101
|
Sanmukhani J, Satodia V, Trivedi J, Patel T, Tiwari D, Panchal B, Goel A, Tripathi CB. Efficacy and safety of curcumin in major depressive disorder: a randomized controlled trial. Phytother Res 2014; 28:579-585. [PMID: 23832433 DOI: 10.1002/ptr.5025] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 05/15/2013] [Accepted: 05/21/2013] [Indexed: 12/20/2022]
Abstract
Curcumin, an active ingredient of Curcuma longa Linn (Zingiberaceae), has shown potential antidepressant-like activity in animal studies. The objectives of this trial were to compare the efficacy and safety of curcumin with fluoxetine in patients with major depressive disorder (MDD). Herein, 60 patients diagnosed with MDD were randomized in a 1:1:1 ratio for six weeks observer-masked treatment with fluoxetine (20 mg) and curcumin (1000 mg) individually or their combination. The primary efficacy variable was response rates according to Hamilton Depression Rating Scale, 17-item version (HAM-D17 ). The secondary efficacy variable was the mean change in HAM-D17 score after six weeks. We observed that curcumin was well tolerated by all the patients. The proportion of responders as measured by the HAM-D17 scale was higher in the combination group (77.8%) than in the fluoxetine (64.7%) and the curcumin (62.5%) groups; however, these data were not statistically significant (P = 0.58). Interestingly, the mean change in HAM-D17 score at the end of six weeks was comparable in all three groups (P = 0.77). This study provides first clinical evidence that curcumin may be used as an effective and safe modality for treatment in patients with MDD without concurrent suicidal ideation or other psychotic disorders. .
Collapse
Affiliation(s)
- Jayesh Sanmukhani
- Department of Pharmacology, Government Medical College, Bhavnagar, Gujarat, India
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Prasad SN. Neuroprotective effect of geraniol and curcumin in an acrylamide model of neurotoxicity in Drosophila melanogaster: relevance to neuropathy. JOURNAL OF INSECT PHYSIOLOGY 2014; 60:7-16. [PMID: 24231732 DOI: 10.1016/j.jinsphys.2013.10.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/18/2013] [Accepted: 10/23/2013] [Indexed: 06/02/2023]
Abstract
Chronic exposure of acrylamide (ACR) leads to neuronal damage in both experimental animals and humans. The primary focus of this study was to assess the ameliorative effect of geraniol, (a natural monoterpene) against ACR-induced oxidative stress, mitochondrial dysfunction and neurotoxicity in a Drosophila model and compare its efficacy to that of curcumin, a spice active principle with pleiotropic biological activity. Adult male flies (8-10 days) were exposed (7 days) to ACR (5 mM) with or without geraniol and curcumin (5-10 μM) in the medium. Both phytoconstituents significantly reduced the incidence of ACR-induced mortality, rescued the locomotor phenotype and alleviated the enhanced levels of oxidative stress markers in head/body regions. The levels of reduced glutathione (GSH) and total thiols (TSH) resulting from ACR exposure was also restored with concomitant elevation in the activities of detoxifying enzymes. Interestingly, ACR induced mitochondrial dysfunctions (MTT reduction, activities of SDH and citrate synthase enzymes) were alleviated by both phytoconstituents. While ACR elevated the activity of acetylcholinesterase in head/body regions, marked diminution in enzyme activity ensued with co-exposure to phytoconstituents suggesting their potency to mitigate cholinergic function. Furthermore, phytoconstituents also restored the dopamine levels in head/body regions. The neuroprotective effect of geraniol was comparable to curcumin in terms of phenotypic and biochemical markers. Based on our evidences in fly model we hypothesise that geraniol possess significant neuromodulatory propensity and may be exploited for therapeutic application in human pathophysiology associated with neuropathy. However, the precise mechanism/s by which geraniol offers neuroprotection needs to be investigated in appropriate neuronal cell models.
Collapse
Affiliation(s)
- Sathya N Prasad
- Department of Biochemistry and Nutrition, CSIR- Central Food Technological Research Institute (CFTRI), Mysore 570020, Karnataka, India
| |
Collapse
|
103
|
Noto C, Rizzo LB, Mansur RB, McIntyre RS, Maes M, Brietzke E. Targeting the inflammatory pathway as a therapeutic tool for major depression. Neuroimmunomodulation 2014; 21:131-9. [PMID: 24557046 DOI: 10.1159/000356549] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the last decades convergent findings from several lines of evidence has revealed a robust association between major depressive disorder (MDD) and inflammatory pathways. Despite this, the translation of these findings into new and better treatments for MDD has not occurred. The objective of this study is to comprehensively review what is already known with reasonable certainty on inflammatory pathways in MDD, to clarify some points that have been insufficiently studied and to discuss the implications of these findings for future studies targeting inflammatory pathways as a therapeutic tool for individuals with MDD.
Collapse
Affiliation(s)
- Cristiano Noto
- Interdisciplinary Laboratory of Clinical Neuroscience (LINC), Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
104
|
Liang Y, Guo XL, Chen JX, Yue GX. Effects of the chinese traditional prescription xiaoyaosan decoction on chronic immobilization stress-induced changes in behavior and ultrastructure in rat hippocampus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:984797. [PMID: 24381641 PMCID: PMC3865635 DOI: 10.1155/2013/984797] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 11/01/2013] [Indexed: 01/03/2023]
Abstract
Xiaoyaosan (XYS) decoction has been widely used as a traditional medicine for treating stress and depression-related disorders in China for thousands of years. Aim of the Study. To observe the potential mechanism of XYS decoction's antidepressant-like effect in α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors related to synaptic plasticity in the hippocampus rats induced by chronic immobilization stress (CIS). Materials and Methods. Animals were randomly divided into five groups: (1) control group; (2) sham-operated group; (3) CIS group, in which rats were conducted CIS for 21 days; (4) XYS decoction treatment group; (5) 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) positive group, in which the amygdala of CIS rats was unilaterally microinjected with a competitive glutamate receptor antagonist, CNQX. After CIS for 21 days, the open field test (OPT) and elevated plus-maze test (EPM) were measured, the ultrastructure of hippocampus CA1 subregion was observed by the electron microscopy; both the GluR1 and GluR2 mRNA level of AMPA receptor subunits in hippocampus CA1 subregion were detected by real-time qPCR. Results. Rats subjected to CIS exhibited increases in time in central zone and decreases in total distance traveled in the OPT. In the EPM, they also showed decreases in center zone time and entries, open arm time and entries, and an increase in close arm time. Ultrastructural damage in the hippocampus CA1 was also observed. XYS decoction and CNQX showed significant improvement behavioral changes and the ultrastructural damage of the hippocampus CA1; XYS decoction also reversed CIS-induced decreases in GluR2 mRNA and increases in GluR1 mRNA in the hippocampus CA1 as well as CNQX. Conclusions. XYS decoction may effectively produce an antidepressant-like effect, which appears to be involved AMPA receptors related synaptic plasticity of hippocampus.
Collapse
Affiliation(s)
- Yuan Liang
- School of Pre-Clinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Institute of Basic Theory in Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiao-Ling Guo
- School of Pre-Clinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Fangzhuang Community Health Center, Beijing 100078, China
| | - Jia-Xu Chen
- School of Pre-Clinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Basic Theory in Chinese Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, China
| | - Guang-Xin Yue
- Institute of Basic Theory in Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
105
|
Xu Y, Zhang L, Shao T, Ruan L, Wang L, Sun J, Li J, Zhu X, O'Donnell JM, Pan J. Ferulic acid increases pain threshold and ameliorates depression-like behaviors in reserpine-treated mice: behavioral and neurobiological analyses. Metab Brain Dis 2013; 28:571-83. [PMID: 23584961 DOI: 10.1007/s11011-013-9404-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 03/24/2013] [Indexed: 12/17/2022]
Abstract
Depression-pain dyad involves a series of pathological changes including the dysfunction of neuroendocrine and immune networks. Depression and pain influence each other, but the mechanisms are still obscure. The present study aimed to investigate the effect of ferulic acid (FA) on reserpine-induced pain and depression-like behaviors in mice. The results showed that reserpine (1 mg/kg for 3 days, i.p.) led to a significant decrease in nociceptive threshold in thermal hyperalgesia and mechanical allodynia, as well as a significant increase in the immobility time in mouse models of despair test. The neurochemical assays suggested the decreased neurotransmitters (dopamine, norepinephrine and serotonin) along with the increased oxidative stress, inflammatory cytokines, and apoptotic parameters in the frontal cortex and hippocampus of the reserpinised mice. Treatment with FA (40 or 80 mg/kg, p.o.) reversed the behavioral abnormalities and decreased norepinephrine, serotonin and dopamine levels in the hippocampus and frontal cortex induced by reserpine. The higher dose of FA effectively antagonized the oxidative and nitrosative stress and inflammation as evidenced by down-regulated nitrite, LPO, IL-1β, TNF-α, and up-regulated GSH and SOD. Furthermore, FA produced a dose dependent decrease in substance P, NF-κβ p65 and caspase-3 levels in the frontal cortex and hippocampus of reserpinised mice. The findings suggest that FA exerts the effects on reserpine-induced pain and depression-like behaviors through regulating monoaminergic system, oxidative/antioxidant defense, inflammatory and apoptotic signaling pathways. Understanding the mechanism by which FA ameliorates depression and pain as a multi-targeted compound could open new avenues for the development of innovative treatments for depression coupled with pain.
