrounding tissues and shown that the CNH and tailbud mesoderm are transcriptionally similar, and distinct from the presomitic mesoderm. Amongst CNH-enriched genes are several that are required for axial elongation, including Wnt3a, Cdx2, Brachyury/T and Fgf8, and androgen/oestrogen receptor nuclear signalling components such as Greb1 We show that the pattern and duration of tailbud Greb1 expression is conserved in mouse, zebrafish and chicken embryos, and that Greb1 is required for axial elongation and somitogenesis in zebrafish embryos. The axial truncation phenotype of Greb1 morphant embryos can be explained by much reduced expression of No tail (Ntl/Brachyury), which is required for axial progenitor maintenance. Posterior segmentation defects in the morphants (including misexpression of genes such as mespb, myoD and papC) appear to result, in part, from lost expression of the segmentation clock gene, her7.
Collapse
Affiliation(s)
| | - Richard Mitter
- Cancer Research UK Developmental Genetics Laboratory, CRUK London Research Institute
- Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Annalisa Vezzaro
- Cancer Research UK Developmental Genetics Laboratory, CRUK London Research Institute
- Veyrier, 1255, Switzerland
| | - David Ish-Horowicz
- Cancer Research UK Developmental Genetics Laboratory, CRUK London Research Institute
- Cancer Research UK Developmental Genetics Laboratory, and University College London, UK
| |
Collapse
|
121
|
Faustino Martins JM, Fischer C, Urzi A, Vidal R, Kunz S, Ruffault PL, Kabuss L, Hube I, Gazzerro E, Birchmeier C, Spuler S, Sauer S, Gouti M. Self-Organizing 3D Human Trunk Neuromuscular Organoids. Cell Stem Cell 2020; 26:172-186.e6. [PMID: 31956040 DOI: 10.1016/j.stem.2019.12.007] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/30/2019] [Accepted: 12/16/2019] [Indexed: 01/14/2023]
Abstract
Neuromuscular networks assemble during early human embryonic development and are essential for the control of body movement. Previous neuromuscular junction modeling efforts using human pluripotent stem cells (hPSCs) generated either spinal cord neurons or skeletal muscles in monolayer culture. Here, we use hPSC-derived axial stem cells, the building blocks of the posterior body, to simultaneously generate spinal cord neurons and skeletal muscle cells that self-organize to generate human neuromuscular organoids (NMOs) that can be maintained in 3D for several months. Single-cell RNA-sequencing of individual organoids revealed reproducibility across experiments and enabled the tracking of the neural and mesodermal differentiation trajectories as organoids developed and matured. NMOs contain functional neuromuscular junctions supported by terminal Schwann cells. They contract and develop central pattern generator-like neuronal circuits. Finally, we successfully use NMOs to recapitulate key aspects of myasthenia gravis pathology, thus highlighting the significant potential of NMOs for modeling neuromuscular diseases in the future.
Collapse
Affiliation(s)
- Jorge-Miguel Faustino Martins
- Stem Cell Modelling of Development & Disease Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Cornelius Fischer
- Scientific Genomics Platforms, Laboratory of Functional Genomics, Nutrigenomics and Systems Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Alessia Urzi
- Stem Cell Modelling of Development & Disease Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Ramon Vidal
- Scientific Genomics Platforms, Laboratory of Functional Genomics, Nutrigenomics and Systems Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Severine Kunz
- Electron Microscopy Core Facility, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Pierre-Louis Ruffault
- Developmental Biology and Signal Transduction Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Loreen Kabuss
- Stem Cell Modelling of Development & Disease Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Iris Hube
- Stem Cell Modelling of Development & Disease Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Elisabeta Gazzerro
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), Charité Medical Faculty, and Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Carmen Birchmeier
- Developmental Biology and Signal Transduction Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), Charité Medical Faculty, and Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Sascha Sauer
- Scientific Genomics Platforms, Laboratory of Functional Genomics, Nutrigenomics and Systems Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Mina Gouti
- Stem Cell Modelling of Development & Disease Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.
| |
Collapse
|
122
|
Diaz-Cuadros M, Wagner DE, Budjan C, Hubaud A, Tarazona OA, Donelly S, Michaut A, Al Tanoury Z, Yoshioka-Kobayashi K, Niino Y, Kageyama R, Miyawaki A, Touboul J, Pourquié O. In vitro characterization of the human segmentation clock. Nature 2020; 580:113-118. [PMID: 31915384 PMCID: PMC7336868 DOI: 10.1038/s41586-019-1885-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/05/2019] [Indexed: 12/03/2022]
Abstract
The segmental organization of the vertebral column is established early in embryogenesis when pairs of somites are rhythmically produced by the presomitic mesoderm (PSM). The tempo of somite formation is controlled by a molecular oscillator known as the segmentation clock1,2. While this oscillator has been well-characterized in model organisms1,2, whether a similar oscillator exists in humans remains unknown. Genetic analysis of patients with severe spine segmentation defects have implicated several human orthologs of cyclic genes associated with the mouse segmentation clock, suggesting that this oscillator might be conserved in humans3. Here we show that in vitro-derived human as well as mouse PSM cells4 recapitulate oscillations of the segmentation clock. Human PSM cells oscillate twice slower than mouse cells (5-hours vs. 2.5 hours), but are similarly regulated by FGF, Wnt, Notch and YAP5. Single cell RNA-sequencing reveals that mouse and human PSM cells in vitro follow a similar developmental trajectory to mouse PSM in vivo. Furthermore, we demonstrate that FGF signaling controls the phase and period of oscillations, expanding the role of this pathway beyond its classical interpretation in “Clock and Wavefront” models. Overall, our work identifying the human segmentation clock represents an important breakthrough for human developmental biology.
Collapse
Affiliation(s)
- Margarete Diaz-Cuadros
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Daniel E Wagner
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Christoph Budjan
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Alexis Hubaud
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Oscar A Tarazona
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Sophia Donelly
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Arthur Michaut
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Ziad Al Tanoury
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Yusuke Niino
- Laboratory for Cell Function and Dynamics, RIKEN Center for Brain Science, Saitama, Japan
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics, RIKEN Center for Brain Science, Saitama, Japan
| | - Jonathan Touboul
- Department of Mathematics, Brandeis University, Waltham, MA, USA.,Volen National Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, MA, USA. .,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA. .,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
123
|
Draut H, Liebenstein T, Begemann G. New Insights into the Control of Cell Fate Choices and Differentiation by Retinoic Acid in Cranial, Axial and Caudal Structures. Biomolecules 2019; 9:E860. [PMID: 31835881 PMCID: PMC6995509 DOI: 10.3390/biom9120860] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Retinoic acid (RA) signaling is an important regulator of chordate development. RA binds to nuclear RA receptors that control the transcriptional activity of target genes. Controlled local degradation of RA by enzymes of the Cyp26a gene family contributes to the establishment of transient RA signaling gradients that control patterning, cell fate decisions and differentiation. Several steps in the lineage leading to the induction and differentiation of neuromesodermal progenitors and bone-producing osteogenic cells are controlled by RA. Changes to RA signaling activity have effects on the formation of the bones of the skull, the vertebrae and the development of teeth and regeneration of fin rays in fish. This review focuses on recent advances in these areas, with predominant emphasis on zebrafish, and highlights previously unknown roles for RA signaling in developmental processes.
