101
|
Hoffmann MM, Molina-Mendiola C, Nelson AD, Parks CA, Reyes EE, Hansen MJ, Rajagopalan G, Pease LR, Schrum AG, Gil D. Co-potentiation of antigen recognition: A mechanism to boost weak T cell responses and provide immunotherapy in vivo. SCIENCE ADVANCES 2015; 1:e1500415. [PMID: 26601285 PMCID: PMC4646799 DOI: 10.1126/sciadv.1500415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/24/2015] [Indexed: 06/05/2023]
Abstract
Adaptive immunity is mediated by antigen receptors that can induce weak or strong immune responses depending on the nature of the antigen that is bound. In T lymphocytes, antigen recognition triggers signal transduction by clustering T cell receptor (TCR)/CD3 multiprotein complexes. In addition, it hypothesized that biophysical changes induced in TCR/CD3 that accompany receptor engagement may contribute to signal intensity. Nonclustering monovalent TCR/CD3 engagement is functionally inert despite the fact that it may induce changes in conformational arrangement or in the flexibility of receptor subunits. We report that the intrinsically inert monovalent engagement of TCR/CD3 can specifically enhance physiologic T cell responses to weak antigens in vitro and in vivo without stimulating antigen-unengaged T cells and without interrupting T cell responses to strong antigens, an effect that we term as "co-potentiation." We identified Mono-7D6-Fab, which biophysically altered TCR/CD3 when bound and functionally enhanced immune reactivity to several weak antigens in vitro, including a gp100-derived peptide associated with melanoma. In vivo, Mono-7D6-Fab induced T cell antigen-dependent therapeutic responses against melanoma lung metastases, an effect that synergized with other anti-melanoma immunotherapies to significantly improve outcome and survival. We conclude that Mono-7D6-Fab directly co-potentiated TCR/CD3 engagement by weak antigens and that such concept can be translated into an immunotherapeutic design. The co-potentiation principle may be applicable to other receptors that could be regulated by otherwise inert compounds whose latent potency is only invoked in concert with specific physiologic ligands.
Collapse
Affiliation(s)
- Michele M. Hoffmann
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Carlos Molina-Mendiola
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
- Department of Statistics, Polytechnic University of Catalonia, Barcelona 08034, Spain
| | - Alfreda D. Nelson
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Christopher A. Parks
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Edwin E. Reyes
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Michael J. Hansen
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Govindarajan Rajagopalan
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Larry R. Pease
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Adam G. Schrum
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Diana Gil
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
102
|
Assembly, organization and regulation of cell-surface receptors by lectin–glycan complexes. Biochem J 2015; 469:1-16. [DOI: 10.1042/bj20150461] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Galectins are a family of β-galactoside-binding lectins carrying at least one consensus sequence in the carbohydrate-recognition domain. Properties of glycosylated ligands, such as N- and O-glycan branching, LacNAc (N-acetyl-lactosamine) content and the balance of α2,3- and α2,6-linked sialic acid dramatically influence galectin binding to a preferential set of counter-receptors. The presentation of specific glycans in galectin-binding partners is also critical, as proper orientation and clustering of oligosaccharide ligands on multiple carbohydrate side chains increase the binding avidity of galectins for particular glycosylated receptors. When galectins are released from the cells, they typically concentrate on the cell surface and the local matrix, raising their local concentration. Thus galectins can form their own multimers in the extracellular milieu, which in turn cross-link glycoconjugates on the cell surface generating galectin–glycan complexes that modulate intracellular signalling pathways, thus regulating cellular processes such as apoptosis, proliferation, migration and angiogenesis. Subtle changes in receptor expression, rates of protein synthesis, activities of Golgi enzymes, metabolite concentrations supporting glycan biosynthesis, density of glycans, strength of protein–protein interactions at the plasma membrane and stoichiometry may modify galectin–glycan complexes. Although galectins are key contributors to the formation of these extended glycan complexes leading to promotion of receptor segregation/clustering, and inhibition of receptor internalization by surface retention, when these complexes are disrupted, some galectins, particularly galectin-3 and -4, showed the ability to drive clathrin-independent mechanisms of endocytosis. In the present review, we summarize the data available on the assembly, hierarchical organization and regulation of conspicuous galectin–glycan complexes, and their implications in health and disease.
Collapse
|
103
|
Beck-García K, Beck-García E, Bohler S, Zorzin C, Sezgin E, Levental I, Alarcón B, Schamel WW. Nanoclusters of the resting T cell antigen receptor (TCR) localize to non-raft domains. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:802-9. [DOI: 10.1016/j.bbamcr.2014.12.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/04/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022]
|
104
|
Christopoulos P, Dopfer EP, Malkovsky M, Esser PR, Schaefer HE, Marx A, Kock S, Rupp N, Lorenz MR, Schwarz K, Harder J, Martin SF, Werner M, Bogdan C, Schamel WWA, Fisch P. A novel thymoma-associated immunodeficiency with increased naive T cells and reduced CD247 expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:3045-53. [PMID: 25732729 DOI: 10.4049/jimmunol.1402805] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mechanisms underlying thymoma-associated immunodeficiency are largely unknown, and the significance of increased blood γδ Τ cells often remains elusive. In this study we address these questions based on an index patient with thymoma, chronic visceral leishmaniasis, myasthenia gravis, and a marked increase of rare γδ T cell subsets in the peripheral blood. This patient showed cutaneous anergy, even though he had normal numbers of peripheral blood total lymphocytes as well as CD4(+) and CD8(+) T cells. Despite his chronic infection, analyses of immunophenotypes and spectratyping of his lymphocytes revealed an unusual accumulation of naive γδ and αβ T cells, suggesting a generalized T cell activation defect. Functional studies in vitro demonstrated substantially diminished IL-2 and IFN-γ production following TCR stimulation of his "untouched" naive CD4(+) T cells. Biochemical analysis revealed that his γδ and αβ T cells carried an altered TCR complex with reduced amounts of the ζ-chain (CD247). No mutations were found in the CD247 gene that encodes the homodimeric ζ protein. The diminished presence of CD247 and increased numbers of γδ T cells were also observed in thymocyte populations obtained from three other thymoma patients. Thus, our findings describe a novel type of a clinically relevant acquired T cell immunodeficiency in thymoma patients that is distinct from Good's syndrome. Its characteristics are an accumulation of CD247-deficient, hyporresponsive naive γδ and αβ T cells and an increased susceptibility to infections.
Collapse
Affiliation(s)
- Petros Christopoulos
- Department of Pathology, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Elaine P Dopfer
- Department of Molecular Immunology, BIOSS Centre for Biological Signalling Studies, Faculty of Biology, University of Freiburg Medical Center, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency CCI, University of Freiburg Medical Center, 79106 Freiburg, Germany; Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Miroslav Malkovsky
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726
| | - Philipp R Esser
- Department of Dermatology and Venereology (Allergy Research Group), University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Hans-Eckart Schaefer
- Department of Pathology, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Center Mannheim, 68167 Mannheim, Germany
| | - Sylvia Kock
- Department of Pathology, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Nicole Rupp
- Department of Pathology, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Myriam R Lorenz
- Institute for Transfusion Medicine, University Ulm, 89081 Ulm, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University Ulm, 89081 Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service, Baden-Württemberg-Hessen, 89081 Ulm, Germany
| | - Jan Harder
- Department of Gastroenterology, University of Freiburg Medical Center, 79106 Freiburg, Germany; and
| | - Stefan F Martin
- Department of Dermatology and Venereology (Allergy Research Group), University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Martin Werner
- Department of Pathology, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Christian Bogdan
- Institute of Clinical Microbiology, Immunology and Hygiene, Friedrich Alexander University Erlangen-Nuremberg and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Wolfgang W A Schamel
- Department of Molecular Immunology, BIOSS Centre for Biological Signalling Studies, Faculty of Biology, University of Freiburg Medical Center, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency CCI, University of Freiburg Medical Center, 79106 Freiburg, Germany; Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Paul Fisch
- Department of Pathology, University of Freiburg Medical Center, 79106 Freiburg, Germany;
| |
Collapse
|
105
|
Perica K, Kosmides AK, Schneck JP. Linking form to function: Biophysical aspects of artificial antigen presenting cell design. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1853:781-90. [PMID: 25200637 PMCID: PMC4344884 DOI: 10.1016/j.bbamcr.2014.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/15/2014] [Accepted: 09/01/2014] [Indexed: 12/22/2022]
Abstract
Artificial antigen presenting cells (aAPCs) are engineered platforms for T cell activation and expansion, synthesized by coupling T cell activating proteins to the surface of cell lines or biocompatible particles. They can serve both as model systems to study the basic aspects of T cell signaling and translationally as novel approaches for either active or adoptive immunotherapy. Historically, these reductionist systems have not been designed to mimic the temporally and spatially complex interactions observed during endogenous T cell-APC contact, which include receptor organization at both micro- and nanoscales and dynamic changes in cell and membrane morphologies. Here, we review how particle size and shape, as well as heterogenous distribution of T cell activating proteins on the particle surface, are critical aspects of aAPC design. In doing so, we demonstrate how insights derived from endogenous T cell activation can be applied to optimize aAPC, and in turn how aAPC platforms can be used to better understand endogenous T cell stimulation. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.
