101
|
Shang L, Zhang M, Li J, Zhou F, Wang S, Chen L, Yang S. Dachengqi decoction alleviates acute lung injury by suppressing HIF-1α-mediated glycolysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117410. [PMID: 37989425 DOI: 10.1016/j.jep.2023.117410] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute lung injury (ALI) is an aggressive inflammatory disease of the lungs characterized by a high mortality rate. More and more researchers have found that herbal medicines are highly effective in preventing and treating inflammatory lung diseases. Among them, Dachengqi Decoction (DCQD) is considered to be the representative prescription of "lung-intestine combined treatment" in traditional Chinese medicine, and its potential protective mechanism against ALI is worthy of further study. AIM OF THE STUDY Based on the theory of "lung-intestine combined treatment", the protective effect and molecular mechanism of DCQD in alleviating ALI were verified by network pharmacology and experiments. MATERIALS AND METHODS The active ingredients of DCQD were obtained by UPLC-MS. Network pharmacology and molecular docking techniques were used to screen the active ingredient-target pathway of DCQD for ALI treatment. Additionally, the ALI model was constructed and verified in vivo according to the predicted results. RESULTS 34 active components and 570 potential targets of DCQD were selected by network pharmacological analysis. In addition, 950 target genes of ALI and 2095 target genes related to sepsis were obtained, and 570 interlinked target genes of the two were identified. We finally screened out 199 common target genes critical to DCQD treatment of ALI and sepsis, and then enriched them with GO and KEGG. In the ALI model, studies have found that DCQD alleviates the inflammatory response of ALI, possibly by inhibiting HIF-1α-mediated glycolysis. CONCLUSION This study confirmed the preventive effect of DCQD on ALI, and found that DCQD can improve the protective mechanism of ALI by regulating the expression of HIF-1α, down-regulating glycolysis and reducing inflammation.
Collapse
Affiliation(s)
- Luorui Shang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City, 430022, Hubei Province, China
| | - Mengqi Zhang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City, 430022, Hubei Province, China
| | - Jinxiao Li
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City, 430022, Hubei Province, China
| | - Fangyuan Zhou
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City, 430022, Hubei Province, China
| | - Shuhan Wang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City, 430022, Hubei Province, China
| | - Liuying Chen
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City, 430022, Hubei Province, China.
| | - Shenglan Yang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City, 430022, Hubei Province, China.
| |
Collapse
|
102
|
Li C, Zhao J, Kang B, Li S, Tang J, Dong D, Chen Y. Identification and validation of STAT4 as a prognostic biomarker in acute myeloid leukemia. Biosci Rep 2024; 44:BSR20231720. [PMID: 38294290 PMCID: PMC10861362 DOI: 10.1042/bsr20231720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 02/01/2024] Open
Abstract
Acute myelogenous leukemia (AML) is a common malignancy and is supposed to have the ability to escape host immune surveillance. The present study aimed to identify key genes in AML that may affect tumor immunity and to provide prognosis biomarkers of AML. The Cancer Genome Atlas (TCGA) dataset was screened for transcription factors (TFs) involved in immunity and influencing survival, combining Gene Expression Omnibus (GEO) data to validate the impact on patient survival. A prognostic signature was established using four transcription factors, and these genes play an important role in the immune system, with higher regulatory T cell (Treg) scores in high-risk patients compared with the low-risk group. Analysis of individual genes showed that STAT4 and Treg are closely related, which may be due to STAT4 transcribing related genes that affect immunity. STAT4 expression was positively correlated with the proportion of abnormal cells and promoted AML recurrence as verified by AML clinical patient samples. In addition, silencing of STAT4 significantly slowed down the proliferation capacity of HL60 cells. In conclusion, these findings suggest that STAT4 may be a potential biomarker for AML prognosis. As a key gene affecting the prognosis of AML patients, STAT4 has the potential to be a candidate diagnostic and prognostic biomarker for AML.
Collapse
Affiliation(s)
- Chenyu Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jingyuan Zhao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bingyu Kang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Shuai Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingya Tang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanwei Chen
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
103
|
Farahani E, Reinert LS, Narita R, Serrero MC, Skouboe MK, van der Horst D, Assil S, Zhang B, Iversen MB, Gutierrez E, Hazrati H, Johannsen M, Olagnier D, Kunze R, Denham M, Mogensen TH, Lappe M, Paludan SR. The HIF transcription network exerts innate antiviral activity in neurons and limits brain inflammation. Cell Rep 2024; 43:113792. [PMID: 38363679 PMCID: PMC10915869 DOI: 10.1016/j.celrep.2024.113792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/04/2023] [Accepted: 01/29/2024] [Indexed: 02/18/2024] Open
Abstract
Pattern recognition receptors (PRRs) induce host defense but can also induce exacerbated inflammatory responses. This raises the question of whether other mechanisms are also involved in early host defense. Using transcriptome analysis of disrupted transcripts in herpes simplex virus (HSV)-infected cells, we find that HSV infection disrupts the hypoxia-inducible factor (HIF) transcription network in neurons and epithelial cells. Importantly, HIF activation leads to control of HSV replication. Mechanistically, HIF activation induces autophagy, which is essential for antiviral activity. HSV-2 infection in vivo leads to hypoxia in CNS neurons, and mice with neuron-specific HIF1/2α deficiency exhibit elevated viral load and augmented PRR signaling and inflammatory gene expression in the CNS after HSV-2 infection. Data from human stem cell-derived neuron and microglia cultures show that HIF also exerts antiviral and inflammation-restricting activity in human CNS cells. Collectively, the HIF transcription factor system senses virus-induced hypoxic stress to induce cell-intrinsic antiviral responses and limit inflammation.
Collapse
Affiliation(s)
- Ensieh Farahani
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Line S Reinert
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Ryo Narita
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Manutea C Serrero
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Morten Kelder Skouboe
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Demi van der Horst
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Sonia Assil
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Baocun Zhang
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Marie B Iversen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Eugenio Gutierrez
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Hossein Hazrati
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Department of Forensic Science, Aarhus University, Aarhus, Denmark
| | - Mogens Johannsen
- Department of Forensic Science, Aarhus University, Aarhus, Denmark
| | - David Olagnier
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Reiner Kunze
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Mark Denham
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Trine H Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Lappe
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus, Denmark; CONNECT - Center for Clinical and Genomic Data, Aarhus University Hospital, Aarhus, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
104
|
Chu Y, Yuan Q, Jiang H, Wu L, Xie Y, Zhang X, Li L. A comprehensive review of the anticancer effects of decursin. Front Pharmacol 2024; 15:1303412. [PMID: 38444945 PMCID: PMC10912667 DOI: 10.3389/fphar.2024.1303412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Cancer is a globally complex disease with a plethora of genetic, physiological, metabolic, and environmental variations. With the increasing resistance to current anticancer drugs, efforts have been made to develop effective cancer treatments. Currently, natural products are considered promising cancer therapeutic agents due to their potent anticancer activity and low intrinsic toxicity. Decursin, a coumarin analog mainly derived from the roots of the medicinal plant Angelica sinensis, has a wide range of biological activities, including anti-inflammatory, antioxidant, neuroprotective, and especially anticancer activities. Existing studies indicate that decursin affects cell proliferation, apoptosis, autophagy, angiogenesis, and metastasis. It also indirectly affects the immune microenvironment and can act as a potential anticancer agent. Decursin can exert synergistic antitumor effects when used in combination with a number of common clinical anticancer drugs, enhancing chemotherapy sensitivity and reversing drug resistance in cancer cells, suggesting that decursin is a good drug combination. Second, decursin is also a promising lead compound, and compounds modifying its structure and formulation form also have good anticancer effects. In addition, decursin is not only a key ingredient in several natural herbs and dietary supplements but is also available through a biosynthetic pathway, with anticancer properties and a high degree of safety in cells, animals, and humans. Thus, it is evident that decursin is a promising natural compound, and its great potential for cancer prevention and treatment needs to be studied and explored in greater depth to support its move from the laboratory to the clinic.
Collapse
Affiliation(s)
- Yueming Chu
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Qiang Yuan
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Hangyu Jiang
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Liang Wu
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Yutao Xie
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- Nanchong Key Laboratory of Individualized Drug Therapy, Nanchong, China
| | - Xiaofen Zhang
- Nanchong Key Laboratory of Individualized Drug Therapy, Nanchong, China
| | - Lin Li
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| |
Collapse
|
105
|
Wu X, Cap AP, Bynum JA, Chance TC, Darlington DN, Meledeo MA. Prolyl hydroxylase domain inhibitor is an effective pre-hospital pharmaceutical intervention for trauma and hemorrhagic shock. Sci Rep 2024; 14:3874. [PMID: 38365865 PMCID: PMC10873291 DOI: 10.1038/s41598-024-53945-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
Pre-hospital potentially preventable trauma related deaths are mainly due to hypoperfusion-induced tissue hypoxia leading to irreversible organ dysfunction at or near the point of injury or during transportation prior to receiving definitive therapy. The prolyl hydroxylase domain (PHD) is an oxygen sensor that regulates tissue adaptation to hypoxia by stabilizing hypoxia inducible factor (HIF). The benefit of PHD inhibitors (PHDi) in the treatment of anemia and lactatemia arises from HIF stabilization, which stimulates endogenous production of erythropoietin and activates lactate recycling through gluconeogenesis. The results of this study provide insight into the therapeutic roles of MK-8617, a pan-inhibitor of PHD-1, 2, and 3, in the mitigation of lactatemia in anesthetized rats with polytrauma and hemorrhagic shock. Additionally, in an anesthetized rat model of lethal decompensated hemorrhagic shock, acute administration of MK-8617 significantly improves one-hour survival and maintains survival at least until 4 h following limited resuscitation with whole blood (20% EBV) at one hour after hemorrhage. This study suggests that pharmaceutical interventions to inhibit prolyl hydroxylase activity can be used as a potential pre-hospital countermeasure for trauma and hemorrhage at or near the point of injury.
Collapse
Affiliation(s)
- Xiaowu Wu
- Blood and Shock Resuscitation, USA Army Institute of Surgical Research, 3698 Chambers Pass, Bldg 3610, JBSA Fort Sam Houston, TX, 78234-7767, USA.
| | - Andrew P Cap
- Blood and Shock Resuscitation, USA Army Institute of Surgical Research, 3698 Chambers Pass, Bldg 3610, JBSA Fort Sam Houston, TX, 78234-7767, USA
| | - James A Bynum
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Tiffani C Chance
- Department of Health and Human Services, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Daniel N Darlington
- Blood and Shock Resuscitation, USA Army Institute of Surgical Research, 3698 Chambers Pass, Bldg 3610, JBSA Fort Sam Houston, TX, 78234-7767, USA
| | - Michael A Meledeo
- Blood and Shock Resuscitation, USA Army Institute of Surgical Research, 3698 Chambers Pass, Bldg 3610, JBSA Fort Sam Houston, TX, 78234-7767, USA
| |
Collapse
|
106
|
Panahi Meymandi AR, Akbari B, Soltantoyeh T, Shahosseini Z, Hosseini M, Hadjati J, Mirzaei HR. PX-478, an HIF-1α inhibitor, impairs mesoCAR T cell antitumor function in cervical cancer. Front Oncol 2024; 14:1357801. [PMID: 38425341 PMCID: PMC10903365 DOI: 10.3389/fonc.2024.1357801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Chimeric Antigen Receptor (CAR) T cell therapy has demonstrated remarkable success in treating hematological malignancies. However, its efficacy against solid tumors, including cervical cancer, remains a challenge. Hypoxia, a common feature of the tumor microenvironment, profoundly impacts CAR T cell function, emphasizing the need to explore strategies targeting hypoxia-inducible factor-1α (HIF-1α). Methods In this study, we evaluated the effects of the HIF-1α inhibitor PX-478 on mesoCAR T cell function through in-silico and in vitro experiments. We conducted comprehensive analyses of HIF-1α expression in cervical cancer patients and examined the impact of PX-478 on T cell proliferation, cytokine production, cytotoxicity, and exhaustion markers. Results Our in-silico analyses revealed high expression of HIF-1α in cervical cancer patients, correlating with poor prognosis. PX-478 effectively reduced HIF-1α levels in T and HeLa cells. While PX-478 exhibited dose-dependent inhibition of antigen-nonspecific T and mesoCAR T cell proliferation, it had minimal impact on antigen-specific mesoCAR T cell proliferation. Notably, PX-478 significantly impaired the cytotoxic function of mesoCAR T cells and induced terminally exhausted T cells. Discussion Our results underscore the significant potential and physiological relevance of the HIF-1α pathway in determining the fate and function of both T and CAR T cells. However, we recognize the imperative for further molecular investigations aimed at unraveling the intricate downstream targets associated with HIF-1α and its influence on antitumor immunity, particularly within the context of hypoxic tumors. These insights serve as a foundation for the careful development of combination therapies tailored to counter immunosuppressive pathways within hypoxic environments and fine-tune CAR T cell performance in the intricate tumor microenvironment.
