101
|
Metier CC, Peng J, Xu Y, Wootton H, Riesi V, Lynham S, Zadi S, Turner C, Wand ME, Mark Sutton J, Wagner GK. Profiling protein expression in Klebsiella pneumoniae with a carbohydrate-based covalent probe. Bioorg Med Chem 2021; 30:115900. [PMID: 33352389 DOI: 10.1016/j.bmc.2020.115900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
We report the application of a covalent probe based on a d-glucosamine scaffold for the profiling of the bacterial pathogen Klebsiella pneumoniae. Incubation of K. pneumoniae lysates with the probe followed by electrophoretic separation and in-gel fluorescence detection allowed the generation of strain-specific signatures and the differentiation of a carbapenem-resistant strain. The labelling profile of the probe was independent of its anomeric configuration and included several low-abundance proteins not readily detectable by conventional protein staining. Initial target identification experiments by mass spectrometry suggest that target proteins include several carbohydrate-recognising proteins, which indicates that the sugar scaffold may have a role for target recognition.
Collapse
Affiliation(s)
- Camille C Metier
- King's College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Jiaming Peng
- King's College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Yong Xu
- King's College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Hayley Wootton
- King's College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Victoire Riesi
- King's College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Steven Lynham
- King's College London, Proteomics Facility, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Sirine Zadi
- Public Health England, Technology Development Group, Porton Down, Salisbury, Wiltshire SP4 0JG, United Kingdom
| | - Carrie Turner
- Public Health England, Technology Development Group, Porton Down, Salisbury, Wiltshire SP4 0JG, United Kingdom
| | - Matthew E Wand
- Public Health England, Technology Development Group, Porton Down, Salisbury, Wiltshire SP4 0JG, United Kingdom
| | - J Mark Sutton
- Public Health England, Technology Development Group, Porton Down, Salisbury, Wiltshire SP4 0JG, United Kingdom
| | - Gerd K Wagner
- Queen's University Belfast, School of Pharmacy, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|
102
|
Rookyard AW, Paulech J, Thyssen S, Liddy KA, Puckeridge M, Li DK, White MY, Cordwell SJ. A Global Profile of Reversible and Irreversible Cysteine Redox Post-Translational Modifications During Myocardial Ischemia/Reperfusion Injury and Antioxidant Intervention. Antioxid Redox Signal 2021; 34:11-31. [PMID: 32729339 DOI: 10.1089/ars.2019.7765] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aims: Cysteine (Cys) is a major target for redox post-translational modifications (PTMs) that occur in response to changes in the cellular redox environment. We describe multiplexed, peptide-based enrichment and quantitative mass spectrometry (MS) applied to globally profile reversible redox Cys PTM in rat hearts during ischemia/reperfusion (I/R) in the presence or absence of an aminothiol antioxidant, N-2-mercaptopropionylglycine (MPG). Parallel fractionation also allowed identification of irreversibly oxidized Cys peptides (Cys-SO2H/SO3H). Results: We identified 4505 reversibly oxidized Cys peptides of which 1372 were significantly regulated by ischemia and/or I/R. An additional 219 peptides (247 sites) contained Cys-SO2H/Cys-SO3H modifications, and these were predominantly identified from hearts subjected to I/R (n = 168 peptides). Parallel reaction monitoring MS (PRM-MS) enabled relative quantitation of 34 irreversibly oxidized Cys peptides. MPG attenuated a large cluster of I/R-associated reversibly oxidized Cys peptides and irreversible Cys oxidation to less than nonischemic controls (n = 24 and 34 peptides, respectively). PRM-MS showed that Cys sites oxidized during ischemia and/or I/R and "protected" by MPG were largely mitochondrial, and were associated with antioxidant functions (peroxiredoxins 5 and 6) and metabolic processes, including glycolysis. Metabolomics revealed I/R induced changes in glycolytic intermediates that were reversed in the presence of MPG, which were consistent with irreversible PTM of triose phosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), altered GAPDH enzyme activity, and reduced I/R glycolytic payoff as evidenced by adenosine triphosphate and NADH levels. Innovation: Novel enrichment and PRM-MS approaches developed here enabled large-scale relative quantitation of Cys redox sites modified by reversible and irreversible PTM during I/R and antioxidant remediation. Conclusions: Cys sites identified here are targets of reactive oxygen species that can contribute to protein dysfunction and the pathogenesis of I/R.
Collapse
Affiliation(s)
- Alexander W Rookyard
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Jana Paulech
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Stine Thyssen
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Kiersten A Liddy
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Max Puckeridge
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Desmond K Li
- Charles Perkins Centre, The University of Sydney, Sydney, Australia.,Discipline of Pathology, School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Melanie Y White
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, Australia.,Discipline of Pathology, School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Stuart J Cordwell
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, Australia.,Discipline of Pathology, School of Medical Sciences, The University of Sydney, Sydney, Australia.,Sydney Mass Spectrometry, The University of Sydney, Sydney, Australia
| |
Collapse
|
103
|
Dos Santos APA, da Silva JK, Neri JM, Neves ACO, de Lima DF, Menezes FG. Nucleophilicity of cysteine and related biothiols and the development of fluorogenic probes and other applications. Org Biomol Chem 2020; 18:9398-9427. [PMID: 33200155 DOI: 10.1039/d0ob01754j] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biothiols such as l-cysteine, l-homocysteine, and glutathione play essential roles in many biological processes, and are directly associated with several health conditions. Therefore, the development of fast, selective, sensitive, and inexpensive methods for quantitatively analyzing biothiols in aqueous solution, but especially in biological samples, is a very attractive research field. In this feature review, we have approached the relevance of biothiols' nucleophilicity to develop selective fluorogenic probes. Since biothiols have considerable structural similarity, relevant strategies are in full development, including several fluorescent molecular platforms, specific receptor sites, reaction conditions, and optical responses. All of these features are properly presented and discussed. Biothiol sensing protocols are based on traditional organic chemistry reactions such as (hetero)aromatic nucleophilic substitution, addition, and substitution at carbonyl carbon, conjugate addition, and nucleophilic substitution at saturated carbon, amongst others including combined processes; furthermore, mechanistic aspects are detailed herein, including some interesting historical contexts. The feasibility of related fluorogenic probes is illustrated by analysis in complex matrices such as serum, cells, tissues, and animal models. Applications of these reactions in more complex systems such as sulfhydryl-based peptides and proteins are also presented, aiming at functionalizing and detecting these nucleophiles. Most literature cited in this review is recent; however, some other prominent works are also detailed. It is believed that this review may be accessible for many academic levels and may efficiently contribute not only to popularizing science but also to the rational development of fluorogenic probes for biothiol sensing.
Collapse
Affiliation(s)
- Alane P A Dos Santos
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil.
| | - Jordan K da Silva
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil.
| | - Jannyely M Neri
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil.
| | - Ana C O Neves
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil.
| | - Djalan F de Lima
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil.
| | - Fabrício G Menezes
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil.
| |
Collapse
|
104
|
Barbarino F, Wäschenbach L, Cavalho-Lemos V, Dillenberger M, Becker K, Gohlke H, Cortese-Krott MM. Targeting spectrin redox switches to regulate the mechanoproperties of red blood cells. Biol Chem 2020; 402:317-331. [PMID: 33544503 DOI: 10.1515/hsz-2020-0293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022]
Abstract
The mechanical properties of red blood cells (RBCs) are fundamental for their physiological role as gas transporters. RBC flexibility and elasticity allow them to survive the hemodynamic changes in the different regions of the vascular tree, to dynamically contribute to the flow thereby decreasing vascular resistance, and to deform during the passage through narrower vessels. RBC mechanoproperties are conferred mainly by the structural characteristics of their cytoskeleton, which consists predominantly of a spectrin scaffold connected to the membrane via nodes of actin, ankyrin and adducin. Changes in redox state and treatment with thiol-targeting molecules decrease the deformability of RBCs and affect the structure and stability of the spectrin cytoskeleton, indicating that the spectrin cytoskeleton may contain redox switches. In this perspective review, we revise current knowledge about the structural and functional characterization of spectrin cysteine redox switches and discuss the current lines of research aiming to understand the role of redox regulation on RBC mechanical properties. These studies may provide novel functional targets to modulate RBC function, blood viscosity and flow, and tissue perfusion in disease conditions.
Collapse
Affiliation(s)
- Frederik Barbarino
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University, Postfach 128, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| | - Lucas Wäschenbach
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| | - Virginia Cavalho-Lemos
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University, Postfach 128, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| | - Melissa Dillenberger
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, D-35392, Giessen, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, D-35392, Giessen, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Miriam M Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich Heine University, Postfach 128, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
105
|
Abstract
Significance: Oxidative stress in moderation positively affects homeostasis through signaling, while in excess it is associated with adverse health outcomes. Both activities are generally attributed to reactive oxygen species (ROS); hydrogen peroxide as the signal, and cysteines on regulatory proteins as the target. However, using antioxidants to affect signaling or benefit health has not consistently translated into expected outcomes, or when it does, the mechanism is often unclear. Recent Advances: Reactive sulfur species (RSS) were integral in the origin of life and throughout much of evolution. Sophisticated metabolic pathways that evolved to regulate RSS were easily "tweaked" to deal with ROS due to the remarkable similarities between the two. However, unlike ROS, RSS are stored, recycled, and chemically more versatile. Despite these observations, the relevance and regulatory functions of RSS in extant organisms are generally underappreciated. Critical Issues: A number of factors bias observations in favor of ROS over RSS. Research conducted in room air is hyperoxic to cells, and promotes ROS production and RSS oxidation. Metabolic rates of rodent models greatly exceed those of humans; does this favor ROS? Analytical methods designed to detect ROS also respond to RSS. Do these disguise the contributions of RSS? Future Directions: Resolving the ROS/RSS issue is vital to understand biology in general and human health in particular. Improvements in experimental design and analytical methods are crucial. Perhaps the most important is an appreciation of all the attributes of RSS and keeping an open mind.
Collapse
Affiliation(s)
- Kenneth R Olson
- Department of Physiology, Indiana University School of Medicine-South Bend, South Bend, Indiana, USA
| |
Collapse
|
106
|
Hall DR, Yeung K, Peng H. Monohaloacetic Acids and Monohaloacetamides Attack Distinct Cellular Proteome Thiols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15191-15201. [PMID: 33170008 DOI: 10.1021/acs.est.0c03144] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Disinfection byproduct (DBP) exposure has been linked to multiple adverse health outcomes. However, the molecular initiating events by which DBPs induce their toxicities remain unclear. Herein, we combined reporter cell lines and activity-based protein profiling (ABPP) chemical proteomics to identify the protein targets of three monohaloacetic acids (mHAAs) and three monohaloacetamides (mHAMs), at the proteome-wide level. While mHAAs and mHAMs have similar potencies in reducing MTT activity, mHAMs induced greater Nrf2-mediated oxidative stress responses, demonstrating their distinct toxicity pathways. ABPP on crude cell lysates suggested that general proteome thiol reactivity correlates with cytotoxicity. Interestingly, live cell ABPP results revealed class-specific proteins attacked by mHAMs or mHAAs. Subsequent proteomic analysis identified >100 unique targets per DBP. mHAMs preferentially react with redox proteins including disulfide oxidoreductase enzymes, accounting for their stronger Nrf2 responses. To further probe alkylation mechanisms, we directly monitored protein adducts and identified 120 and 37 unique peptides with iodoacetamide and iodoacetic acid adducts, respectively. Of the latter, we confirmed glyceraldehyde-3-phosphate dehydrogenase as a key target of IAA, specifically attacking the catalytic Cys 152. This is the first study reporting the distinct cellular protein targets of mHAAs and mHAMs at the proteome-wide level, which highlights their different toxicity pathways despite their similar structures.