Collapse
Affiliation(s)
- Ying Xu
- Institute of Experimental Neurobiology, Wenzhou Medical College, Wenzhou, Zhejiang Province, 325035, People's Republic of China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Carradori S, D'Ascenzio M, Chimenti P, Secci D, Bolasco A. Selective MAO-B inhibitors: a lesson from natural products. Mol Divers 2013; 18:219-43. [PMID: 24218136 DOI: 10.1007/s11030-013-9490-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/21/2013] [Indexed: 12/30/2022]
Abstract
Monoamine oxidases (MAOs) are mitochondrial bound enzymes, which catalyze the oxidative deamination of monoamine neurotransmitters. Inside the brain, MAOs are present in two isoforms: MAO-A and MAO-B. The activity of MAO-B is generally higher in patients affected by neurodegenerative diseases like Alzheimer's and Parkinson's. Therefore, the search for potent and selective MAO-B inhibitors is still a challenge for medicinal chemists. Nature has always been a source of inspiration for the discovery of new lead compounds. Moreover, natural medicine is a major component in all traditional medicine systems. In this review, we present the latest discoveries in the search for selective MAO-B inhibitors from natural sources. For clarity, compounds have been classified on the basis of structural analogy or source: flavonoids, xanthones, tannins, proanthocyanidins, iridoid glucosides, curcumin, alkaloids, cannabinoids, and natural sources extracts. MAO inhibition values reported in the text are not always consistent due to the high variability of MAO sources (bovine, pig, rat brain or liver, and human) and to the heterogeneity of the experimental protocols used.
Collapse
Affiliation(s)
- Simone Carradori
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 , Rome, Italy
| | | | | | | | | |
Collapse
|
107
|
Liu X, Liu F, Yue R, Li Y, Zhang J, Wang S, Zhang S, Wang R, Shan L, Zhang W. The antidepressant-like effect of bacopaside I: possible involvement of the oxidative stress system and the noradrenergic system. Pharmacol Biochem Behav 2013; 110:224-30. [PMID: 23872136 DOI: 10.1016/j.pbb.2013.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 06/29/2013] [Accepted: 07/07/2013] [Indexed: 11/25/2022]
Abstract
In the present study, the antidepressant-like effect of bacopaside I, a saponin compound present in the Bacopa monniera plant, was evaluated by behavioral and neurochemical methods. Bacopaside I (50, 15 and 5 mg/kg) was given to mice via oral gavage for 7 successive days. The treatment significantly decreased the immobility time in mouse models of despair tests, but it did not influence locomotor activity. Neurochemical assays suggested that treatment by bacopaside I (50, 15 and 5 mg/kg) improved brain antioxidant activity to varying degrees after the behavioral despair test. Bacopaside I (15 and 5 mg/kg) significantly reversed reserpine-induced depressive-like behaviors, including low temperature and ptosis. Conversely, bacopaside I did not affect either brain MAO-A or MAO-B activity after the behavioral despair test in mice. Additionally, 5-hydroxytryptophan (a precursor of 5-serotonin) was not involved in the antidepressant-like effect of bacopaside I. These findings indicated that the antidepressant-like effect of bacopaside I might be related to both antioxidant activation and noradrenergic activation, although the exact mechanism remains to be further elucidated.
Collapse
Affiliation(s)
- Xiaojun Liu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Noorafshan A, Abdollahifar MA, Karbalay-Doust S, Asadi-Golshan R, Rashidian-Rashidabadi A. Protective effects of curcumin and sertraline on the behavioral changes in chronic variable stress-induced rats. Exp Neurobiol 2013; 22:96-106. [PMID: 23833558 PMCID: PMC3699679 DOI: 10.5607/en.2013.22.2.96] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 04/23/2013] [Accepted: 05/07/2013] [Indexed: 12/14/2022] Open
Abstract
Behavioral characteristics of the animal models and humans are impaired in chronic stress. The present study aimed to evaluate and compare the protective effects of sertraline and curcumin on stress-induced learning and memory impairment, anxiety and anhedonia in rats. Male rats were divided into seven groups: stress+water, stress+olive oil, stress+curcumin (100 mg/kg/day), stress+sertraline (10 mg/kg/day), curcumin, sertraline, and control groups. The rats were exposed to chronic variable stress for 56 days. At the end of 40 days and while the previous treatments were continued, the rats were tested in the eight radial maze, elevated plus maze, and sucrose consumption for learning and memory, anxiety, and anhedonia, respectively. In comparison to the non-stressed group, stress+water and stress+olive oil groups revealed a significantly lower percent of correct choices and higher reference and working memory errors during learning and retention phases (p<0.001). In addition these stress groups showed a significant lower percent of the open arms time and open arms entries in the elevated plus maze and consuming less sucrose solution. In addition, the stress+curcumin and stress+sertraline groups showed a better performance in the evaluated parameters of the radial arm maze, elevated plus maze, and sucrose consumption tests. It appears that curcumin and sertraline have the similar effectiveness on behavioral changes in chronic variable stress-induced rats.
Collapse
Affiliation(s)
- Ali Noorafshan
- Histomorphometry and Stereology Research Centre, Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran. ; Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | | | | | | | | |
Collapse
|
109
|
Hishikawa N, Takahashi Y, Amakusa Y, Tanno Y, Tuji Y, Niwa H, Murakami N, Krishna UK. Effects of turmeric on Alzheimer's disease with behavioral and psychological symptoms of dementia. Ayu 2013; 33:499-504. [PMID: 23723666 PMCID: PMC3665200 DOI: 10.4103/0974-8520.110524] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
We describe here three patients with the Alzheimer's Disease (AD) whose behavioral symptoms were improved remarkably as a result of the turmeric treatment, which is the traditional Indian medicine. Their cognitive decline and Behavioral and Psychological Symptoms of Dementia (BPSD) were very severe. All three patients exhibited irritability, agitation, anxiety, and apathy, two patients suffer from urinary incontinence and wonderings. They were prescribed turmeric powder capsules and started recovering from these symptoms without any adverse reaction in the clinical symptom and laboratory data. After 12 weeks of the treatment, total score of the Neuro-Psychiatric Inventory-brief questionnaire decreased significantly in both acuity of symptoms and burden of caregivers. In one case, the Mini-Mental State Examination (MMSE) score was up five points, from 12/30 to 17/30. In the other two cases, no significant change was seen in the MMSE; however, they came to recognize their family within 1 year treatment. All cases have been taking turmeric for more than 1 year, re-exacerbation of BPSD was not seen. The present cases suggest a significant improvement of the behavioral symptoms in the AD with the turmeric treatment, leading to probable benefit of the use of turmeric in individuals with the AD with BPSD.
Collapse
Affiliation(s)
- Nozomi Hishikawa
- Chief Physician, Department of Neurology, Kariya Toyota General Hospital, Kariya City, Aichi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Pathak L, Agrawal Y, Dhir A. Natural polyphenols in the management of major depression. Expert Opin Investig Drugs 2013; 22:863-80. [PMID: 23642183 DOI: 10.1517/13543784.2013.794783] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Natural polyphenols, the non-essential micronutrients, found in array of plant products, are known to affect various physiological and biochemical functions in the body. Studies have shown the protective effect of these polyphenols in different neurological and mental disorders. These polyphenols modulate monoaminergic neurotransmission in the brain and thus possess antidepressant-like activity at least in animal models of depression. AREAS COVERED The present review discusses the use of these natural polyphenols in the treatment of major depression. The review article discusses the antidepressant potential of some important polyphenols such as amentoflavone, apigenin, chlorogenic acid, curcumin, ferulic acid, hesperidin, rutin, quercetin, naringenin, resveratrol, ellagic acid, nobiletin and proanthocyanidins. The mechanism of action of these polyphenols in the treatment of major depression is also discussed in detail. EXPERT OPINION There is an exciting prospect in the discovery of natural polyphenols as therapeutic agents in the treatment of major depression.
