101
|
Lefèvre J, Savarin P, Gans P, Hamon L, Clément MJ, David MO, Bosc C, Andrieux A, Curmi PA. Structural basis for the association of MAP6 protein with microtubules and its regulation by calmodulin. J Biol Chem 2013; 288:24910-22. [PMID: 23831686 DOI: 10.1074/jbc.m113.457267] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Microtubules are highly dynamic αβ-tubulin polymers. In vitro and in living cells, microtubules are most often cold- and nocodazole-sensitive. When present, the MAP6/STOP family of proteins protects microtubules from cold- and nocodazole-induced depolymerization but the molecular and structure determinants by which these proteins stabilize microtubules remain under debate. We show here that a short protein fragment from MAP6-N, which encompasses its Mn1 and Mn2 modules (MAP6(90-177)), recapitulates the function of the full-length MAP6-N protein toward microtubules, i.e. its ability to stabilize microtubules in vitro and in cultured cells in ice-cold conditions or in the presence of nocodazole. We further show for the first time, using biochemical assays and NMR spectroscopy, that these effects result from the binding of MAP6(90-177) to microtubules with a 1:1 MAP6(90-177):tubulin heterodimer stoichiometry. NMR data demonstrate that the binding of MAP6(90-177) to microtubules involve its two Mn modules but that a single one is also able to interact with microtubules in a closely similar manner. This suggests that the Mn modules represent each a full microtubule binding domain and that MAP6 proteins may stabilize microtubules by bridging tubulin heterodimers from adjacent protofilaments or within a protofilament. Finally, we demonstrate that Ca(2+)-calmodulin competes with microtubules for MAP6(90-177) binding and that the binding mode of MAP6(90-177) to microtubules and Ca(2+)-calmodulin involves a common stretch of amino acid residues on the MAP6(90-177) side. This result accounts for the regulation of microtubule stability in cold condition by Ca(2+)-calmodulin.
Collapse
Affiliation(s)
- Julien Lefèvre
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR829, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université Evry-Val d'Essonne, Evry 91025, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Almeida-Souza L, Asselbergh B, De Winter V, Goethals S, Timmerman V, Janssens S. HSPB1 facilitates the formation of non-centrosomal microtubules. PLoS One 2013; 8:e66541. [PMID: 23826100 PMCID: PMC3691211 DOI: 10.1371/journal.pone.0066541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/07/2013] [Indexed: 11/19/2022] Open
Abstract
The remodeling capacity of microtubules (MT) is essential for their proper function. In mammals, MTs are predominantly formed at the centrosome, but can also originate from non-centrosomal sites, a process that is still poorly understood. We here show that the small heat shock protein HSPB1 plays a role in the control of non-centrosomal MT formation. The HSPB1 expression level regulates the balance between centrosomal and non-centrosomal MTs. The HSPB1 protein can be detected specifically at sites of de novo forming non-centrosomal MTs, while it is absent from the centrosomes. In addition, we show that HSPB1 binds preferentially to the lattice of newly formed MTs in vitro, suggesting that its function occurs by stabilizing MT seeds. Our findings open new avenues for the understanding of the role of HSPB1 in the development, maintenance and protection of cells with specialized non-centrosomal MT arrays.
Collapse
Affiliation(s)
- Leonardo Almeida-Souza
- Department of Molecular Genetics, VIB and University of Antwerp, Antwerpen, Belgium
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Bob Asselbergh
- Department of Molecular Genetics, VIB and University of Antwerp, Antwerpen, Belgium
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Vicky De Winter
- Department of Molecular Genetics, VIB and University of Antwerp, Antwerpen, Belgium
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Sofie Goethals
- Department of Molecular Genetics, VIB and University of Antwerp, Antwerpen, Belgium
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Vincent Timmerman
- Department of Molecular Genetics, VIB and University of Antwerp, Antwerpen, Belgium
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
- * E-mail: (VT); (SJ)
| | - Sophie Janssens
- Department of Molecular Genetics, VIB and University of Antwerp, Antwerpen, Belgium
- GROUP-ID Consortium, Laboratory for Immunoregulation and Mucosal Immunology, University of Ghent, Ghent, Belgium
- Department of Molecular Biomedical Research, VIB, Ghent, Belgium
- * E-mail: (VT); (SJ)
| |
Collapse
|
103
|
Kim GW, Li L, Ghorbani M, You L, Yang XJ. Mice lacking α-tubulin acetyltransferase 1 are viable but display α-tubulin acetylation deficiency and dentate gyrus distortion. J Biol Chem 2013; 288:20334-50. [PMID: 23720746 DOI: 10.1074/jbc.m113.464792] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
α-Tubulin acetylation at Lys-40, located on the luminal side of microtubules, has been widely studied and used as a marker for stable microtubules in the cilia and other subcellular structures, but the functional consequences remain perplexing. Recent studies have shown that Mec-17 and its paralog are responsible for α-tubulin acetylation in Caenorhabditis elegans. There is one such protein known as Atat1 (α-tubulin acetyltransferase 1) per higher organism. Zebrafish Atat1 appears to govern embryo development, raising the intriguing possibility that Atat1 is also critical for development in mammals. In addition to Atat1, three other mammalian acetyltransferases, ARD1-NAT1, ELP3, and GCN5, have been shown to acetylate α-tubulin in vitro, so an important question is how these four enzymes contribute to the acetylation in vivo. We demonstrate here that Atat1 is a major α-tubulin acetyltransferase in mice. It is widely expressed in mouse embryos and tissues. Although Atat1-null animals display no overt phenotypes, α-tubulin acetylation is lost in sperm flagella and the dentate gyrus is slightly deformed. Furthermore, human ATAT1 colocalizes on bundled microtubules with doublecortin. These results thus suggest that mouse Atat1 may regulate advanced functions such as learning and memory, thereby shedding novel light on the physiological roles of α-tubulin acetylation in mammals.