Collapse
Affiliation(s)
- David Ross Hall
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S3H6, Canada
- School of the Environment, University of Toronto, Toronto, Ontario M5S3H6, Canada
| | - Kirsten Yeung
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S3H6, Canada
- School of the Environment, University of Toronto, Toronto, Ontario M5S3H6, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S3H6, Canada
- School of the Environment, University of Toronto, Toronto, Ontario M5S3H6, Canada
| |
Collapse
|
107
|
Martinez-Banaclocha M. Proteomic Complexity in Parkinson's Disease: A Redox Signaling Perspective of the Pathophysiology and Progression. Neuroscience 2020; 453:287-300. [PMID: 33212217 DOI: 10.1016/j.neuroscience.2020.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/19/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a prevalent age-related neurodegenerative disorder that results in the progressive impairment of motor and cognitive functions. The majority of PD cases are sporadic, and only 5% of patients are associated with mutations in a few genes, which cause the early onset or familial PD. Environmental toxic substances and the individual genetic susceptibility play a role in sporadic cases, but despite significant efforts to treat and prevent the disease, the pathophysiological mechanisms leading to its onset and progress are not fully understood. In the last decade, genomic and proteomic studies have shown an increasing molecular complexity of sporadic PD, suggesting that a broad spectrum of biochemical pathways underlie its progression. Recent investigations and the literature review suggest the potential role of deregulation of the sensitive-cysteine proteome as a convergent pathogenic mechanism that may contribute to this complexity, opening new therapeutic opportunities.
Collapse
|
108
|
Williamson J, Davison G. Targeted Antioxidants in Exercise-Induced Mitochondrial Oxidative Stress: Emphasis on DNA Damage. Antioxidants (Basel) 2020; 9:E1142. [PMID: 33213007 PMCID: PMC7698504 DOI: 10.3390/antiox9111142] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Exercise simultaneously incites beneficial (e.g., signal) and harming (e.g., damage to macromolecules) effects, likely through the generation of reactive oxygen and nitrogen species (RONS) and downstream changes to redox homeostasis. Given the link between nuclear DNA damage and human longevity/pathology, research attempting to modulate DNA damage and restore redox homeostasis through non-selective pleiotropic antioxidants has yielded mixed results. Furthermore, until recently the role of oxidative modifications to mitochondrial DNA (mtDNA) in the context of exercising humans has largely been ignored. The development of antioxidant compounds which specifically target the mitochondria has unveiled a number of exciting avenues of exploration which allow for more precise discernment of the pathways involved with the generation of RONS and mitochondrial oxidative stress. Thus, the primary function of this review, and indeed its novel feature, is to highlight the potential roles of mitochondria-targeted antioxidants on perturbations to mitochondrial oxidative stress and the implications for exercise, with special focus on mtDNA damage. A brief synopsis of the current literature addressing the sources of mitochondrial superoxide and hydrogen peroxide, and available mitochondria-targeted antioxidants is also discussed.
Collapse
Affiliation(s)
- Josh Williamson
- Sport and Exercise Sciences Research Institute, Ulster University, Jordanstown Campus, Newtownabbey BT37 0QB, Northern Ireland, UK;
| | | |
Collapse
|
109
|
Lee LY, Pandey AK, Maron BA, Loscalzo J. Network medicine in Cardiovascular Research. Cardiovasc Res 2020; 117:2186-2202. [PMID: 33165538 DOI: 10.1093/cvr/cvaa321] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/08/2020] [Accepted: 10/30/2020] [Indexed: 12/21/2022] Open
Abstract
The ability to generate multi-omics data coupled with deeply characterizing the clinical phenotype of individual patients promises to improve understanding of complex cardiovascular pathobiology. There remains an important disconnection between the magnitude and granularity of these data and our ability to improve phenotype-genotype correlations for complex cardiovascular diseases. This shortcoming may be due to limitations associated with traditional reductionist analytical methods, which tend to emphasize a single molecular event in the pathogenesis of diseases more aptly characterized by crosstalk between overlapping molecular pathways. Network medicine is a rapidly growing discipline that considers diseases as the consequences of perturbed interactions between multiple interconnected biological components. This powerful integrative approach has enabled a number of important discoveries in complex disease mechanisms. In this review, we introduce the basic concepts of network medicine and highlight specific examples by which this approach has accelerated cardiovascular research. We also review how network medicine is well-positioned to promote rational drug design for patients with cardiovascular diseases, with particular emphasis on advancing precision medicine.
Collapse
Affiliation(s)
- Laurel Y Lee
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Arvind K Pandey
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Bradley A Maron
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.,Department of Cardiology, Boston VA Healthcare System, Boston, MA, USA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
110
|
Musaogullari A, Chai YC. Redox Regulation by Protein S-Glutathionylation: From Molecular Mechanisms to Implications in Health and Disease. Int J Mol Sci 2020; 21:ijms21218113. [PMID: 33143095 PMCID: PMC7663550 DOI: 10.3390/ijms21218113] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
S-glutathionylation, the post-translational modification forming mixed disulfides between protein reactive thiols and glutathione, regulates redox-based signaling events in the cell and serves as a protective mechanism against oxidative damage. S-glutathionylation alters protein function, interactions, and localization across physiological processes, and its aberrant function is implicated in various human diseases. In this review, we discuss the current understanding of the molecular mechanisms of S-glutathionylation and describe the changing levels of expression of S-glutathionylation in the context of aging, cancer, cardiovascular, and liver diseases.
Collapse
|
111
|
Lorenzen I, Eble JA, Hanschmann EM. Thiol switches in membrane proteins - Extracellular redox regulation in cell biology. Biol Chem 2020; 402:253-269. [PMID: 33108336 DOI: 10.1515/hsz-2020-0266] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022]
Abstract
Redox-mediated signal transduction depends on the enzymatic production of second messengers such as hydrogen peroxide, nitric oxide and hydrogen sulfite, as well as specific, reversible redox modifications of cysteine-residues in proteins. So-called thiol switches induce for instance conformational changes in specific proteins that regulate cellular pathways e.g., cell metabolism, proliferation, migration, gene expression and inflammation. Reduction, oxidation and disulfide isomerization are controlled by oxidoreductases of the thioredoxin family, including thioredoxins, glutaredoxins, peroxiredoxins and protein dsisulfide isomerases. These proteins are located in different cellular compartments, interact with substrates and catalyze specific reactions. Interestingly, some of these proteins are released by cells. Their extracellular functions and generally extracellular redox control have been widely underestimated. Here, we give an insight into extracellular redox signaling, extracellular thiol switches and their regulation by secreted oxidoreductases and thiol-isomerases, a topic whose importance has been scarcely studied so far, likely due to methodological limitations. We focus on the secreted redox proteins and characterized thiol switches in the ectodomains of membrane proteins, such as integrins and the metalloprotease ADAM17, which are among the best-characterized proteins and discuss their underlying mechanisms and biological implications.
Collapse
Affiliation(s)
- Inken Lorenzen
- Centre of Biochemistry and Molecular Biology, Structural Biology, Christian-Albrecht University of Kiel, Am Botanischen Garten 1-9, D-24118Kiel, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, D-48149Münster, Germany
| | - Eva-Maria Hanschmann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Life Science Center, Merowingerplatz 1a, D-40225Düsseldorf, Germany
| |
Collapse
|
112
|
Kadenbach B. Complex IV - The regulatory center of mitochondrial oxidative phosphorylation. Mitochondrion 2020; 58:296-302. [PMID: 33069909 DOI: 10.1016/j.mito.2020.10.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/01/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022]
Abstract
ATP, the universal energy currency in all living cells, is mainly synthesized in mitochondria by oxidative phosphorylation (OXPHOS). The final and rate limiting step of the respiratory chain is cytochrome c oxidase (COX) which represents the regulatory center of OXPHOS. COX is regulated through binding of various effectors to its "supernumerary" subunits, by reversible phosphorylation, and by expression of subunit isoforms. Of particular interest is its feedback inhibition by ATP, the final product of OXPHOS. This "allosteric ATP-inhibition" of phosphorylated and dimeric COX maintains a low and healthy mitochondrial membrane potential (relaxed state), and prevents the formation of ROS (reactive oxygen species) which are known to cause numerous diseases. Excessive work and stress abolish this feedback inhibition of COX by Ca2+-activated dephosphorylation which leads to monomerization and movement of NDUFA4 from complex I to COX with higher rates of COX activity and ATP synthesis (active state) but increased ROS formation and decreased efficiency.
Collapse
|
113
|
Pisoschi AM, Pop A, Iordache F, Stanca L, Predoi G, Serban AI. Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status. Eur J Med Chem 2020; 209:112891. [PMID: 33032084 DOI: 10.1016/j.ejmech.2020.112891] [Citation(s) in RCA: 325] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/30/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022]
Abstract
The present review paper focuses on the chemistry of oxidative stress mitigation by antioxidants. Oxidative stress is understood as a lack of balance between the pro-oxidant and the antioxidant species. Reactive oxygen species in limited amounts are necessary for cell homeostasis and redox signaling. Excessive reactive oxygenated/nitrogenated species production, which counteracts the organism's defense systems, is known as oxidative stress. Sustained attack of endogenous and exogenous ROS results in conformational and oxidative alterations in key biomolecules. Chronic oxidative stress is associated with oxidative modifications occurring in key biomolecules: lipid peroxidation, protein carbonylation, carbonyl (aldehyde/ketone) adduct formation, nitration, sulfoxidation, DNA impairment such strand breaks or nucleobase oxidation. Oxidative stress is tightly linked to the development of cancer, diabetes, neurodegeneration, cardiovascular diseases, rheumatoid arthritis, kidney disease, eye disease. The deleterious action of reactive oxygenated species and their role in the onset and progression of pathologies are discussed. The results of oxidative attack become themselves sources of oxidative stress, becoming part of a vicious cycle that amplifies oxidative impairment. The term antioxidant refers to a compound that is able to impede or retard oxidation, acting at a lower concentration compared to that of the protected substrate. Antioxidant intervention against the radicalic lipid peroxidation can involve different mechanisms. Chain breaking antioxidants are called primary antioxidants, acting by scavenging radical species, converting them into more stable radicals or non-radical species. Secondary antioxidants quench singlet oxygen, decompose peroxides, chelate prooxidative metal ions, inhibit oxidative enzymes. Moreover, four reactivity-based lines of defense have been identified: preventative antioxidants, radical scavengers, repair antioxidants, and those relying on adaptation mechanisms. The specific mechanism of a series of endogenous and exogenous antioxidants in particular aspects of oxidative stress, is detailed. The final section resumes critical conclusions regarding antioxidant supplementation.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Aneta Pop
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Gabriel Predoi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
| |
Collapse
|
114
|
Cobley JN. Mechanisms of Mitochondrial ROS Production in Assisted Reproduction: The Known, the Unknown, and the Intriguing. Antioxidants (Basel) 2020; 9:E933. [PMID: 33003362 PMCID: PMC7599503 DOI: 10.3390/antiox9100933] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
The consensus that assisted reproduction technologies (ART), like in vitro fertilization, to induce oxidative stress (i.e., the known) belies how oocyte/zygote mitochondria-a major presumptive oxidative stressor-produce reactive oxygen species (ROS) with ART being unknown. Unravelling how oocyte/zygote mitochondria produce ROS is important for disambiguating the molecular basis of ART-induced oxidative stress and, therefore, to rationally target it (e.g., using site-specific mitochondria-targeted antioxidants). I review the known mechanisms of ROS production in somatic mitochondria to critique how oocyte/zygote mitochondria may produce ROS (i.e., the unknown). Several plausible site- and mode-defined mitochondrial ROS production mechanisms in ART are proposed. For example, complex I catalyzed reverse electron transfer-mediated ROS production is conceivable when oocytes are initially extracted due to at least a 10% increase in molecular dioxygen exposure (i.e., the intriguing). To address the term oxidative stress being used without recourse to the underlying chemistry, I use the species-specific spectrum of biologically feasible reactions to define plausible oxidative stress mechanisms in ART. Intriguingly, mitochondrial ROS-derived redox signals could regulate embryonic development (i.e., their production could be beneficial). Their potential beneficial role raises the clinical challenge of attenuating oxidative damage while simultaneously preserving redox signaling. This discourse sets the stage to unravel how mitochondria produce ROS in ART, and their biological roles from oxidative damage to redox signaling.