Collapse
Affiliation(s)
- Lokesh Pathak
- Gujarat Forensic Sciences University, Institute of Research & Development, DFS Headquarters, Sector 18-A, Gandhinagar, Gujarat-382007, India
| | | | | |
Collapse
|
111
|
Brietzke E, Mansur RB, Zugman A, Carvalho AF, Macêdo DS, Cha DS, Abílio VC, McIntyre RS. Is there a role for curcumin in the treatment of bipolar disorder? Med Hypotheses 2013; 80:606-12. [DOI: 10.1016/j.mehy.2013.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/24/2013] [Accepted: 02/01/2013] [Indexed: 11/28/2022]
|
112
|
|
113
|
A phase I study investigating the safety and pharmacokinetics of highly bioavailable curcumin (Theracurmin) in cancer patients. Cancer Chemother Pharmacol 2013; 71:1521-30. [PMID: 23543271 DOI: 10.1007/s00280-013-2151-8] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 03/17/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND A growing number of preclinical studies have demonstrated that curcumin could be a promising anticancer drug; however, poor bioavailability has been the major obstacle for its clinical application. To overcome this problem, we developed a new form of curcumin (Theracurmin) and reported high plasma curcumin levels could be safely achieved after a single administration of Theracurmin in healthy volunteers. In this study, we aimed to evaluate the safety of repetitive administration of Theracurmin in cancer patients. METHODS Pancreatic or biliary tract cancer patients who failed standard chemotherapy were eligible for this study. Based on our previous pharmacokinetic study, we selected Theracurmin containing 200 mg of curcumin (Level 1) as a starting dose, and the dose was safely escalated to Level 2, which contained 400 mg of curcumin. Theracurmin was orally administered every day with standard gemcitabine-based chemotherapy. In addition to safety and pharmacokinetics data, NF-κB activity, cytokine levels, efficacy, and quality-of-life score were evaluated. RESULTS Ten patients were assigned to level 1 and six were to level 2. Peak plasma curcumin levels (median) after Theracurmin administration were 324 ng/mL (range, 47-1,029 ng/mL) at Level 1 and 440 ng/mL (range, 179-1,380 ng/mL) at Level 2. No unexpected adverse events were observed and 3 patients safely continued Theracurmin administration for >9 months. CONCLUSIONS Repetitive systemic exposure to high concentrations of curcumin achieved by Theracurmin did not increase the incidence of adverse events in cancer patients receiving gemcitabine-based chemotherapy.
Collapse
|
114
|
Wei XL, Han YR, Quan LH, Liu CY, Liao YH. Oily nanosuspension for long-acting intramuscular delivery of curcumin didecanoate prodrug: preparation, characterization and in vivo evaluation. Eur J Pharm Sci 2013; 49:286-93. [PMID: 23542494 DOI: 10.1016/j.ejps.2013.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 10/27/2022]
Abstract
The objective of this study was to prepare the nanocrystals of curcumin didecanoate (CurDD) by wet ball milling and to investigate the comparative pharmacokinetics of oily nano- and micro-suspensions after intramuscular (i.m.) administration to rats. Upon optimizing the wet ball milling parameters, CurDD nanocrystals were produced with median particle size of ~500 nm and the freeze-dried nanocrystals were readily dispersed in peanut oil to form stable nanosuspensions. Although the nanosuspension appeared to exhibit slower clearance from the injection site after i.m. injection, compared to microsuspension (~5 μm), a significantly higher maximum plasma curcumin concentration (69.0 ng/ml) was observed for the former than that for the latter (18.5 ng/ml). In addition, the nanosuspension provided significant higher plasma curcumin concentrations and brain CurDD contents for at least 15 days than the microsuspension, except for the initial times. A single i.m. injection of nanosuspension appeared to achieve reversal effect on reserpine-induced hypothermia for at least 13 days. This study demonstrates that CurDD nanosuspension may act as a long-acting i.m. injectable for sustained delivery of curcumin, potentially applicable to elicit a long-lasting antidepressant effect.
Collapse
Affiliation(s)
- Xiao-Lan Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | | | | | | | | |
Collapse
|
115
|
Ma X, Wang R, Zhao X, Zhang C, Sun J, Li J, Zhang L, Shao T, Ruan L, Chen L, Xu Y, Pan J. Antidepressant-like effect of flaxseed secoisolariciresinol diglycoside in ovariectomized mice subjected to unpredictable chronic stress. Metab Brain Dis 2013; 28:77-84. [PMID: 23263992 DOI: 10.1007/s11011-012-9371-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/12/2012] [Indexed: 10/27/2022]
Abstract
Secoisolariciresinol diglycoside (SDG), a predominant lignan in flaxseed, has antioxidant activity as a dietary supplement. The purpose of the present study was to investigate the antidepressant-like effect and the possible mechanism of flaxseed SDG when the ovariectomized mice were exposed to the unpredictable chronic mild stress procedure. Chronic stress induced the increases in immobility time in mouse model of despair tests, but administration with SDG (80 and 160 mg/kg, p.o.) for 21 days inhibited these behavioral changes caused by stress in both forced swimming and tail suspension tests. These doses that affected the immobile response did not affect locomotor activity. Moreover, the changes in the serum corticosterone and adrenocorticotropic hormone (ACTH) levels were also measured to explore the SDG-associated regulation of hypothalamus-pituitary-adrenals (HPA) axis. The results indicated that the chronic stress-induced increases in the serum corticosterone and ACTH were reversed by treatment with high doses of SDG. Chronic treatment with SDG also affected the body weight of mice and IL-6, IL1β levels in the frontal cortex. In addition, chronic stress procedure induced a decrease in brain-derived neurotrophic factor (BDNF) expression in the frontal cortex of mice; while treatment with SDG reversed this reduction of BDNF. All these results provide compelling evidence that the behavioral effects of flaxseed SDG in the ovariectomized mice might be related to their modulating effects on the neuroendocrine-immune network and neurotrophin factor expression.
Collapse
Affiliation(s)
- Xing Ma
- Department of Pharmacology, Xuzhou Medical College, Xuzhou, Jiangsu Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Choudhary KM, Mishra A, Poroikov VV, Goel RK. Ameliorative effect of Curcumin on seizure severity, depression like behavior, learning and memory deficit in post-pentylenetetrazole-kindled mice. Eur J Pharmacol 2013; 704:33-40. [PMID: 23461849 DOI: 10.1016/j.ejphar.2013.02.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 02/01/2013] [Accepted: 02/07/2013] [Indexed: 02/03/2023]
Abstract
Epilepsy is a chronic neurological disorder and generally associated with certain psychiatric comorbidities. Among several comorbidities depressive behavior and cognitive impairment has been reported to be most debilitating comorbidity associated with epilepsy. This study was envisaged to evaluate the ameliorative effect of Curcumin on depression like behavior and cognitive impairment observed in pentylenetetrazole kindled animals. Male Swiss Albino mice were kindled with subconvulsive dose of pentylenetetrazole (35 mg/kg, i.p.). Successfully kindled animals were used in the study to observe the effect of different treatments. Treatment groups received phenytoin (30 mg/kg) and Curcumin (50, 100 and 200mg/kg) for 15 days. The animals were challenged with pentylenetetrazole (35 mg/kg, i.p.) on day 5, 10 and 15 and seizure severity score, immobility period, number of mistakes and step down latency were recorded. On 15th day, all the animals were sacrificed after behavioral evaluations and their brain was isolated and homogenized to estimate brain norepinephrine, serotonin, total nitrite level and acetylcholinesterase activity. Phenytoin treatment significantly improved the depressive like behavior along with its anticonvulsant effect, however was unable to improve memory impairment. Curcumin significantly attenuated seizure severity, depression like behavior and memory impairment in kindled animals, in dose dependent manner. These results were supported by the biochemical modulation of brain monoamine, nitrosative stress level and acetylcholinesterase activity. Thus present study concluded that Curcumin has the ameliorative effect on seizure severity, depression like behavior and memory impairment in pentylenetetrazole kindled mice, possibly via central monoaminergic modulation and inhibitory effect on nitrosative stress and acetylcholinesterase activity.
