101
|
Zhu J, Zhu XG, Ying SH, Feng MG. Effect of vacuolar ATPase subunit H (VmaH) on cellular pH, asexual cycle, stress tolerance and virulence in Beauveria bassiana. Fungal Genet Biol 2016; 98:52-60. [PMID: 28011319 DOI: 10.1016/j.fgb.2016.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/11/2016] [Accepted: 12/19/2016] [Indexed: 12/23/2022]
Abstract
Vacuolar ATPase (V-ATPase) is a conserved multi-subunit protein complex that mediates intracellular acidification in fungi. Here we show functional diversity of V-ATPase subunit H (BbVmaH) in Beauveria bassiana, a filamentous fungal insect pathogen. Deletion of BbvmaH resulted in elevated vacuolar pH, increased Ca2+ level in cytosol but not in vacuoles, accelerated culture acidification and reduced accumulation of extracellular ammonia. Aerial conidiation and submerged blastospore production were largely delayed and reduced in the deletion mutant, respectively, accompanied with a significant delay in conidial germination, alterations of conidia and blastospores in morphology, size and/or density, and severe growth defects in minimal media with different carbon and nitrogen sources. Despite null responses to osmotic, oxidative and cell wall perturbing stresses, the deletion mutant showed increased sensitivity to Ca2+, Zn2+ and Cu2+ during growth while its conidia were less tolerant to a wet-heat stress at 45°C and UV-B irradiation. Intracellular glycerol and mannitol contents also decreased significantly. Its virulence to Galleria mellonella larvae was significantly attenuated when conidia were topically applied for normal cuticle infection or injected into haemocoel for cuticle-bypassing infection. All phenotypic changes were restored by targeted gene complementation. Our results indicate that BbVmaH plays an important role in sustaining not only vacuolar acidification but also cytosolic calcium accumulation, ambient pH homeostasis, in vitro asexual cycle and virulence in B. bassiana.
Collapse
Affiliation(s)
- Jing Zhu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiao-Guan Zhu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
102
|
Yan X, Talbot NJ. Investigating the cell biology of plant infection by the rice blast fungus Magnaporthe oryzae. Curr Opin Microbiol 2016; 34:147-153. [DOI: 10.1016/j.mib.2016.10.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/05/2016] [Accepted: 10/17/2016] [Indexed: 01/14/2023]
|
103
|
Macheleidt J, Mattern DJ, Fischer J, Netzker T, Weber J, Schroeckh V, Valiante V, Brakhage AA. Regulation and Role of Fungal Secondary Metabolites. Annu Rev Genet 2016; 50:371-392. [DOI: 10.1146/annurev-genet-120215-035203] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Juliane Macheleidt
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
| | - Derek J. Mattern
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Juliane Fischer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Tina Netzker
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Jakob Weber
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Volker Schroeckh
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
| | - Vito Valiante
- Research Group Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany;
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| |
Collapse
|
104
|
Ma H, Sun X, Wang M, Gai Y, Chung KR, Li H. The citrus postharvest pathogen Penicillium digitatum depends on the PdMpkB kinase for developmental and virulence functions. Int J Food Microbiol 2016; 236:167-76. [DOI: 10.1016/j.ijfoodmicro.2016.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/05/2016] [Accepted: 08/01/2016] [Indexed: 01/09/2023]
|
105
|
Alves de Castro P, dos Reis TF, Dolan SK, Manfiolli AO, Brown NA, Jones GW, Doyle S, Riaño-Pachón DM, Squina FM, Caldana C, Singh A, Del Poeta M, Hagiwara D, Silva-Rocha R, Goldman GH. The Aspergillus fumigatus SchA SCH9 kinase modulates SakA HOG1 MAP kinase activity and it is essential for virulence. Mol Microbiol 2016; 102:642-671. [PMID: 27538790 PMCID: PMC5207228 DOI: 10.1111/mmi.13484] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2016] [Indexed: 02/06/2023]
Abstract
The serine-threonine kinase TOR, the Target of Rapamycin, is an important regulator of nutrient, energy and stress signaling in eukaryotes. Sch9, a Ser/Thr kinase of AGC family (the cAMP-dependent PKA, cGMP- dependent protein kinase G and phospholipid-dependent protein kinase C family), is a substrate of TOR. Here, we characterized the fungal opportunistic pathogen Aspergillus fumigatus Sch9 homologue (SchA). The schA null mutant was sensitive to rapamycin, high concentrations of calcium, hyperosmotic stress and SchA was involved in iron metabolism. The ΔschA null mutant showed increased phosphorylation of SakA, the A. fumigatus Hog1 homologue. The schA null mutant has increased and decreased trehalose and glycerol accumulation, respectively, suggesting SchA performs different roles for glycerol and trehalose accumulation during osmotic stress. The schA was transcriptionally regulated by osmotic stress and this response was dependent on SakA and MpkC. The double ΔschA ΔsakA and ΔschA ΔmpkC mutants were more sensitive to osmotic stress than the corresponding parental strains. Transcriptomics and proteomics identified direct and indirect targets of SchA post-exposure to hyperosmotic stress. Finally, ΔschA was avirulent in a low dose murine infection model. Our results suggest there is a complex network of interactions amongst the A. fumigatus TOR, SakA and SchA pathways.
Collapse
Affiliation(s)
- Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thaila Fernanda dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Stephen K. Dolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Adriana Oliveira Manfiolli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Neil Andrew Brown
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | - Gary W. Jones
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Diego M. Riaño-Pachón
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, Campinas, São Paulo, CEP 13083-970, Brasil
| | - Fábio Márcio Squina
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, Campinas, São Paulo, CEP 13083-970, Brasil
| | - Camila Caldana
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, Campinas, São Paulo, CEP 13083-970, Brasil
- Max Planck Partner Group at Brazilian Bioethanol Science and Technology Laboratory, Brazilian Center for Research in Energy and Materials, São Paulo, Brazil
| | - Ashutosh Singh
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Rafael Silva-Rocha
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
106
|
Pereira Silva L, Alves de Castro P, Dos Reis TF, Paziani MH, Von Zeska Kress MR, Riaño-Pachón DM, Hagiwara D, Ries LNA, Brown NA, Goldman GH. Genome-wide transcriptome analysis of Aspergillus fumigatus exposed to osmotic stress reveals regulators of osmotic and cell wall stresses that are SakA HOG1 and MpkC dependent. Cell Microbiol 2016; 19. [PMID: 27706915 DOI: 10.1111/cmi.12681] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/19/2016] [Accepted: 10/04/2016] [Indexed: 12/24/2022]
Abstract
Invasive aspergillosis is predominantly caused by Aspergillus fumigatus, and adaptations to stresses experienced within the human host are a prerequisite for the survival and virulence strategies of the pathogen. The central signal transduction pathway operating during hyperosmotic stress is the high osmolarity glycerol mitogen-activated protein kinase cascade. A. fumigatus MpkC and SakA, orthologues of the Saccharomyces cerevisiae Hog1p, constitute the primary regulator of the hyperosmotic stress response. We compared A. fumigatus wild-type transcriptional response to osmotic stress with the ΔmpkC, ΔsakA, and ΔmpkC ΔsakA strains. Our results strongly indicate that MpkC and SakA have independent and collaborative functions during the transcriptional response to transient osmotic stress. We have identified and characterized null mutants for four A. fumigatus basic leucine zipper proteins transcription factors. The atfA and atfB have comparable expression levels with the wild-type in ΔmpkC but are repressed in ΔsakA and ΔmpkC ΔsakA post-osmotic stress. The atfC and atfD have reduced expression levels in all mutants post-osmotic stress. The atfA-D null mutants displayed several phenotypes related to osmotic, oxidative, and cell wall stresses. The ΔatfA and ΔatfB were shown to be avirulent and to have attenuated virulence, respectively, in both Galleria mellonella and a neutropenic murine model of invasive pulmonary aspergillosis.
Collapse
Affiliation(s)
- Lilian Pereira Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thaila Fernanda Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Mario Henrique Paziani
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Diego M Riaño-Pachón
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), São Paulo, Brazil
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Laure N A Ries
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Neil Andrew Brown
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
107
|
Geisen R, Schmidt-Heydt M. Molecular approaches for monitoring the activation of fungal secondary metabolite biosynthesis in relation to food environmental conditions. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
108
|
Kamei M, Yamashita K, Takahashi M, Fukumori F, Ichiishi A, Fujimura M. Involvement of MAK-1 and MAK-2 MAP kinases in cell wall integrity in Neurospora crassa. Biosci Biotechnol Biochem 2016; 80:1843-52. [DOI: 10.1080/09168451.2016.1189321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Among three MAPK disruptants of Neurospora crassa, Δmak-1 was sensitive and Δmak-2 was hypersensitive to micafungin, a beta-1,3-glucan synthase inhibitor, than the wild-type or Δos-2 strains. We identified six micafungin-inducible genes that are involved in cell wall integrity (CWI) and found that MAK-1 regulated the transcription of non-anchored cell wall protein gene, ncw-1, and the beta-1,3-endoglucanase gene, bgt-2, whereas MAK-2 controlled the expression of the glycosylhydrolase-like protein gene, gh76-5, and the C4-dicarboxylate transporter gene, tdt-1. Western blotting analysis revealed that, in the wild-type strain, MAK-1 was constitutively phosphorylated from conidial germination to hyphal development. In contrast, the phosphorylation of MAK-2 was growth phase-dependent, and micafungin induced the phosphorylation of unphosphorylated MAK-2. It should be noted that the phosphorylation of MAK-1 was virtually abolished in the Δmak-2 strain, but was significantly induced by micafungin, suggesting functional cross talk between MAK-1 and MAK-2 signalling pathway in CWI.
Collapse
Affiliation(s)
- Masayuki Kamei
- Faculty of Life Sciences, Toyo University, Oura-gun, Japan
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | | | | | - Fumiyasu Fukumori
- Faculty of Food and Nutritional Sciences, Toyo University, Oura-gun, Japan
| | | | | |
Collapse
|
109
|
Identification of Conidiogenesis-Associated Genes in Colletotrichum gloeosporioides by Agrobacterium tumefaciens-Mediated Transformation. Curr Microbiol 2016; 73:802-810. [PMID: 27582094 DOI: 10.1007/s00284-016-1131-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/25/2016] [Indexed: 01/25/2023]
Abstract
The Colletotrichum gloeosporioides is one of the most significant pathogens leading to huge economic losses. To infect plants and cause disease dissemination, the fungus elaborates to produce asexual spores called conidia, which are long-lived and highly resistant to environmental stresses. Here, we report a large-scale, systematic genome-wide screening of conidiogenesis-associated genes via conidiation assays, and high-efficiency TAIL-PCRs. Of 10,210 independent transformants tested, 59 mutants exhibited significant variation in conidial production. The T-DNA right flanking sequences of 11 conidiation-related transformants were further identified, and the obtained sequences were aligned to the genome sequence to uncover the novel loci of sporogenesis. When considering together, this study provided a large number of conidial production-variation mutants and the conidiation-related genes, which will be a valuable resource for characterizing the molecular mechanisms of conidial formation in the fungus.