Collapse
Affiliation(s)
- Ahmad Reza Panahi Meymandi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Soltantoyeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Shahosseini
- Department of Medical Biotechnology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Virology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Mina Hosseini
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
107
|
Park CH, Park JY, Cho WG. Chemical Hypoxia Induces Pyroptosis in Neuronal Cells by Caspase-Dependent Gasdermin Activation. Int J Mol Sci 2024; 25:2185. [PMID: 38396860 PMCID: PMC10889762 DOI: 10.3390/ijms25042185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Hypoxia-induced neuronal death is a major cause of neurodegenerative diseases. Pyroptosis is a type of inflammatory programmed cell death mediated by elevated intracellular levels of reactive oxygen species (ROS). Therefore, we hypothesized that hypoxia-induced ROS may trigger pyroptosis via caspase-dependent gasdermin (GSDM) activation in neuronal cells. To test this, we exposed SH-SY5Y neuronal cells to cobalt chloride (CoCl2) to trigger hypoxia and then evaluated the cellular and molecular responses to hypoxic conditions. Our data revealed that CoCl2 induced cell growth inhibition and the expression of hypoxia-inducible factor-1α in SH-SY5Y cells. Exposure to CoCl2 elicits excessive accumulation of cytosolic and mitochondrial ROS in SH-SY5Y cells. CoCl2-induced hypoxia not only activated the intrinsic (caspases-3, -7, and -9) apoptotic pathway but also induced caspase-3/GSDME-dependent and NLRP3/caspase-1/GSDMD-mediated pyroptosis in SH-SY5Y cells. Importantly, inhibition of caspase-3 and -1 using selective inhibitors ameliorated pyroptotic cell death and downregulated GSDM protein expression. Additionally, treatment with a ROS scavenger significantly suppressed caspase- and pyroptosis-related proteins in CoCl2-treated SH-SY5Y cells. Our findings indicate that hypoxia-mediated ROS production plays an important role in the activation of both apoptosis and pyroptosis in SH-SY5Y neuronal cells, thus providing a potential therapeutic strategy for hypoxia-related neurological diseases.
Collapse
Affiliation(s)
- Chan Ho Park
- Department of Anatomy, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Republic of Korea;
| | - Jun Young Park
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea;
| | - Won Gil Cho
- Department of Anatomy, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Republic of Korea;
| |
Collapse
|
108
|
Kim H, Lee E, Cho H, Kim E, Jang WI, Yang K, Lee YJ, Kim TJ, Kim MS. Five-Day Spacing of Two Fractionated Ablative Radiotherapies Enhances Antitumor Immunity. Int J Radiat Oncol Biol Phys 2024; 118:498-511. [PMID: 37717785 DOI: 10.1016/j.ijrobp.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/10/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
PURPOSE This study aimed to enhance tumor control and abscopal effects by applying diverse stereotactic ablative radiation therapy (SABR) schedules. METHODS AND MATERIALS FSaII, CT-26, and 4T1 cells were used for tumor growth delay and lung metastases analysis after 1- or 5-day intervals radiation therapy (RT) with 40, 20, and 20 Gy, respectively. Immunodeficient BALB/c-nude, immunocompetent C3H, and BALB/c mouse models were used. For immune monitoring, FSaII tumors were analyzed using flow cytometry, immunofluorescence staining, and real-time quantitative reverse transcription polymerase chain reaction. The spleens were used for the ELISpot assay and flow cytometry to determine effector CD8 T cells. For abscopal effect analysis in CT-26 tumors, the volume of the nonirradiated secondary tumors was measured after primary tumors were irradiated with 1-day or 5-day intervals. RESULTS Contrary to the high-dose 1-day interval RT, the 5-day interval RT significantly delayed tumor growth in immunocompetent mice, which was not observed in immunodeficient mice. In addition, the 5-day interval RT significantly reduced the number of lung metastases in FSaII and CT-26 tumors. Five-day spacing was more effective than 1-day interval in enhancing the antitumor immunity via increasing the secretion of tumor-specific IFN-γ, activating the CD8 T cells, and suppressing the monocytic myeloid-derived suppressor cells. The 5-day spacing inhibited nonirradiated secondary tumor growth more effectively than did the 1-day interval. CONCLUSIONS Compared with the 1-day interval RT, the 5-day interval RT scheme demonstrated enhanced antitumor immunity of CD8 T cells associated with inhibition of myeloid-derived suppressor cells. Enhancing antitumor immunity leads to significant improvements in both primary tumor control and the abscopal effect.
Collapse
Affiliation(s)
| | - Eunju Lee
- Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea; Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea
| | - Haeun Cho
- Departments of Radiation Oncology and; Department of Radiological & Medico-Oncological Science, University of Science and Technology, Daejeon, Korea
| | - Eunji Kim
- Departments of Radiation Oncology and
| | | | | | - Yoon-Jin Lee
- Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Tae-Jin Kim
- Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea.
| | - Mi-Sook Kim
- Departments of Radiation Oncology and; Department of Radiological & Medico-Oncological Science, University of Science and Technology, Daejeon, Korea.
| |
Collapse
|
109
|
Riaz F, Zhang J, Pan F. Forces at play: exploring factors affecting the cancer metastasis. Front Immunol 2024; 15:1274474. [PMID: 38361941 PMCID: PMC10867181 DOI: 10.3389/fimmu.2024.1274474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Metastatic disease, a leading and lethal indication of deaths associated with tumors, results from the dissemination of metastatic tumor cells from the site of primary origin to a distant organ. Dispersion of metastatic cells during the development of tumors at distant organs leads to failure to comply with conventional treatments, ultimately instigating abrupt tissue homeostasis and organ failure. Increasing evidence indicates that the tumor microenvironment (TME) is a crucial factor in cancer progression and the process of metastatic tumor development at secondary sites. TME comprises several factors contributing to the initiation and progression of the metastatic cascade. Among these, various cell types in TME, such as mesenchymal stem cells (MSCs), lymphatic endothelial cells (LECs), cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), T cells, and tumor-associated macrophages (TAMs), are significant players participating in cancer metastasis. Besides, various other factors, such as extracellular matrix (ECM), gut microbiota, circadian rhythm, and hypoxia, also shape the TME and impact the metastatic cascade. A thorough understanding of the functions of TME components in tumor progression and metastasis is necessary to discover new therapeutic strategies targeting the metastatic tumor cells and TME. Therefore, we reviewed these pivotal TME components and highlighted the background knowledge on how these cell types and disrupted components of TME influence the metastatic cascade and establish the premetastatic niche. This review will help researchers identify these altered components' molecular patterns and design an optimized, targeted therapy to treat solid tumors and restrict metastatic cascade.
Collapse
Affiliation(s)
- Farooq Riaz
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Jing Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
110
|
Zervou MI, Tarlatzis BC, Grimbizis GF, Spandidos DA, Niewold TB, Goulielmos GN. Association of endometriosis with Sjögren's syndrome: Genetic insights (Review). Int J Mol Med 2024; 53:20. [PMID: 38186322 PMCID: PMC10781419 DOI: 10.3892/ijmm.2024.5344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024] Open
Abstract
Patients with a history of endometriosis have an increased risk of developing various autoimmune diseases such as rheumatoid arthritis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis and celiac disease. There is a potential association between endometriosis and an increased susceptibility for Sjögren's syndrome (SS). SS is a common chronic, inflammatory, systemic, autoimmune, multifactorial disease of complex pathology, with genetic, epigenetic and environmental factors contributing to the development of this condition. It occurs in 0.5‑1% of the population, is characterized by the presence of ocular dryness, lymphocytic infiltrations and contributes to neurological, gastrointestinal, vascular and dermatological manifestations. Endometriosis is an inflammatory, estrogen‑dependent, multifactorial, heterogeneous gynecological disease, affecting ≤10% of reproductive‑age women. It is characterized by the occurrence of endometrial tissue outside the uterine cavity, mainly in the pelvic cavity, and is associated with pelvic pain, dysmenorrhea, deep dyspareunia and either subfertility or infertility. It is still unclear whether SS appears as a secondary response to endometriosis, or it is developed due to any potential shared mechanisms of these conditions. The aim of the present review was to explore further the biological basis only of the co‑occurrence of these disorders but not their association at clinical basis, focusing on the analysis of the partially shared genetic background between endometriosis and SS, and the clarification of the possible similarities in the underlying pathogenetic mechanisms and the relevant molecular pathways.
Collapse
Affiliation(s)
- Maria I. Zervou
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71403 Heraklion, Greece
| | - Basil C. Tarlatzis
- First Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Grigoris F. Grimbizis
- Unit for Human Reproduction, First Department of Obstetrics and Gynecology, 'Papageorgiou' General Hospital, Aristotle University Medical School, 56403 Thessaloniki, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71403 Heraklion, Greece
| | - Timothy B. Niewold
- Barbara Volcker Center for Women and Rheumatic Disease, New York, NY 10021, USA
- Hospital for Special Surgery, New York, NY 10021, USA
| | - George N. Goulielmos
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71403 Heraklion, Greece
- Department of Internal Medicine, University Hospital of Heraklion, 71500 Heraklion, Greece
| |
Collapse
|
111
|
Ortmann BM. Hypoxia-inducible factor in cancer: from pathway regulation to therapeutic opportunity. BMJ ONCOLOGY 2024; 3:e000154. [PMID: 39886164 PMCID: PMC11203102 DOI: 10.1136/bmjonc-2023-000154] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2025]
Abstract
Cancer remains one of the most formidable challenges in modern medicine, due to its complex and dynamic nature, which demands innovative therapeutic approaches. One major challenge to cancer treatment is the tumour microenvironment and in particular tumour hypoxia (low oxygen levels), which contributes to tumour progression and immune evasion. At the cellular level, this is primarily governed by hypoxia-inducible factor (HIF). HIF is a transcription factor that orchestrates cellular responses to low oxygen levels, driving angiogenesis, metabolic adaptation and immune regulation. HIF's dysregulation is frequently observed in various cancer types and correlates with increased aggressiveness, metastasis, resistance to therapy and poor patient prognosis. Consequently, understanding the cellular mechanisms underlying HIF activation and its downstream effects has become crucial to developing targeted cancer therapies for improving cancer patient outcomes and represents a key step towards precision medicine. Recent advancements in drug development have led to the emergence of HIF inhibitors, which aim to disrupt HIF-driven processes in cancer providing therapeutic benefit. Here, we provide a review of the molecular mechanisms through which HIF promotes tumour growth and resistance, emphasising the potential clinical benefits of HIF-targeted therapies. This review will discuss the challenges and opportunities associated with translating HIF inhibition into clinical practice, including ongoing clinical trials and future directions in the development of HIF-based cancer treatments.
Collapse
Affiliation(s)
- Brian M Ortmann
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
112
|
Timón R, González-Custodio A, Gusi N, Olcina G. Effects of intermittent hypoxia and whole-body vibration training on health-related outcomes in older adults. Aging Clin Exp Res 2024; 36:6. [PMID: 38280022 PMCID: PMC10821964 DOI: 10.1007/s40520-023-02655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/07/2023] [Indexed: 01/29/2024]
Abstract
BACKGROUND Aging is associated with a health impairment and an increase of the vulnerability of the older people. Strength training under intermittent hypoxic conditions has been shown to have therapeutic effects on individual's health. AIMS The aim of this study was to investigate the effects of a combined intermittent hypoxia (IH) and whole-body vibration (WBV) training program on health-related outcomes in older people. METHODS A total of 60 adults (over the age of 65) voluntarily participated in an intervention that lasted 20 weeks (three 30-min sessions per week). The participants were divided into four experimental groups subjected to different environmental conditions (IH vs normoxia) and exercise (non-exercise vs WBV). Functional fitness, body composition, metabolic parameters, inflammatory biomarkers, and bone turnover were evaluated before and after the intervention. A multifactorial ANOVA with repeated measures was performed to explore differences within and between groups. RESULTS The results showed that IH and WBV had a positive synergistic effect on inflammatory parameters (CRP and IL-10), bone formation biomarker (PINP), and body composition (muscle and bone mass). CONCLUSION In conclusion, a combined IH and WVB training could be a useful tool to prevent the deterioration of health-related outcomes associated with aging. Clinical trial registration NCT04281264. https://clinicaltrials.gov/ .
Collapse
Affiliation(s)
- Rafael Timón
- Facultad de ciencias del deporte, Universidad de Extremadura, Av/Universidad s/n, 10003, Cáceres, Spain.
| | - Adrián González-Custodio
- Facultad de ciencias del deporte, Universidad de Extremadura, Av/Universidad s/n, 10003, Cáceres, Spain
| | - Narcis Gusi
- Facultad de ciencias del deporte, Universidad de Extremadura, Av/Universidad s/n, 10003, Cáceres, Spain
| | - Guillermo Olcina
- Facultad de ciencias del deporte, Universidad de Extremadura, Av/Universidad s/n, 10003, Cáceres, Spain
| |
Collapse
|
113
|
Lei Y, Cai S, Zhang CD, Li YS. The biological role of extracellular vesicles in gastric cancer metastasis. Front Cell Dev Biol 2024; 12:1323348. [PMID: 38333593 PMCID: PMC10850573 DOI: 10.3389/fcell.2024.1323348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Gastric cancer (GC) is a tumor characterized by high incidence and mortality, with metastasis being the primary cause of poor prognosis. Extracellular vesicles (EVs) are an important intercellular communication medium. They contain bioactive substances such as proteins, nucleic acids, and lipids. EVs play a crucial biological role in the process of GC metastasis. Through mechanisms such as remodeling the tumor microenvironment (TME), immune suppression, promoting angiogenesis, and facilitating epithelial-mesenchymal transition (EMT) and mesothelial-mesenchymal transition (MMT), EVs promote invasion and metastasis in GC. Further exploration of the biological roles of EVs will contribute to our understanding of the mechanisms underlying GC metastasis and may provide novel targets and strategies for the diagnosis and treatment of GC. In this review, we summarize the mechanisms by which EVs influence GC metastasis from four aspects: remodeling the TME, modulating the immune system, influencing angiogenesis, and modulating the processes of EMT and MMT. Finally, we briefly summarized the organotropism of GC metastasis as well as the potential and limitations of EVs in GC.