Collapse
|
124
|
Eomes and Brachyury control pluripotency exit and germ-layer segregation by changing the chromatin state. Nat Cell Biol 2019; 21:1518-1531. [PMID: 31792383 DOI: 10.1038/s41556-019-0423-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022]
Abstract
The first lineage specification of pluripotent mouse epiblast segregates neuroectoderm (NE) from mesoderm and definitive endoderm (ME) by mechanisms that are not well understood. Here we demonstrate that the induction of ME gene programs critically relies on the T-box transcription factors Eomesodermin (also known as Eomes) and Brachyury, which concomitantly repress pluripotency and NE gene programs. Cells deficient in these T-box transcription factors retain pluripotency and differentiate to NE lineages despite the presence of ME-inducing signals transforming growth factor β (TGF-β)/Nodal and Wnt. Pluripotency and NE gene networks are additionally repressed by ME factors downstream of T-box factor induction, demonstrating a redundancy in program regulation to safeguard mutually exclusive lineage specification. Analyses of chromatin revealed that accessibility of ME enhancers depends on T-box factor binding, whereas NE enhancers are accessible and already activation primed at pluripotency. This asymmetry of the chromatin landscape thus explains the default differentiation of pluripotent cells to NE in the absence of ME induction that depends on activating and repressive functions of Eomes and Brachyury.
Collapse
|
125
|
Barral A, Rollan I, Sanchez-Iranzo H, Jawaid W, Badia-Careaga C, Menchero S, Gomez MJ, Torroja C, Sanchez-Cabo F, Göttgens B, Manzanares M, Sainz de Aja J. Nanog regulates Pou3f1 expression at the exit from pluripotency during gastrulation. Biol Open 2019; 8:bio046367. [PMID: 31791948 PMCID: PMC6899006 DOI: 10.1242/bio.046367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Pluripotency is regulated by a network of transcription factors that maintain early embryonic cells in an undifferentiated state while allowing them to proliferate. NANOG is a critical factor for maintaining pluripotency and its role in primordial germ cell differentiation has been well described. However, Nanog is expressed during gastrulation across all the posterior epiblast, and only later in development is its expression restricted to primordial germ cells. In this work, we unveiled a previously unknown mechanism by which Nanog specifically represses genes involved in anterior epiblast lineage. Analysis of transcriptional data from both embryonic stem cells and gastrulating mouse embryos revealed Pou3f1 expression to be negatively correlated with that of Nanog during the early stages of differentiation. We have functionally demonstrated Pou3f1 to be a direct target of NANOG by using a dual transgene system for the controlled expression of Nanog Use of Nanog null ES cells further demonstrated a role for Nanog in repressing a subset of anterior neural genes. Deletion of a NANOG binding site (BS) located nine kilobases downstream of the transcription start site of Pou3f1 revealed this BS to have a specific role in the regionalization of the expression of this gene in the embryo. Our results indicate an active role of Nanog inhibiting neural regulatory networks by repressing Pou3f1 at the onset of gastrulation.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Antonio Barral
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Isabel Rollan
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Hector Sanchez-Iranzo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Wajid Jawaid
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0AW, UK
| | - Claudio Badia-Careaga
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Sergio Menchero
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Manuel J Gomez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Carlos Torroja
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Fatima Sanchez-Cabo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Berthold Göttgens
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0AW, UK
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Madrid 28049, Spain
| | - Julio Sainz de Aja
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| |
Collapse
|
126
|
Liu J, Liu X, Ren X, Li G. scRNAss: a single-cell RNA-seq assembler via imputing dropouts and combing junctions. Bioinformatics 2019; 35:4264-4271. [PMID: 30951147 DOI: 10.1093/bioinformatics/btz240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 12/17/2018] [Accepted: 04/02/2019] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Full-length transcript reconstruction is essential for single-cell RNA-seq data analysis, but dropout events, which can cause transcripts discarded completely or broken into pieces, pose great challenges for transcript assembly. Currently available RNA-seq assemblers are generally designed for bulk RNA sequencing. To fill the gap, we introduce single-cell RNA-seq assembler, a method that applies explicit strategies to impute lost information caused by dropout events and a combing strategy to infer transcripts using scRNA-seq. RESULTS Extensive evaluations on both simulated and biological datasets demonstrated its superiority over the state-of-the-art RNA-seq assemblers including StringTie, Cufflinks and CLASS2. In particular, it showed a remarkable capability of recovering unknown 'novel' isoforms and highly computational efficiency compared to other tools. AVAILABILITY AND IMPLEMENTATION scRNAss is free, open-source software available from https://sourceforge.net/projects/single-cell-rna-seq-assembly/files/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Juntao Liu
- School of Mathematics, Shandong University, Jinan, China
| | - Xiangyu Liu
- School of Mathematics, Shandong University, Jinan, China
| | - Xianwen Ren
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing, China
| | - Guojun Li
- School of Mathematics, Shandong University, Jinan, China
| |
Collapse
|
127
|
Williams RM, Candido-Ferreira I, Repapi E, Gavriouchkina D, Senanayake U, Ling ITC, Telenius J, Taylor S, Hughes J, Sauka-Spengler T. Reconstruction of the Global Neural Crest Gene Regulatory Network In Vivo. Dev Cell 2019; 51:255-276.e7. [PMID: 31639368 PMCID: PMC6838682 DOI: 10.1016/j.devcel.2019.10.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/31/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023]
Abstract
Precise control of developmental processes is encoded in the genome in the form of gene regulatory networks (GRNs). Such multi-factorial systems are difficult to decode in vertebrates owing to their complex gene hierarchies and dynamic molecular interactions. Here we present a genome-wide in vivo reconstruction of the GRN underlying development of the multipotent neural crest (NC) embryonic cell population. By coupling NC-specific epigenomic and transcriptional profiling at population and single-cell levels with genome/epigenome engineering in vivo, we identify multiple regulatory layers governing NC ontogeny, including NC-specific enhancers and super-enhancers, novel trans-factors, and cis-signatures allowing reverse engineering of the NC-GRN at unprecedented resolution. Furthermore, identification and dissection of divergent upstream combinatorial regulatory codes has afforded new insights into opposing gene circuits that define canonical and neural NC fates early during NC ontogeny. Our integrated approach, allowing dissection of cell-type-specific regulatory circuits in vivo, has broad implications for GRN discovery and investigation.