Collapse
|
110
|
Wang J, Ying SH, Hu Y, Feng MG. Vital role for the J-domain protein Mdj1 in asexual development, multiple stress tolerance, and virulence of Beauveria bassiana. Appl Microbiol Biotechnol 2016; 101:185-195. [DOI: 10.1007/s00253-016-7757-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/07/2016] [Accepted: 07/19/2016] [Indexed: 12/24/2022]
|
111
|
Xie Q, Chen A, Zheng W, Xu H, Shang W, Zheng H, Zhang D, Zhou J, Lu G, Li G, Wang Z. Endosomal sorting complexes required for transport-0 is essential for fungal development and pathogenicity in Fusarium graminearum. Environ Microbiol 2016; 18:3742-3757. [PMID: 26971885 DOI: 10.1111/1462-2920.13296] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/30/2016] [Accepted: 03/09/2016] [Indexed: 01/19/2023]
Abstract
Fusarium graminearum is an important plant pathogen that causes head blight of major cereal crops. The vacuolar protein sorting (Vps) protein Vps27 is a component of ESCRT-0 involved in the multivesicular body (MVB) sorting pathway during endocytosis. In this study, we investigated the function of FgVps27 using a gene replacement strategy. The FgVPS27 deletion mutant (ΔFgvps27) exhibited a reduction in growth rate, aerial hyphae formation and hydrophobicity. It also showed increased sensitivity to cell wall-damaging agents and to osmotic stresses. In addition, FgHog1, the critical component of high osmolarity glycerol response pathway, was mis-localized in the ΔFgvps27 mutant upon NaCl treatment. Furthermore, the ΔFgvps27 mutant was defective in conidial production and was unable to generate perithecium in sexual reproduction. The depletion of FgVPS27 also caused a significant reduction in virulence. Further analysis by domain-specific deletion revealed that the FYVE domain was essential for the FgVps27 function and was necessary for the proper localization of FgVps27-GFP and endocytosis. Another component of ESCRT-0, the FgVps27-interacting partner FgHse1, also played an important role in F. graminearum development and pathogenesis. Overall, our results indicate that ESCRT-0 components play critical roles in a variety of cellular and biological processes.
Collapse
Affiliation(s)
- Qiurong Xie
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ahai Chen
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhui Zheng
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huaijian Xu
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenjie Shang
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huawei Zheng
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongmei Zhang
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Zhou
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guodong Lu
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guangpu Li
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.,Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Zonghua Wang
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
112
|
Hagiwara D, Takahashi H, Kusuya Y, Kawamoto S, Kamei K, Gonoi T. Comparative transcriptome analysis revealing dormant conidia and germination associated genes in Aspergillus species: an essential role for AtfA in conidial dormancy. BMC Genomics 2016; 17:358. [PMID: 27185182 PMCID: PMC4869263 DOI: 10.1186/s12864-016-2689-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 05/04/2016] [Indexed: 01/22/2023] Open
Abstract
Background Fungal conidia are usually dormant unless the extracellular conditions are right for germination. Despite the importance of dormancy, little is known about the molecular mechanism underlying entry to, maintenance of, and exit from dormancy. To gain comprehensive and inter-species insights, transcriptome analyses were conducted across Aspergillus fumigatus, Aspergillus niger, and Aspergillus oryzae. Results We found transcripts of 687, 694, and 812 genes were enriched in the resting conidia compared with hyphae in A. fumigatus, A. niger, and A. oryzae, respectively (conidia-associated genes). Similarly, transcripts of 766, 1,241, and 749 genes were increased in the 1 h-cultured conidia compared with the resting conidia (germination-associated genes). Among the three Aspergillus species, we identified orthologous 6,172 genes, 91 and 391 of which are common conidia- and germination-associated genes, respectively. A variety of stress-related genes, including the catalase genes, were found in the common conidia-associated gene set, and ribosome-related genes were significantly enriched among the germination-associated genes. Among the germination-associated genes, we found that calA-family genes encoding a thaumatin-like protein were extraordinary expressed in early germination stage in all Aspergillus species tested here. In A. fumigatus 63 % of the common conidia-associated genes were expressed in a bZIP-type transcriptional regulator AtfA-dependent manner, indicating that AtfA plays a pivotal role in the maintenance of resting conidial physiology. Unexpectedly, the precocious expression of the germination-associated calA and an abnormal metabolic activity were detected in the resting conidia of the atfA mutant, suggesting that AtfA was involved in the retention of conidial dormancy. Conclusions A comparison among transcriptomes of hyphae, resting conidia, and 1 h-grown conidia in the three Aspergillus species revealed likely common factors involved in conidial dormancy. AtfA positively regulates conidial stress-related genes and negatively mediates the gene expressions related to germination, suggesting a major role for AtfA in Aspergillus conidial dormancy. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2689-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daisuke Hagiwara
- Medical Mycology Research Center (MMRC), Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan.
| | - Hiroki Takahashi
- Medical Mycology Research Center (MMRC), Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan.,Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Yoko Kusuya
- Medical Mycology Research Center (MMRC), Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Susumu Kawamoto
- Medical Mycology Research Center (MMRC), Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Katsuhiko Kamei
- Medical Mycology Research Center (MMRC), Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Tohru Gonoi
- Medical Mycology Research Center (MMRC), Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| |
Collapse
|
113
|
Saraswat D, Kumar R, Pande T, Edgerton M, Cullen PJ. Signalling mucin Msb2 Regulates adaptation to thermal stress in Candida albicans. Mol Microbiol 2016; 100:425-41. [PMID: 26749104 PMCID: PMC4955288 DOI: 10.1111/mmi.13326] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2016] [Indexed: 12/13/2022]
Abstract
Temperature is a potent inducer of fungal dimorphism. Multiple signalling pathways control the response to growth at high temperature, but the sensors that regulate these pathways are poorly defined. We show here that the signalling mucin Msb2 is a global regulator of temperature stress in the fungal pathogen Candida albicans. Msb2 was required for survival and hyphae formation at 42°C. The cytoplasmic signalling domain of Msb2 regulated temperature-dependent activation of the CEK mitogen activated proteins kinase (MAPK) pathway. The extracellular glycosylated domain of Msb2 (100-900 amino acid residues) had a new and unexpected role in regulating the protein kinase C (PKC) pathway. Msb2 also regulated temperature-dependent induction of genes encoding regulators and targets of the unfolded protein response (UPR), which is a protein quality control (QC) pathway in the endoplasmic reticulum that controls protein folding/degradation in response to high temperature and other stresses. The heat shock protein and cell wall component Ssa1 was also required for hyphae formation and survival at 42°C and regulated the CEK and PKC pathways.
Collapse
Affiliation(s)
- Darpan Saraswat
- Department of Oral Biology, University at Buffalo, Buffalo, NY, 14260-1300, USA
| | - Rohitashw Kumar
- Department of Oral Biology, University at Buffalo, Buffalo, NY, 14260-1300, USA
| | - Tanaya Pande
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260-1300, USA
| | - Mira Edgerton
- Department of Oral Biology, University at Buffalo, Buffalo, NY, 14260-1300, USA
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260-1300, USA
| |
Collapse
|
114
|
Nox Complex signal and MAPK cascade pathway are cross-linked and essential for pathogenicity and conidiation of mycoparasite Coniothyrium minitans. Sci Rep 2016; 6:24325. [PMID: 27066837 PMCID: PMC4828707 DOI: 10.1038/srep24325] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/24/2016] [Indexed: 11/09/2022] Open
Abstract
The NADPH oxidase complex of a sclerotial mycoparasite Coniothyrium minitans, an important biocontrol agent against crop diseases caused by Sclerotinia sclerotiorum, was identified and its functions involved in conidiation and mycoparasitism were studied. Gene knock-out and complementary experiments indicated that CmNox1, but not CmNox2, is necessary for conidiation and parasitism, and its expression could be significantly induced by its host fungus. CmNox1 is regulated by CmRac1-CmNoxR and interacts with CmSlt2, a homolog of Saccharomyces cerevisiae Slt2 encoding cell wall integrity-related MAP kinase. In ΔCmNox1, CmSlt2-GFP fusion protein lost the ability to localize to the cell nucleus accurately. The defect of conidiation in ΔCmRac1 could be partially restored by over-expressing CmSlt2, indicating that CmSlt2 was a downstream regulatory factor of CmNox1 and was involved in conidiation and parasitism. The expressions of mycoparasitism-related genes CmPks1, Cmg1 and CH1 were suppressed in the knock-out mutants of the genes in CmNox1-CmSlt2 signal pathway when cultivated either on PDA. Therefore, our study infers that CmRac1-CmNoxR regulates CmNox1-CmSlt2 pathway in regulating conidiation and pathogenicity of C. minitans.
Collapse
|
115
|
Wang ZK, Wang J, Liu J, Ying SH, Peng XJ, Feng MG. Proteomic and Phosphoproteomic Insights into a Signaling Hub Role for Cdc14 in Asexual Development and Multiple Stress Responses in Beauveria bassiana. PLoS One 2016; 11:e0153007. [PMID: 27055109 PMCID: PMC4824431 DOI: 10.1371/journal.pone.0153007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 03/22/2016] [Indexed: 11/18/2022] Open
Abstract
Cdc14 is a dual-specificity phosphatase that regulates nuclear behavior by dephosphorylating phosphotyrosine and phosphoserine/phosphothreonine in fungi. Previously, Cdc14 was shown to act as a positive regulator of cytokinesis, asexual development and multiple stress responses in Beauveria bassiana, a fungal insect pathogen. This study seeks to gain deep insight into a pivotal role of Cdc14 in the signaling network of B. bassiana by analyzing the Cdc14-specific proteome and phosphoproteome generated by the 8-plex iTRAQ labeling and MS/MS analysis of peptides and phosphopeptides. Under normal conditions, 154 proteins and 86 phosphorylation sites in 67 phosphoproteins were upregulated in Δcdc14 versus wild-type, whereas 117 proteins and 85 phosphorylation sites in 58 phosphoproteins were significantly downregulated. Co-cultivation of Δcdc14 with NaCl (1 M), H2O2 (3 mM) and Congo red (0.15 mg/ml) resulted in the upregulation / downregulation of 23/63, 41/39 and 79/79 proteins and of 127/112, 52/47 and 105/226 phosphorylation sites in 85/92, 45/36 and 79/146 phosphoproteins, respectively. Bioinformatic analyses revealed that Cdc14 could participate in many biological and cellular processes, such as carbohydrate metabolism, glycerophospholipid metabolism, the MAP Kinase signaling pathway, and DNA conformation, by regulating protein expression and key kinase phosphorylation in response to different environmental cues. These indicate that in B. bassiana, Cdc14 is a vital regulator of not only protein expression but also many phosphorylation events involved in developmental and stress-responsive pathways. Fourteen conserved and novel motifs were identified in the fungal phosphorylation events.
