101
|
Li X, Bao X, Wang R. Neurogenesis-based epigenetic therapeutics for Alzheimer's disease (Review). Mol Med Rep 2016; 14:1043-53. [DOI: 10.3892/mmr.2016.5390] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 04/14/2016] [Indexed: 11/06/2022] Open
|
102
|
Zhou X, Zhuang Z, Wang W, He L, Wu H, Cao Y, Pan F, Zhao J, Hu Z, Sekhar C, Guo Z. OGG1 is essential in oxidative stress induced DNA demethylation. Cell Signal 2016; 28:1163-1171. [PMID: 27251462 DOI: 10.1016/j.cellsig.2016.05.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/27/2016] [Accepted: 05/27/2016] [Indexed: 01/01/2023]
Abstract
DNA demethylation is an essential cellular activity to regulate gene expression; however, the mechanism that triggers DNA demethylation remains unknown. Furthermore, DNA demethylation was recently demonstrated to be induced by oxidative stress without a clear molecular mechanism. In this manuscript, we demonstrated that 8-oxoguanine DNA glycosylase-1 (OGG1) is the essential protein involved in oxidative stress-induced DNA demethylation. Oxidative stress induced the formation of 8-oxoguanine (8-oxoG). We found that OGG1, the 8-oxoG binding protein, promotes DNA demethylation by interacting and recruiting TET1 to the 8-oxoG lesion. Downregulation of OGG1 makes cells resistant to oxidative stress-induced DNA demethylation, while over-expression of OGG1 renders cells susceptible to DNA demethylation by oxidative stress. These data not only illustrate the importance of base excision repair (BER) in DNA demethylation but also reveal how the DNA demethylation signal is transferred to downstream DNA demethylation enzymes.
Collapse
Affiliation(s)
- Xiaolong Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Ziheng Zhuang
- Changzhou No. 7 People's Hospital, Changzhou 213011, China; School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou 213011, China
| | - Wentao Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Huan Wu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Yan Cao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Jing Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Chandra Sekhar
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China.
| |
Collapse
|
103
|
ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3565127. [PMID: 27247702 PMCID: PMC4877482 DOI: 10.1155/2016/3565127] [Citation(s) in RCA: 688] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/02/2016] [Accepted: 04/06/2016] [Indexed: 12/15/2022]
Abstract
The aging process worsens the human body functions at multiple levels, thus causing its gradual decrease to resist stress, damage, and disease. Besides changes in gene expression and metabolic control, the aging rate has been associated with the production of high levels of Reactive Oxygen Species (ROS) and/or Reactive Nitrosative Species (RNS). Specific increases of ROS level have been demonstrated as potentially critical for induction and maintenance of cell senescence process. Causal connection between ROS, aging, age-related pathologies, and cell senescence is studied intensely. Senescent cells have been proposed as a target for interventions to delay the aging and its related diseases or to improve the diseases treatment. Therapeutic interventions towards senescent cells might allow restoring the health and curing the diseases that share basal processes, rather than curing each disease in separate and symptomatic way. Here, we review observations on ROS ability of inducing cell senescence through novel mechanisms that underpin aging processes. Particular emphasis is addressed to the novel mechanisms of ROS involvement in epigenetic regulation of cell senescence and aging, with the aim to individuate specific pathways, which might promote healthy lifespan and improve aging.
Collapse
|
104
|
Maloney B, Lahiri DK. Epigenetics of dementia: understanding the disease as a transformation rather than a state. Lancet Neurol 2016; 15:760-774. [PMID: 27302240 DOI: 10.1016/s1474-4422(16)00065-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/22/2016] [Accepted: 02/11/2016] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease and other idiopathic dementias are associated with epigenetic transformations. These transformations connect the environment and genes to pathogenesis, and have led to the investigation of epigenetic-based therapeutic targes for the treatment of these diseases. Epigenetic changes occur over time in response to environmental effects. The epigenome-based latent early-life associated regulation (LEARn) hypothetical model indicates that accumulated environmental hits produce latent epigenetic changes. These hits can alter biochemical pathways until a pathological threshold is reached, which appears clinically as the onset of dementia. The hypotheses posed by LEARn are testable via longitudinal epigenome-wide, envirome-wide, and exposome-wide association studies (LEWAS) of the genome, epigenome, and environment. We posit that the LEWAS design could lead to effective prevention and treatments by identifying potential therapeutic strategies. Epigenetic evidence suggests that dementia is not a suddenly occurring and sharply delineated state, but rather a gradual change in crucial cellular pathways, that transforms an otherwise healthy state, as a result of neurodegeneration, to a dysfunctional state. Evidence from epigenetics could lead to ways to detect, prevent, and reverse such processes before clinical dementia.
Collapse
Affiliation(s)
- Bryan Maloney
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Center, Indianapolis, IN, USA
| | - Debomoy K Lahiri
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Center, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
105
|
Coppedè F, Tannorella P, Stoccoro A, Chico L, Siciliano G, Bonuccelli U, Migliore L. Methylation analysis of DNA repair genes in Alzheimer's disease. Mech Ageing Dev 2016; 161:105-111. [PMID: 27080585 DOI: 10.1016/j.mad.2016.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/30/2016] [Accepted: 04/07/2016] [Indexed: 10/22/2022]
Abstract
There is substantial evidence of impaired DNA repair activities in Alzheimer's disease (AD) neurons and peripheral tissues, inducing some investigators to speculate that this could partially result from promoter hypermethylation of DNA repair genes, resulting in gene silencing in those tissues. In the present study a screening cohort composed by late-onset AD (LOAD) patients and healthy matched controls was evaluated with a commercially available DNA methylation array for the assessment of the methylation levels of a panel of 22 genes involved in major DNA repair pathways in blood DNA. We then applied a cost-effective PCR based methylation-sensitive high-resolution melting (MS-HRM) technique, in order to evaluate the promoter methylation levels of the following DNA repair genes: OGG1, PARP1, MRE11A, BRCA1, MLH1, and MGMT. The analysis was performed in blood DNA from 56 LOAD patients and 55 matched controls, including the samples previously assessed with the DNA methylation array as validating samples. Both approaches revealed that all the investigated genes were largely hypomethylated in LOAD and control blood DNA, and no difference between groups was observed. Collectively, present data do not support an increased promoter methylation of some of the major DNA repair genes in blood DNA of AD patients.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and New Technologies in Medicine and Surgery, Section of Medical Genetics, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Pierpaola Tannorella
- Department of Translational Research and New Technologies in Medicine and Surgery, Section of Medical Genetics, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Andrea Stoccoro
- Department of Translational Research and New Technologies in Medicine and Surgery, Section of Medical Genetics, University of Pisa, Via Roma 55, 56126 Pisa, Italy; Doctoral School in Genetics Oncology and Clinical Medicine, University of Siena, Siena, Italy
| | - Lucia Chico
- Unit of Neurology, Department of Neuroscience, Pisa University Hospital, Via Roma 67, 56126 Pisa, Italy
| | - Gabriele Siciliano
- Unit of Neurology, Department of Neuroscience, Pisa University Hospital, Via Roma 67, 56126 Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Neurological Clinic, Via Roma 67, 56126 Pisa, Italy
| | - Ubaldo Bonuccelli
- Unit of Neurology, Department of Neuroscience, Pisa University Hospital, Via Roma 67, 56126 Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Neurological Clinic, Via Roma 67, 56126 Pisa, Italy
| | - Lucia Migliore
- Department of Translational Research and New Technologies in Medicine and Surgery, Section of Medical Genetics, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| |
Collapse
|
106
|
Impey S, Pelz C, Tafessu A, Marzulla T, Turker MS, Raber J. Proton irradiation induces persistent and tissue-specific DNA methylation changes in the left ventricle and hippocampus. BMC Genomics 2016; 17:273. [PMID: 27036964 PMCID: PMC4815246 DOI: 10.1186/s12864-016-2581-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/08/2016] [Indexed: 02/06/2023] Open
Abstract
Background Proton irradiation poses a potential hazard to astronauts during and following a mission, with post-mitotic cells at most risk because they cannot dilute resultant epigenetic changes via cell division. Persistent epigenetic changes that result from environmental exposures include gains or losses of DNA methylation of cytosine, which can impact gene expression. In the present study, we compared the long-term epigenetic effects of whole body proton irradiation in the mouse hippocampus and left ventricle. We used an unbiased genome-wide DNA methylation study, involving ChIP-seq with antibodies to 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) to identify DNA regions in which methylation levels have changed 22 weeks after a single exposure to proton irradiation. We used DIP-Seq to profile changes in genome-wide DNA methylation and hydroxymethylation following proton irradiation. In addition, we used published RNAseq data to assess whether differentially methylated regions were linked to changes in gene expression. Results The DNA methylation data showed tissue-dependent effects of proton irradiation and revealed significant major pathway changes in response to irradiation that are related to known pathophysiologic processes. Many regions affected in the ventricle mapped to genes involved in cardiovascular function pathways, whereas many regions affected in the hippocampus mapped to genes involved in neuronal functions. In the ventricle, increases in 5hmC were associated with decreases in 5mC. We also observed spatial overlap for regions where both epigenetic marks decreased in the ventricle. In hippocampus, increases in 5hmC were most significantly correlated (spatially) with regions that had increased 5mC, suggesting that deposition of hippocampal 5mC and 5hmC may be mechanistically coupled. Conclusions The results demonstrate long-term changes in DNA methylation patterns following a single proton irradiation, that these changes are tissue specific, and that they map to pathways consistent with tissue specific responses to proton irradiation. Further, the results suggest novel relationships between changes in 5mC and 5hmC. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2581-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Soren Impey
- Oregon Stem Cell Center and Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239, USA. .,Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, 97239, USA. .,Department of Pediatric, L321, Oregon Health and Science University, 3181SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| | - Carl Pelz
- Oregon Stem Cell Center and Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Amanuel Tafessu