Collapse
Affiliation(s)
- Ruth M Williams
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Ivan Candido-Ferreira
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Emmanouela Repapi
- University of Oxford, MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK
| | - Daria Gavriouchkina
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Upeka Senanayake
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Irving T C Ling
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK; University of Oxford, Department of Paediatric Surgery, Children's Hospital Oxford, Oxford, UK
| | - Jelena Telenius
- University of Oxford, MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK; University of Oxford, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Stephen Taylor
- University of Oxford, MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK
| | - Jim Hughes
- University of Oxford, MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK; University of Oxford, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Tatjana Sauka-Spengler
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK.
| |
Collapse
|
128
|
Sun C, Serra C, Lee G, Wagner KR. Stem cell-based therapies for Duchenne muscular dystrophy. Exp Neurol 2019; 323:113086. [PMID: 31639376 DOI: 10.1016/j.expneurol.2019.113086] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 02/08/2023]
Abstract
Muscular dystrophies are a group of genetic muscle disorders that cause progressive muscle weakness and degeneration. Within this group, Duchenne muscular dystrophy (DMD) is the most common and one of the most severe. DMD is an X chromosome linked disease that occurs to 1 in 3500 to 1 in 5000 boys. The cause of DMD is a mutation in the dystrophin gene, whose encoded protein provides both structural support and cell signaling capabilities. So far, there are very limited therapeutic options available and there is no cure for this disease. In this review, we discuss the existing cell therapy research, especially stem cell-based, which utilize myoblasts, satellite cells, bone marrow cells, mesoangioblasts and CD133+ cells. Finally, we focus on human pluripotent stem cells (hPSCs) which hold great potential in treating DMD. hPSCs can be used for autologous transplantation after being specified to a myogenic lineage. Over the last few years, there has been a rapid development of isolation, as well as differentiation, techniques in order to achieve effective transplantation results of myogenic cells specified from hPSCs. In this review, we summarize the current methods of hPSCs myogenic commitment/differentiation, and describe the current status of hPSC-derived myogenic cell transplantation.
Collapse
Affiliation(s)
- Congshan Sun
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Center for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, MD 21205, USA.
| | - Carlo Serra
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Center for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kathryn R Wagner
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Center for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, MD 21205, USA
| |
Collapse
|
129
|
Ferretti E, Hadjantonakis AK. Mesoderm specification and diversification: from single cells to emergent tissues. Curr Opin Cell Biol 2019; 61:110-116. [PMID: 31476530 DOI: 10.1016/j.ceb.2019.07.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
Abstract
The three germ layers - mesoderm, endoderm and ectoderm - constituting the cellular blueprint for the tissues and organs that will form during embryonic development, are specified at gastrulation. Cells of mesodermal origin are the most abundant in the human body, representing a great variety of cell types, including the musculoskeletal system (bone, cartilage and muscle), cardiovascular system (heart, blood and blood vessels), as well as the connective tissues found throughout our bodies. A long-standing question pertains how this panoply of mesodermal cell types arises in a stereotypical fashion in time and space. This review discusses the events associated with mesoderm specification, highlighting the reconstruction of putative developmental trajectories facilitated by recent single-cell 'omic' data. We will also discuss the potential of emergent organoid systems to emulate and interrogate the dynamics of lineage specification at cellular resolution.
Collapse
Affiliation(s)
- Elisabetta Ferretti
- The Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, USA.
| |
Collapse
|
130
|
Sonnen KF, Merten CA. Microfluidics as an Emerging Precision Tool in Developmental Biology. Dev Cell 2019; 48:293-311. [PMID: 30753835 DOI: 10.1016/j.devcel.2019.01.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/13/2018] [Accepted: 01/10/2019] [Indexed: 12/18/2022]
Abstract
Microfluidics has become a precision tool in modern biology. It enables omics data to be obtained from individual cells, as compared to averaged signals from cell populations, and it allows manipulation of biological specimens in entirely new ways. Cells and organisms can be perturbed at extraordinary spatiotemporal resolution, revealing mechanistic insights that would otherwise remain hidden. In this perspective article, we discuss the current and future impact of microfluidic technology in the field of developmental biology. In addition, we provide detailed information on how to start using this technology even without prior experience.
Collapse
Affiliation(s)
| | - Christoph A Merten
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
131
|
Tahara N, Kawakami H, Chen KQ, Anderson A, Yamashita Peterson M, Gong W, Shah P, Hayashi S, Nishinakamura R, Nakagawa Y, Garry DJ, Kawakami Y. Sall4 regulates neuromesodermal progenitors and their descendants during body elongation in mouse embryos. Development 2019; 146:dev.177659. [PMID: 31235634 DOI: 10.1242/dev.177659] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/18/2019] [Indexed: 12/24/2022]
Abstract
Bi-potential neuromesodermal progenitors (NMPs) produce both neural and paraxial mesodermal progenitors in the trunk and tail during vertebrate body elongation. We show that Sall4, a pluripotency-related transcription factor gene, has multiple roles in regulating NMPs and their descendants in post-gastrulation mouse embryos. Sall4 deletion using TCre caused body/tail truncation, reminiscent of early depletion of NMPs, suggesting a role of Sall4 in NMP maintenance. This phenotype became significant at the time of the trunk-to-tail transition, suggesting that Sall4 maintenance of NMPs enables tail formation. Sall4 mutants exhibit expanded neural and reduced mesodermal tissues, indicating a role of Sall4 in NMP differentiation balance. Mechanistically, we show that Sall4 promotion of WNT/β-catenin signaling contributes to NMP maintenance and differentiation balance. RNA-Seq and SALL4 ChIP-Seq analyses support the notion that Sall4 regulates both mesodermal and neural development. Furthermore, in the mesodermal compartment, genes regulating presomitic mesoderm differentiation are downregulated in Sall4 mutants. In the neural compartment, we show that differentiation of NMPs towards post-mitotic neuron is accelerated in Sall4 mutants. Our results collectively provide evidence supporting the role of Sall4 in regulating NMPs and their descendants.