Collapse
Affiliation(s)
- Zhi-Kang Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jie Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Liu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Jun Peng
- Jingjie PTM Biolabs (Hangzhou) Co., Ltd., Hangzhou, 310018, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- * E-mail:
| |
Collapse
|
116
|
Tong SM, Chen Y, Zhu J, Ying SH, Feng MG. Subcellular localization of five singular WSC domain-containing proteins and their roles in Beauveria bassiana responses to stress cues and metal ions. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:295-304. [PMID: 26994521 DOI: 10.1111/1758-2229.12380] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/15/2015] [Accepted: 12/26/2015] [Indexed: 06/05/2023]
Abstract
Some model fungi have three or four proteins with each vectoring a single cell Wall Stress-responsive Component (WSC) domain at N-terminus. In this study, five proteins, each vectoring only a single WSC domain in N-terminal, central or even C-terminal region, were found in Beauveria bassiana, a filamentous fungal entomopathogen, and named Wsc1A-1E due to the domain singularity. Four of them lack either transmembrane domain or C-terminal conserved signature sequence (DXXD) compared with the homologues in the model fungi. Intriguingly, all the eGFP-tagged fusion proteins of Wsc1A-1E were evidently localized to the cell wall and membrane of transgenic hyphae. Single deletions of the five wsc genes resulted in significant, but differential, increases in cellular sensitivity to cell wall perturbation, oxidation, high osmolarity, and four to six metal ions (Zn(2+) , Mg(2+) , Fe(2+) , K(+) , Ca(2+) and Mn(2+) ). Each deletion mutant also showed a delay of germination and a decrease of conidial UV-B resistance, thermotolerance or both. However, none of the deletions affected substantially the fungal growth, conidiation and virulence. Our results indicate a significance of each WSC protein for the B. bassiana adaptation to diverse habitats of host insects.
Collapse
Affiliation(s)
- Sen-Miao Tong
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ying Chen
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jing Zhu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
117
|
Bruder Nascimento ACMDO, Dos Reis TF, de Castro PA, Hori JI, Bom VLP, de Assis LJ, Ramalho LNZ, Rocha MC, Malavazi I, Brown NA, Valiante V, Brakhage AA, Hagiwara D, Goldman GH. Mitogen activated protein kinases SakA(HOG1) and MpkC collaborate for Aspergillus fumigatus virulence. Mol Microbiol 2016; 100:841-59. [PMID: 26878695 DOI: 10.1111/mmi.13354] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2016] [Indexed: 01/24/2023]
Abstract
Here, we investigated which stress responses were influenced by the MpkC and SakA mitogen-activated protein kinases of the high-osmolarity glycerol (HOG) pathway in the fungal pathogen Aspergillus fumigatus. The ΔsakA and the double ΔmpkC ΔsakA mutants were more sensitive to osmotic and oxidative stresses, and to cell wall damaging agents. Both MpkC::GFP and SakA::GFP translocated to the nucleus upon osmotic stress and cell wall damage, with SakA::GFP showing a quicker response. The phosphorylation state of MpkA was determined post exposure to high concentrations of congo red and Sorbitol. In the wild-type strain, MpkA phosphorylation levels progressively increased in both treatments. In contrast, the ΔsakA mutant had reduced MpkA phosphorylation, and surprisingly, the double ΔmpkC ΔsakA had no detectable MpkA phosphorylation. A. fumigatus ΔsakA and ΔmpkC were virulent in mouse survival experiments, but they had a 40% reduction in fungal burden. In contrast, the ΔmpkC ΔsakA double mutant showed highly attenuated virulence, with approximately 50% mice surviving and a 75% reduction in fungal burden. We propose that both cell wall integrity (CWI) and HOG pathways collaborate, and that MpkC could act by modulating SakA activity upon exposure to several types of stresses and during CW biosynthesis.
Collapse
Affiliation(s)
| | - Thaila Fernanda Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Juliana I Hori
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vinícius Leite Pedro Bom
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Leandro José de Assis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Marina Campos Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Neil Andrew Brown
- Plant Science and Crop Biology, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Vito Valiante
- Leibniz Junior Research Group Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany; Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
118
|
Hagiwara D, Sakamoto K, Abe K, Gomi K. Signaling pathways for stress responses and adaptation in Aspergillus species: stress biology in the post-genomic era. Biosci Biotechnol Biochem 2016; 80:1667-80. [PMID: 27007956 DOI: 10.1080/09168451.2016.1162085] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Aspergillus species are among the most important filamentous fungi in terms of industrial use and because of their pathogenic or toxin-producing features. The genomes of several Aspergillus species have become publicly available in this decade, and genomic analyses have contributed to an integrated understanding of fungal biology. Stress responses and adaptation mechanisms have been intensively investigated using the accessible genome infrastructure. Mitogen-activated protein kinase (MAPK) cascades have been highlighted as being fundamentally important in fungal adaptation to a wide range of stress conditions. Reverse genetics analyses have uncovered the roles of MAPK pathways in osmotic stress, cell wall stress, development, secondary metabolite production, and conidia stress resistance. This review summarizes the current knowledge on the stress biology of Aspergillus species, illuminating what we have learned from the genomic data in this "post-genomic era."
Collapse
Affiliation(s)
- Daisuke Hagiwara
- a Medical Mycology Research Center , Chiba University , Chiba , Japan
| | | | - Keietsu Abe
- c Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Katsuya Gomi
- c Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| |
Collapse
|
119
|
Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete JDJ, García-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sánchez-Arreguín JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiol Mol Biol Rev 2016; 80:205-327. [PMID: 26864432 PMCID: PMC4771370 DOI: 10.1128/mmbr.00040-15] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.
Collapse
Affiliation(s)
- Monika Schmoll
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | - Christoph Dattenböck
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Doris Tisch
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Mario Ivan Alemán
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | - Scott E Baker
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Brown
- University of Otago, Department of Biochemistry and Genetics, Dunedin, New Zealand
| | | | - José Cetz-Chel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - Luis Delaye
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | | | - Alexa Frischmann
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | - Monica García-Esquivel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - David R Greenwood
- The University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Miguel Hernández-Oñate
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | - Joanna S Kruszewska
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Robert Lawry
- Lincoln University, Bio-Protection Research Centre, Lincoln, Canterbury, New Zealand
| | | | | | | | | | | | | | - Sebastian Piłsyk
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aroa Rodriguez-Iglesias
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | | | - Chih-Li Wang
- National Chung-Hsing University, Department of Plant Pathology, Taichung, Taiwan
| | - Ting-Fang Wang
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan
| | - Susanne Zeilinger
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria University of Innsbruck, Institute of Microbiology, Innsbruck, Austria
| | | | - Alfredo Herrera-Estrella
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| |
Collapse
|
120
|
Zeilinger S, Gupta VK, Dahms TES, Silva RN, Singh HB, Upadhyay RS, Gomes EV, Tsui CKM, Nayak S C. Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiol Rev 2016; 40:182-207. [PMID: 26591004 PMCID: PMC4778271 DOI: 10.1093/femsre/fuv045] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/11/2015] [Accepted: 10/11/2015] [Indexed: 12/22/2022] Open
Abstract
Fungi interact with plants in various ways, with each interaction giving rise to different alterations in both partners. While fungal pathogens have detrimental effects on plant physiology, mutualistic fungi augment host defence responses to pathogens and/or improve plant nutrient uptake. Tropic growth towards plant roots or stomata, mediated by chemical and topographical signals, has been described for several fungi, with evidence of species-specific signals and sensing mechanisms. Fungal partners secrete bioactive molecules such as small peptide effectors, enzymes and secondary metabolites which facilitate colonization and contribute to both symbiotic and pathogenic relationships. There has been tremendous advancement in fungal molecular biology, omics sciences and microscopy in recent years, opening up new possibilities for the identification of key molecular mechanisms in plant-fungal interactions, the power of which is often borne out in their combination. Our fragmentary knowledge on the interactions between plants and fungi must be made whole to understand the potential of fungi in preventing plant diseases, improving plant productivity and understanding ecosystem stability. Here, we review innovative methods and the associated new insights into plant-fungal interactions.