Collapse
Affiliation(s)
- James N Cobley
- Redox Biology Group, Institute for Health Sciences, University of the Highlands and Islands, Old Perth Road, Inverness IV2 3JH, UK
| |
Collapse
|
115
|
Francioso A, Baseggio Conrado A, Mosca L, Fontana M. Chemistry and Biochemistry of Sulfur Natural Compounds: Key Intermediates of Metabolism and Redox Biology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8294158. [PMID: 33062147 PMCID: PMC7545470 DOI: 10.1155/2020/8294158] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/28/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022]
Abstract
Sulfur contributes significantly to nature chemical diversity and thanks to its particular features allows fundamental biological reactions that no other element allows. Sulfur natural compounds are utilized by all living beings and depending on the function are distributed in the different kingdoms. It is no coincidence that marine organisms are one of the most important sources of sulfur natural products since most of the inorganic sulfur is metabolized in ocean environments where this element is abundant. Terrestrial organisms such as plants and microorganisms are also able to incorporate sulfur in organic molecules to produce primary metabolites (e.g., methionine, cysteine) and more complex unique chemical structures with diverse biological roles. Animals are not able to fix inorganic sulfur into biomolecules and are completely dependent on preformed organic sulfurous compounds to satisfy their sulfur needs. However, some higher species such as humans are able to build new sulfur-containing chemical entities starting especially from plants' organosulfur precursors. Sulfur metabolism in humans is very complicated and plays a central role in redox biochemistry. The chemical properties, the large number of oxidation states, and the versatile reactivity of the oxygen family chalcogens make sulfur ideal for redox biological reactions and electron transfer processes. This review will explore sulfur metabolism related to redox biochemistry and will describe the various classes of sulfur-containing compounds spread all over the natural kingdoms. We will describe the chemistry and the biochemistry of well-known metabolites and also of the unknown and poorly studied sulfur natural products which are still in search for a biological role.
Collapse
Affiliation(s)
- Antonio Francioso
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
- Department of Organic Chemistry, Instituto Universitario de Bio-Orgánica Antonio González, University of La Laguna, La Laguna, 38296 Tenerife, Spain
| | - Alessia Baseggio Conrado
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
| | - Luciana Mosca
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
| | - Mario Fontana
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
116
|
Kadenbach B. Regulation of cytochrome c oxidase contributes to health and optimal life. World J Biol Chem 2020; 11:52-61. [PMID: 33024517 PMCID: PMC7520645 DOI: 10.4331/wjbc.v11.i2.52] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/01/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
The generation of cellular energy in the form of ATP occurs mainly in mitochondria by oxidative phosphorylation. Cytochrome c oxidase (CytOx), the oxygen accepting and rate-limiting step of the respiratory chain, regulates the supply of variable ATP demands in cells by “allosteric ATP-inhibition of CytOx.” This mechanism is based on inhibition of oxygen uptake of CytOx at high ATP/ADP ratios and low ferrocytochrome c concentrations in the mitochondrial matrix via cooperative interaction of the two substrate binding sites in dimeric CytOx. The mechanism keeps mitochondrial membrane potential ΔΨm and reactive oxygen species (ROS) formation at low healthy values. Stress signals increase cytosolic calcium leading to Ca2+-dependent dephosphorylation of CytOx subunit I at the cytosolic side accompanied by switching off the allosteric ATP-inhibition and monomerization of CytOx. This is followed by increase of ΔΨm and formation of ROS. A hypothesis is presented suggesting a dynamic change of binding of NDUFA4, originally identified as a subunit of complex I, between monomeric CytOx (active state with high ΔΨm, high ROS and low efficiency) and complex I (resting state with low ΔΨm, low ROS and high efficiency).
Collapse
Affiliation(s)
- Bernhard Kadenbach
- Department of Chemistry/Biochemistry, Fachbereich Chemie, Philipps-Universität Marburg, Marburg D-35043, Hessen, Germany
| |
Collapse
|
117
|
Kosmachevskaya OV, Nasybullina EI, Shumaev KB, Novikova NN, Topunov AF. Effect of Iron–Nitric Oxide Complexes on the Reactivity of Hemoglobin Cysteines. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820050099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
118
|
Finelli MJ. Redox Post-translational Modifications of Protein Thiols in Brain Aging and Neurodegenerative Conditions-Focus on S-Nitrosation. Front Aging Neurosci 2020; 12:254. [PMID: 33088270 PMCID: PMC7497228 DOI: 10.3389/fnagi.2020.00254] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species and reactive nitrogen species (RONS) are by-products of aerobic metabolism. RONS trigger a signaling cascade that can be transduced through oxidation-reduction (redox)-based post-translational modifications (redox PTMs) of protein thiols. This redox signaling is essential for normal cellular physiology and coordinately regulates the function of redox-sensitive proteins. It plays a particularly important role in the brain, which is a major producer of RONS. Aberrant redox PTMs of protein thiols can impair protein function and are associated with several diseases. This mini review article aims to evaluate the role of redox PTMs of protein thiols, in particular S-nitrosation, in brain aging, and in neurodegenerative diseases. It also discusses the potential of using redox-based therapeutic approaches for neurodegenerative conditions.
Collapse
Affiliation(s)
- Mattéa J Finelli
- School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
119
|
Kopacz A, Kloska D, Forman HJ, Jozkowicz A, Grochot-Przeczek A. Beyond repression of Nrf2: An update on Keap1. Free Radic Biol Med 2020; 157:63-74. [PMID: 32234331 PMCID: PMC7732858 DOI: 10.1016/j.freeradbiomed.2020.03.023] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/04/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Nrf2 (NFE2L2 - nuclear factor (erythroid-derived 2)-like 2) is a transcription factor, which is repressed by interaction with a redox-sensitive protein Keap1 (Kelch-like ECH-associated protein 1). Deregulation of Nrf2 transcriptional activity has been described in the pathogenesis of multiple diseases, and the Nrf2/Keap1 axis has emerged as a crucial modulator of cellular homeostasis. Whereas the significance of Nrf2 in the modulation of biological processes has been well established and broadly discussed in detail, the focus on Keap1 rarely goes beyond the regulation of Nrf2 activity and redox sensing. However, recent studies and scrutinized analysis of available data point to Keap1 as an intriguing and potent regulator of cellular function. This review aims to shed more light on Keap1 structure, interactome, regulation and non-canonical functions, thereby enhancing its significance in cell biology. We also intend to highlight the impact of balance between Keap1 and Nrf2 in the maintenance of cellular homeostasis.
Collapse
Affiliation(s)
- Aleksandra Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Damian Kloska
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Henry Jay Forman
- Andrus Gerontology Center of the Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland.
| |
Collapse
|
120
|
Ille AM, Kishel E, Bodea R, Ille A, Lamont H, Amico-Ruvio S. Protein LY6E as a candidate for mediating transport of adeno-associated virus across the human blood-brain barrier. J Neurovirol 2020; 26:769-778. [PMID: 32839948 DOI: 10.1007/s13365-020-00890-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 07/14/2020] [Accepted: 08/04/2020] [Indexed: 01/06/2023]
Abstract
The blood-brain barrier (BBB) is a major obstacle for the treatment of central nervous system (CNS) disorders. Significant progress has been made in developing adeno-associated virus (AAV) variants with increased ability to cross the BBB in mice. However, these variants are not efficacious in non-human primates. Herein, we employed various bioinformatic techniques to identify lymphocyte antigen-6E (LY6E) as a candidate for mediating transport of AAV across the human BBB based on the previously determined mechanism of transport in mice. Our results provide insight into future discovery and optimization of AAV variants for CNS gene delivery in humans.
Collapse
Affiliation(s)
- Alexander M Ille
- Graduate School of Biomedical Sciences, Rutgers University, Newark, NJ, 07103, USA.,STEM Biomedical, Kitchener, ON, N2M 3B9, Canada
| | - Eric Kishel
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Raoul Bodea
- STEM Biomedical, Kitchener, ON, N2M 3B9, Canada
| | - Anetta Ille
- STEM Biomedical, Kitchener, ON, N2M 3B9, Canada
| | - Hannah Lamont
- Graduate School of Biomedical Sciences, Rutgers University, Newark, NJ, 07103, USA
| | | |
Collapse
|
121
|
Williamson J, Hughes CM, Cobley JN, Davison GW. The mitochondria-targeted antioxidant MitoQ, attenuates exercise-induced mitochondrial DNA damage. Redox Biol 2020; 36:101673. [PMID: 32810739 PMCID: PMC7452004 DOI: 10.1016/j.redox.2020.101673] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/21/2020] [Accepted: 08/02/2020] [Indexed: 12/23/2022] Open
Abstract
High-intensity exercise damages mitochondrial DNA (mtDNA) in skeletal muscle. Whether MitoQ - a redox active mitochondrial targeted quinone - can reduce exercise-induced mtDNA damage is unknown. In a double-blind, randomized, placebo-controlled design, twenty-four healthy male participants consisting of two groups (placebo; n = 12, MitoQ; n = 12) performed an exercise trial of 4 x 4-min bouts at 90–95% of heart rate max. Participants completed an acute (20 mg MitoQ or placebo 1-h pre-exercise) and chronic (21 days of supplementation) phase. Blood and skeletal muscle were sampled immediately pre- and post-exercise and analysed for nuclear and mtDNA damage, lipid hydroperoxides, lipid soluble antioxidants, and the ascorbyl free radical. Exercise significantly increased nuclear and mtDNA damage across lymphocytes and muscle (P < 0.05), which was accompanied with changes in lipid hydroperoxides, ascorbyl free radical, and α-tocopherol (P < 0.05). Acute MitoQ treatment failed to impact any biomarker likely due to insufficient initial bioavailability. However, chronic MitoQ treatment attenuated nuclear (P < 0.05) and mtDNA damage in lymphocytes and muscle tissue (P < 0.05). Our work is the first to show a protective effect of chronic MitoQ supplementation on the mitochondrial and nuclear genomes in lymphocytes and human muscle tissue following exercise, which is important for genome stability. Exercise damages mitochondrial DNA in lymphocytes and muscle tissue. Acute MitoQ ingestion has no impact on biomarkers of oxidative stress. Chronic MitoQ supplementation protects mitochondrial and nuclear DNA.