Collapse
Affiliation(s)
- Naoyuki Tahara
- Department of Genetics, Cell Biology and Development, University of Minnesota, 321 Church St. SE, Minneapolis, MN 55455, USA.,Stem Cell Institute, University of Minnesota, 2001 6th St. SE, Minneapolis, MN 55455, USA.,Developmental Biology Center, University of Minnesota, 321 Church St. SE, Minneapolis, MN 55455, USA
| | - Hiroko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, 321 Church St. SE, Minneapolis, MN 55455, USA.,Stem Cell Institute, University of Minnesota, 2001 6th St. SE, Minneapolis, MN 55455, USA.,Developmental Biology Center, University of Minnesota, 321 Church St. SE, Minneapolis, MN 55455, USA
| | - Katherine Q Chen
- Department of Genetics, Cell Biology and Development, University of Minnesota, 321 Church St. SE, Minneapolis, MN 55455, USA
| | - Aaron Anderson
- Department of Genetics, Cell Biology and Development, University of Minnesota, 321 Church St. SE, Minneapolis, MN 55455, USA
| | - Malina Yamashita Peterson
- Department of Genetics, Cell Biology and Development, University of Minnesota, 321 Church St. SE, Minneapolis, MN 55455, USA
| | - Wuming Gong
- Lillehei Heart Institute, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA
| | - Pruthvi Shah
- Lillehei Heart Institute, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA
| | - Shinichi Hayashi
- Department of Genetics, Cell Biology and Development, University of Minnesota, 321 Church St. SE, Minneapolis, MN 55455, USA.,Stem Cell Institute, University of Minnesota, 2001 6th St. SE, Minneapolis, MN 55455, USA.,Developmental Biology Center, University of Minnesota, 321 Church St. SE, Minneapolis, MN 55455, USA
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan 860-0811
| | - Yasushi Nakagawa
- Stem Cell Institute, University of Minnesota, 2001 6th St. SE, Minneapolis, MN 55455, USA.,Developmental Biology Center, University of Minnesota, 321 Church St. SE, Minneapolis, MN 55455, USA.,Department of Neuroscience, University of Minnesota, 321 Church St. SE, Minneapolis, MN 55455, USA
| | - Daniel J Garry
- Stem Cell Institute, University of Minnesota, 2001 6th St. SE, Minneapolis, MN 55455, USA.,Developmental Biology Center, University of Minnesota, 321 Church St. SE, Minneapolis, MN 55455, USA.,Lillehei Heart Institute, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA.,Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, 516 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, 321 Church St. SE, Minneapolis, MN 55455, USA .,Stem Cell Institute, University of Minnesota, 2001 6th St. SE, Minneapolis, MN 55455, USA.,Developmental Biology Center, University of Minnesota, 321 Church St. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
132
|
Deichmann U. From Gregor Mendel to Eric Davidson: Mathematical Models and Basic Principles in Biology. J Comput Biol 2019; 26:637-652. [PMID: 31120326 PMCID: PMC6763957 DOI: 10.1089/cmb.2019.0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mathematical models have been widespread in biology since its emergence as a modern experimental science in the 19th century. Focusing on models in developmental biology and heredity, this article (1) presents the properties and epistemological basis of pertinent mathematical models in biology from Mendel's model of heredity in the 19th century to Eric Davidson's model of developmental gene regulatory networks in the 21st; (2) shows that the models differ not only in their epistemologies but also in regard to explicitly or implicitly taking into account basic biological principles, in particular those of biological specificity (that became, in part, replaced by genetic information) and genetic causality. The article claims that models disregarding these principles did not impact the direction of biological research in a lasting way, although some of them, such as D'Arcy Thompson's models of biological form, were widely read and admired and others, such as Turing's models of development, stimulated research in other fields. Moreover, it suggests that successful models were not purely mathematical descriptions or simulations of biological phenomena but were based on inductive, as well as hypothetico-deductive, methodology. The recent availability of large amounts of sequencing data and new computational methodology tremendously facilitates system approaches and pattern recognition in many fields of research. Although these new technologies have given rise to claims that correlation is replacing experimentation and causal analysis, the article argues that the inductive and hypothetico-deductive experimental methodologies have remained fundamentally important as long as causal-mechanistic explanations of complex systems are pursued.
Collapse
Affiliation(s)
- Ute Deichmann
- Jacques Loeb Centre for the History and Philosophy of the Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
133
|
Edri S, Hayward P, Jawaid W, Martinez Arias A. Neuro-mesodermal progenitors (NMPs): a comparative study between pluripotent stem cells and embryo-derived populations. Development 2019; 146:dev180190. [PMID: 31152001 PMCID: PMC6602346 DOI: 10.1242/dev.180190] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 05/22/2019] [Indexed: 12/17/2022]
Abstract
The mammalian embryo's caudal lateral epiblast (CLE) harbours bipotent progenitors, called neural mesodermal progenitors (NMPs), that contribute to the spinal cord and the paraxial mesoderm throughout axial elongation. Here, we performed a single cell analysis of different in vitro NMP populations produced either from embryonic stem cells (ESCs) or epiblast stem cells (EpiSCs) and compared them with E8.25 CLE mouse embryos. In our analysis of this region, our findings challenge the notion that NMPs can be defined by the exclusive co-expression of Sox2 and T at mRNA level. We analyse the in vitro NMP-like populations using a purpose-built support vector machine (SVM) based on the embryo CLE and use it as a classification model to compare the in vivo and in vitro populations. Our results show that NMP differentiation from ESCs leads to heterogeneous progenitor populations with few NMP-like cells, as defined by the SVM algorithm, whereas starting with EpiSCs yields a high proportion of cells with the embryo NMP signature. We find that the population from which the Epi-NMPs are derived in culture contains a node-like population, which suggests that this population probably maintains the expression of T in vitro and thereby a source of NMPs. In conclusion, differentiation of EpiSCs into NMPs reproduces events in vivo and suggests a sequence of events for the emergence of the NMP population.
