101
|
Wang Y, Fan Z, Yang M, Wang Y, Cao J, Khan A, Liu Y, Cheng G. Protective effects of E Se tea extracts against alcoholic fatty liver disease induced by high fat/alcohol diet: In vivo biological evaluation and molecular docking study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154113. [PMID: 35490493 DOI: 10.1016/j.phymed.2022.154113] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/26/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND With the development of economy and increased workload, chronic a high-fat/alcohol diet intake may lead to alcoholic fatty liver disease (AFLD), which is considered as a crucial health problem worldwide. E Se tea is produced of the leaves and leaf buds of Malus toringoides (Rehd.) Hughes in Tibet and has human health benefits with anti-hyperglycemia, hypertension, and hyperlipidemia effects. PURPOSE The objective of this work was to investigate the protective effect of aqueous-ethanol and hot-water extracts of E Se tea against chronic high-fat/alcohol diet induced AFLD rats. METHODS Firstly, to determine the chemical profiling of E Se tea extracts, UHPLC-ESI-HRMS analysis was conducted. Secondly, Sprague-Dawley male rats were used to establish the AFLD animal model by feeding with high-fat/alcohol diet. The animals were treated with E Se tea extracts for 12 weeks. Serum parameters were determined, histologic sections were prepared, and activities of enzymes related to inflammatory response and lipid metabolism imbalance were analyzed. The underlying mechanisms of E Se tea extracts alleviating AFLD were analyzed by immunofluorescence staining and Western blotting analysis. Lastly, key targets of 11-MT against AFLD were verified through molecular docking. RESULTS In this study, seven main compounds were confirmed or tentatively identified in E Se tea extracts by UHPLC-ESI-HRMS. The results revealed that both the extracts could reverse histopathological steatotic alternation of the liver and reduced the activity of liver damage markers (ALT, AST). E Se tea extracts mitigated oxidative stress by inhibiting CYP2E1 protein and lipid peroxidation parameters (MDA), but enhancing the endogenous antioxidants (CAT, GSH, SOD). Moreover, E Se tea extracts ameliorated inflammation by restraining the activation of NF-κB, consequently releasing the expression of proinflammatory cytokines (TNF-α, IL-6, IL-1β, COX-2 and iNOS). Subsequently, E Se tea extracts reduced hepatocyte apoptosis by increasing capase-9, caspase-3 and Bax protein expression but decreasing Bcl-2 protein expression. Furthermore, E Se tea extracts improved metabolism imbalance by stimulating AMPK/SREBP1/FAS and PPAR-α/CPT1 signaling pathway by regulating lipid metabolism parameters (TC, TG, HDL-C, LHD-C). Furthermore, molecular docking results indicated that 7 chemical constituents of E Se tea extracts had strong docking affinity with 4 key target proteins (AMPK, PPAR-α, NF-кB and Caspase-9). CONCLUSION E Se tea ameliorated AFLD through ameliorating inflammatory response, apoptosis, and lipid metabolism imbalance.
Collapse
Affiliation(s)
- Yongpeng Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhifeng Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; College of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Meilian Yang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yudan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; College of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China; National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, China
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
102
|
Li QM, Yang XR, Zha XQ, Pan LH, Zang DD, Zhang FY, Luo JP. Protective effects of three flavonoids from Dendrobium huoshanense flowers on alcohol-induced hepatocyte injury via activating Nrf2 and inhibiting NF-κB pathways. Chem Biodivers 2022; 19:e202200471. [PMID: 35774029 DOI: 10.1002/cbdv.202200471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022]
Abstract
Dendrobium huoshanense flowers have been widely used for liver protection in China. This work was aimed to discover the natural products with activity of mitigating alcoholic hepatocyte injury from Dendrobium huoshanense flowers via bioactivity-guided isolation, and to clarify the underlying mechanisms of these natural products. As a result, three flavonoids, 3'-O-methylquercetin-3-O- β -D-galactopyranoside ( 1 ), 3'-O-methylquercetin-3-O- β -D-glucopyranoside ( 2 ) and quercetin-3-O- β -D-glucopyranoside ( 3 ), were firstly isolated from D. huoshanense flowers. Results exhibited that flavonoids 1-3 could enhance the cell viability, decrease the expression of ALT and AST, inhibit the cell apoptosis, alleviate the oxidative stress, and mitigate the inflammatory response of alcohol-induced L02 cells. Mechanism study exhibited that flavonoids 1 - 3 could increase the expression of Nrf2 as well as its downstream antioxidation genes of alcohol-induced L02 cells, while ML-385 (Nrf2 inhibitor) could abolish the inhibitory effects of 1 - 3 on alcohol-induced hepatocyte injury. Flavonoids 1 - 3 could also reduce the phosphorylation levels of I κ B α and NF- κ B p65 of alcohol-induced L02 cells, while SC75741 (NF- κ B inhibitor) could not enhance the inhibitory effects of 1 - 3 on alcohol-induced L02 cells injury. The data above indicated that flavonoids 1 - 3 could inhibit alcohol-induced hepatocyte injury, which might be attributed to alleviating oxidative stress and mitigating inflammatory response by activating Nrf2 and inhibiting NF- κ B pathways.
Collapse
Affiliation(s)
- Qiang-Ming Li
- Hefei University of Technology, School of Food and Biological Engineering, No. 193 Tunxi Road, Hefei, CHINA
| | - Xiu-Rong Yang
- Hefei University of Technology, School of Food and Biological Engineering, No. 193 Tunxi Road, Hefei, CHINA
| | - Xue-Qiang Zha
- Hefei University of Technology, School of Food and Biological Engineering, No. 193 Tunxi Road, Hefei, CHINA
| | - Li-Hua Pan
- Hefei University of Technology, School of Food and Biological Engineering, No. 193 Tunxi Road, Hefei, CHINA
| | - Dan-Dan Zang
- Anhui Medical University, Center of Scientific Research, No. 81 Meishan Road, Hefei, CHINA
| | - Feng-Yun Zhang
- Anhui Medical University, School of Basic Medical Sciences, No. 81 Meishan Road, Hefei, CHINA
| | - Jian-Ping Luo
- Hefei University of Technology, School of food and biological engineering, No. 193 Tunxi Road, 230009, Hefei, CHINA
| |
Collapse
|
103
|
Ethanol Metabolism in the Liver, the Induction of Oxidant Stress, and the Antioxidant Defense System. Antioxidants (Basel) 2022; 11:antiox11071258. [PMID: 35883749 PMCID: PMC9312216 DOI: 10.3390/antiox11071258] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
The liver metabolizes ethanol through three enzymatic pathways: alcohol dehydrogenase (ADH), cytochrome p450 (also called MEOS), and catalase. Alcohol dehydrogenase class I (ADH1) is considered the most important enzyme for the metabolism of ethanol, MEOS and catalase (CAT) are considered minor alternative pathways. However, contradicting experiments suggest that the non-ADH1 pathway may have a greater relevance for the metabolism of ethanol than previously thought. In some conditions, ethanol is predominately metabolized to acetaldehyde via cytochrome P450 family 2 (CYP2E1), which is involved in the generation of reactive oxygen species (ROS), mainly through electron leakage to oxygen to form the superoxide (O2•−) radical or in catalyzed lipid peroxidation. The CAT activity can also participate in the ethanol metabolism that produces ROS via ethanol directly reacting with the CAT-H2O2 complex, producing acetaldehyde and water and depending on the H2O2 availability, which is the rate-limiting component in ethanol peroxidation. We have shown that CAT actively participates in lactate-stimulated liver ethanol oxidation, where the addition of lactate generates H2O2, which is used by CAT to oxidize ethanol to acetaldehyde. Therefore, besides its known role as a catalytic antioxidant component, the primary role of CAT could be to function in the metabolism of xenobiotics in the liver.
Collapse
|
104
|
Costea L, Chițescu CL, Boscencu R, Ghica M, Lupuliasa D, Mihai DP, Deculescu-Ioniță T, Duțu LE, Popescu ML, Luță EA, Nițulescu GM, Olaru OT, Gîrd CE. The Polyphenolic Profile and Antioxidant Activity of Five Vegetal Extracts with Hepatoprotective Potential. PLANTS (BASEL, SWITZERLAND) 2022; 11:1680. [PMID: 35807632 PMCID: PMC9269044 DOI: 10.3390/plants11131680] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/13/2022]
Abstract
Oxidative stress is among the major triggers for many important human functional disorders, which often lead to various metabolic or tissue diseases. The aim of the study is to obtain five standardized vegetal extracts (Cynarae extractum-CE, Rosmarini extractum-RE, Taraxaci extractum-TE, Cichorii extractum-CHE, and Agrimoniae extractum-AE) that contain active principles with an essential role in protecting liver cells against free radicals and quantify their antioxidant actions. The compounds of therapeutic interest from the analyzed extracts were identified and quantified using the UHPLC-HRMS/MS technique. Thus, the resulting identified compounds were 28 compounds in CE, 48 compounds in RE, 39 compounds in TE, 43 compounds in CHE, and 31 compounds in AE. These compounds belong to the class of flavonoids, isoflavones, phenolic acids and dicarboxylic acids, depsides, diterpenes, triterpenes, sesquiterpenes, proanthocyanidins, or coumarin derivatives. From the major polyphenolic compounds quantified in all the extracts analyzed by UHPLC-HRMS/MS, considerable amounts have been found for chlorogenic acid (619.8 µg/g extract for TE-2032.4 µg/g extract for AE), rutoside (105.1 µg/g extract for RE-1724.7 µg/g extract for AE), kaempferol (243 µg/g extract for CHE-2028.4 µg/g extract for CE), and for naringenin (383 µg/g extract for CHE-1375.8 µg/g extract for AE). The quantitative chemical analysis showed the highest content of total phenolic acids for AE (24.1528 ± 1.1936 g chlorogenic acid/100 g dry extract), the highest concentration of flavones for RE (6.0847 ± 0.3025 g rutoside/100 g dry extract), and the richest extract in total polyphenols with 31.7017 ± 1.2211 g tannic acid equivalent/100 g dry extract for AE. Several methods (DPPH, ABTS, and FRAP) have been used to determine the in vitro total antioxidant activity of the extracts to evaluate their free radical scavenging ability, influenced by the identified compounds. As a result, the correlation between the content of the polyphenolic compounds and the antioxidant effect of the extracts has been demonstrated. Statistically significant differences were found when comparing the antiradical capacity within the study groups. Although all the analyzed extracts showed good IC50 values, which may explain their antihepatotoxic effects, the highest antioxidant activity was obtained for Agrimoniae extractum (IC50ABTS = 0.0147 mg/mL) and the lowest antioxidant activity was obtained for Cynarae extractum (IC50ABTS = 0.1588 mg/mL). Furthermore, the hepatoprotective potential was evaluated in silico by predicting the interactions between the determined phytochemicals and key molecular targets relevant to liver disease pathophysiology. Finally, the evaluation of the pharmacognostic and phytochemical properties of the studied extracts validates their use as adjuvants in phytotherapy, as they reduce oxidative stress and toxin accumulation and thus exert a hepatoprotective effect at the cellular level.
Collapse
Affiliation(s)
- Liliana Costea
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - Carmen Lidia Chițescu
- Faculty of Medicine and Pharmacy, “Dunărea de Jos”, University of Galați, 35 A.I. Cuza Str., 800010 Galați, Romania
| | - Rica Boscencu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - Manuela Ghica
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - Dumitru Lupuliasa
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - Dragoș Paul Mihai
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - Teodora Deculescu-Ioniță
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - Ligia Elena Duțu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - Maria Lidia Popescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - Emanuela-Alice Luță
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - George Mihai Nițulescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - Octavian Tudorel Olaru
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - Cerasela Elena Gîrd
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| |
Collapse
|
105
|
Li Y, Yuan X, Wei J, Sun Y, Ni W, Zhang H, Zhang Y, Wang R, Xu R, Liu T, Yang C, Chen G, Xu J, Liu Y. Long-term exposure to ambient air pollution and serum liver enzymes in older adults: a population-based longitudinal study. Ann Epidemiol 2022; 74:1-7. [PMID: 35680103 DOI: 10.1016/j.annepidem.2022.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 11/01/2022]
Abstract
PURPOSE To investigate the association of long-term exposure to ambient air pollution with serum liver enzymes in older adults. METHODS In this longitudinal study, we investigated 318,911 adults aged ≥65 years and assessed their long-term residential exposure to particulate matter with an aerodynamic diameter ≤2.5 µm (PM2.5), particulate matter with an aerodynamic diameter ≤10 µm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3). Linear mixed models and generalized linear mixed models were implemented for exposure-response analyses. RESULTS Each interquartile range (IQR) increase of PM2.5, PM10, SO2, NO2, CO, and O3 exposures was significantly associated with a 4.6%, 4.6%, 5.6%, 4.6%, 6.2%, and 3.6% increase in alanine aminotransferase (ALT), and a 4.6%, 5.2%, 3.6%, 3.3%, 6.1%, and 4.0% increase in aspartate aminotransferase (AST), respectively. Each IQR increase of PM2.5, PM10, SO2, NO2, CO, and O3 exposures was significantly associated with a 23%, 24%, 28%, 17%, 31%, and 19% increase in odds of elevated ALT (>40 U/L), and a 32%, 39%, 40%, 32%, 57%, and 25% increase in odds of elevated AST (>40 U/L), respectively. CONCLUSIONS Long-term exposure to ambient air pollution was significantly associated with increased serum liver enzyme levels in older adults, suggesting that air pollution exposures may induce hepatocellular injury.