Collapse
Affiliation(s)
- Josh Williamson
- Ulster University, Sport and Exercise Research Institute, Newtownabbey, Northern Ireland, UK
| | - Ciara M Hughes
- Ulster University, Nursing and Health Research Institute, Newtownabbey, Northern Ireland, UK
| | - James N Cobley
- Free Radical Research Group, University of the Highlands and Islands, Centre for Health Sciences, Inverness, IV2 3JH, UK
| | - Gareth W Davison
- Ulster University, Sport and Exercise Research Institute, Newtownabbey, Northern Ireland, UK.
| |
Collapse
|
122
|
Byrne DP, Shrestha S, Galler M, Cao M, Daly LA, Campbell AE, Eyers CE, Veal EA, Kannan N, Eyers PA. Aurora A regulation by reversible cysteine oxidation reveals evolutionarily conserved redox control of Ser/Thr protein kinase activity. Sci Signal 2020; 13:eaax2713. [PMID: 32636306 DOI: 10.1126/scisignal.aax2713] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Reactive oxygen species (ROS) are physiological mediators of cellular signaling and play potentially damaging roles in human diseases. In this study, we found that the catalytic activity of the Ser/Thr kinase Aurora A was inhibited by the oxidation of a conserved cysteine residue (Cys290) that lies adjacent to Thr288, a critical phosphorylation site in the activation segment. Cys is present at the equivalent position in ~100 human Ser/Thr kinases, a residue that we found was important not only for the activity of human Aurora A but also for that of fission yeast MAPK-activated kinase (Srk1) and PKA (Pka1). Moreover, the presence of this conserved Cys predicted biochemical redox sensitivity among a cohort of human CAMK, AGC, and AGC-like kinases. Thus, we predict that redox modulation of the conserved Cys290 of Aurora A may be an underappreciated regulatory mechanism that is widespread in eukaryotic Ser/Thr kinases. Given the key biological roles of these enzymes, these findings have implications for understanding physiological and pathological responses to ROS and highlight the importance of protein kinase regulation through multivalent modification of the activation segment.
Collapse
Affiliation(s)
- Dominic P Byrne
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Safal Shrestha
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Martin Galler
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Min Cao
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Leonard A Daly
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Amy E Campbell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Claire E Eyers
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Elizabeth A Veal
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Patrick A Eyers
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
123
|
Redox States of Protein Cysteines in Pathways of Protein Turnover and Cytoskeleton Dynamics Are Changed with Aging and Reversed by Slc7a11 Restoration in Mouse Lung Fibroblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2468986. [PMID: 32587657 PMCID: PMC7298344 DOI: 10.1155/2020/2468986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/22/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022]
Abstract
Slc7a11 is the key component of system Xc−, an antiporter that imports cystine (CySS) and exports glutamate. It plays an important role in cellular defense against oxidative stress because cysteine (Cys), reduced from CySS, is used for and limits the synthesis of glutathione (GSH). We have shown that downregulation of Slc7a11 is responsible for oxidation of extracellular Cys/CySS redox potential in lung fibroblasts from old mice. However, how age-related change of Slc7a11 expression affects the intracellular redox environment of mouse lung fibroblasts remains unexplored. The purpose of this study is to evaluate the effects of aging on the redox states of intracellular proteins and to examine whether Slc7a11 contributes to the age-dependent effects. Iodoacetyl Tandem Mass Tags were used to differentially label reduced and oxidized forms of Cys residues in primary lung fibroblasts from young and old mice, as well as old fibroblasts transfected with Slc7a11. The ratio of oxidized/reduced forms (i.e., redox state) of a Cys residue was determined via multiplexed tandem mass spectrometry. Redox states of 151 proteins were different in old fibroblasts compared to young fibroblasts. Slc7a11 overexpression restored redox states of 104 (69%) of these proteins. Ingenuity Pathway Analysis (IPA) showed that age-dependent Slc7a11-responsive proteins were involved in pathways of protein translation initiation, ubiquitin-proteasome-mediated degradation, and integrin-cytoskeleton-associated signaling. Gene ontology analysis showed cell adhesion, protein translation, and organization of actin cytoskeleton were among the top enriched terms for biological process. Protein-protein interaction network demonstrated the interactions between components of the three enriched pathways predicted by IPA. Follow-up experiments confirmed that proteasome activity was lower in old cells than in young cells and that upregulation of Slc7a11 expression by sulforaphane restored this activity. This study finds that aging results in changes of redox states of proteins involved in protein turnover and cytoskeleton dynamics, and that upregulating Slc7a11 can partially restore the redox states of these proteins.
Collapse
|
124
|
Oliveira CS, Segatto ALA, Nogara PA, Piccoli BC, Loreto ÉLS, Aschner M, Rocha JBT. Transcriptomic and Proteomic Tools in the Study of Hg Toxicity: What Is Missing? Front Genet 2020; 11:425. [PMID: 32431728 PMCID: PMC7215068 DOI: 10.3389/fgene.2020.00425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 04/06/2020] [Indexed: 01/08/2023] Open
Abstract
Mercury is a hazardous substance that has unique neurodevelopmental toxic effects in humans. However, the precise sequence of molecular events that culminate in Hg-induced neuropathology is still unknown. Though the omics studies have been generating an enormous amount of new data about Hg toxicity, our ability to interpret such a large quantity of information is still limited. In this opinion article, we will reinforce the necessity of new high throughput and accurate analytical proteomic methodologies, especially, thiol and selenol-proteome. Overall, we posit that improvements in thiol- and selenol-proteomic analyses will be pivotal in identifying the primary cellular targets of Hg. However, a better understanding of the complex cascades and molecular pathways involved in its toxicity will require extensive complementary studies in more complex systems.
Collapse
Affiliation(s)
- Cláudia S. Oliveira
- Programa Pós-Graduação Stricto Sensu em Biotecnologia Aplicada a Saúde da Criança e do Adolescente, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
- Faculdades Pequeno Príncipe, Curitiba, Brazil
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Ana L. A. Segatto
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Pablo A. Nogara
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Bruna C. Piccoli
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Élgion L. S. Loreto
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY, United States
| | - João B. T. Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
125
|
Ramzan R, Vogt S, Kadenbach B. Stress-mediated generation of deleterious ROS in healthy individuals - role of cytochrome c oxidase. J Mol Med (Berl) 2020; 98:651-657. [PMID: 32313986 PMCID: PMC7220878 DOI: 10.1007/s00109-020-01905-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022]
Abstract
Psychosocial stress is known to cause an increased incidence of coronary heart disease. In addition, multiple other diseases like cancer and diabetes mellitus have been related to stress and are mainly based on excessive formation of reactive oxygen species (ROS) in mitochondria. The molecular interactions between stress and ROS, however, are still unknown. Here we describe the missing molecular link between stress and an increased cellular ROS, based on the regulation of cytochrome c oxidase (COX). In normal healthy cells, the "allosteric ATP inhibition of COX" decreases the oxygen uptake of mitochondria at high ATP/ADP ratios and keeps the mitochondrial membrane potential (ΔΨm) low. Above ΔΨm values of 140 mV, the production of ROS in mitochondria increases exponentially. Stress signals like hypoxia, stress hormones, and high glutamate or glucose in neurons increase the cytosolic Ca2+ concentration which activates a mitochondrial phosphatase that dephosphorylates COX. This dephosphorylated COX exhibits no allosteric ATP inhibition; consequently, an increase of ΔΨm and ROS formation takes place. The excess production of mitochondrial ROS causes apoptosis or multiple diseases.
Collapse
Affiliation(s)
- Rabia Ramzan
- Cardiovascular Research Lab, Biochemical Pharmacological Center, Philipps-University Marburg, Karl-von-Frisch-Strasse 2, D-35043, Marburg, Germany
- Department of Heart Surgery, The University Hospital of Giessen and Marburg, Baldinger Strasse 1, D-35043, Marburg, Germany
| | - Sebastian Vogt
- Cardiovascular Research Lab, Biochemical Pharmacological Center, Philipps-University Marburg, Karl-von-Frisch-Strasse 2, D-35043, Marburg, Germany
- Department of Heart Surgery, The University Hospital of Giessen and Marburg, Baldinger Strasse 1, D-35043, Marburg, Germany
| | - Bernhard Kadenbach
- Department of Chemistry/Biochemistry, Philipps-University Marburg, Hans-Meerwein-Strasse, D-35032, Marburg, Germany.
| |
Collapse
|
126
|
Zoppi C, Messori L, Pratesi A. ESI MS studies highlight the selective interaction of Auranofin with protein free thiols. Dalton Trans 2020; 49:5906-5913. [PMID: 32314767 DOI: 10.1039/d0dt00283f] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The clinically established gold drug Auranofin was reacted individually with a group of representative proteins, namely ubiquitin, ribonuclease A, carbonic anhydrase, haemoglobin and superoxide dismutase, and adduct formation was monitored in the various cases by ESI-MS analysis. We found that the reaction is highly selective for solvent exposed free cysteines that are modified through coordination of the AuPEt3+ fragment. Indeed, ESI-Q-TOF MS spectra carried out on protein samples incubated with a three fold molar excess of Auranofin allowed direct detection of the native proteins bearing bound AuPEt3+ fragments in the cases of carbonic anhydrase and haemoglobin. At variance, the two proteins that do not possess any free cysteine residue, i.e. ubiquitin and ribonuclease A, were unable to bind the gold fragment. In the case of superoxide dismutase, adduct formation is hindered by the scarce solvent accessibility of the free cysteine residue. These findings were further confirmed by a series of competition binding experiments with ebselen, a potent and selective cysteine-modifying reagent; we observed that pre-treatment with ebselen prevents the binding of the AuPEt3+ fragment to both carbonic anhydrase and haemoglobin.