Collapse
Affiliation(s)
- Susanne Zeilinger
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Vijai K Gupta
- Molecular Glycobiotechnology Group, Discipline of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, University of Regina, SK, Canada
| | - Roberto N Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), 14049-900 Ribeirão Preto, SP, Brazil
| | - Harikesh B Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221 005, India
| | - Ram S Upadhyay
- Department of Botany, Banaras Hindu University, Varanasi 221 005, India
| | - Eriston Vieira Gomes
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), 14049-900 Ribeirão Preto, SP, Brazil
| | - Clement Kin-Ming Tsui
- Department of Pathology and Laboratory Medicine, the University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Chandra Nayak S
- Department of Biotechnology, University of Mysore, Mysore-570001, Karnataka, India
| |
Collapse
|
121
|
Wang J, Ying SH, Hu Y, Feng MG. Mas5, a homologue of bacterial DnaJ, is indispensable for the host infection and environmental adaptation of a filamentous fungal insect pathogen. Environ Microbiol 2016; 18:1037-47. [DOI: 10.1111/1462-2920.13197] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Jie Wang
- Institute of Microbiology, College of Life Sciences; Zhejiang University; Hangzhou Zhejiang 310058 China
- Key Laboratory of Tropical Marine Bio-resources and Ecology; RNAM Center for Marine Microbiology; Guangdong Key Laboratory of Marine Material Medical; South China Sea Institute of Oceanology; Chinese Academy of Sciences; Guangzhou Guangdong 510301 China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences; Zhejiang University; Hangzhou Zhejiang 310058 China
| | - Yue Hu
- Institute of Microbiology, College of Life Sciences; Zhejiang University; Hangzhou Zhejiang 310058 China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences; Zhejiang University; Hangzhou Zhejiang 310058 China
| |
Collapse
|
122
|
Chen X, Xu C, Qian Y, Liu R, Zhang Q, Zeng G, Zhang X, Zhao H, Fang W. MAPK cascade-mediated regulation of pathogenicity, conidiation and tolerance to abiotic stresses in the entomopathogenic fungus Metarhizium robertsii. Environ Microbiol 2016; 18:1048-62. [PMID: 26714892 DOI: 10.1111/1462-2920.13198] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 12/20/2015] [Accepted: 12/22/2015] [Indexed: 01/21/2023]
Abstract
Metarhizium robertsii has been used as a model to study fungal pathogenesis in insects, and its pathogenicity has many parallels with plant and mammal pathogenic fungi. MAPK (Mitogen-activated protein kinase) cascades play pivotal roles in cellular regulation in fungi, but their functions have not been characterized in M. robertsii. In this study, we identified the full complement of MAPK cascade components in M. robertsii and dissected their regulatory roles in pathogenesis, conidiation and stress tolerance. The nine components of the Fus3, Hog1 and Slt2-MAPK cascades are all involved in conidiation. The Fus3- and Hog1-MAPK cascades are necessary for tolerance to hyperosmotic stress, and the Slt2- and Fus3-MAPK cascades both mediate cell wall integrity. The Hog1 and Slt2-MAPK cascades contribute to pathogenicity; the Fus3-MAPK cascade is indispensable for fungal pathogenesis. During its life cycle, M. robertsii experiences multiple microenvironments as it transverses the cuticle into the haemocoel. RNA-seq analysis revealed that MAPK cascades collectively play a major role in regulating the adaptation of M. robertsii to the microenvironmental change from the cuticle to the haemolymph. The three MAPKs each regulate their own distinctive subset of genes during penetration of the cuticle and haemocoel colonization, but they function redundantly to regulate adaptation to microenvironmental change.
Collapse
Affiliation(s)
- Xiaoxuan Chen
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chuan Xu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ying Qian
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ran Liu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Qiangqiang Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Guohong Zeng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xin Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hong Zhao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Weiguo Fang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
123
|
Sacristán-Reviriego A, Molina M, Martín H. Methods to Study Protein Tyrosine Phosphatases Acting on Yeast MAPKs. Methods Mol Biol 2016; 1447:385-398. [PMID: 27514817 DOI: 10.1007/978-1-4939-3746-2_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mitogen activated protein kinases (MAPK) pathways play a key role in orchestrating the eukaryotic cellular response to different stimuli. In this process, phosphorylation of both conserved threonine and tyrosine residues of MAPKs is essential for their activation. Identification of tyrosine and dual specificity protein phosphatases capable of dephosphorylating these phosphosites is thus critical to gain insight into their regulation. Due to the conservation of pivotal elements in eukaryotic signaling, yeast has turned into a valuable tool to increase the knowledge of MAPK signaling in other cell types. Here we describe an in vivo method to evaluate the capacity of a protein, from yeast or other origin, to act as a MAPK phosphatase. It relies on the ability of the phosphatase to reduce, when overexpressed, both the amount of activated MAPK and the transcription from a specific promoter regulated by the corresponding pathway. To this end, the pathway has to be previously activated, preferentially through overexpression of a hyperactive allele of an upstream component within the MAPK module. Additionally, the ability of an overexpressed "trapping" inactive phosphatase version to modify these readouts is also analyzed. Western blotting analysis with specific anti-phospho MAPK antibodies and flow cytometry-based determination of fluorescence produced by GFP whose expression is driven by MAPK-regulated promoters are the selected techniques for monitoring these readouts.
Collapse
Affiliation(s)
- Almudena Sacristán-Reviriego
- Departamento de Microbiología II, Facultad de Farmacia, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040, Madrid, Spain
| | - María Molina
- Departamento de Microbiología II, Facultad de Farmacia, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Humberto Martín
- Departamento de Microbiología II, Facultad de Farmacia, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040, Madrid, Spain.
| |
Collapse
|
124
|
Miguel-Rojas C, Hera C. The F-box protein Fbp1 functions in the invasive growth and cell wall integrity mitogen-activated protein kinase (MAPK) pathways in Fusarium oxysporum. MOLECULAR PLANT PATHOLOGY 2016; 17:55-64. [PMID: 25808603 PMCID: PMC6638410 DOI: 10.1111/mpp.12259] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
F-box proteins determine substrate specificity of the ubiquitin-proteasome system. Previous work has demonstrated that the F-box protein Fbp1, a component of the SCF(Fbp1) E3 ligase complex, is essential for invasive growth and virulence of the fungal plant pathogen Fusarium oxysporum. Here, we show that, in addition to invasive growth, Fbp1 also contributes to vegetative hyphal fusion and fungal adhesion to tomato roots. All of these functions have been shown previously to require the mitogen-activated protein kinase (MAPK) Fmk1. We found that Fbp1 is required for full phosphorylation of Fmk1, indicating that Fbp1 regulates virulence and invasive growth via the Fmk1 pathway. Moreover, the Δfbp1 mutant is hypersensitive to sodium dodecylsulfate (SDS) and calcofluor white (CFW) and shows reduced phosphorylation levels of the cell wall integrity MAPK Mpk1 after SDS treatment. Collectively, these results suggest that Fbp1 contributes to both the invasive growth and cell wall integrity MAPK pathways of F. oxysporum.
Collapse
Affiliation(s)
- Cristina Miguel-Rojas
- Departamento de Genética, Facultad de Ciencias, Universidad de Córdoba, 14071, Córdoba, Spain
- Campus de Excelencia Internacional Agroalimentario ceiA3, 14071, Córdoba, Spain
| | - Concepcion Hera
- Departamento de Genética, Facultad de Ciencias, Universidad de Córdoba, 14071, Córdoba, Spain
- Campus de Excelencia Internacional Agroalimentario ceiA3, 14071, Córdoba, Spain
| |
Collapse
|
125
|
Abstract
Secreted peroxidases are well-known components of damage-induced defense responses in plants. A recent study in Nature (Turrà et al., 2015) has revealed that these enzymes can inadvertently serve as reporters of wounded sites and constitute an "Achilles heel," allowing adapted pathogens to track and enter host tissue.
Collapse
Affiliation(s)
- Yasin F Dagdas
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7RG, UK
| | - Tolga O Bozkurt
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
126
|
Kück U, Beier AM, Teichert I. The composition and function of the striatin-interacting phosphatases and kinases (STRIPAK) complex in fungi. Fungal Genet Biol 2015; 90:31-38. [PMID: 26439752 DOI: 10.1016/j.fgb.2015.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 02/06/2023]
Abstract
The striatin-interacting phosphatases and kinases (STRIPAK) complex is a highly conserved eukaryotic protein complex that was recently described for diverse animal and fungal species. Here, we summarize our current knowledge about the composition and function of the STRIPAK complex from the ascomycete Sordaria macrospora, which we discovered by investigating sexually sterile mutants (pro), having a defect in fruiting body development. Mass spectrometry and yeast two-hybrid analysis defined core subunits of the STRIPAK complex, which have structural homologs in animal and other fungal organisms. These subunits (and their mammalian homologs) are PRO11 (striatin), PRO22 (STRIP1/2), SmMOB3 (Mob3), PRO45 (SLMAP), and PP2AA, the structural, and PP2Ac, the catalytic subunits of protein phosphatase 2A (PP2A). Beside fruiting body formation, the STRIPAK complex controls vegetative growth and hyphal fusion in S. macrospora. Although the contribution of single subunits to diverse cellular and developmental processes is not yet fully understood, functional analysis has already shown that mammalian homologs are able to substitute the function of distinct fungal STRIPAK subunits. This underscores the view that fungal model organisms serve as useful tools to get a molecular insight into cellular and developmental processes of eukaryotes in general. Future work will unravel the precise localization of single subunits within the cell and decipher their STRIPAK-related and STRIPAK-independent functions. Finally, evidence is accumulating that there is a crosstalk between STRIPAK and various signaling pathways, suggesting that eukaryotic development is dependent on STRIPAK signaling.
Collapse
Affiliation(s)
- Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| | - Anna M Beier
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Ines Teichert
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
127
|
Liu Y, Liu N, Yin Y, Chen Y, Jiang J, Ma Z. Histone H3K4 methylation regulates hyphal growth, secondary metabolism and multiple stress responses inFusarium graminearum. Environ Microbiol 2015; 17:4615-30. [DOI: 10.1111/1462-2920.12993] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 07/17/2015] [Accepted: 07/18/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Ye Liu
- Institute of Biotechnology; Zhejiang University; Hangzhou 310058 China
| | - Na Liu
- Institute of Biotechnology; Zhejiang University; Hangzhou 310058 China
| | - Yanni Yin
- Institute of Biotechnology; Zhejiang University; Hangzhou 310058 China
| | - Yun Chen
- Institute of Biotechnology; Zhejiang University; Hangzhou 310058 China
| | - Jinhua Jiang
- Institute of Quality and Standard for Agro-products; Zhejiang Academy of Agricultural Sciences; Hangzhou 310021 Zhejiang China
| | - Zhonghua Ma
- Institute of Biotechnology; Zhejiang University; Hangzhou 310058 China
| |
Collapse
|
128
|
Altwasser R, Baldin C, Weber J, Guthke R, Kniemeyer O, Brakhage AA, Linde J, Valiante V. Network Modeling Reveals Cross Talk of MAP Kinases during Adaptation to Caspofungin Stress in Aspergillus fumigatus. PLoS One 2015; 10:e0136932. [PMID: 26356475 PMCID: PMC4565559 DOI: 10.1371/journal.pone.0136932] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 08/11/2015] [Indexed: 12/14/2022] Open
Abstract
Mitogen activated protein kinases (MAPKs) are highly conserved in eukaryotic organisms. In pathogenic fungi, their activities were assigned to different physiological functions including drug adaptation and resistance. Aspergillus fumigatus is a human pathogenic fungus, which causes life-threatening invasive infections. Therapeutic options against invasive mycoses are still limited. One of the clinically used drugs is caspofungin, which specifically targets the fungal cell wall biosynthesis. A systems biology approach, based on comprehensive transcriptome data sets and mathematical modeling, was employed to infer a regulatory network and identify key interactions during adaptation to caspofungin stress in A. fumigatus. Mathematical modeling and experimental validations confirmed an intimate cross talk occurring between the cell wall-integrity and the high osmolarity-glycerol signaling pathways. Specifically, increased concentrations of caspofungin promoted activation of these signalings. Moreover, caspofungin affected the intracellular transport, which caused an additional osmotic stress that is independent of glucan inhibition. High concentrations of caspofungin reduced this osmotic stress, and thus decreased its toxic activity. Our results demonstrated that MAPK signaling pathways play a key role during caspofungin adaptation and are contributing to the paradoxical effect exerted by this drug.