Collapse
Affiliation(s)
- Karlo Perica
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute of Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alyssa K Kosmides
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute of Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jonathan P Schneck
- Institute of Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
106
|
Popov-Čeleketić D, van Bergen En Henegouwen PMP. Membrane domain formation-a key factor for targeted intracellular drug delivery. Front Physiol 2014; 5:462. [PMID: 25520666 PMCID: PMC4251288 DOI: 10.3389/fphys.2014.00462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/11/2014] [Indexed: 01/23/2023] Open
Abstract
Protein molecules, toxins and viruses internalize into the cell via receptor-mediated endocytosis (RME) using specific proteins and lipids in the plasma membrane. The plasma membrane is a barrier for many pharmaceutical agents to enter into the cytoplasm of target cells. In the case of cancer cells, tissue-specific biomarkers in the plasma membrane, like cancer-specific growth factor receptors, could be excellent candidates for RME-dependent drug delivery. Recent data suggest that agent binding to these receptors at the cell surface, resulting in membrane domain formation by receptor clustering, can be used for the initiation of RME. As a result, these pharmaceutical agents are internalized into the cells and follow different routes until they reach their final intracellular targets like lysosomes or Golgi. We propose that clustering induced formation of plasma membrane microdomains enriched in receptors, sphingolipids, and inositol lipids, leads to membrane bending which functions as the onset of RME. In this review we will focus on the role of domain formation in RME and discuss potential applications for targeted intracellular drug delivery.
Collapse
Affiliation(s)
- Dušan Popov-Čeleketić
- Division of Cell Biology, Department of Biology, Faculty of Science, Utrecht University Utrecht, Netherlands
| | | |
Collapse
|
107
|
Blanco R, Borroto A, Schamel W, Pereira P, Alarcon B. Conformational changes in the T cell receptor differentially determine T cell subset development in mice. Sci Signal 2014; 7:ra115. [DOI: 10.1126/scisignal.2005650] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
108
|
Abstract
αβ T-cell receptor (TCR) activation plays a crucial role for T-cell function. However, the TCR itself does not possess signaling domains. Instead, the TCR is noncovalently coupled to a conserved multisubunit signaling apparatus, the CD3 complex, that comprises the CD3εγ, CD3εδ, and CD3ζζ dimers. How antigen ligation by the TCR triggers CD3 activation and what structural role the CD3 extracellular domains (ECDs) play in the assembled TCR-CD3 complex remain unclear. Here, we use two complementary structural approaches to gain insight into the overall organization of the TCR-CD3 complex. Small-angle X-ray scattering of the soluble TCR-CD3εδ complex reveals the CD3εδ ECDs to sit underneath the TCR α-chain. The observed arrangement is consistent with EM images of the entire TCR-CD3 integral membrane complex, in which the CD3εδ and CD3εγ subunits were situated underneath the TCR α-chain and TCR β-chain, respectively. Interestingly, the TCR-CD3 transmembrane complex bound to peptide-MHC is a dimer in which two TCRs project outward from a central core composed of the CD3 ECDs and the TCR and CD3 transmembrane domains. This arrangement suggests a potential ligand-dependent dimerization mechanism for TCR signaling. Collectively, our data advance our understanding of the molecular organization of the TCR-CD3 complex, and provides a conceptual framework for the TCR activation mechanism.
Collapse
|
109
|
Klotzsch E, Stiegler J, Ben-Ishay E, Gaus K. Do mechanical forces contribute to nanoscale membrane organisation in T cells? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:822-9. [PMID: 25447546 DOI: 10.1016/j.bbamcr.2014.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/26/2014] [Accepted: 10/25/2014] [Indexed: 12/23/2022]
Abstract
Mechanotransduction describes how a cell senses and interacts with its environment. The concept originated in adhesion biology where adhesion receptors, integrins, facilitate force transmission between the extracellular matrix and the intracellular actin cytoskeleton. Indeed, during any adhesive contacts, cells do exert mechanical force. Hence, the probing of the local environment by cells results in mechanical cues that contribute to cellular functions and cell fate decisions such as migration, proliferation, differentiation and apoptosis. On the molecular level, mechanical forces can rearrange proteins laterally within the membrane, regulate their activity by inducing conformational changes and probe the mechanical properties and bond strength of receptor-ligands. From this point of view, it appears surprising that molecular forces have been largely overlooked in membrane organisation and ligand discrimination processes in lymphocytes. During T cell activation, the T cell receptor recognises and distinguishes antigenic from benign endogenous peptides to initiate the reorganisation of membrane proteins into signalling clusters within the immunological synapse. In this review, we asked whether characteristics of fibroblast force sensing could be applied to immune cell antigen recognition and signalling, and outline state-of-the-art experimental strategies for studying forces in the context of membrane organisation. This article is part of a Special Issue entitled: Nanoscale membrane orgainisation and signalling.
Collapse
Affiliation(s)
- Enrico Klotzsch
- Centre for Vascular Research, ARC Centre of Excellence in Advanced Molecular Imaging and Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia.
| | - Johannes Stiegler
- Centre for Vascular Research, ARC Centre of Excellence in Advanced Molecular Imaging and Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia
| | - Eldad Ben-Ishay
- Centre for Vascular Research, ARC Centre of Excellence in Advanced Molecular Imaging and Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia
| | - Katharina Gaus
- Centre for Vascular Research, ARC Centre of Excellence in Advanced Molecular Imaging and Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
110
|
Pryshchep S, Zarnitsyna VI, Hong J, Evavold BD, Zhu C. Accumulation of serial forces on TCR and CD8 frequently applied by agonist antigenic peptides embedded in MHC molecules triggers calcium in T cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:68-76. [PMID: 24890718 DOI: 10.4049/jimmunol.1303436] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
T cell activation by Ag is one of the key events in adaptive immunity. It is triggered by interactions of the TCR and coreceptor (CD8 or CD4) with antigenic peptides embedded in MHC (pMHC) molecules expressed on APCs. The mechanism of how signal is initiated remains unclear. In this article, we complement our two-dimensional kinetic analysis of TCR-pMHC-CD8 interaction with concurrent calcium imaging to examine how ligand engagement of TCR with and without the coengagement of CD8 initiates signaling. We found that accumulation of frequently applied forces on the TCR via agonist pMHC triggered calcium, which was further enhanced by CD8 cooperative binding. Prolonging the intermission between sequential force applications impaired calcium signals. Our data support a model where rapid accumulation of serial forces on TCR-pMHC-CD8 bonds triggers calcium in T cells.
Collapse
Affiliation(s)
- Sergey Pryshchep
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Veronika I Zarnitsyna
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Jinsung Hong
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332; and
| | - Brian D Evavold
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Cheng Zhu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332; and
| |
Collapse
|
111
|
Dopfer E, Hartl F, Oberg HH, Siegers G, Yousefi OS, Kock S, Fiala G, Garcillán B, Sandstrom A, Alarcón B, Regueiro J, Kabelitz D, Adams E, Minguet S, Wesch D, Fisch P, Schamel W. The CD3 Conformational Change in the γδ T Cell Receptor Is Not Triggered by Antigens but Can Be Enforced to Enhance Tumor Killing. Cell Rep 2014; 7:1704-1715. [DOI: 10.1016/j.celrep.2014.04.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 03/15/2014] [Accepted: 04/23/2014] [Indexed: 12/24/2022] Open
|
112
|
Chen C, Hsu H, Hudgens E, Telfer JC, Baldwin CL. Signal transduction by different forms of the γδ T cell-specific pattern recognition receptor WC1. THE JOURNAL OF IMMUNOLOGY 2014; 193:379-90. [PMID: 24850725 DOI: 10.4049/jimmunol.1400168] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
WC1 coreceptors are scavenger receptor cysteine-rich (SRCR) family members, related to T19 in sheep, SCART in mice, and CD163c-α in humans, and form a 13-member subfamily in cattle exclusively expressed on γδ T cells. Subpopulations of γδ T cells are defined by anti-WC1 mAbs and respond to different pathogen species accordingly. In this study, variegated WC1 gene expression within subpopulations and differences in signaling and cell activation due to endodomain sequences are described. The endodomains designated types I to III differ by a 15- or 18-aa insert in type II and an additional 80 aa containing an additional eight tyrosines for type III. Anti-WC1 mAbs enhanced cell proliferation of γδ T cells when cross-linked with the TCR regardless of the endodomain sequences. Chimeric molecules of human CD4 ectodomain with WC1 endodomains transfected into Jurkat cells showed that the tyrosine phosphorylation of the type II was the same as that of the previously reported archetypal sequence (type I) with only Y24EEL phosphorylated, whereas for type III only Y199DDV and Y56TGD were phosphorylated despite conservation of the Y24EEL/Y24QEI and Y199DDV/I tyrosine motifs among the three types. Time to maximal phosphorylation was more rapid with type III endodomains and sustained longer. Differences in tyrosine phosphorylation were associated with differences in function in that cross-linking of type III chimeras with TCR resulted in significantly greater IL-2 production. Identification of differences in the signal transduction through the endodomains of WC1 contributes to understanding the functional role of the WC1 coreceptors in the γδ T cell responses.