Collapse
Affiliation(s)
- Yun Lei
- Department of Surgical Oncology and 8th General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shuang Cai
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chun-Dong Zhang
- Department of Surgical Oncology and 8th General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yong-Shuang Li
- Department of Surgical Oncology and 8th General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
114
|
Kho ZY, Azad MAK, Zhu Y, Han ML, Zhou QT, Velkov T, Naderer T, Li J. Transcriptomic interplay between Acinetobacter baumannii , human macrophage and polymyxin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576770. [PMID: 38328180 PMCID: PMC10849618 DOI: 10.1101/2024.01.23.576770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Optimization of antibiotic therapy has been hindered by our dearth of understanding on the mechanism of the host-pathogen-drug interactions. Here, we employed dual RNA-sequencing to examine transcriptomic perturbations in response to polymyxin B in a co-culture infection model of Acinetobacter baumannii and human macrophages. Our findings revealed that polymyxin B treatment induced significant transcriptomic response in macrophage-interacting A. baumannii , exacerbating bacterial oxidative stress, disrupting metal homeostasis, affecting osmoadaptation, triggering stringent stress response, and influencing pathogenic factors. Moreover, infected macrophages adapt heme catabolism, coagulation cascade, and hypoxia-inducible signaling to confront bacterial invasion. Disrupting rcnB , ompW , and traR/dksA genes in A. baumannii impairs metal homeostasis, osmotic stress defense and stringent responses, thereby enhancing antibacterial killing by polymyxin. These findings shed light on the global stress adaptations at the network level during host-pathogen-drug interactions, revealing promising therapeutic targets for further investigation. IMPORTANCE In the context of the development of bacterial resistance during the course of antibiotic therapy, the role of macrophages in shaping bacterial response to antibiotic killing remains enigmatic. Herein we employed dual RNA-sequencing and an in vitro tripartite model to delve into the unexplored transcriptional networks of the Acinetobacter baumannii -macrophage-polymyxin axis. Our findings uncovered the potential synergy between macrophages and polymyxin B which appear to act in co-operation to disrupt multiple stress tolerance mechanisms in A. baumannii . Notably, we discovered the critical roles of bacterial nickel/cobalt homeostasis ( rcnB family), osmotic stress defense ( ompW family), and stringent response regulator ( traR/dksA C4-type zinc finger) in tolerating the last-line antibiotic polymyxin B. Our findings may lead to potential targets for the development of novel therapeutics against the problematic pathogen A. baumannii .
Collapse
|
115
|
Zhuang X, Gallo G, Sharma P, Ha J, Magri A, Borrmann H, Harris JM, Tsukuda S, Bentley E, Kirby A, de Neck S, Yang H, Balfe P, Wing PA, Matthews D, Harris AL, Kipar A, Stewart JP, Bailey D, McKeating JA. Hypoxia inducible factors inhibit respiratory syncytial virus infection by modulation of nucleolin expression. iScience 2024; 27:108763. [PMID: 38261926 PMCID: PMC10797196 DOI: 10.1016/j.isci.2023.108763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/13/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a global healthcare problem, causing respiratory illness in young children and elderly individuals. Our knowledge of the host pathways that define susceptibility to infection and disease severity are limited. Hypoxia inducible factors (HIFs) define metabolic responses to low oxygen and regulate inflammatory responses in the lower respiratory tract. We demonstrate a role for HIFs to suppress RSV entry and RNA replication. We show that hypoxia and HIF prolyl-hydroxylase inhibitors reduce the expression of the RSV entry receptor nucleolin and inhibit viral cell-cell fusion. We identify a HIF regulated microRNA, miR-494, that regulates nucleolin expression. In RSV-infected mice, treatment with the clinically approved HIF prolyl-hydroxylase inhibitor, Daprodustat, reduced the level of infectious virus and infiltrating monocytes and neutrophils in the lung. This study highlights a role for HIF-signalling to limit multiple aspects of RSV infection and associated inflammation and informs future therapeutic approaches for this respiratory pathogen.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Parul Sharma
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jiyeon Ha
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrea Magri
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Helene Borrmann
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James M. Harris
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Senko Tsukuda
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eleanor Bentley
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Adam Kirby
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Simon de Neck
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057 Zurich, Switzerland
| | - Hongbing Yang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter Balfe
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter A.C. Wing
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - David Matthews
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | | | - Anja Kipar
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057 Zurich, Switzerland
| | - James P. Stewart
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | | | - Jane A. McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|
116
|
Asselstine V, Medrano JF, Muniz MMM, Mallard BA, Karrow NA, Cánovas A. Novel lncRNA regulatory elements in milk somatic cells of Holstein dairy cows associated with mastitis. Commun Biol 2024; 7:98. [PMID: 38225372 PMCID: PMC10789785 DOI: 10.1038/s42003-024-05764-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/01/2024] [Indexed: 01/17/2024] Open
Abstract
Despite regulatory elements such as long non - coding RNAs representing most of the transcriptome, the functional understanding of long non - coding RNAs in relation to major health conditions including bovine mastitis is limited. This study examined the milk somatic cell transcriptome from udder quarters of 6 Holstein dairy cows to identify differentially expressed long non - coding RNAs using RNA - Sequencing. Ninety - four differentially expressed long non - coding RNAs are identified, 5 of which are previously annotated for gene name and length, 11 are annotated for gene name and 78 are novel, having no gene name or length previously annotated. Significant inflammatory response and regulation of immune response pathways (false discovery rate < 0.05) are associated with the differentially expressed long non - coding RNAs. QTL annotation analysis revealed 31 QTL previously annotated in the genomic regions of the 94 differentially expressed long non - coding RNAs, and the majority are associated with milk traits. This research provides a better understanding of long non - coding RNAs regulatory elements in milk somatic cells, which may enhance current breeding strategies for more adaptable or high mastitis resistant cattle.
Collapse
Affiliation(s)
- Victoria Asselstine
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Juan F Medrano
- Department of Animal Science, University of California-Davis, 95616, Davis, CA, USA
| | - Malane M M Muniz
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Bonnie A Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Niel A Karrow
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada.
| |
Collapse
|
117
|
Tong F, Sun Z. Identification and validation of potential biomarkers for atrial fibrillation based on integrated bioinformatics analysis. Front Cell Dev Biol 2024; 11:1190273. [PMID: 38274270 PMCID: PMC10808641 DOI: 10.3389/fcell.2023.1190273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
Background: Globally, the most common form of arrhythmias is atrial fibrillation (AF), which causes severe morbidity, mortality, and socioeconomic burden. The application of machine learning algorithms in combination with weighted gene co-expression network analysis (WGCNA) can be used to screen genes, therefore, we aimed to screen for potential biomarkers associated with AF development using this integrated bioinformatics approach. Methods: On the basis of the AF endocardium gene expression profiles GSE79768 and GSE115574 from the Gene Expression Omnibus database, differentially expressed genes (DEGs) between AF and sinus rhythm samples were identified. DEGs enrichment analysis and transcription factor screening were then performed. Hub genes for AF were screened using WGCNA and machine learning algorithms, and the diagnostic accuracy was assessed by the receiver operating characteristic (ROC) curves. GSE41177 was used as the validation set for verification. Subsequently, we identified the specific signaling pathways in which the key biomarkers were involved, using gene set enrichment analysis and reverse prediction of mRNA-miRNA interaction pairs. Finally, we explored the associations between the hub genes and immune microenvironment and immune regulation. Results: Fifty-seven DEGs were identified, and the two hub genes, hypoxia inducible factor 1 subunit alpha inhibitor (HIF1AN) and mitochondrial inner membrane protein MPV17 (MPV17), were screened using WGCNA combined with machine learning algorithms. The areas under the receiver operating characteristic curves for MPV17 and HIF1AN validated that two genes predicted AF development, and the differential expression of the hub genes was verified in the external validation dataset. Enrichment analysis showed that MPV17 and HIF1AN affect mitochondrial dysfunction, oxidative stress, gap junctions, and other signaling pathway functions. Immune cell infiltration and immunomodulatory correlation analyses showed that MPV17 and HIF1AN are strongly correlated with the content of immune cells and significantly correlated with HLA expression. Conclusion: The identification of hub genes associated with AF using WGCNA combined with machine learning algorithms and their correlation with immune cells and immune gene expression can elucidate the molecular mechanisms underlying AF occurrence. This may further identify more accurate and effective biomarkers and therapeutic targets for the diagnosis and treatment of AF.
Collapse
Affiliation(s)
| | - Zhijun Sun
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
118
|
Chamani FK, Etebari A, Hajivalili M, Mosaffa N, Jalali SA. Hypoxia and programmed cell death-ligand 1 expression in the tumor microenvironment: a review of the effects of hypoxia-induced factor-1 on immunotherapy. Mol Biol Rep 2024; 51:88. [PMID: 38183512 DOI: 10.1007/s11033-023-08947-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/24/2023] [Indexed: 01/08/2024]
Abstract
One useful cancer treatment approach is activating the patient's immune response against the tumor. In this regard, immunotherapy (IT) based on immune checkpoint blockers (ICBs) has made great progress in the last two decades. Although ITs are considered a novel approach to cancer treatment and have had good results in preclinical studies, their clinical success has shown that only a small proportion of treated patients (about 20%) benefited from them. Moreover, in highly progressed tumors, almost no acceptable response could be expected. In this regard finding the key molecules that are the main players of tumor immunosuppression might be helpful in overcoming the possible burdens. Hypoxia is one of the main components of the tumor microenvironment (TME), which can create an immunosuppressive microenvironment in various ways. For example, hypoxia is one of the main factors of programmed cell death ligand-1 (PD-L1) upregulation in tumor-infiltrating Myeloid-Derived Suppressor Cells (MDSCs). Therefore, hypoxia can be targeted to increase the efficiency of Anti-PD-L1 IT and has become one of the important issues in cancer treatment strategy. In this review, we described the effect of hypoxia in the TME, on tumor progression and immune responses and the challenges created by it for IT.
Collapse
Affiliation(s)
- Fateme Khani Chamani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Etebari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Jalali
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
119
|
Montecchi T, Nannini G, De Tommaso D, Cassioli C, Coppola F, Ringressi MN, Carraro F, Naldini A, Taddei A, Marotta G, Amedei A, Baldari CT, Ulivieri C. Human colorectal cancer: upregulation of the adaptor protein Rai in TILs leads to cell dysfunction by sustaining GSK-3 activation and PD-1 expression. Cancer Immunol Immunother 2024; 73:2. [PMID: 38175205 PMCID: PMC10766791 DOI: 10.1007/s00262-023-03614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The immunosuppressive tumor microenvironment (TME) of colorectal cancer (CRC) is a major hurdle for immune checkpoint inhibitor-based therapies. Hence characterization of the signaling pathways driving T cell exhaustion within TME is a critical need for the discovery of novel therapeutic targets and the development of effective therapies. We previously showed that (i) the adaptor protein Rai is a negative regulator of T cell receptor signaling and T helper 1 (Th1)/Th17 cell differentiation; and (ii) Rai deficiency is implicated in the hyperactive phenotype of T cells in autoimmune diseases. METHODS The expression level of Rai was measured by qRT-PCR in paired peripheral blood T cells and T cells infiltrating tumor tissue and the normal adjacent tissue in CRC patients. The impact of hypoxia-inducible factor (HIF)-1α on Rai expression was evaluated in T cells exposed to hypoxia and by performing chromatin immunoprecipitation assays and RNA interference assays. The mechanism by which upregulation of Rai in T cells promotes T cell exhaustion were evaluated by flow cytometric, qRT-PCR and western blot analyses. RESULTS We show that Rai is a novel HIF-1α-responsive gene that is upregulated in tumor infiltrating lymphocytes of CRC patients compared to patient-matched circulating T cells. Rai upregulation in T cells promoted Programmed cell Death protein (PD)-1 expression and impaired antigen-dependent degranulation of CD8+ T cells by inhibiting phospho-inactivation of glycogen synthase kinase (GSK)-3, a central regulator of PD-1 expression and T cell-mediated anti-tumor immunity. CONCLUSIONS Our data identify Rai as a hitherto unknown regulator of the TME-induced exhausted phenotype of human T cells.
Collapse
Affiliation(s)
- Tommaso Montecchi
- Department of Life Sciences, University of Siena, Siena, 53100, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, 50134, Italy
| | | | - Chiara Cassioli
- Department of Life Sciences, University of Siena, Siena, 53100, Italy
| | - Federica Coppola
- Department of Molecular and Developmental Medicine, University of Siena, Siena, 53100, Italy
| | - Maria Novella Ringressi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, 50134, Italy
| | - Fabio Carraro
- Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Antonella Naldini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, 53100, Italy
| | - Antonio Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, 50134, Italy
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, 50134, Italy.