Collapse
Affiliation(s)
- Kailash M Choudhary
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India
| | | | | | | |
Collapse
|
117
|
Sasaki K, El Omri A, Kondo S, Han J, Isoda H. Rosmarinus officinalis polyphenols produce anti-depressant like effect through monoaminergic and cholinergic functions modulation. Behav Brain Res 2013; 238:86-94. [PMID: 23085339 DOI: 10.1016/j.bbr.2012.10.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/03/2012] [Accepted: 10/09/2012] [Indexed: 01/02/2023]
Abstract
Rosmarinus officinalis (R. officinalis), a culinary aromatic and medicinal plant, is very rich in polyphenols and flavonoids with high antioxidant properties. This plant was reported to exert multiple benefits for neuronal system and alleviate mood disorder. In our previous study, we demonstrated that R. officinalis and its active compounds, luteolin (Lut), carnosic acid (CA), and rosmarinic acid (RA), exhibited neurotrophic effects and improved cholinergic functions in PC12 cells in correlation with mitogen-activated protein kinase (MAPK), ERK1/2 signaling pathway. The current study was conducted to evaluate and understand the anti-depressant effect of R. officinalis using tail suspension test (TST) in ICR mice and PC12 cells as in vitro neuronal model. Proteomics analysis of PC12 cells treated with R. officinalis polyphenols (ROP) Lut, CA, and RA revealed a significant upregulation of tyrosine hydroxylase (TH) and pyruvate carboxylase (PC) two major genes involved in dopaminergic, serotonergic and GABAergic pathway regulations. Moreover, ROP were demonstrated to protect neuronal cells against corticosterone-induced toxicity. These results were concordant with decreasing immobility time in TST and regulation of several neurotransmitters (dopamine, norepinephrine, serotonin and acetylcholine) and gene expression in mice brain like TH, PC and MAPK phosphatase (MKP-1). To the best of our knowledge this is the first evidence to contribute to the understanding of molecular mechanism behind the anti-depressant effect of R. officinalis and its major active compounds.
Collapse
Affiliation(s)
- Kazunori Sasaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan
| | | | | | | | | |
Collapse
|
118
|
Hurley LL, Tizabi Y. Neuroinflammation, neurodegeneration, and depression. Neurotox Res 2013; 23:131-44. [PMID: 22895696 PMCID: PMC3751583 DOI: 10.1007/s12640-012-9348-1] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 12/19/2022]
Abstract
Neurodegeneration and depression are two common co-morbid conditions, particularly within the aging population. Research has linked neuroinflammation as a major contributing factor to both of these diseases. The key to neuroinflammation effects on neurodegeneration and depression appears to lie within the dysregulation of the control and release of pro- and anti-inflammatory cytokines. This can come from an internal or external insult to the system, or from changes in the individual due to aging that culminate in immune dysregulation. The need to reduce neuroinflammation has led to extensive research into neuroprotectants. We discuss the efficacy found with nicotine, alcohol, resveratrol, curcumin, and ketamine. Our main focus will be on what research tells us about the connections between neuroinflammation, neurodegeneration, and depression, and the hope that neuroprotectants research gives people suffering from neurodegeneration and depression stemming from neuroinflammation. We will conclude by making suggestions for future research in this area.
Collapse
Affiliation(s)
- Laura L. Hurley
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059
| | - Yousef Tizabi
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059
| |
Collapse
|
119
|
Gao S, Cui YL, Yu CQ, Wang QS, Zhang Y. Tetrandrine exerts antidepressant-like effects in animal models: Role of brain-derived neurotrophic factor. Behav Brain Res 2013; 238:79-85. [DOI: 10.1016/j.bbr.2012.10.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 10/07/2012] [Accepted: 10/11/2012] [Indexed: 01/17/2023]
|
120
|
Zhang L, Xu T, Wang S, Yu L, Liu D, Zhan R, Yu SY. NMDA GluN2B receptors involved in the antidepressant effects of curcumin in the forced swim test. Prog Neuropsychopharmacol Biol Psychiatry 2013; 40:12-7. [PMID: 22960607 DOI: 10.1016/j.pnpbp.2012.08.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 08/20/2012] [Accepted: 08/25/2012] [Indexed: 12/17/2022]
Abstract
The antidepressant-like effect of curcumin, a major active component of Curcuma longa, has been previously demonstrated in the forced swimming test. However, the mechanism of this beneficial effect on immobility scores, which is used to evaluate antidepressants, remains largely uncharacterized. The present study attempts to investigate the effects of curcumin on depressive-like behavior with a focus upon the possible contribution of N-methyl-D-aspartate (NMDA) subtype glutamate receptors in this antidepressant-like effect of curcumin. Male mice were pretreated with specific receptor antagonists to different NMDA receptor subtypes such as CPP, NVP-AAM077 and Ro25-6981 as well as to a partial NMDA receptor agonist, D-cycloserine (DCS), prior to administration of curcumin to observe the effects on depressive behavior as measured by immobility scores in the forced swim test. We found that pre-treatment of mice with CPP, a broad-spectrum competitive NMDA receptor antagonist, blocked the anti-immobility effect of curcumin, suggesting the involvement of the glutamate-NMDA receptors. While pretreatment with NVP-AAM077 (the GluN2A-preferring antagonist) did not affect the anti-immobility effect of curcumin, Ro25-6981 (the GluN2B-preferring antagonist) was found to prevent the effect of curcumin in the forced swimming test. Furthermore, pre-treatment with a sub-effective dose of DCS potentiated the anti-immobility effect of a sub-effective dose of curcumin in the forced swimming test. Taken together, these results suggest that curcumin shows antidepressant-like effects in mice and the activation of GluN2B-containing NMDARs is likely to play a predominate role in this beneficial effect. Therefore, the antidepressant-like effect of curcumin in the forced swim test may be mediated, at least in part, by the glutamatergic system.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Physiology, Shandong University, School of Medicine, Wenhuaxilu Road, Jinan, Shandong Province, 250012, PR China
| | | | | | | | | | | | | |
Collapse
|
121
|
Haider S, Naqvi F, Tabassum S, Saleem S, Batool Z, Sadir S, Rasheed S, Saleem D, Nawaz A, Ahmad S. Preventive effects of curcumin against drug- and starvation-induced gastric erosions in rats. Sci Pharm 2013; 81:549-58. [PMID: 23833720 PMCID: PMC3700082 DOI: 10.3797/scipharm.1207-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 01/07/2013] [Indexed: 12/26/2022] Open
Abstract
The present study was designed to investigate the gastroprotective, analgesic, and antipyretic effects of curcumin (Cur), the major constituent of turmeric. Acetylsalicylic acid (ASA) was used in this study as a standard drug for comparison. The analgesic activity was measured using the Hot-Plate Test. The antipyretic and antiulcer effects were assessed using yeast-induced pyrexia and gastric ulceration, respectively. Curcumin (100 mg/kg) injected intra-peritoneally 1 hr prior to the Hot-Plate Test showed significant analgesic activity expressed by both parameters: an increase in latency time and a reduction in paw licking as compared to the controls. In the animal model of pyrexia, curcumin (100 mg/kg injected intra-peritoneally) exhibited a significant reduction in the rectal temperature after 1 hr, 2 hrs, 4 hrs, and 5 hrs of treatment, indicating the antipyretic effect of curcumin. Rats with orally administered curcumin (200 mg/kg) did not show any lesions on the inner lining of the stomach after a 16 hr fast, indicating the gastroprotective effects of curcumin as compared to saline- and acetylsalicylic acid-administered rats. The significantly low ulcer index in curcumin-treated rats following starvation highlights the gastroprotective characteristics of curcumin.
Collapse
Affiliation(s)
- Saida Haider
- Neurochemistry and Biochemical, Neuropharmacological Research Unit, Department of Biochemistry, University of Karachi, Karachi-75270, Pakistan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Villaflores OB, Chen YJ, Chen CP, Yeh JM, Wu TY. Curcuminoids and resveratrol as anti-Alzheimer agents. Taiwan J Obstet Gynecol 2012; 51:515-25. [DOI: 10.1016/j.tjog.2012.09.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2012] [Indexed: 12/24/2022] Open
|
123
|
Lopresti AL, Hood SD, Drummond PD. Multiple antidepressant potential modes of action of curcumin: a review of its anti-inflammatory, monoaminergic, antioxidant, immune-modulating and neuroprotective effects. J Psychopharmacol 2012; 26:1512-24. [PMID: 23035031 DOI: 10.1177/0269881112458732] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Curcumin is the principal curcuminoid of the popular Indian spice turmeric and has attracted increasing attention for the treatment of a range of conditions. Research into its potential as a treatment for depression is still in its infancy, although several potential antidepressant mechanisms of action have been identified. Research completed to date on the multiple effects of curcumin is reviewed in this paper, with a specific emphasis on the biological systems that are compromised in depression. The antidepressant effects of curcumin in animal models of depression are summarised, and its influence on neurotransmitters such as serotonin and dopamine is detailed. The effects of curcumin in moderating hypothalamus-pituitary-adrenal disturbances, lowering inflammation and protecting against oxidative stress, mitochondrial damage, neuroprogression and intestinal hyperpermeability, all of which are compromised in major depressive disorder, are also summarised. With increasing interest in natural treatments for depression, and efforts to enhance current treatment outcomes, curcumin is presented as a promising novel, adjunctive or stand-alone natural antidepressant.
