101
|
Quitete FT, Almeida Santos GM, de Oliveira Ribeiro L, Aguiar da Costa C, Freitas SP, Martins da Matta V, Daleprane JB. Phenolic-rich smoothie consumption ameliorates non-alcoholic fatty liver disease in obesity mice by increasing antioxidant response. Chem Biol Interact 2021; 336:109369. [PMID: 33422521 DOI: 10.1016/j.cbi.2021.109369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
Consumption of foods rich in phenolic compounds can be beneficial for health. This study aimed to examine whether the consumption of a phenolic-rich smoothie, based on juçara, strawberry and banana, ameliorates metabolic status and liver damage of diet-induced obese mice. Forty male C57BL/6J mice were assigned into four groups (n = 10) and fed control diet with free access to water (C) or phenolic-rich smoothie (C-S), or fed high-fat diet with free access to water (HF) or phenolic-rich smoothie (HF-S) for five weeks. HF and HF-S groups had higher body weight gains than the C group, however the HF had a greater adipose index, higher plasma levels of glucose, insulin and leptin, as well as higher plasma and hepatic steatosis than C, C-S and HF-S groups. The liver oxidative stress markers were reduced in C-S and HF-S groups and the activity of catalase and glutathione peroxidase were higher compared with their counterparts. The present study suggests that regular consumption of a phenolic-rich smoothie improves the liver antioxidant status, prevents metabolic disorders and ameliorates non-alcoholic fatty liver disease caused by high-fat diet consumption.
Collapse
Affiliation(s)
- Fernanda Torres Quitete
- Laboratory for Studies of Interactions Between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Giulia Medeiros Almeida Santos
- Laboratory for Studies of Interactions Between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Leilson de Oliveira Ribeiro
- School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Embrapa Agroindústria de Alimentos, Rio de Janeiro, Brazil
| | - Cristiane Aguiar da Costa
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | | | - Julio Beltrame Daleprane
- Laboratory for Studies of Interactions Between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
102
|
Zia H, Ayub MA, Fattah El Baroudy AAE, Rehman MZU, Khalid H, Haq AU, Umar W, Ahmad Z. Microbial associations in ecological reclamation and restoration of marginal lands. MICROBES IN LAND USE CHANGE MANAGEMENT 2021:239-266. [DOI: 10.1016/b978-0-12-824448-7.00014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
103
|
Sarma PP, Gurumayum N, Verma AK, Devi R. A pharmacological perspective of banana: implications relating to therapeutic benefits and molecular docking. Food Funct 2021; 12:4749-4767. [PMID: 33960338 DOI: 10.1039/d1fo00477h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Banana is one of the most nutritious fruits, as it is rich in carbohydrates, proteins, fatty acids, and minerals. Banana has been used in traditional medicines for managing coughs and colds, ulcers, burns, and diarrhea. Banana contains various bioactive compounds, such as alkaloids, phenols, flavonoids, tannins, and saponins, with reported therapeutic benefits, including antioxidant, anti-diabetic, anti-cancer, anti-inflammatory, and anti-microbial activities. The present review focuses on a comprehensive overview of the nutritional and biological properties and phytochemicals of different species of banana and its different parts. Although detailed characterization of the compounds that are present in many parts of the plant has been carried out, chemical profiling of the seed, pseudostem, and leaves of banana is lacking and requires further exploration. Moreover, the functions of the reported compounds were elucidated using computational tools, supporting their potential role in managing life-threatening diseases and physiological complications.
Collapse
Affiliation(s)
- Partha Pratim Sarma
- Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Guwahati-781035, Assam, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Nonibala Gurumayum
- Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Guwahati-781035, Assam, India.
| | - Akalesh Kumar Verma
- Department of Zoology, Cell & Biochemical Technology Laboratory, Cotton University, Guwahati-781001, Assam, India.
| | - Rajlakshmi Devi
- Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Guwahati-781035, Assam, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
104
|
Pretorius RA, Palmer DJ. High-Fiber Diet during Pregnancy Characterized by More Fruit and Vegetable Consumption. Nutrients 2020; 13:nu13010035. [PMID: 33374192 PMCID: PMC7824257 DOI: 10.3390/nu13010035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 11/19/2022] Open
Abstract
Higher dietary fiber intakes during pregnancy may have the potential health benefits of increasing gut microbiome diversity, lowering the risk of glucose intolerance and pre-eclampsia, achieving appropriate gestational weight gain, and preventing constipation. In this observational cohort study, we have assessed the dietary fiber intakes of 804 women in late pregnancy, using a semi-quantitative food frequency questionnaire (SQ-FFQ). Overall, the median (interquartile range) dietary fiber intake was 24.1 (19.0–29.7) grams per day (g/day). Only 237/804 (29.5%) women met the recommended Adequate Intake (AI) of dietary fiber during pregnancy of 28 g/day. Women consuming the highest quartile of fiber intakes (34.8 (IQR 32.1–39.5) g/day) consumed more fruit, especially apples and bananas, than women consuming the lowest quartile of fiber intakes (15.9 (IQR 14.4–17.5) g/day). These women in the highest fiber-intake quartile were older (p < 0.01), more had completed further education after secondary school (p = 0.04), and they also consumed more vegetables (67 g/day) compared to the women in the lowest fiber consumption quartile (17 g vegetables/day). Bread intakes of 39–42 g/day were consistent in quantities consumed across all four fiber-intake quartiles. Our findings suggest that antenatal education advice targeting increased fruit and vegetable consumption before and during pregnancy may be a simple strategy to achieve increased total dietary fiber intakes to reach recommended quantities.
Collapse
Affiliation(s)
- Rachelle A. Pretorius
- School of Medicine, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia;
| | - Debra J. Palmer
- School of Medicine, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia;
- Telethon Kids Institute, University of Western Australia, 15 Hospital Ave, Nedlands, WA 6009, Australia
- Correspondence: ; Tel.: +61-8-6319-1750
| |
Collapse
|
105
|
Udomkun P, Masso C, Swennen R, Wossen T, Amah D, Fotso A, Lienou J, Adesokan M, Njukwe E, Vanlauwe B. Variability of provitamin A carotenoids in plantain: Influence of cultivar, bunch type, maturation stage, and location. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
106
|
Xu X, Yuan Y, Feng B, Deng W. CRISPR/Cas9-mediated gene-editing technology in fruit quality improvement. FOOD QUALITY AND SAFETY 2020. [DOI: 10.1093/fqsafe/fyaa028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Fruits are an essential part of a healthy, balanced diet and it is particularly important for fibre, essential vitamins, and trace elements. Improvement in the quality of fruit and elongation of shelf life are crucial goals for researchers. However, traditional techniques have some drawbacks, such as long period, low efficiency, and difficulty in the modification of target genes, which limit the progress of the study. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technique was developed and has become the most popular gene-editing technology with high efficiency, simplicity, and low cost. CRISPR/Cas9 technique is widely accepted to analyse gene function and complete genetic modification. This review introduces the latest progress of CRISPR/Cas9 technology in fruit quality improvement. For example, CRISPR/Cas9-mediated targeted mutagenesis of RIPENING INHIBITOR gene (RIN), Lycopene desaturase (PDS), Pectate lyases (PL), SlMYB12, and CLAVATA3 (CLV3) can affect fruit ripening, fruit bioactive compounds, fruit texture, fruit colouration, and fruit size. CRISPR/Cas9-mediated mutagenesis has become an efficient method to modify target genes and improve fruit quality.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Yujin Yuan
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Bihong Feng
- College of Agriculture, Guangxi University, Nanning, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
107
|
Neurite Outgrowth-Promoting Activity of Compounds in PC12 Cells from Sunflower Seeds. Molecules 2020; 25:molecules25204748. [PMID: 33081156 PMCID: PMC7587564 DOI: 10.3390/molecules25204748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 11/21/2022] Open
Abstract
In the current super-aging society, the establishment of methods for prevention and treatment of Alzheimer’s disease (AD) is an urgent task. One of the causes of AD is thought to be a decrease in the revel of nerve growth factor (NGF) in the brain. Compounds showing NGF-mimicking activity and NGF-enhancing activity have been examined as possible agents for improving symptoms. In the present study, sunflower seed extract was found to have neurite outgrowth-promoting activity, which is an NGF-enhancing activity, in PC12 cells. To investigate neurite outgrowth-promoting compounds from sunflower seed extract, bioassay-guided purification was carried out. The purified active fraction was obtained by liquid-liquid partition followed by some column chromatographies. Proton nuclear magnetic resonance and gas chromatography-mass spectrometry analyses of the purified active fraction indicated that the fraction was a mixture of β-sitosterol, stigmasterol and campesterol, with β-sitosterol being the main component. Neurite outgrowth-promoting activities of β-sitosterol, stigmasterol, campesterol and cholesterol were evaluated in PC12 cells. β-Sitosterol and stigmasterol showed the strongest activity of the four sterol compounds (β-sitosterol ≈ stigmasterol > campesterol > cholesterol), and cholesterol did not show any activity. The results indicated that β-sitosterol was the major component responsible for the neurite outgrowth-promoting activity of sunflower seeds. Results of immunostaining also showed that promotion by β-sitosterol of neurite formation induced by NGF was accompanied by neurofilament expression. β-Sitosterol, which showed NGF-enhancing activity, might be a candidate ingredient in food for prevention of AD.
Collapse
|
108
|
Wang Z, Erasmus SW, Liu X, van Ruth SM. Study on the Relations between Hyperspectral Images of Bananas ( Musa spp.) from Different Countries, Their Compositional Traits and Growing Conditions. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5793. [PMID: 33066269 PMCID: PMC7602010 DOI: 10.3390/s20205793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/02/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
Bananas are some of the most popular fruits around the world. However, there is limited research that explores hyperspectral imaging of bananas and its relationship with the chemical composition and growing conditions. In the study, the relations that exist between the visible near-infrared hyperspectral reflectance imaging data in the 400-1000 nm range of the bananas collected from different countries, the compositional traits and local growing conditions (altitude, temperature and rainfall) and production management (organic/conventional) were explored. The main compositional traits included moisture, starch, dietary fibre, protein, carotene content and the CIE L*a*b* colour values were also determined. The principal component analysis showed the preliminary separation of bananas from different geographical origins and production systems. The compositional and spectral data revealed positively and negatively moderate correlations (r around ±0.50, p < 0.05) between the carotene, starch content, and colour values (a*, b*) on the one hand and the wavelength ranges 405-525 nm, 615-645 nm, 885-985 nm on the other hand. Since the variation in composition and colour values were related to rainfall and temperature, the spectral information is likely also influenced by the growing conditions. The results could be useful to the industry for the improvement of banana quality and traceability.