Collapse
Affiliation(s)
- Carlotta Zoppi
- Laboratory of Metals in Medicine (MetMed), Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
| | | | | |
Collapse
|
127
|
Cobley JN, Husi H. Immunological Techniques to Assess Protein Thiol Redox State: Opportunities, Challenges and Solutions. Antioxidants (Basel) 2020; 9:E315. [PMID: 32326525 PMCID: PMC7222201 DOI: 10.3390/antiox9040315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
To understand oxidative stress, antioxidant defense, and redox signaling in health and disease it is essential to assess protein thiol redox state. Protein thiol redox state is seldom assessed immunologically because of the inability to distinguish reduced and reversibly oxidized thiols by Western blotting. An underappreciated opportunity exists to use Click PEGylation to realize the transformative power of simple, time and cost-efficient immunological techniques. Click PEGylation harnesses selective, bio-orthogonal Click chemistry to separate reduced and reversibly oxidized thiols by selectively ligating a low molecular weight polyethylene glycol moiety to the redox state of interest. The resultant ability to disambiguate reduced and reversibly oxidized species by Western blotting enables Click PEGylation to assess protein thiol redox state. In the present review, to enable investigators to effectively harness immunological techniques to assess protein thiol redox state we critique the chemistry, promise and challenges of Click PEGylation.
Collapse
Affiliation(s)
- James Nathan Cobley
- Centre for Health Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK;
| | | |
Collapse
|
128
|
Benhar M. Oxidants, Antioxidants and Thiol Redox Switches in the Control of Regulated Cell Death Pathways. Antioxidants (Basel) 2020; 9:antiox9040309. [PMID: 32290499 PMCID: PMC7222211 DOI: 10.3390/antiox9040309] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022] Open
Abstract
It is well appreciated that biological reactive oxygen and nitrogen species such as hydrogen peroxide, superoxide and nitric oxide, as well as endogenous antioxidant systems, are important modulators of cell survival and death in diverse organisms and cell types. In addition, oxidative stress, nitrosative stress and dysregulated cell death are implicated in a wide variety of pathological conditions, including cancer, cardiovascular and neurological diseases. Therefore, much effort is devoted to elucidate the molecular mechanisms linking oxidant/antioxidant systems and cell death pathways. This review is focused on thiol redox modifications as a major mechanism by which oxidants and antioxidants influence specific regulated cell death pathways in mammalian cells. Growing evidence indicates that redox modifications of cysteine residues in proteins are involved in the regulation of multiple cell death modalities, including apoptosis, necroptosis and pyroptosis. In addition, recent research suggests that thiol redox switches play a role in the crosstalk between apoptotic and necrotic forms of regulated cell death. Thus, thiol-based redox circuits provide an additional layer of control that determines when and how cells die.
Collapse
Affiliation(s)
- Moran Benhar
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
129
|
Abstract
PURPOSE OF REVIEW Exposomics studies can measure health-relevant chemical exposures during a lifetime and estimate the 'internal' environment. However, sampling limitations make these features difficult to capture directly during the critical neonatal time period. RECENT FINDINGS We review the use of newborn dried bloodspots (DBS) archived from newborn screening programs for exposomic analysis in epidemiological children's health studies. Emerging 'omics technologies such as adductomics and metabolomics have been adapted for DBS analysis, and these technologies can now provide valuable etiological information on the complex interplay between exposures, biological response, and population phenotypes. SUMMARY Adductomics and metabolomics of DBS can provide robust measurements for retrospective epidemiological investigations. With extensive bioarchiving programs in the United States and other countries, DBS are poised to substantially aid epidemiological studies, particularly for rare and low-frequency childhood diseases and disorders.
Collapse
|
130
|
Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 2020; 21:363-383. [PMID: 32231263 DOI: 10.1038/s41580-020-0230-3] [Citation(s) in RCA: 2675] [Impact Index Per Article: 535.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
'Reactive oxygen species' (ROS) is an umbrella term for an array of derivatives of molecular oxygen that occur as a normal attribute of aerobic life. Elevated formation of the different ROS leads to molecular damage, denoted as 'oxidative distress'. Here we focus on ROS at physiological levels and their central role in redox signalling via different post-translational modifications, denoted as 'oxidative eustress'. Two species, hydrogen peroxide (H2O2) and the superoxide anion radical (O2·-), are key redox signalling agents generated under the control of growth factors and cytokines by more than 40 enzymes, prominently including NADPH oxidases and the mitochondrial electron transport chain. At the low physiological levels in the nanomolar range, H2O2 is the major agent signalling through specific protein targets, which engage in metabolic regulation and stress responses to support cellular adaptation to a changing environment and stress. In addition, several other reactive species are involved in redox signalling, for instance nitric oxide, hydrogen sulfide and oxidized lipids. Recent methodological advances permit the assessment of molecular interactions of specific ROS molecules with specific targets in redox signalling pathways. Accordingly, major advances have occurred in understanding the role of these oxidants in physiology and disease, including the nervous, cardiovascular and immune systems, skeletal muscle and metabolic regulation as well as ageing and cancer. In the past, unspecific elimination of ROS by use of low molecular mass antioxidant compounds was not successful in counteracting disease initiation and progression in clinical trials. However, controlling specific ROS-mediated signalling pathways by selective targeting offers a perspective for a future of more refined redox medicine. This includes enzymatic defence systems such as those controlled by the stress-response transcription factors NRF2 and nuclear factor-κB, the role of trace elements such as selenium, the use of redox drugs and the modulation of environmental factors collectively known as the exposome (for example, nutrition, lifestyle and irradiation).
Collapse
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany. .,Leibniz Research Institute for Environmental Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
131
|
Wolf C, López del Amo V, Arndt S, Bueno D, Tenzer S, Hanschmann EM, Berndt C, Methner A. Redox Modifications of Proteins of the Mitochondrial Fusion and Fission Machinery. Cells 2020; 9:cells9040815. [PMID: 32230997 PMCID: PMC7226787 DOI: 10.3390/cells9040815] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial fusion and fission tailors the mitochondrial shape to changes in cellular homeostasis. Players of this process are the mitofusins, which regulate fusion of the outer mitochondrial membrane, and the fission protein DRP1. Upon specific stimuli, DRP1 translocates to the mitochondria, where it interacts with its receptors FIS1, MFF, and MID49/51. Another fission factor of clinical relevance is GDAP1. Here, we identify and discuss cysteine residues of these proteins that are conserved in phylogenetically distant organisms and which represent potential sites of posttranslational redox modifications. We reveal that worms and flies possess only a single mitofusin, which in vertebrates diverged into MFN1 and MFN2. All mitofusins contain four conserved cysteines in addition to cysteine 684 in MFN2, a site involved in mitochondrial hyperfusion. DRP1 and FIS1 are also evolutionarily conserved but only DRP1 contains four conserved cysteine residues besides cysteine 644, a specific site of nitrosylation. MFF and MID49/51 are only present in the vertebrate lineage. GDAP1 is missing in the nematode genome and contains no conserved cysteine residues. Our analysis suggests that the function of the evolutionarily oldest proteins of the mitochondrial fusion and fission machinery, the mitofusins and DRP1 but not FIS1, might be altered by redox modifications.
Collapse
Affiliation(s)
- Christina Wolf
- Institute of Molecular Medicine, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany; (C.W.); (D.B.)
| | - Víctor López del Amo
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA;
| | - Sabine Arndt
- Institute for Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany; (S.A.); (S.T.)
| | - Diones Bueno
- Institute of Molecular Medicine, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany; (C.W.); (D.B.)
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany; (S.A.); (S.T.)
| | - Eva-Maria Hanschmann
- Department of Neurology, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (E.-M.H.); (C.B.)
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (E.-M.H.); (C.B.)
| | - Axel Methner
- Institute of Molecular Medicine, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany; (C.W.); (D.B.)
- Correspondence:
| |
Collapse
|
132
|
Silvestrini A, Mordente A, Martino G, Bruno C, Vergani E, Meucci E, Mancini A. The Role of Selenium in Oxidative Stress and in Nonthyroidal Illness Syndrome (NTIS): An Overview. Curr Med Chem 2020; 27:423-449. [PMID: 29421998 DOI: 10.2174/0929867325666180201111159] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 12/28/2022]
Abstract
Selenium is a trace element, nutritionally classified as an essential micronutrient, involved in maintaining the correct function of several enzymes incorporating the selenocysteine residue, namely the selenoproteins. The human selenoproteome including 25 proteins is extensively described here. The most relevant selenoproteins, including glutathione peroxidases, thioredoxin reductases and iodothyronine deiodinases are required for the proper cellular redox homeostasis as well as for the correct thyroid function, thus preventing oxidative stress and related diseases. This review summarizes the main advances on oxidative stress with a focus on selenium metabolism and transport. Moreover, thyroid-related disorders are discussed, considering that the thyroid gland contains the highest selenium amount per gram of tissue, also for future possible therapeutic implication.
Collapse
Affiliation(s)
- Andrea Silvestrini
- Institute of Biochemistry and Clinical Biochemistry, School of Medicine, Catholic University, Largo F. Vito 1, Rome 00168, Italy
| | - Alvaro Mordente
- Institute of Biochemistry and Clinical Biochemistry, School of Medicine, Catholic University, Largo F. Vito 1, Rome 00168, Italy
| | - Giuseppe Martino
- Operative Unit of Endocrinology, School of Medicine, Catholic University, Largo A. Gemelli 1, Rome, 00168, Italy
| | - Carmine Bruno
- Operative Unit of Endocrinology, School of Medicine, Catholic University, Largo A. Gemelli 1, Rome, 00168, Italy
| | - Edoardo Vergani
- Operative Unit of Endocrinology, School of Medicine, Catholic University, Largo A. Gemelli 1, Rome, 00168, Italy
| | - Elisabetta Meucci
- Institute of Biochemistry and Clinical Biochemistry, School of Medicine, Catholic University, Largo F. Vito 1, Rome 00168, Italy
| | - Antonio Mancini
- Operative Unit of Endocrinology, School of Medicine, Catholic University, Largo A. Gemelli 1, Rome, 00168, Italy
| |
Collapse
|
133
|
Olson KR. Reactive oxygen species or reactive sulfur species: why we should consider the latter. ACTA ACUST UNITED AC 2020; 223:223/4/jeb196352. [PMID: 32102833 DOI: 10.1242/jeb.196352] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The biological effects of oxidants, especially reactive oxygen species (ROS), include signaling functions (oxidative eustress), initiation of measures to reduce elevated ROS (oxidative stress), and a cascade of pathophysiological events that accompany excessive ROS (oxidative distress). Although these effects have long been studied in animal models with perturbed ROS, their actions under physiological conditions are less clear. I propose that some of the apparent uncertainty may be due to confusion of ROS with endogenously generated reactive sulfur species (RSS). ROS and RSS are chemically similar, but RSS are more reactive and versatile, and can be stored and reused. Both ROS and RSS signal via oxidation reactions with protein cysteine sulfur and they produce identical effector responses, but RSS appear to be more effective. RSS in the form of persulfidated cysteines (Cys-S-S) are produced endogenously and co-translationally introduced into proteins, and there is increasing evidence that many cellular proteins are persulfidated. A number of practical factors have contributed to confusion between ROS and RSS, and these are discussed herein. Furthermore, essentially all endogenous antioxidant enzymes appeared shortly after life began, some 3.8 billion years ago, when RSS metabolism dominated evolution. This was long before the rise in ROS, 600 million years ago, and I propose that these same enzymes, with only minor modifications, still effectively metabolize RSS in extant organisms. I am not suggesting that all ROS are RSS; however, I believe that the relative importance of ROS and RSS in biological systems needs further consideration.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine-South Bend, Raclin Carmichael Hall, 1234 Notre Dame Avenue, South Bend, IN 46617, USA
| |
Collapse
|
134
|
Zhou Y, Wang L, Wang C, Wu Y, Chen D, Lee TH. Potential implications of hydrogen peroxide in the pathogenesis and therapeutic strategies of gliomas. Arch Pharm Res 2020; 43:187-203. [PMID: 31956964 DOI: 10.1007/s12272-020-01205-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 01/05/2020] [Indexed: 12/15/2022]
Abstract
Glioma is the most common type of primary brain tumor, and it has a high mortality rate. Currently, there are only a few therapeutic approaches for gliomas, and their effects are unsatisfactory. Therefore, uncovering the pathogenesis and exploring more therapeutic strategies for the treatment of gliomas are urgently needed to overcome the ongoing challenges. Cellular redox imbalance has been shown to be associated with the initiation and progression of gliomas. Among reactive oxygen species (ROS), hydrogen peroxide (H2O2) is considered the most suitable for redox signaling and is a potential candidate as a key molecule that determines the fate of cancer cells. In this review, we discuss the potential cellular and molecular roles of H2O2 in gliomagenesis and explore the potential implications of H2O2 in radiotherapy and chemotherapy and in the ongoing challenges of current glioma treatment. Moreover, we evaluate H2O2 as a potential redox sensor and potential driver molecule of nanocatalytic therapeutic strategies for glioma treatment.