Collapse
Affiliation(s)
- Chuang Chen
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003; and
| | - Haoting Hsu
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003; and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| | - Edward Hudgens
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003; and
| | - Janice C Telfer
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003; and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| | - Cynthia L Baldwin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003; and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
113
|
Castro M, van Santen HM, Férez M, Alarcón B, Lythe G, Molina-París C. Receptor Pre-Clustering and T cell Responses: Insights into Molecular Mechanisms. Front Immunol 2014; 5:132. [PMID: 24817867 PMCID: PMC4012210 DOI: 10.3389/fimmu.2014.00132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/15/2014] [Indexed: 11/13/2022] Open
Abstract
T cell activation, initiated by T cell receptor (TCR) mediated recognition of pathogen-derived peptides presented by major histocompatibility complex class I or II molecules (pMHC), shows exquisite specificity and sensitivity, even though the TCR-pMHC binding interaction is of low affinity. Recent experimental work suggests that TCR pre-clustering may be a mechanism via which T cells can achieve such high sensitivity. The unresolved stoichiometry of the TCR makes TCR-pMHC binding and TCR triggering, an open question. We formulate a mathematical model to characterize the pre-clustering of T cell receptors (TCRs) on the surface of T cells, motivated by the experimentally observed distribution of TCR clusters on the surface of naive and memory T cells. We extend a recently introduced stochastic criterion to compute the timescales of T cell responses, assuming that ligand-induced cross-linked TCR is the minimum signaling unit. We derive an approximate formula for the mean time to signal initiation. Our results show that pre-clustering reduces the mean activation time. However, additional mechanisms favoring the existence of clusters are required to explain the difference between naive and memory T cell responses. We discuss the biological implications of our results, and both the compatibility and complementarity of our approach with other existing mathematical models.
Collapse
Affiliation(s)
- Mario Castro
- Grupo de Dinámica No-Lineal and Grupo Interdisciplinar de Sistemas Complejos (GISC), Escuela Técnica Superior de Ingeniería (ICAI), Universidad Pontificia Comillas , Madrid , Spain
| | - Hisse M van Santen
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid , Madrid , Spain
| | - María Férez
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid , Madrid , Spain
| | - Balbino Alarcón
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid , Madrid , Spain
| | - Grant Lythe
- Department of Applied Mathematics, School of Mathematics, University of Leeds , Leeds , UK
| | - Carmen Molina-París
- Department of Applied Mathematics, School of Mathematics, University of Leeds , Leeds , UK
| |
Collapse
|
114
|
Berry R, Headey SJ, Call MJ, McCluskey J, Tregaskes CA, Kaufman J, Koh R, Scanlon MJ, Call ME, Rossjohn J. Structure of the chicken CD3εδ/γ heterodimer and its assembly with the αβT cell receptor. J Biol Chem 2014; 289:8240-51. [PMID: 24488493 DOI: 10.1074/jbc.m113.544965] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In mammals, the αβT cell receptor (TCR) signaling complex is composed of a TCRαβ heterodimer that is noncovalently coupled to three dimeric signaling molecules, CD3εδ, CD3εγ, and CD3ζζ. The nature of the TCR signaling complex and subunit arrangement in different species remains unclear however. Here we present a structural and biochemical analysis of the more primitive ancestral form of the TCR signaling complex found in chickens. In contrast to mammals, chickens do not express separate CD3δ and CD3γ chains but instead encode a single hybrid chain, termed CD3δ/γ, that is capable of pairing with CD3ε. The NMR structure of the chicken CD3εδ/γ heterodimer revealed a unique dimer interface that results in a heterodimer with considerable deviation from the distinct side-by-side architecture found in human and murine CD3εδ and CD3εγ. The chicken CD3εδ/γ heterodimer also contains a unique molecular surface, with the vast majority of surface-exposed, nonconserved residues being clustered to a single face of the heterodimer. Using an in vitro biochemical assay, we demonstrate that CD3εδ/γ can assemble with both chicken TCRα and TCRβ via conserved polar transmembrane sites. Moreover, analogous to the human TCR signaling complex, the presence of two copies of CD3εδ/γ is required for ζζ assembly. These data provide insight into the evolution of this critical receptor signaling apparatus.
Collapse
Affiliation(s)
- Richard Berry
- From the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Louis-Dit-Sully C, Schamel WWA. Activation of the TCR complex by small chemical compounds. EXPERIENTIA SUPPLEMENTUM (2012) 2014; 104:25-39. [PMID: 24214616 DOI: 10.1007/978-3-0348-0726-5_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Small chemical compounds and certain metal ions can activate T cells, resulting in drug hypersensitivity reactions that are a main problem in pharmacology. Mostly, the drugs generate new antigenic epitopes on peptide-major histocompatibility complex (MHC) molecules that are recognized by the T-cell antigen receptor (TCR). In this review we discuss the molecular mechanisms of how the drugs alter self-peptide-MHC, so that neo-antigens are produced. This includes (1) haptens covalently bound to peptides presented by MHC, (2) metal ions and drugs that non-covalently bridge self-pMHC to the TCR, and (3) drugs that allow self-peptides to be presented by MHCs that otherwise are not presented. We also briefly discuss how a second signal-next to the TCR-that naïve T cells require to become activated is generated in the drug hypersensitivity reactions.
Collapse
Affiliation(s)
- Christine Louis-Dit-Sully
- Faculty of Biology, Department of Molecular Immunology, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
116
|
Ferez M, Castro M, Alarcon B, van Santen HM. Cognate peptide-MHC complexes are expressed as tightly apposed nanoclusters in virus-infected cells to allow TCR crosslinking. THE JOURNAL OF IMMUNOLOGY 2013; 192:52-8. [PMID: 24307729 DOI: 10.4049/jimmunol.1301224] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Antigenic T cell stimulation requires interaction between the TCR of the T cell and cognate peptide-MHC molecules presented by the APC. Although studies with TCR-specific Abs and soluble peptide-MHC ligands have shown that the TCR needs to be crosslinked by two or more ligands to induce T cell stimulation, it is not understood how several MHC molecules loaded with the cognate antigenic peptide can produce crosslinking under physiological conditions. We show at the molecular level that large clusters of cognate peptide-MHC are formed at the surface of murine professional and nonprofessional APCs upon virus infection and that these clusters impinge on the stimulatory capacity of the APC. These clusters are formed by tight apposition of cognate peptide-MHC complexes in a configuration that is compatible with simultaneous engagement of two or more TCRs. This suggests that physiological expression of Ag allows formation of multivalent ligands for the TCR that permit TCR crosslinking and T cell activation.
Collapse
Affiliation(s)
- María Ferez
- Departamento de Biología Celular e Inmunología, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, 28049 Cantoblanco, Spain
| | | | | | | |
Collapse
|
117
|
NSOM/QD-based visualization of GM1 serving as platforms for TCR/CD3 mediated T-cell activation. BIOMED RESEARCH INTERNATIONAL 2013; 2013:276498. [PMID: 24288672 PMCID: PMC3830804 DOI: 10.1155/2013/276498] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 09/05/2013] [Accepted: 09/19/2013] [Indexed: 12/31/2022]
Abstract
Direct molecular imaging of nanoscale relationship between T-cell receptor complexes (TCR/CD3) and gangliosidosis GM1 before and after T-cell activation has not been reported. In this study, we made use of our expertise of near-field scanning optical microscopy(NSOM)/immune-labeling quantum dots- (QD-)based dual-color imaging system to visualize nanoscale profiles for distribution and organization of TCR/CD3, GM1, as well as their nanospatial relationship and their correlation with PKCθ signaling cascade during T-cell activation. Interestingly, after anti-CD3/anti-CD28 Ab co-stimulation, both TCR/CD3 and GM1 were clustered to form nanodomains; moreover, all of TCR/CD3 nanodomains were colocalized with GM1 nanodomains, indicating that the formation of GM1 nanodomains was greatly correlated with TCR/CD3 mediated signaling. Specially, while T-cells were pretreated with PKCθ signaling inhibitor rottlerin to suppress IL-2 cytokine production, no visible TCR/CD3 nanodomains appeared while a lot of GM1 nanodomains were still observed. However, while T-cells are pretreated with PKCαβ signaling inhibitor GÖ6976 to suppress calcium-dependent manner, all of TCR/CD3 nanodomains were still colocalized with GM1 nanodomains. These findings possibly support the notion that the formation of GM1 nanodomains indeed serves as platforms for the recruitment of TCR/CD3 nanodomains, and TCR/CD3 nanodomains are required for PKCθ signaling cascades and T-cell activation
Collapse
|
118
|
Louis-Dit-Sully C, Blumenthal B, Duchniewicz M, Beck-Garcia K, Fiala GJ, Beck-García E, Mukenhirn M, Minguet S, Schamel WWA. Activation of the TCR Complex by Peptide-MHC and Superantigens. ACTA ACUST UNITED AC 2013; 104:9-23. [DOI: 10.1007/978-3-0348-0726-5_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
119
|
Liu B, Zhong S, Malecek K, Johnson LA, Rosenberg SA, Zhu C, Krogsgaard M. 2D TCR-pMHC-CD8 kinetics determines T-cell responses in a self-antigen-specific TCR system. Eur J Immunol 2013; 44:239-50. [PMID: 24114747 DOI: 10.1002/eji.201343774] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/15/2013] [Accepted: 09/19/2013] [Indexed: 01/06/2023]
Abstract
Two-dimensional (2D) kinetic analysis directly measures molecular interactions at cell-cell junctions, thereby incorporating inherent cellular effects. By comparison, three-dimensional (3D) analysis probes the intrinsic physical chemistry of interacting molecules isolated from the cell. To understand how T-cell tumor reactivity relates to 2D and 3D binding parameters and to directly compare them, we performed kinetic analyses of a panel of human T-cell receptors (TCRs) interacting with a melanoma self-antigen peptide (gp100209 -217 ) bound to peptide-major histocompatibility complex in the absence and presence of co-receptor CD8. We found that while 3D parameters are inadequate to predict T-cell function, 2D parameters (that do not correlate with their 3D counterparts) show a far broader dynamic range and significantly improved correlation with T-cell function. Thus, our data support the general notion that 2D parameters of TCR-peptide-major histocompatibility complex-CD8 interactions determine T-cell responsiveness and suggest a potential 2D-based strategy to screen TCRs for tumor immunotherapy.