Collapse
Affiliation(s)
- Zhijun Wang
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; (Z.W.); (S.W.E.); (X.L.)
| | - Sara Wilhelmina Erasmus
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; (Z.W.); (S.W.E.); (X.L.)
| | - Xiaotong Liu
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; (Z.W.); (S.W.E.); (X.L.)
| | - Saskia M. van Ruth
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; (Z.W.); (S.W.E.); (X.L.)
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| |
Collapse
|
109
|
Murugan M, Rajendran K, Velmurugan T, Muthu S, Gundappa M, Thangavel S. Antagonistic and antioxidant potencies of Centrosema pubescens benth extracts against nosocomial infection pathogens. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
110
|
Azam M, Saeed M, Pasha I, Shahid M. A prebiotic-based biopolymeric encapsulation system for improved survival of Lactobacillus rhamnosus. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100679] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
111
|
Hu H, Wang J, Hu Y, Xie J. Nutritional component changes in Xiangfen 1 banana at different developmental stages. Food Funct 2020; 11:8286-8296. [PMID: 32909591 DOI: 10.1039/d0fo00999g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Banana is an essential food resource in many tropical and subtropical countries. Metabolites in banana greatly influence its nutritional value and flavor. However, metabolic changes that occur in different developmental stages have not been comprehensively evaluated. In this study, widely targeted metabolomics based on multiple reaction monitoring was used in investigating dynamic changes in metabolites at three stages of fruit development. A total of 655 metabolites were identified in all the stages. A hierarchical cluster analysis of metabolites showed six clear expression patterns at the three developmental stages, and 69 up-regulated differential metabolites were identified in mature fruits compared with young and mature green fruits. A metabolic pathway analysis of differential metabolites showed significant enrichment of the flavonoid biosynthesis pathway and the phenylalanine, tyrosine, and tryptophan biosynthesis pathways. These results may serve as a reference for the isolation and identification of functional compounds from banana and for their sufficient utilization in the future.
Collapse
Affiliation(s)
- Huigang Hu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, China. and South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China
| | - Jiuxiang Wang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, China. and South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China
| | - Yulin Hu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, China. and South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China
| | - Jianghui Xie
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, China. and South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China
| |
Collapse
|
112
|
Li Z, Wang T, He C, Cheng K, Zeng R, Song Y. Control of Panama disease of banana by intercropping with Chinese chive (Allium tuberosum Rottler): cultivar differences. BMC PLANT BIOLOGY 2020; 20:432. [PMID: 32943012 PMCID: PMC7499913 DOI: 10.1186/s12870-020-02640-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/08/2020] [Indexed: 05/29/2023]
Abstract
Panama disease (Fusarium wilt disease) caused by Fusarium oxysporum f. sp. cubense race 4 (FOC) severely threatens banana (Musa spp.) production worldwide. Intercropping of banana with Allium plants has shown a potential to reduce Panama disease. In this study, six cultivars of Chinese chive (Allium tuberosum Rottler) were selected to compare their differences in antifungal activity and active compounds. Three cultivars Duokang Fujiu 11, Fujiuhuang 2, and Duokang Sijiqing with higher levels of antifungal compounds were further used for intercropping with banana in the pots and field to compare their effects on growth and disease incidence of banana.The six cultivars showed significant differences in antifungal activity against FOC mycelia growth in both leaf volatiles and aqueous leachates. The aqueous leachates displayed stronger antifungal activity than the volatiles. FJH cultivar showed the best inhibitory effect among all six cultivars. Contents of three main antifungal compounds dipropyl trisulfide (DPT), dimethyl trisulfide (DMT), and 2-methyl-2-pentenal (MP) in volatiles and aqueous leachates varied considerably among cultivars. Pot and field experiments showed that intercropping with three selected Chinese chive cultivars significantly improved banana vegetative growth, increased photosynthetic characteristics and yield but decreased disease incidence of Panama disease.Our results indicate that intercropping with Chinese chive shows potential to reduce banana Panama disease and selection of appropriate cultivars is vital for effective disease control.
Collapse
Affiliation(s)
- Zhenfang Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tong Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chenling He
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kelin Cheng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
113
|
Lim SJ, Jeong DY, Jin YD, Ro JH. Monitoring and risk assessment of tepraloxydim in banana (Musa paradisiaca) and sweet orange (Citrus sinensis). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33882-33889. [PMID: 32535830 DOI: 10.1007/s11356-020-09350-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
This study was conducted to analyze the residue levels of tepraloxydim in banana and sweet orange. Successive liquid-liquid extraction and cartridge clean-up method for tepraloxydim determination in banana and sweet orange were developed and validated by HPLC. The developed method was validated, and the recovery and LOQ of tepraloxydim were 79.3-99.5% and 0.02 mg kg-1, respectively. Among the 48 banana and 34 sweet orange samples, tepraloxydim was detected in two (0.03 mg kg-1) and four samples (0.03-0.05 mg kg-1), respectively. A risk assessment of tepraloxydim in banana and sweet orange was conducted by calculating the percent ratio of estimated daily intake (EDI) and acceptable daily intake (ADI). The ADI of tepraloxydim was 0.05 mg kg-1 day-1, and the EDIs of it from banana and sweet orange were 6.3 × 10-6 and 5.1-8.5 × 10-6, respectively. The percent of EDI to ADI of tepraloxydim was 0.013 and 0.010-0.017%, respectively. These results showed that the tepraloxydim levels in this study might not be harmful to human beings.
Collapse
Affiliation(s)
- Sung-Jin Lim
- Chemical Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Korea
| | - Du-Yun Jeong
- Chemical Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Korea
| | - Yong-Duk Jin
- Chemical Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Korea
| | - Jin-Ho Ro
- Chemical Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Korea.
| |
Collapse
|
114
|
Total phenolics, flavonoids and antioxidant activity following simulated gastro-intestinal digestion and dialysis of banana (Musa acuminata, AAB) as affected by induced ripening agents. Food Chem 2020; 339:127909. [PMID: 32871300 DOI: 10.1016/j.foodchem.2020.127909] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/20/2020] [Accepted: 08/20/2020] [Indexed: 11/22/2022]
Abstract
The present study was conducted to evaluate effect of ethephon and acetylene treatments on phenolics, flavonoids and antioxidant activity of banana flesh and their bioaccessibility. Total phenolics, flavonoids and antioxidant activity (DPPH, ABTS, FRAP) were measured at different phases of simulated gastrointestinal digestion of banana treated with 1000 ppm ethephon and 1000 ppm acetylene against natural ripening. The results revealed that inducing ripening lowers the content of phenolics, flavonoids and antioxidant activity considerably in the fresh fruit. Bioavailability of phenolics, flavonoids and FRAP activity were increased significantly (p < 0.05) after gastric digestion regardless of the treatment. The release of polyphenols and flavonoids during gastric digestion in treated banana was more significant than in naturally ripened banana. Recovery of polyphenols after dialysis was significantly high in naturally ripened banana. Dialyzable flavonoids, DPPH and ABTS activities of dialyzed fractions were not significantly affected by ethephon or acetylene treatments.
Collapse
|
115
|
Hussein AM, Fouda K, Mehaya FM, Mohamed DA, Mohammad AA, Abdelgayed SS, Mohamed RS. Fortified vegetarian milk for prevention of metabolic syndrome in rats: impact on hepatic and vascular complications. Heliyon 2020; 6:e04593. [PMID: 32793828 PMCID: PMC7413996 DOI: 10.1016/j.heliyon.2020.e04593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/31/2020] [Accepted: 07/27/2020] [Indexed: 01/03/2023] Open
Abstract
Metabolic syndrome (MetS) is characterized as a gathering of various metabolic disorders, for example, hyperglycemia, dyslipidemia, and obesity. The present research was conducted to prepare fortified almond milk as functional beverages and evaluate their protective effect against MetS and associated hepatic and vascular complications. Three beverages (I, II, and III) were prepared by fortification almond milk with carrot juice or powder of quinoa seeds and carrot juice or oat powder and banana juice. The sensory attributes, physicochemical properties, bioactive compounds (total phenolic, beta-carotene, tocopherols) and B-complex vitamins were determined in the beverages. In-vitro antioxidant activity of the beverages was assessed. MetS was induced in rats via feeding on high-fat high-fructose diet (HFHF). The biochemical (lipid profile, oxidative stress, liver, and kidney functions), nutritional and histopathological parameters were assessed in rats. The beverage I recorded the highest sensory attributes' scores. The physicochemical properties of the beverages revealed that acidity and viscosity of all beverages ranged from 4.55 to 4.88 and from 40 to 59, respectively. The beverage I showed the highest content of alpha-tocopherol (14.994 μg/g) and beta-carotene (104.541 μg/g), while the beverage II showed the highest content of gamma-tocopherol (0.557 μg/g), folic acid (0.806 μg/g), and total phenols (147.43 μg GAE/g). The results of animals revealed that the beverage II was the most promising in attenuation levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol, malondialdehyde, and tumor necrosis factor-alpha. Also, the beverage II was the superior in the protection of the liver and heart tissues as reflected by the histopathological examination findings. So, it can be concluded that the newly prepared almond milk with quinoa seeds and carrot juice could be used as an effective functional beverage for the prevention of MetS and its complications.
Collapse
Affiliation(s)
| | - Karem Fouda
- Nutrition and Food Sciences Department, National Research Centre, Cairo, Egypt
- Corresponding author.
| | - Fathy M. Mehaya
- Food Technology Department, National Research Centre, Cairo, Egypt
| | - Doha A. Mohamed
- Nutrition and Food Sciences Department, National Research Centre, Cairo, Egypt
| | | | - Sherein S. Abdelgayed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Rasha S. Mohamed
- Nutrition and Food Sciences Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
116
|
Tallapally M, Sadiq AS, Mehtab V, Chilakala S, Vemula M, Chenna S, Upadhyayula V. GC-MS based targeted metabolomics approach for studying the variations of phenolic metabolites in artificially ripened banana fruits. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
117
|
Tian DD, Xu XQ, Peng Q, Zhang YW, Zhang PB, Qiao Y, Shi B. Effects of banana powder (Musa acuminata Colla) on the composition of human fecal microbiota and metabolic output using in vitro fermentation. J Food Sci 2020; 85:2554-2564. [PMID: 32677055 DOI: 10.1111/1750-3841.15324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 01/27/2023]
Abstract
Bananas are rich in indigestible carbohydrates and are considered potential whole-fruit prebiotics. To investigate banana-induced changes in the composition of the human gut microbiota and the production of short chain fatty acids (SCFAs), ripe banana (Musa acuminata Colla, Degrees Brix: 22.6 ± 0.2° Bé), from Hainan, China, was powdered and fermented in vitro for 24 hr with the feces of six Chinese donors. The degradation of banana polysaccharides was observed in all six fecal samples. During in vitro fecal fermentation, banana polysaccharides were gradually degraded up to approximately 80%. The production of SCFAs was also measured. The addition of banana powder increased the concentrations of acetate, propionate, and butyrate, with the production of acetate being higher than that of propionate and butyrate. Changes in the human gut microbiota were assessed using high-throughput sequencing of the 16S ribosomal RNA (rRNA) gene. The results indicated that banana powder significantly altered bacterial diversity, increasing the relative abundance of Bacteroides, while maintaining the proportion of Bifidobacterium in the feces. At the same time, banana powder also increased the proportion of Lactobacillus; however, a significant difference was not observed. In summary, banana powder can be utilized by specific bacteria in human intestines, providing data support for the study of the effects of banana powder on the human intestinal health. PRACTICAL APPLICATION: In this study, in vitro batch fermentation was used to evaluate the effect of banana powder on the human intestinal microbial community, and the metabolized products of banana powder were determined. Our study showed that banana powder improved the human intestinal microbial flora and promoted the growth of Bifidobacterium and Bacteroides and could produce beneficial SCFAs (acetate, propionate, and butyrate). This study provided a theoretical basis for the use of banana powder as a potential prebiotic in production applications and our daily diet.