- Oregon Stem Cell Center and Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Tessa Marzulla
- Department of Behavioral Neuroscience, L470, Oregon Health and Science University, 3181SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Mitchell S Turker
- Oregon Institute of Occupational Health Sciences and Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, L470, Oregon Health and Science University, 3181SW Sam Jackson Park Road, Portland, OR, 97239, USA. .,Departments of Neurology and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health and Science University, Portland, OR, 97239, USA. .,Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
107
|
Khan MZ. A possible significant role of zinc and GPR39 zinc sensing receptor in Alzheimer disease and epilepsy. Biomed Pharmacother 2016; 79:263-72. [PMID: 27044837 DOI: 10.1016/j.biopha.2016.02.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 12/14/2022] Open
Abstract
Zinc the essential trace element, plays a significant role in the brain development and in the proper brain functions at every stage of life. Misbalance of zinc (Zn(2+)) ions in the central nervous system is involved in the pathogenesis of numerous neurodegenerative disorders such as Alzheimer's disease, Depression, and Epilepsy. In brain, Zn(2+) has been identified as a ligand, capable of activating and inhibiting the receptors including the NMDA-type glutamate receptors (NMDARs), GABAA receptors, nicotinic acetylcholine receptors (nAChRs), glycine receptors (glyR) and serotonin receptors (5-HT3). Recently GPR39 has been identified as a zinc-specific receptor, widely expressed in brain tissues including the frontal cortex, amygdala, and hippocampus. GPR39, when binding with Zn(2+) has shown promising therapeutic potentials. This review presents current knowledge regarding the role of GPR39 zinc sensing receptor in brain, with a focus on Alzheimer's disease and Epilepsy. Although the results are encouraging, further research is needed to clarify zinc and GPR39 role in the treatment of Alzheimer's disease and Epilepsy.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
108
|
Pannia E, Cho CE, Kubant R, Sánchez-Hernández D, Huot PSP, Harvey Anderson G. Role of maternal vitamins in programming health and chronic disease. Nutr Rev 2016; 74:166-80. [PMID: 26883881 DOI: 10.1093/nutrit/nuv103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vitamin consumption prior to and during pregnancy has increased as a result of proactive recommendations by health professionals, wide availability of vitamin supplements, and liberal food-fortification policies. Folic acid, alone or in combination with other B vitamins, is the most recommended vitamin consumed during pregnancy because deficiency of this vitamin leads to birth defects in the infant. Folic acid and other B vitamins are also integral components of biochemical processes that are essential to the development of regulatory systems that control the ability of the offspring to adapt to the external environment. Although few human studies have investigated the lasting effects of high vitamin intakes during pregnancy, animal models have shown that excess vitamin supplementation during gestation is associated with negative metabolic effects in both the mothers and their offspring. This research from animal models, combined with the recognition that epigenetic regulation of gene expression is plastic, provides evidence for further examination of these relationships in the later life of pregnant women and their children.
Collapse
Affiliation(s)
- Emanuela Pannia
- E. Pannia, C.E. Cho, R. Kubant, D. Sánchez-Hernández, P.S.P. Huot, and G.H. Anderson are with the Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. G.H. Anderson is with the Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Clara E Cho
- E. Pannia, C.E. Cho, R. Kubant, D. Sánchez-Hernández, P.S.P. Huot, and G.H. Anderson are with the Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. G.H. Anderson is with the Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ruslan Kubant
- E. Pannia, C.E. Cho, R. Kubant, D. Sánchez-Hernández, P.S.P. Huot, and G.H. Anderson are with the Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. G.H. Anderson is with the Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Diana Sánchez-Hernández
- E. Pannia, C.E. Cho, R. Kubant, D. Sánchez-Hernández, P.S.P. Huot, and G.H. Anderson are with the Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. G.H. Anderson is with the Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Pedro S P Huot
- E. Pannia, C.E. Cho, R. Kubant, D. Sánchez-Hernández, P.S.P. Huot, and G.H. Anderson are with the Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. G.H. Anderson is with the Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - G Harvey Anderson
- E. Pannia, C.E. Cho, R. Kubant, D. Sánchez-Hernández, P.S.P. Huot, and G.H. Anderson are with the Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. G.H. Anderson is with the Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
109
|
Darbandi S, Darbandi M, Mokarram P, Sadeghi MR, Owji AA, Khorram Khorshid HR, Zhao B, Heidari M. CME Article:The Acupuncture-Affected Gene Expressions and Epigenetic Modifications in Oxidative Stress–Associated Diseases. Med Acupunct 2016. [DOI: 10.1089/acu.2015.1134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Sara Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mahsa Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Pooneh Mokarram
- Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Sadeghi
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ali Akbar Owji
- Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Baxiao Zhao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Mahnaz Heidari
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
110
|
|
111
|
Uddin MS, Mamun AA, Hossain MS, Ashaduzzaman M, Noor MAA, Hossain MS, Uddin MJ, Sarker J, Asaduzzaman M. Neuroprotective Effect of <i>Phyllanthus acidus</i> L. on Learning and Memory Impairment in Scopolamine-Induced Animal Model of Dementia and Oxidative Stress: Natural Wonder for Regulating the Development and Progression of Alzheimer’s Disease. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/aad.2016.52005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
112
|
Uzdensky AB, Berezhnaya EV, Kovaleva VD, Neginskaya MA, Rudkovskii MV, Sharifulina SA. The response of neurons and glial cells of crayfish to photodynamic treatment: Transcription factors and epigenetic regulation. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2015. [DOI: 10.1134/s1990747815050190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
113
|
Noroozian M, Azadfar P, Akbari L, Sadeghi A, Houshmand M, Vousooghi N, Zarrindast MR, Minagar A. Early-onset Alzheimer's disease in two Iranian families: a genetic study. Dement Geriatr Cogn Disord 2015; 38:330-6. [PMID: 25138979 DOI: 10.1159/000358232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/20/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Early-onset Alzheimer's disease (EOAD) represents less than 5% of all AD cases. Autosomal dominant EOAD has been defined as the occurrence of at least three cases in three generations. Mutations in the amyloid precursor protein (APP), presenilin-1 and presenilin-2 genes have been recognized to be the cause of EOAD. OBJECTIVE We investigated the genotype of EOAD in two generations of two families with EOAD living in an Iranian village. METHODS The polymerase chain reaction method was used to study the presenilin-1 and APP genes in 25 subjects of these generations. RESULTS A guanine-to-adenine transition in exon 17 of the APP gene resulting in a valine-to-isoleucine substitution at codon 717 was detected in 14 subjects including 6 patients with EOAD. CONCLUSION This mutation demonstrates the importance of γ-secretase, the necessity of early detection of patients with memory decline in the susceptible population and raising public awareness of consanguinity marriages.
Collapse
Affiliation(s)
- Maryam Noroozian
- Memory and Behavioral Neurology Department (MBND), Roozbeh Hospital, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Sasajima H, Miyazono S, Noguchi T, Kashiwayanagi M. Intranasal administration of rotenone in mice attenuated olfactory functions through the lesion of dopaminergic neurons in the olfactory bulb. Neurotoxicology 2015; 51:106-15. [PMID: 26493152 DOI: 10.1016/j.neuro.2015.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/14/2015] [Accepted: 10/13/2015] [Indexed: 12/20/2022]
Abstract
Many environmental chemicals are thought to affect brain function. It was reported that chemicals in the nasal cavity directly reach the brain through the connection between olfactory neurons and the olfactory bulb (OB). In this 'olfactory transport,' xenobiotics absorbed at the nasal mucosa reach the brain by bypassing some physical barriers and defenses, and thus olfactory transport is suspected to be a vulnerable mechanism of the brain against invasion threats of environmental chemicals. In this study, we focused on the neuronal toxicity of rotenone administered intranasally to mice. The results showed that the mice that were administered rotenone had attenuated olfactory functions. We also found that intranasally administered rotenone induced acute mitochondrial stress at the OB. The repeated administration of rotenone resulted in a decrease in the number of dopaminergic neurons, which are inhibitory interneurons in the OB. Taken together, our findings suggest that the inhalation of environmental toxins induces the neurodegeneration of cranial neurons through olfactory transport, and that olfactory dysfunction may be induced as an earliest symptom of neurodegeneration caused by inhaled neurotoxins.
Collapse
Affiliation(s)
- Hitoshi Sasajima
- Department of Physiology, Division of Sensory Physiology, Asahikawa Medical University, Asahikawa, Japan
| | - Sadaharu Miyazono
- Department of Physiology, Division of Sensory Physiology, Asahikawa Medical University, Asahikawa, Japan
| | - Tomohiro Noguchi
- Department of Physiology, Division of Sensory Physiology, Asahikawa Medical University, Asahikawa, Japan
| | - Makoto Kashiwayanagi
- Department of Physiology, Division of Sensory Physiology, Asahikawa Medical University, Asahikawa, Japan.
| |
Collapse
|
115
|
The Role of Oxidative Stress-Induced Epigenetic Alterations in Amyloid-β Production in Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:604658. [PMID: 26543520 PMCID: PMC4620382 DOI: 10.1155/2015/604658] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/15/2014] [Indexed: 11/17/2022]
Abstract
An increasing number of studies have proposed a strong correlation between reactive oxygen species (ROS)-induced oxidative stress (OS) and the pathogenesis of Alzheimer's disease (AD). With over five million people diagnosed in the United States alone, AD is the most common type of dementia worldwide. AD includes progressive neurodegeneration, followed by memory loss and reduced cognitive ability. Characterized by the formation of amyloid-beta (Aβ) plaques as a hallmark, the connection between ROS and AD is compelling. Analyzing the ROS response of essential proteins in the amyloidogenic pathway, such as amyloid-beta precursor protein (APP) and beta-secretase (BACE1), along with influential signaling programs of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and c-Jun N-terminal kinase (JNK), has helped visualize the path between OS and Aβ overproduction. In this review, attention will be paid to significant advances in the area of OS, epigenetics, and their influence on Aβ plaque assembly. Additionally, we aim to discuss available treatment options for AD that include antioxidant supplements, Asian traditional medicines, metal-protein-attenuating compounds, and histone modifying inhibitors.