Collapse
Affiliation(s)
- Robert Altwasser
- Department of Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Clara Baldin
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Jakob Weber
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Reinhard Guthke
- Department of Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747, Jena, Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Jörg Linde
- Department of Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
- * E-mail: (JL); (VV)
| | - Vito Valiante
- Leibniz Junior Research Group—Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
- * E-mail: (JL); (VV)
| |
Collapse
|
129
|
Harries E, Gandía M, Carmona L, Marcos JF. The Penicillium digitatum protein O-mannosyltransferase Pmt2 is required for cell wall integrity, conidiogenesis, virulence and sensitivity to the antifungal peptide PAF26. MOLECULAR PLANT PATHOLOGY 2015; 16:748-761. [PMID: 25640475 PMCID: PMC6638402 DOI: 10.1111/mpp.12232] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The activity of protein O-mannosyltransferases (Pmts) affects the morphogenesis and virulence of fungal pathogens. Recently, PMT genes have been shown to determine the sensitivity of Saccharomyces cerevisiae to the antifungal peptide PAF26. This study reports the identification and characterization of the three Pdpmt genes in the citrus post-harvest pathogen Penicillium digitatum. The Pdpmt genes are expressed during fungal growth and fruit infection, with the highest induction for Pdpmt2. Pdpmt2 complemented the growth defect of the S. cerevisiae Δpmt2 strain. The Pdpmt2 gene mutation in P. digitatum caused pleiotropic effects, including a reduction in fungal growth and virulence, whereas its constitutive expression had no phenotypic effect. The Pdpmt2 null mutants also showed a distinctive colourless phenotype with a strong reduction in the number of conidia, which was associated with severe alterations in the development of conidiophores. Additional effects of the Pdpmt2 mutation were hyphal morphological alterations, increased sensitivity to cell wall-interfering compounds and a blockage of invasive growth. In contrast, the Pdpmt2 mutation increased tolerance to oxidative stress and to the antifungal activity of PAF26. These data confirm the role of protein O-glycosylation in the PAF26-mediated antifungal mechanism present in distantly related fungal species. Important to future crop protection strategies, this study demonstrates that a mutation rendering fungi more resistant to an antifungal peptide results in severe deleterious effects on fungal growth and virulence.
Collapse
Affiliation(s)
- Eleonora Harries
- Departamento de Ciencia de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), CSIC, Avda, Agustín Escardino-7, Paterna, 46980, Valencia, Spain
| | - Mónica Gandía
- Departamento de Ciencia de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), CSIC, Avda, Agustín Escardino-7, Paterna, 46980, Valencia, Spain
| | - Lourdes Carmona
- Departamento de Ciencia de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), CSIC, Avda, Agustín Escardino-7, Paterna, 46980, Valencia, Spain
| | - Jose F Marcos
- Departamento de Ciencia de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), CSIC, Avda, Agustín Escardino-7, Paterna, 46980, Valencia, Spain
| |
Collapse
|
130
|
Penn TJ, Wood ME, Soanes DM, Csukai M, Corran AJ, Talbot NJ. Protein kinase C is essential for viability of the rice blast fungus Magnaporthe oryzae. Mol Microbiol 2015; 98:403-19. [PMID: 26192090 PMCID: PMC4791171 DOI: 10.1111/mmi.13132] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2015] [Indexed: 12/19/2022]
Abstract
Protein kinase C constitutes a family of serine–threonine kinases found in all eukaryotes and implicated in a wide range of cellular functions, including regulation of cell growth, cellular differentiation and immunity. Here, we present three independent lines of evidence which indicate that protein kinase C is essential for viability of Magnaporthe oryzae. First, all attempts to generate a target deletion of PKC1, the single copy protein kinase C‐encoding gene, proved unsuccessful. Secondly, conditional gene silencing of PKC1 by RNA interference led to severely reduced growth of the fungus, which was reversed by targeted deletion of the Dicer2‐encoding gene, MDL2. Finally, selective kinase inhibition of protein kinase C by targeted allelic replacement with an analogue‐sensitive PKC1AS allele led to specific loss of fungal viability in the presence of the PP1 inhibitor. Global transcriptional profiling following selective PKC inhibition identified significant changes in gene expression associated with cell wall re‐modelling, autophagy, signal transduction and secondary metabolism. When considered together, these results suggest protein kinase C is essential for growth and development of M. oryzae with extensive downstream targets in addition to the cell integrity pathway. Targeting protein kinase C signalling may therefore prove an effective means of controlling rice blast disease.
Collapse
Affiliation(s)
- Tina J Penn
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Mark E Wood
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Darren M Soanes
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Michael Csukai
- Biological Sciences, Syngenta, Jeallott's Hill International Research Centre, Bracknell, RG42 6EY, UK
| | - Andrew John Corran
- Biological Sciences, Syngenta, Jeallott's Hill International Research Centre, Bracknell, RG42 6EY, UK
| | - Nicholas J Talbot
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
131
|
Brown NA, Dos Reis TF, Ries LNA, Caldana C, Mah JH, Yu JH, Macdonald JM, Goldman GH. G-protein coupled receptor-mediated nutrient sensing and developmental control in Aspergillus nidulans. Mol Microbiol 2015; 98:420-39. [PMID: 26179439 DOI: 10.1111/mmi.13135] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2015] [Indexed: 12/31/2022]
Abstract
Nutrient sensing and utilisation are fundamental for all life forms. As heterotrophs, fungi have evolved a diverse range of mechanisms for sensing and taking up various nutrients. Despite its importance, only a limited number of nutrient receptors and their corresponding ligands have been identified in fungi. G-protein coupled receptors (GPCRs) are the largest family of transmembrane receptors. The Aspergillus nidulans genome encodes 16 putative GPCRs, but only a few have been functionally characterised. Our previous study showed the increased expression of an uncharacterised putative GPCR, gprH, during carbon starvation. GprH appears conserved throughout numerous filamentous fungi. Here, we reveal that GprH is a putative receptor involved in glucose and tryptophan sensing. The absence of GprH results in a reduction in cAMP levels and PKA activity upon adding glucose or tryptophan to starved cells. GprH is pre-formed in conidia and is increasingly active during carbon starvation, where it plays a role in glucose uptake and the recovery of hyphal growth. GprH also represses sexual development under conditions favouring sexual fruiting and during carbon starvation in submerged cultures. In summary, the GprH nutrient-sensing system functions upstream of the cAMP-PKA pathway, influences primary metabolism and hyphal growth, while represses sexual development in A. nidulans.
Collapse
Affiliation(s)
- Neil Andrew Brown
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Thaila Fernanda Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | - Camila Caldana
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol - CTBE, Campinas, São Paulo, Brazil.,Max Planck Partnergroup at CTBE/CNPEM, Campinas, São Paulo, Brazil
| | - Jae-Hyung Mah
- Department of Food and Biotechnology, Korea University, Sejong, South Korea
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Jeffrey M Macdonald
- UNC Metabolomic Facility, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.,Laboratório Nacional de Ciência e Tecnologia do Bioetanol - CTBE, Campinas, São Paulo, Brazil
| |
Collapse
|
132
|
Perez-Nadales E, Di Pietro A. The transmembrane protein Sho1 cooperates with the mucin Msb2 to regulate invasive growth and plant infection in Fusarium oxysporum. MOLECULAR PLANT PATHOLOGY 2015; 16:593-603. [PMID: 25382187 PMCID: PMC6638380 DOI: 10.1111/mpp.12217] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In the vascular wilt pathogen Fusarium oxysporum, the mitogen-activated protein kinase (MAPK) Fmk1 is essential for plant infection. The mucin-like membrane protein Msb2 regulates a subset of Fmk1-dependent functions. Here, we examined the role of the tetraspan transmembrane protein Sho1 as an additional regulator of the Fmk1 pathway and determined its genetic interaction with Msb2. Targeted Δsho1 mutants were generated in wild-type and Δmsb2 backgrounds to test possible interactions between the two genes. The mutants were examined for hyphal growth under different stress conditions, phosphorylation of the MAPK Fmk1 and an array of Fmk1-dependent virulence functions. Similar to Msb2, Sho1 was required for the activation of Fmk1 phosphorylation, as well as Fmk1-dependent gene expression and invasive growth functions, including extracellular pectinolytic activity, cellophane penetration, plant tissue colonization and virulence on tomato plants. Δsho1 mutants were hypersensitive to the cell wall-perturbing compound Calcofluor White, and this phenotype was exacerbated in the Δmsb2 Δsho1 double mutant. These results highlight that Sho1 and Msb2 have partially overlapping functions upstream of the Fmk1 MAPK cascade, to promote invasive growth and plant infection, as well as cell wall integrity, in F. oxysporum.