Collapse
Affiliation(s)
- Dan-Dan Tian
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xiao-Qing Xu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Qing Peng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Yu-Wei Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Peng-Bo Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Yu Qiao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Bo Shi
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| |
Collapse
|
118
|
Li MC, Chou CF, Hsu SC, Lin JS. Physicochemical characteristics and resistant starch of different varieties of banana from Taiwan. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1788077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ming-Chang Li
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chin-Fu Chou
- Department of Food Science and Nutrition, Meiho University, Pingtung, Taiwan
| | - Shu-Chen Hsu
- Bachelor Degree Program in Environment and Food Safety Laboratory Science, Chang Jung Christian University, Tainan, Taiwan
| | - Jen-Shinn Lin
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
119
|
Amini Khoozani A, Birch J, Bekhit AEDA. Textural properties and characteristics of whole green banana flour produced by air-oven and freeze-drying processing. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00402-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
120
|
Quintanilla-Licea R, Vargas-Villarreal J, Verde-Star MJ, Rivas-Galindo VM, Torres-Hernández ÁD. Antiprotozoal Activity against Entamoeba histolytica of Flavonoids Isolated from Lippia graveolens Kunth. Molecules 2020; 25:molecules25112464. [PMID: 32466359 PMCID: PMC7321152 DOI: 10.3390/molecules25112464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022] Open
Abstract
Amebiasis caused by Entamoeba histolytica is nowadays a serious public health problem worldwide, especially in developing countries. Annually, up to 100,000 deaths occur across the world. Due to the resistance that pathogenic protozoa exhibit against commercial antiprotozoal drugs, a growing emphasis has been placed on plants used in traditional medicine to discover new antiparasitics. Previously, we reported the in vitro antiamoebic activity of a methanolic extract of Lippia graveolens Kunth (Mexican oregano). In this study, we outline the isolation and structure elucidation of antiamoebic compounds occurring in this plant. The subsequent work-up of this methanol extract by bioguided isolation using several chromatographic techniques yielded the flavonoids pinocembrin (1), sakuranetin (2), cirsimaritin (3), and naringenin (4). Structural elucidation of the isolated compounds was achieved by spectroscopic/spectrometric analyses and comparing literature data. These compounds revealed significant antiprotozoal activity against E. histolytica trophozoites using in vitro tests, showing a 50% inhibitory concentration (IC50) ranging from 28 to 154 µg/mL. Amebicide activity of sakuranetin and cirsimaritin is reported for the first time in this study. These research data may help to corroborate the use of this plant in traditional Mexican medicine for the treatment of dyspepsia.
Collapse
Affiliation(s)
- Ramiro Quintanilla-Licea
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León (UANL), Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, C.P. 66455 Nuevo León, Mexico; (M.J.V.-S.); (Á.D.T.-H.)
- Correspondence: ; Tel.: +52-81-83763668
| | - Javier Vargas-Villarreal
- Laboratorio de Bioquímica y Biología Celular, Centro de Investigaciones Biomédicas del Noreste (CIBIN), Dos de abril esquina con San Luis Potosí, C.P. 64720 Monterrey, Mexico;
| | - María Julia Verde-Star
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León (UANL), Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, C.P. 66455 Nuevo León, Mexico; (M.J.V.-S.); (Á.D.T.-H.)
| | - Verónica Mayela Rivas-Galindo
- Facultad de Medicina, Universidad Autónoma de Nuevo León (UANL), Madero y Aguirre Pequeño, Mitras Centro, Monterrey, C.P. 64460 Nuevo León, Mexico;
| | - Ángel David Torres-Hernández
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León (UANL), Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, C.P. 66455 Nuevo León, Mexico; (M.J.V.-S.); (Á.D.T.-H.)
| |
Collapse
|
121
|
Rinaldo D. Carbohydrate and bioactive compounds composition of starchy tropical fruits and tubers, in relation to pre and postharvest conditions: A review. J Food Sci 2020; 85:249-259. [PMID: 32031261 DOI: 10.1111/1750-3841.15002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/07/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022]
Abstract
In some tropical countries, people are suffering from both undernourishment and noncommunicable disorders, such as overweight/obesity. Starchy tropical fruits and tubers are of particular interest for their carbohydrate content and for the micronutrients they provide. The present study summarizes the content in carbohydrate, phenolics, carotenoids, and vitamin C, as well as the antioxidant activity of a wide range of tropical fruits and tubers. The energy content of fruits and tubers studied is in the range of 1,200 to 1,800 kJ/100 g of dry weight. They are thus important staple foods and, due to their diversity and seasonality, they can provide energy all year long by alternating the resources in the human diet. Starchy fruit and tuber crops have antiobesity properties as they are bulky, rich in moisture, and contain less than 2% of fat. Noncolored fruit and tubers provide total phenolics at about 20 to 140 mEq/100 g fresh weight. They thus have a high antioxidant capacity, as related to their total phenolic content but also to the presence of carotenoids, such as lutein, mostly in Dioscorea bulbifera and cocoyam. Yellow and orange-fleshed varieties contain more total phenolics and also more provitamin A carotenoids than noncolored fleshed ones. The contents in total phenolic and carotenoid greatly vary with the species and variety. The influence of pre and postharvest conditions on micronutrient content is discussed. Further studies on new processing methods are needed to maximize polyphenols and carotenoids retention in the foods and increase the bioaccessibility of these compounds. PRACTICAL APPLICATION: This paper provides information on the nutritional quality of starchy tropical fruits and tubers. Nutritional quality is studied from the point of view of providing energy and bioactive compounds. The paper aims to promote the use of local resources in tropical areas, which could ultimately limit the adverse effects of food globalization on noncommunicable disorders. It could also lead to tropical countries being less dependent on food imports.
Collapse
Affiliation(s)
- Dominique Rinaldo
- INRA, UR ASTRO (AgroSystèmes Tropicaux), Domaine de Duclos, F-97170, Petit-Bourg, France
| |
Collapse
|
122
|
Panda SK, Castro AHF, Jouneghani RS, Leyssen P, Neyts J, Swennen R, Luyten W. Antiviral and Cytotoxic Activity of Different Plant Parts of Banana (Musa spp.). Viruses 2020; 12:549. [PMID: 32429324 PMCID: PMC7291111 DOI: 10.3390/v12050549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 12/23/2022] Open
Abstract
Chikungunya and yellow fever virus cause vector-borne viral diseases in humans. There is currently no specific antiviral drug for either of these diseases. Banana plants are used in traditional medicine for treating viral diseases such as measles and chickenpox. Therefore, we tested selected banana cultivars for their antiviral but also cytotoxic properties. Different parts such as leaf, pseudostem and corm, collected separately and extracted with four different solvents (hexane, acetone, ethanol, and water), were tested for in vitro antiviral activity against Chikungunya virus (CHIKV), enterovirus 71 (EV71), and yellow fever virus (YFV). Extracts prepared with acetone and ethanol from leaf parts of several cultivars exhibited strong (EC50 around 10 μg/mL) anti-CHIKV activity. Interestingly, none of the banana plant extracts (concentration 1-100 µg/mL) were active against EV71. Activity against YFV was restricted to two cultivars: Namwa Khom-Pseudostem-Ethanol (5.9 ± 5.4), Namwa Khom-Corm-Ethanol (0.79 ± 0.1) and Fougamou-Corm-Acetone (2.5 ± 1.5). In most cases, the cytotoxic activity of the extracts was generally 5- to 10-fold lower than the antiviral activity, suggesting a reasonable therapeutic window.
Collapse
Affiliation(s)
- Sujogya Kumar Panda
- Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (A.H.F.C.); (R.S.J.); (W.L.)
- Mayurbhanj Biological Research (MBR), Bhanjpur, Baripada 757002, Odisha, India
| | - Ana Hortência Fonsêca Castro
- Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (A.H.F.C.); (R.S.J.); (W.L.)
- Plant Physiology and Biochemistry, Universidade Federal de São João Del-Rei, Av. Sebastião Gonçalves Coelho, 400–Chanandour, Divinópolis MG 35501-296, Brazil
| | - Ramin Saleh Jouneghani
- Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (A.H.F.C.); (R.S.J.); (W.L.)
| | - Pieter Leyssen
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (P.L.); (J.N.)
| | - Johan Neyts
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (P.L.); (J.N.)
| | - Rony Swennen
- International Institute of Tropical Agriculture, Arusha P.O. Box 447, Tanzania;
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Katholieke Universiteit Leuven, 3001 Leuven, Belgium
- Bioversity International, 3001 Leuven, Belgium
| | - Walter Luyten
- Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (A.H.F.C.); (R.S.J.); (W.L.)
| |
Collapse
|
123
|
Bio-properties of Saba banana (Musa 'saba', ABB Group): Influence of maturity and changes during simulated in vitro gastrointestinal digestion. Sci Rep 2020; 10:6701. [PMID: 32317686 PMCID: PMC7174285 DOI: 10.1038/s41598-020-63501-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/27/2020] [Indexed: 01/18/2023] Open
Abstract
Saba banana, a popular fruit crop grown in Southeast Asia, is an economical source of a variety of beneficial agents. This study examined the variations in total phenolic, flavonoid, and antioxidant activities of five maturity stages of Saba banana, and their changes during simulated in vitro gastrointestinal digestion as affected by varying structural compositions. Antioxidant activities were evaluated using ferric reducing antioxidant power (FRAP), metal ion chelating (MIC) activity, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. Results of DPPH and ABTS were compared in terms of TEAC (Trolox Equivalent Antioxidant Capacity) and VCEAC (Vitamin C Equivalent Antioxidant Capacity) values. Bio-properties were found to be highest in mature green stage with values slightly decreased as ripening proceeded. Simulated digestion showed a continuous increase in total phenolic with comparatively faster release in structure-less state (slurry) than samples with intact structure (cut). The trend of antioxidant activities was increased in the gastric phase and then decreased at the onset of intestinal phase, except for MIC which showed a reverse effect. Our study indicated that the bio-properties of Saba banana were affected by maturity and modifications in its physical structure and composition could influence the release behaviors of food components during simulated digestion.