Collapse
|
116
|
Wang R, Peng L, Zhao J, Zhang L, Guo C, Zheng W, Chen H. Gardenamide A Protects RGC-5 Cells from H₂O₂-Induced Oxidative Stress Insults by Activating PI3K/Akt/eNOS Signaling Pathway. Int J Mol Sci 2015; 16:22350-67. [PMID: 26389892 PMCID: PMC4613312 DOI: 10.3390/ijms160922350] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/24/2015] [Accepted: 08/31/2015] [Indexed: 01/04/2023] Open
Abstract
Gardenamide A (GA) protects the rat retinal ganglion (RGC-5) cells against cell apoptosis induced by H₂O₂. The protective effect of GA was completely abrogated by the specific phosphoinositide 3-kinase (PI3K) inhibitor LY294002, and the specific protein kinase B (Akt) inhibitor Akt VIII respectively, indicating that the protective mechanism of GA is mediated by the PI3K/Akt signaling pathway. The specific extracellular signal-regulated kinase (ERK1/2) inhibitor PD98059 could not block the neuroprotection of GA. GA attenuated the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) induced by H₂O₂. Western blotting showed that GA promoted the phosphorylation of ERK1/2, Akt and endothelial nitric oxide synthase (eNOS), respectively, and effectively reversed the H₂O₂-inhibited phosphorylation of these three proteins. LY294002 completely inhibited the GA-activated phosphorylation of Akt, while only partially inhibiting eNOS. This evidence implies that eNOS may be activated directly by GA. PD98059 attenuated only partially the GA-induced phosphorylation of ERK1/2 with/without the presence of H₂O₂, indicating that GA may activate ERK1/2 directly. All these results put together confirm that GA protects RGC-5 cells from H₂O₂ insults via the activation of PI3K/Akt/eNOS signaling pathway. Whether the ERK1/2 signaling pathway is involved requires further investigations.
Collapse
Affiliation(s)
- Rikang Wang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Lizhi Peng
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Jiaqiang Zhao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Laitao Zhang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Cuiping Guo
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macao, Macao, China.
| | - Heru Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, China.
| |
Collapse
|
117
|
Chen M, Suzuki A, Borlak J, Andrade RJ, Lucena MI. Drug-induced liver injury: Interactions between drug properties and host factors. J Hepatol 2015; 63:503-14. [PMID: 25912521 DOI: 10.1016/j.jhep.2015.04.016] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 12/13/2022]
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a common cause for drug withdrawal from the market and although infrequent, DILI can result in serious clinical outcomes including acute liver failure and the need for liver transplantation. Eliminating the iatrogenic "harm" caused by a therapeutic intent is a priority in patient care. However, identifying culprit drugs and individuals at risk for DILI remains challenging. Apart from genetic factors predisposing individuals at risk, the role of the drugs' physicochemical and toxicological properties and their interactions with host and environmental factors need to be considered. The influence of these factors on mechanisms involved in DILI is multi-layered. In this review, we summarize current knowledge on 1) drug properties associated with hepatotoxicity, 2) host factors considered to modify an individuals' risk for DILI and clinical phenotypes, and 3) drug-host interactions. We aim at clarifying knowledge gaps needed to be filled in as to improve risk stratification in patient care. We therefore broadly discuss relevant areas of future research. Emerging insight will stimulate new investigational approaches to facilitate the discovery of clinical DILI risk modifiers in the context of disease complexity and associated interactions with drug properties, and hence will be able to move towards safety personalized medicine.
Collapse
Affiliation(s)
- Minjun Chen
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | - Ayako Suzuki
- Gastroenterology, Central Arkansas Veterans Healthcare System, Little Rock, AR, United States; Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jürgen Borlak
- Center of Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| | - Raúl J Andrade
- Unidad de Gestión Clínica de Enfermedades Digestivas, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
| | - M Isabel Lucena
- Unidad de Gestión Clínica de Enfermedades Digestivas, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| |
Collapse
|
118
|
Wang JX, Gao J, Ding SL, Wang K, Jiao JQ, Wang Y, Sun T, Zhou LY, Long B, Zhang XJ, Li Q, Liu JP, Feng C, Liu J, Gong Y, Zhou Z, Li PF. Oxidative Modification of miR-184 Enables It to Target Bcl-xL and Bcl-w. Mol Cell 2015; 59:50-61. [PMID: 26028536 DOI: 10.1016/j.molcel.2015.05.003] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 03/20/2015] [Accepted: 04/24/2015] [Indexed: 01/06/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs, and they bind to complementary sequences in the three prime untranslated regions (3' UTRs) of target mRNA transcripts, thereby inhibiting mRNA translation or promoting mRNA degradation. Excessive reactive oxygen species (ROS) can cause cell-damaging effects through oxidative modification of macromolecules leading to their inappropriate functions. Such oxidative modification is related to cancers, aging, and neurodegenerative and cardiovascular diseases. Here we report that miRNAs can be oxidatively modified by ROS. We identified that miR-184 upon oxidative modification associates with the 3' UTRs of Bcl-xL and Bcl-w that are not its native targets. The mismatch of oxidized miR-184 with Bcl-xL and Bcl-w is involved in the initiation of apoptosis in the study with rat heart cell line H9c2 and mouse models. Our results reveal a model of ROS in regulating cellular events by oxidatively modifying miRNA.
Collapse
Affiliation(s)
- Jian-Xun Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Jie Gao
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Su-Ling Ding
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Kun Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Jian-Qin Jiao
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Yin Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Teng Sun
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Lu-Yu Zhou
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Bo Long
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Xiao-Jie Zhang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Qian Li
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Jin-Ping Liu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Chang Feng
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Jia Liu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Ying Gong
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Zhixia Zhou
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Pei-Feng Li
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| |
Collapse
|
119
|
Neagu E, Paun G, Albu C, Radu GL. Assessment of acetylcholinesterase and tyrosinase inhibitory and antioxidant activity of Alchemilla vulgaris and Filipendula ulmaria extracts. J Taiwan Inst Chem Eng 2015. [DOI: 10.1016/j.jtice.2015.01.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
120
|
Langie SA, Koppen G, Desaulniers D, Al-Mulla F, Al-Temaimi R, Amedei A, Azqueta A, Bisson WH, Brown D, Brunborg G, Charles AK, Chen T, Colacci A, Darroudi F, Forte S, Gonzalez L, Hamid RA, Knudsen LE, Leyns L, Lopez de Cerain Salsamendi A, Memeo L, Mondello C, Mothersill C, Olsen AK, Pavanello S, Raju J, Rojas E, Roy R, Ryan E, Ostrosky-Wegman P, Salem HK, Scovassi I, Singh N, Vaccari M, Van Schooten FJ, Valverde M, Woodrick J, Zhang L, van Larebeke N, Kirsch-Volders M, Collins AR. Causes of genome instability: the effect of low dose chemical exposures in modern society. Carcinogenesis 2015; 36 Suppl 1:S61-S88. [PMID: 26106144 PMCID: PMC4565613 DOI: 10.1093/carcin/bgv031] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 12/17/2022] Open
Abstract
Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis.