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, Siena, 53100, Italy.
| | - Cristina Ulivieri
- Department of Life Sciences, University of Siena, Siena, 53100, Italy.
| |
Collapse
|
120
|
Lv J, Zhang C, Liu X, Gu C, Liu Y, Gao Y, Huang Z, Jiang Q, Chen B, He D, Wang T, Xu Z, Su W. An aging-related immune landscape in the hematopoietic immune system. Immun Ageing 2024; 21:3. [PMID: 38169405 PMCID: PMC10759628 DOI: 10.1186/s12979-023-00403-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Aging is a holistic change that has a major impact on the immune system, and immunosenescence contributes to the overall progression of aging. The bone marrow is the most important hematopoietic immune organ, while the spleen, as the most important extramedullary hematopoietic immune organ, maintains homeostasis of the human hematopoietic immune system (HIS) in cooperation with the bone marrow. However, the overall changes in the HIS during aging have not been described. Here, we describe a hematopoietic immune map of the spleen and bone marrow of young and old mice using single-cell sequencing and flow cytometry techniques. RESULTS We observed extensive, complex changes in the HIS during aging. Compared with young mice, the immune cells of aged mice showed a marked tendency toward myeloid differentiation, with the neutrophil population accounting for a significant proportion of this response. In this change, hypoxia-inducible factor 1-alpha (Hif1α) was significantly overexpressed, and this enhanced the immune efficacy and inflammatory response of neutrophils. Our research revealed that during the aging process, hematopoietic stem cells undergo significant changes in function and composition, and their polymorphism and differentiation abilities are downregulated. Moreover, we found that the highly responsive CD62L + HSCs were obviously downregulated in aging, suggesting that they may play an important role in the aging process. CONCLUSIONS Overall, aging extensively alters the cellular composition and function of the HIS. These findings could potentially give high-dimensional insights and enable more accurate functional and developmental analyses as well as immune monitoring in HIS aging.
Collapse
Affiliation(s)
- Jianjie Lv
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Chun Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Chenyang Gu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yidan Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yuehan Gao
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Zhaohao Huang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Qi Jiang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Binyao Chen
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Daquan He
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Tianfu Wang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
121
|
Meng W, Ye H, Ma Z, Liu L, Zhang T, Han Q, Xiang Z, Xia Y, Ke Y, Guan X, Shi Q, Ataullakhanov FI, Panteleev M. Perfluorocarbon Nanoparticles Incorporating Ginkgolide B: Artificial O 2 Carriers with Antioxidant Activity and Antithrombotic Effect. ChemMedChem 2024; 19:e202300312. [PMID: 37970644 DOI: 10.1002/cmdc.202300312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/20/2023] [Accepted: 11/15/2023] [Indexed: 11/17/2023]
Abstract
Ischemic stroke primarily leads to insufficient oxygen delivery in ischemic area. Prompt reperfusion treatment for restoration of oxygen is clinically suggested but mediates more surging reactive oxygen species (ROS) generation and oxidative damage, known as ischemia-reperfusion injury (IRI). Therefore, the regulation of oxygen content is a critical point to prevent cerebral ischemia induced pathological responses and simultaneously alleviate IRI triggered by the sudden oxygen restoration. In this work, we constructed a perfluorocarbon (PFC)-based artificial oxygen nanocarrier (PFTBA-L@GB), using an ultrasound-assisted emulsification method, alleviates the intracerebral hypoxic state in ischemia stage and IRI after reperfusion. The high oxygen solubility of PFC allows high oxygen efficacy. Furthermore, PFC has the adhesion affinity to platelets and prevents the overactivation of platelet. The encapsulated payload, ginkgolide B (GB) exerts its anti-thrombosis by antagonism on platelet activating factor and antioxidant effect by upregulation of antioxidant molecular pathway. The versatility of the present strategy provides a practical approach to build a simple, safe, and relatively effective oxygen delivery agent to alleviate hypoxia, promote intracerebral oxygenation, anti-inflammatory, reduce intracerebral oxidative stress damage and thrombosis and caused by stroke.
Collapse
Affiliation(s)
- Wei Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hongbo Ye
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Lei Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Tianci Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qiaoyi Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zehong Xiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yu Xia
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yue Ke
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xinghua Guan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Fazly I Ataullakhanov
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1, build. 2, GSP-1, Moscow, 119991, Russia
| | - Mikhail Panteleev
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
| |
Collapse
|
122
|
Chattopadhyay M, Chanda A, Pal B. Unravelling the Nexus: Mitochondrial Oxidative Stress, Tumour Microenvironment, and Escape from Immune Surveillance. CANCER DRUG DISCOVERY AND DEVELOPMENT 2024:255-286. [DOI: 10.1007/978-3-031-66421-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
|
123
|
Zuo Z, Zhou Z, Chang Y, Liu Y, Shen Y, Li Q, Zhang L. Ribonucleotide reductase M2 (RRM2): Regulation, function and targeting strategy in human cancer. Genes Dis 2024; 11:218-233. [PMID: 37588202 PMCID: PMC10425756 DOI: 10.1016/j.gendis.2022.11.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/26/2022] [Accepted: 11/14/2022] [Indexed: 12/29/2022] Open
Abstract
Ribonucleotide reductase M2 (RRM2) is a small subunit in ribonucleotide reductases, which participate in nucleotide metabolism and catalyze the conversion of nucleotides to deoxynucleotides, maintaining the dNTP pools for DNA biosynthesis, repair, and replication. RRM2 performs a critical role in the malignant biological behaviors of cancers. The structure, regulation, and function of RRM2 and its inhibitors were discussed. RRM2 gene can produce two transcripts encoding the same ORF. RRM2 expression is regulated at multiple levels during the processes from transcription to translation. Moreover, this gene is associated with resistance, regulated cell death, and tumor immunity. In order to develop and design inhibitors of RRM2, appropriate strategies can be adopted based on different mechanisms. Thus, a greater appreciation of the characteristics of RRM2 is a benefit for understanding tumorigenesis, resistance in cancer, and tumor microenvironment. Moreover, RRM2-targeted therapy will be more attention in future therapeutic approaches for enhancement of treatment effects and amelioration of the dismal prognosis.
Collapse
Affiliation(s)
- Zanwen Zuo
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Zerong Zhou
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yuzhou Chang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Yan Liu
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuping Shen
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, China
| | - Qizhang Li
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Lei Zhang
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
124
|
Barmada A, Handfield LF, Godoy-Tena G, de la Calle-Fabregat C, Ciudad L, Arutyunyan A, Andrés-León E, Hoo R, Porter T, Oszlanczi A, Richardson L, Calero-Nieto FJ, Wilson NK, Marchese D, Sancho-Serra C, Carrillo J, Presas-Rodríguez S, Ramo-Tello C, Ruiz-Sanmartin A, Ferrer R, Ruiz-Rodriguez JC, Martínez-Gallo M, Munera-Campos M, Carrascosa JM, Göttgens B, Heyn H, Prigmore E, Casafont-Solé I, Solanich X, Sánchez-Cerrillo I, González-Álvaro I, Raimondo MG, Ramming A, Martin J, Martínez-Cáceres E, Ballestar E, Vento-Tormo R, Rodríguez-Ubreva J. Single-cell multi-omics analysis of COVID-19 patients with pre-existing autoimmune diseases shows aberrant immune responses to infection. Eur J Immunol 2024; 54:e2350633. [PMID: 37799110 DOI: 10.1002/eji.202350633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
In COVID-19, hyperinflammatory and dysregulated immune responses contribute to severity. Patients with pre-existing autoimmune conditions can therefore be at increased risk of severe COVID-19 and/or associated sequelae, yet SARS-CoV-2 infection in this group has been little studied. Here, we performed single-cell analysis of peripheral blood mononuclear cells from patients with three major autoimmune diseases (rheumatoid arthritis, psoriasis, or multiple sclerosis) during SARS-CoV-2 infection. We observed compositional differences between the autoimmune disease groups coupled with altered patterns of gene expression, transcription factor activity, and cell-cell communication that substantially shape the immune response under SARS-CoV-2 infection. While enrichment of HLA-DRlow CD14+ monocytes was observed in all three autoimmune disease groups, type-I interferon signaling as well as inflammatory T cell and monocyte responses varied widely between the three groups of patients. Our results reveal disturbed immune responses to SARS-CoV-2 in patients with pre-existing autoimmunity, highlighting important considerations for disease treatment and follow-up.
Collapse
Affiliation(s)
- Anis Barmada
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | | | - Gerard Godoy-Tena
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
| | | | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
| | - Anna Arutyunyan
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Eduardo Andrés-León
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Regina Hoo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Tarryn Porter
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Agnes Oszlanczi
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Laura Richardson
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Fernando J Calero-Nieto
- Department of Haematology and Wellcome & MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Nicola K Wilson
- Department of Haematology and Wellcome & MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Domenica Marchese
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Carmen Sancho-Serra
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Silvia Presas-Rodríguez
- MS Unit, Department of Neurology, Germans Trias i Pujol University Hospital, Barcelona, Spain
| | - Cristina Ramo-Tello
- MS Unit, Department of Neurology, Germans Trias i Pujol University Hospital, Barcelona, Spain
| | - Adolfo Ruiz-Sanmartin
- Department of Intensive Care, Hospital Universitari Vall d'Hebron, Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Ricard Ferrer
- Department of Intensive Care, Hospital Universitari Vall d'Hebron, Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Juan Carlos Ruiz-Rodriguez
- Department of Intensive Care, Hospital Universitari Vall d'Hebron, Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Mónica Martínez-Gallo
- Division of Immunology, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Mónica Munera-Campos
- Dermatology Service, Germans Trias i Pujol University Hospital, LCMN, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
| | - Jose Manuel Carrascosa
- Dermatology Service, Germans Trias i Pujol University Hospital, LCMN, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
| | - Berthold Göttgens
- Department of Haematology and Wellcome & MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Ivette Casafont-Solé
- Department of Rheumatology, Germans Trias i Pujol University Hospital, LCMN, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
- Department of Infectious Diseases, Germans Trias i Pujol University Hospital, Barcelona, Spain
| | - Xavier Solanich
- Department of Internal Medicine, Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | - Maria Gabriella Raimondo
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Javier Martin
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Eva Martínez-Cáceres
- Division of Immunology, Germans Trias i Pujol University Hospital, LCMN, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
- Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma, Barcelona, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
| |
Collapse
|
125
|
Singhal R, Kotla NK, Solanki S, Huang W, Bell HN, El-Derany MO, Castillo C, Shah YM. Disruption of hypoxia-inducible factor-2α in neutrophils decreases colitis-associated colon cancer. Am J Physiol Gastrointest Liver Physiol 2024; 326:G53-G66. [PMID: 37933447 PMCID: PMC11208019 DOI: 10.1152/ajpgi.00182.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
Neutrophils are abundant immune cells in the colon tumor microenvironment. Studies have shown that neutrophils are recruited into hypoxic foci in colon cancer. However, the impact of hypoxia signaling on neutrophil function and its involvement in colon tumorigenesis remain unclear. To address this, we generated mice with a deletion of hypoxia-inducible factor (HIF)-1α or HIF-2α in neutrophils driven by the MRP8Cre (HIF-1αΔNeu) or (HIF-2αΔNeu) and littermate controls. In an azoxymethane (AOM)/dextran sulfate sodium (DSS) model of colon cancer, the disruption of neutrophils-HIF-1α did not result in any significant changes in body weight, colon length, tumor size, proliferation, or burden. However, the disruption of HIF-2α in neutrophils led to a slight increase in body weight, a significant decrease in the number of tumors, and a reduction in tumor size and volume compared with their littermate controls. Histological analysis of colon tissue from mice with HIF-2α-deficient neutrophils revealed notable reductions in proliferation as compared with control mice. In addition, we observed reduced levels of proinflammatory cytokines, such as TNF-α and IL-1β, in neutrophil-specific HIF-2α-deficient mice in both the tumor tissue as well as the neutrophils. Importantly, it is worth noting that the reduced tumorigenesis associated with HIF-2α deficiency in neutrophils was not evident in already established syngeneic tumors or a DSS-induced inflammation model, indicating a potential role of HIF-2α specifically in colon tumorigenesis. In conclusion, we found that the loss of neutrophil-specific HIF-2α slows colon tumor growth and progression by reducing the levels of inflammatory mediators.NEW & NOTEWORTHY Despite the importance of hypoxia and neutrophils in colorectal cancer (CRC), the contribution of neutrophil-specific HIFs to colon tumorigenesis is not known. We describe that neutrophil HIF-1α has no impact on colon cancer, whereas neutrophil HIF-2α loss reduces CRC growth by decreasing proinflammatory and immunosuppressive cytokines. Furthermore, neutrophil HIF-2α does not reduce preestablished tumor growth or inflammation-induced colitis. The present study offers novel potential of neutrophil HIF-2α as a therapeutic target in CRC.