Collapse
Affiliation(s)
- Shlomit Edri
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EH, UK
| | - Penelope Hayward
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EH, UK
| | - Wajid Jawaid
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 2XY, UK
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
- Department of Paediatric Surgery, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | | |
Collapse
|
134
|
Hu J, Li S, Sun X, Fang Z, Wang L, Xiao F, Shao M, Ge L, Tang F, Gu J, Yu H, Guo Y, Guo X, Liao B, Jin Y. Stk40 deletion elevates c-JUN protein level and impairs mesoderm differentiation. J Biol Chem 2019; 294:9959-9972. [PMID: 31092598 PMCID: PMC6597834 DOI: 10.1074/jbc.ra119.007840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/07/2019] [Indexed: 11/06/2022] Open
Abstract
Mesoderm development is a finely tuned process initiated by the differentiation of pluripotent epiblast cells. Serine/threonine kinase 40 (STK40) controls the development of several mesoderm-derived cell types, its overexpression induces differentiation of mouse embryonic stem cells (mESCs) toward the extraembryonic endoderm, and Stk40 knockout (KO) results in multiple organ failure and is lethal at the perinatal stage in mice. However, molecular mechanisms underlying the physiological functions of STK40 in mesoderm differentiation remain elusive. Here, we report that Stk40 ablation impairs mesoderm differentiation both in vitro and in vivo Mechanistically, STK40 interacts with both the E3 ubiquitin ligase mammalian constitutive photomorphogenesis protein 1 (COP1) and the transcriptional regulator proto-oncogene c-Jun (c-JUN), promoting c-JUN protein degradation. Consequently, Stk40 knockout leads to c-JUN protein accumulation, which, in turn, apparently suppresses WNT signaling activity and impairs the mesoderm differentiation process. Overall, this study reveals that STK40, together with COP1, represents a previously unknown regulatory axis that modulates the c-JUN protein level within an appropriate range during mesoderm differentiation from mESCs. Our findings provide critical insights into the molecular mechanisms regulating the c-JUN protein level and may have potential implications for managing cellular disorders arising from c-JUN dysfunction.
Collapse
Affiliation(s)
- Jing Hu
- From the Basic Clinical Research Center, Renji Hospital and Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Shuang Li
- From the Basic Clinical Research Center, Renji Hospital and Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Xiaozhi Sun
- From the Basic Clinical Research Center, Renji Hospital and Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Zhuoqing Fang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200032, China
| | - Lina Wang
- From the Basic Clinical Research Center, Renji Hospital and Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Feng Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200032, China
| | - Min Shao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200032, China
| | - Laixiang Ge
- From the Basic Clinical Research Center, Renji Hospital and Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Fan Tang
- From the Basic Clinical Research Center, Renji Hospital and Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Junjie Gu
- From the Basic Clinical Research Center, Renji Hospital and Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Hongyao Yu
- From the Basic Clinical Research Center, Renji Hospital and Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Bing Liao
- From the Basic Clinical Research Center, Renji Hospital and Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China,
| | - Ying Jin
- From the Basic Clinical Research Center, Renji Hospital and Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China,
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China, and
| |
Collapse
|
135
|
Organization of Embryonic Morphogenesis via Mechanical Information. Dev Cell 2019; 49:829-839.e5. [PMID: 31178400 DOI: 10.1016/j.devcel.2019.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 03/20/2019] [Accepted: 05/03/2019] [Indexed: 01/19/2023]
Abstract
Embryonic organizers establish gradients of diffusible signaling molecules to pattern the surrounding cells. Here, we elucidate an additional mechanism of embryonic organizers that is a secondary consequence of morphogen signaling. Using pharmacological and localized transgenic perturbations, 4D imaging of the zebrafish embryo, systematic analysis of cell motion, and computational modeling, we find that the vertebrate tail organizer orchestrates morphogenesis over distances beyond the range of morphogen signaling. The organizer regulates the rate and coherence of cell motion in the elongating embryo using mechanical information that is transmitted via relay between neighboring cells. This mechanism is similar to a pressure front in granular media and other jammed systems, but in the embryo the mechanical information emerges from self-propelled cell movement and not force transfer between cells. The propagation likely relies upon local biochemical signaling that affects cell contractility, cell adhesion, and/or cell polarity but is independent of transcription and translation.
Collapse
|
136
|
Cheong KH, Koh JM, Jones MC. Black Swans of CRISPR: Stochasticity and Complexity of Genetic Regulation. Bioessays 2019; 41:e1900032. [PMID: 31090950 DOI: 10.1002/bies.201900032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/21/2019] [Indexed: 12/18/2022]
Abstract
Recent waves of controversies surrounding genetic engineering have spilled into popular science in Twitter battles between reputable scientists and their followers. Here, a cautionary perspective on the possible blind spots and risks of CRISPR and related biotechnologies is presented, focusing in particular on the stochastic nature of cellular control processes.
Collapse
Affiliation(s)
- Kang Hao Cheong
- Science and Math Cluster, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Jin Ming Koh
- Science and Math Cluster, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | | |
Collapse
|
137
|
Fernandez-Valverde SL, Aguilera F, Ramos-Díaz RA. Inference of Developmental Gene Regulatory Networks Beyond Classical Model Systems: New Approaches in the Post-genomic Era. Integr Comp Biol 2019; 58:640-653. [PMID: 29917089 DOI: 10.1093/icb/icy061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The advent of high-throughput sequencing (HTS) technologies has revolutionized the way we understand the transformation of genetic information into morphological traits. Elucidating the network of interactions between genes that govern cell differentiation through development is one of the core challenges in genome research. These networks are known as developmental gene regulatory networks (dGRNs) and consist largely of the functional linkage between developmental control genes, cis-regulatory modules, and differentiation genes, which generate spatially and temporally refined patterns of gene expression. Over the last 20 years, great advances have been made in determining these gene interactions mainly in classical model systems, including human, mouse, sea urchin, fruit fly, and worm. This has brought about a radical transformation in the fields of developmental biology and evolutionary biology, allowing the generation of high-resolution gene regulatory maps to analyze cell differentiation during animal development. Such maps have enabled the identification of gene regulatory circuits and have led to the development of network inference methods that can recapitulate the differentiation of specific cell-types or developmental stages. In contrast, dGRN research in non-classical model systems has been limited to the identification of developmental control genes via the candidate gene approach and the characterization of their spatiotemporal expression patterns, as well as to the discovery of cis-regulatory modules via patterns of sequence conservation and/or predicted transcription-factor binding sites. However, thanks to the continuous advances in HTS technologies, this scenario is rapidly changing. Here, we give a historical overview on the architecture and elucidation of the dGRNs. Subsequently, we summarize the approaches available to unravel these regulatory networks, highlighting the vast range of possibilities of integrating multiple technical advances and theoretical approaches to expand our understanding on the global gene regulation during animal development in non-classical model systems. Such new knowledge will not only lead to greater insights into the evolution of molecular mechanisms underlying cell identity and animal body plans, but also into the evolution of morphological key innovations in animals.