Collapse
Affiliation(s)
- Sabine A.S. Langie
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
- Health Canada, Environmental Health Sciences and Research Bureau, Environmental Health Centre, Ottawa, Ontario K1A0K9, Canada
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31009, Spain
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
- Hopkins Building, School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UB, UK
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
- Human and Environmental Safety Research, Department of Health Sciences, College of North Atlantic, Doha, State of Qatar
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang 43400, Selangor, Malaysia
- University of Copenhagen, Department of Public Health, Copenhagen 1353, Denmark
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
- Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
- Department of Cardiac, Thoracic and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Padova 35128, Italy
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow 226003, Uttar Pradesh, India
- Department of Toxicology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, 6200MD, PO Box 61, Maastricht, The Netherlands
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
- Laboratory for Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Study Centre for Carcinogenesis and Primary Prevention of Cancer, Ghent University, Ghent 9000, Belgium
- Department of Nutrition, University of Oslo, Oslo 0316, Norway
| | - Gudrun Koppen
- *To whom correspondence should be addressed. Tel: +32 14335165; Fax: +32 14580523
| | - Daniel Desaulniers
- Health Canada, Environmental Health Sciences and Research Bureau, Environmental Health Centre, Ottawa, Ontario K1A0K9, Canada
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31009, Spain
| | - William H. Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Dustin Brown
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Gunnar Brunborg
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
| | - Amelia K. Charles
- Hopkins Building, School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UB, UK
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Firouz Darroudi
- Human and Environmental Safety Research, Department of Health Sciences, College of North Atlantic, Doha, State of Qatar
| | - Stefano Forte
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Laetitia Gonzalez
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Roslida A. Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang 43400, Selangor, Malaysia
| | - Lisbeth E. Knudsen
- University of Copenhagen, Department of Public Health, Copenhagen 1353, Denmark
| | - Luc Leyns
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | | | - Lorenzo Memeo
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Carmel Mothersill
- Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
| | - Ann-Karin Olsen
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
| | - Sofia Pavanello
- Department of Cardiac, Thoracic and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Padova 35128, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Emilio Rojas
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Elizabeth Ryan
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Patricia Ostrosky-Wegman
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Hosni K. Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Neetu Singh
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow 226003, Uttar Pradesh, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Frederik J. Van Schooten
- Department of Toxicology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, 6200MD, PO Box 61, Maastricht, The Netherlands
| | - Mahara Valverde
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
| | - Nik van Larebeke
- Laboratory for Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Study Centre for Carcinogenesis and Primary Prevention of Cancer, Ghent University, Ghent 9000, Belgium
| | | | | |
Collapse
|
121
|
Coppedè F, Migliore L. DNA damage in neurodegenerative diseases. Mutat Res 2015; 776:84-97. [PMID: 26255941 DOI: 10.1016/j.mrfmmm.2014.11.010] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/27/2014] [Accepted: 11/30/2014] [Indexed: 06/04/2023]
Abstract
Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis, which represent three of the most common neurodegenerative pathologies in humans.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| | - Lucia Migliore
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| |
Collapse
|
122
|
MicroRNA Profiling of CSF Reveals Potential Biomarkers to Detect Alzheimer`s Disease. PLoS One 2015; 10:e0126423. [PMID: 25992776 PMCID: PMC4439119 DOI: 10.1371/journal.pone.0126423] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/02/2015] [Indexed: 12/28/2022] Open
Abstract
The miRBase-21 database currently lists 1881 microRNA (miRNA) precursors and 2585 unique mature human miRNAs. Since their discovery, miRNAs have proved to present a new level of epigenetic post-transcriptional control of protein synthesis. Initial results point to a possible involvement of miRNA in Alzheimer’s disease (AD). We applied OpenArray technology to profile the expression of 1178 unique miRNAs in cerebrospinal fluid (CSF) samples of AD patients (n = 22) and controls (n = 28). Using a Cq of 34 as cut-off, we identified positive signals for 441 miRNAs, while 729 miRNAs could not be detected, indicating that at least 37% of miRNAs are present in the brain. We found 74 miRNAs being down- and 74 miRNAs being up-regulated in AD using a 1.5 fold change threshold. By applying the new explorative “Measure of relevance” method, 6 reliable and 9 informative biomarkers were identified. Confirmatory MANCOVA revealed reliable miR-100, miR-146a and miR-1274a as differentially expressed in AD reaching Bonferroni corrected significance. MANCOVA also confirmed differential expression of informative miR-103, miR-375, miR-505#, miR-708, miR-4467, miR-219, miR-296, miR-766 and miR-3622b-3p. Discrimination analysis using a combination of miR-100, miR-103 and miR-375 was able to detect AD in CSF by positively classifying controls and AD cases with 96.4% and 95.5% accuracy, respectively. Referring to the Ingenuity database we could identify a set of AD associated genes that are targeted by these miRNAs. Highly predicted targets included genes involved in the regulation of tau and amyloid pathways in AD like MAPT, BACE1 and mTOR.
Collapse
|
123
|
Lessons from Microglia Aging for the Link between Inflammatory Bone Disorders and Alzheimer's Disease. J Immunol Res 2015; 2015:471342. [PMID: 26078980 PMCID: PMC4452354 DOI: 10.1155/2015/471342] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 12/29/2022] Open
Abstract
Bone is sensitive to overactive immune responses, which initiate the onset of inflammatory bone disorders, such as rheumatoid arthritis and periodontitis, resulting in a significant systemic inflammatory response. On the other hand, neuroinflammation is strongly implicated in Alzheimer's disease (AD), which can be enhanced by systemic inflammation, such as that due to cardiovascular disease and diabetes. There is growing clinical evidence supporting the concept that rheumatoid arthritis and periodontitis are positively linked to AD, suggesting that inflammatory bone disorders are risk factors for this condition. Recent studies have suggested that leptomeningeal cells play an important role in transducing systemic inflammatory signals to brain-resident microglia. More importantly, senescent-type, but not juvenile-type, microglia provoke neuroinflammation in response to systemic inflammation. Because the prevalence of rheumatoid arthritis and periodontitis increases with age, inflammatory bone disorders may be significant sources of covert systemic inflammation among elderly people. The present review article highlights our current understanding of the link between inflammatory bone disorders and AD with a special focus on microglia aging.
Collapse
|
124
|
The Neuroprotective Effects of Ratanasampil on Oxidative Stress-Mediated Neuronal Damage in Human Neuronal SH-SY5Y Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:792342. [PMID: 26064424 PMCID: PMC4433697 DOI: 10.1155/2015/792342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 11/17/2022]
Abstract
We previously found that Ratanasampil (RNSP), a traditional Tibetan medicine, improves the cognitive function of mild-to-moderate AD patients living at high altitude, as well as learning and memory in an AD mouse model (Tg2576); however, mechanism underlying the effects of RNSP is unknown. In the present study, we investigated the effects and molecular mechanisms of RNSP on oxidative stress-induced neuronal toxicity using human neuroblastoma SH-SY5Y cells. Pretreatment with RNSP significantly ameliorated the hydrogen peroxide- (H2O2-) induced cytotoxicity of SH-SY5Y cells in a dose-dependent manner (up to 60 μg/mL). Furthermore, RNSP significantly reduced the H2O2-induced upregulation of 8-oxo-2'-deoxyguanosine (8-oxo-dG, the oxidative DNA damage marker) but significantly reversed the expression of repressor element-1 silencing transcription factor (REST) from H2O2 associated (100 μM) downregulation. Moreover, RNSP significantly attenuated the H2O2-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase 1/2 (ERK 1/2) in SH-SY5Y cells. These observations strongly suggest that RNSP may protect the oxidative stress-induced neuronal damage that occurs through the properties of various antioxidants and inhibit the activation of MAPKs. We thus provide the principle molecular mechanisms of the effects of RNSP and indicate its role in the prevention and clinical management of AD.
Collapse
|
125
|
Jiao SS, Yao XQ, Liu YH, Wang QH, Zeng F, Lu JJ, Liu J, Zhu C, Shen LL, Liu CH, Wang YR, Zeng GH, Parikh A, Chen J, Liang CR, Xiang Y, Bu XL, Deng J, Li J, Xu J, Zeng YQ, Xu X, Xu HW, Zhong JH, Zhou HD, Zhou XF, Wang YJ. Edaravone alleviates Alzheimer's disease-type pathologies and cognitive deficits. Proc Natl Acad Sci U S A 2015; 112:5225-5230. [PMID: 25847999 PMCID: PMC4413288 DOI: 10.1073/pnas.1422998112] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is one of most devastating diseases affecting elderly people. Amyloid-β (Aβ) accumulation and the downstream pathological events such as oxidative stress play critical roles in pathogenesis of AD. Lessons from failures of current clinical trials suggest that targeting multiple key pathways of the AD pathogenesis is necessary to halt the disease progression. Here we show that Edaravone, a free radical scavenger that is marketed for acute ischemic stroke, has a potent capacity of inhibiting Aβ aggregation and attenuating Aβ-induced oxidation in vitro. When given before or after the onset of Aβ deposition via i.p. injection, Edaravone substantially reduces Aβ deposition, alleviates oxidative stress, attenuates the downstream pathologies including Tau hyperphosphorylation, glial activation, neuroinflammation, neuronal loss, synaptic dysfunction, and rescues the behavioral deficits of APPswe/PS1 mice. Oral administration of Edaravone also ameliorates the AD-like pathologies and memory deficits of the mice. These findings suggest that Edaravone holds a promise as a therapeutic agent for AD by targeting multiple key pathways of the disease pathogenesis.
Collapse
Affiliation(s)
- Shu-Sheng Jiao
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiu-Qing Yao
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yu-Hui Liu
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Qing-Hua Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Fan Zeng
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jian-Jun Lu
- School of Pharmacy and Medical Sciences and Sansom Institute, Division of Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Jia Liu
- School of Pharmacy and Medical Sciences and Sansom Institute, Division of Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Chi Zhu
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Lin-Lin Shen
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Cheng-Hui Liu
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Ye-Ran Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Gui-Hua Zeng
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Ankit Parikh
- School of Pharmacy and Medical Sciences and Sansom Institute, Division of Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Jia Chen
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Chun-Rong Liang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yang Xiang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xian-Le Bu
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Juan Deng
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jing Li
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Juan Xu
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yue-Qin Zeng
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650031, China
| | - Xiang Xu
- Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China; and
| | - Hai-Wei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jin-Hua Zhong
- School of Pharmacy and Medical Sciences and Sansom Institute, Division of Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Hua-Dong Zhou
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences and Sansom Institute, Division of Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650031, China;
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China;
| |
Collapse
|
126
|
Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci 2015; 9:124. [PMID: 25914621 PMCID: PMC4392704 DOI: 10.3389/fncel.2015.00124] [Citation(s) in RCA: 393] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 03/17/2015] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative diseases including Alzheimer (AD) and Parkinson (PD) have attracted attention in last decades due to their high incidence worldwide. The etiology of these diseases is still unclear; however the role of the environment as a putative risk factor has gained importance. More worryingly is the evidence that pre- and post-natal exposures to environmental factors predispose to the onset of neurodegenerative diseases in later life. Neurotoxic metals such as lead, mercury, aluminum, cadmium and arsenic, as well as some pesticides and metal-based nanoparticles have been involved in AD due to their ability to increase beta-amyloid (Aβ) peptide and the phosphorylation of Tau protein (P-Tau), causing senile/amyloid plaques and neurofibrillary tangles (NFTs) characteristic of AD. The exposure to lead, manganese, solvents and some pesticides has been related to hallmarks of PD such as mitochondrial dysfunction, alterations in metal homeostasis and aggregation of proteins such as α-synuclein (α-syn), which is a key constituent of Lewy bodies (LB), a crucial factor in PD pathogenesis. Common mechanisms of environmental pollutants to increase Aβ, P-Tau, α-syn and neuronal death have been reported, including the oxidative stress mainly involved in the increase of Aβ and α-syn, and the reduced activity/protein levels of Aβ degrading enzyme (IDE)s such as neprilysin or insulin IDE. In addition, epigenetic mechanisms by maternal nutrient supplementation and exposure to heavy metals and pesticides have been proposed to lead phenotypic diversity and susceptibility to neurodegenerative diseases. This review discusses data from epidemiological and experimental studies about the role of environmental factors in the development of idiopathic AD and PD, and their mechanisms of action.