Collapse
Affiliation(s)
- Go-Woon Kim
- Rosalind and Morris Goodman Cancer Research Center, Montréal, Québec H3A 1A3, Canada
| | | | | | | | | |
Collapse
|
104
|
Bahi-Buisson N, Souville I, Fourniol FJ, Toussaint A, Moores CA, Houdusse A, Lemaitre JY, Poirier K, Khalaf-Nazzal R, Hully M, Leger PL, Elie C, Boddaert N, Beldjord C, Chelly J, Francis F. New insights into genotype-phenotype correlations for the doublecortin-related lissencephaly spectrum. ACTA ACUST UNITED AC 2013; 136:223-44. [PMID: 23365099 DOI: 10.1093/brain/aws323] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
X-linked isolated lissencephaly sequence and subcortical band heterotopia are allelic human disorders associated with mutations of doublecortin (DCX), giving both familial and sporadic forms. DCX encodes a microtubule-associated protein involved in neuronal migration during brain development. Structural data show that mutations can fall either in surface residues, likely to impair partner interactions, or in buried residues, likely to impair protein stability. Despite the progress in understanding the molecular basis of these disorders, the prognosis value of the location and impact of individual DCX mutations has largely remained unclear. To clarify this point, we investigated a cohort of 180 patients who were referred with the agyria-pachygyria subcortical band heterotopia spectrum. DCX mutations were identified in 136 individuals. Analysis of the parents' DNA revealed the de novo occurrence of DCX mutations in 76 cases [62 of 70 females screened (88.5%) and 14 of 60 males screened (23%)], whereas in the remaining cases, mutations were inherited from asymptomatic (n = 14) or symptomatic mothers (n = 11). This represents 100% of families screened. Female patients with DCX mutation demonstrated three degrees of clinical-radiological severity: a severe form with a thick band (n = 54), a milder form (n = 24) with either an anterior thin or an intermediate thickness band and asymptomatic carrier females (n = 14) with normal magnetic resonance imaging results. A higher proportion of nonsense and frameshift mutations were identified in patients with de novo mutations. An analysis of predicted effects of missense mutations showed that those destabilizing the structure of the protein were often associated with more severe phenotypes. We identified several severe- and mild-effect mutations affecting surface residues and observed that the substituted amino acid is also critical in determining severity. Recurrent mutations representing 34.5% of all DCX mutations often lead to similar phenotypes, for example, either severe in sporadic subcortical band heterotopia owing to Arg186 mutations or milder in familial cases owing to Arg196 mutations. Taken as a whole, these observations demonstrate that DCX-related disorders are clinically heterogeneous, with severe sporadic and milder familial subcortical band heterotopia, each associated with specific DCX mutations. There is a clear influence of the individual mutated residue and the substituted amino acid in determining phenotype severity.
Collapse
Affiliation(s)
- Nadia Bahi-Buisson
- Pediatric Neurology Hopital Necker Enfants Malades, Université Paris Descartes, APHP, 149 rue de Sevres 75015 Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Reiner O. LIS1 and DCX: Implications for Brain Development and Human Disease in Relation to Microtubules. SCIENTIFICA 2013; 2013:393975. [PMID: 24278775 PMCID: PMC3820303 DOI: 10.1155/2013/393975] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 02/07/2013] [Indexed: 05/29/2023]
Abstract
Proper lamination of the cerebral cortex requires the orchestrated motility of neurons from their place of birth to their final destination. Improper neuronal migration may result in a wide range of diseases, including brain malformations, such as lissencephaly, mental retardation, schizophrenia, and autism. Ours and other studies have implicated that microtubules and microtubule-associated proteins play an important role in the regulation of neuronal polarization and neuronal migration. Here, we will review normal processes of brain development and neuronal migration, describe neuronal migration diseases, and will focus on the microtubule-associated functions of LIS1 and DCX, which participate in the regulation of neuronal migration and are involved in the human developmental brain disease, lissencephaly.