Collapse
Affiliation(s)
- Rashi Singhal
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Nikhil Kumar Kotla
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Sumeet Solanki
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Wesley Huang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
- Cellular and Molecular Biology and Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, United States
| | - Hannah N Bell
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Marwa O El-Derany
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Cristina Castillo
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
126
|
Guo L, Li S, Wang X, Zhu Y, Li J. Overexpression of VEGFA mediated by HIF-1 is associated with higher rate of spread through air spaces in resected lung adenocarcinomas. J Gene Med 2024; 26:e3625. [PMID: 37957027 DOI: 10.1002/jgm.3625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Spread through air spaces (STAS), a newly identified pattern of invasion in lung adenocarcinomas (LACs), is an unfavorable prognostic factor for patients with LAC, but the molecular characteristics and mechanisms underlying STAS have not been adequately explored. METHODS In total, 650 pathologically confirmed invasive LAC patients who underwent curative resection between December 2019 and April 2020 were reviewed. Disease-free survival (DFS) and overall survival (OS) were analyzed using the log-rank test and the Cox proportional hazards model. A comparative deep sequencing analysis was conducted to explore the molecular characteristics underlying STAS. Vascular endothelial growth factor A (VEGFA) expression was evaluated by immunoblotting and immunohistochemical analysis using fresh tumor tissue and tissue microarray. RESULTS STAS was more prevalent in patients with a smoking history (p < 0.001), high pathological TNM stage (p < 0.001), lymphovascular invasion (p < 0.001), visceral pleural invasion (p < 0.001) and micropapillary/solid histological subtypes (p < 0.001). STAS-negative patients had better DFS (p < 0.001) and OS (p = 0.003) compared to STAS-positive patients with invasive LACs, especially in the lymph node-negative population (p < 0.001). After RNA-sequencing analysis, hypoxia-inducible factor-1 (HIF-1) signaling was enriched and appeared to be strongly correlated with STAS, and more STAS-positive individuals were detected in the higher VEGFA-expressing group (p = 0.042). CONCLUSIONS We demonstrated that STAS was an independent prognostic marker of poor clinical outcome, especially in lymph node-negative patients, and that higher VEGFA expression mediated by HIF-1 signaling was associated with an increased STAS rate.
Collapse
Affiliation(s)
- Liang Guo
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shaoling Li
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xing Wang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuming Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Juanjuan Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
127
|
Valle-Noguera A, Sancho-Temiño L, Castillo-González R, Villa-Gómez C, Gomez-Sánchez MJ, Ochoa-Ramos A, Yagüe-Fernández P, Soler Palacios B, Zorita V, Raposo-Ponce B, González-Granado JM, Aragonés J, Cruz-Adalia A. IL-18-induced HIF-1α in ILC3s ameliorates the inflammation of C. rodentium-induced colitis. Cell Rep 2023; 42:113508. [PMID: 38019650 DOI: 10.1016/j.celrep.2023.113508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) are vital for defending tissue barriers from invading pathogens. Hypoxia influences the production of intestinal ILC3-derived cytokines by activating HIF. Yet, the mechanisms governing HIF-1α in ILC3s and other innate RORγt+ cells during in vivo infections are poorly understood. In our study, transgenic mice with specific Hif-1a gene inactivation in innate RORγt+ cells (RAG1KO HIF-1α▵Rorc) exhibit more severe colitis following Citrobacter rodentium infection, primarily due to the inability to upregulate IL-22. We find that HIF-1α▵Rorc mice have impaired IL-22 production in ILC3s, while non-ILC3 innate RORγt+ cells, also capable of producing IL-22, remain unaffected. Furthermore, we show that IL-18, induced by Toll-like receptor 2, selectively triggers IL-22 in ILC3s by transcriptionally upregulating HIF-1α, revealing an oxygen-independent regulatory pathway. Our results highlight that, during late-stage C. rodentium infection, IL-18 induction in the colon promotes IL-22 through HIF-1α in ILC3s, which is crucial for protection against this pathogen.
Collapse
Affiliation(s)
- Ana Valle-Noguera
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Lucía Sancho-Temiño
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Raquel Castillo-González
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Cristina Villa-Gómez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - María José Gomez-Sánchez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Anne Ochoa-Ramos
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Blanca Soler Palacios
- Department of Immunology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Virginia Zorita
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - José María González-Granado
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Julián Aragonés
- Hospital Santa Cristina, Fundación de Investigación Hospital de la Princesa, Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Aránzazu Cruz-Adalia
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
128
|
Feng Y, Xu J, Lu J, Hou J, Wang L, Dong D, Wang X, Wang X, Wu X, Chen X. EgCF mediates macrophage polarisation by influencing the glycolytic pathway. J Helminthol 2023; 97:e101. [PMID: 38124668 DOI: 10.1017/s0022149x23000548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Human cystic echinococcosis (CE) is a zoonotic disorder triggered by the larval stage of Echinococcus granulosus (E. granulosus) and predominantly occurred in the liver and lungs. The M2 macrophage level is considerably elevated among the liver of patients with hepatic CE and performs an integral function in liver fibrosis. However, the mechanism of CE inducing polarisation of macrophage to an M2 phenotype is unknown. In this study, macrophage was treated with E. granulosus cyst fluid (EgCF) to explore the mechanism of macrophage polarisation. Consequently, the expression of the M2 macrophage and production of anti-inflammatory cytokines increased after 48 h treatment by EgCF. In addition, EgCF promoted polarisation of macrophage to an M2 phenotype by inhibiting the expression of transcriptional factor hypoxia-inducible factor 1-alpha (HIF-1α), which increased the expression of glycolysis-associated genes, including hexokinase 2 (HK2) and pyruvate kinase 2 (PKM2). The HIF-1α agonist ML228 also inhibited the induction of macrophage to an M2 phenotype by EgCF in vitro. Our findings indicate that E. granulosus inhibits glycolysis by suppressing the expression of HIF-1α.
Collapse
Affiliation(s)
- Yeye Feng
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Junying Xu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Junxia Lu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jun Hou
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Lianghai Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Dan Dong
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xian Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiaofang Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiangwei Wu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of General Surgery, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xueling Chen
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| |
Collapse
|
129
|
Serio B, Giudice V, Selleri C. All Roads Lead to Interferon-γ: From Known to Untraveled Pathways in Acquired Aplastic Anemia. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2170. [PMID: 38138273 PMCID: PMC10744863 DOI: 10.3390/medicina59122170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Bone marrow failure (BMF) syndromes are a heterogeneous group of benign hematological conditions with common clinical features including reduced bone marrow cellularity and peripheral blood cytopenias. Acquired aplastic anemia (AA) is caused by T helper(Th)1-mediated immune responses and cytotoxic CD8+ T cell-mediated autologous immune attacks against hematopoietic stem and progenitor cells (HSPCs). Interferon-γ (IFNγ), tumor necrosis factor-α, and Fas-ligand are historically linked to AA pathogenesis because they drive Th1 and cytotoxic T cell-mediated responses and can directly induce HSPC apoptosis and differentiation block. The use of omics technologies has amplified the amount of data at the single-cell level, and knowledge on AA, and new scenarios, have been opened on "old" point of view. In this review, we summarize the current state-of-art of the pathogenic role of IFNγ in AA from initial findings to novel evidence, such as the involvement of the HIF-1α pathway, and how this knowledge can be translated in clinical practice.
Collapse
Affiliation(s)
- Bianca Serio
- Department of Medicine, Surgery, and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (B.S.); (C.S.)
| | - Valentina Giudice
- Department of Medicine, Surgery, and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (B.S.); (C.S.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery, and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (B.S.); (C.S.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| |
Collapse
|
130
|
Shi X, Gao F, Zhao X, Pei C, Zhu L, Zhang J, Li C, Li L, Kong X. Role of HIF in fish inflammation. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109222. [PMID: 37956798 DOI: 10.1016/j.fsi.2023.109222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
The hypoxia-inducing factor (HIF) is a central transcription factor in cellular oxygen sensing and regulation. It is common that the inflammation always appears in many diseases, like infectious diseases in fishes, and the inflammation is often accompanied by hypoxia, as a hallmark of inflammation. Besides coordinating cellular responses to low oxygen, HIF-mediated hypoxia signaling pathway is also crucial for immune responses such as the regulations of innate immune cell phenotype and function, as well as metabolic reprogramming under the inflammation. However, the understanding of the molecular mechanisms by which HIFs regulate the inflammatory response in fish is still very limited. Here, we review the characteristics of HIF as well as its roles in innate immune cells and the infections caused by bacteria and viruses. The regulatory effects of HIF on the metabolic reprogramming of innate immune cells are also discussed and the future research directions are outlooked. This paper will serve as a reference for elucidating the molecular mechanism of HIF regulating inflammation and identifying treatment strategies to target HIF for fish disease.
Collapse
Affiliation(s)
- Xiaowei Shi
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China; Sanquan Medical College, Henan Province, PR China
| | - Feng Gao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Jie Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Chen Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Li Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China.
| |
Collapse
|
131
|
Estêvão D, da Cruz-Ribeiro M, Cardoso AP, Costa ÂM, Oliveira MJ, Duarte TL, da Cruz TB. Iron metabolism in colorectal cancer: a balancing act. Cell Oncol (Dordr) 2023; 46:1545-1558. [PMID: 37273145 DOI: 10.1007/s13402-023-00828-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the second deadliest malignancy worldwide. Current dietary habits are associated with increased levels of iron and heme, both of which increase the risk of developing CRC. The harmful effects of iron overload are related to the induction of iron-mediated pro-tumorigenic pathways, including carcinogenesis and hyperproliferation. On the other hand, iron deficiency may also promote CRC development and progression by contributing to genome instability, therapy resistance, and diminished immune responses. In addition to the relevance of systemic iron levels, iron-regulatory mechanisms in the tumor microenvironment are also believed to play a significant role in CRC and to influence disease outcome. Furthermore, CRC cells are more prone to escape iron-dependent cell death (ferroptosis) than non-malignant cells due to the constitutive activation of antioxidant genes expression. There is wide evidence that inhibition of ferroptosis may contribute to the resistance of CRC to established chemotherapeutic regimens. As such, ferroptosis inducers represent promising therapeutic drugs for CRC. CONCLUSIONS AND PERSPECTIVES This review addresses the complex role of iron in CRC, particularly in what concerns the consequences of iron excess or deprivation in tumor development and progression. We also dissect the regulation of cellular iron metabolism in the CRC microenvironment and emphasize the role of hypoxia and of oxidative stress (e.g. ferroptosis) in CRC. Finally, we underline some iron-related players as potential therapeutic targets against CRC malignancy.
Collapse
Affiliation(s)
- Diogo Estêvão
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Cancer Research Institute, Ghent University, Ghent, Belgium
| | - Miguel da Cruz-Ribeiro
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Ana P Cardoso
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Ângela M Costa
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Maria J Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- FMUP - Faculty of Medicine, Pathology Department, University of Porto, Porto, Portugal
| | - Tiago L Duarte
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Tânia B da Cruz
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.
| |
Collapse
|
132
|
Schoelles KJ, Kemper K, Martin G, Boehringer D, Brinks K, Mittelviefhaus H, Reinhard T, Auw-Haedrich C. HIF1α and HIF2α immunoreactivity in epithelial tissue of primary and recurrent pterygium by immunohistochemical analysis. Int Ophthalmol 2023; 43:4551-4562. [PMID: 37684398 PMCID: PMC10724320 DOI: 10.1007/s10792-023-02855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 08/05/2023] [Indexed: 09/10/2023]
Abstract
PURPOSE Hypoxia-inducible factors (HIFs) are considered to play a significant role in the pathogenesis of pterygium. The aim of this study was to investigate the relative expression or immunoreactivity of HIF1α and HIF2α in the epithelium of primary pterygium, recurrences and healthy conjunctiva. METHODS Immunohistochemical staining was performed with antibodies against HIF1α and HIF2α, respectively, on 55/84 primary pterygium specimens, 6/28 recurrences and 20/20 control tissues (healthy conjunctiva). RESULTS Immunohistochemical staining revealed lower epithelial immunoreactivity of HIF1α and HIF2α in both primary pterygium (11% and 38%) and recurrences (18% and 21%) when compared to healthy conjunctival tissue (46% and 66%). Differences between immunoreactivity of HIF1α and of HIF2α in primary pterygium and controls were each highly significant (p < .001). Within the group of primary pterygium, epithelial immunoreactivity of HIF2α (38%) was significantly higher than that of HIF1α (11%). In recurrent pterygium and healthy conjunctiva, immunoreactivity levels of HIF2α were higher than those of HIF1α as well; however, differences between both isoforms were not significant. CONCLUSION Our study shows evidence that the higher expressed epithelial HIF2α, rather than HIF1α, and the balance between both HIF isoforms might be relevant factors associated with pathogenesis of primary pterygium. Modulation of HIF2α levels and activity may thus offer a new therapeutic approach to the treatment of advancing pterygium where the initial stage with its HIF1-peak has already passed.