Collapse
Affiliation(s)
- Selene L Fernandez-Valverde
- CONACYT, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| | - Felipe Aguilera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - René Alexander Ramos-Díaz
- CONACYT, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| |
Collapse
|
138
|
Joshi P, Darr AJ, Skromne I. CDX4 regulates the progression of neural maturation in the spinal cord. Dev Biol 2019; 449:132-142. [PMID: 30825428 DOI: 10.1016/j.ydbio.2019.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 11/17/2022]
Abstract
The progression of cells down different lineage pathways is a collaborative effort between networks of extracellular signals and intracellular transcription factors. In the vertebrate spinal cord, FGF, Wnt and Retinoic Acid signaling pathways regulate the progressive caudal-to-rostral maturation of neural progenitors by regulating a poorly understood gene regulatory network of transcription factors. We have mapped out this gene regulatory network in the chicken pre-neural tube, identifying CDX4 as a dual-function core component that simultaneously regulates gradual loss of cell potency and acquisition of differentiation states: in a caudal-to-rostral direction, CDX4 represses the early neural differentiation marker Nkx1.2 and promotes the late neural differentiation marker Pax6. Significantly, CDX4 prevents premature PAX6-dependent neural differentiation by blocking Ngn2 activation. This regulation of CDX4 over Pax6 is restricted to the rostral pre-neural tube by Retinoic Acid signaling. Together, our results show that in the spinal cord, CDX4 is part of the gene regulatory network controlling the sequential and progressive transition of states from high to low potency during neural progenitor maturation. Given CDX well-known involvement in Hox gene regulation, we propose that CDX factors coordinate the maturation and axial specification of neural progenitor cells during spinal cord development.
Collapse
Affiliation(s)
- Piyush Joshi
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, United States; Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, 600 5th St S, St. Petersburg, FL 33701, United States
| | - Andrew J Darr
- Department of Health Sciences Education, University of Illinois College of Medicine, 1 Illini Drive, Peoria, IL 61605, United States
| | - Isaac Skromne
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, United States; Department of Biology, University of Richmond, 138 UR Drive B322, Richmond, VA, 23173, United States.
| |
Collapse
|
139
|
Robinton DA, Chal J, Lummertz da Rocha E, Han A, Yermalovich AV, Oginuma M, Schlaeger TM, Sousa P, Rodriguez A, Urbach A, Pourquié O, Daley GQ. The Lin28/let-7 Pathway Regulates the Mammalian Caudal Body Axis Elongation Program. Dev Cell 2019; 48:396-405.e3. [DOI: 10.1016/j.devcel.2018.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 08/13/2018] [Accepted: 12/17/2018] [Indexed: 02/09/2023]
|
140
|
Wymeersch FJ, Skylaki S, Huang Y, Watson JA, Economou C, Marek-Johnston C, Tomlinson SR, Wilson V. Transcriptionally dynamic progenitor populations organised around a stable niche drive axial patterning. Development 2019; 146:dev168161. [PMID: 30559277 PMCID: PMC6340148 DOI: 10.1242/dev.168161] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 12/06/2018] [Indexed: 12/26/2022]
Abstract
The elongating mouse anteroposterior axis is supplied by progenitors with distinct tissue fates. It is not known whether these progenitors confer anteroposterior pattern to the embryo. We have analysed the progenitor population transcriptomes in the mouse primitive streak and tail bud throughout axial elongation. Transcriptomic signatures distinguish three known progenitor types (neuromesodermal, lateral/paraxial mesoderm and notochord progenitors; NMPs, LPMPs and NotoPs). Both NMP and LPMP transcriptomes change extensively over time. In particular, NMPs upregulate Wnt, Fgf and Notch signalling components, and many Hox genes as progenitors transit from production of the trunk to the tail and expand in number. In contrast, the transcriptome of NotoPs is stable throughout axial elongation and they are required for normal axis elongation. These results suggest that NotoPs act as a progenitor niche whereas anteroposterior patterning originates within NMPs and LPMPs.
Collapse
Affiliation(s)
- Filip J Wymeersch
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
- RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Stavroula Skylaki
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Yali Huang
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Julia A Watson
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Constantinos Economou
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Carylyn Marek-Johnston
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Simon R Tomlinson
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Valerie Wilson
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
141
|
Bénazéraf B. Dynamics and mechanisms of posterior axis elongation in the vertebrate embryo. Cell Mol Life Sci 2019; 76:89-98. [PMID: 30283977 PMCID: PMC11105343 DOI: 10.1007/s00018-018-2927-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/27/2022]
Abstract
During development, the vertebrate embryo undergoes significant morphological changes which lead to its future body form and functioning organs. One of these noticeable changes is the extension of the body shape along the antero-posterior (A-P) axis. This A-P extension, while taking place in multiple embryonic tissues of the vertebrate body, involves the same basic cellular behaviors: cell proliferation, cell migration (of new progenitors from a posterior stem zone), and cell rearrangements. However, the nature and the relative contribution of these different cellular behaviors to A-P extension appear to vary depending upon the tissue in which they take place and on the stage of embryonic development. By focusing on what is known in the neural and mesodermal tissues of the bird embryo, I review the influences of cellular behaviors in posterior tissue extension. In this context, I discuss how changes in distinct cell behaviors can be coordinated at the tissue level (and between tissues) to synergize, build, and elongate the posterior part of the embryonic body. This multi-tissue framework does not only concern axis elongation, as it could also be generalized to morphogenesis of any developing organs.
Collapse
Affiliation(s)
- Bertrand Bénazéraf
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
142
|
Baillie-Johnson P, Voiculescu O, Hayward P, Steventon B. The Chick Caudolateral Epiblast Acts as a Permissive Niche for Generating Neuromesodermal Progenitor Behaviours. Cells Tissues Organs 2018; 205:320-330. [PMID: 30517924 PMCID: PMC6469839 DOI: 10.1159/000494769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/18/2018] [Indexed: 11/19/2022] Open
Abstract
Neuromesodermal progenitors (NMps) are a population of bipotent progenitors that maintain competence to generate both spinal cord and paraxial mesoderm throughout the elongation of the posterior body axis. Recent studies have generated populations of NMp-like cells in culture, which have been shown to differentiate to both neural and mesodermal cell fates when transplanted into either mouse or chick embryos. Here, we aim to compare the potential of mouse embryonic stem (ES) cell-derived progenitor populations to generate NMp behaviour against both undifferentiated and differentiated populations. We define NMp behaviour as the ability of cells to: (i) contribute to a significant proportion of the anterior-posterior body axis, (ii) enter into both posterior neural and somitic compartments, and (iii) retain a proportion of the progenitor population within the posterior growth zone. We compare previously identified ES cell-derived NMp-like populations to undifferentiated mouse ES cells and find that they all display similar potentials to generate NMp behaviour in vivo. To assess whether this competence is lost upon further differentiation, we generated anterior and posterior embryonic cell types through the generation of 3D gastruloids and show that NMp competence is lost within the anterior (Brachyury-negative) portion of the gastruloid. Together this suggests that in vitro-derived NMp-like cells maintain an ability to contribute to multiple germ layers that is also present within pluripotent ES cells, rather than acquiring a neuromesodermal competent state through differentiation.