Collapse
Affiliation(s)
- Orly Reiner
- Department of Molecular Genetics, The Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
106
|
Doublecortin (Dcx) family proteins regulate filamentous actin structure in developing neurons. J Neurosci 2013; 33:709-21. [PMID: 23303949 DOI: 10.1523/jneurosci.4603-12.2013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Doublecortin (Dcx) is the causative gene for X-linked lissencephaly, which encodes a microtubule-binding protein. Axon tracts are abnormal in both affected individuals and in animal models. To determine the reason for the axon tract defect, we performed a semiquantitative proteomic analysis of the corpus callosum in mice mutant for Dcx. In axons from mice mutant for Dcx, widespread differences are found in actin-associated proteins as compared with wild-type axons. Decreases in actin-binding proteins α-actinin-1 and α-actinin-4 and actin-related protein 2/3 complex subunit 3 (Arp3), are correlated with dysregulation in the distribution of filamentous actin (F-actin) in the mutant neurons with increased F-actin around the cell body and decreased F-actin in the neurites and growth cones. The actin distribution defect can be rescued by full-length Dcx and further enhanced by Dcx S297A, the unphosphorylatable mutant, but not with the truncation mutant of Dcx missing the C-terminal S/P-rich domain. Thus, the C-terminal region of Dcx dynamically regulates formation of F-actin features in developing neurons, likely through interaction with spinophilin, but not through α-actinin-4 or Arp3. We show with that the phenotype of Dcx/Doublecortin-like kinase 1 deficiency is consistent with actin defect, as these axons are selectively deficient in axon guidance, but not elongation.
Collapse
|
107
|
Field J, Díaz J, Miller J. The Binding Sites of Microtubule-Stabilizing Agents. ACTA ACUST UNITED AC 2013; 20:301-15. [DOI: 10.1016/j.chembiol.2013.01.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/14/2013] [Accepted: 01/17/2013] [Indexed: 11/25/2022]
|
108
|
Ortensi B, Setti M, Osti D, Pelicci G. Cancer stem cell contribution to glioblastoma invasiveness. Stem Cell Res Ther 2013; 4:18. [PMID: 23510696 PMCID: PMC3706754 DOI: 10.1186/scrt166] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive and lethal brain tumor in adults. Its invasive nature currently represents the most challenging hurdle to surgical resection. The mechanism adopted by GBM cells to carry out their invasive strategy is an intricate program that recalls what takes place in embryonic cells during development and in carcinoma cells during metastasis formation, the so-called epithelial-to-mesenchymal transition. GBM cells undergo a series of molecular and conformational changes shifting the tumor toward mesenchymal traits, including extracellular matrix remodeling, cytoskeletal re-patterning, and stem-like trait acquisition. A deeper understanding of the mechanisms driving the whole infiltrative process represents the first step toward successful treatment of this pathology. Here, we review recent findings demonstrating the invasive nature of GBM cancer stem cells, together with novel candidate molecules associated with both cancer stem cell biology and GBM invasion, like doublecortin and microRNAs. These findings may affect the design of effective therapies currently not considered for GBM invasive progression.
Collapse
|
109
|
Fourniol F, Perderiset M, Houdusse A, Moores C. Structural Studies of the Doublecortin Family of MAPs. Methods Cell Biol 2013; 115:27-48. [DOI: 10.1016/b978-0-12-407757-7.00003-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
110
|
Abstract
Doublecortin (DCX), a microtubule-associated protein, is essential for neuronal migration, although a clear mechanistic understanding of this requirement remains elusive. In this issue of Developmental Cell, Bechstedt and Brouhard (2012) report that DCX relies on cooperative binding and an affinity for growing microtubule ends to nucleate and stabilize 13-protofilament microtubules.