Collapse
|
124
|
Curcumin produces antidepressant effects via activating MAPK/ERK-dependent brain-derived neurotrophic factor expression in the amygdala of mice. Behav Brain Res 2012; 235:67-72. [DOI: 10.1016/j.bbr.2012.07.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/09/2012] [Accepted: 07/13/2012] [Indexed: 01/19/2023]
|
125
|
Abstract
INTRODUCTION Over the last 8 years, emerging studies bridging the gap between nutrition and mental health have resolutely established that learning and memory abilities as well as mood can be influenced by diet. However, the mechanisms by which diet modulates mental health are still not well understood. Sources of data In this article, a review of the literature was conducted using PubMed to identify studies that provide functional implications of adult hippocampal neurogenesis (AHN) and its modulation by diet. AREAS OF AGREEMENT One of the brain structures associated with learning and memory as well as mood is the hippocampus. Importantly, the hippocampus is one of the two structures in the adult brain where the formation of newborn neurons, or neurogenesis, persists. AREAS OF CONTROVERSY The exact roles of these newborn neurons in learning, memory formation and mood regulation remain elusive. GROWING POINTS Nevertheless, there has been accumulating evidence linking cognition and mood to neurogenesis occurring in the adult hippocampus. Therefore, modulation of AHN by diet emerges as a possible mechanism by which nutrition impacts on mental health. AREAS TIMELY FOR DEVELOPING RESEARCH This area of investigation is new and needs attention because a better understanding of the neurological mechanisms by which nutrition affect mental health may lead to novel dietary approaches for disease prevention, healthier ageing and discovery of new therapeutic targets for mental illnesses.
Collapse
|
126
|
Amat N, Hoxur P, Ming D, Matsidik A, Kijjoa A, Upur H. Behavioral, neurochemical and neuroendocrine effects of abnormal savda munziq in the chronic stress mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2012; 2012:426757. [PMID: 22919413 PMCID: PMC3419564 DOI: 10.1155/2012/426757] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/01/2012] [Accepted: 06/18/2012] [Indexed: 12/03/2022]
Abstract
Oral administration of Abnormal Savda Munsiq (ASMq), a herbal preparation used in Traditional Uighur Medicine, was found to exert a memory-enhancing effect in the chronic stressed mice, induced by electric foot-shock. The memory improvement of the stressed mice was shown by an increase of the latency time in the step-through test and the decrease of the latency time in the Y-maze test. Treatment with ASMq was found to significantly decrease the serum levels of adrenocorticotropic hormone (ACTH), corticosterone (CORT) and β-endorphin (β-EP) as well as the brain and serum level of norepinephrine (NE). Furthermore, ASMq was able to significantly reverse the chronic stress by decreasing the brain and serum levels of the monoamine neurotransmitters dopamine (DA), 5-hydroxytryptamine (5-HT) and 3,4-dihydroxyphenylalanine (DOPAC). The results obtained from this study suggested that the memory-enhancing effect of ASMq was mediated through regulations of neurochemical and neuroendocrine systems.
Collapse
Affiliation(s)
- Nurmuhammat Amat
- Traditional Uighur Medicine Department, Xinjiang Medical University, 393 Medical University Road, Urumqi, Xinjiang 830011, China
| | - Parida Hoxur
- Neurology Department, Xinjiang Medical University Affiliation of Traditional Chinese Medicine Hospital, 116 Huanghe Road, Urumqi, Xinjiang 83000, China
| | - Dang Ming
- Traditional Uighur Medicine Department, Xinjiang Medical University, 393 Medical University Road, Urumqi, Xinjiang 830011, China
| | - Aynur Matsidik
- Traditional Uighur Medicine Department, Xinjiang Medical University, 393 Medical University Road, Urumqi, Xinjiang 830011, China
| | - Anake Kijjoa
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 40-50-313 Porto, Portugal
| | - Halmurat Upur
- Traditional Uighur Medicine Department, Xinjiang Medical University, 393 Medical University Road, Urumqi, Xinjiang 830011, China
| |
Collapse
|
127
|
The role of dietary polyphenols on adult hippocampal neurogenesis: molecular mechanisms and behavioural effects on depression and anxiety. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:541971. [PMID: 22829957 PMCID: PMC3395274 DOI: 10.1155/2012/541971] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/10/2012] [Accepted: 04/17/2012] [Indexed: 12/11/2022]
Abstract
Although it has been long believed that new neurons were only generated during development, there is now growing evidence indicating that at least two regions in the brain are capable of continuously generating functional neurons: the subventricular zone and the dentate gyrus of the hippocampus. Adult hippocampal neurogenesis (AHN) is a widely observed phenomenon verified in different adult mammalian species including humans. Factors such as environmental enrichment, voluntary exercise, and diet have been linked to increased levels of AHN. Conversely, aging, stress, anxiety and depression have been suggested to hinder it. However, the mechanisms underlying these effects are still unclear and yet to be determined. In this paper, we discuss some recent findings addressing the effects of different dietary polyphenols on hippocampal cell proliferation and differentiation, models of anxiety, and depression as well as some proposed molecular mechanisms underlying those effects with particular focus on those related to AHN. As a whole, dietary polyphenols seem to exert positive effects on anxiety and depression, possibly in part via regulation of AHN. Studies on the effects of dietary polyphenols on behaviour and AHN may play an important role in the approach to use diet as part of the therapeutic interventions for mental-health-related conditions.
Collapse
|
128
|
Martínez-Vázquez M, Estrada-Reyes R, Martínez-Laurrabaquio A, López-Rubalcava C, Heinze G. Neuropharmacological study of Dracocephalum moldavica L. (Lamiaceae) in mice: sedative effect and chemical analysis of an aqueous extract. JOURNAL OF ETHNOPHARMACOLOGY 2012; 141:908-17. [PMID: 22469767 DOI: 10.1016/j.jep.2012.03.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/12/2012] [Accepted: 03/17/2012] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dracocephalum moldavica is used as a tranquilizer and as remedy for nervous conditions relief in the Mexican traditional medicine. Despite its intensive use no literature reported neuropharmacological studies on Dracocephalum moldavica as yet. AIM OF THE STUDY The sedative, anxiolytic-like and antidepressant-like effects of the aqueous extract of aerial parts of Dracocephalum moldavica (Lamiaceae) (DM) were evaluated in behavioral models in mice. The general toxic effects of DM were evaluated as well as their chemical analysis was performed. MATERIALS AND METHODS DM effects were evaluated on pentobarbital-induced sleeping time (SPT), the hole-board (HBT), and the avoidance exploratory behavior (AEBT) tests and on the forced swimming test (FST). General activity and motor coordination were evaluated in the open field (OFT) and Rota-rod tests, respectively. The acute toxicity of DM was determinate by its LD(50) dose. The chemical analyses DM were performed by chromatographic and HPLC-ESI-MS techniques. RESULTS DM prolonged the pentobarbital-induced sleeping time, induced sedation in the HBT, decreased spontaneous activity and produced motor coordination impairment in mice. However, DM did not show anxiolytic effects in the AEBT or HBT and it was not effective in FST. The DM-treatment produced mortalities with LD(50)=470 mg/kg body weight. The HPLC-ESI-MS analysis of DM revealed that (acacetin, apigenin and luteolin)-7-O-β-D-(6″-O-malonyl)-glucoside derivates are the main compounds of DM. CONCLUSIONS DM induced sedative actions and a general inhibition of CNS activity observed by the decrease of animals' general activity, motor coordination and exploration.