Collapse
|
124
|
Liu Y, Song X, Cao F, Li F, Wang M, Yang Y, Liu M, Liu A, Xin H, Wang X. Banana Peel-Derived Dendrite-Shaped Au Nanomaterials with Dual Inhibition Toward Tumor Growth and Migration. Int J Nanomedicine 2020; 15:2315-2322. [PMID: 32308383 PMCID: PMC7132266 DOI: 10.2147/ijn.s211076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 02/21/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose In order to prepare functional Au nanoparticles with low toxicity and high antitumor properties, we have used fruit waste (banana peel) to synthesize a new dendrite-shaped gold nanoparticle and used it for the treatment of tumors. Methods Dendrite-shaped gold nanoparticle (Au-dendrite) was synthesized through a facile hydrothermal process. The banana peel was used as both the reducing agent and the protective agent for reducing chloroauric acid to obtain Au-dendrite. The safety assessment of the Au-dendrite was conducted by H&E staining of the mouse’s eyelid skin and CCK-8 assay. The antitumor effects were evaluated through in vitro tumor cytotoxicity experiments and in vivo treatment of animal tumors. Results In this work, a new type of gold nanomaterial (Au-dendrite) was synthesized by using a common agricultural waste (banana peel) through a facile hydrothermal process without any extra chemical reducing agent or protective agent. Subsequent experiments showed that, compared with some classical Au nanomaterials, the as-synthesized gold nanocomposites have superior biocompatibility and impressive characteristics of dual inhibition toward tumor growth and migration. Conclusion We successfully synthesized a dendrite-shaped gold nanocomposite which was derived from a common agricultural waste (banana peel). A facile and environmentally friendly synthetic process was proposed accordingly without regular chemical additives. The as-prepared Au-dendrite nanocomposites not only had better biocompatibility than some classical gold nanoparticles but also exhibited unique advantages in tumor inhibition.
Collapse
Affiliation(s)
- Yu Liu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xiangwei Song
- College of Chemistry, Nanchang University, Nanchang 330038, People's Republic of China
| | - Fei Cao
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330038, People's Republic of China
| | - Fengshun Li
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330038, People's Republic of China
| | - Manyu Wang
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330038, People's Republic of China
| | - Yalan Yang
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330038, People's Republic of China
| | - Mingzhuo Liu
- Department of Burns, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Anwen Liu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Hongbo Xin
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330038, People's Republic of China
| | - Xiaolei Wang
- College of Chemistry, Nanchang University, Nanchang 330038, People's Republic of China.,Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330038, People's Republic of China
| |
Collapse
|
125
|
Prado LG, Arruda HS, Peixoto Araujo NM, de Oliveira Braga LE, Banzato TP, Pereira GA, Figueiredo MC, Ruiz ALTG, Eberlin MN, de Carvalho JE, Vendramini-Costa DB, Pastore GM. Antioxidant, antiproliferative and healing properties of araticum (Annona crassiflora Mart.) peel and seed. Food Res Int 2020; 133:109168. [PMID: 32466931 DOI: 10.1016/j.foodres.2020.109168] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 12/17/2022]
Abstract
Araticum (Annona crassiflora Mart.) is a native fruit from Brazilian Cerrado widely used by folk medicine. Nevertheless, the biological effects of its seeds and peel have not been extensively evaluated. We evaluate herein the antioxidant, antiproliferative and healing potential of araticum peel and seeds extracts. HPLC-ESI-MS/MS analysis showed flavonoids, namely epicatechin and quercetin, as the main compounds in peel and seeds extracts, respectively. These extracts showed high content of phenolic compounds (7254.46 and 97.74 µg/g extract) and, as consequence, high antioxidant capacity. Interesting, the seeds extract was more effective than peel extract against all tested cancer cells, especially on NCI-ADR/RES (multidrug resistant ovary adenocarcinoma) cell line. In the cell migration assay by using HaCaT (keratinocyte), the seeds extract induced migration, while the peel extract showed an inhibitory effect. In this way, phenolic content could be related to antioxidant capacity, but it was not related to antiproliferative and healing effect. The araticum seeds extract showed an interesting response to in vitro biological assay although of its low content of phenolic compounds. Unidentified compounds, such as alkaloids and annonaceous acetogenins could be related to it. Araticum has potential to be used as therapeutic plant especially as antiproliferative and healing drug.
Collapse
Affiliation(s)
- Lívia Garcia Prado
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil
| | - Henrique Silvano Arruda
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil
| | - Nayara Macêdo Peixoto Araujo
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil.
| | - Lucia Elaine de Oliveira Braga
- Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), University of Campinas, UNICAMP, Paulínia, SP 13148-218, Brazil; Graduate Program in Odontology, University of Campinas, UNICAMP, Piracicaba, SP 13414-903, Brazil
| | - Thais Petrochelli Banzato
- Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), University of Campinas, UNICAMP, Paulínia, SP 13148-218, Brazil; Institute of Biology, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil
| | - Gustavo Araujo Pereira
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil; School of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), 66075-110 Belém, Pará, Brazil
| | - Mariana Cecchetto Figueiredo
- Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), University of Campinas, UNICAMP, Paulínia, SP 13148-218, Brazil
| | - Ana Lúcia Tasca Gois Ruiz
- Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), University of Campinas, UNICAMP, Paulínia, SP 13148-218, Brazil; Graduate Program in Odontology, University of Campinas, UNICAMP, Piracicaba, SP 13414-903, Brazil
| | - Marcos Nogueira Eberlin
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas, UNICAMP, Campinas, SP 13083-970, Brazil
| | - João Ernesto de Carvalho
- Faculty of Pharmaceutical Sciences, University of Campinas, UNICAMP, Campinas, SP 13083-871, Brazil
| | | | - Glaucia Maria Pastore
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil
| |
Collapse
|
126
|
Drying Applications during Value-Added Sustainable Processing for Selected Mass-Produced Food Coproducts. Processes (Basel) 2020. [DOI: 10.3390/pr8030307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Developing circular value chains for continuing the use of and reducing the waste of the resources of industrial processing would eliminate impairments to the environment. The generation of nutrient-dense byproducts and coproducts with high-moisture contents are considered to be an issue for global food industries. These byproducts and coproducts spontaneously undergo chemical, biochemical, or microbial deteriorations due to high storage-temperatures, and consequently are turned into direct animal feed sources or even just treated as waste with eutrophication activity. This review provides an overview of selected mass-produced botanical food byproducts and coproducts (BFBC) including soybean okara, wheat germ, banana, and spent coffee grounds, with respect to value-added sustainable processing via proper drying technologies being employed. This review includes the current production of the above-mentioned agricultural products, the nutritional aspects of them, and the sustainable utilization of their coproducts. Additionally, the possible drying kinetics for value-added prospects are discussed.
Collapse
|
127
|
Wang Z, Erasmus SW, Dekker P, Guo B, Stoorvogel JJ, van Ruth SM. Linking growing conditions to stable isotope ratios and elemental compositions of Costa Rican bananas (Musa spp.). Food Res Int 2020; 129:108882. [PMID: 32036917 DOI: 10.1016/j.foodres.2019.108882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/30/2019] [Accepted: 12/01/2019] [Indexed: 11/26/2022]
Abstract
Traceability of agricultural produce is getting increasingly important for numerous reasons including marketing, certification, and food safety. Globally, banana (Musa spp.) with its high nutritional value and easy accessibility, is a popular fruit among consumers. Bananas are produced throughout the (sub-)tropics under a wide range of environmental conditions. Environmental conditions could influence the composition of bananas. Understanding the effect of these conditions on fruit composition provides a way of increasing the fruit's traceability and linking it to its origin - a crucial aspect for the increasing global supply chain. In this study, we examined the influence of growing conditions on the isotopic and elemental composition of bananas produced in 15 Costa Rican farms. A total of 88 bananas (peel and pulp) were collected from the farms and analysed for isotopic signatures (δ13C, δ15N, and δ18O) and elemental compositions. The growing conditions were characterized in terms of climate, topography and soil conditions. The isotopic ratios differed significantly between groups of farms. The δ13C and δ15N values were mainly influenced by soil types, while rainfall and temperatures related more to the δ18O values. The elemental compositions of the bananas were primarily influenced by the local rainfall and soil types, while the geographical origin could be distinguished using principal component analysis. The overall results link the growing conditions to the isotopic and elemental compositions of bananas, thereby also providing a way to trace its origin.
Collapse
Affiliation(s)
- Zhijun Wang
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Sara W Erasmus
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Pieter Dekker
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands; Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE, Wageningen, the Netherlands
| | - Boli Guo
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Jetse J Stoorvogel
- Soil Geography and Landscape Group, Wageningen University and Research, P.O. Box 47, 6700AA, Wageningen, the Netherlands
| | - Saskia M van Ruth
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands; Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE, Wageningen, the Netherlands.
| |
Collapse
|
128
|
Kumar N, Kaur P, Devgan K, Attkan AK. Shelf life prolongation of cherry tomato using magnesium hydroxide reinforced bio‐nanocomposite and conventional plastic films. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14379] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Nitin Kumar
- Department of Processing and Food Engineering College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar Haryana
| | - Preetinder Kaur
- Department of Processing and Food Engineering College of Agricultural Engineering and Technology Punjab Agricultural University Ludhiana India
| | - Kirandeep Devgan
- Department of Processing and Food Engineering College of Agricultural Engineering and Technology Punjab Agricultural University Ludhiana India
| | - Arun Kumar Attkan
- Department of Processing and Food Engineering College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar Haryana
| |
Collapse
|
129
|
Sankaranarayanan R, Palani SN, Kumar A, Selvakumar A. S. P, Tennyson J. Prediction and experimental confirmation of banana bract mosaic virus encoding miRNAs and their targets. ACTA ACUST UNITED AC 2020. [DOI: 10.1186/s41544-019-0044-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Potyviridae is the largest plant infecting family under the monophyletic group Riboviria, infects many of the food, fodder and ornamental crops. Due to the higher mutation and recombination rate, potyvirids are evolving rapidly, adapting to the environmental chaos and expanding their hosts. Virus control measures are need to be updated as the economic importance of potyvirids is massive. microRNAs (miRNAs) are well known for their functional importance in eukaryotes and many viruses. Regardless of its biogenesis, whether canonical or noncanonical, microRNA centric antivirus approaches attract the researchers to the hopeful future of next-generation broad-spectrum antiviral measures.
Methods
In this study, we predicted and screened banana bract mosaic virus (BBrMV) encoding miRNAs by computation approaches and their targets on banana transcriptome using plant small RNA target analysis server (psRNAtarget). The target gene functions were annotated by Blast2GO. The predicted BBrMV miRNAs were experimentally screened by stem-loop RT-PCR.