Collapse
Key Words
- AST, aspartate aminotransferase
- Alanine aminotransferase
- Ambient air pollution
- Aspartate aminotransferase
- BMI, body mass index
- CHAP, ChinaHighAirPollutants
- CI, confidence interval
- CO, carbon monoxide
- FBG, fasting blood glucose
- HDL-C, high-density lipoprotein cholesterol
- IQR, interquartile range
- LDL-C, low-density lipoprotein cholesterol
- Liver enzymes
- NO(2), nitrogen dioxide
- O(3), ozone
- OR, odds ratio
- Older adults Abbreviations: ALT, alanine aminotransferase
- PM(10), particulate matter with an aerodynamic diameter ≤10 µm
- PM(2.5), particulate matter with an aerodynamic diameter ≤2.5 µm
- SD, standardized deviation
- SO(2), sulfur dioxide
- TC, total cholesterol
- TG, triglyceride
- WC, waist circumference
Collapse
Affiliation(s)
- Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Xueli Yuan
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong 518020, China
| | - Jing Wei
- Department of Chemical and Biochemical Engineering, Iowa Technology Institute, and Center for Global and Regional Environmental Research, The University of Iowa, Iowa City, IA 52242, USA
| | - Yuanying Sun
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong 518020, China
| | - Wenqing Ni
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong 518020, China
| | - Hongmin Zhang
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong 518020, China
| | - Yan Zhang
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong 518020, China
| | - Rui Wang
- Luohu Center for Chronic Disease Control, Shenzhen, Guangdong 518000, China
| | - Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Tingting Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chunyu Yang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Gongbo Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jian Xu
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong 518020, China.
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
106
|
Kim CG, Chang SN, Park SM, Hwang BS, Kang SA, Kim KS, Park JG. Moringa oleifera mitigates ethanol-induced oxidative stress, fatty degeneration and hepatic steatosis by promoting Nrf2 in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154037. [PMID: 35358929 DOI: 10.1016/j.phymed.2022.154037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/04/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Moringa oleifera (M. oleifera) is cultivated throughout the world and it is known by numerous regional names and is consumed as medication for various diseases such as hypertension, diabetes, HIV and is potential source of nutrients and natural antioxidants making it among the most useful trees. METHODS We evaluated the therapeutic potential of M. oleifera on ethanol-induced fatty liver. The mice were treated with 30% ethanol (EtOH) alone or in combination with different concentration of M. oleifera extracts (100, 200 and 400 mg/kg). We performed biochemical estimation for the serum of important liver damage markers such as aspartate aminotransferase (AST), alanine aminotransferase (ALT) and triglyceride (TG). We performed histopathological analysis from the liver tissues of different mice groups. We also performed ELISA assay, western blotting analysis and SPECT imaging to obtain our results. RESULTS The results for serum (AST, p < 0.0001), (ALT, p < 0.0006) and triglyceride (TG, p < 0.0003) were found to be significantly reduced in all doses of M. oleifera extract treatment groups in comparison with the ethanol group. H&E staining analysis and scoring revealed a significant reduction in lipid droplet accumulation and a significant reduction of liver steatosis (p < 0.0001), lobular inflammation (p < 0.0013), ballooning (p < 0.0004) and immunohistochemistry for TNF-α. M. oleifera also ameliorated ethanol-induced oxidative stress evaluated through MDA (p < 0.0001), H2DCFDA, JC-1 staining and a significant down-regulation of CYP2E1 enzyme (p < 0.0001) in the 200 and 400 mg/kg groups in comparison with EtOH groups. M. oleifera extract also boosted the antioxidant response evaluated through total GSH assay (p < 0.0001) and nuclear translocation of Nrf2. Furthermore, we performed SPECT imaging and evaluated the liver uptake value (LUV) to assess the extent of liver damage. LUV was observed to be lower in the ethanol group, whereas LUV was higher in control and M. olifera treated groups. CONCLUSION In summary, from this experiment we conclude that M. oleifera extract has the potential to ameliorate ethanol-induced liver damage.
Collapse
Affiliation(s)
- Chang Geon Kim
- Advanced Bio Convergence Center (ABCC), Pohang Technopark Foundation, Pohang, Gyeongbuk, 37668, Republic of Korea; School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712749, Republic of Korea
| | - Sukkum Ngullie Chang
- Advanced Bio Convergence Center (ABCC), Pohang Technopark Foundation, Pohang, Gyeongbuk, 37668, Republic of Korea; Department of Biotechnology, Daegu University, Gyeongsan, 38453, Republic of Korea
| | - Seon Min Park
- Advanced Bio Convergence Center (ABCC), Pohang Technopark Foundation, Pohang, Gyeongbuk, 37668, Republic of Korea; Department of Veterinary Toxicology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Buyng Su Hwang
- Nakdonggang National Institute of Biological Resources, Sangju, 37242, Republic of Korea
| | - Sung-A Kang
- Advanced Bio Convergence Center (ABCC), Pohang Technopark Foundation, Pohang, Gyeongbuk, 37668, Republic of Korea
| | - Kil Soo Kim
- Department of Veterinary Toxicology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea.
| | - Jae Gyu Park
- Advanced Bio Convergence Center (ABCC), Pohang Technopark Foundation, Pohang, Gyeongbuk, 37668, Republic of Korea.
| |
Collapse
|
107
|
Li H, Liang J, Han M, Wang X, Ren Y, Wang Y, Huang J, Li S, Liu C, Wang Z, Yue T, Gao Z. Sequentially fermented dealcoholized apple juice intervenes fatty liver induced by high-fat diets via modulation of intestinal flora and gene pathways. Food Res Int 2022; 156:111180. [DOI: 10.1016/j.foodres.2022.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 11/04/2022]
|
108
|
Mai B, Han L, Zhong J, Shu J, Cao Z, Fang J, Zhang X, Gao Z, Xiao F. Rhoifolin Alleviates Alcoholic Liver Disease In Vivo and In Vitro via Inhibition of the TLR4/NF-κB Signaling Pathway. Front Pharmacol 2022; 13:878898. [PMID: 35685625 PMCID: PMC9171502 DOI: 10.3389/fphar.2022.878898] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/13/2022] [Indexed: 01/16/2023] Open
Abstract
Background: Alcoholic liver disease (ALD) is a common chronic liver disorder worldwide, which is detrimental to human health. A preliminary study showed that the total flavonoids within Citrus grandis “Tomentosa” exerted a remarkable effect on the treatment of experimental ALD. However, the active substances of Citrus grandis “Tomentosa” were not elucidated. Rhoifolin (ROF) is a flavonoid component present in high levels. Therefore, this research aimed to evaluate the hepatoprotective effects of ROF and its possible mechanisms. Methods: Molecular docking was performed to analyze the binding energy of ROF to the main target proteins related to ALD. Subsequently, mice were fed ethanol (ETH) for 49 days to establish the chronic alcoholic liver injury models. The liver pathological injury, serum aminotransferase levels, and oxidative stress levels in the liver tissue were measured. Human normal hepatocytes (LO2 cells) were incubated with ETH to construct the alcoholic liver cell model. The inflammatory markers and apoptosis factors were evaluated using real-time PCR and flow cytometry. Finally, the effects of ROF on the CYP2E1 and NF-κB signaling pathways were tested in vitro and in vivo. Results: Molecular docking results demonstrated that ROF was able to successfully dock with the target proteins associated with ALD. In animal studies, ROF attenuated ETH-induced liver damage in mice by decreasing the serum concentrations of AST and ALT, reducing the expression of inflammatory cytokines, and maintaining antioxidant balance in the liver tissue. The in vitro experiments demonstrated that ROF suppressed ETH-induced apoptosis in LO2 cells by promoting Bcl-2 mRNA and inhibiting Bax mRNA and caspase 3 protein expression. ROF decreased the level of LDH, ALT, AST, ROS, and MDA in the supernatant; induced the activity of GSH and SOD; and inhibited TNF-α, IL-6, and IL-1β expression levels. Mechanistically, ROF could significantly downregulate the expression levels of CYP2E1, TLR4, and NF-κB phosphorylation. Conclusion: This study indicates that ROF is the active component within the total flavonoids, which may alleviate ETH-induced liver injury by inhibiting NF-κB phosphorylation. Therefore, ROF may serve as a promising compound for treating ALD.
Collapse
Affiliation(s)
- Baoyu Mai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling Han
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou, China
| | - Jiarui Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingqi Shu
- College of Acumox and Tuina, Jiangxi University of Chinese Medicine, Jiangxi, China
| | - Zelin Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Jiangsu Hengrui Medicine Co., Ltd., Jiangsu, China
| | - Jiaqi Fang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoying Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zelin Gao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengxia Xiao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- *Correspondence: Fengxia Xiao,
| |
Collapse
|
109
|
Sadasivam N, Kim YJ, Radhakrishnan K, Kim DK. Oxidative Stress, Genomic Integrity, and Liver Diseases. Molecules 2022; 27:3159. [PMID: 35630636 PMCID: PMC9147071 DOI: 10.3390/molecules27103159] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Excess reactive oxygen species production and free radical formation can lead to oxidative stress that can damage cells, tissues, and organs. Cellular oxidative stress is defined as the imbalance between ROS production and antioxidants. This imbalance can lead to malfunction or structure modification of major cellular molecules such as lipids, proteins, and DNAs. During oxidative stress conditions, DNA and protein structure modifications can lead to various diseases. Various antioxidant-specific gene expression and signal transduction pathways are activated during oxidative stress to maintain homeostasis and to protect organs from oxidative injury and damage. The liver is more vulnerable to oxidative conditions than other organs. Antioxidants, antioxidant-specific enzymes, and the regulation of the antioxidant responsive element (ARE) genes can act against chronic oxidative stress in the liver. ARE-mediated genes can act as the target site for averting/preventing liver diseases caused by oxidative stress. Identification of these ARE genes as markers will enable the early detection of liver diseases caused by oxidative conditions and help develop new therapeutic interventions. This literature review is focused on antioxidant-specific gene expression upon oxidative stress, the factors responsible for hepatic oxidative stress, liver response to redox signaling, oxidative stress and redox signaling in various liver diseases, and future aspects.
Collapse
Affiliation(s)
- Nanthini Sadasivam
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (N.S.); (Y.-J.K.)
| | - Yu-Ji Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (N.S.); (Y.-J.K.)
| | - Kamalakannan Radhakrishnan
- Clinical Vaccine R&D Center, Department of Microbiology, Combinatorial Tumor Immunotherapy MRC, Medical School, Chonnam National University, Gwangju 58128, Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (N.S.); (Y.-J.K.)
| |
Collapse
|
110
|
Liu SX, Liu H, Wang S, Zhang CL, Guo FF, Zeng T. Diallyl disulfide ameliorates ethanol-induced liver steatosis and inflammation by maintaining the fatty acid catabolism and regulating the gut-liver axis. Food Chem Toxicol 2022; 164:113108. [PMID: 35526736 DOI: 10.1016/j.fct.2022.113108] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/12/2022] [Accepted: 04/30/2022] [Indexed: 12/18/2022]
Abstract
Diallyl disulfide (DADS) has been suggested to possess hepatoprotection against alcoholic liver disease (ALD) by a couple of pilot studies, while the underlying mechanisms remain largely unknown. This study aimed to investigate the hepatoprotective effects of DADS against ethanol-induced liver steatosis and early inflammation by using the chronic-plus-binge mice model and cultured J774A.1 macrophages and AML12 hepatocytes. We found that DADS significantly attenuated ethanol-induced elevation of serum aminotransferase activities, accumulation of liver triglyceride, hepatocytes apoptosis, oxidative stress, infiltration of macrophages and neutrophils, and proinflammatory polarization of macrophages in mice livers. In addition, chronic-plus-binge drinking induced apparent intestinal mucosa damage and disturbance of gut microbiota, endotoxemia, and activation of hepatic NF-κB signaling and NLRP3 inflammasome, which was inhibited by DADS. In vitro studies using cocultured AML12/J774A.1 cells showed that DADS suppressed ethanol/LPS-induced cell injury and inflammatory activation of macrophages. Furthermore, DADS ameliorated ethanol-induced decline of peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyltransferase 1 (CPT1), and phosphorylated AMP-activated protein kinase (AMPK) protein levels in mice liver and AML12 cells. These results demonstrate that DADS could prevent ethanol-induced liver steatosis and early inflammation by regulating the gut-liver axis and maintaining fatty acid catabolism.
Collapse
Affiliation(s)
- Shi-Xuan Liu
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hong Liu
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shuo Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong Province, 252059, China
| | - Cui-Li Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Fang-Fang Guo
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
111
|
Bae CS, Ahn T. Albumin infusion ameliorates liver injury in streptozotocin-induced diabetic rats. VET MED-CZECH 2022; 67:245-256. [PMID: 39170903 PMCID: PMC11334145 DOI: 10.17221/14/2021-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 12/29/2021] [Indexed: 08/23/2024] Open
Abstract
We investigated the effect of an albumin infusion on the enzyme activity, expression level of cytochrome P450 2E1 (CYP2E1), and oxidative stress in the serum and liver of streptozotocin (STZ)-induced diabetic rats. The STZ treatment enhanced the alanine aminotransferase and aspartate aminotransferase activities in the rat serum compared with those in the untreated rats. Treatment with STZ elevated the expression and catalytic activity of CYP2E1, and the oxidative stress, and decreased the reducing potentials in the liver, suggesting the possibility of diabetes-induced liver injury. Moreover, the antioxidant activity of the serum albumin decreased in the diabetic rats. In contrast, the administration of purified albumin from the intact rats to the diabetic rats restored these deleterious liver indices in an albumin concentration-dependent manner. These results suggest that an exogenous albumin infusion alleviates liver damage induced by type 1 diabetes.