Collapse
Affiliation(s)
- Baoyu Liu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | | | | | | | |
Collapse
|
120
|
Lo YC, Edidin MA, Powell JD. Selective activation of antigen-experienced T cells by anti-CD3 constrained on nanoparticles. THE JOURNAL OF IMMUNOLOGY 2013; 191:5107-14. [PMID: 24098054 DOI: 10.4049/jimmunol.1301433] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Activation of T cells through the TCR is mediated by the TCR-CD3 signaling complex. Cross linking of this complex with Abs directed against CD3 leads to potent activation of T cells. However, such activation is not Ag-specific. We exploited the observation that the TCR-CD3 complex is clustered on T cells that have been activated by Ag by using anti-CD3 nanoparticles to selectively activate Ag-experienced mouse T cells. We find that constraining anti-CD3 on the surface of a nanoparticle markedly and selectively enhances proliferation and cytokine production of Ag-experienced T cells but does not activate naive T cells. This effect was recapitulated in heterogeneous cultures containing mixtures of Ag-specific CD4(+) or CD8(+) T cells and bystander T cells. Furthermore, in vivo anti-CD3-coated nanoparticles increased the expansion of Ag-specific T cells following vaccination. Overall, these findings indicate that anti-CD3-coated nanoparticles could be use to enhance the efficacy of vaccines and immunotherapy. The results also suggest constraining a ligand on the surface of a nanoparticle might as general strategy for selectively targeting clustered receptors.
Collapse
Affiliation(s)
- Ying-Chun Lo
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21231
| | | | | |
Collapse
|
121
|
Abstract
Despite the low affinity of the T-cell antigen receptor (TCR) for its peptide/major histocompatibility complex (pMHC) ligand, T cells are very sensitive to their antigens. This paradox can be resolved if we consider that the TCR may be organized into pre-existing oligomers or nanoclusters. Such structures could improve antigen recognition by increasing the functional affinity (avidity) of the TCR-pMHC interaction and by allowing cooperativity between individual TCRs. Up to approximately 20 TCRs become tightly apposed in these nanoclusters, often in a linear manner, and such structures could reflect a relatively generalized phenomenon: the non-random concentration of membrane receptors in specific areas of the plasma membrane known as protein islands. The association of TCRs into nanoclusters can explain the enhanced kinetics of the pMHC-TCR interaction in two dimensional versus three dimensional systems, but also their existence calls for a revision of the TCR triggering models based on pMHC-induced TCR clustering. Interestingly, the B-cell receptor and the FcεRI have also been shown to form nanoclusters, suggesting that the formation of pre-existing receptor oligomers could be widely used in the immune system.
Collapse
Affiliation(s)
- Wolfgang W A Schamel
- Department of Molecular Immunology, Institute of Biology III, Faculty of Biology, BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
122
|
Malecek K, Zhong S, McGary K, Yu C, Huang K, Johnson LA, Rosenberg SA, Krogsgaard M. Engineering improved T cell receptors using an alanine-scan guided T cell display selection system. J Immunol Methods 2013; 392:1-11. [PMID: 23500145 DOI: 10.1016/j.jim.2013.02.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/28/2013] [Accepted: 02/28/2013] [Indexed: 11/18/2022]
Abstract
T cell receptors (TCRs) on T cells recognize peptide-major histocompatibility complex (pMHC) molecules on the surface of antigen presenting cells and this interaction determines the T cell immune response. Due to negative selection, naturally occurring TCRs bind self (tumor) peptides with low affinity and have a much higher affinity for foreign antigens. This complicates isolation of naturally occurring, high affinity TCRs that mediate more effective tumor rejection for therapeutic purposes. An attractive approach to resolve this issue is to engineer high affinity TCRs in vitro using phage, yeast or mammalian TCR display systems. A caveat of these systems is that they rely on a large library by random mutagenesis due to the lack of knowledge regarding the specific interactions between the TCR and pMHC. We have focused on the mammalian retroviral display system because it uniquely allows for direct comparison of TCR-pMHC-binding properties with T-cell activation outcomes. Through an alanine-scanning approach, we are able to quickly map the key amino acid residues directly involved in TCR-pMHC interactions thereby significantly reducing the library size. Using this method, we demonstrate that for a self-antigen-specific human TCR (R6C12) the key residues for pMHC binding are located in the CDR3β region. This information was used as a basis for designing an efficacious TCR CDR3α library that allowed for selection of TCRs with higher avidity than the wild-type as evaluated through binding and activation experiments. This is a direct approach to target specific TCR residues in TCR library design to efficiently engineer high avidity TCRs that may potentially be used to enhance adoptive immunotherapy treatments.
Collapse
Affiliation(s)
- Karolina Malecek
- NYU Cancer institute, New York University School of Medicine, NewYork, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Silva-Santos B, Schamel WWA, Fisch P, Eberl M. γδ T-cell conference 2012: close encounters for the fifth time. Eur J Immunol 2013; 42:3101-5. [PMID: 23255005 DOI: 10.1002/eji.201270101] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The fifth international γδ T-cell conference was held in Freiburg, Germany, from May 31 to June 2, 2012, bringing together approximately 170 investigators from all over the world. The scientific program covered topics such as thymic development and the mechanisms of ligand recognition and activation, the interaction of γδ T cells with other immune and non-immune cells and its implications for homeostasis, infection, tissue repair and autoimmunity, and the role of γδ T cells in malignancy and their potential for novel immunotherapies. Here we discuss a selection of the oral communications at the conference, and summarise exciting new findings in the field regarding the development, mode of antigen recognition, and responses to microorganisms, viruses and tumours by human and mouse γδ T cells.
Collapse
Affiliation(s)
- Bruno Silva-Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | | | | |
Collapse
|
124
|
Deswal S, Meyer A, Fiala GJ, Eisenhardt AE, Schmitt LC, Salek M, Brummer T, Acuto O, Schamel WWA. Kidins220/ARMS Associates with B-Raf and the TCR, Promoting Sustained Erk Signaling in T Cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:1927-35. [DOI: 10.4049/jimmunol.1200653] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
125
|
Molnár E, Swamy M, Holzer M, Beck-García K, Worch R, Thiele C, Guigas G, Boye K, Luescher IF, Schwille P, Schubert R, Schamel WWA. Cholesterol and sphingomyelin drive ligand-independent T-cell antigen receptor nanoclustering. J Biol Chem 2012; 287:42664-74. [PMID: 23091059 DOI: 10.1074/jbc.m112.386045] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The T-cell antigen receptor (TCR) exists in monomeric and nanoclustered forms independently of antigen binding. Although the clustering is involved in the regulation of T-cell sensitivity, it is unknown how the TCR nanoclusters form. We show that cholesterol is required for TCR nanoclustering in T cells and that this clustering enhances the avidity but not the affinity of the TCR-antigen interaction. Investigating the mechanism of the nanoclustering, we found that radioactive photocholesterol specifically binds to the TCRβ chain in vivo. In order to reduce the complexity of cellular membranes, we used a synthetic biology approach and reconstituted the TCR in liposomes of defined lipid composition. Both cholesterol and sphingomyelin were required for the formation of TCR dimers in phosphatidylcholine-containing large unilamellar vesicles. Further, the TCR was localized in the liquid disordered phase in giant unilamellar vesicles. We propose a model in which cholesterol and sphingomyelin binding to the TCRβ chain causes TCR dimerization. The lipid-induced TCR nanoclustering enhances the avidity to antigen and thus might be involved in enhanced sensitivity of memory compared with naive T cells. Our work contributes to the understanding of the function of specific nonannular lipid-membrane protein interactions.
Collapse
Affiliation(s)
- Eszter Molnár
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Schamel WWA, Reth M. Synthetic immune signaling. Curr Opin Biotechnol 2012; 23:780-4. [DOI: 10.1016/j.copbio.2012.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 01/18/2012] [Accepted: 01/20/2012] [Indexed: 01/29/2023]
|
127
|
Kusumi A, Fujiwara TK, Chadda R, Xie M, Tsunoyama TA, Kalay Z, Kasai RS, Suzuki KGN. Dynamic organizing principles of the plasma membrane that regulate signal transduction: commemorating the fortieth anniversary of Singer and Nicolson's fluid-mosaic model. Annu Rev Cell Dev Biol 2012; 28:215-50. [PMID: 22905956 DOI: 10.1146/annurev-cellbio-100809-151736] [Citation(s) in RCA: 296] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The recent rapid accumulation of knowledge on the dynamics and structure of the plasma membrane has prompted major modifications of the textbook fluid-mosaic model. However, because the new data have been obtained in a variety of research contexts using various biological paradigms, the impact of the critical conceptual modifications on biomedical research and development has been limited. In this review, we try to synthesize our current biological, chemical, and physical knowledge about the plasma membrane to provide new fundamental organizing principles of this structure that underlie every molecular mechanism that realizes its functions. Special attention is paid to signal transduction function and the dynamic aspect of the organizing principles. We propose that the cooperative action of the hierarchical three-tiered mesoscale (2-300 nm) domains--actin-membrane-skeleton induced compartments (40-300 nm), raft domains (2-20 nm), and dynamic protein complex domains (3-10 nm)--is critical for membrane function and distinguishes the plasma membrane from a classical Singer-Nicolson-type model.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Zarnitsyna V, Zhu C. T cell triggering: insights from 2D kinetics analysis of molecular interactions. Phys Biol 2012; 9:045005. [PMID: 22871794 DOI: 10.1088/1478-3975/9/4/045005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Interaction of the T cell receptor (TCR) with pathogen-derived peptide presented by the major histocompatibility complex (pMHC) molecule is central to adaptive immunity as it initiates intracellular signaling to trigger T cell response to infection. Kinetic parameters of this interaction have been under intensive investigation for more than two decades using soluble pMHCs and/or TCRs with at least one of them in the solution (three-dimensional (3D) methods). Recently, several techniques have been developed to enable kinetic analysis on live T cells with pMHCs presented by surrogate antigen presenting cells (APCs) or supported planar lipid bilayers (two-dimensional (2D) methods). Comparison of 2D versus 3D parameters reveals drastic differences with broader ranges of 2D affinities and on-rates and orders of magnitude faster 2D off-rates for functionally distinct pMHCs. Here we review new 2D data and discuss how it may impact previously developed models of T cell discrimination between pMHCs of different potencies.