Results
The results showed that, among the predicted BBrMV miRNAs, miRNA2 is conserved throughout BBrMV isolates and has multiple virus-specific target transcripts. In addition, primary experimental validation for the predicted miRNAs revealed that miRNA2 exists in the BBrMV infected banana leaf samples.
Conclusions
The existence of BBrMV miRNA2 is confirmed by stem-loop RT-PCR followed by cloning and sequencing. The presence of miRNA of Potyviridae is rarely addressed and would definitely spread the hope to understand the virus infectious cycle. Our report would also help to better understand and manipulate potyviral infections.
Collapse
|
130
|
Kaur N, Alok A, Kumar P, Kaur N, Awasthi P, Chaturvedi S, Pandey P, Pandey A, Pandey AK, Tiwari S. CRISPR/Cas9 directed editing of lycopene epsilon-cyclase modulates metabolic flux for β-carotene biosynthesis in banana fruit. Metab Eng 2020; 59:76-86. [PMID: 32006663 DOI: 10.1016/j.ymben.2020.01.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 01/25/2020] [Indexed: 12/22/2022]
Abstract
Banana is one of the most economically important fruit crops worldwide. Genetic improvement in banana is a challenging task due to its parthenocarpic nature and triploid genome. Genetic modification of crops via the CRISPR/Cas9 module has emerged as a promising tool to develop important traits. In the present work, a CRISPR/Cas9-based approach was used to develop the β-carotene-enriched Cavendish banana cultivar (cv.) Grand Naine (AAA genome). The fifth exon of the lycopene epsilon-cyclase (LCYε) gene was targeted. The targeting specificity of the designed guide-RNA was also tested by its ability to create indels in the LCYε gene at the A genome of cv. Rasthali (AAB genome). Sequence analysis revealed multiple types of indels in the genomic region of Grand Naine LCYε (GN-LCYε). Metabolic profiling of the fruit pulp of selected edited lines showed enhanced accumulation of β-carotene content up to 6-fold (~24 μg/g) compared with the unedited plants. These lines also showed either an absence or a drastic reduction in the levels of lutein and α-carotene, suggesting metabolic reprogramming, without any significant effect on the agro-morphological parameters. In addition, differential expression of carotenoid pathway genes was observed in the edited lines in comparison to unedited plants. Overall, this is the first report in banana to improve nutritional trait by using a precise genome editing approach.
Collapse
Affiliation(s)
- Navneet Kaur
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, 140306, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Anshu Alok
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, 140306, Punjab, India
| | - Pankaj Kumar
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, 140306, Punjab, India
| | - Navjot Kaur
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, 140306, Punjab, India
| | - Praveen Awasthi
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, 140306, Punjab, India
| | - Siddhant Chaturvedi
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, 140306, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Pankaj Pandey
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, 140306, Punjab, India
| | - Ashutosh Pandey
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, 140306, Punjab, India
| | - Ajay K Pandey
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, 140306, Punjab, India
| | - Siddharth Tiwari
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, 140306, Punjab, India.
| |
Collapse
|
131
|
Oresanya IO, Sonibare MA, Gueye B, Balogun FO, Adebayo S, Ashafa AOT, Morlock G. Isolation of flavonoids from Musa acuminata Colla (Simili radjah, ABB) and the in vitro inhibitory effects of its leaf and fruit fractions on free radicals, acetylcholinesterase, 15-lipoxygenase, and carbohydrate hydrolyzing enzymes. J Food Biochem 2020; 44:e13137. [PMID: 31899556 DOI: 10.1111/jfbc.13137] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/20/2019] [Accepted: 12/09/2019] [Indexed: 12/30/2022]
Abstract
Musa species are used traditionally for the management of many diseases. The study evaluated and compared anticholinesterase, anti-inflammatory, antioxidant, and antidiabetic activities of Musa acuminata (Simili radjah, ABB) fruits and leaves fractions and characterized the bioactive compounds using HPTLC-HRMS and NMR. Leaf fractions gave the higher biological activities than the fruit. Ethyl acetate fraction of the leaf had the highest total phenolic content (911.9 ± 1.7 mg GAE/g) and highest 2,2-diphenyl-1-picrylhydrazyl (DPPH· ) scavenging activity (IC50, 9.0 ± 0.4 µg/ml). It also gave the most effective inhibition of acetylcholinesterase (IC50, 404.4 ± 8.0 µg/ml) and α-glucosidase (IC50, 4.9 ± 1.6 µg/ml), but a moderate α-amylase inhibition (IC50, 444.3 ± 4.0 µg/ml). The anti-inflammatory activity of n-butanol (IC50, 34.1 ± 2.6 µg/ml) and ethyl acetate fractions (IC50 , 43.1 ± 11.3 µg/ml) of the leaf were higher than the positive control, quercetin (IC50 , 54.8 ± 17.1 µg/ml). Kaempferol-3-O-rutinoside and quercetin-3-O-rutinoside (rutin) were identified as the bioactive compounds with antioxidant and antidiabetic activities from the ethyl acetate fraction of M. acuminata leaf. PRACTICAL APPLICATIONS: All parts of Musa acuminata are known to be useful ethnomedicinally even as food. The leaves are mostly used to serve food and used for wrapping purposes. However, this study concluded that M. acuminata leaf is rich in bioactive flavonoids such as kaempferol-3-O-rutinoside and rutin, with relatively high antioxidative, antidiabetic, and anti-inflammatory activities. Therefore, aside the fact that the leaves can serve as potential drug leads for pharmaceutical industries, it can also be embraced in the food sector to produce supplements and/or nutraceuticals in the management of Alzheimer's, diabetes and other inflammatory diseases.
Collapse
Affiliation(s)
- Ibukun Oluwabukola Oresanya
- Faculty of Pharmacy, Department of Pharmacognosy, University of Ibadan, Ibadan, Nigeria.,International Institute of Tropical Agriculture, Genetic Resources Centre, Ibadan, Nigeria.,Department of Plant Sciences, University of the Free State, Phuthsditjhaba, South Africa.,Chair of Food Science, Institute of Nutritional Science and Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Mubo A Sonibare
- Faculty of Pharmacy, Department of Pharmacognosy, University of Ibadan, Ibadan, Nigeria
| | - Badara Gueye
- International Institute of Tropical Agriculture, Genetic Resources Centre, Ibadan, Nigeria
| | - Fatai Oladunni Balogun
- Department of Plant Sciences, University of the Free State, Phuthsditjhaba, South Africa
| | - Salmon Adebayo
- Department of Plant Sciences, University of the Free State, Phuthsditjhaba, South Africa
| | | | - Gertrud Morlock
- Chair of Food Science, Institute of Nutritional Science and Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
132
|
Li X, Jiang H, Pu Y, Cao J, Jiang W. Inhibitory Effect of Condensed Tannins from Banana Pulp on Cholesterol Esterase and Mechanisms of Interaction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:14066-14073. [PMID: 31762280 DOI: 10.1021/acs.jafc.9b05212] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the present study, the inhibitory effect of condensed tannins (CTs) on cholesterol esterase (CEase) was studied. The underlying mechanisms were evaluated by reaction kinetics, turbidity and particle size analyses, multispectroscopy methods, thermodynamics, and computer molecular simulations. CTs showed potent CEase inhibitory activity with an IC50 value of 64.19 μg/mL, and the CEase activity decreased with increasing CT content in a mixed-competitive manner, which was verified by molecular docking simulations. Fluorescence and UV-vis measurements revealed that complexes were formed from CEase and CTs by noncovalent interaction. Isothermal titration calorimetry indicated that the interaction between CEase and CTs occurred through hydrogen bonding and hydrophobic interactions. Circular dichroism analysis suggested that CTs inhibited the activity of CEase by altering the secondary structure of CEase. The inhibition of CTs on CEase in the gastrointestinal tract might be one mechanism for its cholesterol-lowering effect.
Collapse
Affiliation(s)
- Xiangxin Li
- College of Food Science and Nutritional Engineering , China Agricultural University , 17 Qinghuadonglu Road , Beijing 100083 , P. R. China
| | - Haitao Jiang
- College of Food Science and Nutritional Engineering , China Agricultural University , 17 Qinghuadonglu Road , Beijing 100083 , P. R. China
| | - Yijing Pu
- College of Food Science and Nutritional Engineering , China Agricultural University , 17 Qinghuadonglu Road , Beijing 100083 , P. R. China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering , China Agricultural University , 17 Qinghuadonglu Road , Beijing 100083 , P. R. China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering , China Agricultural University , 17 Qinghuadonglu Road , Beijing 100083 , P. R. China
| |
Collapse
|
133
|
Zhang J, Wang J, Wang G, Wang C, Huang R. Extraction and characterization of phenolic compounds and dietary fibres from banana peel. ACTA ALIMENTARIA 2019. [DOI: 10.1556/066.2019.48.4.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- J.W. Zhang
- College of Life Science, South China Normal University, Guangzhou 510631. PR China
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, Guangzhou 510631. PR China
| | - J.H. Wang
- College of Life Science, South China Normal University, Guangzhou 510631. PR China
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, Guangzhou 510631. PR China
| | - G.H. Wang
- College of Life Science, South China Normal University, Guangzhou 510631. PR China
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, Guangzhou 510631. PR China
| | - C.C. Wang
- College of Life Science, South China Normal University, Guangzhou 510631. PR China
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, Guangzhou 510631. PR China
| | - R.Q. Huang
- College of Life Science, South China Normal University, Guangzhou 510631. PR China
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, Guangzhou 510631. PR China
| |
Collapse
|
134
|
Yu Y, Chen X, Zheng Q. Metabolomic Profiling of Carotenoid Constituents in Physalis peruviana During Different Growth Stages by LC-MS/MS Technology. J Food Sci 2019; 84:3608-3613. [PMID: 31724748 DOI: 10.1111/1750-3841.14916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/28/2019] [Accepted: 10/06/2019] [Indexed: 11/28/2022]
Abstract
With the current ongoing changes in global food demands, natural carotenoids are preferred by consumers and are gaining attention among food scientists and producers alike. Metabolomic profiling of carotenoid constituents in Physalis peruviana during distinct on-tree growth stages was performed with liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology. The results show that the β rings of β-carotene are hydroxylated with great efficiency, and there is a continual synthesis of zeaxanthin at half-ripe and full-ripe stages, which is confirmed by relating the zeaxanthin content to that of its precursor (β-carotene). Lutein was, in terms of mass intensity, the most abundant carotenoid constituent (64.61 µg/g at the half-ripe stage) observed in this study. In addition, γ-carotene, which is rare in dietary fruits and vegetables, was detected in the mature and breaker stages, albeit at a relatively low level. The results suggest that when we consider the variation in carotenoid content during different growth stages, Physalis peruviana can be considered a good source of natural carotenoids.