Collapse
|
127
|
Chiu S, Woodbury-Fariña MA, Shad MU, Husni M, Copen J, Bureau Y, Cernovsky Z, Hou JJ, Raheb H, Terpstra K, Sanchez V, Hategan A, Kaushal M, Campbell R. The role of nutrient-based epigenetic changes in buffering against stress, aging, and Alzheimer's disease. Psychiatr Clin North Am 2014; 37:591-623. [PMID: 25455068 DOI: 10.1016/j.psc.2014.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Converging evidence identifies stress-related disorders as putative risk factors for Alzheimer Disease (AD). This article reviews evidence on the complex interplay of stress, aging, and genes-epigenetics interactions. The recent classification of AD into preclinical, mild cognitive impairment, and AD offers a window for intervention to prevent, delay, or modify the course of AD. Evidence in support of the cognitive effects of epigenetics-diet, and nutraceuticals is reviewed. A proactive epigenetics diet and nutraceuticals program holds promise as potential buffer against the negative impact of aging and stress responses on cognition, and can optimize vascular, metabolic, and brain health in the community.
Collapse
Affiliation(s)
- Simon Chiu
- Department of Psychiatry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6G 4X8, Canada.
| | - Michel A Woodbury-Fariña
- Department of Psychiatry, University of Puerto Rico School of Medicine, 307 Calle Eleonor Roosevelt, San Juan, PR 00918-2720, USA
| | - Mujeeb U Shad
- Oregon Health & Science University, Department Psychiatry, 3181 South West Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Mariwan Husni
- Northern Ontario Medical School/Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada; Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - John Copen
- Vancouver Island Health Authority, Department of Psychiatry, Victoria, BC, University of British Columbia-Victoria Medical Campus, Island Medical Program, University of Victoria, 3800 Finnerty Road, Victoria, BC V8N-1M5, Canada
| | - Yves Bureau
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry University of Western Ontario, London, ON N6G 4X8, Canada
| | - Zack Cernovsky
- Certificate Professional Qualification (CPQ), Clinical Psychology, Association of State and Provincial Psychology Board (ASPB): USA and Canada
| | - J Jurui Hou
- Epigenetics Research Group, Lawson Health Research Institute, St Joseph Health Care, 268 Grosvenor Street, London, ON N6A 4V2, Canada
| | - Hana Raheb
- Epigenetics Research Group, Lawson Health Research Institute, St Joseph Health Care, 268 Grosvenor Street, London, ON N6A 4V2, Canada
| | - Kristen Terpstra
- Accelerated B.Sc.N. Nursing Program, Lawrence S. Bloomberg, Faculty of Nursing, University of Toronto, 155 College Street, Suite 130 Toronto, ON M5T 1P8, Canada
| | - Veronica Sanchez
- McGill University, Meakins-Christie Labs, 3626 St., Urbain Street, Montreal, QC H2X 2P2, Canada
| | - Ana Hategan
- Geriatric Psychiatry Division, St. Joseph's Healthcare Hamilton /McMaster University Health Sciences, West 5th Campus 100 West 5th Hamilton, ON L8N 3K7, Canada
| | - Mike Kaushal
- Epigenetics Research Group, Lawson Health Research Institute, St Joseph Health Care, 268 Grosvenor Street, London, ON N6A 4V2, Canada
| | - Robbie Campbell
- Department of Psychiatry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6G 4X8, Canada
| |
Collapse
|
128
|
Alzheimer's disease and epigenetic diet. Neurochem Int 2014; 78:105-16. [DOI: 10.1016/j.neuint.2014.09.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 09/18/2014] [Accepted: 09/29/2014] [Indexed: 01/04/2023]
|
129
|
White matter tract and glial-associated changes in 5-hydroxymethylcytosine following chronic cerebral hypoperfusion. Brain Res 2014; 1592:82-100. [DOI: 10.1016/j.brainres.2014.09.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/26/2022]
|
130
|
Wei T, Tian W, Yan H, Shao G, Xie G. Protective effects of phillyrin on H2O 2-induced oxidative stress and apoptosis in PC12 cells. Cell Mol Neurobiol 2014; 34:1165-73. [PMID: 25146667 PMCID: PMC11488936 DOI: 10.1007/s10571-014-0091-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 07/17/2014] [Indexed: 11/27/2022]
Abstract
Oxidative stress is a major component of harmful cascades activated in neurodegenerative disorders. We sought to elucidate possible effects of phillyrin, an active constituent isolated from the Chinese medicinal herb Forsythia suspense, on hydrogen peroxide (H2O2)-induced cell death and determine the underlying molecular mechanisms in neuron-like PC12 cells. By MTT assay and lactate dehydrogenase (LDH) leakage assay, we found that phillyrin treatment effectively protected PC12 cells against H2O2-induced cell damage. H2O2 exposure induced oxidative stress in PC12 cells, as revealed by enhanced oxidative stress and decreased activities of antioxidative enzymes, which were inhibited by phillyrin pretreatment. ROS activated mitochondria-dependent apoptosis. The anti-apoptotic effects of phillyrin were also confirmed by acridine orange/ethidium bromide (AO/EB) staining. Mitochondrial membrane potential decrease, cytochrome c release, caspases activation, activation of AIF and Endo G were observed in H2O2-treated cells by rhodamine 123 or western blot. Interestingly, phillyrin effectively suppressed these changes. Moreover, phillyrin could inhibit H2O2-induced up-regulation of Bax/Bcl-2 ratio. In conclusion, phillyrin effectively inhibited H2O2-induced oxidative stress and apoptosis in PC12 cells.
Collapse
Affiliation(s)
- Teng Wei
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin China
| | - Wulin Tian
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin China
| | - Haiyang Yan
- College of Quartermaster Technology, Jilin University, Changchun, China
| | - Guoxi Shao
- The Second Hospital of Jilin University, Changchun, 130000 China
| | - Guanghong Xie
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin China
| |
Collapse
|
131
|
Forsythiaside Protects Against Hydrogen Peroxide-Induced Oxidative Stress and Apoptosis in PC12 Cell. Neurochem Res 2014; 40:27-35. [DOI: 10.1007/s11064-014-1461-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/16/2014] [Accepted: 10/18/2014] [Indexed: 12/20/2022]
|
132
|
Pinkaew D, Changtam C, Tocharus C, Thummayot S, Suksamrarn A, Tocharus J. Di-O-demethylcurcumin protects SK-N-SH cells against mitochondrial and endoplasmic reticulum-mediated apoptotic cell death induced by Aβ25-35. Neurochem Int 2014; 80:110-9. [PMID: 25451798 DOI: 10.1016/j.neuint.2014.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative and progressive disorder. The hallmark of pathological AD is amyloid plaque which is the accumulation of amyloid β (Aβ) in extracellular neuronal cells and neurofibrillary tangles (NFT) in neuronal cells, which lead to neurotoxicity via reactive oxygen species (ROS) generation related apoptosis. Loss of synapses and synaptic damage are the best correlates of cognitive decline in AD. Neuronal cell death is the main cause of brain dysfunction and cognitive impairment. Aβ activates neuronal death via endoplasmic reticulum (ER) stress and mitochondria apoptosis pathway. This study investigated the underlying mechanisms and effects of di-O-demethylcurcumin in preventing Aβ-induced apoptosis. Pretreatment with di-O-demethylcurcumin for 2 h, which was followed by Aβ25-35 (10 µM) in human neuroblastoma SK-N-SH cells improved cell viability by using MTS assay and decreased neuronal cell apoptosis. Pretreatment with di-O-demethylcurcumin attenuated the number of nuclear condensations and number of apoptotic cells in Aβ25-35-induced group in a concentration-dependent manner by using transmission electron microscope (TEM) and flow cytometry, respectively. Di-O-demethylcurcumin also increased the ratio of Bcl-XL/Bax protein, and reduced intracellular ROS level, cytochrome c protein expression, cleaved caspase-9 protein expression, and cleaved caspase-3 protein expression. Additionally, di-O-demethylcurcumin treatment also reduced the expression of ER stress protein markers, including protein kinase RNA like endoplasmic reticulum kinase (PERK) phosphorylation, eukaryotic translation initiation factor 2 alpha (eIF2α) phosphorylation, inositol-requiring enzyme 1 (IRE1) phosphorylation, X-box-binding protein-1 (XBP-1), activating transcription factor (ATF6), C/EBP homologous protein (CHOP), and cleaved caspase-12 protein. CHOP and cleaved caspase-12 protein are the key mediators of apoptosis. Our data suggest that di-O-demethylcurcumin is a candidate protectant against neuronal death through its suppression of the apoptosis mediated by mitochondrial death and ER stress pathway.