Collapse
Affiliation(s)
- Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Taeho Ahn
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
112
|
Wang Z, Liu H, Cao Y, Zhang T, Guo H, Wang B. A novel method for investigating the mechanism of anti-rheumatoid arthritis activity of Angelicae pubescentis Radix by integrating UHPLC-QTOF/MS and network pharmacology. Biomed Chromatogr 2022; 36:e5389. [PMID: 35484722 DOI: 10.1002/bmc.5389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/09/2022]
Abstract
The study aimed to establish a strategy to elucidate the in vivo constituents of Angelicae pubescentis Radix (APR, also known as Duhuo) and reveal the probable mechanisms underlying the anti-rheumatoid arthritis activity of APR. APR, first recorded in Shennong Bencao Jing, is mainly used to treat Bi syndrome. Eleven absorbed components of APR were successfully identified using the Rheumatoid arthritis (RA) rat model and the UHPLC-QTOF/MS technique. Two active ingredients (osthole, and columbianadin) and five corresponding targets (PTGS1, PTGS2, RXRA, CCNA2 and ACHE) were found to construct a compound-protein interaction network in RA. In addition, a non-alcoholic fatty liver disease (NAFLD) pathway, which was related to anti-RA activity, was eventually identified by KEGG analysis. Subsequently, molecular docking was performed by establishing a mixed matrix network including the absorbed component, corresponding target, and signaling pathway with two key compounds (osthole and columbianadin) and two important targets (PTGS2 and PTGS1). The result of molecular docking is in agreement with the network pharmacology (NP).
Collapse
Affiliation(s)
- Zhen Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Hefei, China
| | - Hui Liu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Hefei, China
| | - Yunxiang Cao
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, China
| | - Tiantian Zhang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Hefei, China
| | - Hongyan Guo
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Hefei, China
| | - Bin Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Hefei, China
| |
Collapse
|
113
|
Vecera R, Poruba M, Hüttl M, Malinska H, Oliyarnyk O, Markova I, Racova Z, Soukop J, Kazdova L. Beneficial Effect of Fenofibrate and Silymarin on Hepatic Steatosis and Gene Expression of Lipogenic and Cytochrome P450 Enzymes in Non-Obese Hereditary Hypertriglyceridemic Rats. Curr Issues Mol Biol 2022; 44:1889-1900. [PMID: 35678658 PMCID: PMC9164080 DOI: 10.3390/cimb44050129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
The efficacy of fenofibrate in the treatment of hepatic steatosis has not been clearly demonstrated. In this study, we investigated the effects of fenofibrate and silymarin, administered as monotherapy and in combination to existing hepatic steatosis in a unique strain of hereditary hypertriglyceridemic rats (HHTg), a non-obese model of metabolic syndrome. HHTg rats were fed a standard diet without or with fenofibrate (100 mg/kg b.wt./day) or with silymarin (1%) or with a combination of fenofibrate with silymarin for four weeks. Fenofibrate alone and in combination with silymarin decreased serum and liver triglycerides and cholesterol and increased HDL cholesterol. These effects were associated with the decreased gene expression of enzymes involved in lipid synthesis and transport, while enzymes of lipid conversion were upregulated. The combination treatment had a beneficial effect on the gene expression of hepatic cytochrome P450 (CYP) enzymes. The expression of the CYP2E1 enzyme, which is source of hepatic reactive oxygen species, was reduced. In addition, fenofibrate-induced increased CYP4A1 expression was decreased, suggesting a reduction in the pro-inflammatory effects of fenofibrate. These results show high efficacy and mechanisms of action of the combination of fenofibrate with silymarin in treating hepatic steatosis and indicate the possibility of protection against disorders in which oxidative stress and inflammation are involved.
Collapse
Affiliation(s)
- Rostislav Vecera
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, 77515 Olomouc, Czech Republic; (R.V.); (Z.R.); (J.S.)
| | - Martin Poruba
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, 77515 Olomouc, Czech Republic; (R.V.); (Z.R.); (J.S.)
- Correspondence: ; Tel.: +420-585-632-556
| | - Martina Hüttl
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (M.H.); (H.M.); (O.O.); (I.M.); (L.K.)
| | - Hana Malinska
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (M.H.); (H.M.); (O.O.); (I.M.); (L.K.)
| | - Olena Oliyarnyk
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (M.H.); (H.M.); (O.O.); (I.M.); (L.K.)
| | - Irena Markova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (M.H.); (H.M.); (O.O.); (I.M.); (L.K.)
| | - Zuzana Racova
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, 77515 Olomouc, Czech Republic; (R.V.); (Z.R.); (J.S.)
| | - Jan Soukop
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, 77515 Olomouc, Czech Republic; (R.V.); (Z.R.); (J.S.)
| | - Ludmila Kazdova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (M.H.); (H.M.); (O.O.); (I.M.); (L.K.)
| |
Collapse
|
114
|
Liu J, Shi Y, Peng D, Wang L, Yu N, Wang G, Chen W. Salvia miltiorrhiza Bge. (Danshen) in the Treating Non-alcoholic Fatty Liver Disease Based on the Regulator of Metabolic Targets. Front Cardiovasc Med 2022; 9:842980. [PMID: 35528835 PMCID: PMC9072665 DOI: 10.3389/fcvm.2022.842980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is rapidly prevalent due to its strong association with increased metabolic syndrome such as cardio- and cerebrovascular disorders and diabetes. Few drugs can meet the growing disease burden of NAFLD. Salvia miltiorrhiza Bge. (Danshen) have been used for over 2,000 years in clinical trials to treat NAFLD and metabolic syndrome disease without clarified defined mechanisms. Metabolic targets restored metabolic homeostasis in patients with NAFLD and improved steatosis by reducing the delivery of metabolic substrates to liver as a promising way. Here we systematic review evidence showing that Danshen against NAFLD through diverse and crossing mechanisms based on metabolic targets. A synopsis of the phytochemistry and pharmacokinetic of Danshen and the mechanisms of metabolic targets regulating the progression of NAFLD is initially provided, followed by the pharmacological activity of Danshen in the management NAFLD. And then, the possible mechanisms of Danshen in the management of NAFLD based on metabolic targets are elucidated. Specifically, the metabolic targets c-Jun N-terminal kinases (JNK), sterol regulatory element-binding protein-1c (SREBP-1c), nuclear translocation carbohydrate response element–binding protein (ChREBP) related with lipid metabolism pathway, and peroxisome proliferator-activated receptors (PPARs), cytochrome P450 (CYP) and the others associated with pleiotropic metabolism will be discussed. Finally, providing a critical assessment of the preclinic and clinic model and the molecular mechanism in NAFLD.
Collapse
Affiliation(s)
- Jie Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
| | - Yun Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
- *Correspondence: Lei Wang,
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Guokai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
- Weidong Chen,
| |
Collapse
|
115
|
Wang Y, Zhao H, Yang L, Zhang H, Yu X, Fei W, Zhen Y, Gao Z, Chen S, Ren L. Quantitative proteomics analysis based on tandem mass tag labeling coupled with labeling coupled with liquid chromatography-tandem mass spectrometry discovers the effect of silibinin on non-alcoholic fatty liver disease in mice. Bioengineered 2022; 13:6750-6766. [PMID: 35246007 PMCID: PMC9208462 DOI: 10.1080/21655979.2022.2045837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In recent years, the beneficial effects of silibinin (SIL) on nonalcoholic fatty liver disease (NAFLD) have attracted widespread attention. We tried to study the intervention effect of SIL on NAFLD, and explore the potential mechanisms and targets of SIL on NAFLD improvement. Thirty-three male C57BL6/J mice were divided into three groups, and, respectively, fed a normal diet (ND), a high-fat diet (HFD) or a HFD given SIL treatment (HFD+SIL). Biochemical indexes and histopathological changes of mice in each group were detected. In addition, quantitative proteomics analysis based on tandem mass tag (TMT) labeling coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics analysis was performed on protein changes in the livers. SIL could reduce the weight of mice, reduce liver lipid deposition, and improve glucose metabolism. Through comparison among the three experimental groups, a total of 30 overlapping proteins were found. These identified proteins were closely linked to liver lipid metabolism and energy homeostasis. Moreover, some drug targets were found, namely perilipin-2, phosphatidate phosphatase LPIN1, farnesyl pyrophosphate synthase, and glutathione S-transferase A1. In conclusions, high-fat diet increases the expressions of proteins implicated in lipid synthesis and transport in the liver, which can result in disorders of liver lipid metabolism. SIL can decrease liver lipid deposition and increase insulin sensitivity by regulating the expressions of these proteins. It not only improves the disorder of lipid metabolism in vivo, but also improves the disorder of glucose metabolism.
Collapse
Affiliation(s)
- Yichao Wang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Hang Zhao
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Liying Yang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - He Zhang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xian Yu
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Wenjie Fei
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yunfeng Zhen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Zhe Gao
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Luping Ren
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
116
|
Melis M, Tang XH, Attarwala N, Chen Q, Prishker C, Qin L, Gross SS, Gudas LJ, Trasino SE. A retinoic acid receptor β2 agonist protects against alcohol liver disease and modulates hepatic expression of canonical retinoid metabolism genes. Biofactors 2022; 48:469-480. [PMID: 34687254 PMCID: PMC9344329 DOI: 10.1002/biof.1794] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022]
Abstract
Alcohol abuse reduces hepatic vitamin A (retinoids), reductions that are associated with progression of alcohol liver disease (ALD). Restoring hepatic retinoids through diet is contraindicated in ALD due to the negative effects of alcohol on retinoid metabolism. There are currently no drugs that can both mitigate alcohol-driven hepatic retinoid losses and progression of ALD. Using a mouse model of alcohol intake, we examined if an agonist for the retinoic acid (RA) receptor β2 (RARβ2), AC261066 (AC261) could prevent alcohol-driven hepatic retinoid losses and protect against ALD. Our results show that mice co-treated with AC261 and alcohol displayed mitigation of ALD, including reduced macro, and microvesicular steatosis, and liver damage. Alcohol intake led to increases in hepatic centrilobular levels of ALDH1A1, a rate-limiting enzyme in RA synthesis, and co-localization of ALDH1A1 with the alcohol-metabolizing enzyme CYP2E1, and 4-HNE, a marker of oxidative stress; expression of these targets was abrogated in mice co-treated with AC261 and alcohol. By RNA sequencing technology, we found that AC261 treatments opposed alcohol modulation of 68 transcripts involved in canonical retinoid metabolism. Alcohol modulation of these transcripts, including CES1D, CES1G, RBP1, RDH10, and CYP26A1, collectively favor hepatic retinoid hydrolysis and catabolism. However, despite this, co-administration of AC261 with alcohol did not mitigate alcohol-mediated depletions of hepatic retinoids, but did reduce alcohol-driven increases in serum retinol. Our data show that AC261 protected mice against ALD, even though AC261 did not prevent alcohol-mediated reductions in hepatic retinoids. These data warrant further studies of the anti-ALD properties of AC261.
Collapse
Affiliation(s)
- Marta Melis
- Department of Pharmacology, Weill Cornell Medicine, New York, NY
| | - Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medicine, New York, NY
| | - Nabeel Attarwala
- Department of Pharmacology, Weill Cornell Medicine, New York, NY
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY
| | - Carlos Prishker
- Department of Pharmacology, Weill Cornell Medicine, New York, NY
| | - Lihui Qin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Steven S. Gross
- Department of Pharmacology, Weill Cornell Medicine, New York, NY
| | | | - Steven E. Trasino
- Nutrition Program, Hunter College, City University of New York, New York, NY
- Department of Pharmacology, Weill Cornell Medicine, New York, NY
| |
Collapse
|
117
|
Guo W, Chen S, Li C, Xu J, Wang L. Application of Disulfiram and its Metabolites in Treatment of Inflammatory Disorders. Front Pharmacol 2022; 12:795078. [PMID: 35185542 PMCID: PMC8848744 DOI: 10.3389/fphar.2021.795078] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/17/2021] [Indexed: 12/27/2022] Open
Abstract
Disulfiram has been used clinically for decades as an anti-alcoholic drug. Recently, several studies have demonstrated the anti-inflammatory effects of disulfiram and its metabolism, which can alleviate the progression of inflammation in vivo and in vitro. In the current study, we summarize the anti-inflammatory mechanisms of disulfiram and its metabolism, including inhibition of pyroptosis by either covalently modifying gasdermin D or inactivating nod-like receptor protein 3 inflammasome, dual effects of intracellular reactive oxygen species production, and inhibition of angiogenesis. Furthermore, we review the potential application of disulfiram and its metabolism in treatment of inflammatory disorders, such as inflammatory bowel disease, inflammatory injury of kidney and liver, type 2 diabetes mellitus, sepsis, uveitis, and osteoarthritis.
Collapse
Affiliation(s)
- Wenyi Guo
- Department of Pancreatic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shihong Chen
- Department of Pancreatic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chengqing Li
- Department of Pancreatic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianwei Xu
- Department of Pancreatic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Wang
- Department of Pancreatic Surgery, General Surgery, Qilu Hospital, Shandong University, China
| |
Collapse
|
118
|
Wang QS, Li M, Li X, Zhang NW, Hu HY, Zhang LL, Ren JN, Fan G, Pan SY. Protective effect of orange essential oil on the formation of non-alcoholic fatty liver disease caused by high-fat diet. Food Funct 2022; 13:933-943. [PMID: 35005749 DOI: 10.1039/d1fo03793e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to investigate the protective effect of sniffing orange essential oil (OEO) on the formation of non-alcoholic fatty liver disease (NAFLD) caused by a high-fat diet. The results confirmed that sniffing OEO could reduce obesity caused by a high-fat diet (HFD) by reducing the levels of triglycerides (TGs), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C). In addition, the observation of liver tissue sections showed that sniffing OEO could reduce lipid accumulation in liver cells. Further analysis by western blot analysis showed that OEO treatment made the expression levels of acetyl-CoA carboxylase (ACC) and Cytochrome P450 2E1 (CYP2E1) down-regulated and the expression levels of peroxisome proliferator-activated receptor-α (PPAR-α) and carnitine palmitoyltransferase-1 (CPT-1) up-regulated. These results indicate that the treatment of sniffing OEO could enhance the antioxidant capacity of mice and reduce liver damage caused by a high-fat diet. Furthermore, sniffing OEO could inhibit lipid synthesis and oxidative stress stimulated by a high-fat diet. Overall, OEO treatment had a certain protective effect on NAFLD-related diseases caused by a high-fat diet. Therefore, aromatherapy may be introduced as a treatment of long-term chronic diseases.