Collapse
Affiliation(s)
| | - Katharina Kemper
- Eye Center, Medical Center - University of Freiburg, Killianstraße 5, 79106, Freiburg, Germany
| | - Gottfried Martin
- Eye Center, Medical Center - University of Freiburg, Killianstraße 5, 79106, Freiburg, Germany
| | - Daniel Boehringer
- Eye Center, Medical Center - University of Freiburg, Killianstraße 5, 79106, Freiburg, Germany
| | - Katarzyna Brinks
- Eye Center, Medical Center - University of Freiburg, Killianstraße 5, 79106, Freiburg, Germany
| | - Hans Mittelviefhaus
- Eye Center, Medical Center - University of Freiburg, Killianstraße 5, 79106, Freiburg, Germany
| | - Thomas Reinhard
- Eye Center, Medical Center - University of Freiburg, Killianstraße 5, 79106, Freiburg, Germany
| | - Claudia Auw-Haedrich
- Eye Center, Medical Center - University of Freiburg, Killianstraße 5, 79106, Freiburg, Germany
| |
Collapse
|
133
|
Ornelas A, Welch N, Countess JA, Zhou L, Wang RX, Dowdell AS, Colgan SP. Mimicry of microbially-derived butyrate reveals templates for potent intestinal epithelial HIF stabilizers. Gut Microbes 2023; 15:2267706. [PMID: 37822087 PMCID: PMC10572066 DOI: 10.1080/19490976.2023.2267706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
Microbiota-derived short-chain fatty acids, including butyrate (BA), have multiple beneficial health effects. In the colon, BA concentrations range from 10 to 20 mM and up to 95% is utilized as energy by the mucosa. BA plays a key role in epithelial-barrier regulation and anti-inflammation, and regulates cell growth and differentiation, at least in part, due to its direct influence on stabilization of the transcription factor hypoxia-inducible factor (HIF). It remains unclear whether BA is the optimal metabolite for such a response. In this study, we explored metabolite mimicry as an attractive strategy for the biological response to HIF. We discovered that 4-mercapto butyrate (MBA) stabilizes HIF more potently and has a longer biological half-life than BA in intestinal epithelial cells (IECs). We validated the MBA-mediated HIF transcriptional activity through the induction of classic HIF gene targets in IECs and enhanced epithelial barrier formation in vitro. In-vivo studies with MBA revealed systemic HIF stabilization in mice, which was more potent than its parent BA metabolite. Mechanistically, we found that MBA enhances oxygen consumption and that the sulfhydryl group is essential for HIF stabilization, but exclusively as a four-carbon SCFA. These findings reveal a combined biochemical mechanism for HIF stabilization and provide a foundation for the discovery of potent metabolite-like scaffolds.
Collapse
Affiliation(s)
- Alfredo Ornelas
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO, USA
| | - Nichole Welch
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO, USA
- Department of Medicine, Rocky Mountain Veterans Association, Aurora, CO, USA
| | - Jacob A. Countess
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO, USA
| | - Liheng Zhou
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO, USA
| | - Ruth X. Wang
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO, USA
| | - Alexander S. Dowdell
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO, USA
- Department of Medicine, Rocky Mountain Veterans Association, Aurora, CO, USA
| | - Sean P. Colgan
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO, USA
- Department of Medicine, Rocky Mountain Veterans Association, Aurora, CO, USA
| |
Collapse
|
134
|
Kambal S, Tijjani A, Ibrahim SAE, Ahmed MKA, Mwacharo JM, Hanotte O. Candidate signatures of positive selection for environmental adaptation in indigenous African cattle: A review. Anim Genet 2023; 54:689-708. [PMID: 37697736 DOI: 10.1111/age.13353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 07/28/2023] [Accepted: 08/19/2023] [Indexed: 09/13/2023]
Abstract
Environmental adaptation traits of indigenous African cattle are increasingly being investigated to respond to the need for sustainable livestock production in the context of unpredictable climatic changes. Several studies have highlighted genomic regions under positive selection probably associated with adaptation to environmental challenges (e.g. heat stress, trypanosomiasis, tick and tick-borne diseases). However, little attention has focused on pinpointing the candidate causative variant(s) controlling the traits. This review compiled information from 22 studies on signatures of positive selection in indigenous African cattle breeds to identify regions under positive selection. We highlight some key candidate genome regions and genes of relevance to the challenges of living in extreme environments (high temperature, high altitude, high infectious disease prevalence). They include candidate genes involved in biological pathways relating to innate and adaptive immunity (e.g. BoLAs, SPAG11, IL1RL2 and GFI1B), heat stress (e.g. HSPs, SOD1 and PRLH) and hypoxia responses (e.g. BDNF and INPP4A). Notably, the highest numbers of candidate regions are found on BTA3, BTA5 and BTA7. They overlap with genes playing roles in several biological functions and pathways. These include but are not limited to growth and feed intake, cell stability, protein stability and sweat gland development. This review may further guide targeted genome studies aiming to assess the importance of candidate causative mutations, within regulatory and protein-coding genome regions, to further understand the biological mechanisms underlying African cattle's unique adaption.
Collapse
Affiliation(s)
- Sumaya Kambal
- Livestock Genetics, International Livestock Research Institute, Addis Ababa, Ethiopia
- Department of Genetics and Animal Breeding, Faculty of Animal Production, University of Khartoum, Khartoum, Sudan
- Department of Bioinformatics and Biostatistics, National University, Khartoum, Sudan
| | - Abdulfatai Tijjani
- Centre for Tropical Livestock Genetics and Health, International Livestock Research Institute, Addis Ababa, Ethiopia
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Sabah A E Ibrahim
- Department of Bioinformatics and Biostatistics, National University, Khartoum, Sudan
| | - Mohamed-Khair A Ahmed
- Department of Genetics and Animal Breeding, Faculty of Animal Production, University of Khartoum, Khartoum, Sudan
| | - Joram M Mwacharo
- Scotland's Rural College and Centre for Tropical Livestock Genetics and Health, Edinburgh, UK
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Olivier Hanotte
- Livestock Genetics, International Livestock Research Institute, Addis Ababa, Ethiopia
- Centre for Tropical Livestock Genetics and Health, International Livestock Research Institute, Addis Ababa, Ethiopia
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
135
|
Xu H, Wen Q, Xu X, Liu Z, Liu S, Wang H, Zhang C, Wan D, Liu K, Du L, Yuan C, Song L. Induction of heme oxygenase-1 antagonizes PM2.5-induced pulmonary VEGFA expression through regulating HIF-1α. J Biochem Mol Toxicol 2023; 37:e23494. [PMID: 37563788 DOI: 10.1002/jbt.23494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/19/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Particulate matter (PM) 2.5 has long been regarded as a major risk factor of the respiratory system, which constitutes a threat to human health. Although the positive relationship between PM2.5 exposure and the development of respiratory diseases has been well established, limited studies investigate the intrinsic self-protection mechanisms against PM2.5-induced respiratory injuries. Excessive pulmonary inflammation served as a key pathogenic mechanism in PM2.5-induced airway dysfunction, and we have previously shown that PM2.5 induced the production of vascular endothelial growth factor A (VEGFA) in the bronchial epithelial cells, which subsequently led to pulmonary inflammatory responses. In the current study, we found that PM2.5 also concurrently induced the expression of the stress-responsive protein heme oxygenase-1 (HO-1) along with VEGFA in the bronchial epithelial cells both in vivo and in vitro. Importantly, knocking down of HO-1 expression significantly increased the synthesis and secretion of VEGFA; while overexpression of HO-1 showed the opposite effects, indicating that HO-1 induction can antagonize VEGFA production in the bronchial epithelial cells upon PM2.5 exposure. Mechanistically, HO-1 inhibited PM2.5-evoked VEGFA induction through modulating hypoxia-inducible factor 1 alpha (HIF-1α), which was the upstream transcriptional factor of VEGFA. More specifically, HO-1 could not only inhibit HIF-1α expression, but also suppress its transactivity. Taken together, our results suggested that HO-1 was an intrinsic protective factor against PM2.5-induced pulmonary VEGFA production with a mechanism relating to HIF-1α, thus providing a potential treatment strategy against PM2.5 triggered airway injuries.
Collapse
Affiliation(s)
- Huan Xu
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
- School of Basic Medicine, Anhui Medical University, Hefei, People's Republic of China
| | - Qing Wen
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Xiuduan Xu
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
- School of Basic Medicine, Anhui Medical University, Hefei, People's Republic of China
| | - Zhihui Liu
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
- College of Life Science, Henan Normal University, Xinxiang, People's Republic of China
| | - Shasha Liu
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Hongli Wang
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Henan University, Kaifeng, People's Republic of China
| | - Chongchong Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Henan University, Kaifeng, People's Republic of China
| | - Delian Wan
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
- Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Kun Liu
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Lina Du
- Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Chao Yuan
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Lun Song
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
- School of Basic Medicine, Anhui Medical University, Hefei, People's Republic of China
- College of Life Science, Henan Normal University, Xinxiang, People's Republic of China
- School of Pharmacy, Jiamusi University, Jiamusi, People's Republic of China
| |
Collapse
|
136
|
Bailey C, Wei Y, Yan J, Huang D, Zhang P, Qi C, Lazarski C, Su J, Tang F, Wong CS, Zheng P, Liu Y, Liu Y, Wang Y. Genetic and pharmaceutical targeting of HIF1α allows combo-immunotherapy to boost graft vs. leukemia without exacerbation graft vs. host disease. Cell Rep Med 2023; 4:101236. [PMID: 37827154 PMCID: PMC10694596 DOI: 10.1016/j.xcrm.2023.101236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
Despite potential impact on the graft vs. leukemia (GVL) effect, immunotherapy targeting CTLA-4 and/or PD-1 has not been successfully combined with bone marrow transplant (BMT) because it exacerbates graft vs. host disease (GVHD). Here, using models of GVHD and leukemia, we demonstrate that targeting hypoxia-inducible factor 1α (HIF1α) via pharmacological or genetic approaches reduces GVHD by inducing PDL1 expression on host tissue while selectively inhibiting PDL1 in leukemia cells to enhance the GVL effect. More importantly, combination of HIF1α inhibition with anti-CTLA-4 antibodies allows simultaneous inhibition of both PDL1 and CTLA-4 checkpoints to achieve better outcomes in models of mouse and human BMT-leukemia settings. These findings provide an approach to enhance the curative effect of BMT for leukemia and broaden the impact of cancer immunotherapy.
Collapse
Affiliation(s)
- Christopher Bailey
- Division of Immunotherapy, Institute of Human Virology, Department of Surgery and Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yuanyi Wei
- Division of Immunotherapy, Institute of Human Virology, Department of Surgery and Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jinsong Yan
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Dan Huang
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Peng Zhang
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Cancer for Children's Health, Beijing, China
| | - Chong Qi
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin 130061, China
| | - Christopher Lazarski
- Center for Cancer and Immunology Research, Children's Research Institute, Washington, DC 20010, USA
| | - JuanJuan Su
- Division of Immunotherapy, Institute of Human Virology, Department of Surgery and Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Fei Tang
- Division of Immunotherapy, Institute of Human Virology, Department of Surgery and Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Chun-Shu Wong
- Center for Cancer and Immunology Research, Children's Research Institute, Washington, DC 20010, USA
| | - Pan Zheng
- Division of Immunotherapy, Institute of Human Virology, Department of Surgery and Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; OncoC4, Inc., Rockville, MD 20852, USA
| | - Yan Liu
- Division of Immunotherapy, Institute of Human Virology, Department of Surgery and Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Yang Liu
- Division of Immunotherapy, Institute of Human Virology, Department of Surgery and Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; OncoC4, Inc., Rockville, MD 20852, USA.
| | - Yin Wang
- Division of Immunotherapy, Institute of Human Virology, Department of Surgery and Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
137
|
Pan Y, Liu L, Mou X, Cai Y. Nanomedicine Strategies in Conquering and Utilizing the Cancer Hypoxia Environment. ACS NANO 2023; 17:20875-20924. [PMID: 37871328 DOI: 10.1021/acsnano.3c07763] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Cancer with a complex pathological process is a major disease to human welfare. Due to the imbalance between oxygen (O2) supply and consumption, hypoxia is a natural characteristic of most solid tumors and an important obstacle for cancer therapy, which is closely related to tumor proliferation, metastasis, and invasion. Various strategies to exploit the feature of tumor hypoxia have been developed in the past decade, which can be used to alleviate tumor hypoxia, or utilize the hypoxia for targeted delivery and diagnostic imaging. The strategies to alleviate tumor hypoxia include delivering O2, in situ O2 generation, reprogramming the tumor vascular system, decreasing O2 consumption, and inhibiting HIF-1 related pathways. On the other side, hypoxia can also be utilized for hypoxia-responsive chemical construction and hypoxia-active prodrug-based strategies. Taking advantage of hypoxia in the tumor region, a number of methods have been applied to identify and keep track of changes in tumor hypoxia. Herein, we thoroughly review the recent progress of nanomedicine strategies in both conquering and utilizing hypoxia to combat cancer and put forward the prospect of emerging nanomaterials for future clinical transformation, which hopes to provide perspectives in nanomaterials design.
Collapse
Affiliation(s)
- Yi Pan
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Longcai Liu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiaozhou Mou
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
138
|
Tsukuda S, Harris JM, Magri A, Balfe P, Wing PAC, Siddiqui A, McKeating JA. The N6-methyladenosine demethylase ALKBH5 regulates the hypoxic HBV transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564956. [PMID: 37961409 PMCID: PMC10634982 DOI: 10.1101/2023.10.31.564956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Chronic hepatitis B is a global health problem and current treatments only suppress hepatitis B virus (HBV) infection, highlighting the need for new curative treatments. Oxygen levels influence HBV replication and we previously reported that hypoxia inducible factors (HIFs) activate the basal core promoter to transcribe pre-genomic RNA. Application of a probe-enriched long-read sequencing method to map the HBV transcriptome showed an increased abundance of all viral RNAs under low oxygen or hypoxic conditions. Importantly, the hypoxic-associated increase in HBV transcripts was dependent on N6-methyladenosine (m6A) modifications and an m6A DRACH motif in the 5' stem loop of pre-genomic RNA defined transcript half-life under hypoxic conditions. Given the essential role of m6A modifications in the viral transcriptome we assessed the oxygen-dependent expression of RNA demethylases and bioinformatic analysis of published single cell RNA-seq of murine liver showed an increased expression of the RNA demethylase ALKBH5 in the peri-central low oxygen region. In vitro studies with a human hepatocyte derived HepG2 cell line showed increased ALKBH5 gene expression under hypoxic conditions. Silencing the demethylase reduced the levels of HBV pre-genomic RNA and host gene (CA9, NDRG1, VEGFA, BNIP3, FUT11, GAP and P4HA1) transcripts and this was mediated via reduced HIFα expression. In summary, our study highlights a previously unrecognized role for ALKBH5 in orchestrating viral and cellular transcriptional responses to low oxygen.