Collapse
Affiliation(s)
- Ying Zhou
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Provincial Universities and Colleges, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Long Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Chaojia Wang
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Yilin Wu
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Dongmei Chen
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Tae Ho Lee
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
135
|
Gallion LA, Anttila MM, Abraham DH, Proctor A, Allbritton NL. Preserving Single Cells in Space and Time for Analytical Assays. Trends Analyt Chem 2020; 122:115723. [PMID: 32153309 PMCID: PMC7061724 DOI: 10.1016/j.trac.2019.115723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Analytical assays performed within clinical laboratories influence roughly 70% of all medical decisions by facilitating disease detection, diagnosis, and management. Both in clinical and academic research laboratories, single-cell assays permit measurement of cell diversity and identification of rare cells, both of which are important in the understanding of disease pathogenesis. For clinically utility, the single-cell assays must be compatible with the clinical workflow steps of sample collection, sample transportation, pre-analysis processing, and single-cell assay; therefore, it is paramount to preserve cells in a state that resembles that in vivo rather than measuring signaling behaviors initiated in response to stressors such as sample collection and processing. To address these challenges, novel cell fixation (and more broadly, cell preservation) techniques incorporate programmable fixation times, reversible bond formation and cleavage, chemoselective reactions, and improved analyte recovery. These technologies will further the development of individualized, precision therapies for patients to yield improved clinical outcomes.
Collapse
Affiliation(s)
- Luke A. Gallion
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Matthew M. Anttila
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David H. Abraham
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Angela Proctor
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, USA and North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
136
|
Murphy B, Bhattacharya R, Mukherjee P. Hydrogen sulfide signaling in mitochondria and disease. FASEB J 2019; 33:13098-13125. [PMID: 31648556 PMCID: PMC6894098 DOI: 10.1096/fj.201901304r] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide can signal through 3 distinct mechanisms: 1) reduction and/or direct binding of metalloprotein heme centers, 2) serving as a potent antioxidant through reactive oxygen species/reactive nitrogen species scavenging, or 3) post-translational modification of proteins by addition of a thiol (-SH) group onto reactive cysteine residues: a process known as persulfidation. Below toxic levels, hydrogen sulfide promotes mitochondrial biogenesis and function, thereby conferring protection against cellular stress. For these reasons, increases in hydrogen sulfide and hydrogen sulfide-producing enzymes have been implicated in several human disease states. This review will first summarize our current understanding of hydrogen sulfide production and metabolism, as well as its signaling mechanisms; second, this work will detail the known mechanisms of hydrogen sulfide in the mitochondria and the implications of its mitochondrial-specific impacts in several pathologic conditions.-Murphy, B., Bhattacharya, R., Mukherjee, P. Hydrogen sulfide signaling in mitochondria and disease.
Collapse
Affiliation(s)
- Brennah Murphy
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Priyabrata Mukherjee
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
137
|
Systemic Lupus Erythematosus: Pathogenesis at the Functional Limit of Redox Homeostasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1651724. [PMID: 31885772 PMCID: PMC6899283 DOI: 10.1155/2019/1651724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/15/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022]
Abstract
Systemic lupus erythematosus (SLE) is a disease characterized by the production of autoreactive antibodies and cytokines, which are thought to have a major role in disease activity and progression. Immune system exposure to excessive amounts of autoantigens that are not efficiently removed is reported to play a significant role in the generation of autoantibodies and the pathogenesis of SLE. While several mechanisms of cell death-based autoantigenic exposure and compromised autoantigen removal have been described in relation to disease onset, a significant association with the development of SLE can be attributed to increased apoptosis and impaired phagocytosis of apoptotic cells. Both apoptosis and impaired phagocytosis can be caused by hydrogen peroxide whose cellular production is enhanced by exposure to endogenous hormones or environmental chemicals, which have been implicated in the pathogenesis of SLE. Hydrogen peroxide can cause lymphocyte apoptosis and glutathione depletion, both of which are associated with the severity of SLE. The cellular accumulation of hydrogen peroxide is facilitated by the myriad of stimuli causing increased cellular bioenergetic activity that enhances metabolic production of this toxic oxidizing agent such as emotional stress and infection, which are recognized SLE exacerbating factors. When combined with impaired cellular hydrogen peroxide removal caused by xenobiotics and genetically compromised hydrogen peroxide elimination due to enzymatic polymorphic variation, a mechanism for cellular accumulation of hydrogen peroxide emerges, leading to hydrogen peroxide-induced apoptosis and impaired phagocytosis, enhanced autoantigen exposure, formation of autoantibodies, and development of SLE.
Collapse
|
138
|
Abstract
Few proteins have come under such intense scrutiny as superoxide dismutase-1 (SOD1). For almost a century, scientists have dissected its form, function and then later its malfunction in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We now know SOD1 is a zinc and copper metalloenzyme that clears superoxide as part of our antioxidant defence and respiratory regulation systems. The possibility of reduced structural integrity was suggested by the first crystal structures of human SOD1 even before deleterious mutations in the sod1 gene were linked to the ALS. This concept evolved in the intervening years as an impressive array of biophysical studies examined the characteristics of mutant SOD1 in great detail. We now recognise how ALS-related mutations perturb the SOD1 maturation processes, reduce its ability to fold and reduce its thermal stability and half-life. Mutant SOD1 is therefore predisposed to monomerisation, non-canonical self-interactions, the formation of small misfolded oligomers and ultimately accumulation in the tell-tale insoluble inclusions found within the neurons of ALS patients. We have also seen that several post-translational modifications could push wild-type SOD1 down this toxic pathway. Recently we have come to view ALS as a prion-like disease where both the symptoms, and indeed SOD1 misfolding itself, are transmitted to neighbouring cells. This raises the possibility of intervention after the initial disease presentation. Several small-molecule and biologic-based strategies have been devised which directly target the SOD1 molecule to change the behaviour thought to be responsible for ALS. Here we provide a comprehensive review of the many biophysical advances that sculpted our view of SOD1 biology and the recent work that aims to apply this knowledge for therapeutic outcomes in ALS.
Collapse
|
139
|
Abstract
Redox proteomics is a field of proteomics that is concerned with the characterization of the oxidation state of proteins to gain information about their modulated structure, function, activity, and involvement in different physiological pathways. Oxidative modifications of proteins have been shown to be implicated in normal physiological processes of cells as well as in pathomechanisms leading to the development of cancer, diabetes, neurodegenerative diseases, and some rare hereditary metabolic diseases, like classic galactosemia. Reactive oxygen species generate a variety of reversible and irreversible modifications in amino acid residue side chains and within the protein backbone. These oxidative post-translational modifications (Ox-PTMs) can participate in the activation of signal transduction pathways and mediate the toxicity of harmful oxidants. Thus the application of advanced redox proteomics technologies is important for gaining insights into molecular mechanisms of diseases. Mass-spectrometry-based proteomics is one of the most powerful methods that can be used to give detailed qualitative and quantitative information on protein modifications and allows us to characterize redox proteomes associated with diseases. This Review illustrates the role and biological consequences of Ox-PTMs under basal and oxidative stress conditions by focusing on protein carbonylation and S-glutathionylation, two abundant modifications with an impact on cellular pathways that have been intensively studied during the past decade.
Collapse
Affiliation(s)
- Atef Mannaa
- Borg AlArab Higher Institute of Engineering and Technology , New Borg AlArab City , Alexandria , Egypt
| | - Franz-Georg Hanisch
- Institute of Biochemistry II, Medical Faculty , University of Cologne , Joseph-Stelzmann-Str. 52 , 50931 Cologne , Germany
| |
Collapse
|
140
|
Dikalov SI, Dikalova AE. Crosstalk Between Mitochondrial Hyperacetylation and Oxidative Stress in Vascular Dysfunction and Hypertension. Antioxid Redox Signal 2019; 31:710-721. [PMID: 30618267 PMCID: PMC6708267 DOI: 10.1089/ars.2018.7632] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Vascular dysfunction plays a key role in the development of arteriosclerosis, heart disease, and hypertension, which causes one-third of deaths worldwide. Vascular oxidative stress and metabolic disorders contribute to vascular dysfunction, leading to impaired vasorelaxation, vascular hypertrophy, fibrosis, and aortic stiffening. Mitochondria are critical in the regulation of metabolic and antioxidant functions; therefore, mitochondria-targeted treatments could be beneficial. Recent Advances: Vascular dysfunction is crucial in hypertension pathophysiology and exhibits bidirectional relationship. Metabolic disorders and oxidative stress contribute to the pathogenesis of vascular dysfunction and hypertension, which are associated with mitochondrial impairment and hyperacetylation. Mitochondrial deacetylase Sirtuin 3 (Sirt3) is critical in the regulation of metabolic and antioxidant functions. Clinical studies show that cardiovascular disease risk factors reduce Sirt3 level and Sirt3 declines with age, paralleling the increased incidence of cardiovascular disease and hypertension. An imbalance between mitochondrial acetylation and reduced Sirt3 activity contributes to mitochondrial dysfunction and oxidative stress. We propose that mitochondrial hyperacetylation drives a vicious cycle between metabolic disorders and mitochondrial oxidative stress, promoting vascular dysfunction and hypertension. Critical Issues: The mechanisms of mitochondrial dysfunction are still obscure in human hypertension. Mitochondrial hyperacetylation and oxidative stress contribute to mitochondrial dysfunction; however, regulation of mitochondrial acetylation, the role of GCN5L1 (acetyl-CoA-binding protein promoting acetyltransferase protein acetylation) acetyltransferase, Sirt3 deacetylase, and acetylation of specific proteins require further investigations. Future Directions: There is an urgent need to define molecular mechanisms and the pathophysiological role of mitochondrial hyperacetylation, identify novel pharmacological targets, and develop therapeutic approaches to reduce this phenomenon.