Collapse
Affiliation(s)
- Decha Pinkaew
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chatchawan Changtam
- Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn 10540, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sarinthorn Thummayot
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
133
|
Wang Y, Xu S, Cao Y, Xie Z, Lai C, Ji X, Bi J. Folate deficiency exacerbates apoptosis by inducing hypomethylation and resultant overexpression of DR4 together with altering DNMTs in Alzheimer's disease. Int J Clin Exp Med 2014; 7:1945-1957. [PMID: 25232375 PMCID: PMC4161535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/11/2014] [Indexed: 06/03/2023]
Abstract
This study was to evaluate patterns of gene expression and promoter methylation of DR4 from peripheral circulating blood lymphocytes of AD patients and folate-deficiency medium cultured neuroblast cells, and also expression levels of DNMT1, DNMT3a, and MECP2. Blood samples of 25 pairs of AD patients and age- and sex-matched controls were collected. SH-SY5Y cells were cultured with folate-deficiency medium. Bisulfite cloning coupled with sequencing was employed to analyze methylation levels of DR4 gene promoters, and quantitative real time PCR (qRT-PCR) was used to detect gene expression levels of DR4, and also DNA methyltransferase 1 (DNMT1), DNA methyltransferase 3a (DNMT3a) and methyl CpG binding protein 2 (MECP2). Folate concentration was calculated in serum of blood samples. 3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay was used to analyze cell viability. The results showed that, the promoter of DR4 was hypomethylated in AD patients and cells cultured in folate-deficiency medium and had site-specific changes (P < 0.05), and these sites were mostly at or nearby some key transcription factor binding sites. Accordance with the hypomethylation, increased expression level of DR4 was observed (P < 0.05). DNMT1 and DNMT3a mRNA level were elevated (P < 0.05) in AD patients and folate deficient medium cultured cells compared with controls (P < 0.05), together with lower folate concentration in AD. MTT assay showed that folate deficiency inhibited cell growth. In summary, folate deficiency can induce apoptosis by increasing DR4 expression with DNA promoter hypomethylation in AD, together with upregulating DNMTs expression, which may be associated with folate deficiency-induced DNA damage.
Collapse
Affiliation(s)
- Yun Wang
- Department of Neurology, The Second Hospital of Shandong University, Shandong UniversityJinan 250033, PR China
| | - Shunliang Xu
- Department of Neurology, The Second Hospital of Shandong University, Shandong UniversityJinan 250033, PR China
| | - Yanjun Cao
- Department of Neurology, The Second Hospital of Shandong University, Shandong UniversityJinan 250033, PR China
| | - Zhaohong Xie
- Department of Neurology, The Second Hospital of Shandong University, Shandong UniversityJinan 250033, PR China
| | - Chao Lai
- Department of Neurology, The Second Hospital of Shandong University, Shandong UniversityJinan 250033, PR China
| | - Xiaowei Ji
- Department of Neurology, The Second Hospital of Shandong Traditional Chinese Medicine UniversityJinan 250001, PR China
| | - Jianzhong Bi
- Department of Neurology, The Second Hospital of Shandong University, Shandong UniversityJinan 250033, PR China
| |
Collapse
|
134
|
Marais AD, Blackhurst DM. Do heavy metals counter the potential health benefits of wine? JOURNAL OF ENDOCRINOLOGY, METABOLISM AND DIABETES OF SOUTH AFRICA 2014. [DOI: 10.1080/22201009.2009.10872197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
135
|
Gharesouran J, Rezazadeh M, Khorrami A, Ghojazadeh M, Talebi M. Genetic evidence for the involvement of variants at APOE, BIN1, CR1, and PICALM loci in risk of late-onset Alzheimer's disease and evaluation for interactions with APOE genotypes. J Mol Neurosci 2014; 54:780-6. [PMID: 25022885 DOI: 10.1007/s12031-014-0377-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/03/2014] [Indexed: 01/20/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in older population. Growing evidence of genetic background that predisposes individuals to AD has been reported as the risk factors in recent years. The Department of Medical Genetics and the Immunology Research Centre investigated the distribution of 11 polymorphisms in 160 patients with late onset AD (LOAD) and in 163 healthy controls, using the sequencing technique. All participants were of Turkish Azeri ethnicity. We compared allele and genotype frequencies between the LOAD patients and control subjects using a chi-square or Fisher's exact test. Alleles and genotypes of APOE, PICALM rs3851179 and rs541458, and the BIN1 gene rs744373 polymorphism were significantly different between LOAD and control groups. The frequencies of the other investigated alleles were similar in the two groups. We also analyzed the association of BIN1, CR1 and PICALM SNPs with LOAD in subgroups stratified by the presence or absence of the APOE ε4 allele. After adjusting for APOE, statistical analysis revealed that the association with PICALM rs541458 and BIN1 rs744373 were only significant among subjects without the APOE ε4 allele.
Collapse
Affiliation(s)
- Jalal Gharesouran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,
| | | | | | | | | |
Collapse
|
136
|
Helou R, Jaecker P. Occupational exposure to mineral turpentine and heavy fuels: a possible risk factor for Alzheimer's disease. Dement Geriatr Cogn Dis Extra 2014; 4:160-71. [PMID: 25028582 PMCID: PMC4086039 DOI: 10.1159/000362382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background The association between solvents and Alzheimer's disease (AD) has been the subject of several studies. Yet, only few studies have examined the various solvents separately, and the controls have rarely been monitored long enough. For these reasons and others, we believe that further studies are required. Objectives The objective of this study was to identify solvents associated with the clinicoradiological diagnostic of AD or mixed-type dementia (MD). Methods A retrospective case-control study was performed in 156 patients followed up at the Memory Diagnostic Center of Bertinot Juel Hospital (France). The inclusion criteria were known occupation(s), a Mini-Mental State Examination (MMSE) score ≥10 at the first visit, a neuropsychological evaluation performed and a diagnosis established in our Memory Diagnostic Center. The diagnostics were crossed with 9 solvents belonging to two classes of solvents. Exposure was evaluated using French national job-exposure matrices. Results Certain petroleum-based solvents and fuels (i.e. mineral turpentine, diesel fuel, fuel oil and kerosene) were associated with a diagnosis of AD or MD. This association was still significant after adjustment for age, sex and education (adjusted OR: 6.5; 95% CI: 2-20). Conclusion Occupational exposure to mineral turpentine and heavy fuels may be a risk factor for AD and MD.
Collapse
Affiliation(s)
- Rafik Helou
- Internal Medicine Department, Bertinot Juel Hospital, Chaumont-en-Vexin, France
| | - Pierre Jaecker
- Internal Medicine Department, Bertinot Juel Hospital, Chaumont-en-Vexin, France
| |
Collapse
|
137
|
Langie SA, Kowalczyk P, Tomaszewski B, Vasilaki A, Maas LM, Moonen EJ, Palagani A, Godschalk RW, Tudek B, van Schooten FJ, Berghe WV, Zabielski R, Mathers JC. Redox and epigenetic regulation of the APE1 gene in the hippocampus of piglets: The effect of early life exposures. DNA Repair (Amst) 2014; 18:52-62. [DOI: 10.1016/j.dnarep.2014.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 03/24/2014] [Accepted: 03/26/2014] [Indexed: 02/06/2023]
|
138
|
|
139
|
Krishnan S, Rani P. Evaluation of selenium, redox status and their association with plasma amyloid/tau in Alzheimer's disease. Biol Trace Elem Res 2014; 158:158-65. [PMID: 24682919 DOI: 10.1007/s12011-014-9930-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/03/2014] [Indexed: 01/29/2023]
Abstract
The aim of the study was to evaluate blood selenium and antioxidants as possible oxidative stress markers in Alzheimer's disease (AD) along with amyloid β42 (Aβ42) and tau by comparing them with vascular dementia (VD) and age-matched healthy controls. Selenium, total tau, Aβ42, glutathione (GSH) and malondialdehyde (MDA) levels and the activities of antioxidant enzymes were analysed in the blood of AD patients (n = 30), VD patients (n = 35) and controls (n = 40) from South India. Plasma Aβ42 level was significantly higher (P < 0.001) in both AD and VD compared to controls. Total tau and tau-to-amyloid ratio were significantly lower in both AD and VD (P < 0.001), compared to controls, and a significant difference (P < 0.01 and P < 0.05, respectively) was also observed between AD and VD. The receiver operating characteristic (ROC) curve-derived cutoff values of <3.5 for tau-to-Aβ42 ratio and <520 pg/ml for total tau showed sensitivity and specificity of around 67-72 % for differentiating AD from VD and around 90 % for AD from controls, indicating that they could serve as reliable AD-specific markers. The MDA levels were significantly higher (P < 0.001) in both dementia groups along with a significant decrease (P < 0.001) in reduced GSH levels, indicating elevated oxidative stress and altered redox status in both forms of dementia. Selenium levels did not vary significantly between the three groups. The activity of glutathione peroxidase increased in both AD and VD compared to controls, with a concomitant decrease in glutathione reductase and glucose-6-phospate dehydrogenase (P < 0.001) activity. The activity of thioredoxin reductase was significantly lower in both patient groups (P < 0.001) compared to healthy controls. No correlation was observed between selenium and activities of selenoenzymes, tau, Aβ42 or tau-to-Aβ42 ratio, when analysing independently, indicating that blood selenium may not be directly involved in Aβ production and in regulating tau/Aβ42-mediated mechanism in AD. The present study emphasizes the enhanced oxidative stress in AD pathology and plasma tau and tau-to-amyloid ratio as possible markers to differentiate AD from VD. The study also points that blood selenium may not be involved in regulating oxidative stress in AD, and a longitudinal study correlating plasma and cerebrospinal fluid (CSF) selenium and selenoprotein levels is warranted.