Collapse
Affiliation(s)
- Senko Tsukuda
- Nuffield Department of Medicine, University of Oxford, UK
| | - James M Harris
- Nuffield Department of Medicine, University of Oxford, UK
| | - Andrea Magri
- Nuffield Department of Medicine, University of Oxford, UK
| | - Peter Balfe
- Nuffield Department of Medicine, University of Oxford, UK
| | - Peter AC Wing
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, UK
| | - Aleem Siddiqui
- Division of Infectious Diseases and Global Public Health, University of California, CA, USA
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, UK
| |
Collapse
|
139
|
Murnan KM, Horbinski C, Stegh AH. Redox Homeostasis and Beyond: The Role of Wild-Type Isocitrate Dehydrogenases for the Pathogenesis of Glioblastoma. Antioxid Redox Signal 2023; 39:923-941. [PMID: 37132598 PMCID: PMC10654994 DOI: 10.1089/ars.2023.0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 05/04/2023]
Abstract
Significance: Glioblastoma is an aggressive and devastating brain tumor characterized by a dismal prognosis and resistance to therapeutic intervention. To support catabolic processes critical for unabated cellular growth and defend against harmful reactive oxygen species, glioblastoma tumors upregulate the expression of wild-type isocitrate dehydrogenases (IDHs). IDH enzymes catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG), NAD(P)H, and CO2. On molecular levels, IDHs epigenetically control gene expression through effects on α-KG-dependent dioxygenases, maintain redox balance, and promote anaplerosis by providing cells with NADPH and precursor substrates for macromolecular synthesis. Recent Advances: While gain-of-function mutations in IDH1 and IDH2 represent one of the most comprehensively studied mechanisms of IDH pathogenic effects, recent studies identified wild-type IDHs as critical regulators of normal organ physiology and, when transcriptionally induced or down regulated, as contributing to glioblastoma progression. Critical Issues: Here, we will discuss molecular mechanisms of how wild-type IDHs control glioma pathogenesis, including the regulation of oxidative stress and de novo lipid biosynthesis, and provide an overview of current and future research directives that aim to fully characterize wild-type IDH-driven metabolic reprogramming and its contribution to the pathogenesis of glioblastoma. Future Directions: Future studies are required to further dissect mechanisms of metabolic and epigenomic reprogramming in tumors and the tumor microenvironment, and to develop pharmacological approaches to inhibit wild-type IDH function. Antioxid. Redox Signal. 39, 923-941.
Collapse
Affiliation(s)
- Kevin M. Murnan
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Malnati Brain Tumor Institute, Northwestern University, Chicago, Illinois, USA
| | - Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Alexander H. Stegh
- Department of Neurological Surgery, The Brain Tumor Center, Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
140
|
Chadwick C, Lehman H, Luebbert S, Abdul-Aziz R, Borowitz D. Autoimmunity in people with cystic fibrosis. J Cyst Fibros 2023; 22:969-979. [PMID: 36966037 DOI: 10.1016/j.jcf.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/27/2023]
Abstract
Cystic fibrosis (CF) clinicians may see patients who have difficult-to-manage symptoms that do not have a clear CF-related etiology, such as unusual gastrointestinal (GI) complaints, vasculitis, or arthritis. Alterations in immunity, inflammation and intraluminal dysbiosis create a milieu that may lead to autoimmunity, and the CF transmembrane regulator protein may have a direct role as well. While autoantibodies and other autoimmune markers may develop, these may or may not lead to organ involvement, therefore they are helpful but not sufficient to establish an autoimmune diagnosis. Autoimmune involvement of the GI tract is the best-established association. Next steps to understand autoimmunity in CF should include a more in-depth assessment of the community perspective on its impact. In addition, bringing together specialists in various fields including, but not limited to, pulmonology, gastroenterology, immunology, and rheumatology, would lead to cross-dissemination and help define the path forward in basic science and clinical practice.
Collapse
Affiliation(s)
| | - Heather Lehman
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| | | | - Rabheh Abdul-Aziz
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Drucy Borowitz
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
141
|
Pérez-Gutiérrez L, Ferrara N. Biology and therapeutic targeting of vascular endothelial growth factor A. Nat Rev Mol Cell Biol 2023; 24:816-834. [PMID: 37491579 DOI: 10.1038/s41580-023-00631-w] [Citation(s) in RCA: 149] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 07/27/2023]
Abstract
The formation of new blood vessels, called angiogenesis, is an essential pathophysiological process in which several families of regulators have been implicated. Among these, vascular endothelial growth factor A (VEGFA; also known as VEGF) and its two tyrosine kinase receptors, VEGFR1 and VEGFR2, represent a key signalling pathway mediating physiological angiogenesis and are also major therapeutic targets. VEGFA is a member of the gene family that includes VEGFB, VEGFC, VEGFD and placental growth factor (PLGF). Three decades after its initial isolation and cloning, VEGFA is arguably the most extensively investigated signalling system in angiogenesis. Although many mediators of angiogenesis have been identified, including members of the FGF family, angiopoietins, TGFβ and sphingosine 1-phosphate, all current FDA-approved anti-angiogenic drugs target the VEGF pathway. Anti-VEGF agents are widely used in oncology and, in combination with chemotherapy or immunotherapy, are now the standard of care in multiple malignancies. Anti-VEGF drugs have also revolutionized the treatment of neovascular eye disorders such as age-related macular degeneration and ischaemic retinal disorders. In this Review, we emphasize the molecular, structural and cellular basis of VEGFA action as well as recent findings illustrating unexpected interactions with other pathways and provocative reports on the role of VEGFA in regenerative medicine. We also discuss clinical and translational aspects of VEGFA. Given the crucial role that VEGFA plays in regulating angiogenesis in health and disease, this molecule is largely the focus of this Review.
Collapse
Affiliation(s)
- Lorena Pérez-Gutiérrez
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Napoleone Ferrara
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
- Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
142
|
Zhang Y, Zhang D, Chen L, Zhou J, Ren B, Chen H. The progress of autoimmune hepatitis research and future challenges. Open Med (Wars) 2023; 18:20230823. [PMID: 38025543 PMCID: PMC10655690 DOI: 10.1515/med-2023-0823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic liver inflammatory disease with various immune system manifestations, showing a global trend of increased prevalence. AIH is diagnosed through histological abnormalities, clinical manifestations, and biochemical indicators. The biochemical markers involve interfacial hepatitis, transaminase abnormalities, positive autoantibodies, etc. Although AIH pathogenesis is unclear, gene mutations and immunological factors could be the leading factors. AIH usually presents as a chronic liver disease and sometimes as acute hepatitis, making it challenging to distinguish it from drug-related hepatitis due to similar clinical symptoms. Normalizing transaminases and serum IgG levels is essential in assessing the remission status of AIH treatment. Glucocorticoids and azathioprine are the first-line AIH treatment, with lifelong maintenance therapy in some patients. The quality of life and survival can be improved after appropriate treatment. However, certain limitations jeopardize the quality of treatment, including long treatment cycles, side effects, poor patient compliance, and inability to inhibit liver fibrosis and cirrhosis. Accurate AIH animal models will help us understand the pathophysiology of the disease while providing fresh perspectives for avoiding and treating AIH. This review will help us understand AIH better, from the cellular and molecular causes to the clinical features, and will provide insight into new therapy techniques with fewer side effects.
Collapse
Affiliation(s)
- Yang Zhang
- Graduate Department of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Dehe Zhang
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Ling Chen
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jing Zhou
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Binbin Ren
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Haijun Chen
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
143
|
Remley VA, Linden J, Bauer TW, Dimastromatteo J. Unlocking antitumor immunity with adenosine receptor blockers. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:748-767. [PMID: 38263981 PMCID: PMC10804392 DOI: 10.20517/cdr.2023.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 01/25/2024]
Abstract
Tumors survive by creating a tumor microenvironment (TME) that suppresses antitumor immunity. The TME suppresses the immune system by limiting antigen presentation, inhibiting lymphocyte and natural killer (NK) cell activation, and facilitating T cell exhaustion. Checkpoint inhibitors like anti-PD-1 and anti-CTLA4 are immunostimulatory antibodies, and their blockade extends the survival of some but not all cancer patients. Extracellular adenosine triphosphate (ATP) is abundant in inflamed tumors, and its metabolite, adenosine (ADO), is a driver of immunosuppression mediated by adenosine A2A receptors (A2AR) and adenosine A2B receptors (A2BR) found on tumor-associated lymphoid and myeloid cells. This review will focus on adenosine as a key checkpoint inhibitor-like immunosuppressive player in the TME and how reducing adenosine production or blocking A2AR and A2BR enhances antitumor immunity.
Collapse
Affiliation(s)
- Victoria A. Remley
- Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22903, USA
| | | | - Todd W. Bauer
- Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22903, USA
| | | |
Collapse
|
144
|
Modi N, Chen Y, Dong X, Hu X, Lau GW, Wilson KT, Peek RM, Chen LF. BRD4 Regulates Glycolysis-Dependent Nos2 Expression in Macrophages Upon H pylori Infection. Cell Mol Gastroenterol Hepatol 2023; 17:292-308.e1. [PMID: 37820788 PMCID: PMC10829522 DOI: 10.1016/j.jcmgh.2023.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND & AIMS Metabolic reprogramming is essential for the activation and functions of macrophages, including bacterial killing and cytokine production. Bromodomain-containing protein 4 (BRD4) has emerged as a critical regulator of innate immune response. However, the potential role of BRD4 in the metabolic reprogramming of macrophage activation upon Helicobacter pylori infection remains unclear. METHODS Bone marrow-derived macrophages (BMDMs) from wild-type (WT) and Brd4-myeloid deletion conditional knockout (Brd4-CKO) mice were infected with H pylori. RNA sequencing was performed to evaluate the differential gene expression between WT and Brd4-deficient BMDMs upon infection. An in vivo model of H pylori infection using WT and Brd4-CKO mice was used to confirm the role of BRD4 in innate immune response to infection. RESULTS Depletion of Brd4 in BMDMs showed impaired H pylori-induced glycolysis. In addition, H pylori-induced expression of glycolytic genes, including Slc2a1 and Hk2, was decreased in Brd4-deficient BMDMs. BRD4 was recruited to the promoters of Slc2a1 and Hk2 via hypoxia-inducible factor-1α, facilitating their expression. BRD4-mediated glycolysis stabilized H pylori-induced nitric oxide synthase (Nos2) messenger RNA to produce nitric oxide. The NO-mediated killing of H pylori decreased in Brd4-deficient BMDMs, which was rescued by pyruvate. Furthermore, Brd4-CKO mice infected with H pylori showed reduced gastric inflammation and increased H pylori colonization with reduced inducible NO synthase expression in gastric macrophages. CONCLUSIONS Our study identified BRD4 as a key regulator of hypoxia-inducible factor-1α-dependent glycolysis and macrophage activation. Furthermore, we show a novel regulatory role of BRD4 in innate immunity through glycolysis to stabilize Nos2 messenger RNA for NO production to eliminate H pylori infection.