Collapse
Affiliation(s)
- Qing-Shan Wang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Min Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Na-Wei Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hui-Yan Hu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lu-Lu Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, P.R. China
| | - Jing-Nan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Si-Yi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
119
|
Role of Mitochondrial Cytochrome P450 2E1 in Healthy and Diseased Liver. Cells 2022; 11:cells11020288. [PMID: 35053404 PMCID: PMC8774478 DOI: 10.3390/cells11020288] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Cytochrome P450 2E1 (CYP2E1) is pivotal in hepatotoxicity induced by alcohol abuse and different xenobiotics. In this setting, CYP2E1 generates reactive metabolites inducing oxidative stress, mitochondrial dysfunction and cell death. In addition, this enzyme appears to play a role in the progression of obesity-related fatty liver to nonalcoholic steatohepatitis. Indeed, increased CYP2E1 activity in nonalcoholic fatty liver disease (NAFLD) is deemed to induce reactive oxygen species overproduction, which in turn triggers oxidative stress, necroinflammation and fibrosis. In 1997, Avadhani’s group reported for the first time the presence of CYP2E1 in rat liver mitochondria, and subsequent investigations by other groups confirmed that mitochondrial CYP2E1 (mtCYP2E1) could be found in different experimental models. In this review, we first recall the main features of CYP2E1 including its role in the biotransformation of endogenous and exogenous molecules, the regulation of its expression and activity and its involvement in different liver diseases. Then, we present the current knowledge on the physiological role of mtCYP2E1, its contribution to xenobiotic biotransformation as well as the mechanism and regulation of CYP2E1 targeting to mitochondria. Finally, we discuss experimental investigations suggesting that mtCYP2E1 could have a role in alcohol-associated liver disease, xenobiotic-induced hepatotoxicity and NAFLD.
Collapse
|
120
|
Crosstalk between Oxidative Stress and Inflammatory Liver Injury in the Pathogenesis of Alcoholic Liver Disease. Int J Mol Sci 2022; 23:ijms23020774. [PMID: 35054960 PMCID: PMC8775426 DOI: 10.3390/ijms23020774] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) is characterized by the injury, inflammation, and scarring in the liver owing to excessive alcohol consumption. Currently, ALD is a leading cause for liver transplantation. Therefore, extensive studies (in vitro, in experimental ALD models and in humans) are needed to elucidate pathological features and pathogenic mechanisms underlying ALD. Notably, oxidative changes in the liver have been recognized as a signature trait of ALD. Progression of ALD is linked to the generation of highly reactive free radicals by reactions involving ethanol and its metabolites. Furthermore, hepatic oxidative stress promotes tissue injury and, in turn, stimulates inflammatory responses in the liver, forming a pathological loop that promotes the progression of ALD. Accordingly, accumulating further knowledge on the relationship between oxidative stress and inflammation may help establish a viable therapeutic approach for treating ALD.
Collapse
|
121
|
Hamada K, Wang P, Xia Y, Yan N, Takahashi S, Krausz KW, Hao H, Yan T, Gonzalez FJ. Withaferin A alleviates ethanol-induced liver injury by inhibiting hepatic lipogenesis. Food Chem Toxicol 2022; 160:112807. [PMID: 34995708 DOI: 10.1016/j.fct.2022.112807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/26/2021] [Accepted: 01/01/2022] [Indexed: 12/12/2022]
Abstract
Withaferin A (WA) is a natural steroidal compound with reported hepatoprotective activities against various liver diseases. Whether WA has therapeutic effects on alcoholic liver disease has not been explored. A binge alcoholic liver injury model was employed by feeding C57BL/6J mice an ethanol (EtOH) diet for 10 days followed by an acute dose of EtOH to mimic clinical acute-upon-chronic liver injury. In this binge model, WA significantly reduced the binge EtOH-induced increase of serum aminotransaminase levels and decreased hepatic lipid accumulation. Mechanistically, WA decreased levels of hepatic lipogenesis gene mRNAs in vivo, including Srebp1c, Fasn, Acc1 and Fabp1. In EtOH-treated primary hepatocytes in vitro, WA decreased lipid accumulation by lowering the expression of the lipogenesis gene mRNAs Fasn and Acc1 as well as decreasing hepatocyte death. In the established binge alcoholic liver injury model, WA therapeutically reduced the EtOH-induced increase of serum aminotransaminase levels as well as hepatic lipid accumulation. These results demonstrate that WA reduces EtOH-induced liver injury by inhibiting hepatic lipogenesis, suggesting a potential therapeutic option for treating alcoholic liver injury.
Collapse
Affiliation(s)
- Keisuke Hamada
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA; Laboratory of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Ping Wang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yangliu Xia
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA; School of Life Science and Medicine, Dalian University of Technology, Panjin, 124221, China
| | - Nana Yan
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA; State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Shogo Takahashi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Tingting Yan
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
122
|
Feng NN, Du XY, Zhang YS, Jiao ZK, Wu XH, Yang BM. Overweight/obesity-related transcriptomic signature as a correlate of clinical outcome, immune microenvironment, and treatment response in hepatocellular carcinoma. Front Endocrinol (Lausanne) 2022; 13:1061091. [PMID: 36714595 PMCID: PMC9877416 DOI: 10.3389/fendo.2022.1061091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/13/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUNDS The pandemic of overweight and obesity (quantified by body mass index (BMI) ≥ 25) has rapidly raised the patient number of non-alcoholic fatty hepatocellular carcinoma (HCC), and several clinical trials have shown that BMI is associated with the prognosis of HCC. However, whether overweight/obesity is an independent prognostic factor is arguable, and the role of overweight/obesity-related metabolisms in the progression of HCC is scarcely known. MATERIALS AND METHODS In the present study, clinical information, mRNA expression profile, and genomic data were downloaded from The Cancer Genome Atlas (TCGA) as a training cohort (TCGA-HCC) for the identification of overweight/obesity-related transcriptome. Machine learning and the Cox regression analysis were conducted for the construction of the overweight/obesity-associated gene (OAG) signature. The Kaplan-Meier curve, receiver operating characteristic (ROC) curve, and the Cox regression analysis were performed to assess the prognostic value of the OAG signature, which was further validated in two independent retrospective cohorts from the International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO). Subsequently, functional enrichment, genomic profiling, and tumor microenvironment (TME) evaluation were utilized to characterize biological activities associated with the OAG signature. GSE109211 and GSE104580 were retrieved to evaluate the underlying response of sorafenib and transcatheter arterial chemoembolization (TACE) treatment, respectively. The Genomics of Drug Sensitivity in Cancer (GDSC) database was employed for the evaluation of chemotherapeutic response. RESULTS Overweight/obesity-associated transcriptome was mainly involved in metabolic processes and noticeably and markedly correlated with prognosis and TME of HCC. Afterward, a novel established OAG signature (including 17 genes, namely, GAGE2D, PDE6A, GABRR1, DCAF8L1, DPYSL4, SLC6A3, MMP3, RIBC2, KCNH2, HTRA3, PDX1, ATHL1, PRTG, SHC4, C21orf29, SMIM32, and C1orf133) divided patients into high and low OAG score groups with distinct prognosis (median overall survival (OS): 24.87 vs. 83.51 months, p < 0.0001), and the values of area under ROC curve (AUC) in predicting 1-, 2-, 3-, and 4-year OS were 0.81, 0.80, 0.83, and 0.85, respectively. Moreover, the OAG score was independent of clinical features and also exhibited a good ability for prognosis prediction in the ICGC-LIHC-JP cohort and GSE54236 dataset. Expectedly, the OAG score was also highly correlated with metabolic processes, especially oxidative-related signaling pathways. Furthermore, abundant enrichment of chemokines, receptors, MHC molecules, and other immunomodulators as well as PD-L1/PD-1 expression among patients with high OAG scores indicated that they might have better responses to immunotherapy. However, probably exclusion of T cells from infiltrating tumors resulting in lower infiltration of effective T cells would restrict immunotherapeutic effects. In addition, the OAG score was significantly associated with the response of sorafenib and TACE treatment. CONCLUSIONS Overall, this study comprehensively disclosed the relationship between BMI-guided transcriptome and HCC. Moreover, the OAG signature had the potential clinical applications in the future to promote clinical management and precision medicine of HCC.
Collapse
Affiliation(s)
- Ning-Ning Feng
- Department of Hepatobiliary Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xi-Yue Du
- Department of Radiotherapy, Hengshui People’s Hospital, Hengshui, Hebei, China
| | - Yue-Shan Zhang
- Department of Hepatobiliary Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhi-Kai Jiao
- Department of Hepatobiliary Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiao-Hui Wu
- Department of Hepatobiliary Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bao-Ming Yang
- Department of Hepatobiliary Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- *Correspondence: Bao-Ming Yang, ;
| |
Collapse
|
123
|
Liu M, Huang Q, Zhu Y, Chen L, Li Y, Gong Z, Ai K. Harnessing reactive oxygen/nitrogen species and inflammation: Nanodrugs for liver injury. Mater Today Bio 2022; 13:100215. [PMID: 35198963 PMCID: PMC8850330 DOI: 10.1016/j.mtbio.2022.100215] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/11/2022] Open
Abstract
Overall, 12% of the global population (800 million) suffers from liver disease, which causes 2 million deaths every year. Liver injury involving characteristic reactive oxygen/nitrogen species (RONS) and inflammation plays a key role in progression of liver disease. As a key metabolic organ of the human body, the liver is susceptible to injury from various sources, including COVID-19 infection. Owing to unique structural features and functions of the liver, most current antioxidants and anti-inflammatory drugs are limited against liver injury. However, the characteristics of the liver could be utilized in the development of nanodrugs to achieve specific enrichment in the liver and consequently targeted treatment. Nanodrugs have shown significant potential in eliminating RONS and regulating inflammation, presenting an attractive therapeutic tool for liver disease through controlling liver injury. Therefore, the main aim of the current review is to provide a comprehensive summary of the latest developments contributing to our understanding of the mechanisms underlying nanodrugs in the treatment of liver injury via harnessing RONS and inflammation. Meanwhile, the prospects of nanodrugs for liver injury therapy are systematically discussed, which provides a sound platform for novel therapeutic insights and inspiration for design of nanodrugs to treat liver disease.
Collapse
Affiliation(s)
- Min Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Zhu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Li Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yumei Li
- Department of Assisted Reproduction, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
124
|
Khan N, Alimova Y, Clark SJ, Vekaria H, Walsh AE, Williams HC, Hawk GS, Sullivan P, Johnson LA, McClintock TS. Human APOE ɛ3 and APOE ɛ4 Alleles Have Differential Effects on Mouse Olfactory Epithelium. J Alzheimers Dis 2021; 85:1481-1494. [PMID: 34958025 DOI: 10.3233/jad-215152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive age-dependent disorder whose risk is affected by genetic factors. Better models for investigating early effects of risk factors such as apolipoprotein E (APOE) genotype are needed. OBJECTIVE To determine whether APOE genotype produces neuropathologies in an AD-susceptible neural system, we compared effects of human APOE ɛ3 (E3) and APOE ɛ4 (E4) alleles on the mouse olfactory epithelium. METHODS RNA-Seq using the STAR aligner and DESeq2, immunohistochemistry for activated caspase-3 and phosphorylated histone H3, glucose uptake after oral gavage of 2-[1,2-3H (N)]-deoxy-D-glucose, and Seahorse Mito Stress tests on dissociated olfactory mucosal cells. RESULTS E3 and E4 olfactory mucosae show 121 differentially abundant mRNAs at age 6 months. These do not indicate differences in cell type proportions, but effects on 17 odorant receptor mRNAs suggest small differences in tissue development. Ten oxidoreductases mRNAs important for cellular metabolism and mitochondria are less abundant in E4 olfactory mucosae but this does not translate into differences in cellular respiration. E4 olfactory mucosae show lower glucose uptake, characteristic of AD susceptibility and consistent with greater expression of the glucose-sensitive gene, Asns. Olfactory sensory neuron apoptosis is unaffected at age 6 months but is greater in E4 mice at 10 months. CONCLUSION Effects of human APOE alleles on mouse olfactory epithelium phenotype are apparent in early adulthood, and neuronal loss begins to increase by middle age (10 months). The olfactory epithelium is an appropriate model for the ability of human APOE alleles to modulate age-dependent effects associated with the progression of AD.
Collapse
Affiliation(s)
- Naazneen Khan
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Yelena Alimova
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Sophie J Clark
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Hemendra Vekaria
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Adeline E Walsh
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Holden C Williams
- Department of Physiology, University of Kentucky, Lexington, KY, USA.,Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Gregory S Hawk
- Department of Statistics, University of Kentucky, Lexington, KY, USA
| | - Patrick Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, USA.,Lexington Veterans' Affairs Healthcare System, Lexington, KY, USA
| | - Lance A Johnson
- Department of Physiology, University of Kentucky, Lexington, KY, USA.,Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
125
|
Yu W, Ma Y, Roy SK, Srivastava R, Shankar S, Srivastava RK. Ethanol exposure of human pancreatic normal ductal epithelial cells induces EMT phenotype and enhances pancreatic cancer development in KC (Pdx1-Cre and LSL-Kras G12D ) mice. J Cell Mol Med 2021; 26:399-409. [PMID: 34859959 PMCID: PMC8743655 DOI: 10.1111/jcmm.17092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
Alcohol is a risk factor for pancreatic cancer. However, the molecular mechanism by which chronic alcohol consumption influences pancreatic cancer development is not well understood. We have recently demonstrated that chronic ethanol exposure of pancreatic normal ductal epithelial cells (HPNE) induces cellular transformation by generating cancer stem cells (CSCs). Here, we examined whether chronic ethanol treatment induces epithelial–mesenchymal transition in HPNE cells and promotes pancreatic cancer development in KC (Pdx1‐Cre, and LSL‐KrasG12D) mice. Our data demonstrate that chronic ethanol exposure of HPNE cells induces SATB2 gene and those cells became highly motile. Ethanol treatment of HPNE cells results in downregulation of E‐Cadherin and upregulation of N‐Cadherin, Snail, Slug, Zeb1, Nanog and BMI‐1. Suppression of SATB2 expression in ethanol‐transformed HPNE cells inhibits EMT phenotypes. KC mice fed with an ethanol‐containing diet show enhanced pancreatic cancer growth and development than those fed with a control diet. Pancreas isolated from KC mice fed with an ethanol‐containing diet show higher expression of stem cell markers (CD133, CD44, CD24), pluripotency‐maintaining factors (cMyc, KLF4, SOX‐2, and Oct‐4), N‐Cadherin, EMT‐transcription factors (Snail, Slug, and Zeb1), and lower expression of E‐cadherin than those isolated from mice fed with a control diet. Furthermore, pancreas isolated from KC mice fed with an ethanol‐containing diet show higher expression of inflammatory cytokines (TNF‐α, IL‐6, and IL‐8) and PTGS‐2 (COX‐2) gene than those isolated from mice fed with a control diet. These data suggest that chronic alcohol consumption may contribute to pancreatic cancer development by generating inflammatory signals and CSCs.