Collapse
Affiliation(s)
- Sreeram Krishnan
- Department of Biotechnology, PSG College of Technology, Peelamedu, Coimbatore, Tamil Nadu, 641004, India
| | | |
Collapse
|
140
|
McCarthy AL, O'Callaghan YC, Connolly A, Piggott CO, FitzGerald RJ, O'Brien NM. Phenolic-enriched fractions from brewers' spent grain possess cellular antioxidant and immunomodulatory effects in cell culture model systems. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:1373-1379. [PMID: 24114648 DOI: 10.1002/jsfa.6421] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/14/2013] [Accepted: 10/01/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Large quantities of brewers' spent grain (BSG), a co-product of the brewing industry, are produced annually. BSG contains hydroxycinnamic acids, and phenolic-rich extracts from BSG have previously demonstrated the ability to protect against oxidant-induced DNA damage. The present study investigated the anti-inflammatory potential of eight phenolic extracts from BSG: four pale (P1-P4) and four black (B1-B4) extracts. RESULTS BSG extracts were more cytotoxic in Jurkat T than U937 cells, with lower IC₅₀ values in Jurkat T cells, measured using the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Pale BSG extracts P2 and P3 showed the greatest anti-inflammatory potential, significantly (P < 0.05) reducing interleukin-2 (IL-2), interleukin-4 (IL-4, P2 only), interleukin-10 (IL-10) and interferon-γ (IFN-γ) production. In addition, extracts P1-P3 and B2-B4 showed significant (P < 0.05) antioxidant effects, determined by the cellular antioxidant activity assays superoxide dismutase, catalase and glutathione content (GSH). CONCLUSION Phenolic extracts from BSG, particularly the pale BSG extracts, have the ability to reduce a stimulated cytokine production and may also protect against cellular oxidative stress. Results of the present study highlight the potential of BSG phenolic extracts to act as functional food ingredients, providing an alternative use and improving the value of this brewing industry co-product.
Collapse
MESH Headings
- Anti-Inflammatory Agents, Non-Steroidal/analysis
- Anti-Inflammatory Agents, Non-Steroidal/economics
- Anti-Inflammatory Agents, Non-Steroidal/isolation & purification
- Anti-Inflammatory Agents, Non-Steroidal/metabolism
- Antineoplastic Agents, Phytogenic/analysis
- Antineoplastic Agents, Phytogenic/economics
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/metabolism
- Antioxidants/analysis
- Antioxidants/economics
- Antioxidants/isolation & purification
- Antioxidants/metabolism
- Beer/economics
- Beer/microbiology
- Cell Line, Tumor
- Coumaric Acids/analysis
- Coumaric Acids/economics
- Coumaric Acids/isolation & purification
- Coumaric Acids/metabolism
- Cytokines/antagonists & inhibitors
- Cytokines/metabolism
- Edible Grain/chemistry
- Edible Grain/economics
- Food, Fortified/analysis
- Food, Fortified/economics
- Food-Processing Industry/economics
- Humans
- Immunologic Factors/analysis
- Immunologic Factors/economics
- Immunologic Factors/isolation & purification
- Immunologic Factors/metabolism
- Industrial Waste/analysis
- Industrial Waste/economics
- Ireland
- Leukemia, T-Cell/immunology
- Leukemia, T-Cell/metabolism
- Monocytes/enzymology
- Monocytes/immunology
- Monocytes/metabolism
- Phenols/analysis
- Phenols/economics
- Phenols/isolation & purification
- Phenols/metabolism
- Pigmentation
- Plant Extracts/chemistry
- Plant Extracts/economics
- Plant Extracts/isolation & purification
- Plant Extracts/metabolism
- Recycling
Collapse
Affiliation(s)
- Aoife L McCarthy
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
141
|
Sassa A, Çağlayan M, Dyrkheeva NS, Beard WA, Wilson SH. Base excision repair of tandem modifications in a methylated CpG dinucleotide. J Biol Chem 2014; 289:13996-4008. [PMID: 24695738 DOI: 10.1074/jbc.m114.557769] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cytosine methylation and demethylation in tracks of CpG dinucleotides is an epigenetic mechanism for control of gene expression. The initial step in the demethylation process can be deamination of 5-methylcytosine producing the TpG alteration and T:G mispair, and this step is followed by thymine DNA glycosylase (TDG) initiated base excision repair (BER). A further consideration is that guanine in the CpG dinucleotide may become oxidized to 7,8-dihydro-8-oxoguanine (8-oxoG), and this could affect the demethylation process involving TDG-initiated BER. However, little is known about the enzymology of BER of altered in-tandem CpG dinucleotides; e.g. Tp8-oxoG. Here, we investigated interactions between this altered dinucleotide and purified BER enzymes, the DNA glycosylases TDG and 8-oxoG DNA glycosylase 1 (OGG1), apurinic/apyrimidinic (AP) endonuclease 1, DNA polymerase β, and DNA ligases. The overall TDG-initiated BER of the Tp8-oxoG dinucleotide is significantly reduced. Specifically, TDG and DNA ligase activities are reduced by a 3'-flanking 8-oxoG. In contrast, the OGG1-initiated BER pathway is blocked due to the 5'-flanking T:G mispair; this reduces OGG1, AP endonuclease 1, and DNA polymerase β activities. Furthermore, in TDG-initiated BER, TDG remains bound to its product AP site blocking OGG1 access to the adjacent 8-oxoG. These results reveal BER enzyme specificities enabling suppression of OGG1-initiated BER and coordination of TDG-initiated BER at this tandem alteration in the CpG dinucleotide.
Collapse
Affiliation(s)
- Akira Sassa
- From the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709 and
| | - Melike Çağlayan
- From the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709 and
| | - Nadezhda S Dyrkheeva
- From the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709 and Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Science, 630090 Novosibirsk, Russia
| | - William A Beard
- From the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709 and
| | - Samuel H Wilson
- From the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709 and
| |
Collapse
|
142
|
Bustaffa E, Stoccoro A, Bianchi F, Migliore L. Genotoxic and epigenetic mechanisms in arsenic carcinogenicity. Arch Toxicol 2014; 88:1043-67. [PMID: 24691704 DOI: 10.1007/s00204-014-1233-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/18/2014] [Indexed: 02/06/2023]
Abstract
Arsenic is a human carcinogen with weak mutagenic properties that induces tumors through mechanisms not yet completely understood. People worldwide are exposed to arsenic-contaminated drinking water, and epidemiological studies showed a high percentage of lung, bladder, liver, and kidney cancer in these populations. Several mechanisms by which arsenical compounds induce tumorigenesis were proposed including genotoxic damage and chromosomal abnormalities. Over the past decade, a growing body of evidence indicated that epigenetic modifications have a role in arsenic-inducing adverse effects on human health. The main epigenetic mechanisms are DNA methylation in gene promoter regions that regulate gene expression, histone tail modifications that regulate the accessibility of transcriptional machinery to genes, and microRNA activity (noncoding RNA able to modulate mRNA translation). The "double capacity" of arsenic to induce mutations and epimutations could be the main cause of arsenic-induced carcinogenesis. The aim of this review is to better clarify the mechanisms of the initiation and/or the promotion of arsenic-induced carcinogenesis in order to understand the best way to perform an early diagnosis and a prompt prevention that is the key point for protecting arsenic-exposed population. Studies on arsenic-exposed population should be designed in order to examine more comprehensively the presence and consequences of these genetic/epigenetic alterations.
Collapse
Affiliation(s)
- Elisa Bustaffa
- Unit of Environmental Epidemiology and Diseases Registries, Institute of Clinical Physiology, National Council of Research, Via Moruzzi 1, 56123, Pisa, Italy
| | | | | | | |
Collapse
|
143
|
Wainaina MN, Chen Z, Zhong C. Environmental factors in the development and progression of late-onset Alzheimer's disease. Neurosci Bull 2014; 30:253-70. [PMID: 24664867 PMCID: PMC5562669 DOI: 10.1007/s12264-013-1425-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/23/2014] [Indexed: 01/08/2023] Open
Abstract
Late-onset Alzheimer's disease (LOAD) is an age-related neurodegenerative disorder characterized by gradual loss of synapses and neurons, but its pathogenesis remains to be clarified. Neurons live in an environment constituted by neurons themselves and glial cells. In this review, we propose that the neuronal degeneration in the AD brain is partially caused by diverse environmental factors. We first discuss various environmental stresses and the corresponding responses at different levels. Then we propose some mechanisms underlying the specific pathological changes, in particular, hypothalamic-pituitary adrenal axis dysfunction at the systemic level; cerebrovascular dysfunction, metal toxicity, glial activation, and Aβ toxicity at the intercellular level; and kinase-phosphatase imbalance and epigenetic modification at the intracellular level. Finally, we discuss the possibility of developing new strategies for the prevention and treatment of LOAD from the perspective of environmental stress. We conclude that environmental factors play a significant role in the development of LOAD through multiple pathological mechanisms.
Collapse
Affiliation(s)
- Moses N. Wainaina
- Department of Neurology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032 China
- Pwani University, Kilifi, Kenya
| | - Zhichun Chen
- Department of Neurology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032 China
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032 China
- Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| |
Collapse
|
144
|
Decreased global methylation in patients with bipolar disorder who respond to lithium. Int J Neuropsychopharmacol 2014; 17:561-9. [PMID: 24345589 DOI: 10.1017/s1461145713001569] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial dysfunction, oxidative stress, and alterations in DNA methylation, are all associated with the pathophysiology of bipolar disorder (BD). We therefore studied the relationship between oxidative stress and DNA methylation in patients with BD with an excellent response to lithium treatment, their affected and unaffected relatives and healthy controls. Transformed lymphoblasts were cultured in the presence or absence of lithium chloride (0.75 mM). DNA and proteins were extracted from the cells to determine levels of 8-hydroxy-2-deoxyguanosine (8-OHdG), 5-methylcytosine (5-mc), mitochondrial complex I and glutathione peroxidase (GPx) activities. Methylation was decreased in BD subjects and their relatives compared to controls and remained so after lithium treatment in BD subjects but not in their relatives. 8-OHdG levels and complex I activity did not differ between groups before and after lithium treatment. Finally, relatives of patients showed increased GPx activity before and after lithium treatment, which negatively correlated with 5-mc levels. Changes in global methylation may be specific for BD and lithium may be involved in glutathione regulation. The present study supports the importance of DNA methylation to the pathophysiology of BD and the therapeutic potential of antioxidants in this illness.