Collapse
Affiliation(s)
- Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
111
|
Jean DC, Baas PW, Black MM. A novel role for doublecortin and doublecortin-like kinase in regulating growth cone microtubules. Hum Mol Genet 2012; 21:5511-27. [PMID: 23001563 DOI: 10.1093/hmg/dds395] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Doublecortin (DCX) and doublecortin-like kinase (DCLK), closely related family members, are microtubule-associated proteins with overlapping functions in both neuronal migration and axonal outgrowth. In growing axons, these proteins appear to have their primary functions in the growth cone. Here, we used siRNA to deplete these proteins from cultured rat sympathetic neurons. Normally, microtubules in the growth cone exhibit a gently curved contour as they extend from the base of the cone toward its periphery. However, following depletion of DCX and DCLK, microtubules throughout the growth cone become much more curvy, with many microtubules exhibiting multiple prominent bends over relatively short distances, creating a configuration that we termed wave-like folds. Microtubules with these folds appeared as if they were buckling in response to powerful forces. Indeed, inhibition of myosin-II, which generates forces on the actin cytoskeleton to push microtubules in the growth cone back toward the axonal shaft, significantly decreases the frequency of these wave-like folds. In addition, in the absence of DCX and DCLK, the depth of microtubule invasion into filopodia is reduced compared with controls, and at a functional level, growth cone responses to substrate guidance cues are altered. Conversely, overexpression of DCX results in microtubules that are straighter than usual, suggesting that higher levels of these proteins can enable an even greater resistance to folding. These findings support a role for DCX and DCLK in enabling microtubules to overcome retrograde actin-based forces, thereby facilitating the ability of the growth cone to carry out its crucial path-finding functions.
Collapse
Affiliation(s)
- Daphney C Jean
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | |
Collapse
|
112
|
Bellanger JM, Cueva JG, Baran R, Tang G, Goodman MB, Debant A. The doublecortin-related gene zyg-8 is a microtubule organizer in Caenorhabditis elegans neurons. J Cell Sci 2012; 125:5417-27. [PMID: 22956537 DOI: 10.1242/jcs.108381] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Doublecortin-domain containing (DCDC) genes play key roles in the normal and pathological development of the human brain cortex. The origin of the cellular specialisation and the functional redundancy of these microtubule (MT)-associated proteins (MAPs), especially those of Doublecortin (DCX) and Doublecortin-like kinase (DCLKs) genes, is still unclear. The DCX domain has the ability to control MT architecture and bundling. However, the physiological significance of such properties is not fully understood. To address these issues, we sought post-mitotic roles for zyg-8, the sole representative of the DCX-DCLK subfamily of genes in C. elegans. Previously, zyg-8 has been shown to control anaphase-spindle positioning in one-cell stage embryos, but functions of the gene later in development have not been investigated. Here we show that wild-type zyg-8 is required beyond early embryonic divisions for proper development, spontaneous locomotion and touch sensitivity of adult worms. Consistently, we find zyg-8 expression in the six touch receptor neurons (TRNs), as well as in a subset of other neuronal and non-neuronal cells. In TRNs and motoneurons, zyg-8 controls cell body shape/polarity and process outgrowth and morphology. Ultrastructural analysis of mutant animals reveals that zyg-8 promotes structural integrity, length and number of individual MTs, as well as their bundled organisation in TRNs, with no impact on MT architecture.
Collapse
Affiliation(s)
- Jean-Michel Bellanger
- CRBM-CNRS, Université Montpellier 2, 1919, route de Mende, 34293 Montpellier, France.
| | | | | | | | | | | |
Collapse
|
113
|
Delphin C, Bouvier D, Seggio M, Couriol E, Saoudi Y, Denarier E, Bosc C, Valiron O, Bisbal M, Arnal I, Andrieux A. MAP6-F is a temperature sensor that directly binds to and protects microtubules from cold-induced depolymerization. J Biol Chem 2012; 287:35127-35138. [PMID: 22904321 DOI: 10.1074/jbc.m112.398339] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microtubules are dynamic structures that present the peculiar characteristic to be ice-cold labile in vitro. In vivo, microtubules are protected from ice-cold induced depolymerization by the widely expressed MAP6/STOP family of proteins. However, the mechanism by which MAP6 stabilizes microtubules at 4 °C has not been identified. Moreover, the microtubule cold sensitivity and therefore the needs for microtubule stabilization in the wide range of temperatures between 4 and 37 °C are unknown. This is of importance as body temperatures of animals can drop during hibernation or torpor covering a large range of temperatures. Here, we show that in the absence of MAP6, microtubules in cells below 20 °C rapidly depolymerize in a temperature-dependent manner whereas they are stabilized in the presence of MAP6. We further show that in cells, MAP6-F binding to and stabilization of microtubules is temperature- dependent and very dynamic, suggesting a direct effect of the temperature on the formation of microtubule/MAP6 complex. We also demonstrate using purified proteins that MAP6-F binds directly to microtubules through its Mc domain. This binding is temperature-dependent and coincides with progressive conformational changes of the Mc domain as revealed by circular dichroism. Thus, MAP6 might serve as a temperature sensor adapting its conformation according to the temperature to maintain the cellular microtubule network in organisms exposed to temperature decrease.