Collapse
Affiliation(s)
- Sergey I Dikalov
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anna E Dikalova
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
141
|
Cobley JN, Noble A, Jimenez-Fernandez E, Valdivia Moya MT, Guille M, Husi H. Catalyst-free Click PEGylation reveals substantial mitochondrial ATP synthase sub-unit alpha oxidation before and after fertilisation. Redox Biol 2019; 26:101258. [PMID: 31234016 PMCID: PMC6597785 DOI: 10.1016/j.redox.2019.101258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/10/2019] [Accepted: 06/15/2019] [Indexed: 12/21/2022] Open
Abstract
Using non-reducing Western blotting to assess protein thiol redox state is challenging because most reduced and oxidised forms migrate at the same molecular weight and are, therefore, indistinguishable. While copper catalysed Click chemistry can be used to ligate a polyethylene glycol (PEG) moiety termed Click PEGylation to mass shift the reduced or oxidised form as desired, the potential for copper catalysed auto-oxidation is problematic. Here we define a catalyst-free trans-cyclooctene-methyltetrazine (TCO-Tz) inverse electron demand Diels Alder chemistry approach that affords rapid (k ~2000 M-1 s-1), selective and bio-orthogonal Click PEGylation. We used TCO-Tz Click PEGylation to investigate how fertilisation impacts reversible mitochondrial ATP synthase F1-Fo sub-unit alpha (ATP-α-F1) oxidation-an established molecular correlate of impaired enzyme activity-in Xenopus laevis. TCO-Tz Click PEGylation studies reveal substantial (~65%) reversible ATP-α-F1 oxidation at evolutionary conserved cysteine residues (i.e., C244 and C294) before and after fertilisation. A single thiol is, however, preferentially oxidised likely due to greater solvent exposure during the catalytic cycle. Selective reduction experiments show that: S-glutathionylation accounts for ~50-60% of the reversible oxidation observed, making it the dominant oxidative modification type. Intermolecular disulphide bonds may also contribute due to their relative stability. Substantial reversible ATP-α-F1 oxidation before and after fertilisation is biologically meaningful because it implies low mitochondrial F1-Fo ATP synthase activity. Catalyst-free TCO-Tz Click PEGylation is a valuable new tool to interrogate protein thiol redox state in health and disease.
Collapse
Affiliation(s)
- James N Cobley
- Free Radical Research Group, University of the Highlands and Islands, Centre for Health Sciences, Inverness, IV2 3JH, UK.
| | - Anna Noble
- European Xenopus Resource Centre, University of Portsmouth, School of Biological Sciences, King Henry Building, Portsmouth, PO1 2DY, UK
| | - Eduardo Jimenez-Fernandez
- Free Radical Research Group, University of the Highlands and Islands, Centre for Health Sciences, Inverness, IV2 3JH, UK
| | - Manuel-Thomas Valdivia Moya
- Free Radical Research Group, University of the Highlands and Islands, Centre for Health Sciences, Inverness, IV2 3JH, UK
| | - Matthew Guille
- European Xenopus Resource Centre, University of Portsmouth, School of Biological Sciences, King Henry Building, Portsmouth, PO1 2DY, UK
| | - Holger Husi
- Free Radical Research Group, University of the Highlands and Islands, Centre for Health Sciences, Inverness, IV2 3JH, UK
| |
Collapse
|
142
|
El Banna N, Hatem E, Heneman-Masurel A, Léger T, Baïlle D, Vernis L, Garcia C, Martineau S, Dupuy C, Vagner S, Camadro JM, Huang ME. Redox modifications of cysteine-containing proteins, cell cycle arrest and translation inhibition: Involvement in vitamin C-induced breast cancer cell death. Redox Biol 2019; 26:101290. [PMID: 31412312 PMCID: PMC6831881 DOI: 10.1016/j.redox.2019.101290] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
Vitamin C (VitC) possesses pro-oxidant properties at high pharmacologic concentrations which favor repurposing VitC as an anti-cancer therapeutic agent. However, redox-based anticancer properties of VitC are yet partially understood. We examined the difference between the reduced and oxidized forms of VitC, ascorbic acid (AA) and dehydroascorbic acid (DHA), in terms of cytotoxicity and redox mechanisms toward breast cancer cells. Our data showed that AA displayed higher cytotoxicity towards triple-negative breast cancer (TNBC) cell lines in vitro than DHA. AA exhibited a similar cytotoxicity on non-TNBC cells, while only a minor detrimental effect on noncancerous cells. Using MDA-MB-231, a representative TNBC cell line, we observed that AA- and DHA-induced cytotoxicity were linked to cellular redox-state alterations. Hydrogen peroxide (H2O2) accumulation in the extracellular medium and in different intracellular compartments, and to a lesser degree, intracellular glutathione oxidation, played a key role in AA-induced cytotoxicity. In contrast, DHA affected glutathione oxidation and had less cytotoxicity. A "redoxome" approach revealed that AA treatment altered the redox state of key antioxidants and a number of cysteine-containing proteins including many nucleic acid binding proteins and proteins involved in RNA and DNA metabolisms and in energetic processes. We showed that cell cycle arrest and translation inhibition were associated with AA-induced cytotoxicity. Finally, bioinformatics analysis and biological experiments identified that peroxiredoxin 1 (PRDX1) expression levels correlated with AA differential cytotoxicity in breast cancer cells, suggesting a potential predictive value of PRDX1. This study provides insight into the redox-based mechanisms of VitC anticancer activity, indicating that pharmacologic doses of VitC and VitC-based rational drug combinations could be novel therapeutic opportunities for triple-negative breast cancer.
Collapse
Affiliation(s)
- Nadine El Banna
- Institut Curie, PSL Research University, CNRS UMR 3348, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Elie Hatem
- Institut Curie, PSL Research University, CNRS UMR 3348, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Amélie Heneman-Masurel
- Institut Curie, PSL Research University, CNRS UMR 3348, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Thibaut Léger
- Institut Jacques Monod, CNRS UMR 7592, Mass Spectrometry Laboratory, Université Paris Diderot, Paris, France
| | - Dorothée Baïlle
- Institut Curie, PSL Research University, CNRS UMR 3348, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Laurence Vernis
- Institut Curie, PSL Research University, CNRS UMR 3348, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Camille Garcia
- Institut Jacques Monod, CNRS UMR 7592, Mass Spectrometry Laboratory, Université Paris Diderot, Paris, France
| | - Sylvain Martineau
- Institut Curie, PSL Research University, CNRS UMR 3348, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Corinne Dupuy
- Institut Gustave Roussy, CNRS UMR 8200, Université Paris-Sud, Villejuif, France
| | - Stéphan Vagner
- Institut Curie, PSL Research University, CNRS UMR 3348, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Jean-Michel Camadro
- Institut Jacques Monod, CNRS UMR 7592, Mass Spectrometry Laboratory, Université Paris Diderot, Paris, France
| | - Meng-Er Huang
- Institut Curie, PSL Research University, CNRS UMR 3348, Université Paris-Sud, Université Paris-Saclay, Orsay, France.
| |
Collapse
|
143
|
Jenner LP, Kurth JM, van Helmont S, Sokol KP, Reisner E, Dahl C, Bradley JM, Butt JN, Cheesman MR. Heme ligation and redox chemistry in two bacterial thiosulfate dehydrogenase (TsdA) enzymes. J Biol Chem 2019; 294:18002-18014. [PMID: 31467084 PMCID: PMC6879331 DOI: 10.1074/jbc.ra119.010084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/26/2019] [Indexed: 01/04/2023] Open
Abstract
Thiosulfate dehydrogenases (TsdAs) are bidirectional bacterial di-heme enzymes that catalyze the interconversion of tetrathionate and thiosulfate at measurable rates in both directions. In contrast to our knowledge of TsdA activities, information on the redox properties in the absence of substrates is rather scant. To address this deficit, we combined magnetic CD (MCD) spectroscopy and protein film electrochemistry (PFE) in a study to resolve heme ligation and redox chemistry in two representative TsdAs. We examined the TsdAs from Campylobacter jejuni, a microaerobic human pathogen, and from the purple sulfur bacterium Allochromatium vinosum. In these organisms, the enzyme functions as a tetrathionate reductase and a thiosulfate oxidase, respectively. The active site Heme 1 in both enzymes has His/Cys ligation in the ferric and ferrous states and the midpoint potentials (Em) of the corresponding redox transformations are similar, −185 mV versus standard hydrogen electrode (SHE). However, fundamental differences are observed in the properties of the second, electron transferring, Heme 2. In C. jejuni, TsdA Heme 2 has His/Met ligation and an Em of +172 mV. In A. vinosum TsdA, Heme 2 reduction triggers a switch from His/Lys ligation (Em, −129 mV) to His/Met (Em, +266 mV), but the rates of interconversion are such that His/Lys ligation would be retained during turnover. In summary, our findings have unambiguously assigned Em values to defined axial ligand sets in TsdAs, specified the rates of Heme 2 ligand exchange in the A. vinosum enzyme, and provided information relevant to describing their catalytic mechanism(s).
Collapse
Affiliation(s)
- Leon P Jenner
- Centre for Molecular and Structural Biochemistry, School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Julia M Kurth
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich Wilhelms Universität Bonn, D-53115 Bonn, Germany
| | - Sebastian van Helmont
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich Wilhelms Universität Bonn, D-53115 Bonn, Germany
| | - Katarzyna P Sokol
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Erwin Reisner
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich Wilhelms Universität Bonn, D-53115 Bonn, Germany
| | - Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Julea N Butt
- Centre for Molecular and Structural Biochemistry, School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Myles R Cheesman
- Centre for Molecular and Structural Biochemistry, School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
144
|
Chen C, Wang K, Zhang H, Zhou HJ, Chen Y, Min W. A Unique SUMO-Interacting Motif of Trx2 Is Critical for Its Mitochondrial Presequence Processing and Anti-oxidant Activity. Front Physiol 2019; 10:1089. [PMID: 31555141 PMCID: PMC6727865 DOI: 10.3389/fphys.2019.01089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Mitochondrial thioredoxin 2 (Trx2) is a vital mitochondrial redox protein that mediates normal protein thiol reduction and provides electrons to peroxiredoxin 3 (Prx3) to scavenge H2O2 in mitochondria. It has been widely reported that Trx2 deletion in cells or mice generates massive reactive oxygen species (ROS) which have been implicated in many pathological processes. On the contrary, how ROS regulate Trx2 processing and activity remains to be elucidated. APPROACH AND RESULTS Here we show that excess ROS induce endothelial cell senescence concomitant with an attenuation of Trx2 processing in which Trx2 presequence [i.e., mitochondrial targeting signal peptide (MTS)] is cleaved to generate a mature form. Mutation analyses indicate that Trx2 processing is mediated by mitochondrial processing peptidase (MPP) and mitochondrial intermediate peptidase (MIP)-recognition sites within the MTS. Interestingly, a mutation at a SUMO- interacting motif (SIM), but not the catalytic sites within the mature Trx2 protein, completely blocks Trx2 processing with no effect on Trx2 mitochondrial targeting. Consistently, chemical inhibition of protein SUMOylation attenuates, while SUMOylation agonist promotes, Trx2 processing. Moreover, we identify the α-MPP subunit is a SUMOylated protein that potentially mediates Trx2-binding and cleavage. Furthermore, the unprocessed form of Trx2-SIM is unable to protect cells from both ROS generation and oxidative stress-induced cellular senescence. CONCLUSION Our study reveals that a unique SUMO-interacting motif of Trx2 is critical for its mitochondrial processing and subsequent anti-oxidant/antisenescence activities.