Collapse
Affiliation(s)
- Elena Perez-Nadales
- Departamento de Genética and Campus de Excelencia Agroalimentario (ceiA3), Universidad de Córdoba, 14071, Córdoba, Spain
| | - Antonio Di Pietro
- Departamento de Genética and Campus de Excelencia Agroalimentario (ceiA3), Universidad de Córdoba, 14071, Córdoba, Spain
| |
Collapse
|
133
|
Qi L, Kim Y, Jiang C, Li Y, Peng Y, Xu JR. Activation of Mst11 and Feedback Inhibition of Germ Tube Growth in Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:881-91. [PMID: 26057388 DOI: 10.1094/mpmi-12-14-0391-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Appressorium formation and invasive growth are two important steps in the infection cycle of Magnaporthe oryzae that are regulated by the Mst11-Mst7-Pmk1 mitogen-activated protein kinase (MAPK) pathway. However, the molecular mechanism involved in the activation of Mst11 MAPK kinase kinase is not clear in the rice blast fungus. In this study, we functionally characterized the regulatory region of Mst11 and its self-inhibitory binding. Deletion of the middle region of Mst11, which contains the Ras-association (RA) domain and two conserved phosphorylation sites (S453 and S458), blocked Pmk1 activation and appressorium formation. However, the MST11(ΔRA) transformant MRD-2 still formed appressoria, although it was reduced in virulence. Interestingly, over 50% of its germ tubes branched and formed two appressoria by 48 h, which was suppressed by treatments with exogenous cAMP. The G18V dominant active mutation enhanced the interaction of Ras2 with Mst11, suggesting that Mst11 has stronger interactions with the activated Ras2. Furthermore, deletion and site-directed mutagenesis analyses indicated that phosphorylation at S453 and S458 of Mst11 is important for appressorium formation and required for the activation of Pmk1. We also showed that the N-terminal region of Mst11 directly interacted with its kinase domain, and the S789G mutation reduced their interactions. Expression of the MST11(S789G) allele rescued the defect of the mst11 mutant in plant infection and resulted in the formation of appressoria on hydrophilic surfaces, suggesting the gain-of-function effect of the S789G mutation. Overall, our results indicate that the interaction of Mst11 with activated Ras2 and phosphorylation of S453 and S458 play regulatory roles in Mst11 activation and infection-related morphogenesis, possibly by relieving its self-inhibitory interaction between its N-terminal region and the C-terminal kinase domain. In addition, binding of Mst11 to Ras2 may be involved in the feedback inhibition of cAMP signaling and further differentiation of germ tubes after appressorium formation.
Collapse
Affiliation(s)
- Linlu Qi
- 1 MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing 100193, China
- 2 Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Yangseon Kim
- 2 Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Cong Jiang
- 2 Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
- 3 NWAFU-PU Joint Research Center, Northwestern A&F University, Yangling, Shaanxi 712100, China
| | - Yang Li
- 2 Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Youliang Peng
- 1 MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Jin-Rong Xu
- 2 Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
- 3 NWAFU-PU Joint Research Center, Northwestern A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
134
|
Guan Y, Wang DY, Ying SH, Feng MG. A novel Ras GTPase (Ras3) regulates conidiation, multi-stress tolerance and virulence by acting upstream of Hog1 signaling pathway in Beauveria bassiana. Fungal Genet Biol 2015; 82:85-94. [PMID: 26162967 DOI: 10.1016/j.fgb.2015.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 12/18/2022]
Abstract
Two Ras ATPases (Ras1 and Ras2) are well known to regulate antagonistically or cooperatively various cellular events in many fungi. Here we show the significance of a novel Ras homolog (Ras3) for Beauveria bassiana. Ras3 possesses five domains and two GTP/GDP switches typical for Ras family and was proven to localize to plasma membrane despite the position change of a membrane-targeting cysteine in C-terminal CAAX motif. Deletion of ras3 altered temporal transcription pattern of ras1 instead of ras2. Compared with wild-type, Δras3 grew significantly faster in a rich medium but slower in some minimal media, and produced far fewer conidia with impaired quality, which was evident with slower germination, attenuated virulence, reduced thermotolerance and decreased UV-B resistance. Moreover, Δras3 was much more sensitive to the oxidative stress of menadione than of H2O2 and to the stress of high osmolarity than of cell wall perturbation during growth. The high sensitivity of Δras3 to menadione was concurrent with reductions in both gene transcripts and total activity of superoxide dismutases. Intriguingly, the high osmosensitivity was concurrent with not only reduced transcripts of a critical transcription factor (Msn2) and most signaling proteins in the high-osmolarity-glycerol pathway of Δras3 but nearly undetectable phosphorylation signal of Hog1 hallmarking the pathway. All the changes were restored by ras3 complementation. Taken together, Ras3 is involved in the Hog1 pathway required for osmoregulation and hence can positively regulate conidiation, germination, multi-stress tolerance and virulence linked to the biological control potential of the filamentous insect pathogen.
Collapse
Affiliation(s)
- Yi Guan
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Ding-Yi Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.
| |
Collapse
|
135
|
Yun Y, Liu Z, Yin Y, Jiang J, Chen Y, Xu JR, Ma Z. Functional analysis of the Fusarium graminearum phosphatome. THE NEW PHYTOLOGIST 2015; 207:119-134. [PMID: 25758923 DOI: 10.1111/nph.13374] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/15/2015] [Indexed: 06/04/2023]
Abstract
Phosphatases are known to play important roles in the regulation of various cellular processes in eukaryotes. However, systematic characterization of the phosphatome has not been reported in phytopathogenic fungi. The wheat scab fungus Fusarium graminearum contains 82 putative phosphatases. The biological functions of each phosphatase were investigated in this study. Although 11 phosphatase genes appeared to be essential, deletion mutants of the other 71 phosphatase genes were obtained and characterized for changes in 15 phenotypes, including vegetative growth, nutrient response and virulence. Overall, the deletion of 63 phosphatase genes resulted in changes in at least one of the phenotypes assayed. Interestingly, the deletion of four genes (Fg06297, Fg03333, Fg03826 and Fg07932) did not dramatically affect hyphal growth, but led to strongly reduced virulence. Western blot analyses showed that three phosphatases (Fg10516, Fg03333 and Fg12867) functioned as negative regulators of the mitogen-activated protein kinase signaling pathways. In addition, we found, for the first time, that FgCdc14 is dispensable for growth, but plays an important role in ribosome biogenesis. Overall, in this first functional characterization of the fungal phosphatome, phosphatases important for various aspects of hyphal growth, development, plant infection and secondary metabolism were identified in the phytopathogenic fungus F. graminearum.
Collapse
Affiliation(s)
- Yingzi Yun
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zunyong Liu
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yanni Yin
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jinhua Jiang
- Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Yun Chen
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jin-Rong Xu
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
| | - Zhonghua Ma
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
136
|
D'hooge P, Coun C, Van Eyck V, Faes L, Ghillebert R, Mariën L, Winderickx J, Callewaert G. Ca(2+) homeostasis in the budding yeast Saccharomyces cerevisiae: Impact of ER/Golgi Ca(2+) storage. Cell Calcium 2015; 58:226-35. [PMID: 26055636 DOI: 10.1016/j.ceca.2015.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/11/2015] [Accepted: 05/26/2015] [Indexed: 01/09/2023]
Abstract
Yeast has proven to be a powerful tool to elucidate the molecular aspects of several biological processes in higher eukaryotes. As in mammalian cells, yeast intracellular Ca(2+) signalling is crucial for a myriad of biological processes. Yeast cells also bear homologs of the major components of the Ca(2+) signalling toolkit in mammalian cells, including channels, co-transporters and pumps. Using yeast single- and multiple-gene deletion strains of various plasma membrane and organellar Ca(2+) transporters, combined with manipulations to estimate intracellular Ca(2+) storage, we evaluated the contribution of individual transport systems to intracellular Ca(2+) homeostasis. Yeast strains lacking Pmr1 and/or Cod1, two ion pumps implicated in ER/Golgi Ca(2+) homeostasis, displayed a fragmented vacuolar phenotype and showed increased vacuolar Ca(2+) uptake and Ca(2+) influx across the plasma membrane. In the pmr1Δ strain, these effects were insensitive to calcineurin activity, independent of Cch1/Mid1 Ca(2+) channels and Pmc1 but required Vcx1. By contrast, in the cod1Δ strain increased vacuolar Ca(2+) uptake was not affected by Vcx1 deletion but was largely dependent on Pmc1 activity. Our analysis further corroborates the distinct roles of Vcx1 and Pmc1 in vacuolar Ca(2+) uptake and point to the existence of not-yet identified Ca(2+) influx pathways.
Collapse
Affiliation(s)
- Petra D'hooge
- The Yeast Hub Lab, KU Leuven, Campus Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Catherina Coun
- Functional Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Vincent Van Eyck
- The Yeast Hub Lab, KU Leuven, Campus Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Liesbeth Faes
- The Yeast Hub Lab, KU Leuven, Campus Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Ruben Ghillebert
- Functional Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Lore Mariën
- The Yeast Hub Lab, KU Leuven, Campus Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Joris Winderickx
- Functional Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium.
| | - Geert Callewaert
- The Yeast Hub Lab, KU Leuven, Campus Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium.
| |
Collapse
|
137
|
Baldin C, Valiante V, Krüger T, Schafferer L, Haas H, Kniemeyer O, Brakhage AA. Comparative proteomics of a tor inducible Aspergillus fumigatus mutant reveals involvement of the Tor kinase in iron regulation. Proteomics 2015; 15:2230-43. [PMID: 25728394 DOI: 10.1002/pmic.201400584] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/27/2015] [Accepted: 02/24/2015] [Indexed: 01/20/2023]
Abstract
The Tor (target of rapamycin) kinase is one of the major regulatory nodes in eukaryotes. Here, we analyzed the Tor kinase in Aspergillus fumigatus, which is the most important airborne fungal pathogen of humans. Because deletion of the single tor gene was apparently lethal, we generated a conditional lethal tor mutant by replacing the endogenous tor gene by the inducible xylp-tor gene cassette. By both 2DE and gel-free LC-MS/MS, we found that Tor controls a variety of proteins involved in nutrient sensing, stress response, cell cycle progression, protein biosynthesis and degradation, but also processes in mitochondria, such as respiration and ornithine metabolism, which is required for siderophore formation. qRT-PCR analyses indicated that mRNA levels of ornithine biosynthesis genes were increased under iron limitation. When tor was repressed, iron regulation was lost. In a deletion mutant of the iron regulator HapX also carrying the xylp-tor cassette, the regulation upon iron deprivation was similar to that of the single tor inducible mutant strain. In line, hapX expression was significantly reduced when tor was repressed. Thus, Tor acts either upstream of HapX or independently of HapX as a repressor of the ornithine biosynthesis genes and thereby regulates the production of siderophores.