Collapse
Affiliation(s)
- Veronika Zarnitsyna
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| | | |
Collapse
|
129
|
Kuhns MS, Davis MM. TCR Signaling Emerges from the Sum of Many Parts. Front Immunol 2012; 3:159. [PMID: 22737151 PMCID: PMC3381686 DOI: 10.3389/fimmu.2012.00159] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 05/27/2012] [Indexed: 11/30/2022] Open
Abstract
“How does T cell receptor signaling begin?” Answering this question requires an understanding of how the parts of the molecular machinery that mediates this process fit and work together. Ultimately this molecular architecture must (i) trigger the relay of information from the TCR-pMHC interface to the signaling substrates of the CD3 molecules and (ii) bring the kinases that modify these substrates in close proximity to interact, initiate, and sustain signaling. In this contribution we will discuss advances of the last decade that have increased our understanding of the complex machinery and interactions that underlie this type of signaling.
Collapse
Affiliation(s)
- Michael S Kuhns
- Department of Immunobiology, The University of Arizona College of Medicine Tucson, AZ, USA
| | | |
Collapse
|
130
|
Filipp D, Ballek O, Manning J. Lck, Membrane Microdomains, and TCR Triggering Machinery: Defining the New Rules of Engagement. Front Immunol 2012; 3:155. [PMID: 22701458 PMCID: PMC3372939 DOI: 10.3389/fimmu.2012.00155] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/25/2012] [Indexed: 11/21/2022] Open
Abstract
In spite of a comprehensive understanding of the schematics of T cell receptor (TCR) signaling, the mechanisms regulating compartmentalization of signaling molecules, their transient interactions, and rearrangement of membrane structures initiated upon TCR engagement remain an outstanding problem. These gaps in our knowledge are exemplified by recent data demonstrating that TCR triggering is largely dependent on a preactivated pool of Lck concentrated in T cells in a specific type of membrane microdomains. Our current model posits that in resting T cells all critical components of TCR triggering machinery including TCR/CD3, Lck, Fyn, CD45, PAG, and LAT are associated with distinct types of lipid-based microdomains which represent the smallest structural and functional units of membrane confinement able to negatively control enzymatic activities and substrate availability that is required for the initiation of TCR signaling. In addition, the microdomains based segregation spatially limits the interaction of components of TCR triggering machinery prior to the onset of TCR signaling and allows their rapid communication and signal amplification after TCR engagement, via the process of their coalescence. Microdomains mediated compartmentalization thus represents an essential membrane organizing principle in resting T cells. The integration of these structural and functional aspects of signaling into a unified model of TCR triggering will require a deeper understanding of membrane biology, novel interdisciplinary approaches and the generation of specific reagents. We believe that the fully integrated model of TCR signaling must be based on membrane structural network which provides a proper environment for regulatory processes controlling TCR triggering.
Collapse
Affiliation(s)
- Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR Prague, Czech Republic
| | | | | |
Collapse
|
131
|
Govers C, Berrevoets C, Treffers-Westerlaken E, Broertjes M, Debets R. Magnetic-activated cell sorting of TCR-engineered T cells, using tCD34 as a gene marker, but not peptide-MHC multimers, results in significant numbers of functional CD4+ and CD8+ T cells. Hum Gene Ther Methods 2012; 23:213-24. [PMID: 22871260 PMCID: PMC4015082 DOI: 10.1089/hgtb.2012.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/25/2012] [Indexed: 01/14/2023] Open
Abstract
T cell-sorting technologies with peptide-MHC multimers or antibodies against gene markers enable enrichment of antigen-specific T cells and are expected to enhance the therapeutic efficacy of clinical T cell therapy. However, a direct comparison between sorting reagents for their ability to enrich T cells is lacking. Here, we compared the in vitro properties of primary human T cells gene-engineered with gp100(280-288)/HLA-A2-specific T cell receptor-αβ (TCRαβ) on magnetic-activated cell sorting (MACS) with various peptide-MHC multimers or an antibody against truncated CD34 (tCD34). With respect to peptide-MHC multimers, we observed that Streptamer(®), when compared with pentamers and tetramers, improved T cell yield as well as level and stability of enrichment, of TCR-engineered T cells (>65% of peptide-MHC-binding T cells, stable for at least 6 weeks). In agreement with these findings, Streptamer, the only detachable reagent, revealed significant T cell expansion in the first week after MACS. Sorting TCR and tCD34 gene-engineered T cells with CD34 monoclonal antibody (mAb) resulted in the most significant T cell yield and enrichment of T cells (>95% of tCD34 T cells, stable for at least 6 weeks). Notably, T cells sorted with CD34 mAb, when compared with Streptamer, bound about 2- to 3-fold less peptide-MHC but showed superior antigen-specific upregulated expression of CD107a and production of interferon (IFN)-γ. Multiparametric flow cytometry revealed that CD4(+) T cells, uniquely present in CD34 mAb-sorted T cells, contributed to enhanced IFN-γ production. Taken together, we postulate that CD34 mAb-based sorting of gene-marked T cells has benefits toward applications of T cell therapy, especially those that require CD4(+) T cells.
Collapse
Affiliation(s)
- Coen Govers
- Laboratory of Experimental Tumor Immunology, Department of Medical Oncology, Erasmus University Medical Center-Daniel den Hoed Cancer Center, 3015 GE Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
132
|
Blanco R, Alarcón B. TCR Nanoclusters as the Framework for Transmission of Conformational Changes and Cooperativity. Front Immunol 2012; 3:115. [PMID: 22582078 PMCID: PMC3348506 DOI: 10.3389/fimmu.2012.00115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/22/2012] [Indexed: 12/30/2022] Open
Abstract
Increasing evidence favors the notion that, before triggering, the T cell antigen receptor (TCR) forms nanometer-scale oligomers that are called nanoclusters. The organization of the TCR in pre-existing oligomers cannot be ignored when analyzing the properties of ligand (pMHC) recognition and signal transduction. As with other membrane receptors, the existence of TCR oligomers points out to cooperativity phenomena. We review the data in support of conformational changes in the TCR as the basic principle to transduce the activation signal to the cytoplasm and the incipient data suggesting cooperativity within nanoclusters.
Collapse
Affiliation(s)
- Raquel Blanco
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid Madrid, Spain
| | | |
Collapse
|
133
|
Louis-Dit-Sully C, Kubatzky KF, Lindquist JA, Blattner C, Janssen O, Schamel WWA. Meeting report: Signal transduction meets systems biology. Cell Commun Signal 2012; 10:11. [PMID: 22546078 PMCID: PMC3499392 DOI: 10.1186/1478-811x-10-11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/07/2012] [Indexed: 11/18/2022] Open
Abstract
In the 21st century, systems-wide analyses of biological processes are getting more and more realistic. Especially for the in depth analysis of signal transduction pathways and networks, various approaches of systems biology are now successfully used. The EU FP7 large integrated project SYBILLA (Systems Biology of T-cell Activation in Health and Disease) coordinates such an endeavor. By using a combination of experimental data sets and computational modelling, the consortium strives for gaining a detailed and mechanistic understanding of signal transduction processes that govern T-cell activation. In order to foster the interaction between systems biologists and experimentally working groups, SYBILLA co-organized the 15th meeting “Signal Transduction: Receptors, Mediators and Genes” together with the Signal Transduction Society (STS). Thus, the annual STS conference, held from November 7 to 9, 2011 in Weimar, Germany, provided an interdisciplinary forum for research on signal transduction with a major focus on systems biology addressing signalling events in T-cells. Here we report on a selection of ongoing projects of SYBILLA and how they were discussed at this interdisciplinary conference.