Collapse
Affiliation(s)
- Chaofei Chen
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pathology, Vascular Biology and Therapeutics Program, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Kang Wang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pathology, Vascular Biology and Therapeutics Program, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Haifeng Zhang
- Department of Pathology, Vascular Biology and Therapeutics Program, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Huanjiao Jenny Zhou
- Department of Pathology, Vascular Biology and Therapeutics Program, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Wang Min
- Department of Pathology, Vascular Biology and Therapeutics Program, Yale School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
145
|
Role of Glutathionylation in Infection and Inflammation. Nutrients 2019; 11:nu11081952. [PMID: 31434242 PMCID: PMC6723385 DOI: 10.3390/nu11081952] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022] Open
Abstract
Glutathionylation, that is, the formation of mixed disulfides between protein cysteines and glutathione (GSH) cysteines, is a reversible post-translational modification catalyzed by different cellular oxidoreductases, by which the redox state of the cell modulates protein function. So far, most studies on the identification of glutathionylated proteins have focused on cellular proteins, including proteins involved in host response to infection, but there is a growing number of reports showing that microbial proteins also undergo glutathionylation, with modification of their characteristics and functions. In the present review, we highlight the signaling role of GSH through glutathionylation, particularly focusing on microbial (viral and bacterial) glutathionylated proteins (GSSPs) and host GSSPs involved in the immune/inflammatory response to infection; moreover, we discuss the biological role of the process in microbial infections and related host responses.
Collapse
|
146
|
Olson KR. Hydrogen sulfide, reactive sulfur species and coping with reactive oxygen species. Free Radic Biol Med 2019; 140:74-83. [PMID: 30703482 DOI: 10.1016/j.freeradbiomed.2019.01.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/19/2018] [Accepted: 01/18/2019] [Indexed: 12/31/2022]
Abstract
Life began in a ferruginous (anoxic and Fe2+ dominated) world around 3.8 billion years ago (bya). Hydrogen sulfide (H2S) and other sulfur molecules from hydrothermal vents and other fissures provided many key necessities for life's origin including catalytic platforms (primordial enzymes) that also served as primitive boundaries (cell walls), substrates for organic synthesis and a continuous source of energy in the form of reducing equivalents. Anoxigenic photosynthesis oxidizing H2S followed within a few hundred million years and laid the metabolic groundwork for oxidative photosynthesis some half-billion years later that slightly and episodically increased atmospheric oxygen around 2.3 bya. This oxidized terrestrial sulfur to sulfate which was washed to the sea where it was reduced creating vast euxinic (anoxic and sulfidic) areas. It was in this environment that eukaryotic cells appeared around 1.5 bya and where they evolved for nearly 1 billion additional years. Oxidative photosynthesis finally oxidized the oceans and around 0.6 bya oxygen levels in the atmosphere and oceans began to rise toward present day levels. This is purported to have been a life-threatening event due to the prevalence of reactive oxygen species (ROS) and thus necessitated the elaboration of chemical and enzymatic antioxidant mechanisms. However, these antioxidants initially appeared around the time of anoxigenic photosynthesis suggesting a commitment to metabolism of reactive sulfur species (RSS). This review examines these events and suggests that many of the biological attributes assigned to ROS may, in fact, be due to RSS. This is underscored by observations that ROS and RSS are chemically similar, often indistinguishable by analytical methods and the fact that the bulk of biochemical and physiological experiments are performed in unphysiologically oxic environments where ROS are artifactually favored over RSS.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine-South Bend, Raclin Carmichael Hall, 1234 Notre Dame Ave, South Bend, IN 46617, USA.
| |
Collapse
|
147
|
Scalabrin M, Pollock N, Staunton CA, Brooks SV, McArdle A, Jackson MJ, Vasilaki A. Redox responses in skeletal muscle following denervation. Redox Biol 2019; 26:101294. [PMID: 31450104 PMCID: PMC6831873 DOI: 10.1016/j.redox.2019.101294] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 10/30/2022] Open
Abstract
Previous studies have shown a significant increase in the mitochondrial generation of hydrogen peroxide (H2O2) and other peroxides in recently denervated muscle fibers. The mechanisms for generation of these peroxides and how the muscle responds to these peroxides are not fully established. The aim of this work was to determine the effect of denervation on the muscle content of proteins that may contribute to mitochondrial peroxide release and the muscle responses to this generation. Denervation of the tibialis anterior (TA) and extensor digitorum longus (EDL) muscles in mice was achieved by surgical removal of a small section of the peroneal nerve prior to its entry into the muscle. An increase in mitochondrial peroxide generation has been observed from 7 days and sustained up to 21 days following denervation in the TA muscle fibers. This increased peroxide generation was reduced by incubation of skinned fibers with inhibitors of monoamine oxidases, NADPH oxidases or phospholipase A2 enzymes and the muscle content of these enzymes together with peroxiredoxin 6 were increased following denervation. Denervated muscle also showed significant adaptations in the content of several enzymes involved in the protection of cells against oxidative damage. Morphological analyses indicated a progressive significant loss of muscle mass in the TA muscle from 7 days up to 21 days following denervation due to fiber atrophy but without fiber loss. These results support the possibility that, at least initially, the increase in peroxide production may stimulate adaptations in an attempt to protect the muscle fibers, but that these processes are insufficient and the increased peroxide generation over the longer term may activate degenerative and atrophic processes in the denervated muscle fibers.
Collapse
Affiliation(s)
- Mattia Scalabrin
- MRC-Arthritis Research UK Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, UK
| | - Natalie Pollock
- MRC-Arthritis Research UK Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, UK
| | - Caroline A Staunton
- MRC-Arthritis Research UK Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, UK
| | - Susan V Brooks
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Anne McArdle
- MRC-Arthritis Research UK Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, UK
| | - Malcolm J Jackson
- MRC-Arthritis Research UK Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, UK
| | - Aphrodite Vasilaki
- MRC-Arthritis Research UK Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, UK.
| |
Collapse
|
148
|
Zaffagnini M, Fermani S, Marchand CH, Costa A, Sparla F, Rouhier N, Geigenberger P, Lemaire SD, Trost P. Redox Homeostasis in Photosynthetic Organisms: Novel and Established Thiol-Based Molecular Mechanisms. Antioxid Redox Signal 2019; 31:155-210. [PMID: 30499304 DOI: 10.1089/ars.2018.7617] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significance: Redox homeostasis consists of an intricate network of reactions in which reactive molecular species, redox modifications, and redox proteins act in concert to allow both physiological responses and adaptation to stress conditions. Recent Advances: This review highlights established and novel thiol-based regulatory pathways underlying the functional facets and significance of redox biology in photosynthetic organisms. In the last decades, the field of redox regulation has largely expanded and this work is aimed at giving the right credit to the importance of thiol-based regulatory and signaling mechanisms in plants. Critical Issues: This cannot be all-encompassing, but is intended to provide a comprehensive overview on the structural/molecular mechanisms governing the most relevant thiol switching modifications with emphasis on the large genetic and functional diversity of redox controllers (i.e., redoxins). We also summarize the different proteomic-based approaches aimed at investigating the dynamics of redox modifications and the recent evidence that extends the possibility to monitor the cellular redox state in vivo. The physiological relevance of redox transitions is discussed based on reverse genetic studies confirming the importance of redox homeostasis in plant growth, development, and stress responses. Future Directions: In conclusion, we can firmly assume that redox biology has acquired an established significance that virtually infiltrates all aspects of plant physiology.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | - Simona Fermani
- 2 Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
| | - Christophe H Marchand
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Alex Costa
- 4 Department of Biosciences, University of Milan, Milan, Italy
| | - Francesca Sparla
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | | | - Peter Geigenberger
- 6 Department Biologie I, Ludwig-Maximilians-Universität München, LMU Biozentrum, Martinsried, Germany
| | - Stéphane D Lemaire
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Paolo Trost
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| |
Collapse
|
149
|
Kim E, Li J, Kang M, Kelly DL, Chen S, Napolitano A, Panzella L, Shi X, Yan K, Wu S, Shen J, Bentley WE, Payne GF. Redox Is a Global Biodevice Information Processing Modality. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2019; 107:1402-1424. [PMID: 32095023 PMCID: PMC7036710 DOI: 10.1109/jproc.2019.2908582] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Biology is well-known for its ability to communicate through (i) molecularly-specific signaling modalities and (ii) a globally-acting electrical modality associated with ion flow across biological membranes. Emerging research suggests that biology uses a third type of communication modality associated with a flow of electrons through reduction/oxidation (redox) reactions. This redox signaling modality appears to act globally and has features of both molecular and electrical modalities: since free electrons do not exist in aqueous solution, the electrons must flow through molecular intermediates that can be switched between two states - with electrons (reduced) or without electrons (oxidized). Importantly, this global redox modality is easily accessible through its electrical features using convenient electrochemical instrumentation. In this review, we explain this redox modality, describe our electrochemical measurements, and provide four examples demonstrating that redox enables communication between biology and electronics. The first two examples illustrate how redox probing can acquire biologically relevant information. The last two examples illustrate how redox inputs can transduce biologically-relevant transitions for patterning and the induction of a synbio transceiver for two-hop molecular communication. In summary, we believe redox provides a unique ability to bridge bio-device communication because simple electrochemical methods enable global access to biologically meaningful information. Further, we envision that redox may facilitate the application of information theory to the biological sciences.
Collapse
Affiliation(s)
- Eunkyoung Kim
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Jinyang Li
- Institute for Bioscience & Biotechnology Research, Fischell Department of Bioengineering University of Maryland, College Park, MD 20742, USA
| | - Mijeong Kang
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Deanna L Kelly
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Shuo Chen
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples, Italy
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples, Italy
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry, Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Kun Yan
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry, Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Si Wu
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry, Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - William E Bentley
- Institute for Bioscience & Biotechnology Research, Fischell Department of Bioengineering University of Maryland, College Park, MD 20742, USA
| | - Gregory F Payne
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
150
|
Redox Signaling via Lipid Peroxidation Regulates Retinal Progenitor Cell Differentiation. Dev Cell 2019; 50:73-89.e6. [DOI: 10.1016/j.devcel.2019.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 02/07/2019] [Accepted: 05/03/2019] [Indexed: 12/31/2022]
|