Collapse
Affiliation(s)
- Peter Baillie-Johnson
- Wellcome - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Octavian Voiculescu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Penny Hayward
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Benjamin Steventon
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom,
| |
Collapse
|
143
|
Aires R, Dias A, Mallo M. Deconstructing the molecular mechanisms shaping the vertebrate body plan. Curr Opin Cell Biol 2018; 55:81-86. [DOI: 10.1016/j.ceb.2018.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/08/2018] [Accepted: 05/14/2018] [Indexed: 11/28/2022]
|
144
|
Metzis V, Steinhauser S, Pakanavicius E, Gouti M, Stamataki D, Ivanovitch K, Watson T, Rayon T, Mousavy Gharavy SN, Lovell-Badge R, Luscombe NM, Briscoe J. Nervous System Regionalization Entails Axial Allocation before Neural Differentiation. Cell 2018; 175:1105-1118.e17. [PMID: 30343898 PMCID: PMC6218657 DOI: 10.1016/j.cell.2018.09.040] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 07/06/2018] [Accepted: 09/19/2018] [Indexed: 01/28/2023]
Abstract
Neural induction in vertebrates generates a CNS that extends the rostral-caudal length of the body. The prevailing view is that neural cells are initially induced with anterior (forebrain) identity; caudalizing signals then convert a proportion to posterior fates (spinal cord). To test this model, we used chromatin accessibility to define how cells adopt region-specific neural fates. Together with genetic and biochemical perturbations, this identified a developmental time window in which genome-wide chromatin-remodeling events preconfigure epiblast cells for neural induction. Contrary to the established model, this revealed that cells commit to a regional identity before acquiring neural identity. This “primary regionalization” allocates cells to anterior or posterior regions of the nervous system, explaining how cranial and spinal neurons are generated at appropriate axial positions. These findings prompt a revision to models of neural induction and support the proposed dual evolutionary origin of the vertebrate CNS. Chromatin accessibility defines neural progenitor identity A limited developmental window exists to establish spinal cord competency Cells acquire axial identity prior to neural identity
Collapse
Affiliation(s)
| | | | | | - Mina Gouti
- The Francis Crick Institute, London NW1 1AT, UK; Max-Delbrück Center for Molecular Medicine, Berlin 13092, Germany
| | | | | | | | | | | | | | - Nicholas M Luscombe
- The Francis Crick Institute, London NW1 1AT, UK; UCL Genetics Institute, Department of Genetics Evolution and Environment, University College London, London WC1E 6BT, UK; Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | | |
Collapse
|
145
|
Rodrigo Albors A, Halley PA, Storey KG. Lineage tracing of axial progenitors using Nkx1-2CreER T2 mice defines their trunk and tail contributions. Development 2018; 145:dev.164319. [PMID: 30201686 PMCID: PMC6198475 DOI: 10.1242/dev.164319] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 09/03/2018] [Indexed: 12/13/2022]
Abstract
The vertebrate body forms by continuous generation of new tissue from progenitors at the posterior end of the embryo. The study of these axial progenitors has proved to be challenging in vivo largely because of the lack of unique molecular markers to identify them. Here, we elucidate the expression pattern of the transcription factor Nkx1-2 in the mouse embryo and show that it identifies axial progenitors throughout body axis elongation, including neuromesodermal progenitors and early neural and mesodermal progenitors. We create a tamoxifen-inducible Nkx1-2CreERT2 transgenic mouse and exploit the conditional nature of this line to uncover the lineage contributions of Nkx1-2-expressing cells at specific stages. We show that early Nkx1-2-expressing epiblast cells contribute to all three germ layers, mostly neuroectoderm and mesoderm, excluding notochord. Our data are consistent with the presence of some self-renewing axial progenitors that continue to generate neural and mesoderm tissues from the tail bud. This study identifies Nkx1-2-expressing cells as the source of most trunk and tail tissues in the mouse and provides a useful tool to genetically label and manipulate axial progenitors in vivo. Summary: Changing lineage contributions of axial progenitors to the developing mouse embryo are revealed using a tamoxifen-inducible Cre line under the control of the endogenous Nkx1-2 promoter.
Collapse
Affiliation(s)
- Aida Rodrigo Albors
- Neural Development Group, Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Pamela A Halley
- Neural Development Group, Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Kate G Storey
- Neural Development Group, Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
146
|
Nakajima T, Shibata M, Nishio M, Nagata S, Alev C, Sakurai H, Toguchida J, Ikeya M. Modeling human somite development and fibrodysplasia ossificans progressiva with induced pluripotent stem cells. Development 2018; 145:145/16/dev165431. [PMID: 30139810 PMCID: PMC6124548 DOI: 10.1242/dev.165431] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/24/2018] [Indexed: 12/27/2022]
Abstract
Somites (SMs) comprise a transient stem cell population that gives rise to multiple cell types, including dermatome (D), myotome (MYO), sclerotome (SCL) and syndetome (SYN) cells. Although several groups have reported induction protocols for MYO and SCL from pluripotent stem cells, no studies have demonstrated the induction of SYN and D from SMs. Here, we report systematic induction of these cells from human induced pluripotent stem cells (iPSCs) under chemically defined conditions. We also successfully induced cells with differentiation capacities similar to those of multipotent mesenchymal stromal cells (MSC-like cells) from SMs. To evaluate the usefulness of these protocols, we conducted disease modeling of fibrodysplasia ossificans progressiva (FOP), an inherited disease that is characterized by heterotopic endochondral ossification in soft tissues after birth. Importantly, FOP-iPSC-derived MSC-like cells showed enhanced chondrogenesis, whereas FOP-iPSC-derived SCL did not, possibly recapitulating normal embryonic skeletogenesis in FOP and cell-type specificity of FOP phenotypes. These results demonstrate the usefulness of multipotent SMs for disease modeling and future cell-based therapies. Summary: Protocols for the differentiation of human iPSCs to somite derivatives (myotome, sclerotome, syndetome and dermatome) are developed and applied to the modeling of the bone disease fibrodysplasia ossificans progressiva.