Collapse
Affiliation(s)
- Wei Yu
- Kansas City VA Medical Center, Kansas City, Missouri, USA
| | - Yuming Ma
- Kansas City VA Medical Center, Kansas City, Missouri, USA
| | - Sanjit K Roy
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisina, USA
| | - Rashmi Srivastava
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, Louisina, USA
| | - Sharmila Shankar
- Kansas City VA Medical Center, Kansas City, Missouri, USA.,Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisina, USA.,Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisina, USA.,John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisina, USA.,Southeast Louisiana Veterans Health Care System, New Orleans, Louisina, USA
| | - Rakesh K Srivastava
- Kansas City VA Medical Center, Kansas City, Missouri, USA.,Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisina, USA.,Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisina, USA.,Southeast Louisiana Veterans Health Care System, New Orleans, Louisina, USA
| |
Collapse
|
126
|
Baek SM, Lee SW, Lee YJ, Kim HY, Seo MS, Sung SE, Lee AR, Kim TU, Choi SK, Park SJ, Kim TH, Jeong KS, Park JK. Vitamin C alleviates alcoholic liver injury by suppressing neutrophil infiltration in senescence marker protein 30-knockout mice irrespective of its antioxidant effects. Life Sci 2021; 297:120228. [DOI: 10.1016/j.lfs.2021.120228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022]
|
127
|
Sumida Y, Yoneda M, Seko Y, Takahashi H, Hara N, Fujii H, Itoh Y, Yoneda M, Nakajima A, Okanoue T. Role of vitamin E in the treatment of non-alcoholic steatohepatitis. Free Radic Biol Med 2021; 177:391-403. [PMID: 34715296 DOI: 10.1016/j.freeradbiomed.2021.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic steatohepatitis (NASH), a severe form of non-alcoholic fatty liver disease (NAFLD), can progress to cirrhosis, hepatocellular carcinoma (HCC), and hepatic failure/liver transplantation. Indeed, NASH will soon be the leading cause of HCC and liver transplantation. Lifestyle intervention represents the cornerstone of NASH treatment, but it is difficult to sustain. However, no pharmacotherapies for NASH have been approved. Oxidative stress has been implicated as one of the key factors in the pathogenesis of NASH. Systematic reviews with meta-analyses have confirmed that vitamin E reduces transaminase activities and may resolve NASH histopathology without improving hepatic fibrosis. However, vitamin E is not recommended for the treatment of NASH in diabetes, NAFLD without liver biopsy, NASH cirrhosis, or cryptogenic cirrhosis. Nevertheless, vitamin E supplementation may improve clinical outcomes in patients with NASH and bridging fibrosis or cirrhosis. Further studies are warranted to confirm such effects of vitamin E and that it would reduce overall mortality/morbidity without increasing the incidence of cardiovascular events. Future clinical trials of the use of vitamin E in combination with other anti-fibrotic agents may demonstrate an additive or synergistic therapeutic effect. Vitamin E is the first-line pharmacotherapy for NASH, according to the consensus of global academic societies.
Collapse
Affiliation(s)
- Yoshio Sumida
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan.
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Yuya Seko
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | | | - Nagisa Hara
- Liver Center, Saga University Hospital, Saga, Japan
| | - Hideki Fujii
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan.
| | - Yoshito Itoh
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Masashi Yoneda
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan.
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | | | | |
Collapse
|
128
|
Chen J, Ding X, Wu R, Tong B, Zhao L, Lv H, Meng X, Liu Y, Ren B, Li J, Jian T, Li W. Novel Sesquiterpene Glycoside from Loquat Leaf Alleviates Type 2 Diabetes Mellitus Combined with Nonalcoholic Fatty Liver Disease by Improving Insulin Resistance, Oxidative Stress, Inflammation, and Gut Microbiota Composition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14176-14191. [PMID: 34783554 DOI: 10.1021/acs.jafc.1c05596] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is strongly associated with type 2 diabetes mellitus (T2DM). Sesquiterpene glycosides from loquat leaf achieved beneficial effects on metabolic syndromes such as NAFLD and diabetes; however, their specific activity and underlying mechanism on T2DM-associated NAFLD have not yet been fully understood. In the present study, we found that sesquiterpene glycoside 3 (SG3), a novel sesquiterpene glycoside isolated from loquat leaf, was able to prevent insulin resistance (IR), oxidative stress, and inflammation. In db/db mice, SG3 administration (25 and 50 mg/kg/day) inhibited obesity, hyperglycemia, and the release of inflammatory cytokines. SG3 (5 and 10 μM) also significantly alleviated hepatic lipid accumulation, oxidative stress, and inflammatory response induced by high glucose combined with oleic acid in HepG2 cells. Western blotting analysis showed that these effects were related to repair the abnormal insulin signaling and inhibit the cytochrome P450 2E1 (CYP2E1) and NOD-like receptor family pyrin domain-containing 3 (NLRP3), both in vivo and in vitro. In addition, SG3 treatment could decrease the ratio of Firmicutes/Bacteroidetes and increase the relative abundance of Lachnospiraceae, Muribaculaceae, and Lactobacillaceae after a high-throughput pyrosequencing of 16S rRNA to observe the changes of related gut microbial composition in db/db mice. These findings proved that SG3 could protect against NAFLD in T2DM by improving IR, oxidative stress, inflammation through regulating insulin signaling and inhibiting CYP2E1/NLRP3 pathways, and remodeling the mouse gut microbiome. It is suggested that SG3 could be considered as a new functional additive for a healthy diet.
Collapse
Affiliation(s)
- Jian Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoqin Ding
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Ruoyun Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Bei Tong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Lei Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Han Lv
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xiuhua Meng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yan Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Bingru Ren
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jing Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tunyu Jian
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Weilin Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Forestry College, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
129
|
Maeda H, Ishima Y, Saruwatari J, Mizuta Y, Minayoshi Y, Ichimizu S, Yanagisawa H, Nagasaki T, Yasuda K, Oshiro S, Taura M, McConnell MJ, Oniki K, Sonoda K, Wakayama T, Kinoshita M, Shuto T, Kai H, Tanaka M, Sasaki Y, Iwakiri Y, Otagiri M, Watanabe H, Maruyama T. Nitric oxide facilitates the targeting Kupffer cells of a nano-antioxidant for the treatment of NASH. J Control Release 2021; 341:457-474. [PMID: 34856227 DOI: 10.1016/j.jconrel.2021.11.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023]
Abstract
Kupffer cells are a key source of reactive oxygen species (ROS) and are implicated in the development of steatohepatitis and fibrosis in nonalcoholic steatohepatitis (NASH). We recently developed a polythiolated and mannosylated human serum albumin (SH-Man-HSA), a nano-antioxidant that targets Kupffer cells, in which the mannosyl units on albumin allows their specific uptake by Kupffer cells via the mannose receptor C type 1 (MRC1), and in which the polythiolation confers antioxidant activity. The aim of this study was to investigate the therapeutic potential of SH-Man-HSA in NASH model mice. In livers from mice and/or patients with NASH, we observed a reduced blood flow in the liver lobes and the down-regulation in MRC1 expression in Kupffer cells, and SH-Man-HSA alone failed to improve the pathological phenotype in NASH. However, the administration of a nitric oxide (NO) donor restored hepatic blood flow and increased the expression of the mannose receptor C type 2 (MRC2) instead of MRC1. Consequently, treatment with a combination of SH-Man-HSA and an NO donor improved oxidative stress-associated pathology. Finally, we developed a hybrid type of nano-antioxidant (SNO-Man-HSA) via the S-nitrosation of SH-Man-HSA. This nanomedicine efficiently delivered both NO and thiol groups to the liver, with a hepatoprotective effect that was comparable to the combination therapy of SH-Man-HSA and an NO donor. These findings suggest that SNO-Man-HSA has the potential for functioning as a novel nano-therapy for the treatment of NASH.
Collapse
Affiliation(s)
- Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; Department of Internal Medicine, Sections of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Mizuta
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Minayoshi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shota Ichimizu
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroki Yanagisawa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taisei Nagasaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kengo Yasuda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shun Oshiro
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Manabu Taura
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Matthew J McConnell
- Department of Internal Medicine, Sections of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Kentaro Oniki
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kayoko Sonoda
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomohiko Wakayama
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Saitama, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Motohiko Tanaka
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yutaka Sasaki
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuko Iwakiri
- Department of Internal Medicine, Sections of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences and DDS Research Institute, Sojo University, Kumamoto, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
130
|
Xiao X, Hu Q, Deng X, Shi K, Zhang W, Jiang Y, Ma X, Zeng J, Wang X. Old wine in new bottles: Kaempferol is a promising agent for treating the trilogy of liver diseases. Pharmacol Res 2021; 175:106005. [PMID: 34843960 DOI: 10.1016/j.phrs.2021.106005] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023]
Abstract
As a source of various compounds, natural products have long been important and valuable for drug development. Kaempferol (KP) is the most common flavonol with bioactive activity and has been extracted from many edible plants and traditional Chinese medicines. It has a wide range of pharmacological effects on inflammation, oxidation, and tumour and virus regulation. The liver is an important organ and is involved in metabolism and activity. Because the pathological process of liver diseases is extremely complicated, liver diseases involving ALD, NASH, liver fibrosis, and HCC are often complicated and difficult to treat. Fortunately, there have been many reports that KP has a good pharmacological effect on a series of complex liver diseases. To fully understand the mechanism of KP and provide new ideas for its clinical application in the treatment of liver diseases, this article reviews the pharmacological mechanism and potential value of KP in different studies involving various liver diseases. In the trilogy of liver disease, high concentrations of ROS stimulate peroxidation and activate the inflammatory signal cascade, which involves signalling pathways such as MAPK/JAK-STAT/PERK/Wnt/Hipp, leading to varying degrees of cell degradation and liver damage. The development of liver disease is promoted in an inflammatory environment, which is conducive to the activation of TGF-β1, leading to increased expression of pro-fibrosis and pro-inflammatory genes. Inflammation and oxidative stress promote the formation of tumour microenvironments, and uncontrolled autophagy of cancer cells further leads to the development of liver cancer. The main pathway in this process is AMPK/PTEN/PI3K-Akt/TOR. KP can not only protect liver parenchymal cells through a variety of antioxidant and anti-apoptotic mechanisms but also reduces the immune inflammatory response in the liver microenvironment, thereby preventing cell apoptosis; it can also inhibit the ER stress response, prevent inflammation and inhibit tumour growth. KP exerts multiple therapeutic effects on liver disease by regulating precise signalling targets and is expected to become an emerging therapeutic opportunity to treat liver disease in the future.
Collapse
Affiliation(s)
- Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kaiyun Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yinxiao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiaoyin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
131
|
Zhou Z, Sang L, Wang J, Song L, Zhu L, Wang Y, Xiao J, Lian Y. Relationships among N,N-dimethylformamide exposure, CYP2E1 and TM6SF2 genes, and non-alcoholic fatty liver disease. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112986. [PMID: 34794021 DOI: 10.1016/j.ecoenv.2021.112986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/27/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE This study aimed to examine the relationships among N, N-dimethylformamide (DMF) exposure, cytochrome P4502E1 (CYP2E1) single nucleotide polymorphisms (SNPs) (rs2031920, rs3813867, rs6413432), transmembrane 6 superfamily member 2 (TM6SF2) SNP rs58542926 and non-alcoholic fatty liver disease (NAFLD). METHODS Baseline data were collected from participants who were then followed for 5 years in a prospective cohort study. The cohort initially consisted of 802 workers and ultimately included 660 people, all of whom underwent annual occupational health examinations from 2010 to 2015. RESULTS The above-threshold group (≥7.3 mg/m³ adjusted relative risk (RR)= 3.620, 95%CI 2.072-6.325) was significantly more likely to develop NAFLD than the below-threshold group (<7.3 mg/m³). The TM6SF2 SNP rs58542926 CT (adjusted RR=3.921, 95% CI 2.329-6.600, P = 0.000) and CT+TT (adjusted RR=4.385, 95% CI 2.639-7.287, P = 0.000) genotypes were risk factors for NAFLD, as compared with the TM6SF2 rs58542926 CC genotype. Each dose group (below-threshold group and above-threshold group) interacting with the genotype of TM6SF2 SNP rs58542926 had an adjusted RR from 7.764 (95% CI 3.272-18.420, P = 0.000) to 24.022 (95% CI 8.971-64.328, P = 0.000). The T allele of rs58542926 in the TM6SF2 gene may be a risk factor for susceptibility to DMF-induced NAFLD. CONCLUSION Polymorphisms of TM6SF2 SNP rs58542926 may play an important role in susceptibility to NAFLD after exposure to DMF.