Collapse
Affiliation(s)
- Christian Delphin
- Team 1 Physiopathology of Cytoskeleton; Commissariat à I'Energie Atomique, Institut National de la Santé et de la Recherche Médicale, U836-GIN iRTSV-GPC, Site Santé La Tronche, BP170, 38042 Grenoble, Cedex 9, France.
| | - Denis Bouvier
- the European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, BP181, 38042 Grenoble Cedex 9, France
| | - Maxime Seggio
- Team 1 Physiopathology of Cytoskeleton; Commissariat à I'Energie Atomique, Institut National de la Santé et de la Recherche Médicale, U836-GIN iRTSV-GPC, Site Santé La Tronche, BP170, 38042 Grenoble, Cedex 9, France
| | - Emilie Couriol
- Team 1 Physiopathology of Cytoskeleton; Commissariat à I'Energie Atomique, Institut National de la Santé et de la Recherche Médicale, U836-GIN iRTSV-GPC, Site Santé La Tronche, BP170, 38042 Grenoble, Cedex 9, France
| | - Yasmina Saoudi
- Team 1 Physiopathology of Cytoskeleton; Commissariat à I'Energie Atomique, Institut National de la Santé et de la Recherche Médicale, U836-GIN iRTSV-GPC, Site Santé La Tronche, BP170, 38042 Grenoble, Cedex 9, France
| | - Eric Denarier
- Team 1 Physiopathology of Cytoskeleton; Commissariat à I'Energie Atomique, Institut National de la Santé et de la Recherche Médicale, U836-GIN iRTSV-GPC, Site Santé La Tronche, BP170, 38042 Grenoble, Cedex 9, France
| | - Christophe Bosc
- Team 1 Physiopathology of Cytoskeleton; Commissariat à I'Energie Atomique, Institut National de la Santé et de la Recherche Médicale, U836-GIN iRTSV-GPC, Site Santé La Tronche, BP170, 38042 Grenoble, Cedex 9, France
| | - Odile Valiron
- Team 1 Physiopathology of Cytoskeleton; Commissariat à I'Energie Atomique, Institut National de la Santé et de la Recherche Médicale, U836-GIN iRTSV-GPC, Site Santé La Tronche, BP170, 38042 Grenoble, Cedex 9, France
| | - Mariano Bisbal
- Team 1 Physiopathology of Cytoskeleton; Commissariat à I'Energie Atomique, Institut National de la Santé et de la Recherche Médicale, U836-GIN iRTSV-GPC, Site Santé La Tronche, BP170, 38042 Grenoble, Cedex 9, France
| | - Isabelle Arnal
- Team 13 Dynamic and Structural Regulation of Cytoskeleton, Institut National de la Santé et de la Recherche Médicale, U836-GIN, Site Santé La Tronche, BP170, 38042 Grenoble, Cedex 9, France
| | - Annie Andrieux
- Team 1 Physiopathology of Cytoskeleton; Commissariat à I'Energie Atomique, Institut National de la Santé et de la Recherche Médicale, U836-GIN iRTSV-GPC, Site Santé La Tronche, BP170, 38042 Grenoble, Cedex 9, France
| |
Collapse
|
114
|
Vidal RL, Fuentes P, Valenzuela JI, Alvarado-Diaz CP, Ramírez OA, Kukuljan M, Couve A. RNA interference of Marlin-1/Jakmip1 results in abnormal morphogenesis and migration of cortical pyramidal neurons. Mol Cell Neurosci 2012; 51:1-11. [DOI: 10.1016/j.mcn.2012.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 07/04/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022] Open
|
115
|
Molecular basis for specific regulation of neuronal kinesin-3 motors by doublecortin family proteins. Mol Cell 2012; 47:707-21. [PMID: 22857951 PMCID: PMC3549492 DOI: 10.1016/j.molcel.2012.06.025] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 05/14/2012] [Accepted: 06/15/2012] [Indexed: 11/22/2022]
Abstract
Doublecortin (Dcx) defines a growing family of microtubule (MT)-associated proteins (MAPs) involved in neuronal migration and process outgrowth. We show that Dcx is essential for the function of Kif1a, a kinesin-3 motor protein that traffics synaptic vesicles. Neurons lacking Dcx and/or its structurally conserved paralogue, doublecortin-like kinase 1 (Dclk1), show impaired Kif1a-mediated transport of Vamp2, a cargo of Kif1a, with decreased run length. Human disease-associated mutations in Dcx's linker sequence (e.g., W146C, K174E) alter Kif1a/Vamp2 transport by disrupting Dcx/Kif1a interactions without affecting Dcx MT binding. Dcx specifically enhances binding of the ADP-bound Kif1a motor domain to MTs. Cryo-electron microscopy and subnanometer-resolution image reconstruction reveal the kinesin-dependent conformational variability of MT-bound Dcx and suggest a model for MAP-motor crosstalk on MTs. Alteration of kinesin run length by MAPs represents a previously undiscovered mode of control of kinesin transport and provides a mechanism for regulation of MT-based transport by local signals.