Collapse
Affiliation(s)
- M Martínez-Vázquez
- Instituto de Química, Universidad Nacional Autónoma de Mexico, Coyoacan, Mexico DF 04510, Mexico
| | | | | | | | | |
Collapse
|
129
|
Darvesh AS, Carroll RT, Bishayee A, Novotny NA, Geldenhuys WJ, Van der Schyf CJ. Curcumin and neurodegenerative diseases: a perspective. Expert Opin Investig Drugs 2012; 21:1123-40. [DOI: 10.1517/13543784.2012.693479] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
130
|
Girish C, Raj V, Arya J, Balakrishnan S. Evidence for the involvement of the monoaminergic system, but not the opioid system in the antidepressant-like activity of ellagic acid in mice. Eur J Pharmacol 2012; 682:118-25. [DOI: 10.1016/j.ejphar.2012.02.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 02/11/2012] [Accepted: 02/15/2012] [Indexed: 12/15/2022]
|
131
|
Wang YF, Xu ZK, Yang DH, Yao HY, Ku BS, Ma XQ, Wang CZ, Liu SL, Cai SQ. The antidepressant effect of secoisolariciresinol, a lignan-type phytoestrogen constituent of flaxseed, on ovariectomized mice. J Nat Med 2012; 67:222-7. [DOI: 10.1007/s11418-012-0655-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 02/28/2012] [Indexed: 11/28/2022]
|
132
|
Peng F, Tao Q, Wu X, Dou H, Spencer S, Mang C, Xu L, Sun L, Zhao Y, Li H, Zeng S, Liu G, Hao X. Cytotoxic, cytoprotective and antioxidant effects of isolated phenolic compounds from fresh ginger. Fitoterapia 2012; 83:568-85. [PMID: 22248534 DOI: 10.1016/j.fitote.2011.12.028] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/29/2011] [Accepted: 12/30/2011] [Indexed: 01/25/2023]
Abstract
Twenty-nine phenolic compounds were isolated from the root bark of fresh (Yunnan) ginger and their structures fully characterized. Selected compounds were divided into structural categories and twelve compounds subjected to in-vitro assays including DPPH radical scavenging, xanthine-oxidase inhibition, monoamine oxidase inhibition, rat-brain homogenate lipid peroxidation, and rat pheochromocytoma PC12 cell and primary liver cell viability to determine their antioxidant and cytoprotective properties. Isolated compounds were also tested against nine human tumor cell lines to characterize anticancer potency. Several diarylheptanoids and epoxidic diarylheptanoids were effective DPPH radical scavengers and moderately effective at inhibiting xanthine oxidase. An enone-dione analog of 6-shogaol (compound 2) was isolated and identified to be most effective at protecting PC12 cells from H₂O₂-induced damage. Almost all tested compounds inhibited lipid peroxidation. Three compounds, 6-shogaol, 10-gingerol and an enone-diarylheptanoid analog of curcumin (compound 6) were identified to be cytotoxic in cell lines tested, with KB and HL60 cells most susceptible to 6-shogaol and the curcumin analog with IC₅₀<10 μM. QSAR analysis revealed cytotoxicity was related to compound lipophilicity and chemical reactivity. In conclusion, we observed distinct compounds in fresh ginger to have biological activities relevant in diseases associated with reactive oxygen species.
Collapse
Affiliation(s)
- Fang Peng
- Key Laboratory of Yunnan Insect Drug R&D, College of Pharmaceutical Sciences of Dali University, Wanhua Road, Dali 671000, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Zhen L, Zhu J, Zhao X, Huang W, An Y, Li S, Du X, Lin M, Wang Q, Xu Y, Pan J. The antidepressant-like effect of fisetin involves the serotonergic and noradrenergic system. Behav Brain Res 2012; 228:359-66. [DOI: 10.1016/j.bbr.2011.12.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 12/08/2011] [Accepted: 12/11/2011] [Indexed: 11/25/2022]
|
134
|
Zeni ALB, Zomkowski ADE, Maraschin M, Rodrigues ALS, Tasca CI. Ferulic acid exerts antidepressant-like effect in the tail suspension test in mice: Evidence for the involvement of the serotonergic system. Eur J Pharmacol 2012; 679:68-74. [DOI: 10.1016/j.ejphar.2011.12.041] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 12/16/2011] [Accepted: 12/28/2011] [Indexed: 10/14/2022]
|
135
|
Hassanzadeh P, Hassanzadeh A. The CB1 Receptor-Mediated Endocannabinoid Signaling and NGF: The Novel Targets of Curcumin. Neurochem Res 2012; 37:1112-20. [DOI: 10.1007/s11064-012-0716-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 12/27/2011] [Accepted: 01/23/2012] [Indexed: 12/11/2022]
|
136
|
Zhao X, Xu Y, Zhao Q, Chen CR, Liu AM, Huang ZL. Curcumin exerts antinociceptive effects in a mouse model of neuropathic pain: Descending monoamine system and opioid receptors are differentially involved. Neuropharmacology 2012; 62:843-54. [DOI: 10.1016/j.neuropharm.2011.08.050] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 08/22/2011] [Accepted: 08/22/2011] [Indexed: 01/31/2023]
|
137
|
Khurana S, Jain S, Mediratta PK, Banerjee BD, Sharma KK. Protective role of curcumin on colchicine-induced cognitive dysfunction and oxidative stress in rats. Hum Exp Toxicol 2012; 31:686-97. [PMID: 22262262 DOI: 10.1177/0960327111433897] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dementia is a syndrome of progressive nature, affects wide range of cognitive abilities like memory, language, calculation and so on, neuropsychiatric and social deficits to impair the routine social functions. The present study was designed to assess the effect of curcumin against colchicine-induced cognitive dysfunction and oxidative stress in rats and compare it with rivastigmine. Colchicine (15 µg/5µl) was administered to male Wistar rats intracerebroventricularly (i.c.v.) by stereotaxic apparatus to induce cognitive dysfunction. Administration of colchicine caused poor retention of memory in elevated plus maze, passive avoidance apparatus and Morris water maze paradigms. Chronic treatment with curcumin (100, 200 and 400 mg/kg, p.o.) twice daily and rivastigmine (2.5 mg/kg, p.o.) daily for a period of 28 days beginning 7 days prior to colchicine injection significantly improved colchicine-induced cognitive impairment. Biochemical assessment revealed that i.c.v. colchicine injection significantly increased lipid peroxidation, depleted reduced glutathione levels and decreased acetyl cholinesterase (AChE) activity in rat brains. Chronic administration of curcumin significantly reduced the elevated lipid peroxidation, restored the reduced glutathione levels and AChE activity; however, rivastigmine failed to prevent oxidative stress. The results of the current study indicate that curcumin (100, 200 and 400 mg/kg, p.o.) twice daily has a protective role against colchicine-induced cognitive impairment and associated oxidative stress.
Collapse
Affiliation(s)
- S Khurana
- Department of Pharmacology, University College of Medical Sciences (University of Delhi), Delhi, India
| | | | | | | | | |
Collapse
|
138
|
Arora V, Kuhad A, Tiwari V, Chopra K. Curcumin ameliorates reserpine-induced pain-depression dyad: behavioural, biochemical, neurochemical and molecular evidences. Psychoneuroendocrinology 2011; 36:1570-81. [PMID: 21612876 DOI: 10.1016/j.psyneuen.2011.04.012] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/21/2011] [Accepted: 04/22/2011] [Indexed: 01/19/2023]
Abstract
An apparent clinical relationship between pain and depression has long been recognized. Depression and pain are often diagnosed in the same patients. The emerging concept for pain-depression pathogenesis is the dysfunction of biogenic amine-mediated pain-depression control and the possible involvement of nitrodative stress-induced neurogenic inflammation. The present study was designed to investigate the effect of curcumin on reserpine-induced pain-depression dyad in rats. Administration of reserpine (1mg/kg subcutaneous daily for three consecutive days) led to a significant decrease in nociceptive threshold as evident from reduced paw withdrawal threshold in Randall Sellitto and von-Frey hair test as well as significant increase in immobility time in forced swim test. This behavioural deficit was integrated with decrease in the biogenic amine (dopamine, norepinephrine and serotonin) levels along with increased substance P concentration, nitrodative stress, inflammatory cytokines, NF-κβ and caspase-3 levels in different brain regions (cortex and hippocampus) of the reserpinised rats. Curcumin (100, 200, 300mg/kg; ip) dose dependently ameliorated the behavioural deficits associated with pain and depression by restoring behavioural, biochemical, neurochemical and molecular alterations against reserpine-induced pain-depression dyad in rats.