Collapse
Affiliation(s)
- Ziqi Zhou
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Lingli Sang
- Department of Occupational and Environmental Health, School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Jin Wang
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Lin Song
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Lejia Zhu
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Yangmei Wang
- Department of Occupational and Environmental Health, School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Jing Xiao
- Department of Occupational Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Yulong Lian
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Nantong 226019, Jiangsu, China.
| |
Collapse
|
132
|
Lin Y, Peng X, Xia B, Zhang Z, Li C, Wu P, Lin L, Liao D. Investigation of toxicity attenuation mechanism of tetrahydroxy stilbene glucoside in Polygonum multiflorum Thunb. by Ganoderma lucidum. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114421. [PMID: 34271114 DOI: 10.1016/j.jep.2021.114421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 06/28/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The idiosyncratic hepatotoxicity of Polygonum multiflorum Thunb. (PM) has attracted great interest, and tetrahydroxy stilbene glucoside (TSG) was the main idiosyncratic hepatotoxicity constituent, but biological detoxification on idiosyncratic hepatotoxicity of PM was not well investigated. AIM OF THE STUDY This study aimed to illustrate biological detoxification mechanism on PM-induced idiosyncratic hepatotoxicity by Ganoderma lucidum (G. lucidum). MATERIALS AND METHODS G. lucidum was used for biological detoxification of tetrahydroxy stilbene glucoside (TSG)-induced idiosyncratic hepatotoxicity of PM. The TSG consumption and products formation were dynamically determined during transformation using high-performance liquid chromatography coupled with diode-array detection and electrospray ionization tandem mass spectrometry (HPLC-DAD-MSn). The transformation invertases (β-D-glucosidase and lignin peroxidase) were evaluated by using intracellular and extracellular distribution and activity assay. The key functions of lignin peroxidase (LiP) were studied by experiments of adding inhibitors and agonists. The entire TSG transformation process was confirmed in vitro simulated test. The cellular toxicity of TSG and the transformation products was detected by MTT. RESULTS A suitable biotransformation system of TSG was established with G. lucidum, then p-hydroxybenzaldehyde and 2,3,5-trihydroxybenzaldehyde can be found as transformation products of TSG. The transformation mechanism involves two extracellular enzymes, β-D-glucosidase and LiP. β-D-glucosidase can remove glycosylation of TSG firstly and then LiP can break the double bond of remaining glycosides. The toxicity of TSG after biotransformation by G. lucidum was attenuated. CONCLUSIONS This study would reveal a novel biological detoxification method for PM and explain degradation processes of TSG by enzymic methods.
Collapse
Affiliation(s)
- Yan Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, College of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, People's Republic of China
| | - Xi Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, College of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, People's Republic of China
| | - Bohou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, College of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, People's Republic of China
| | - Zhimin Zhang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, College of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, People's Republic of China
| | - Chun Li
- China Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Ping Wu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, College of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, People's Republic of China
| | - Limei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, College of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, People's Republic of China.
| | - Duanfang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, College of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, People's Republic of China.
| |
Collapse
|
133
|
Jiang HY, Bao YN, Lin FM, Jin Y. Triptolide regulates oxidative stress and inflammation leading to hepatotoxicity via inducing CYP2E1. Hum Exp Toxicol 2021; 40:S775-S787. [PMID: 34758665 DOI: 10.1177/09603271211056330] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Triptolide (TP), the main active compound extracted from medicine-tripterygium wilfordii Hook f. (TWHF). It has anti-tumor and immunomodulatory properties. Our study aimed to investigate the mechanisms of hepatotoxicity treated with TP in vivo and in vitro, as well as their relationship with the NF-κB (p65) signal pathway; and to assess TP-induced hepatotoxicity after CYP2E1 modulation by the known inhibitor, clomethiazole, and the known inducer, pyrazole. Mice were given TP to cause liver injury and IHHA-1 cells were given TP to cause hepatocyte injury. The enzyme activity and hepatotoxicity changed dramatically when the CYP2E1 inhibitor and inducer were added. In comparison to the control group, the enzyme inducer increased the activity of CYP2E1, whereas the enzyme inhibitor had the opposite effect. Our findings suggest that TP is an inducer of CYP2E1 via a time-dependent activation mechanism. In addition, TP can promote oxidative stress, inflammatory and involving the NF-κB (p65) signal pathway. Therefore, we used triptolide to stimulate C57 mice and IHHA-1 cells to determine whether TP can promote oxidative stress and inflammation by activating CYP2E1 in response to exacerbated liver damage and participate in NF-κB (p65) signaling pathway.
Collapse
Affiliation(s)
- Hai-Yan Jiang
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, 12485Anhui Medical University, Hefei, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, 12485Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Yan-Ni Bao
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, 12485Anhui Medical University, Hefei, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, 12485Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Feng-Mei Lin
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, 12485Anhui Medical University, Hefei, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, 12485Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Yong Jin
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, 12485Anhui Medical University, Hefei, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, 12485Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| |
Collapse
|
134
|
Lam BQ, Srivastava R, Morvant J, Shankar S, Srivastava RK. Association of Diabetes Mellitus and Alcohol Abuse with Cancer: Molecular Mechanisms and Clinical Significance. Cells 2021; 10:cells10113077. [PMID: 34831299 PMCID: PMC8620339 DOI: 10.3390/cells10113077] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/28/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM), one of the metabolic diseases which is characterized by sustained hyperglycemia, is a life-threatening disease. The global prevalence of DM is on the rise, mainly in low- and middle-income countries. Diabetes is a major cause of blindness, heart attacks, kidney failure, stroke, and lower limb amputation. Type 2 diabetes mellitus (T2DM) is a form of diabetes that is characterized by high blood sugar and insulin resistance. T2DM can be prevented or delayed by a healthy diet, regular physical activity, maintaining normal body weight, and avoiding alcohol and tobacco use. Ethanol and its metabolites can cause differentiation defects in stem cells and promote inflammatory injury and carcinogenesis in several tissues. Recent studies have suggested that diabetes can be treated, and its consequences can be avoided or delayed with proper management. DM has a greater risk for several cancers, such as breast, colorectal, endometrial, pancreatic, gallbladder, renal, and liver cancer. The incidence of cancer is significantly higher in patients with DM than in those without DM. In addition to DM, alcohol abuse is also a risk factor for many cancers. We present a review of the recent studies investigating the association of both DM and alcohol abuse with cancer incidence.
Collapse
Affiliation(s)
- Bao Q. Lam
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (B.Q.L.); (S.S.)
| | - Rashmi Srivastava
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Jason Morvant
- Department of Surgery, Ochsner Health System, 120 Ochsner Boulevard, Gretna, LA 70056, USA;
- A.B. Freeman School of Business, Tulane University, New Orleans, LA 70118, USA
| | - Sharmila Shankar
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (B.Q.L.); (S.S.)
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA
| | - Rakesh K. Srivastava
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (B.Q.L.); (S.S.)
- A.B. Freeman School of Business, Tulane University, New Orleans, LA 70118, USA
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Correspondence:
| |
Collapse
|
135
|
Fu K, Wang C, Ma C, Zhou H, Li Y. The Potential Application of Chinese Medicine in Liver Diseases: A New Opportunity. Front Pharmacol 2021; 12:771459. [PMID: 34803712 PMCID: PMC8600187 DOI: 10.3389/fphar.2021.771459] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Liver diseases have been a common challenge for people all over the world, which threatens the quality of life and safety of hundreds of millions of patients. China is a major country with liver diseases. Metabolic associated fatty liver disease, hepatitis B virus and alcoholic liver disease are the three most common liver diseases in our country, and the number of patients with liver cancer is increasing. Therefore, finding effective drugs to treat liver disease has become an urgent task. Chinese medicine (CM) has the advantages of low cost, high safety, and various biological activities, which is an important factor for the prevention and treatment of liver diseases. This review systematically summarizes the potential of CM in the treatment of liver diseases, showing that CM can alleviate liver diseases by regulating lipid metabolism, bile acid metabolism, immune function, and gut microbiota, as well as exerting anti-liver injury, anti-oxidation, and anti-hepatitis virus effects. Among them, Keap1/Nrf2, TGF-β/SMADS, p38 MAPK, NF-κB/IκBα, NF-κB-NLRP3, PI3K/Akt, TLR4-MyD88-NF-κB and IL-6/STAT3 signaling pathways are mainly involved. In conclusion, CM is very likely to be a potential candidate for liver disease treatment based on modern phytochemistry, pharmacology, and genomeproteomics, which needs more clinical trials to further clarify its importance in the treatment of liver diseases.
Collapse
Affiliation(s)
| | | | | | | | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
136
|
Sladky VC, Eichin F, Reiberger T, Villunger A. Polyploidy control in hepatic health and disease. J Hepatol 2021; 75:1177-1191. [PMID: 34228992 DOI: 10.1016/j.jhep.2021.06.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/25/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022]
Abstract
A balanced increase in DNA content (ploidy) is observed in some human cell types, including bone-resorbing osteoclasts, platelet-producing megakaryocytes, cardiomyocytes or hepatocytes. The impact of increased hepatocyte ploidy on normal physiology and diverse liver pathologies is still poorly understood. Recent findings suggest swift genetic adaptation to hepatotoxic stress and the protection from malignant transformation as beneficial effects. Herein, we discuss the molecular mechanisms regulating hepatocyte polyploidisation and its implication for different liver diseases and hepatocellular carcinoma. We report on centrosomes' role in limiting polyploidy by activating the p53 signalling network (via the PIDDosome multiprotein complex) and we discuss the role of this pathway in liver disease. Increased hepatocyte ploidy is a hallmark of hepatic inflammation and may play a protective role against liver cancer. Our evolving understanding of hepatocyte ploidy is discussed from the perspective of its potential clinical application for risk stratification, prognosis, and novel therapeutic strategies in liver disease and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Valentina C Sladky
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Felix Eichin
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria.
| |
Collapse
|
137
|
Hüttl M, Markova I, Miklankova D, Zapletalova I, Poruba M, Haluzik M, Vaněčkova I, Malinska H. In a Prediabetic Model, Empagliflozin Improves Hepatic Lipid Metabolism Independently of Obesity and before Onset of Hyperglycemia. Int J Mol Sci 2021; 22:ijms222111513. [PMID: 34768942 PMCID: PMC8584090 DOI: 10.3390/ijms222111513] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Recent studies suggest that treatment with SGLT-2 inhibitors can reduce hepatic lipid storage and ameliorate non-alcoholic fatty liver disease (NAFLD) development beyond their glycemic benefits. However, the exact mechanism involved is still unclear. We investigated the hepatic metabolic effect of empagliflozin (10 mg/kg/day for eight weeks) on the development of NAFLD and its complications using HHTg rats as a non-obese prediabetic rat model. Empagliflozin treatment reduced neutral triacylglycerols and lipotoxic diacylglycerols in the liver and was accompanied by significant changes in relative mRNA expression of lipogenic enzymes (Scd-1, Fas) and transcription factors (Srebp1, Pparγ). In addition, alterations in the gene expression of cytochrome P450 proteins, particularly Cyp2e1 and Cyp4a, together with increased Nrf2, contributed to the improvement of hepatic lipid metabolism after empagliflozin administration. Decreased circulating levels of fetuin-A improved lipid metabolism and attenuated insulin resistance in the liver and in peripheral tissues. Our results highlight the beneficial effect of empagliflozin on hepatic lipid metabolism and lipid accumulation independent of obesity, with the mechanisms understood to involve decreased lipogenesis, alterations in cytochrome P450 proteins, and decreased fetuin-A. These changes help to alleviate NAFLD symptoms in the early phase of the disease and before the onset of diabetes.
Collapse
Affiliation(s)
- Martina Hüttl
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14321 Prague, Czech Republic; (M.H.); (I.M.); (D.M.)
| | - Irena Markova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14321 Prague, Czech Republic; (M.H.); (I.M.); (D.M.)
| | - Denisa Miklankova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14321 Prague, Czech Republic; (M.H.); (I.M.); (D.M.)
| | - Iveta Zapletalova
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic; (I.Z.); (M.P.)
| | - Martin Poruba
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic; (I.Z.); (M.P.)
| | - Martin Haluzik
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14321 Prague, Czech Republic;
| | - Ivana Vaněčkova
- Department of Experimental Hypertension, Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Hana Malinska
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14321 Prague, Czech Republic; (M.H.); (I.M.); (D.M.)
- Correspondence: ; Tel.: +420-261-365-369; Fax: +420-261-363-027
| |
Collapse
|
138
|
Chen LJ, Lin XX, Guo J, Xu Y, Zhang SX, Chen D, Zhao Q, Xiao J, Lian GH, Peng SF, Guo D, Yang H, Shu Y, Zhou HH, Zhang W, Chen Y. Lrp6 Genotype affects Individual Susceptibility to Nonalcoholic Fatty Liver Disease and Silibinin Therapeutic Response via Wnt/β-catenin-Cyp2e1 Signaling. Int J Biol Sci 2021; 17:3936-3953. [PMID: 34671210 PMCID: PMC8495406 DOI: 10.7150/ijbs.63732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Nonalcoholic fatty liver disease (NAFLD) is a serious threat to human health worldwide, with a high genetic susceptibility. Rs2302685, a functional germline variant of LRP6, has been recently found to associate with NAFLD risk. This study was aimed to clarify the underlying mechanism associated with rs2302685 risk and its impact on pharmacotherapy in treatment of NAFLD. Methods: Venous blood samples were collected from NAFLD and non-NAFLD patients for SNP genotyping by using mass spectrometry. The Lrp6-floxdel mouse (Lrp6(+/-)) was generated to model the partial function associated with human rs2302685. The liver injury and therapeutic effects of silibinin were compared between Lrp6(+/-) and Lrp6(+/+) mice received a methionine-choline deficient (MCD) diet or normal diet. The effect of Lrp6 functional alteration on Wnt/β-catenin-Cyp2e1 signaling activities was evaluated by a series of cellular and molecular assays. Results: The T allele of LRP6 rs2302685 was confirmed to associate with a higher risk of NAFLD in human subjects. The carriers of rs2302685 had reduced level of AST and ALT as compared with the noncarriers. The Lrp6(+/-) mice exhibited a less severe liver injury induced by MCD but a reduced response to the treatment of silibinin in comparison to the Lrp6(+/+) mice, suggesting Lrp6 as a target of silibinin. Wnt/β-catenin-Cyp2e1 signaling together with ROS generation could be exacerbated by the overexpression of Lrp6, while decreased in response to Lrp6 siRNA or silibinin treatment under NAFLD modeling. Conclusions: The Lrp6 function affects individual susceptibility to NAFLD and the therapeutic effect of silibinin through the Wnt/β-catenin-Cyp2e1 signaling pathway. The present work has provided an underlying mechanism for human individual susceptibility to NAFLD associated with Lrp6 polymorphisms as well as a rationale for the effective use of silibinin in NAFLD patients.