Collapse
|
116
|
Verissimo CS, Cheng S, Puigvert JC, Qin Y, Vroon A, van Deutekom J, Price LS, Danen EHJ, van de Water B, Fitzsimons CP, Vreugdenhil E. Combining doublecortin-like kinase silencing and vinca alkaloids results in a synergistic apoptotic effect in neuroblastoma cells. J Pharmacol Exp Ther 2012; 342:119-30. [PMID: 22490379 DOI: 10.1124/jpet.111.188813] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microtubule-destabilizing agents, such as vinca alkaloids (VAs), are part of the treatment currently applied in patients with high-risk neuroblastoma (NB). However, the development of drug resistance and toxicity make NB difficult to treat with these drugs. In this study we explore the combination of VAs (vincristine or vinblastine) with knockdown of the microtubule-associated proteins encoded by the doublecortin-like kinase (DCLK) gene by using short interference RNA (siRNA). We examined the effect of VAs and DCLK knockdown on the microtubule network by immunohistochemistry. We performed dose-response studies on cell viability and proliferation. By combining VA with DCLK knockdown we observed a strong reduction in the EC(50) to induce cell death: up to 7.3-fold reduction of vincristine and 21.1-fold reduction of vinblastine. Using time-lapse imaging of phosphatidylserine translocation and a terminal deoxynucleotidyl transferase dUTP nick-end labeling-based assay, we found a significant increase of apoptosis by the combined treatment. Induction of caspase-3 activity, as detected via cleavage of N-acetyl-Asp-Glu-Val-Asp-7-amido-4-methylcoumarin, showed a 3.3- to 12.0-fold increase in the combined treatment. We detected significant increases in caspase-8 activity as well. Moreover, the multidrug dose effect calculated by using the median effect method showed a strong synergistic inhibition of proliferation and induction of apoptosis at most of the combined concentrations of siRNAs and VAs. Together, our data demonstrate that the silencing of DCLK sensitizes NB cells to VAs, resulting in a synergetic apoptotic effect.
Collapse
Affiliation(s)
- Carla S Verissimo
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Doublecortin recognizes the 13-protofilament microtubule cooperatively and tracks microtubule ends. Dev Cell 2012; 23:181-92. [PMID: 22727374 DOI: 10.1016/j.devcel.2012.05.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 02/15/2012] [Accepted: 05/09/2012] [Indexed: 11/21/2022]
Abstract
Neurons, like all cells, face the problem that tubulin forms microtubules with too many or too few protofilaments (pfs). Cells overcome this heterogeneity with the γ-tubulin ring complex, which provides a nucleation template for 13-pf microtubules. Doublecortin (DCX), a protein that stabilizes microtubules in developing neurons, also nucleates 13-pf microtubules in vitro. Using fluorescence microscopy assays, we show that the binding of DCX to microtubules is optimized for the lateral curvature of the 13-pf lattice. This sensitivity depends on a cooperative interaction wherein DCX molecules decrease the dissociation rate of their neighbors. Mutations in DCX found in patients with subcortical band heterotopia weaken these cooperative interactions. Using assays with dynamic microtubules, we discovered that DCX binds to polymerization intermediates at growing microtubule ends. These results support a mechanism for stabilizing 13-pf microtubules that allows DCX to template new 13-pf microtubules through associations with the sides of the microtubule lattice.
Collapse
|
118
|
Wu QF, Yang L, Li S, Wang Q, Yuan XB, Gao X, Bao L, Zhang X. Fibroblast Growth Factor 13 Is a Microtubule-Stabilizing Protein Regulating Neuronal Polarization and Migration. Cell 2012; 149:1549-64. [DOI: 10.1016/j.cell.2012.04.046] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/08/2012] [Accepted: 04/11/2012] [Indexed: 01/24/2023]
|
119
|
Genetically separable functions of the MEC-17 tubulin acetyltransferase affect microtubule organization. Curr Biol 2012; 22:1057-65. [PMID: 22658602 DOI: 10.1016/j.cub.2012.03.066] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/19/2012] [Accepted: 03/19/2012] [Indexed: 12/28/2022]
Abstract
BACKGROUND Microtubules (MTs) are formed from the lateral association of 11-16 protofilament chains of tubulin dimers, with most cells containing 13-protofilament (13-p) MTs. How these different MTs are formed is unknown, although the number of protofilaments may depend on the nature of the α- and β-tubulins. RESULTS Here we show that the enzymatic activity of the Caenorhabiditis elegans α-tubulin acetyltransferase (α-TAT) MEC-17 allows the production of 15-p MTs in the touch receptor neurons (TRNs) MTs. Without MEC-17, MTs with between 11 and 15 protofilaments are seen. Loss of this enzymatic activity also changes the number and organization of the TRN MTs and affects TRN axonal morphology. In contrast, enzymatically inactive MEC-17 is sufficient for touch sensitivity and proper process outgrowth without correcting the MT defects. Thus, in addition to demonstrating that MEC-17 is required for MT structure and organization, our results suggest that the large number of 15-p MTs, normally found in the TRNs, is not essential for mechanosensation. CONCLUSION These experiments reveal a specific role for α-TAT in the formation of MTs and in the production of higher order MTs arrays. In addition, our results indicate that the α-TAT protein has functions that require acetyltransferase activity (such as the determination of protofilament number) and others that do not (presence of internal MT structures).