Collapse
Affiliation(s)
- Yougui Yu
- School of Food and Chemical Engineering, Shaoyang Univ., Shaoyang, 422000, China
| | - Xuepeng Chen
- School of Food and Chemical Engineering, Shaoyang Univ., Shaoyang, 422000, China
| | - Qing Zheng
- School of Food and Chemical Engineering, Shaoyang Univ., Shaoyang, 422000, China
| |
Collapse
|
135
|
Comparative Study on Aroma Volatiles, Organic Acids, and Sugars of Ambul Banana (Musa acuminata, AAB) Treated with Induced Ripening Agents. J FOOD QUALITY 2019. [DOI: 10.1155/2019/7653154] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The present study was conducted to investigate effect of induced ripening agents on aroma profile, organic acids and sugars of Ambul banana (Musa acuminata, AAB). Mature green bananas that are in same maturity stage were subjected to 1000 ppm ethephon and 1000 ppm acetylene and kept at 20°C, 80–85% RH for ripening. Aroma profile was analyzed by SPME-GC-MS, while organic acids and sugars were tested by HPLC. Naturally ripened banana was found to be more aromatic than acetylene- and ethephon-treated banana having highest number of volatile compounds (27) and high level of esters (65%). Malic acid, citric acid, and oxalic acids were significantly low in treated bananas compared to naturally ripened bananas. Glucose and fructose, which are major types of sugars in ripe banana flesh, were significantly low in acetylene-treated banana, while sucrose was not detected in both ethephon- and acetylene-treated samples at fully yellow stage. Although ethephon and acetylene trigger the ripening process, they lead to poor aroma profile and lower levels of organic acids and sugars in flesh of banana.
Collapse
|
136
|
Vázquez-Manjarrez N, Weinert CH, Ulaszewska MM, Mack CI, Micheau P, Pétéra M, Durand S, Pujos-Guillot E, Egert B, Mattivi F, Bub A, Dragsted LO, Kulling SE, Manach C. Discovery and Validation of Banana Intake Biomarkers Using Untargeted Metabolomics in Human Intervention and Cross-sectional Studies. J Nutr 2019; 149:1701-1713. [PMID: 31240312 DOI: 10.1093/jn/nxz125] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/17/2019] [Accepted: 05/14/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Banana is one of the most widely consumed fruits in the world. However, information regarding its health effects is scarce. Biomarkers of banana intake would allow a more accurate assessment of its consumption in nutrition studies. OBJECTIVES Using an untargeted metabolomics approach, we aimed to identify the banana-derived metabolites present in urine after consumption, including new candidate biomarkers of banana intake. METHODS A randomized controlled study with a crossover design was performed on 12 healthy subjects (6 men, 6 women, mean ± SD age: 30.0 ± 4.9 y; mean ± SD BMI: 22.5 ± 2.3 kg/m2). Subjects underwent 2 dietary interventions: 1) 250 mL control drink (Fresubin 2 kcal fiber, neutral flavor; Fresenius Kabi), and 2) 240 g banana + 150 mL control drink. Twenty-four-hour urine samples were collected and analyzed with ultra-performance liquid chromatography coupled to a quadrupole time-of-flight MS and 2-dimensional GC-MS. The discovered biomarkers were confirmed in a cross-sectional study [KarMeN (Karlsruhe Metabolomics and Nutrition study)] in which 78 subjects (mean BMI: 22.8; mean age: 47 y) were selected reflecting high intake (126-378 g/d), low intake (47.3-94.5 g/d), and nonconsumption of banana. The confirmed biomarkers were examined singly or in combinations, for established criteria of validation for biomarkers of food intake. RESULTS We identified 33 potentially bioactive banana metabolites, of which 5 metabolites, methoxyeugenol glucuronide (MEUG-GLUC), dopamine sulfate (DOP-S), salsolinol sulfate, xanthurenic acid, and 6-hydroxy-1-methyl-1,2,3,4-tetrahydro-β-carboline sulfate, were confirmed as candidate intake biomarkers. We demonstrated that the combination of MEUG-GLUC and DOP-S performed best in predicting banana intake in high (AUCtest = 0.92) and low (AUCtest = 0.87) consumers. The new biomarkers met key criteria establishing their current applicability in nutrition and health research for assessing the occurrence of banana intake. CONCLUSIONS Our metabolomics study in healthy men and women revealed new putative bioactive metabolites of banana and a combined biomarker of intake. These findings will help to better decipher the health effects of banana in future focused studies. This study was registered at clinicaltrials.gov as NCT03581955 and with the Ethical Committee for the Protection of Human Subjects Sud-Est 6 as CPP AU 1251, IDRCB 2016-A0013-48; the KarMeN study was registered with the German Clinical Trials Register (DRKS00004890). Details about the study can be obtained from https://www.drks.de.
Collapse
Affiliation(s)
- Natalia Vázquez-Manjarrez
- Human Nutrition Unit, INRA, Université Clermont Auvergne, Clermont-Ferrand, France.,Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Christoph H Weinert
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Maria M Ulaszewska
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, Italy
| | - Carina I Mack
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Pierre Micheau
- Human Nutrition Unit, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Mélanie Pétéra
- Human Nutrition Unit, Plateforme d'Exploration du Métabolisme MetaboHUB, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Stephanie Durand
- Human Nutrition Unit, Plateforme d'Exploration du Métabolisme MetaboHUB, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Estelle Pujos-Guillot
- Human Nutrition Unit, Plateforme d'Exploration du Métabolisme MetaboHUB, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Björn Egert
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, Italy.,Centre of Agriculture Food Environment, University of Trento, San Michele all'Adige, Italy
| | - Achim Bub
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Claudine Manach
- Human Nutrition Unit, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
137
|
Jridi M, Abdelhedi O, Kchaou H, Msaddak L, Nasri M, Zouari N, Fakhfakh N. Vine (Vitis vinifera L.) leaves as a functional ingredient in pistachio calisson formulations. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.100436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
138
|
Wu C, Shan W, Liang S, Zhu L, Guo Y, Chen J, Lu W, Li Q, Su X, Kuang J. MaMPK2 enhances MabZIP93-mediated transcriptional activation of cell wall modifying genes during banana fruit ripening. PLANT MOLECULAR BIOLOGY 2019; 101:113-127. [PMID: 31300998 DOI: 10.1007/s11103-019-00895-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/20/2019] [Indexed: 06/10/2023]
Abstract
Transcriptional regulation is an essential molecular machinery in controlling gene expression in diverse plant developmental processes including fruit ripening. This involves the interaction of transcription factors (TFs) and promoters of target genes. In banana, although a number of fruit ripening-associated TFs have been characterized, their number is relatively small. Here we identified a nuclear-localized basic leucine zipper (bZIP) TF, MabZIP93, associated with banana ripening. MabZIP93 activated cell wall modifying genes MaPL2, MaPE1, MaXTH23 and MaXGT1 by directly binding to their promoters. Transient over-expression of MabZIP93 in banana fruit resulted in the increased expression of MaPL2, MaPE1, MaXTH23 and MaXGT1. Moreover, a mitogen-activated protein kinase MaMPK2 and MabZIP93 were found to interact with MabZIP93. The interaction of MabZIP93 with MaMPK2 enhanced MabZIP93 activation of cell wall modifying genes, which was likely due to the phosphorylation of MabZIP93 mediated by MaMPK2. Overall, this study shows that MaMPK2 interacts with and phosphorylates MabZIP93 to promote MabZIP93-mediated transcriptional activation of cell wall modifying genes, thereby expanding our understanding of gene networks associated with banana fruit ripening.
Collapse
Affiliation(s)
- Chaojie Wu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Wei Shan
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Shumin Liang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Lisha Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yufan Guo
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Jianye Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Wangjin Lu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Qianfeng Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Xinguo Su
- Guangdong Food and Drug Vocational College, Longdongbei Road 321, Tianhe District, Guangzhou, 510520, People's Republic of China.
| | - Jianfei Kuang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
139
|
Segundo C, Giménez A, Lobo M, Iturriaga L, Samman N. Formulation and attributes of gluten-free cakes of Andean corn improved with green banana flour. FOOD SCI TECHNOL INT 2019; 26:95-104. [PMID: 31409127 DOI: 10.1177/1082013219860361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aim of this work was obtaining layer and sponge cakes formulated with corn flour replaced by green banana flour and to determine the best substitution proportions to achieve nutritionally improved products and with texture and sensory characteristics acceptable. The replacement of corn flour by GB flour increased the density in layer cake batters, while in sponge cake batters the density decreased. The batters were influenced by the increase in the flow properties, the viscoelastic behaviour, and the decrease in the thixotropic properties. The thermal analysis of batters determined a partial gelatinization of the starch, which together with its rheological properties influenced the cakes' texture parameters. The substitution of 30% corn flour by GB flour in sponge and layer cakes produced a decrease in cohesiveness and an increase in hardness. In sponge cakes, incorporation of up to 30% of GB flour improved the sensory attributes and the textural properties, while in layer cakes a 30% substitution did not significantly deteriorate the quality of cakes.