Collapse
Affiliation(s)
- Li-Jie Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Xiu-Xian Lin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Jing Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Ying Xu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Song-Xia Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Dan Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Qing Zhao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Jian Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Guang-Hui Lian
- Department of gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Shi-Fang Peng
- Department of Hepatology and Infectious Diseases, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Dong Guo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201. USA
| | - Hong Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201. USA
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201. USA
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Yao Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| |
Collapse
|
139
|
Pang S, Dong W, Liu N, Gao S, Li J, Zhang X, Lu D, Zhang L. Diallyl sulfide protects against dilated cardiomyopathy via inhibition of oxidative stress and apoptosis in mice. Mol Med Rep 2021; 24:852. [PMID: 34651661 PMCID: PMC8532119 DOI: 10.3892/mmr.2021.12492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/26/2021] [Indexed: 11/21/2022] Open
Abstract
Cytochrome P450 family 2 subfamily E member 1 (CYP2E1) is a member of the cytochrome P450 enzyme family and catalyzes the metabolism of various substrates. CYP2E1 is upregulated in multiple heart diseases and causes damage mainly via the production of reactive oxygen species (ROS). In mice, increased CYP2E1 expression induces cardiac myocyte apoptosis, and knockdown of endogenous CYP2E1 can attenuate the pathological development of dilated cardiomyopathy (DCM). Nevertheless, targeted inhibition of CYP2E1 via the administration of drugs for the treatment of DCM remains elusive. Therefore, the present study aimed to investigate whether diallyl sulfide (DAS), a competitive inhibitor of CYP2E1, can be used to inhibit the development of the pathological process of DCM and identify its possible mechanism. Here, cTnTR141W transgenic mice, which developed typical DCM phenotypes, were used. Following treatment with DAS for 6 weeks, echocardiography, histological analysis and molecular marker detection were conducted to investigate the DAS-induced improvement on myocardial function and morphology. Biochemical analysis, western blotting and TUNEL assays were used to detected ROS production and myocyte apoptosis. It was found that DAS improved the typical DCM phenotypes, including chamber dilation, wall thinning, fibrosis, poor myofibril organization and decreased ventricular blood ejection, as determined using echocardiographic and histopathological analyses. Furthermore, the regulatory mechanisms, including inhibition both of the oxidative stress levels and the mitochondria-dependent apoptosis pathways, were involved in the effects of DAS. In particular, DAS showed advantages in terms of improved chamber dilation and dysfunction in model mice, and the improvement occurred in the early stage of the treatment compared with enalaprilat, an angiotensin-converting enzyme inhibitor that has been widely used in the clinical treatment of DCM and HF. The current results demonstrated that DAS could protect against DCM via inhibition of oxidative stress and apoptosis. These findings also suggest that inhibition of CYP2E1 may be a valuable therapeutic strategy to control the development of heart diseases, especially those associated with CYP2E1 upregulation. Moreover, the development of DAS analogues with lower cytotoxicity and metabolic rate for CYP2E1 may be beneficial.
Collapse
Affiliation(s)
- Shuo Pang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Wei Dong
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Ning Liu
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Shan Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Jing Li
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Xu Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Dan Lu
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| |
Collapse
|
140
|
Ma HL, Chen SD, Zheng KI, Yu Y, Wang XX, Tang LJ, Li G, Rios RS, Huang OY, Zheng XY, Xu RA, Targher G, Byrne CD, Wang XD, Chen YP, Zheng MH. TA allele of rs2070673 in the CYP2E1 gene is associated with lobular inflammation and nonalcoholic steatohepatitis in patients with biopsy-proven nonalcoholic fatty liver disease. J Gastroenterol Hepatol 2021; 36:2925-2934. [PMID: 34031913 DOI: 10.1111/jgh.15554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Cytochrome P450 2E1 (CYP2E1) plays a role in lipid metabolism, and by increasing hepatic oxidative stress and inflammation, the upregulation of CYP2E1 is involved in development of nonalcoholic steatohepatitis (NASH). We aimed to explore the relationship between CYP2E1-333A>T (rs2070673) and the histological severity of nonalcoholic fatty liver disease (NAFLD). METHODS We studied 438 patients with biopsy-proven NAFLD. NASH was defined as NAFLD Activity Score ≥ 5 with existence of steatosis, ballooning, and lobular inflammation. CYP2E1-333A>T (rs2070673) was genotyped by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Serum cytokines related to inflammation were measured by the Bio-plex 200 system to investigate possible mediating factors involved in the process. RESULTS The TA genotype of rs2070673 had a higher prevalence of moderate/severe lobular inflammation (27.6% vs 20.3% vs 13.3%, P < 0.01) and NASH (55.7% vs 42.4% vs 40.5%, P < 0.01) compared with the AA and TT genotypes, respectively. In multivariable regression modeling, the heterozygote state TA was associated with moderate/severe lobular inflammation (adjusted odds ratio: 2.31, 95% confidence interval 1.41-3.78, P < 0.01) or NASH (adjusted odds ratio: 1.82, 95% confidence interval 1.22-2.69, P < 0.01), independently of age, sex, common metabolic risk factors, and presence of liver fibrosis. Compared with no-NASH, NASH patients had significantly higher levels of serum interleukin-1 receptor antagonist, interleukin-18, and interferon-inducible protein-10 (IP-10), whereas only IP-10 was increased with the rs2070673 TA variant (P = 0.01). Mediation analysis showed that IP-10 was responsible for ~60% of the association between the rs2070672 and NASH. CONCLUSIONS The TA allele of rs2070673 is strongly associated with lobular inflammation and NASH, and this effect appears to be largely mediated by serum IP-10 levels.
Collapse
Affiliation(s)
- Hong-Lei Ma
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sui-Dan Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kenneth I Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yue Yu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin-Xin Wang
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang-Jie Tang
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gang Li
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rafael S Rios
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ou-Yang Huang
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Yong Zheng
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Ai Xu
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Christopher D Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| | - Xiao-Dong Wang
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Yong-Ping Chen
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| |
Collapse
|
141
|
Wang F, Zhang X, Liu W, Zhou Y, Wei W, Liu D, Wong CC, Sung JJY, Yu J. Activated Natural Killer Cell Promotes Nonalcoholic Steatohepatitis Through Mediating JAK/STAT Pathway. Cell Mol Gastroenterol Hepatol 2021; 13:257-274. [PMID: 34506952 PMCID: PMC8599163 DOI: 10.1016/j.jcmgh.2021.08.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Hepatic immune microenvironment plays a pivotal role in the development of nonalcoholic steatohepatitis (NASH). However, the role of natural killer (NK) cells, accounting for 10%-20% of liver lymphocytes, in NASH is still unclear. In this study, we aim to investigate the functional significance of NK cells in NASH evolution. METHODS NASH was induced in mice fed methionine- and choline-deficient diet (MCD), choline-deficient high-fat diet (CD-HFD), or high-fat diet with streptozotocin injection (STAM model). NK cell deficient mice (Nfil3-/-) and neutralization antibody (PK136) were used in this study. RESULTS Activated liver NK cells were identified with increased expression of NKG2D, CD107a, and interferon-γ but decreased inhibitory NKG2A. With NK cell deficiency Nfil3-/- mice, the absence of NK cells ameliorated both MCD- and CDHF- induced NASH development with significantly decreased hepatic triglycerides, peroxides, alanine aminotransferase, and aspartate aminotransferase compared with Nfil3+/+ mice. Further molecular analysis unveiled suppressed pro-inflammatory cytokines and associated signaling. Mechanistically, NK cells isolated from NASH liver secreted higher levels of pro-inflammatory cytokines (interferon-γ, interleukin 1β, interleukin 12, CCL4, CCL5, and granulocyte-macrophage colony-stimulating factor), which could activate hepatic JAK-STAT1/3 and nuclear factor kappa B signaling and induce hepatocyte damage evidenced by elevated reactive oxygen species and apoptosis rate. Moreover, neutralization antibody PK136-dependent NK cell depletion can significantly alleviate MCD-induced steatohepatitis with suppressed cytokine levels and JAK-STAT1/3 activity. CONCLUSIONS NK cells in NASH liver are activated with a more pro-inflammatory cytokine milieu and promote NASH development via cytokine-JAK-STAT1/3 axis. Modulation of NK cells provides a potential therapeutic strategy for NASH.
Collapse
Affiliation(s)
- Feixue Wang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiang Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Weixin Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yunfei Zhou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wenchao Wei
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dabin Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joseph J Y Sung
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China; Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
142
|
Warner J, Hardesty J, Song Y, Sun R, Deng Z, Xu R, Yin X, Zhang X, McClain C, Warner D, Kirpich I. Fat-1 Transgenic Mice With Augmented n3-Polyunsaturated Fatty Acids Are Protected From Liver Injury Caused by Acute-On-Chronic Ethanol Administration. Front Pharmacol 2021; 12:711590. [PMID: 34531743 PMCID: PMC8438569 DOI: 10.3389/fphar.2021.711590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Alcohol-associated liver disease (ALD) is the leading cause of liver disease worldwide, and alcohol-associated hepatitis (AH), a severe form of ALD, is a major contributor to the mortality and morbidity due to ALD. Many factors modulate susceptibility to ALD development and progression, including nutritional factors such as dietary fatty acids. Recent work from our group and others showed that modulation of dietary or endogenous levels of n6-and n3-polyunsaturated fatty acids (PUFAs) can exacerbate or attenuate experimental ALD, respectively. In the current study, we interrogated the effects of endogenous n3-PUFA enrichment in a mouse model which recapitulates features of early human AH using transgenic fat-1 mice which endogenously convert n6-PUFAs to n3-PUFAs. Male wild type (WT) and fat-1 littermates were provided an ethanol (EtOH, 5% v/v)-containing liquid diet for 10 days, then administered a binge of EtOH (5 g/kg) by oral gavage on the 11th day, 9 h prior to sacrifice. In WT mice, EtOH treatment resulted in liver injury as determined by significantly elevated plasma ALT levels, whereas in fat-1 mice, EtOH caused no increase in this biomarker. Compared to their pair-fed controls, a significant EtOH-mediated increase in liver neutrophil infiltration was observed also in WT, but not fat-1 mice. The hepatic expression of several cytokines and chemokines, including Pai-1, was significantly lower in fat-1 vs WT EtOH-challenged mice. Cultured bone marrow-derived macrophages isolated from fat-1 mice expressed less Pai-1 and Cxcl2 (a canonical neutrophil chemoattractant) mRNA compared to WT when stimulated with lipopolysaccharide. Further, we observed decreased pro-inflammatory M1 liver tissue-resident macrophages (Kupffer cells, KCs), as well as increased liver T regulatory cells in fat-1 vs WT EtOH-fed mice. Taken together, our data demonstrated protective effects of endogenous n3-PUFA enrichment on liver injury caused by an acute-on-chronic EtOH exposure, a paradigm which recapitulates human AH, suggesting that n3-PUFAs may be a viable nutritional adjuvant therapy for this disease.
Collapse
Affiliation(s)
- Jeffrey Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Josiah Hardesty
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Ying Song
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Rui Sun
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Zhongbin Deng
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States.,Department of Surgery, University of Louisville, Louisville, KY, United States.,University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, United States
| | - Raobo Xu
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, United States.,University of Louisville Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY, United States.,Department of Chemistry, University of Louisville, Louisville, KY, United States.,Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY, United States
| | - Xinmin Yin
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, United States.,University of Louisville Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY, United States.,Department of Chemistry, University of Louisville, Louisville, KY, United States.,Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY, United States
| | - Xiang Zhang
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, United States.,University of Louisville Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY, United States.,Department of Chemistry, University of Louisville, Louisville, KY, United States.,Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY, United States
| | - Craig McClain
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States.,University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, United States.,University of Louisville Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY, United States.,Robley Rex Veterans Affairs Medical Center, Louisville, KY, United States
| | - Dennis Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Irina Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States.,University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, United States.,University of Louisville Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
143
|
Pi A, Jiang K, Ding Q, Lai S, Yang W, Zhu J, Guo R, Fan Y, Chi L, Li S. Alcohol Abstinence Rescues Hepatic Steatosis and Liver Injury via Improving Metabolic Reprogramming in Chronic Alcohol-Fed Mice. Front Pharmacol 2021; 12:752148. [PMID: 34603062 PMCID: PMC8481816 DOI: 10.3389/fphar.2021.752148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Alcoholic liver disease (ALD) caused by chronic ethanol overconsumption is a common type of liver disease with a severe mortality burden throughout the world. The pathogenesis of ALD is complex, and no effective clinical treatment for the disease has advanced so far. Prolonged alcohol abstinence is the most effective therapy to attenuate the clinical course of ALD and even reverse liver damage. However, the molecular mechanisms involved in alcohol abstinence-improved recovery from alcoholic fatty liver remain unclear. This study aims to systematically evaluate the beneficial effect of alcohol abstinence on pathological changes in ALD. Methods: Using the Lieber-DeCarli mouse model of ALD, we analysed whether 1-week alcohol withdrawal reversed alcohol-induced detrimental alterations, including oxidative stress, liver injury, lipids metabolism, and hepatic inflammation, by detecting biomarkers and potential targets. Results: Alcohol withdrawal ameliorated alcohol-induced hepatic steatosis by improving liver lipid metabolism reprogramming via upregulating phosphorylated 5'-AMP -activated protein kinase (p-AMPK), peroxisome proliferator-activated receptor-α (PPAR-α), and carnitine palmitoyltransferase-1 (CPT-1), and downregulating fatty acid synthase (FAS) and diacylglycerol acyltransferase-2 (DGAT-2). The activities of antioxidant enzymes, including superoxide dismutase (SOD) and glutathione peroxidase (GSH-px), were significantly enhanced by alcohol withdrawal. Importantly, the abstinence recovered alcohol-fed induced liver injury, as evidenced by the improvements in haematoxylin and eosin (H&E) staining, plasma alanine aminotransferase (ALT) levels, and liver weight/body weight ratio. Alcohol-stimulated toll-like receptor 4/mitogen-activated protein kinases (TLR4/MAPKs) were significantly reversed by alcohol withdrawal, which might mechanistically contribute to the amelioration of liver injury. Accordingly, the hepatic inflammatory factor represented by tumour necrosis factor-alpha (TNF-α) was improved by alcohol abstinence. Conclusion: In summary, we reported that alcohol withdrawal effectively restored hepatic lipid metabolism and reversed liver injury and inflammation by improving metabolism reprogramming. These findings enhanced our understanding of the biological mechanisms involved in the beneficial role of alcohol abstinence as an effective treatment for ALD.