Collapse
Affiliation(s)
- Nikita Modi
- Department of Biochemistry, College of Liberal Arts & Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Yanheng Chen
- Department of Biochemistry, College of Liberal Arts & Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Xingchen Dong
- Department of Biochemistry, College of Liberal Arts & Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Xiangming Hu
- Department of Biochemistry, College of Liberal Arts & Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Gee W Lau
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee; Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Richard M Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lin-Feng Chen
- Department of Biochemistry, College of Liberal Arts & Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
145
|
Kumar R, Chhikara BS, Er Zeybekler S, Gupta DS, Kaur G, Chhillar M, Aggarwal AK, Rahdar A. Nanotoxicity of multifunctional stoichiometric cobalt oxide nanoparticles (SCoONPs) with repercussions toward apoptosis, necrosis, and cancer necrosis factor (TNF-α) at nano-biointerfaces. Toxicol Res (Camb) 2023; 12:716-740. [PMID: 37915472 PMCID: PMC10615831 DOI: 10.1093/toxres/tfad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 08/11/2023] [Accepted: 09/03/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction Apoptosis, necrosis, and cancer necrosis factor (TNF-a) are all impacted by the nanotoxicity of multifunctional stoichiometric cobalt oxide nanoparticles (SCoONPs) at nano-biointerfaces. The creation of multi-functional nanoparticles has had a considerable impact on the transport of drugs and genes, nanotheranostics (in-vivo imaging, concurrent diagnostics), interventions for external healing, the creation of nano-bio interfaces, and the instigation of desired changes in nanotherapeutics. Objectives The quantitative structure-activity relationships, chemical transformations, biological interactions as well as toxicological analyses are considered as main objectives. Discrete dimensions of SCoNPs-cell interaction interfaces, their characteristic physical features (size, shape, shell structure, and surface chemistry), impact on cell proliferation and differentiation are the key factors responsible for nanotoxicity. Methods The development of multi-functional nanoparticles has been significant in drug/gene delivery, nanotheranostics (in-vivo imaging, coinciding diagnostics), and external healing interventions, designing a nano-bio interface, as well as inciting desired alterations in nanotherapeutics. Every so often, the cellular uptake of multi-functional cobalt [Co, CoO, Co2(CO)8 and Co3O4] nanoparticles (SCoONPs) influences cellular mechanics and initiates numerous repercussions (oxidative stress, DNA damage, cytogenotoxicity, and chromosomal damage) in pathways, including the generation of dysregulating factors involved in biochemical transformations. Results The concerns and influences of multifunctional SCoNPs on different cell mechanisms (mitochondria impermeability, hydrolysis of ATP, the concentration of Ca2+, impaired calcium clearance, defective autophagy, apoptosis, and necrosis), and interlinked properties (adhesion, motility, and internalization dynamics, role in toxicity, surface hydrophilic and hydrophobicity, biokinetics and biomimetic behaviors of biochemical reactions) have also been summarized. SCoONPs have received a lot of interest among the nanocarriers family because of its advantageous qualities such as biodegradability, biocompatibility, nontoxicity, and nonimmunogenicity. Conclusion Various applications, such as bio-imaging, cell labeling, gene delivery, enhanced chemical stability, and increased biocompatibility, concerning apoptosis, necrosis, and nano-bio interfaces, along with suitable examples. In this analysis, the multi-functional cobalt [Co, CoO, Co2(CO)8 and Co3O4] nanoparticles (SCoNPs) intricacies (cytogenotoxicity, clastogenicity, and immunomodulatory), nanotoxicity, and associated repercussions have been highlighted and explained.
Collapse
Affiliation(s)
- Rajiv Kumar
- University of Delhi, Mall Road, New Delhi 110007, India
| | - Bhupender S Chhikara
- Department of Chemistry, Aditi Mahavidyalaya, University of Delhi, Auchandi Road, Bawana, Delhi 110039, India
| | - Simge Er Zeybekler
- Biochemistry Department, Faculty of Science, Ege University, Hastanesi 9/3A 35100 Bornova-Izmir 35100, Turkey
| | - Dhruv Sanjay Gupta
- Department of Pharmacology, SPP School of Pharmacy & Technology Management, SVKM’s NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Ginpreet Kaur
- Department of Pharmacology, SPP School of Pharmacy & Technology Management, SVKM’s NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | | | - Anil K Aggarwal
- Department of Chemistry, Shivaji College, University of Delhi, Ring Road, Raja Garden, New Delhi 110027, India
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Sistan va Baluchestan, Zabol 538-98615, Iran
| |
Collapse
|
146
|
Walther J, Kirsch EM, Hellwig L, Schmerbeck SS, Holloway PM, Buchan AM, Mergenthaler P. Reinventing the Penumbra - the Emerging Clockwork of a Multi-modal Mechanistic Paradigm. Transl Stroke Res 2023; 14:643-666. [PMID: 36219377 PMCID: PMC10444697 DOI: 10.1007/s12975-022-01090-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
The concept of the ischemic penumbra was originally defined as the area around a necrotic stroke core and seen as the tissue at imminent risk of further damage. Today, the penumbra is generally considered as time-sensitive hypoperfused brain tissue with decreased oxygen and glucose availability, salvageable tissue as treated by intervention, and the potential target for neuroprotection in focal stroke. The original concept entailed electrical failure and potassium release but one short of neuronal cell death and was based on experimental stroke models, later confirmed in clinical imaging studies. However, even though the basic mechanisms have translated well, conferring brain protection, and improving neurological outcome after stroke based on the pathophysiological mechanisms in the penumbra has yet to be achieved. Recent findings shape the modern understanding of the penumbra revealing a plethora of molecular and cellular pathophysiological mechanisms. We now propose a new model of the penumbra, one which we hope will lay the foundation for future translational success. We focus on the availability of glucose, the brain's central source of energy, and bioenergetic failure as core pathophysiological concepts. We discuss the relation of mitochondrial function in different cell types to bioenergetics and apoptotic cell death mechanisms, autophagy, and neuroinflammation, to glucose metabolism in what is a dynamic ischemic penumbra.
Collapse
Affiliation(s)
- Jakob Walther
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Elena Marie Kirsch
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Lina Hellwig
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Sarah S Schmerbeck
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Paul M Holloway
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Alastair M Buchan
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.
| | - Philipp Mergenthaler
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, NeuroCure Clinical Research Center, Charitéplatz 1, 10117, Berlin, Germany.
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.
| |
Collapse
|
147
|
Zierfuss B, Wang Z, Jackson AN, Moezzi D, Yong VW. Iron in multiple sclerosis - Neuropathology, immunology, and real-world considerations. Mult Scler Relat Disord 2023; 78:104934. [PMID: 37579645 DOI: 10.1016/j.msard.2023.104934] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
Iron is an essential element involved in a multitude of bodily processes. It is tightly regulated, as elevated deposition in tissues is associated with diseases such as multiple sclerosis (MS). Iron accumulation in the central nervous system (CNS) of MS patients is linked to neurotoxicity through mechanisms including oxidative stress, glutamate excitotoxicity, misfolding of proteins, and ferroptosis. In the past decade, the combination of MRI and histopathology has enhanced our understanding of iron deposition in MS pathophysiology, including in the pro-inflammatory and neurotoxicity of iron-laden rims of chronic active lesions. In this regard, iron accumulation may not only have an impact on different CNS-resident cells but may also promote the innate and adaptive immune dysfunctions in MS. Although there are discordant results, most studies indicate lower levels of iron but higher amounts of the iron storage molecule ferritin in the circulation of people with MS. Considering the importance of iron, there is a need for evidence-guided recommendation for dietary intake in people living with MS. Potential novel therapeutic approaches include the regulation of iron levels using next generation iron chelators, as well as therapies to interfere with toxic consequences of iron overload including antioxidants in MS.
Collapse
Affiliation(s)
- Bettina Zierfuss
- The Research Center of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal H2X 0A9, Québec, Canada
| | - Zitong Wang
- Department of Psychiatry, College of Health Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2B7, Canada
| | - Alexandra N Jackson
- School of Rehabilitation Therapy, Faculty of Health Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Dorsa Moezzi
- The Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - V Wee Yong
- The Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
148
|
Miao J, Chen L, Pan X, Li L, Zhao B, Lan J. Microglial Metabolic Reprogramming: Emerging Insights and Therapeutic Strategies in Neurodegenerative Diseases. Cell Mol Neurobiol 2023; 43:3191-3210. [PMID: 37341833 PMCID: PMC11410021 DOI: 10.1007/s10571-023-01376-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023]
Abstract
Microglia, the resident immune cells of the central nervous system, play a critical role in maintaining brain homeostasis. However, in neurodegenerative conditions, microglial cells undergo metabolic reprogramming in response to pathological stimuli, including Aβ plaques, Tau tangles, and α-synuclein aggregates. This metabolic shift is characterized by a transition from oxidative phosphorylation (OXPHOS) to glycolysis, increased glucose uptake, enhanced production of lactate, lipids, and succinate, and upregulation of glycolytic enzymes. These metabolic adaptations result in altered microglial functions, such as amplified inflammatory responses and diminished phagocytic capacity, which exacerbate neurodegeneration. This review highlights recent advances in understanding the molecular mechanisms underlying microglial metabolic reprogramming in neurodegenerative diseases and discusses potential therapeutic strategies targeting microglial metabolism to mitigate neuroinflammation and promote brain health. Microglial Metabolic Reprogramming in Neurodegenerative Diseases This graphical abstract illustrates the metabolic shift in microglial cells in response to pathological stimuli and highlights potential therapeutic strategies targeting microglial metabolism for improved brain health.
Collapse
Affiliation(s)
- Jifei Miao
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Lihua Chen
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Xiaojin Pan
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Liqing Li
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Beibei Zhao
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China.
| | - Jiao Lan
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China.
| |
Collapse
|
149
|
Linju MC, Rekha MR. Role of inorganic ions in wound healing: an insight into the various approaches for localized delivery. Ther Deliv 2023; 14:649-667. [PMID: 38014434 DOI: 10.4155/tde-2023-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Recently, the role of inorganic ions has been explored for its wound-healing applications. Ions do play key role in the normal functioning of the skin, including the epidermal barrier property, maintaining redox balance, enzymatic activities, tissue remodeling, etc. The care of chronic wounds is a concern and new cost-effective therapeutic strategies that modulate the wound microenvironment and cell behaviour are needed. First, this review illustrates the ions that play a role in wound healing and their molecular mechanisms that are accountable for modifying the wound. Further, the emerging strategies using metal ions to modulate the healing will be discussed. In this direction, localized delivery of inorganic ions of importance using advanced wound care biomaterials for wound healing applications is discussed.
Collapse
Affiliation(s)
- M C Linju
- Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology. Poojappura, Thiruvananthapuram, Kerala, India
| | - M R Rekha
- Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology. Poojappura, Thiruvananthapuram, Kerala, India
| |
Collapse
|
150
|
Faivre A, Dissard R, Kuo W, Verissimo T, Legouis D, Arnoux G, Heckenmeyer C, Fernandez M, Tihy M, Rajaram RD, Delitsikou V, Le NA, Spingler B, Mueller B, Shulz G, Lindenmeyer M, Cohen C, Rutkowski JM, Moll S, Scholz CC, Kurtcuoglu V, de Seigneux S. Evolution of hypoxia and hypoxia-inducible factor asparaginyl hydroxylase regulation in chronic kidney disease. Nephrol Dial Transplant 2023; 38:2276-2288. [PMID: 37096392 PMCID: PMC10539236 DOI: 10.1093/ndt/gfad075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND The roles of hypoxia and hypoxia inducible factor (HIF) during chronic kidney disease (CKD) are much debated. Interventional studies with HIF-α activation in rodents have yielded contradictory results. The HIF pathway is regulated by prolyl and asparaginyl hydroxylases. While prolyl hydroxylase inhibition is a well-known method to stabilize HIF-α, little is known about the effect asparaginyl hydroxylase factor inhibiting HIF (FIH). METHODS We used a model of progressive proteinuric CKD and a model of obstructive nephropathy with unilateral fibrosis. In these models we assessed hypoxia with pimonidazole and vascularization with three-dimensional micro-computed tomography imaging. We analysed a database of 217 CKD biopsies from stage 1 to 5 and we randomly collected 15 CKD biopsies of various severity degrees to assess FIH expression. Finally, we modulated FIH activity in vitro and in vivo using a pharmacologic approach to assess its relevance in CKD. RESULTS In our model of proteinuric CKD, we show that early CKD stages are not characterized by hypoxia or HIF activation. At late CKD stages, some areas of hypoxia are observed, but these are not colocalizing with fibrosis. In mice and in humans, we observed a downregulation of the HIF pathway, together with an increased FIH expression in CKD, according to its severity. Modulating FIH in vitro affects cellular metabolism, as described previously. In vivo, pharmacologic FIH inhibition increases the glomerular filtration rate of control and CKD animals and is associated with decreased development of fibrosis. CONCLUSIONS The causative role of hypoxia and HIF activation in CKD progression is questioned. A pharmacological approach of FIH downregulation seems promising in proteinuric kidney disease.
Collapse
Affiliation(s)
- Anna Faivre
- Department of Medicine and Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Service of Nephrology, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Romain Dissard
- Department of Medicine and Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Willy Kuo
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- National Centre of Competence in Research, Kidney. CH, University of Zurich, Zurich, Switzerland
| | - Thomas Verissimo
- Department of Medicine and Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - David Legouis
- Department of Medicine and Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Grégoire Arnoux
- Department of Medicine and Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Service of Clinical Pathology, Department of Pathology and Immunology, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Carolyn Heckenmeyer
- Department of Medicine and Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Marylise Fernandez
- Department of Medicine and Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Matthieu Tihy
- Service of Clinical Pathology, Department of Pathology and Immunology, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Renuga D Rajaram
- Department of Medicine and Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Vasiliki Delitsikou
- Department of Medicine and Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Ngoc An Le
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | | | - Bert Mueller
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Georg Shulz
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
- Micro- and Nanotomography Core Facility, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Maja Lindenmeyer
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clemens Cohen
- Nephrological Center, Medical Clinic and Polyclinic IV, University of Munich, Munich, Germany
| | - Joseph M Rutkowski
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Solange Moll
- Service of Clinical Pathology, Department of Pathology and Immunology, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- National Centre of Competence in Research, Kidney. CH, University of Zurich, Zurich, Switzerland
- Institute of Physiology, University Medicine Greifswald, Greifswald, Germany
| | - Vartan Kurtcuoglu
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- National Centre of Competence in Research, Kidney. CH, University of Zurich, Zurich, Switzerland
| | - Sophie de Seigneux
- Department of Medicine and Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Service of Nephrology, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
- National Centre of Competence in Research, Kidney. CH, University of Zurich, Zurich, Switzerland
| |
Collapse
|