Collapse
Affiliation(s)
- Christine Louis-Dit-Sully
- Max Planck Institute of Immunobiology and Epigenetics and Biology III, Faculty of Biology, University of Freiburg, 79108, Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
134
|
Kusumi A, Fujiwara TK, Morone N, Yoshida KJ, Chadda R, Xie M, Kasai RS, Suzuki KGN. Membrane mechanisms for signal transduction: the coupling of the meso-scale raft domains to membrane-skeleton-induced compartments and dynamic protein complexes. Semin Cell Dev Biol 2012; 23:126-44. [PMID: 22309841 DOI: 10.1016/j.semcdb.2012.01.018] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 01/24/2012] [Indexed: 01/09/2023]
Abstract
Virtually all biological membranes on earth share the basic structure of a two-dimensional liquid. Such universality and peculiarity are comparable to those of the double helical structure of DNA, strongly suggesting the possibility that the fundamental mechanisms for the various functions of the plasma membrane could essentially be understood by a set of simple organizing principles, developed during the course of evolution. As an initial effort toward the development of such understanding, in this review, we present the concept of the cooperative action of the hierarchical three-tiered meso-scale (2-300 nm) domains in the plasma membrane: (1) actin membrane-skeleton-induced compartments (40-300 nm), (2) raft domains (2-20 nm), and (3) dynamic protein complex domains (3-10nm). Special attention is paid to the concept of meso-scale domains, where both thermal fluctuations and weak cooperativity play critical roles, and the coupling of the raft domains to the membrane-skeleton-induced compartments as well as dynamic protein complexes. The three-tiered meso-domain architecture of the plasma membrane provides an excellent perspective for understanding the membrane mechanisms of signal transduction.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
135
|
How the TCR balances sensitivity and specificity for the recognition of self and pathogens. Nat Immunol 2012; 13:121-8. [PMID: 22261968 DOI: 10.1038/ni.2190] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The T cell repertoire is generated during thymic development in preparation for the response to antigens from pathogens. The T cell repertoire is shaped by positive selection, which requires recognition by the T cell antigen receptor (TCR) of complexes of self peptide and major histocompatibility complex proteins (self-pMHC) with low affinity, and negative selection, which eliminates T cells with TCRs that recognize self-pMHC with high affinity. This generates a repertoire with low affinity for self-pMHC but high affinity for foreign antigens. The TCR must successfully engage both of these ligands for development, homeostasis and immune responses. This review discusses mechanisms underlying the interaction of the TCR with peptide-major histocompatibility complex ligands of varying affinity and highlights signaling mechanisms that enable the TCR to generate different responses to very distinct ligands.
Collapse
|
136
|
Adams JJ, Narayanan S, Liu B, Birnbaum ME, Kruse AC, Bowerman NA, Chen W, Levin AM, Connolly JM, Zhu C, Kranz DM, Garcia KC. T cell receptor signaling is limited by docking geometry to peptide-major histocompatibility complex. Immunity 2012; 35:681-93. [PMID: 22101157 DOI: 10.1016/j.immuni.2011.09.013] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/16/2011] [Accepted: 09/02/2011] [Indexed: 02/04/2023]
Abstract
T cell receptor (TCR) engagement of peptide-major histocompatibility complex (pMHC) is essential to adaptive immunity, but it is unknown whether TCR signaling responses are influenced by the binding topology of the TCR-peptide-MHC complex. We developed yeast-displayed pMHC libraries that enabled us to identify new peptide sequences reactive with a single TCR. Structural analysis showed that four peptides bound to the TCR with distinct 3D and 2D affinities using entirely different binding chemistries. Three of the peptides that shared a common docking mode, where key TCR-MHC germline interactions are preserved, induced TCR signaling. The fourth peptide failed to induce signaling and was recognized in a substantially different TCR-MHC binding mode that apparently exceeded geometric tolerances compatible with signaling. We suggest that the stereotypical TCR-MHC docking paradigm evolved from productive signaling geometries and that TCR signaling can be modulated by peptides that are recognized in alternative TCR-pMHC binding orientations.
Collapse
MESH Headings
- Amino Acid Motifs/immunology
- Amino Acid Sequence
- Animals
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Histocompatibility Antigens Class I/chemistry
- Humans
- Lymphocyte Activation/immunology
- Mice
- Models, Molecular
- Peptide Library
- Peptides/chemistry
- Peptides/immunology
- Peptides/metabolism
- Protein Binding/immunology
- Protein Conformation
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Reproducibility of Results
- Sequence Alignment
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Jarrett J Adams
- Howard Hughes Medical Institute, and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Kumar R, Ferez M, Swamy M, Arechaga I, Rejas MT, Valpuesta JM, Schamel WWA, Alarcon B, van Santen HM. Increased sensitivity of antigen-experienced T cells through the enrichment of oligomeric T cell receptor complexes. Immunity 2011; 35:375-87. [PMID: 21903423 DOI: 10.1016/j.immuni.2011.08.010] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 05/11/2011] [Accepted: 08/23/2011] [Indexed: 12/25/2022]
Abstract
Although memory T cells respond more vigorously to stimulation and they are more sensitive to low doses of antigen than naive T cells, the molecular basis of this increased sensitivity remains unclear. We have previously shown that the T cell receptor (TCR) exists as different-sized oligomers on the surface of resting T cells and that large oligomers are preferentially activated in response to low antigen doses. Through biochemistry and electron microscopy, we now showed that previously stimulated and memory T cells have more and larger TCR oligomers at the cell surface than their naive counterparts. Reconstitution of cells and mice with a point mutant of the CD3ζ subunit, which impairs TCR oligomer formation, demonstrated that the increased size of TCR oligomers was directly responsible for the increased sensitivity of antigen-experienced T cells. Thus, we propose that an "avidity maturation" mechanism underlies T cell antigenic memory.
Collapse
Affiliation(s)
- Rashmi Kumar
- Departamento de Biología Celular e Inmunología, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Qu P, Yan C, Blum JS, Kapur R, Du H. Myeloid-specific expression of human lysosomal acid lipase corrects malformation and malfunction of myeloid-derived suppressor cells in lal-/- mice. THE JOURNAL OF IMMUNOLOGY 2011; 187:3854-66. [PMID: 21900179 DOI: 10.4049/jimmunol.1003358] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lysosomal acid lipase (LAL) cleaves cholesteryl esters and triglycerides to generate free fatty acids and cholesterol in lysosomes. LAL deficiency causes expansion of CD11b(+)Gr-1(+) immature myeloid cells, loss of T cells, and impairment of T cell function. To test how myeloid cell LAL controls myelopoiesis and lymphopoiesis, a myeloid-specific doxycycline-inducible transgenic system was used to reintroduce human lysosomal acid lipase (hLAL) expression into LAL gene knockout (lal(-/-)) mice. Expression of hLAL in myeloid cells of lal(-/-) mice reversed abnormal myelopoiesis in the bone marrow starting at the granulocyte-monocyte progenitor stage and reduced systemic expansion of myeloid-derived suppressor cells (MDSCs). Myeloid hLAL expression inhibited reactive oxygen species production and arginase expression in CD11b(+)Gr-1(+) cells of lal(-/-) mice. Structural organization of the thymus and spleen was partially restored in association with reduced infiltration of CD11b(+)Gr-1(+) cells in these mice. In the thymus, reconstitution of myeloid cell LAL restored development of thymocytes at the double-negative DN3 stage. Myeloid cell LAL expression improved the proliferation and function of peripheral T cells. In vitro coculture experiments showed that myeloid hLAL expression in lal(-/-) mice reversed CD11b(+)Gr-1(+) myeloid cell suppression of CD4(+) T cell proliferation, T cell signaling activation, and lymphokine secretion. Blocking stat3 and NF-κB p65 signaling by small-molecule inhibitors in MDSCs achieved a similar effect. Injection of anti-Gr-1 Ab into lal(-/-) mice to deplete MDSCs restored T cell proliferation. These studies demonstrate that LAL in myeloid cells plays a critical role in maintaining normal hematopoietic cell development and balancing immunosuppression and inflammation.
Collapse
Affiliation(s)
- Peng Qu
- Center for Immunobiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
139
|
Chauhan AK, Moore TL. T cell activation by terminal complex of complement and immune complexes. J Biol Chem 2011; 286:38627-38637. [PMID: 21900254 DOI: 10.1074/jbc.m111.266809] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
T cell hyperactivation and complement consumption are prominent features of the immunopathology of systemic lupus erythematosus. Although complement activation is secondary to autoantibodies that form immune complexes (ICs), the trigger for alterations in human peripheral blood T cells is poorly understood. To study the impact (on T cells) of several types of preformed ICs and terminal complement complex, also referred to as C5b-9, we incubated these immune reactants with peripheral blood naive CD4(+) T cells as well as Jurkat cells and analyzed their effects on cellular behavior. We first assembled the C5b-9 in situ on the membrane and observed its assembly primarily on a single site where it promoted aggregation of membrane rafts and recruitment of the CD3 signaling complex. However, C5b-9 alone did not initiate proliferation or commencement of downstream signaling events associated with T cell activation. When T cells were treated with ICs together with nonlytic C5b-9, changes associated with T cell activation by possible antigen engagement then occurred. T cell antigen receptor signaling proteins, including ζ-chain, ZAP-70, Syk, Src, and Lck, were phosphorylated and organized in a synapse-like structure. The cytoskeleton formed F-actin spindles and a distal pole complex, resulting in a bipolar distribution of phosphorylated ezrin-radixin-moesin and F-actin. Furthermore, ICs and nonlytic C5b-9 induced T cell proliferation and IFN-γ production. These results raise the possibility that ICs and the nonlytic C5b-9 modulate T cell-mediated responses in systemic lupus erythematosus and other related chronic inflammatory disorders.