Collapse
Affiliation(s)
- Clara Baldin
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany.,Institute for Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Vito Valiante
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Lukas Schafferer
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Austria
| | - Hubertus Haas
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Austria
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany.,Institute for Microbiology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
138
|
Winkelströter LK, Dolan SK, Fernanda Dos Reis T, Bom VLP, Alves de Castro P, Hagiwara D, Alowni R, Jones GW, Doyle S, Brown NA, Goldman GH. Systematic Global Analysis of Genes Encoding Protein Phosphatases in Aspergillus fumigatus. G3 (BETHESDA, MD.) 2015; 5:1525-39. [PMID: 25943523 PMCID: PMC4502386 DOI: 10.1534/g3.115.016766] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/30/2015] [Indexed: 11/18/2022]
Abstract
Aspergillus fumigatus is a fungal pathogen that causes several invasive and noninvasive diseases named aspergillosis. This disease is generally regarded as multifactorial, considering that several pathogenicity determinants are present during the establishment of this illness. It is necessary to obtain an increased knowledge of how, and which, A. fumigatus signal transduction pathways are engaged in the regulation of these processes. Protein phosphatases are essential to several signal transduction pathways. We identified 32 phosphatase catalytic subunit-encoding genes in A. fumigatus, of which we were able to construct 24 viable deletion mutants. The role of nine phosphatase mutants in the HOG (high osmolarity glycerol response) pathway was evaluated by measuring phosphorylation of the p38 MAPK (SakA) and expression of osmo-dependent genes. We were also able to identify 11 phosphatases involved in iron assimilation, six that are related to gliotoxin resistance, and three implicated in gliotoxin production. These results present the creation of a fundamental resource for the study of signaling in A. fumigatus and its implications in the regulation of pathogenicity determinants and virulence in this important pathogen.
Collapse
Affiliation(s)
- Lizziane K Winkelströter
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 13083-970 Ribeirão Preto, Brazil
| | - Stephen K Dolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Thaila Fernanda Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 13083-970 Ribeirão Preto, Brazil
| | - Vinícius Leite Pedro Bom
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 13083-970 Ribeirão Preto, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 13083-970 Ribeirão Preto, Brazil
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Raneem Alowni
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Gary W Jones
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Neil Andrew Brown
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 13083-970 Ribeirão Preto, Brazil
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 13083-970 Ribeirão Preto, Brazil National Laboratory of Science and Technology of Bioethanol (CTBE), 13083-970 Campinas, Brazil
| |
Collapse
|
139
|
The Aspergillus fumigatus sitA Phosphatase Homologue Is Important for Adhesion, Cell Wall Integrity, Biofilm Formation, and Virulence. EUKARYOTIC CELL 2015; 14:728-44. [PMID: 25911225 DOI: 10.1128/ec.00008-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/09/2015] [Indexed: 11/20/2022]
Abstract
Aspergillus fumigatus is an opportunistic pathogenic fungus able to infect immunocompromised patients, eventually causing disseminated infections that are difficult to control and lead to high mortality rates. It is important to understand how the signaling pathways that regulate these factors involved in virulence are orchestrated. Protein phosphatases are central to numerous signal transduction pathways. Here, we characterize the A. fumigatus protein phosphatase 2A SitA, the Saccharomyces cerevisiae Sit4p homologue. The sitA gene is not an essential gene, and we were able to construct an A. fumigatus null mutant. The ΔsitA strain had decreased MpkA phosphorylation levels, was more sensitive to cell wall-damaging agents, had increased β-(1,3)-glucan and chitin, was impaired in biofilm formation, and had decreased protein kinase C activity. The ΔsitA strain is more sensitive to several metals and ions, such as MnCl2, CaCl2, and LiCl, but it is more resistant to ZnSO4. The ΔsitA strain was avirulent in a murine model of invasive pulmonary aspergillosis and induces an augmented tumor necrosis factor alpha (TNF-α) response in mouse macrophages. These results stress the importance of A. fumigatus SitA as a possible modulator of PkcA/MpkA activity and its involvement in the cell wall integrity pathway.
Collapse
|
140
|
Valiante V, Macheleidt J, Föge M, Brakhage AA. The Aspergillus fumigatus cell wall integrity signaling pathway: drug target, compensatory pathways, and virulence. Front Microbiol 2015; 6:325. [PMID: 25932027 PMCID: PMC4399325 DOI: 10.3389/fmicb.2015.00325] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/31/2015] [Indexed: 01/06/2023] Open
Abstract
Aspergillus fumigatus is the most important airborne fungal pathogen, causing severe infections with invasive growth in immunocompromised patients. The fungal cell wall (CW) prevents the cell from lysing and protects the fungus against environmental stress conditions. Because it is absent in humans and because of its essentiality, the fungal CW is a promising target for antifungal drugs. Nowadays, compounds acting on the CW, i.e., echinocandin derivatives, are used to treat A. fumigatus infections. However, studies demonstrating the clinical effectiveness of echinocandins in comparison with antifungals currently recommended for first-line treatment of invasive aspergillosis are still lacking. Therefore, it is important to elucidate CW biosynthesis pathways and their signal transduction cascades, which potentially compensate the inhibition caused by CW- perturbing compounds. Like in other fungi, the central core of the cell wall integrity (CWI) signaling pathway in A. fumigatus is composed of three mitogen activated protein kinases. Deletion of these genes resulted in severely enhanced sensitivity of the mutants against CW-disturbing compounds and in drastic alterations of the fungal morphology. Additionally, several cross-talk interactions between the CWI pathways and other signaling pathways are emerging, raising the question about their role in the CW compensatory mechanisms. In this review we focused on recent advances in understanding the CWI signaling pathway in A. fumigatus and its role during drug stress response and virulence.
Collapse
Affiliation(s)
- Vito Valiante
- Molecular Biotechnology of Natural Products, Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Germany
| | - Juliane Macheleidt
- Molecular Biotechnology of Natural Products, Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Germany
| | - Martin Föge
- Molecular Biotechnology of Natural Products, Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Germany ; Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Germany
| | - Axel A Brakhage
- Molecular Biotechnology of Natural Products, Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Germany ; Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Germany
| |
Collapse
|
141
|
Developmental Growth Control Exerted via the Protein A Kinase Tpk2 in Ashbya gossypii. EUKARYOTIC CELL 2015; 14:593-601. [PMID: 25862153 DOI: 10.1128/ec.00045-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/03/2015] [Indexed: 01/18/2023]
Abstract
Sporulation in Ashbya gossypii is induced by nutrient-limited conditions and leads to the formation of haploid spores. Using RNA-seq, we have determined a gene set induced upon sporulation, which bears considerable overlap with that of Saccharomyces cerevisiae but also contains A. gossypii-specific genes. Addition of cyclic AMP (cAMP) to nutrient-limited media blocks sporulation and represses the induction of sporulation specific genes. Deletion of the protein kinase A (PKA) catalytic subunits encoded by TPK1 and TPK2 showed reduced growth in tpk1 but enhanced growth in the tpk2 strain; however, both mutants sporulated well. Sporulation can be blocked by cAMP in tpk1 but not in tpk2 strains. Similarly, TPK2 acts at a second developmental switch promoting the break in spore dormancy. In S. cerevisiae, PKA phosphorylates and inhibits Msn2/4. The transcript profiles of the tpk1 and msn2/4 mutants were very similar to that of the wild type under sporulation conditions. However, deletion of the single A. gossypii MSN2/4 homolog generated a specific sporulation defect. We identified a set of genes involved in spore wall assembly that was downregulated in the msn2/4 mutant, particularly DIT2, suggesting that poor spore viability may be due to lysis of spores. Our results reveal specific functional differences between the two catalytic PKA subunits in A. gossypii and identified Tpk2 as the key A kinase that transduces developmental decisions of growth. Our data also suggest that Msn2/4 is involved only at a late step of sporulation in A. gossypii and is not a major regulator of IME1.
Collapse
|
142
|
Ding Z, Li M, Sun F, Xi P, Sun L, Zhang L, Jiang Z. Mitogen-activated protein kinases are associated with the regulation of physiological traits and virulence in Fusarium oxysporum f. sp. cubense. PLoS One 2015; 10:e0122634. [PMID: 25849862 PMCID: PMC4388850 DOI: 10.1371/journal.pone.0122634] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/23/2015] [Indexed: 01/09/2023] Open
Abstract
Fusarium oxysporum f. sp. cubense (FOC) is an important soil-borne fungal pathogen causing devastating vascular wilt disease of banana plants and has become a great concern threatening banana production worldwide. However, little information is known about the molecular mechanisms that govern the expression of virulence determinants of this important fungal pathogen. In this study, we showed that null mutation of three mitogen-activated protein (MAP) kinase genes, designated as FoSlt2, FoMkk2 and FoBck1, respectively, led to substantial attenuation in fungal virulence on banana plants. Transcriptional analysis revealed that the MAP kinase signaling pathway plays a key role in regulation of the genes encoding production of chitin, peroxidase, beauvericin and fusaric acid. Biochemical analysis further confirmed the essential role of MAP kinases in modulating the production of fusaric acid, which was a crucial phytotoxin in accelerating development of Fusarium wilt symptoms in banana plants. Additionally, we found that the MAP kinase FoSlt2 was required for siderophore biosynthesis under iron-depletion conditions. Moreover, disruption of the MAP kinase genes resulted in abnormal hypha and increased sensitivity to Congo Red, Calcofluor White and H2O2. Taken together, these results depict the critical roles of MAP kinases in regulation of FOC physiology and virulence.
Collapse
Affiliation(s)
- Zhaojian Ding
- Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Minhui Li
- Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, China
| | - Fei Sun
- Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, China
| | - Pinggen Xi
- Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, China
| | - Longhua Sun
- Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, China
| | - Lianhui Zhang
- Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
- * E-mail: (ZDJ); (LHZ)
| | - Zide Jiang
- Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
- * E-mail: (ZDJ); (LHZ)
| |
Collapse
|
143
|
Liu Z, Li Y, Ma L, Wei H, Zhang J, He X, Tian C. Coordinated regulation of arbuscular mycorrhizal fungi and soybean MAPK pathway genes improved mycorrhizal soybean drought tolerance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:408-19. [PMID: 25390189 DOI: 10.1094/mpmi-09-14-0251-r] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play important roles in the stress response in both plants and microorganisms. The mycorrhizal symbiosis established between arbuscular mycorrhizal fungi (AMF) and plants can enhance plant drought tolerance, which might be closely related to the fungal MAPK response and the molecular dialogue between fungal and soybean MAPK cascades. To verify the above hypothesis, germinal Glomus intraradices (syn. Rhizophagus irregularis) spores and potted experiments were conducted. The results showed that AMF GiMAPKs with high homology with MAPKs from Saccharomyces cerevisiae had different gene expression patterns under different conditions (nitrogen starvation, abscisic acid treatment, and drought). Drought stress upregulated the levels of fungi and soybean MAPK transcripts in mycorrhizal soybean roots, indicating the possibility of a molecular dialogue between the two symbiotic sides of symbiosis and suggesting that they might cooperate to regulate the mycorrhizal soybean drought-stress response. Meanwhile, the changes in hydrogen peroxide, soluble sugar, and proline levels in mycorrhizal soybean as well as in the accelerated exchange of carbon and nitrogen in the symbionts were contributable to drought adaptation of the host plants. Thus, it can be preliminarily inferred that the interactions of MAPK signals on both sides, symbiotic fungus and plant, might regulate the response of symbiosis and, thus, improve the resistance of mycorrhizal soybean to drought stress.