Collapse
|
120
|
Microtubule-Associated Proteins as Indicators of Differentiation and the Functional State of Nerve Cells. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11055-012-9556-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
121
|
Kaplan A, Reiner O. Linking cytoplasmic dynein and transport of Rab8 vesicles to the midbody during cytokinesis by the doublecortin domain-containing 5 protein. J Cell Sci 2011; 124:3989-4000. [PMID: 22159412 DOI: 10.1242/jcs.085407] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Completion of mitosis requires microtubule-dependent transport of membranes to the midbody. Here, we identified a role in cytokinesis for doublecortin domain-containing protein 5 (DCDC5), a member of the doublecortin protein superfamily. DCDC5 is a microtubule-associated protein expressed in both specific and dynamic fashions during mitosis. We show that DCDC5 interacts with cytoplasmic dynein and Rab8 (also known as Ras-related protein Rab-8A), as well as with the Rab8 nucleotide exchange factor Rabin8 (also known as Rab-3A-interacting protein). Following DCDC5 knockdown, the durations of the metaphase to anaphase transition and cytokinesis, and the proportion of multinucleated cells increases, whereas cell viability decreases. Furthermore, knockdown of DCDC5 or addition of a dynein inhibitor impairs the entry of Golgi-complex-derived Rab8-positive vesicles to the midbody. These findings suggest that DCDC5 plays an important role in mediating dynein-dependent transport of Rab8-positive vesicles and in coordinating late cytokinesis.
Collapse
Affiliation(s)
- Anna Kaplan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
122
|
Klempin F, Kronenberg G, Cheung G, Kettenmann H, Kempermann G. Properties of doublecortin-(DCX)-expressing cells in the piriform cortex compared to the neurogenic dentate gyrus of adult mice. PLoS One 2011; 6:e25760. [PMID: 22022443 PMCID: PMC3192736 DOI: 10.1371/journal.pone.0025760] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 09/11/2011] [Indexed: 12/12/2022] Open
Abstract
The piriform cortex receives input from the olfactory bulb and (via the entorhinal cortex) sends efferents to the hippocampus, thereby connecting the two canonical neurogenic regions of the adult rodent brain. Doublecortin (DCX) is a cytoskeleton-associated protein that is expressed transiently in the course of adult neurogenesis. Interestingly, the adult piriform cortex, which is usually considered non-neurogenic (even though some reports exist that state otherwise), also contains an abundant population of DCX-positive cells. We asked how similar these cells would be to DCX-positive cells in the course of adult hippocampal neurogenesis. Using BAC-generated transgenic mice that express GFP under the DCX promoter, we studied DCX-expression and electrophysiological properties of DCX-positive cells in the mouse piriform cortex in comparison with the dentate gyrus. While one class of cells in the piriform cortex indeed showed features similar to newly generated immature granule neurons, the majority of DCX cells in the piriform cortex was mature and revealed large Na+ currents and multiple action potentials. Furthermore, when proliferative activity was assessed, we found that all DCX-expressing cells in the piriform cortex were strictly postmitotic, suggesting that no DCX-positive “neuroblasts” exist here as they do in the dentate gyrus. We conclude that DCX in the piriform cortex marks a unique population of postmitotic neurons with a subpopulation that retains immature characteristics associated with synaptic plasticity. DCX is thus, per se, no marker of neurogenesis but might be associated more broadly with plasticity.