Collapse
Affiliation(s)
- Cristina Segundo
- Facultad de Ingeniería, Universidad Nacional de Jujuy, CIITED UNJu-CONICET, San Salvador de jujuy, Argentina
| | - Alejandra Giménez
- Facultad de Ingeniería, Universidad Nacional de Jujuy, CIITED UNJu-CONICET, San Salvador de jujuy, Argentina
| | - Manuel Lobo
- Facultad de Ingeniería, Universidad Nacional de Jujuy, CIITED UNJu-CONICET, San Salvador de jujuy, Argentina
| | - Laura Iturriaga
- Facultad de Agronomía y Agroindustrias, Universidad de Santiago del Estero, CIBAAL. CONICET, Santiago del Estero, Argentina
| | - Norma Samman
- Facultad de Ingeniería, Universidad Nacional de Jujuy, CIITED UNJu-CONICET, San Salvador de jujuy, Argentina
| |
Collapse
|
140
|
Kabra A, Sharma R, Hano C, Kabra R, Martins N, Baghel US. Phytochemical Composition, Antioxidant, and Antimicrobial Attributes of Different Solvent Extracts from Myrica esculenta Buch.-Ham. ex. D. Don Leaves. Biomolecules 2019; 9:biom9080357. [PMID: 31405047 PMCID: PMC6724038 DOI: 10.3390/biom9080357] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 11/16/2022] Open
Abstract
Background: Plant diversity is a basic source of food and medicine for local Himalayan communities. The current study was designed to assess the effect of different solvents (methanol, ethyl acetate, and water) on the phenolic profile, and the corresponding biological activity was studied. Methods: Antioxidant activity was investigated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2″-azino-bis(3-ethylbenzothiazoline-6-sulphonic) acid (ABTS) assay, while the antimicrobial activity was evaluated by disk diffusion method using various bacterial and fungal strains. Results: The outcomes demonstrated that methanol acted as the most effective solvent for polyphenols extraction, as strengthened by the liquid chromatography and mass spectroscopy (LC-MS) and fourier transform infrared spectroscopy (FTIR) analysis. M. esculenta methanol extract showed the highest DPPH and ABTS radical scavenger antioxidant activity with IC50 values of 39.29 μg/mL and 52.83 μg/mL, respectively, while the ethyl acetate and aqueous extracts revealed minimum antioxidant potential. Methanol extract also revealed higher phenolic content, 88.94 ± 0.24 mg of equivalent gallic acid (GAE)/g), measured by the Folin–Ciocalteu method, while the minimum content was recorded for aqueous extract (62.38 ± 0.14 GAE/g). The highest flavonoid content was observed for methanol extract, 67.44 ± 0.14 mg quercetin equivalent (QE)/g) measured by an aluminum chloride colorimetric method, while the lowest content was recorded for aqueous extract (35.77 ± 0.14 QE/g). Antimicrobial activity findings also reveal that the methanol extract led to a higher inhibition zone against bacterial and fungal strains. FTIR analysis reveals the presence of various functional groups, viz. alkenes, amines, carboxylic acids, amides, esters, alcohols, phenols, ketones, carboxylic acids, and aromatic compounds. This FTIR analysis could serve as a basis for the authentication of M. esculenta extracts for future industrial applications. Compounds identified by LC-MS analysis were gallic acid, myricanol, myricanone, epigallocatechin 3-O-gallate, β-sitosterol, quercetin, p-coumaric acid, palmitic acid, n-pentadecanol, n-octadecanol, stigmasterol, oleanolic acid, n-hexadecanol, cis-β-caryophyllene, lupeol, and myresculoside. Conclusion: This study suggests that the methanolic extract from M. esculenta leaves has strong antioxidant potential and could be a significant source of natural antioxidants and antimicrobials for functional foods formulation.
Collapse
Affiliation(s)
- Atul Kabra
- Research Scholar, I.K. Gujral Punjab Technical University, Kapurthala-144603, Punjab, India
- Department of Pharmacology, Kota College of Pharmacy, Kota-325003, Rajasthan, India
| | - Rohit Sharma
- Central Ayurveda Research Institute for Drug Development, CCRAS, Ministry of AYUSH, Government of India, Bidhannagar, Kolkata-700091, West Bengal, India
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAUSC1328, Universitéd'Orléans, 45100 Orléans, France
| | - Ruchika Kabra
- Department of Pharmaceutical Chemistry and Analysis, Kota College of Pharmacy, Kota-325003, Rajasthan, India
| | - Natália Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - Uttam Singh Baghel
- Department of Pharmaceutical Chemistry and Analysis, Kota College of Pharmacy, Kota-325003, Rajasthan, India.
- Department of Pharmacy, University of Kota, Kota-325003, Rajasthan, India.
| |
Collapse
|
141
|
Riquette RFR, Ginani VC, Leandro EDS, de Alencar ER, Maldonade IR, de Aguiar LA, de Souza Acácio GM, Mariano DRH, Zandonadi RP. Do production and storage affect the quality of green banana biomass? Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
142
|
Galvão De Podestá OP, Peres SV, Salaroli LB, Cattafesta M, De Podestá JRV, von Zeidler SLV, de Oliveira JC, Kowalski LP, Ikeda MK, Brennan P, Curado MP. Consumption of minimally processed foods as protective factors in the genesis of squamous cell carcinoma of the head and neck in Brazil. PLoS One 2019; 14:e0220067. [PMID: 31344089 PMCID: PMC6657870 DOI: 10.1371/journal.pone.0220067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/08/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Head and neck cancer (HNC) is the sixth most common cancer, and two-fifths of cases could be avoided by changing lifestyle and eating habits. METHODS This multicenter case-control study was conducted under the International Consortium on Head and Neck Cancer and Genetic Epidemiology, coordinated by the International Agency for Research on Cancer. This consortium evaluated associations between minimally processed food consumption and the risk of HNC in three Brazilian states. RESULTS We evaluated 1740 subjects (847 cases and 893 controls). In multiple analyses including recognized risk factors for HNC, the consumption of apples and pears was associated with reduced risks of oral cavity and laryngeal cancers; the consumption of citrus fruits and fresh tomatoes was associated with a reduced risk of oral cavity cancer; the consumption of bananas was associated with a reduced risk of oropharynx cancer; the consumption of broccoli, cabbage, and collard greens was associated with reduced risks of laryngeal and hypopharyngeal cancers; and the consumption of carrots and fresh fruits was associated with a reduced risk of hypopharyngeal cancer. CONCLUSIONS The consumption of a heathy diet rich in fruits and vegetables was associated with a reduced risk of HNC. Public policies, including government subsidies, are essential to facilitate logistical and financial access to minimally processed foods, thereby strengthening environments that promote healthy behavior.
Collapse
Affiliation(s)
| | - Stela Verzinhasse Peres
- Postgraduate Program in Sciences of Fundação Antônio Prudente, Cancer Center of A.C.Camargo, São Paulo—SP / BR
| | | | - Monica Cattafesta
- Graduate Program in Collective Health, Federal University of Espírito Santo, Vitória—ES / BR
| | | | | | | | - Luiz Paulo Kowalski
- Postgraduate Program in Sciences of Fundação Antônio Prudente, Cancer Center of A.C.Camargo, São Paulo—SP / BR
| | - Mauro Kasuo Ikeda
- Postgraduate Program in Sciences of Fundação Antônio Prudente, Cancer Center of A.C.Camargo, São Paulo—SP / BR
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Maria Paula Curado
- Postgraduate Program in Sciences of Fundação Antônio Prudente, Cancer Center of A.C.Camargo, São Paulo—SP / BR
| |
Collapse
|
143
|
CASTRICINI A, OLIVEIRA ALSD, PINHO GPD, RODRIGUES MGV, SILVÉRIO FO. Pyrethroid insecticide residue in ‘Grande Naine’ banana peel and pulp during maturation. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.37117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
144
|
Falcomer AL, Riquette RFR, de Lima BR, Ginani VC, Zandonadi RP. Health Benefits of Green Banana Consumption: A Systematic Review. Nutrients 2019; 11:E1222. [PMID: 31146437 PMCID: PMC6627159 DOI: 10.3390/nu11061222] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 12/25/2022] Open
Abstract
Despite the growing demand for green banana (GB) products, there is no review study regarding their potential health benefits. We aimed to compare the health benefits among different GB products by a systematic review. We researched six electronic databases (PubMed, EMBASE, Scopus, Science Direct, Web of Science, and Google Scholar) from inception to March 2019. We found 1009 articles in these databases. After duplicate removal, we screened 732 articles' titles and abstracts, and selected 18 potentially relevant studies for full-text reading. We added five records from the reference list of the fully-read articles and seven suggested by the expert. Twelve articles were excluded. In the end, 18 studies were considered for this systematic review. Ten studies were conducted with green banana flour and eight with the green banana pulp/biomass. Most of the GB health benefits studied were related to the gastrointestinal symptoms/diseases, followed by the glycemic/insulin metabolism, weight control, and renal and liver complications associated to diabetes. Only one study did not confirm the health benefit proposed. It is necessary to standardize the GB dose/effect to different age groups and different health effects considering the GB variety and ripeness level. Further studies are necessary to present better detailing of GB product and their health effects considering all the raw-material characteristics.
Collapse
Affiliation(s)
- Ana Luisa Falcomer
- Faculty of Health Sciences, Department of Nutrition, University of Brasília, Brasilia 70910-900, Distrito Federal, Brazil.
| | - Roberta Figueiredo Resende Riquette
- Campus Oeste Liliane Barbosa, Department of Nutrition, Instituto de Ensino Superior de Brasília (IESB), Brasilia 72225-315 Distrito Federal, Brazil.
| | - Bernardo Romão de Lima
- Faculty of Health Sciences, Department of Nutrition, University of Brasília, Brasilia 70910-900, Distrito Federal, Brazil.
| | - Verônica C Ginani
- Faculty of Health Sciences, Department of Nutrition, University of Brasília, Brasilia 70910-900, Distrito Federal, Brazil.
| | - Renata Puppin Zandonadi
- Faculty of Health Sciences, Department of Nutrition, University of Brasília, Brasilia 70910-900, Distrito Federal, Brazil.
| |
Collapse
|
145
|
Casado N, Perestrelo R, Silva CL, Sierra I, Câmara JS. Comparison of high-throughput microextraction techniques, MEPS and μ-SPEed, for the determination of polyphenols in baby food by ultrahigh pressure liquid chromatography. Food Chem 2019; 292:14-23. [PMID: 31054658 DOI: 10.1016/j.foodchem.2019.04.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023]
Abstract
In this study, two different high-throughput microextraction techniques, microextraction by packed sorbents (MEPS) and micro solid phase extraction (μ-SPEed®), were evaluated and compared, regarding the performance criteria, for the isolation of polyphenols from baby foods prior to their determination by ultrahigh pressure liquid chromatography (UHPLC). To achieve the best performance, influential parameters affecting extraction efficiency (including type of sorbent, number of extraction cycles, pH, elution solvent and elution volume) were systematically studied and optimized. To enable an effective comparison, selectivity, linear dynamic range, method detection (LODs) and quantification limits (LOQs), accuracy, precision and extraction yields, were determined and discussed for both techniques. Both methods provided the analytical selectivity required for the analysis of polyphenols in baby foods. However, μ-SPEed® sample treatment in combination with UHPLC-PDA has demonstrated to be more sensitive, selective and efficient than MEPS. Appropriate linearity in solvent and matrix-based calibrations, very low LODs and LOQs, ranging between 1.37 and 13.57 μg kg-1 and 4.57 - 45.23 μg kg-1, respectively, suitable recoveries (from 67 to 97%) and precision (RSD values < 5%) were achieved for the selected analytes by μ-SPEed®/UHPLC-PDA. Finally, the validated methodologies were applied to different commercial baby foods. Gallic acid, chlorogenic acid, epicatechin, ferulic acid, rutin, naringenin and myricetin are the most dominant polyphenols present in the studied baby food samples. The proposed methodology revealed a promising approach to evaluate the nutritional quality of this kind of products.