Collapse
Affiliation(s)
- V Arora
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh, India
| | | | | | | |
Collapse
|
139
|
Bisht S, Khan MA, Bekhit M, Bai H, Cornish T, Mizuma M, Rudek MA, Zhao M, Maitra A, Ray B, Lahiri D, Maitra A, Anders RA. A polymeric nanoparticle formulation of curcumin (NanoCurc™) ameliorates CCl4-induced hepatic injury and fibrosis through reduction of pro-inflammatory cytokines and stellate cell activation. J Transl Med 2011; 91:1383-95. [PMID: 21691262 PMCID: PMC3345948 DOI: 10.1038/labinvest.2011.86] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Plant-derived polyphenols such as curcumin hold promise as a therapeutic agent in the treatment of chronic liver diseases. However, its development is plagued by poor aqueous solubility resulting in poor bioavailability. To circumvent the suboptimal bioavailability of free curcumin, we have developed a polymeric nanoparticle formulation of curcumin (NanoCurc™) that overcomes this major pitfall of the free compound. In this study, we show that NanoCurc™ results in sustained intrahepatic curcumin levels that can be found in both hepatocytes and non-parenchymal cells. NanoCurc™ markedly inhibits carbon tetrachloride-induced liver injury, production of pro-inflammatory cytokines and fibrosis. It also enhances antioxidant levels in the liver and inhibits pro-fibrogenic transcripts associated with activated myofibroblasts. Finally, we show that NanoCurc™ directly induces stellate cell apoptosis in vitro. Our results suggest that NanoCurc™ might be an effective therapy for patients with chronic liver disease.
Collapse
Affiliation(s)
- Savita Bisht
- Department of Pathology, Division of GI and Liver Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Lin TY, Lu CW, Wang CC, Wang YC, Wang SJ. Curcumin inhibits glutamate release in nerve terminals from rat prefrontal cortex: possible relevance to its antidepressant mechanism. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1785-93. [PMID: 21741425 DOI: 10.1016/j.pnpbp.2011.06.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 06/22/2011] [Accepted: 06/22/2011] [Indexed: 12/28/2022]
Abstract
There is abundant evidence suggesting the relevance of glutamate to depression and antidepressant mechanisms. Curcumin, a major active compound of Curcuma longa, has been reported to have the biological function of antidepressant. The aim of the present study was to investigate the effect of curcumin on endogenous glutamate release in nerve terminals of rat prefrontal cortex and the underlying mechanisms. The results showed that curcumin inhibited the release of glutamate that was evoked by exposing synaptosomes to the K(+) channel blocker 4-aminopyridine (4-AP). This phenomenon was blocked by the chelating the extracellular Ca(2+) ions, and by the vesicular transporter inhibitor bafilomycin A1, but was insensitive to the glutamate transporter inhibitor DL-threo-β-benzyl-oxyaspartate (DL-TBOA). Further experiments demonstrated that curcumin decreased depolarization-induced increase in [Ca(2+)](C), whereas it did not alter the resting membrane potential or 4-AP-mediated depolarization. Furthermore, the inhibitory effect of curcumin on evoked glutamate release was prevented by blocking the Ca(v)2.2 (N-type) and Ca(v)2.1 (P/Q-type) channels, but not by blocking intracellular Ca(2+) release or Na(+)/Ca(2+) exchange. These results suggest that curcumin inhibits evoked glutamate release from rat prefrontocortical synaptosomes by the suppression of presynaptic Ca(v)2.2 and Ca(v)2.1 channels. Additionally, we also found that the inhibitory effect of curcumin on 4-AP-evoked glutamate release was completely abolished by the clinically effective antidepressant fluoxetine. This suggests that curcumin and fluoxetine use a common intracellular mechanism to inhibit glutamate release from rat prefrontal cortex nerve terminals.
Collapse
Affiliation(s)
- Tzu Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City, 220 Taiwan
| | | | | | | | | |
Collapse
|
141
|
Xu Y, Li S, Vernon MM, Pan J, Chen L, Barish PA, Zhang Y, Acharya AP, Yu J, Govindarajan SS, Boykin E, Pan X, O'Donnell JM, Ogle WO. Curcumin prevents corticosterone-induced neurotoxicity and abnormalities of neuroplasticity via 5-HT receptor pathway. J Neurochem 2011; 118:784-95. [PMID: 21689105 DOI: 10.1111/j.1471-4159.2011.07356.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Curcumin, a major active component of Curcuma longa, possesses antioxidant and neuroprotective activities. The present study explores the mechanisms underlying the neuroprotective effect of curcumin against corticosterone and its relation to 5-hydroxy tryptamine (5-HT) receptors. Exposure of cortical neurons to corticosterone results in decreased mRNA levels for three 5-HT receptor subtypes, 5-HT(1A), 5-HT(2A) and 5-HT(4), but 5-HT(1B,) 5-HT(2B), 5-HT(2C), 5-HT(6) and 5-HT(7) receptors remain unchanged. Pre-treatment with curcumin reversed this effect on mRNA for the 5-HT(1A) and 5-HT(4) receptors, but not for the 5-HT(2A) receptor. Moreover, curcumin exerted a neuroprotective effect against corticosterone-induced neuronal death. This observed effect of curcumin was partially blocked by either 5-HT(1A) receptor antagonist p-MPPI or 5-HT(4) receptor antagonist RS 39604 alone; whereas, the simultaneous application of both antagonists completely reversed the effect. Curcumin was also found to regulate corticosterone-induced morphological changes such as increases in soma size, dendritic branching and dendritic spine density, as well as elevate synaptophysin expression in cortical neurons. p-MPPI and RS 39604 reversed the effect of curcumin-induced change in neuronal morphology and synaptophysin expression of corticosterone-treated neurons. In addition, an increase in cyclic adenosine monophosphate (cAMP) level was observed after curcumin treatment, which was further prevented by RS 39604, but not by p-MPPI. However, curcumin-induced elevation in protein kinase A activity and phosphorylation of cAMP response element-binding protein levels were inhibited by both p-MPPI and RS 39604. These findings suggest that the neuroprotection and modulation of neuroplasticity exhibited by curcumin might be mediated, at least in part, via the 5-HT receptor-cAMP-PKA-CREB signal pathway.
Collapse
Affiliation(s)
- Ying Xu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Kulkarni SK, Dhir A. An overview of curcumin in neurological disorders. Indian J Pharm Sci 2011; 72:149-54. [PMID: 20838516 PMCID: PMC2929771 DOI: 10.4103/0250-474x.65012] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 01/25/2010] [Indexed: 01/07/2023] Open
Abstract
Curcumin, the principal curcuminoid found in spice turmeric, has recently been studied for its active role in the treatment of various central nervous system disorders. Curcumin demonstrates neuroprotective action in Alzheimer's disease, tardive dyskinesia, major depression, epilepsy, and other related neurodegenerative and neuropsychiatric disorders. The mechanism of its neuroprotective action is not completely understood. However, it has been hypothesized to act majorly through its anti-inflammatory and antioxidant properties. Also, it is a potent inhibitor of reactive astrocyte expression and thus prevents cell death. Curcumin also modulates various neurotransmitter levels in the brain. The present review attempts to discuss some of the potential protective role of curcumin in animal models of major depression, tardive dyskinesia and diabetic neuropathy. These studies call for well planned clinical studies on curcumin for its potential use in neurological disorders.
Collapse
Affiliation(s)
- S K Kulkarni
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh-160014, India
| | | |
Collapse
|
143
|
Kanai M, Yoshimura K, Asada M, Imaizumi A, Suzuki C, Matsumoto S, Nishimura T, Mori Y, Masui T, Kawaguchi Y, Yanagihara K, Yazumi S, Chiba T, Guha S, Aggarwal BB. A phase I/II study of gemcitabine-based chemotherapy plus curcumin for patients with gemcitabine-resistant pancreatic cancer. Cancer Chemother Pharmacol 2011; 68:157-164. [PMID: 20859741 DOI: 10.1007/s00280-010-1470-2] [Citation(s) in RCA: 283] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 09/10/2010] [Indexed: 12/13/2022]
Abstract
PURPOSE Curcumin, a plant-derived natural polyphenol, could be a promising anti-cancer drug and shows synergic effects with cytotoxic agents. We evaluated the safety and feasibility of combination therapy using curcumin with gemcitabine-based chemotherapy. METHODS Gemcitabine-resistant patients with pancreatic cancer received 8 g oral curcumin daily in combination with gemcitabine-based chemotherapy. The primary endpoint was safety for phase I and feasibility of oral curcumin for phase II study. RESULTS Twenty-one patients were enrolled. No dose-limiting toxicities were observed in the phase I study and oral curcumin 8 g/day was selected as the recommended dose for the phase II study. No patients were withdrawn from this study because of the intolerability of curcumin, which met the primary endpoint of the phase II study, and the median compliance rate of oral curcumin was 100% (Range 79-100%). Median survival time after initiation of curcumin was 161 days (95% confidence interval 109-223 days) and 1-year survival rate was 19% (4.4-41.4%). Plasma curcumin levels ranged from 29 to 412 ng/ml in five patients tested. CONCLUSIONS Combination therapy using 8 g oral curcumin daily with gemcitabine-based chemotherapy was safe and feasible in patients with pancreatic cancer and warrants further investigation into its efficacy.