Collapse
Affiliation(s)
- Anil K Chauhan
- Division of Adult and Pediatric Rheumatology, Saint Louis University School of Medicine, St. Louis, Missouri 63104.
| | - Terry L Moore
- Division of Adult and Pediatric Rheumatology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| |
Collapse
|
140
|
Deswal S, Schulze AK, Höfer T, Schamel WWA. Quantitative analysis of protein phosphorylations and interactions by multi-colour IP-FCM as an input for kinetic modelling of signalling networks. PLoS One 2011; 6:e22928. [PMID: 21829558 PMCID: PMC3146539 DOI: 10.1371/journal.pone.0022928] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 07/01/2011] [Indexed: 11/22/2022] Open
Abstract
Background To understand complex biological signalling mechanisms, mathematical modelling of signal transduction pathways has been applied successfully in last few years. However, precise quantitative measurements of signal transduction events such as activation-dependent phosphorylation of proteins, remains one bottleneck to this success. Methodology/Principal Findings We use multi-colour immunoprecipitation measured by flow cytometry (IP-FCM) for studying signal transduction events to unrivalled precision. In this method, antibody-coupled latex beads capture the protein of interest from cellular lysates and are then stained with differently fluorescent-labelled antibodies to quantify the amount of the immunoprecipitated protein, of an interaction partner and of phosphorylation sites. The fluorescence signals are measured by FCM. Combining this procedure with beads containing defined amounts of a fluorophore allows retrieving absolute numbers of stained proteins, and not only relative values. Using IP-FCM we derived multidimensional data on the membrane-proximal T-cell antigen receptor (TCR-CD3) signalling network, including the recruitment of the kinase ZAP70 to the TCR-CD3 and subsequent ZAP70 activation by phosphorylation in the murine T-cell hybridoma and primary murine T cells. Counter-intuitively, these data showed that cell stimulation by pervanadate led to a transient decrease of the phospho-ZAP70/ZAP70 ratio at the TCR. A mechanistic mathematical model of the underlying processes demonstrated that an initial massive recruitment of non-phosphorylated ZAP70 was responsible for this behaviour. Further, the model predicted a temporal order of multisite phosphorylation of ZAP70 (with Y319 phosphorylation preceding phosphorylation at Y493) that we subsequently verified experimentally. Conclusions/Significance The quantitative data sets generated by IP-FCM are one order of magnitude more precise than Western blot data. This accuracy allowed us to gain unequalled insight into the dynamics of the TCR-CD3-ZAP70 signalling network.
Collapse
Affiliation(s)
- Sumit Deswal
- Max Planck Institute of Immunobiology and Epigenetics, and Faculty of Biology, Biology III, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Freiburg, Germany
| | - Anna K. Schulze
- Research Group Modeling of Biological Systems, German Cancer Research Center and BioQuant Center, Heidelberg, Germany
| | - Thomas Höfer
- Research Group Modeling of Biological Systems, German Cancer Research Center and BioQuant Center, Heidelberg, Germany
| | - Wolfgang W. A. Schamel
- Max Planck Institute of Immunobiology and Epigenetics, and Faculty of Biology, Biology III, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Centre of Chronic Immunodeficiency (CCI), University Medical Center Freiburg, and University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
141
|
DeFord-Watts LM, Dougall DS, Belkaya S, Johnson BA, Eitson JL, Roybal KT, Barylko B, Albanesi JP, Wülfing C, van Oers NS. The CD3 zeta subunit contains a phosphoinositide-binding motif that is required for the stable accumulation of TCR-CD3 complex at the immunological synapse. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:6839-47. [PMID: 21543646 PMCID: PMC3110614 DOI: 10.4049/jimmunol.1002721] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell activation involves a cascade of TCR-mediated signals that are regulated by three distinct intracellular signaling motifs located within the cytoplasmic tails of the CD3 chains. Whereas all the CD3 subunits possess at least one ITAM, the CD3 ε subunit also contains a proline-rich sequence and a basic-rich stretch (BRS). The CD3 ε BRS complexes selected phosphoinositides, interactions that are required for normal cell surface expression of the TCR. The cytoplasmic domain of CD3 ζ also contains several clusters of arginine and lysine residues. In this study, we report that these basic amino acids enable CD3 ζ to complex the phosphoinositides PtdIns(3)P, PtdIns(4)P, PtdIns(5)P, PtdIns(3,5)P(2), and PtdIns(3,4,5)P(3) with high affinity. Early TCR signaling pathways were unaffected by the targeted loss of the phosphoinositide-binding functions of CD3 ζ. Instead, the elimination of the phosphoinositide-binding function of CD3 ζ significantly impaired the ability of this invariant chain to accumulate stably at the immunological synapse during T cell-APC interactions. Without its phosphoinositide-binding functions, CD3 ζ was concentrated in intracellular structures after T cell activation. Such findings demonstrate a novel functional role for CD3 ζ BRS-phosphoinositide interactions in supporting T cell activation.
Collapse
Affiliation(s)
- Laura M. DeFord-Watts
- Department of Immunology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9093
| | - David S. Dougall
- Department of Immunology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9093
| | - Serkan Belkaya
- Department of Immunology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9093
| | - Blake A. Johnson
- Department of Immunology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9093
| | - Jennifer L. Eitson
- Department of Immunology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9093
| | - Kole T. Roybal
- Department of Immunology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9093
| | - Barbara Barylko
- Department of Pharmacology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9093
| | - Joseph P. Albanesi
- Department of Pharmacology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9093
| | - Christoph Wülfing
- Department of Immunology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9093
- Department of Cell Biology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9093
| | - Nicolai S.C. van Oers
- Department of Immunology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9093
- Department of Microbiology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9093
| |
Collapse
|
142
|
Alarcón B, Mestre D, Martínez-Martín N. The immunological synapse: a cause or consequence of T-cell receptor triggering? Immunology 2011; 133:420-5. [PMID: 21631496 DOI: 10.1111/j.1365-2567.2011.03458.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The immunological synapse forms as a result of the tight apposition of a T cell with an antigen-presenting cell (APC) and it is the site where the T-cell receptor (TCR) is triggered by its antigen ligand, the peptide-MHC complex present in the APC membrane. The immunological synapse was initially characterized in the T-cell membrane as three concentric rings of membrane receptors and their underlying cytoskeletal and signalling proteins. The inner circle, or central supramolecular activation cluster (cSMAC), concentrates most of the TCR and CD28, and it is surrounded by the peripheral SMAC that is formed by integrins. Finally, the most external ring or distal SMAC (dSMAC) is where proteins with large ectodomains are located, such as CD43 and CD45, far from the cSMAC. This arrangement was initially thought to be responsible for maintaining sustained TCR signalling, however, this typical concentric bull's-eye pattern is not found in the immunological synapses formed with the APCs of dendritic cells. Interestingly, TCR signalling has been detected in microclusters formed in the dSMAC area and it extinguishes as the TCRs reach the cSMAC. Hence, it appears that TCR signalling and full T-cell activation do not require the formation of the cSMAC and that this structure may rather play a role in TCR down-regulation, as well as participating in the polarized secretion of lytic granules. Here, we shall review the historical evolution of the role of the cSMAC in T-cell activation, finally discussing our most recent data indicating that the cSMAC serves to internalize exhausted TCRs by phagocytosis.
Collapse
Affiliation(s)
- Balbino Alarcón
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| | | | | |
Collapse
|
143
|
Berry R, Chen Z, McCluskey J, Rossjohn J. Insight into the basis of autonomous immunoreceptor activation. Trends Immunol 2011; 32:165-70. [PMID: 21354859 DOI: 10.1016/j.it.2011.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 01/25/2011] [Accepted: 01/27/2011] [Indexed: 12/16/2022]
Abstract
Expression of the pre-T cell receptor (pTCR) by immature thymocytes is crucial for T cell development. The pTCR comprises an invariant pre-Tα chain that pairs with a newly rearranged TCRβ chain and CD3 signaling components. Despite its similarity to the mature αβTCR, which binds to specific peptide-loaded major histocompatibility molecules, the pTCR functions in a ligand-independent manner. Precisely how pTCR functions autonomously has remained a source of intense debate. Recently, the structure of the extracellular domain of the pTCR has been determined, providing insight into the mechanism of pTCR autonomous signaling. In this review, we reflect on the current understanding of pTCR function and draw comparisons to the mechanisms employed by the mature αβTCR and the related pre-B cell receptor.
Collapse
Affiliation(s)
- Richard Berry
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | |
Collapse
|
144
|
de la Cruz J, Kruger T, Parks CA, Silge RL, van Oers NSC, Luescher IF, Schrum AG, Gil D. Basal and antigen-induced exposure of the proline-rich sequence in CD3ε. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:2282-90. [PMID: 21228347 PMCID: PMC3810001 DOI: 10.4049/jimmunol.1003225] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The CD3ε cytoplasmic tail contains a conserved proline-rich sequence (PRS) that influences TCR-CD3 expression and signaling. Although the PRS can bind the SH3.1 domain of the cytosolic adapter Nck, whether the PRS is constitutively available for Nck binding or instead represents a cryptic motif that is exposed via conformational change upon TCR-CD3 engagement (CD3Δc) is currently unresolved. Furthermore, the extent to which a cis-acting CD3ε basic amino acid-rich stretch (BRS), with its unique phosphoinositide-binding capability, might impact PRS accessibility is not clear. In this study, we found that freshly harvested primary thymocytes expressed low to moderate basal levels of Nck-accessible PRS ("open-CD3"), although most TCR-CD3 complexes were inaccessible to Nck ("closed-CD3"). Ag presentation in vivo induced open-CD3, accounting for half of the basal level found in thymocytes from MHC(+) mice. Additional stimulation with either anti-CD3 Abs or peptide-MHC ligands further elevated open-CD3 above basal levels, consistent with a model wherein antigenic engagement induces maximum PRS exposure. We also found that the open-CD3 conformation induced by APCs outlasted the time of ligand occupancy, marking receptors that had been engaged. Finally, CD3ε BRS-phosphoinositide interactions played no role in either adoption of the initial closed-CD3 conformation or induction of open-CD3 by Ab stimulation. Thus, a basal level of open-CD3 is succeeded by a higher, induced level upon TCR-CD3 engagement, involving CD3Δc and prolonged accessibility of the CD3ε PRS to Nck.