Collapse
Affiliation(s)
- Natalia Casado
- Departamento de Tecnología Química y Energética, Tecnología Química y Ambiental, Tecnología Mecánica y Química Analítica, E.S.C.E.T, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Rosa Perestrelo
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Catarina L Silva
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Isabel Sierra
- Departamento de Tecnología Química y Energética, Tecnología Química y Ambiental, Tecnología Mecánica y Química Analítica, E.S.C.E.T, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; Departamento de Química, Faculdade de Ciências Exactas e Engenharia da Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| |
Collapse
|
146
|
Devgan K, Kaur P, Kumar N, Kaur A. Active modified atmosphere packaging of yellow bell pepper for retention of physico-chemical quality attributes. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2019; 56:878-888. [PMID: 30906045 DOI: 10.1007/s13197-018-3548-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/26/2018] [Accepted: 12/10/2018] [Indexed: 02/01/2023]
Abstract
This investigation was carried out to evaluate the effect of active and passive modified atmosphere packaging on quality and shelf life of yellow bell pepper fruits. Yellow bell pepper fruits were packaged in 150 gauge LDPE packages with oxygen absorbers for active modification and without oxygen absorber for passive modification of headspace and were stored at different temperatures i.e. 5, 10 and 15 °C and RH of 85 ± 5%. Headspace gas concentration within the packages was monitored regularly. The quality of packaged fruits was studied in terms of physiological loss in weight, firmness, total colour difference antioxidant capacity and total phenolic content. The actively modified packages attained steady state levels of 4.8% O2 and 7.1% CO2 on 4th day of storage as compared to passively modified packages in which steady state was not attained even at end of storage period of 12 days. The retention of quality attributes was observed to be higher in active packages than in passive packages. Moreover, the shelf life of actively packaged fruits was enhanced to 28 days as compared to 12 days for passively packaged fruits. The in-pack atmosphere attained in active packages hence proved beneficial in retarding the senescence thereby extending the shelf life.
Collapse
Affiliation(s)
- Kirandeep Devgan
- 1Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Preetinder Kaur
- 1Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Nitin Kumar
- 2Department of Processing and Food Engineering, CCS Haryana Agricultural University, Hisar, Haryana 125004 India
| | - Amrit Kaur
- 3Department of Maths, Stat and Physics, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| |
Collapse
|
147
|
Fagundes MB, Falk RB, Facchi MMX, Vendruscolo RG, Maroneze MM, Zepka LQ, Jacob-Lopes E, Wagner R. Insights in cyanobacteria lipidomics: A sterols characterization from Phormidium autumnale biomass in heterotrophic cultivation. Food Res Int 2019; 119:777-784. [PMID: 30884716 DOI: 10.1016/j.foodres.2018.10.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 01/01/2023]
Abstract
Sterol profiles were obtained from cyanobacteria Phormidium autumnale, cultivated in a heterotrophic system using three distinct sources of carbon: glucose, sucrose, and agroindustrial slaughterhouse wastewater. A simultaneous saponification-extraction ultrasound-assisted method was performed to determine sterol and other non-saponified compounds in the dry biomasses. A total of 24 compounds were observed in the biomasses, including hope-22,29-en-3-one, squalene, and 22 other sterols. Using wastewater as a carbon source, the microalgae biomass produced a diversity of sterols such as stigmasterol (455.3 μg g-1) and β-sitosterol (279.0 μg g-1). However, with glucose it is possible to produce ergosterol (1033.3 μg g-1). Squalene was found in all the cultures, with 1440.4 μg g-1, 225.4 μg g-1, and 425.6 μg g-1 for glucose, sucrose, and slaughterhouse wastewater biomasses, respectively. Several intermediate compounds from those sterols were found. These data provide the construction of the sterol metabolism according to the literature for P. autumnale heterotrophically cultured.
Collapse
Affiliation(s)
- Mariane Bittencourt Fagundes
- Department of Food Technology and Science, Federal University of Santa Maria, Rio Grande do Sul CEP, Santa Maria 97105-900, Brazil
| | - Renata Bolzan Falk
- Department of Food Technology and Science, Federal University of Santa Maria, Rio Grande do Sul CEP, Santa Maria 97105-900, Brazil
| | - Michelle Maria Xavier Facchi
- Department of Food Technology and Science, Federal University of Santa Maria, Rio Grande do Sul CEP, Santa Maria 97105-900, Brazil
| | - Raquel Guidetti Vendruscolo
- Department of Food Technology and Science, Federal University of Santa Maria, Rio Grande do Sul CEP, Santa Maria 97105-900, Brazil
| | - Mariana Manzoni Maroneze
- Department of Food Technology and Science, Federal University of Santa Maria, Rio Grande do Sul CEP, Santa Maria 97105-900, Brazil
| | - Leila Queiroz Zepka
- Department of Food Technology and Science, Federal University of Santa Maria, Rio Grande do Sul CEP, Santa Maria 97105-900, Brazil
| | - Eduardo Jacob-Lopes
- Department of Food Technology and Science, Federal University of Santa Maria, Rio Grande do Sul CEP, Santa Maria 97105-900, Brazil
| | - Roger Wagner
- Department of Food Technology and Science, Federal University of Santa Maria, Rio Grande do Sul CEP, Santa Maria 97105-900, Brazil.
| |
Collapse
|
148
|
Vu HT, Scarlett CJ, Vuong QV. Maximising recovery of phenolic compounds and antioxidant properties from banana peel using microwave assisted extraction and water. Journal of Food Science and Technology 2019; 56:1360-1370. [PMID: 30956315 DOI: 10.1007/s13197-019-03610-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/12/2019] [Accepted: 01/29/2019] [Indexed: 01/10/2023]
Abstract
Banana peel is rich in phenolic compounds and is generally considered as waste. This study aimed to maximise recovery of phenolics from banana peel using water via microwave assisted extraction. The impact of various parameters including pH of solvent, sample to solvent ratio, irradiation time with/without cooling periods, and irradiation power were investigated individually. Following this, extraction conditions were further optimised using Response Surface Methodology. The results revealed that the extraction efficiency can be significantly improved by reducing the pH of water, increasing microwave power and time. However, cooling time during irradiation did not affect the extraction efficiency. Optimal conditions were identified at pH of 1, ratio of 2:100 g/mL, 6 min irradiation, and microwave power of 960 W. Under these optimal conditions, approximately 50.55 mg phenolics could be recovered from 1 g dried peel. These conditions are recommended for recovery of phenolic compounds from banana peel for further utilisation.
Collapse
Affiliation(s)
- Hang T Vu
- 1School of Environmental and Life Sciences, University of Newcastle, 10 Chittaway Road, Ourimbah, NSW 2258 Australia.,2Faculty of Food Science and Technology, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| | - Christopher J Scarlett
- 1School of Environmental and Life Sciences, University of Newcastle, 10 Chittaway Road, Ourimbah, NSW 2258 Australia
| | - Quan V Vuong
- 1School of Environmental and Life Sciences, University of Newcastle, 10 Chittaway Road, Ourimbah, NSW 2258 Australia
| |
Collapse
|
149
|
Amini Khoozani A, Birch J, Bekhit AEDA. Production, application and health effects of banana pulp and peel flour in the food industry. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2019; 56:548-559. [PMID: 30906012 PMCID: PMC6400781 DOI: 10.1007/s13197-018-03562-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/15/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022]
Abstract
The past 20 years has seen rapid development of value-added food products. Using largely wasted fruit by-products has created a potential for sustainable use of these edible materials. The high levels of antioxidant activity, phenolic compounds, dietary fibres and resistant starch in banana pulp and peel have made this tropical fruit an outstanding source of nutritive ingredient for enrichment of foodstuffs. Accordingly, processing of separate banana parts into flour has been of interest by many researchers using different methods (oven drying, spouted bed drier, ultrasound, pulsed vacuum oven, microwave, spray drying and lyophilization). Regarding the high level of bioactive compounds, especially resistant starch in banana flour, the application of its flour in starchy foods provides a great opportunity for product development, even in gluten free foods. This review aims to provide concise evaluation of the health benefits of banana bioactive components and covers a wide range of literature conducted on the application of different parts of banana and the flour produced at various ripeness stages in the food industry. Of particular interest, the impact of drying methods on banana flour properties are discussed.
Collapse
Affiliation(s)
- Amir Amini Khoozani
- Department of Food Science, University of Otago, PO Box 56, Dunedin, 9054 New Zealand
| | - John Birch
- Department of Food Science, University of Otago, PO Box 56, Dunedin, 9054 New Zealand
| | | |
Collapse
|
150
|
Casado N, Morante-Zarcero S, Pérez-Quintanilla D, Câmara JS, Sierra I. Dispersive Solid-Phase Extraction of Polyphenols from Juice and Smoothie Samples Using Hybrid Mesostructured Silica Followed by Ultra-high-Performance Liquid Chromatography-Ion-Trap Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:955-967. [PMID: 30571103 DOI: 10.1021/acs.jafc.8b05578] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A wormhole-like mesostructured silica was synthesized and modified with octadecylsilane (C18) groups. The resulting hybrid material (HMS-C18) was characterized and evaluated as sorbent for simultaneous extraction of 20 polyphenols from mixed fruit-vegetable juices and smoothies by dispersive solid-phase extraction (dSPE). The samples were first subjected to solvent extraction followed by dSPE procedure. The extraction step was optimized and combined with a reversed-phase ultra-high-performance liquid chromatography method coupled to ion-trap tandem mass spectrometry (UHPLC-IT-MS/MS), which was also optimized. HMS-C18 showed high potential to extract and purify the target analytes, being more effective than commercial C18 amorphous silica. The proposed method was validated for both samples, obtaining average recoveries from 57% to 99% with relative standard deviations lower than 9%. Its applicability in the analysis of commercial mixed fruit-vegetable juices and smoothies revealed mainly contents of rutin, 4-hydroxybenzoic acid, chlorogenic acid, epicatechin, caffeic acid, and naringin in the samples analyzed.
Collapse
Affiliation(s)
- Natalia Casado
- Departamento de Tecnología Química y Ambiental, E.S.C.E.T , Universidad Rey Juan Carlos , C/Tulipán s/n , 28933 Móstoles , Madrid , Spain
| | - Sonia Morante-Zarcero
- Departamento de Tecnología Química y Ambiental, E.S.C.E.T , Universidad Rey Juan Carlos , C/Tulipán s/n , 28933 Móstoles , Madrid , Spain
| | - Damián Pérez-Quintanilla
- Departamento de Tecnología Química y Ambiental, E.S.C.E.T , Universidad Rey Juan Carlos , C/Tulipán s/n , 28933 Móstoles , Madrid , Spain
| | - José S Câmara
- CQM-Centro de Química da Madeira , Centro de Ciências Exactas e da Engenharia da Universidade da Madeira , Campus Universitário da Penteada, 9000-390 Funchal , Portugal
- Departamento de Química , Faculdade de Ciências e Engenharia da Universidade da Madeira , Campus Universitário da Penteada, 9000-390 Funchal , Portugal
| | - Isabel Sierra
- Departamento de Tecnología Química y Ambiental, E.S.C.E.T , Universidad Rey Juan Carlos , C/Tulipán s/n , 28933 Móstoles , Madrid , Spain
| |
Collapse
|