Collapse
Affiliation(s)
- Zhilei Liu
- 1 Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China
| | | | | | | | | | | | | |
Collapse
|
144
|
Gu Q, Chen Y, Liu Y, Zhang C, Ma Z. The transmembrane protein FgSho1 regulates fungal development and pathogenicity via the MAPK module Ste50-Ste11-Ste7 in Fusarium graminearum. THE NEW PHYTOLOGIST 2015; 206:315-328. [PMID: 25388878 DOI: 10.1111/nph.13158] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 10/09/2014] [Indexed: 06/04/2023]
Abstract
The mitogen-activated protein kinase (MAPK) signaling pathways have been characterized in Fusarium graminearum. Currently, the upstream sensors of these pathways are unknown. Biological functions of a transmembrane protein FgSho1 were investigated using a target gene deletion strategy. The relationship between FgSho1 and the MAPK cassette FgSte50-Ste11-Ste7 was analyzed in depth. The transmembrane protein FgSho1 is required for conidiation, full virulence, and deoxynivalenol (DON) biosynthesis in F. graminearum. Furthermore, FgSho1 and FgSln1 have an additive effect on virulence of F. graminearum. The yeast two-hybrid, coimmunoprecipitation, colocalization and affinity capture-mass spectrometry analyses strongly indicated that FgSho1 physically interacts with the MAPK module FgSte50-Ste11-Ste7. Similar to the FgSho1 mutant, the mutants of FgSte50, FgSte11, and FgSte7 were defective in conidiation, pathogenicity, and DON biosynthesis. In addition, FgSho1 plays a minor role in the response to osmotic stress but it is involved in the cell wall integrity pathway, which is independent of the module FgSte50-Ste11-Ste7 in F. graminearum. Collectively, results of this study strongly indicate that FgSho1 regulates fungal development and pathogenicity via the MAPK module FgSte50-Ste11-Ste7 in F. graminearum, which is different from what is known in the budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Qin Gu
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yun Chen
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Ye Liu
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Chengqi Zhang
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhonghua Ma
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
145
|
Multiple Phosphatases Regulate Carbon Source-Dependent Germination and Primary Metabolism in Aspergillus nidulans. G3-GENES GENOMES GENETICS 2015; 5:857-72. [PMID: 25762568 PMCID: PMC4426372 DOI: 10.1534/g3.115.016667] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Aspergillus nidulans is an important mold and a model system for the study of fungal cell biology. In addition, invasive A. nidulans pulmonary infections are common in humans with chronic granulomatous disease. The morphological and biochemical transition from dormant conidia into active, growing, filamentous hyphae requires the coordination of numerous biosynthetic, developmental, and metabolic processes. The present study exhibited the diversity of roles performed by seven phosphatases in regulating cell cycle, development, and metabolism in response to glucose and alternative carbon sources. The identified phosphatases highlighted the importance of several signaling pathways regulating filamentous growth, the action of the pyruvate dehydrogenase complex as a metabolic switch controlling carbon usage, and the identification of the key function performed by the α-ketoglutarate dehydrogenase during germination. These novel insights into the fundamental roles of numerous phosphatases in germination and carbon sensing have provided new avenues of research into the identification of inhibitors of fungal germination, with implications for the food, feed, and pharmaceutical industries.
Collapse
|
146
|
Macheleidt J, Scherlach K, Neuwirth T, Schmidt-Heck W, Straßburger M, Spraker J, Baccile JA, Schroeder FC, Keller NP, Hertweck C, Heinekamp T, Brakhage AA. Transcriptome analysis of cyclic AMP-dependent protein kinase A-regulated genes reveals the production of the novel natural compound fumipyrrole by Aspergillus fumigatus. Mol Microbiol 2015; 96:148-62. [PMID: 25582336 DOI: 10.1111/mmi.12926] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2015] [Indexed: 01/31/2023]
Abstract
Aspergillus fumigatus is an opportunistic human pathogenic fungus causing life-threatening infections in immunocompromised patients. Adaptation to different habitats and also virulence of the fungus depends on signal perception and transduction by modules such as the cyclic AMP-dependent protein kinase A (PKA) pathway. Here, by transcriptome analysis, 632 differentially regulated genes of this important signaling cascade were identified, including 23 putative transcriptional regulators. The highest upregulated transcription factor gene was located in a previously unknown secondary metabolite gene cluster, which we named fmp, encoding an incomplete non-ribosomal peptide synthetase, FmpE. Overexpression of the regulatory gene fmpR using the Tet(On) system led to the specific expression of the other six genes of the fmp cluster. Metabolic profiling of wild type and fmpR overexpressing strain by HPLC-DAD and HPLC-HRESI-MS and structure elucidation by NMR led to identification of 5-benzyl-1H-pyrrole-2-carboxylic acid, which we named fumipyrrole. Fumipyrrole was not described as natural product yet. Chemical synthesis of fumipyrrole confirmed its structure. Interestingly, deletion of fmpR or fmpE led to reduced growth and sporulation of the mutant strains. Although fmp cluster genes were transcribed in infected mouse lungs, deletion of fmpR resulted in wild-type virulence in a murine infection model.
Collapse
Affiliation(s)
- Juliane Macheleidt
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745, Jena, Germany; Institute for Microbiology, Friedrich Schiller University, 07745, Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Winkelströter LK, Bom VLP, de Castro PA, Ramalho LNZ, Goldman MHS, Brown NA, Rajendran R, Ramage G, Bovier E, Dos Reis TF, Savoldi M, Hagiwara D, Goldman GH. High osmolarity glycerol response PtcB phosphatase is important for Aspergillus fumigatus virulence. Mol Microbiol 2015; 96:42-54. [PMID: 25597841 DOI: 10.1111/mmi.12919] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2014] [Indexed: 12/11/2022]
Abstract
Aspergillus fumigatus is a fungal pathogen that is capable of adapting to different host niches and to avoid host defenses. An enhanced understanding of how, and which, A. fumigatus signal transduction pathways are engaged in the regulation of these processes is essential for the development of improved disease control strategies. Protein phosphatases are central to numerous signal transduction pathways. To comprehend the functions of protein phosphatases in A. fumigatus, 32 phosphatase catalytic subunit encoding genes were identified. We have recognized PtcB as one of the phosphatases involved in the high osmolarity glycerol response (HOG) pathway. The ΔptcB mutant has both increased phosphorylation of the p38 MAPK (SakA) and expression of osmo-dependent genes. The ΔptcB strain was more sensitive to cell wall damaging agents, had increased chitin and β-1,3-glucan, and impaired biofilm formation. The ΔptcB strain was avirulent in a murine model of invasive pulmonary aspergillosis. These results stress the importance of the HOG pathway in the regulation of pathogenicity determinants and virulence in A. fumigatus.
Collapse
Affiliation(s)
- Lizziane K Winkelströter
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Rigamonti M, Groppi S, Belotti F, Ambrosini R, Filippi G, Martegani E, Tisi R. Hypotonic stress-induced calcium signaling in Saccharomyces cerevisiae involves TRP-like transporters on the endoplasmic reticulum membrane. Cell Calcium 2015; 57:57-68. [DOI: 10.1016/j.ceca.2014.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 11/28/2022]
|
149
|
Hamann T. The plant cell wall integrity maintenance mechanism-concepts for organization and mode of action. PLANT & CELL PHYSIOLOGY 2015; 56:215-23. [PMID: 25416836 DOI: 10.1093/pcp/pcu164] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
One of the main differences between plant and animal cells are the walls surrounding plant cells providing structural support during development and protection like an adaptive armor against biotic and abiotic stress. During recent years it has become widely accepted that plant cells use a dedicated system to monitor and maintain the functional integrity of their walls. Maintenance of integrity is achieved by modifying the cell wall and cellular metabolism in order to permit tightly controlled changes in wall composition and structure. While a substantial amount of evidence supporting the existence of the mechanism has been reported, knowledge regarding its precise mode of action is still limited. The currently available evidence suggests similarities of the plant mechanism with respect to both design principles and molecular components involved to the very well characterized system active in the model organism Saccharomyces cerevisiae. There the system has been implicated in cell morphogenesis as well as response to abiotic stresses such as osmotic challenges. Here the currently available knowledge on the yeast system will be reviewed initially to provide a framework for the subsequent discussion of the plant cell wall integrity maintenance mechanism. The review will then end with a discussion on possible design principles for the cell wall integrity maintenance mechanism and the function of the plant turgor pressure in this context.
Collapse
Affiliation(s)
- Thorsten Hamann
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
150
|
Becker Y, Eaton CJ, Brasell E, May KJ, Becker M, Hassing B, Cartwright GM, Reinhold L, Scott B. The Fungal Cell-Wall Integrity MAPK Cascade Is Crucial for Hyphal Network Formation and Maintenance of Restrictive Growth of Epichloë festucae in Symbiosis With Lolium perenne. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:69-85. [PMID: 25303335 DOI: 10.1094/mpmi-06-14-0183-r] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Epichloë festucae is a mutualistic symbiont that systemically colonizes the intercellular spaces of Lolium perenne leaves to form a highly structured and interconnected hyphal network. In an Agrobacterium tumefaciens T-DNA forward genetic screen, we identified a mutant TM1066 that had a severe host interaction phenotype, causing stunting and premature senescence of the host. Molecular analysis revealed that the mutation responsible for this phenotype was in the cell-wall integrity (CWI) mitogen-activated protein kinase kinase (MAPKK), mkkA. Mutants generated by targeted deletion of the mkkA or the downstream mpkA kinase recapitulated the phenotypes observed for TM1066. Both mutants were defective in hyphal cell–cell fusion, formed intrahyphal hyphae, had enhanced conidiation, and showed microcyclic conidiation. Transmission electron microscopy and confocal microscopy analysis of leaf tissue showed that mutant hyphae were more abundant than the wild type in the intercellular spaces and colonized the vascular bundles. Hyphal branches failed to fuse but, instead, grew past one another to form bundles of convoluted hyphae. Mutant hyphae showed increased fluorescence with AF488-WGA, indicative of increased accessibility of chitin, a hypothesis supported by changes in the cell-wall ultrastructure. These results show that the CWI MAPK pathway is a key signaling pathway for controlling the mutualistic symbiotic interaction between E. festucae and L. perenne.
Collapse
|