Collapse
Affiliation(s)
- Taiki Nakajima
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Mitsuaki Shibata
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Megumi Nishio
- Department of Tissue Regeneration, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Sanae Nagata
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Cantas Alev
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Hidetoshi Sakurai
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Junya Toguchida
- Department of Tissue Regeneration, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.,Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan.,Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
147
|
Smchd1 regulates long-range chromatin interactions on the inactive X chromosome and at Hox clusters. Nat Struct Mol Biol 2018; 25:766-777. [PMID: 30127357 DOI: 10.1038/s41594-018-0111-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022]
Abstract
The regulation of higher-order chromatin structure is complex and dynamic, and a full understanding of the suite of mechanisms governing this architecture is lacking. Here, we reveal the noncanonical SMC protein Smchd1 to be a novel regulator of long-range chromatin interactions in mice, and we add Smchd1 to the canon of epigenetic proteins required for Hox-gene regulation. The effect of losing Smchd1-dependent chromatin interactions has varying outcomes that depend on chromatin context. At autosomal targets transcriptionally sensitive to Smchd1 deletion, we found increased short-range interactions and ectopic enhancer activation. In contrast, the inactive X chromosome was transcriptionally refractive to Smchd1 ablation, despite chromosome-wide increases in short-range interactions. In the inactive X, we observed spreading of trimethylated histone H3 K27 (H3K27me3) domains into regions not normally decorated by this mark. Together, these data suggest that Smchd1 is able to insulate chromatin, thereby limiting access to other chromatin-modifying proteins.
Collapse
|
148
|
Frith TJ, Granata I, Wind M, Stout E, Thompson O, Neumann K, Stavish D, Heath PR, Ortmann D, Hackland JO, Anastassiadis K, Gouti M, Briscoe J, Wilson V, Johnson SL, Placzek M, Guarracino MR, Andrews PW, Tsakiridis A. Human axial progenitors generate trunk neural crest cells in vitro. eLife 2018; 7:35786. [PMID: 30095409 PMCID: PMC6101942 DOI: 10.7554/elife.35786] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/09/2018] [Indexed: 12/11/2022] Open
Abstract
The neural crest (NC) is a multipotent embryonic cell population that generates distinct cell types in an axial position-dependent manner. The production of NC cells from human pluripotent stem cells (hPSCs) is a valuable approach to study human NC biology. However, the origin of human trunk NC remains undefined and current in vitro differentiation strategies induce only a modest yield of trunk NC cells. Here we show that hPSC-derived axial progenitors, the posteriorly-located drivers of embryonic axis elongation, give rise to trunk NC cells and their derivatives. Moreover, we define the molecular signatures associated with the emergence of human NC cells of distinct axial identities in vitro. Collectively, our findings indicate that there are two routes toward a human post-cranial NC state: the birth of cardiac and vagal NC is facilitated by retinoic acid-induced posteriorisation of an anterior precursor whereas trunk NC arises within a pool of posterior axial progenitors.
Collapse
Affiliation(s)
- Thomas Jr Frith
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Ilaria Granata
- Computational and Data Science Laboratory, High Performance Computing and Networking Institute, National Research Council of Italy, Napoli, Italy
| | - Matthew Wind
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Erin Stout
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Oliver Thompson
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Katrin Neumann
- Stem Cell Engineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Dylan Stavish
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Daniel Ortmann
- Anne McLaren Laboratory, Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - James Os Hackland
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | | | - Mina Gouti
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Valerie Wilson
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stuart L Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Marysia Placzek
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.,The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Mario R Guarracino
- Computational and Data Science Laboratory, High Performance Computing and Networking Institute, National Research Council of Italy, Napoli, Italy
| | - Peter W Andrews
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom.,The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
149
|
Mastromina I, Verrier L, Silva JC, Storey KG, Dale JK. Myc activity is required for maintenance of the neuromesodermal progenitor signalling network and for segmentation clock gene oscillations in mouse. Development 2018; 145:dev161091. [PMID: 30061166 PMCID: PMC6078331 DOI: 10.1242/dev.161091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 06/08/2018] [Indexed: 12/19/2022]
Abstract
The Myc transcriptional regulators are implicated in a range of cellular functions, including proliferation, cell cycle progression, metabolism and pluripotency maintenance. Here, we investigated the expression, regulation and function of the Myc family during mouse embryonic axis elongation and segmentation. Expression of both cMyc (Myc - Mouse Genome Informatics) and MycN in the domains in which neuromesodermal progenitors (NMPs) and underlying caudal pre-somitic mesoderm (cPSM) cells reside is coincident with WNT and FGF signals, factors known to maintain progenitors in an undifferentiated state. Pharmacological inhibition of Myc activity downregulates expression of WNT/FGF components. In turn, we find that cMyc expression is WNT, FGF and Notch protein regulated, placing it centrally in the signalling circuit that operates in the tail end that both sustains progenitors and drives maturation of the PSM into somites. Interfering with Myc function in the PSM, where it displays oscillatory expression, delays the timing of segmentation clock oscillations and thus of somite formation. In summary, we identify Myc as a component that links NMP maintenance and PSM maturation during the body axis elongation stages of mouse embryogenesis.
Collapse
Affiliation(s)
- Ioanna Mastromina
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Laure Verrier
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Joana Clara Silva
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Kate G Storey
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - J Kim Dale
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
150
|
Magli A, Perlingeiro RRC. Myogenic progenitor specification from pluripotent stem cells. Semin Cell Dev Biol 2018; 72:87-98. [PMID: 29107681 DOI: 10.1016/j.semcdb.2017.10.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022]
Abstract
Pluripotent stem cells represent important tools for both basic and translational science as they enable to study mechanisms of development, model diseases in vitro and provide a potential source of tissue-specific progenitors for cell therapy. Concomitantly with the increasing knowledge of the molecular mechanisms behind activation of the skeletal myogenic program during embryonic development, novel findings in the stem cell field provided the opportunity to begin recapitulating in vitro the events occurring during specification of the myogenic lineage. In this review, we will provide a perspective of the molecular mechanisms responsible for skeletal myogenic commitment in the embryo and how this knowledge was instrumental for specifying this lineage from pluripotent stem cells. In addition, we will discuss the current limitations for properly recapitulating skeletal myogenesis in the petri dish, and we will provide insights about future applications of pluripotent stem cell-derived myogenic cells.
Collapse
Affiliation(s)
- Alessandro Magli
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rita R C Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|