Collapse
MESH Headings
- Amino Acid Motifs/immunology
- Animals
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- CD3 Complex/genetics
- CD3 Complex/immunology
- CD3 Complex/metabolism
- Cell Line, Tumor
- Epitopes, T-Lymphocyte/physiology
- Hybridomas
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Proline/immunology
- Proline/metabolism
- Receptor-CD3 Complex, Antigen, T-Cell/genetics
- Receptor-CD3 Complex, Antigen, T-Cell/immunology
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Javier de la Cruz
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905
- Initiative to Maximize Student Diversity and Post Baccalaureate Research Education Program, College of Medicine, Mayo Clinic, Rochester, MN 55905
| | - Travis Kruger
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905
- Summer Undergraduate Research Fellowship Program, College of Medicine, Mayo Clinic, Rochester, MN 55905
| | - Christopher A. Parks
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905
- Summer Undergraduate Research Fellowship Program, College of Medicine, Mayo Clinic, Rochester, MN 55905
| | - Robert L. Silge
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Nicolai S. C. van Oers
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Immanuel F. Luescher
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland
| | - Adam G. Schrum
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905
| | - Diana Gil
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
145
|
ORAI1-mediated calcium influx is required for human cytotoxic lymphocyte degranulation and target cell lysis. Proc Natl Acad Sci U S A 2011; 108:3324-9. [PMID: 21300876 DOI: 10.1073/pnas.1013285108] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lymphocytes mediate cytotoxicity by polarized release of the contents of cytotoxic granules toward their target cells. Here, we have studied the role of the calcium release-activated calcium channel ORAI1 in human lymphocyte cytotoxicity. Natural killer (NK) cells obtained from an ORAI1-deficient patient displayed defective store-operated Ca(2+) entry (SOCE) and severely defective cytotoxic granule exocytosis leading to impaired target cell lysis. Similar findings were obtained using NK cells from a stromal interaction molecule 1-deficient patient. The defect occurred at a late stage of the signaling process, because activation of leukocyte functional antigen (LFA)-1 and cytotoxic granule polarization were not impaired. Moreover, pharmacological inhibition of SOCE interfered with degranulation and target cell lysis by freshly isolated NK cells and CD8(+) effector T cells from healthy donors. In addition to effects on lymphocyte cytotoxicity, synthesis of the chemokine macrophage inflammatory protein-1β and the cytokines TNF-α and IFN-γ on target cell recognition was impaired in ORAI1-deficient NK cells, as previously described for T cells. By contrast, NK cell cytokine production induced by combinations of IL-12, IL-15, and IL-18 was not impaired by ORAI1 deficiency. Taken together, these results identify a critical role for ORAI1-mediated Ca(2+) influx in granule exocytosis for lymphocyte cytotoxicity as well as for cytokine production induced by target cell recognition.
Collapse
|
146
|
Dong S, Corre B, Nika K, Pellegrini S, Michel F. T cell receptor signal initiation induced by low-grade stimulation requires the cooperation of LAT in human T cells. PLoS One 2010; 5:e15114. [PMID: 21152094 PMCID: PMC2994893 DOI: 10.1371/journal.pone.0015114] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 10/24/2010] [Indexed: 12/04/2022] Open
Abstract
Background One of the earliest activation events following stimulation of the T cell receptor (TCR) is the phosphorylation of the immunoreceptor tyrosine-based activation motifs (ITAMs) within the CD3-associated complex by the Src family kinase Lck. There is accumulating evidence that a large pool of Lck is constitutively active in T cells but how the TCR is connected to Lck and to the downstream signaling cascade remains elusive. Methodology/Principal Findings We have analyzed the phosphorylation state of Lck and Fyn and TCR signaling in human naïve CD4+ T cells and in the transformed T cell line, Hut-78. The latter has been shown to be similar to primary T cells in TCR-inducible phosphorylations and can be highly knocked down by RNA interference. In both T cell types, basal phosphorylation of Lck and Fyn on their activatory tyrosine was observed, although this was much less pronounced in Hut-78 cells. TCR stimulation led to the co-precipitation of Lck with the transmembrane adaptor protein LAT (linker for activation of T cells), Erk-mediated phosphorylation of Lck and no detectable dephosphorylation of Lck inhibitory tyrosine. Strikingly, upon LAT knockdown in Hut-78 cells, we found that LAT promoted TCR-induced phosphorylation of Lck and Fyn activatory tyrosines, TCRζ chain phosphorylation and Zap-70 activation. Notably, LAT regulated these events at low strength of TCR engagement. Conclusions/Significance Our results indicate for the first time that LAT promotes TCR signal initiation and suggest that this adaptor may contribute to maintain active Lck in proximity of their substrates.
Collapse
Affiliation(s)
- Shen Dong
- Unit of Cytokine Signaling, Department of Immunology, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
| | - Béatrice Corre
- Unit of Cytokine Signaling, Department of Immunology, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
| | - Konstantina Nika
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Sandra Pellegrini
- Unit of Cytokine Signaling, Department of Immunology, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
| | - Frédérique Michel
- Unit of Cytokine Signaling, Department of Immunology, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
- * E-mail:
| |
Collapse
|
147
|
Pre-clustered TCR complexes. FEBS Lett 2010; 584:4832-7. [DOI: 10.1016/j.febslet.2010.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 08/21/2010] [Accepted: 09/01/2010] [Indexed: 11/22/2022]
|
148
|
Oligomeric organization of the B-cell antigen receptor on resting cells. Nature 2010; 467:465-9. [DOI: 10.1038/nature09357] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 07/14/2010] [Indexed: 11/09/2022]
|
149
|
Kim ST, Touma M, Takeuchi K, Sun ZYJ, Dave VP, Kappes DJ, Wagner G, Reinherz EL. Distinctive CD3 heterodimeric ectodomain topologies maximize antigen-triggered activation of alpha beta T cell receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:2951-9. [PMID: 20660709 PMCID: PMC2936104 DOI: 10.4049/jimmunol.1000732] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The alphabeta TCR has recently been suggested to function as an anisotropic mechanosensor during immune surveillance, converting mechanical energy into a biochemical signal upon specific peptide/MHC ligation of the alphabeta clonotype. The heterodimeric CD3epsilongamma and CD3epsilondelta subunits, each composed of two Ig-like ectodomains, form unique side-to-side hydrophobic interfaces involving their paired G-strands, rigid connectors to their respective transmembrane segments. Those dimers are laterally disposed relative to the alphabeta heterodimer within the TCR complex. In this paper, using structure-guided mutational analysis, we investigate the functional consequences of a striking asymmetry in CD3gamma and CD3delta G-strand geometries impacting ectodomain shape. The uniquely kinked conformation of the CD3gamma G-strand is crucial for maximizing Ag-triggered TCR activation and surface TCR assembly/expression, offering a geometry to accommodate juxtaposition of CD3gamma and TCR beta ectodomains and foster quaternary change that cannot be replaced by the isologous CD3delta subunit's extracellular region. TCRbeta and CD3 subunit protein sequence analyses among Gnathostomata species show that the Cbeta FG loop and CD3gamma subunit coevolved, consistent with this notion. Furthermore, restoration of T cell activation and development in CD3gamma(-/-) mouse T lineage cells by interspecies replacement can be rationalized from structural insights on the topology of chimeric mouse/human CD3epsilondelta dimers. Most importantly, our findings imply that CD3gamma and CD3delta evolved from a common precursor gene to optimize peptide/MHC-triggered alphabeta TCR activation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- CD3 Complex/chemistry
- CD3 Complex/genetics
- CD3 Complex/physiology
- Evolution, Molecular
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Molecular Sequence Data
- Organ Culture Techniques
- Protein Multimerization
- Protein Structure, Quaternary
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Sheep
- Signal Transduction/genetics
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Sun Taek Kim
- Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Maki Touma
- Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Koh Takeuchi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Zhen-Yu J. Sun
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Vibhuti P. Dave
- Lymphocyte Development Laboratory, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Dietmar J. Kappes
- Blood Cell Development and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Ellis L. Reinherz
- Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
150
|
N-linked glycosylation selectively regulates autonomous precursor BCR function. Nat Immunol 2010; 11:759-65. [PMID: 20622883 DOI: 10.1038/ni.1903] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 06/15/2010] [Indexed: 11/08/2022]
Abstract
Developing B cells express distinct classes of B cell antigen receptors (BCRs) that differ in their heavy chain (HC). Although only muHC is expressed in early stages, deltaHC-containing BCRs dominate on the surface of mature B cells. The reason for the tightly regulated expression of these receptors is poorly understood. Here we show that muHC was specifically required for precursor BCR (pre-BCR) function and that deltaHC was unable to form a functional pre-BCR. A conserved asparagine (N)-linked glycosylation site at position 46 (N46) in the first conserved domain of muHC was absolutely required for pre-BCR function, and swapping that domain with deltaHC resulted in a functional deltaHC-containing pre-BCR. When tested in the context of the BCR, muHC with a mutant N46 showed normal function, which indicated that N46-glycosylation is specifically required for pre-BCR function. Our results suggest an unexpected mode of pre-BCR function, in which binding of the surrogate light chain to N46 mediates autonomous crosslinking and, concomitantly, receptor formation.
Collapse
|