Collapse
Affiliation(s)
- Masashi Kanai
- Outpatient Oncology Unit, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Agarwal NB, Jain S, Agarwal NK, Mediratta PK, Sharma KK. Modulation of pentylenetetrazole-induced kindling and oxidative stress by curcumin in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:756-759. [PMID: 21211953 DOI: 10.1016/j.phymed.2010.11.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 09/23/2010] [Accepted: 11/09/2010] [Indexed: 05/30/2023]
Abstract
Epilepsy is a chronic neurological disorder affecting 1% population worldwide. A number of experimental studies have reported anticonvulsant, neuroprotective and antioxidant activity of certain natural products like curcumin, an active ingredient of turmeric. The present study was designed to explore the effect of acute administration of curcumin at doses 50, 100 and 200 mg/kg, orally (p.o.) pentylenetetrazole-induced kindling in mice. Further two oxidative stress markers viz., malondialdehyde (MDA) and glutathione were estimated in brain tissues of rodents. Curcumin (50, 100 and 200 mg/kg, p.o.) dose dependently suppressed the progression of kindling in mice. In addition, the increased levels of MDA and glutathione were also reduced by curcumin in kindled animals. These results suggest that curcumin appears to possess protective activity against kindling in mice.
Collapse
Affiliation(s)
- Nidhi Bharal Agarwal
- Department of Pharmacology, University College of Medical Sciences & GTB Hospital (University of Delhi), Delhi, India.
| | | | | | | | | |
Collapse
|
145
|
Huang Z, Zhong XM, Li ZY, Feng CR, Pan AJ, Mao QQ. Curcumin reverses corticosterone-induced depressive-like behavior and decrease in brain BDNF levels in rats. Neurosci Lett 2011; 493:145-8. [DOI: 10.1016/j.neulet.2011.02.030] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/30/2011] [Accepted: 02/11/2011] [Indexed: 02/04/2023]
|
146
|
Sookram C, Tan M, Daya R, Heffernan S, Mishra RK. Curcumin prevents haloperidol-induced development of abnormal oro-facial movements: possible implications of Bcl-XL in its mechanism of action. Synapse 2011; 65:788-94. [PMID: 21218454 DOI: 10.1002/syn.20905] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 12/23/2010] [Indexed: 01/11/2023]
Abstract
Curcumin (Curcuma Longa Linn), the active component of turmeric, has been shown to be effective in ameliorating several stress and drug-induced disorders in rats and humans. However, it is unclear whether short term curcumin administration can prevent the abnormal oro-facial movements (AOFM) which develop following blockade of dopamine D2 receptors by antagonist such as Haloperidol. The objective of this study is to determine whether short term treatment with curcumin along with Haloperidol can prevent the development of AOFM in rats. Male Sprague Dawley rats were administered curcumin at 200 mg/kg, and Haloperidol at 2 mg/kg daily for 2 weeks, and AOFMs and locomotor activity were assessed at baseline, day 7 and day 14. By day 14, rats receiving concurrent curcumin administration had a significant reduction in the incidence of Haloperidol-induced AOFMs, but no change on the Haloperidol-induced hypolocomotion. There was no spiked increase in locomotor activity in absence of challenge with dopamine D2 receptor agonist. The exact mechanism by which curcumin attenuates AOFMs remains unknown, therefore, we performed a proteomic analysis of the striatal samples obtained from control and curcumin treated groups. A number of proteins were altered by curcumin, among them an antiapoptotic protein, Bcl-XL, was significantly upregulated. These results suggest that curcumin may be a promising treatment to prevent the development of AOFMs and further suggest some therapeutic value in the treatment of movement disorders.
Collapse
Affiliation(s)
- Christal Sookram
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
147
|
Han YR, Zhu JJ, Wang YR, Wang XS, Liao YH. A simple RP-HPLC method for the simultaneous determination of curcumin and its prodrug, curcumin didecanoate, in rat plasma and the application to pharmacokinetic study. Biomed Chromatogr 2011; 25:1144-9. [DOI: 10.1002/bmc.1584] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 11/12/2010] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Yu-Rong Wang
- School of Chinese Materia Medica; Beijing University of Chinese Medicine; 6 South Road of Wangjing Middle Ring; Chaoyang District; Beijing; 100102; People's Republic of China
| | - Xing-Sheng Wang
- School of Pharmacy; Anhui University of Chinese Medicine; 45 Shihe Road; Hefei; Anhui Province; 230038; People's Republic of China
| | - Yong-Hong Liao
- Institute of Medicinal Plant Development; Chinese Academy of Medical Sciences and Peking Union Medical College; 151 Malianwa North Road; Haidian District; Beijing; 100193; People's Republic of China
| |
Collapse
|
148
|
Kennedy DO, Wightman EL. Herbal extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function. Adv Nutr 2011; 2:32-50. [PMID: 22211188 PMCID: PMC3042794 DOI: 10.3945/an.110.000117] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Humans consume a wide range of foods, drugs, and dietary supplements that are derived from plants and which modify the functioning of the central nervous sytem (CNS). The psychoactive properties of these substances are attributable to the presence of plant secondary metabolites, chemicals that are not required for the immediate survival of the plant but which are synthesized to increase the fitness of the plant to survive by allowing it to interact with its environment, including pathogens and herbivorous and symbiotic insects. In many cases, the effects of these phytochemicals on the human CNS might be linked either to their ecological roles in the life of the plant or to molecular and biochemical similarities in the biology of plants and higher animals. This review assesses the current evidence for the efficacy of a range of readily available plant-based extracts and chemicals that may improve brain function and which have attracted sufficient research in this regard to reach a conclusion as to their potential effectiveness as nootropics. Many of these candidate phytochemicals/extracts can be grouped by the chemical nature of their potentially active secondary metabolite constituents into alkaloids (caffeine, nicotine), terpenes (ginkgo, ginseng, valerian, Melissa officinalis, sage), and phenolic compounds (curcumin, resveratrol, epigallocatechin-3-gallate, Hypericum perforatum, soy isoflavones). They are discussed in terms of how an increased understanding of the relationship between their ecological roles and CNS effects might further the field of natural, phytochemical drug discovery.
Collapse
Affiliation(s)
- David O Kennedy
- Brain, Performance and Nutrition Research Centre, School of Life Sciences, Northumbria University, Newcastle, UK.
| | | |
Collapse
|
149
|
Bishnoi M, Chopra K, Rongzhu L, Kulkarni SK. Protective Effect of Curcumin and its Combination with Piperine (Bioavailability Enhancer) Against Haloperidol-Associated Neurotoxicity: Cellular and Neurochemical Evidence. Neurotox Res 2010; 20:215-25. [DOI: 10.1007/s12640-010-9229-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/09/2010] [Accepted: 10/09/2010] [Indexed: 01/30/2023]
|
150
|
Bao W, Li K, Rong S, Yao P, Hao L, Ying C, Zhang X, Nussler A, Liu L. Curcumin alleviates ethanol-induced hepatocytes oxidative damage involving heme oxygenase-1 induction. JOURNAL OF ETHNOPHARMACOLOGY 2010; 128:549-553. [PMID: 20080166 DOI: 10.1016/j.jep.2010.01.029] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 12/28/2009] [Accepted: 01/11/2010] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcumin is the main bioactive constituent derived from the rhizome of turmeric (Curcuma longa Linn.), which has been used traditionally as hepatoprotective agents in ayurvedic and traditional Chinese medicine for centuries. AIM OF THE STUDY The present study was carried out to demonstrate the potential protective effect of curcumin pretreatment against ethanol-induced hepatocytes oxidative damage, with emphasis on heme oxygenase-1 (HO-1) induction. MATERIALS AND METHODS Rat primary hepatocytes were isolated and treated with ethanol (100mM) and diverse doses of curcumin (0-50 microM), which was pretreated at various time points (0-5h) before ethanol administration. Hepatic enzyme releases in the culture medium and redox status including HO-1 enzyme activity were detected. RESULTS Ethanol exposure resulted in a sustained malondialdehyde (MDA) elevation, glutathione (GSH) depletion and evident release of cellular lactate dehydrogenase (LDH) and aspartate aminotransferase (AST), which was significantly ameliorated by curcumin pretreatment. In addition, dose- and time-dependent induction of HO-1 was involved in such hepatoprotective effects by curcumin. CONCLUSIONS Curcumin exerts hepatoprotective properties against ethanol involving HO-1 induction, which provide new insights into the pharmacological targets of curcumin in the prevention of alcoholic liver disease.
Collapse
Affiliation(s)
- Wei Bao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|