Collapse
Affiliation(s)
- Aiwen Pi
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kai Jiang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinchao Ding
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shanglei Lai
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenwen Yang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinyan Zhu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rui Guo
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yibin Fan
- Department of Dermatology, People’s Hospital of Hangzhou Medical College, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Linfeng Chi
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
144
|
Cross-Talk between Oxidative Stress and m 6A RNA Methylation in Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6545728. [PMID: 34484567 PMCID: PMC8416400 DOI: 10.1155/2021/6545728] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/03/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Oxidative stress is a state of imbalance between oxidation and antioxidation. Excessive ROS levels are an important factor in tumor development. Damage stimulation and excessive activation of oncogenes cause elevated ROS production in cancer, accompanied by an increase in the antioxidant capacity to retain redox homeostasis in tumor cells at an increased level. Although moderate concentrations of ROS produced in cancer cells contribute to maintaining cell survival and cancer progression, massive ROS accumulation can exert toxicity, leading to cancer cell death. RNA modification is a posttranscriptional control mechanism that regulates gene expression and RNA metabolism, and m6A RNA methylation is the most common type of RNA modification in eukaryotes. m6A modifications can modulate cellular ROS levels through different mechanisms. It is worth noting that ROS signaling also plays a regulatory role in m6A modifications. In this review, we concluded the effects of m6A modification and oxidative stress on tumor biological functions. In particular, we discuss the interplay between oxidative stress and m6A modifications.
Collapse
|
145
|
Liu Z, Wang J, Chen S, Xu C, Zhang Y. Associations of acrylamide with non-alcoholic fatty liver disease in American adults: a nationwide cross-sectional study. Environ Health 2021; 20:98. [PMID: 34461916 PMCID: PMC8407016 DOI: 10.1186/s12940-021-00783-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 08/12/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Acrylamide (AA) is a toxicant to humans, but the association between AA exposure and the risk of non-alcoholic fatty liver disease (NAFLD) remains unclear. In this study, our objective is to examine the cross-sectional association between AA exposure and the risk of NAFLD in American adults. METHODS A total of 3234 individuals who took part in the National Health and Nutrition Examination Survey (NHANES) 2003-2006 and 2013-2016 were enrolled in the study. NAFLD was diagnosed by the U.S. Fatty Liver Index. Multivariable logistic regression models were applied to estimate the association between AA and NAFLD in the whole group and the non-smoking group. RESULTS We discovered that in the whole group, serum hemoglobin adducts of AA (HbAA) were negatively associated with the prevalence of NAFLD after adjustment for various covariables (P for trend < 0.001). Compared with individuals in the lowest HbAA quartiles, the odds ratios (ORs) with 95% confidence intervals (CIs) in the highest HbAA quartiles were 0.61 (0.46-0.81) and 0.57 (0.36-0.88) in the whole group and the non-smoking group, respectively. In contrast, HbGA/HbAA showed a significantly positive correlation with the prevalence of NAFLD in both groups (P for trend < 0.001). In addition, HbGA was not significantly associated with NAFLD in the whole group or the non-smoking group. CONCLUSIONS HbAA is negatively associated with NAFLD whereas HbGA/HbAA is positively associated with NAFLD in adults in the U.S. Further studies are needed to clarify these relationships.
Collapse
Affiliation(s)
- Zhening Liu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
- Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 Zhejiang China
| | - Jinghua Wang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Shenghui Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Chengfu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Yu Zhang
- Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 Zhejiang China
| |
Collapse
|
146
|
CYP2E1 in Alcoholic and Non-Alcoholic Liver Injury. Roles of ROS, Reactive Intermediates and Lipid Overload. Int J Mol Sci 2021; 22:ijms22158221. [PMID: 34360999 PMCID: PMC8348366 DOI: 10.3390/ijms22158221] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 02/08/2023] Open
Abstract
CYP2E1 is one of the fifty-seven cytochrome P450 genes in the human genome and is highly conserved. CYP2E1 is a unique P450 enzyme because its heme iron is constitutively in the high spin state, allowing direct reduction of, e.g., dioxygen, causing the formation of a variety of reactive oxygen species and reduction of xenobiotics to toxic products. The CYP2E1 enzyme has been the focus of scientific interest due to (i) its important endogenous function in liver homeostasis, (ii) its ability to activate procarcinogens and to convert certain drugs, e.g., paracetamol and anesthetics, to cytotoxic end products, (iii) its unique ability to effectively reduce dioxygen to radical species causing liver injury, (iv) its capability to reduce compounds, often generating radical intermediates of direct toxic or indirect immunotoxic properties and (v) its contribution to the development of alcoholic liver disease, steatosis and NASH. In this overview, we present the discovery of the enzyme and studies in humans, 3D liver systems and genetically modified mice to disclose its function and clinical relevance. Induction of the CYP2E1 enzyme either by alcohol or high-fat diet leads to increased severity of liver pathology and likelihood to develop ALD and NASH, with subsequent influence on the occurrence of hepatocellular cancer. Thus, fat-dependent induction of the enzyme might provide a link between steatosis and fibrosis in the liver. We conclude that CYP2E1 has many important physiological functions and is a key enzyme for hepatic carcinogenesis, drug toxicity and liver disease.
Collapse
|
147
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) was defined in 1980 and has the same histological characteristics as alcoholic liver disease except for alcohol consumption. After 40 years, the understanding of this disease is still imperfect. Without specific drugs available for treatment, the number of patients with NAFLD is increasing rapidly, and NAFLD currently affects more than one-quarter of the global population. NAFLD is mostly caused by a sedentary lifestyle and excessive energy intake of fat and sugar. To ameliorate or avoid NAFLD, people commonly replace high-fat foods with high-carbohydrate foods (especially starchy carbohydrates) as a way to reduce caloric intake and reach satiety. However, there are few studies that concentrate on the effect of carbohydrate intake on liver metabolism in patients with NAFLD, much fewer than the studies on fat intake. Besides, most of these studies are not systematic, which has made identification of the mechanism difficult. In this review, we collected and analysed data from studies on human and animal models and, surprisingly, found that carbohydrates and liver steatosis could be linked by inflammation. This review not only describes the effects of carbohydrates on NAFLD and body lipid metabolism but also analyses and predicts possible molecular pathways of carbohydrates in liver lipid synthesis that involve inflammation. Furthermore, the limitations of recent research and possible targets for regulating inflammation and lipogenesis are discussed. This review describes the effects of starchy carbohydrates, a nutrient signal, on NAFLD from the perspective of inflammation.
Collapse
|
148
|
Bingül İ, Aydın AF, Küçükgergin C, Doğan-Ekici I, Doğru-Abbasoğlu S, Uysal M. The effect of 1,25-dihydroxyvitamin D3 on liver damage, oxidative stress, and advanced glycation end products in experimental nonalcoholic- and alcoholic- fatty liver disease. Turk J Med Sci 2021; 51:1500-1511. [PMID: 33421970 PMCID: PMC8283439 DOI: 10.3906/sag-2007-289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/07/2021] [Indexed: 01/10/2023] Open
Abstract
Background/aim Oxidative stress and advanced glycation end products (AGEs) formation are proposed as effective mechanisms in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD). 1,25(OH)2D3 was proposed to have antioxidant, antiinflammatory and antiglycation properties. In this study, the effect of 1,25(OH)2D3 treatment on oxidative stress parameters and AGEs levels together with hepatic histopathology was investigated in high fructose (HFr) or ethanol (EtOH)-treated rats. Materials and methods Rats were treated with fructose (30%) or ethanol (5-20%) in drinking water with and without 1,25(OH)2D3 treatment (5 µg/kg two times a week) for 8 weeks. Insulin resistance (IR), oxidative stress parameters, AGEs, triglyceride (TG), and hydroxyproline (Hyp) levels together with histopathology were investigated in the liver. Results 1,25(OH)2D3 decreased hepatic reactive oxygen species, lipid and protein oxidation products together with histopathological improvements in HFr- and EtOH-treated rats. 1,25(OH)2D3 treatment was observed to decrease significantly serum and hepatic AGEs in HFr group, and hepatic AGEs in EtOH group. Conclusion Our results clearly show that 1,25(OH)2 D3 treatment may be useful in the alleviation of hepatic lesions by decreasing glycooxidant stress in both NAFLD and ALD models created by HFr- and EtOH-treated rats, respectively.
Collapse
Affiliation(s)
- İlknur Bingül
- Department of Medical Biochemistry, İstanbul Medical Faculty, İstanbul University, İstanbul, Turkey
| | - A. Fatih Aydın
- Department of Medical Biochemistry, İstanbul Medical Faculty, İstanbul University, İstanbul, Turkey
| | - Canan Küçükgergin
- Department of Medical Biochemistry, İstanbul Medical Faculty, İstanbul University, İstanbul, Turkey
| | - Işın Doğan-Ekici
- Department of Pathology, Acıbadem University Medical Faculty, İstanbul, Turkey
| | - Semra Doğru-Abbasoğlu
- Department of Medical Biochemistry, İstanbul Medical Faculty, İstanbul University, İstanbul, Turkey
| | - Müjdat Uysal
- Retired Prof. Dr., Tayyareci Nurettin Sokak, Bakırkoy, İstanbul, Turkey
| |
Collapse
|
149
|
Hepatoprotective Effects of the Cichorium intybus Root Extract against Alcohol-Induced Liver Injury in Experimental Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6643345. [PMID: 34221085 PMCID: PMC8225416 DOI: 10.1155/2021/6643345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 01/14/2023]
Abstract
The effects of the Cichorium intybus root extract (Cii) on alcohol-induced liver disease were investigated using Chang liver cells and male Sprague Dawley rats. Silymarin, a liver-protective agent, was used as a positive control. In cell experiments, after 24 h of treatment with the extract, no cytotoxicity was noted, and death by alcohol was avoided. Migration of Chang liver cells increased after exposure to the extract at a concentration of 400 μg/mL. In animal experiments, alcohol was injected into 6-week-old rats for 1, 3, and 50 days. Oral administration of the drug was performed 30 min before alcohol administration. The control was treated with distilled water, and the drug groups were administered EtOH (40% EtOH + 2.5 mL/kg), EtOH + Cii L (low concentration, 2 mg/kg), EtOH + Cii H (high concentration, 10 mg/kg), or EtOH + silymarin (100 mg/kg). Increased liver weight was observed in the alcohol group, as were increased blood-alcohol concentration and liver damage indicators (glutamic oxalacetic transaminase (GOT), glutamic pyruvate transaminase (GPT), and triglycerides (TG)), decreased alcoholysis enzymes (ADH and ALDH), and increased CYP2E1. In the Cii treatment group, liver weight, blood-alcohol concentration, liver damage indicators (GOT, GPT, and TG), and CYP2E1 were decreased, while alcoholysis enzymes (ADH and ALDH) were increased. The degree of histopathological liver damage was compared visually and by staining with hematoxylin and eosin and oil red O. These results indicated that ingestion of Cii inhibited alcohol-induced liver damage, indicating Cii as a useful treatment for alcohol-induced liver injury.
Collapse
|
150
|
Zhang YP, Yang XQ, Yu DK, Xiao HY, Du JR. Nrf2 signalling pathway and autophagy impact on the preventive effect of green tea extract against alcohol-induced liver injury. J Pharm Pharmacol 2021; 73:986-995. [PMID: 33877365 DOI: 10.1093/jpp/rgab027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/04/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To explore the potential molecular mechanism underlying the effect of green tea extract (TE), rich in tea polyphenols (TPs), on improving alcohol-induced liver injury. METHODS Mice were intragastrically treated with 50% (v/v) alcohol administration (15 ml/kg BW) with or without three doses of TE (50, 120 and 300 mg TPs/kg BW) daily for 4 weeks, and biological changes were tested. KEY FINDINGS The TE improved the functional and histological situations in the liver of the mice accepted alcohol administration, including enzymes for alcohol metabolism, oxidative stress and lipid accumulation. Interestingly, the TE increased the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2), with the decreasing expression of kelch-like ECH-associated protein 1 (Keap1), indicating the association between the effect of TE with Nrf2-mediated antioxidant signalling. Moreover, the TE restored the activity of autophagy, showing as lifted Beclin-1 expression, LC3B-II/LC3B-I ratio, and decreased p62 expression. Importantly, all these effects were dose-dependent. CONCLUSIONS These findings provide a new notion for the first time that the TE preventing against alcohol-induced liver injury is closely related to accelerated metabolism of alcohol and relieved oxidative stress, which is associated with Nrf2 signalling activation and autophagy restoration, thus the reduction of lipid accumulation in liver.
Collapse
Affiliation(s)
- Yu-Pei Zhang
- Department of Pharmacology, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xue-Qin Yang
- Department of Pharmacology, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Dong-Ke Yu
- Department of Pharmacy, Sichuan Provincial People's Hospital, Chengdu, China
| | - Heng-Yi Xiao
- Laboratory of Aging Research, West China Hospital, Sichuan University, Chengdu, China
| | - Jun-Rong Du
- Department of Pharmacology, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|