Collapse
|
145
|
Protective effect of pranlukast on Aβ₁₋₄₂-induced cognitive deficits associated with downregulation of cysteinyl leukotriene receptor 1. Int J Neuropsychopharmacol 2014; 17:581-92. [PMID: 24229499 DOI: 10.1017/s1461145713001314] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Deposition of extracellular amyloid-β (Aβ) peptide is one of the pathological hallmarks of Alzheimer's disease (AD). Accumulation of Aβ is thought to associate with cognition deficits, neuroinflammation and apoptosis observed in AD. However, effective neuroprotective approaches against Aβ neurotoxicity are unavailable. In the present study, we analysed the effects of pranlukast, a selective cysteinyl leukotriene receptor 1 (CysLT₁R) antagonist, on the impairment of learning and memory formation induced by Aβ and the probable underlying electrophysiological and molecular mechanisms. We found that bilateral intrahippocampal injection of Aβ₁₋₄₂ resulted in a significant decline of spatial learning and memory of mice in the Morris water maze (MWM) and Y-maze tests, together with a serious depression of in vivo hippocampal long-term potentiation (LTP) in the CA1 region of the mice. Importantly, this treatment caused significant increases in CysLT₁R expression and subsequent NF-κB signaling, caspase-3 activation and Bcl-2 downregulation in the hippocampus or prefrontal cortex. Oral administration of pranlukast at 0.4 or 0.8 mg/kg for 4 wk significantly reversed Aβ₁₋₄₂-induced impairments of cognitive function and hippocampal LTP in mice. Furthermore, pranlukast reversed Aβ₁₋₄₂-induced CysLT₁R upregulation, and markedly suppressed the Aβ₁₋₄₂-triggered NF-κB pathway, caspase-3 activation and Bcl-2 downregulation in the hippocampus and prefrontal cortex in mice. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay confirmed its presence in the brain after oral administration of pranlukast in mice. These data disclose novel findings about the therapeutic potential of pranlukast, revealing a previously unknown therapeutic possibility to treat memory deficits associated with AD.
Collapse
|
146
|
Song JW, Choi BS. Mercury induced the Accumulation of Amyloid Beta (Aβ) in PC12 Cells: The Role of Production and Degradation of Aβ. Toxicol Res 2014; 29:235-40. [PMID: 24578793 PMCID: PMC3936175 DOI: 10.5487/tr.2013.29.4.235] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 01/15/2023] Open
Abstract
Extracellular accumulation of amyloid beta protein (Aβ) plays a central role in Alzheimer’s disease (AD). Some metals, such as copper, lead, and aluminum can affect the Aβ accumulation in the brain. However, the effect of mercury on Aβ accumulation in the brain is not clear. Thus, this study was proposed to estimate whether mercury concentration affects Aβ accumulation in PC12 cells. We treated 10, 100, and 1000 nM HgCl2 (Hg) or CH3HgCl2 (MeHg) for 48 hr in PC12 cells. After treatment, Aβ40 in culture medium increased in a dose- and time-dependent manner. Hg and MeHg increased amyloid precursor protein (APP), which is related to Aβ production. Neprilysin (NEP) levels in PC12 cells were decreased by Hg and MeHg treatment. These results suggested that Hg induced Aβ accumulation through APP overproduction and reduction of NEP.
Collapse
Affiliation(s)
- Ji-Won Song
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Byung-Sun Choi
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
147
|
Sharifulina SA, Komandirov MA, Uzdensky AB. Epigenetic regulation of death of crayfish glial cells but not neurons induced by photodynamic impact. Brain Res Bull 2014; 102:15-21. [PMID: 24502940 DOI: 10.1016/j.brainresbull.2014.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/19/2014] [Accepted: 01/22/2014] [Indexed: 12/30/2022]
Abstract
Epigenetic processes are involved in regulation of cell functions and survival, but their role in responses of neurons and glial cells to oxidative injury is insufficiently explored. Here, we studied the role of DNA methylation and histone deacetylation in reactions of neurons and surrounding glial cells to photodynamic treatment that induces oxidative stress and cell death. Isolated crayfish stretch receptor consisting of a single mechanoreceptor neuron surrounded by glial cells was photosensitized with aluminum phthalocyanine Photosens that induced neuron inactivation, necrosis of the neuron and glia, and glial apoptosis. Inhibitors of DNA methylation 5-azacytidine and 5-aza-2'-deoxycytidine (decitabine) reduced the level of PDT-induced necrosis of glial cells but not neurons by 1.3 and 2.0 times, respectively, and did not significantly influence apoptosis of glial cells. Histone deacetylase inhibitors valproic acid and trichostatin A inhibited PDT-induced both necrosis and apoptosis of satellite glial cells but not neurons by 1.6-2.7 times. Thus, in the crayfish stretch receptor DNA methylation and histone deacetylation are involved in epigenetic control of glial but not neuronal necrosis. Histone deacetylation also participates in glial apoptosis.
Collapse
Affiliation(s)
- S A Sharifulina
- A.B. Kogan Research Institute for Neurocybernetics, Southern Federal University, Rostov-on-Don 344090, Russia
| | - M A Komandirov
- Department of Biophysics and Biocybernetics, Southern Federal University, Rostov-on-Don 344090, Russia
| | - A B Uzdensky
- A.B. Kogan Research Institute for Neurocybernetics, Southern Federal University, Rostov-on-Don 344090, Russia; Department of Biophysics and Biocybernetics, Southern Federal University, Rostov-on-Don 344090, Russia.
| |
Collapse
|
148
|
Adwan L, Subaiea GM, Zawia NH. Tolfenamic acid downregulates BACE1 and protects against lead-induced upregulation of Alzheimer's disease related biomarkers. Neuropharmacology 2014; 79:596-602. [PMID: 24462621 DOI: 10.1016/j.neuropharm.2014.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
Environmental exposure to lead (Pb) early in life results in a latent upregulation of genes and products associated with Alzheimer's disease (AD), particularly the plaque forming protein amyloid beta (Aβ). Furthermore, animals exposed to Pb as infants develop cognitive decline and memory impairments in old age. Studies from our lab demonstrated that tolfenamic acid lowers the levels of the amyloid β precursor protein (APP) and its aggregative cleavage product Aβ by inducing the degradation of the transcription factor specificity protein 1 (Sp1). These changes were accompanied by cognitive improvement in transgenic APP knock-in mice. In this study, we examined the effects of tolfenamic acid on beta site APP cleaving enzyme 1 (BACE1) which is responsible for Aβ production and tested its ability to reverse Pb-induced upregulation in the amyloidogenic pathway. Mice were administered tolfenamic acid for one month and BACE1 gene expression as well as its enzymatic activity were analyzed in the cerebral cortex. Tolfenamic acid was also tested for its ability to reverse changes in Sp1, APP and Aβ that were upregulated by Pb in vitro. Differentiated SH-SY5Y neuroblastoma cells were either left unexposed, or sequentially exposed to Pb followed by tolfenamic acid. Our results show that tolfenamic acid reduced BACE1 gene expression and enzyme activity in mice. In neuroblastoma cells, Pb upregulated Sp1, APP and Aβ, while tolfenamic acid lowered their expression. These results along with previous data from our lab provide evidence that tolfenamic acid, a drug that has been used for decades for migraine, represents a candidate which can reduce the pathology of AD and may mitigate the damage of environmental risk factors associated with this disease.
Collapse
Affiliation(s)
- Lina Adwan
- Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Gehad M Subaiea
- Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Nasser H Zawia
- Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA; Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
149
|
Ho SM, Johnson A, Tarapore P, Janakiram V, Zhang X, Leung YK. Environmental epigenetics and its implication on disease risk and health outcomes. ILAR J 2014; 53:289-305. [PMID: 23744968 DOI: 10.1093/ilar.53.3-4.289] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This review focuses on how environmental factors through epigenetics modify disease risk and health outcomes. Major epigenetic events, such as histone modifications, DNA methylation, and microRNA expression, are described. The function of dose, duration, composition, and window of exposure in remodeling the individual's epigenetic terrain and disease susceptibility are addressed. The ideas of lifelong editing of early-life epigenetic memories, transgenerational effects through germline transmission, and the potential role of hydroxylmethylation of cytosine in developmental reprogramming are discussed. Finally, the epigenetic effects of several major classes of environmental factors are reviewed in the context of pathogenesis of disease. These include endocrine disruptors, tobacco smoke, polycyclic aromatic hydrocarbons, infectious pathogens, particulate matter, diesel exhaust particles, dust mites, fungi, heavy metals, and other indoor and outdoor pollutants. We conclude that the summation of epigenetic modifications induced by multiple environmental exposures, accumulated over time, represented as broad or narrow, acute or chronic, developmental or lifelong, may provide a more precise assessment of risk and consequences. Future investigations may focus on their use as readouts or biomarkers of the totality of past exposure for the prediction of future disease risk and the prescription of effective countermeasures.
Collapse
Affiliation(s)
- Shuk-Mei Ho
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
| | | | | | | | | | | |
Collapse
|
150
|
Zetzsche T, Rujescu D, Hardy J, Hampel H. Advances and perspectives from genetic research: development of biological markers in Alzheimer’s disease. Expert Rev Mol Diagn 2014; 10:667-90. [PMID: 20629514 DOI: 10.1586/erm.10.48] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Thomas Zetzsche
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Nussbaumstrasse 7, Munich, Germany. thomas.zetzsche@ med.uni-muenchen.de
| | | | | | | |
Collapse
|