Collapse
Affiliation(s)
- Friederike Klempin
- ISCRM, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Golo Kronenberg
- Department of Neurology and Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
| | - Giselle Cheung
- Max-Delbrück-Center for Molecular Medicine (MDC) Berlin-Buch, Berlin-Buch, Germany
- Center for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Helmut Kettenmann
- Max-Delbrück-Center for Molecular Medicine (MDC) Berlin-Buch, Berlin-Buch, Germany
| | - Gerd Kempermann
- CRTD –Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
123
|
Gaillard J, Ramabhadran V, Neumanne E, Gurel P, Blanchoin L, Vantard M, Higgs HN. Differential interactions of the formins INF2, mDia1, and mDia2 with microtubules. Mol Biol Cell 2011; 22:4575-87. [PMID: 21998204 PMCID: PMC3226476 DOI: 10.1091/mbc.e11-07-0616] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Three mammalian formins, although binding microtubules with high affinity, differ dramatically in their microtubule-binding mechanisms. In addition, the ability of one formin (mDia2) to bind actin is strongly inhibited by microtubules, whereas the ability of another formin (INF2) to bind microtubules is strongly inhibited by actin monomers. A number of cellular processes use both microtubules and actin filaments, but the molecular machinery linking these two cytoskeletal elements remains to be elucidated in detail. Formins are actin-binding proteins that have multiple effects on actin dynamics, and one formin, mDia2, has been shown to bind and stabilize microtubules through its formin homology 2 (FH2) domain. Here we show that three formins, INF2, mDia1, and mDia2, display important differences in their interactions with microtubules and actin. Constructs containing FH1, FH2, and C-terminal domains of all three formins bind microtubules with high affinity (Kd < 100 nM). However, only mDia2 binds microtubules at 1:1 stoichiometry, with INF2 and mDia1 showing saturating binding at approximately 1:3 (formin dimer:tubulin dimer). INF2-FH1FH2C is a potent microtubule-bundling protein, an effect that results in a large reduction in catastrophe rate. In contrast, neither mDia1 nor mDia2 is a potent microtubule bundler. The C-termini of mDia2 and INF2 have different functions in microtubule interaction, with mDia2's C-terminus required for high-affinity binding and INF2's C-terminus required for bundling. mDia2's C-terminus directly binds microtubules with submicromolar affinity. These formins also differ in their abilities to bind actin and microtubules simultaneously. Microtubules strongly inhibit actin polymerization by mDia2, whereas they moderately inhibit mDia1 and have no effect on INF2. Conversely, actin monomers inhibit microtubule binding/bundling by INF2 but do not affect mDia1 or mDia2. These differences in interactions with microtubules and actin suggest differential function in cellular processes requiring both cytoskeletal elements.
Collapse
Affiliation(s)
- Jeremie Gaillard
- CEA, iRTSV, Laboratoire Physiologie Cellulaire & Végétale, CNRS, UMR5168, Université Joseph Fourier-Grenoble I, F-38054 Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
124
|
Abstract
Cortical malformations associated with defects in neuronal migration result in severe developmental consequences including intractable epilepsy and intellectual disability. Genetic causes of migration defects have been identified with the advent and widespread use of high-resolution MRI and genetic techniques. Thus, the full phenotypic range of these genetic disorders is becoming apparent. Genes that cause lissencephaly, pachygyria, subcortical band heterotopia, and periventricular nodular heterotopias have been defined. Many of these genes are involved in cytoskeletal regulation including the function of microtubules (LIS1, TUBA1A,TUBB3, and DCX) and of actin (FilaminA). Thus, the molecular pathways regulating neuronal migration including the cytoskeletal pathways appear to be defined by human mutation syndromes. Basic science, including cell biology and animal models of these disorders, has informed our understanding of the pathogenesis of neuronal migration disorders and further progress depends on the continued integration of the clinical and basic sciences.
Collapse
|
125
|
Role of cytoskeletal abnormalities in the neuropathology and pathophysiology of type I lissencephaly. Acta Neuropathol 2011; 121:149-70. [PMID: 21046408 PMCID: PMC3037170 DOI: 10.1007/s00401-010-0768-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/01/2010] [Accepted: 10/23/2010] [Indexed: 01/24/2023]
Abstract
Type I lissencephaly or agyria-pachygyria is a rare developmental disorder which results from a defect of neuronal migration. It is characterized by the absence of gyri and a thickening of the cerebral cortex and can be associated with other brain and visceral anomalies. Since the discovery of the first genetic cause (deletion of chromosome 17p13.3), six additional genes have been found to be responsible for agyria–pachygyria. In this review, we summarize the current knowledge concerning these genetic disorders including clinical, neuropathological and molecular results. Genetic alterations of LIS1, DCX, ARX, TUBA1A, VLDLR, RELN and more recently WDR62 genes cause migrational abnormalities along with more complex and subtle anomalies affecting cell proliferation and differentiation, i.e., neurite outgrowth, axonal pathfinding, axonal transport, connectivity and even myelination. The number and heterogeneity of clinical, neuropathological and radiological defects suggest that type I lissencephaly now includes several forms of cerebral malformations. In vitro experiments and mutant animal studies, along with neuropathological abnormalities in humans are of invaluable interest for the understanding of pathophysiological mechanisms, highlighting the central role of cytoskeletal dynamics required for a proper achievement of cell proliferation, neuronal migration and differentiation.
Collapse
|
126
|
Meyer I, Kuhnert O, Gräf R. Functional analyses of lissencephaly-related proteins in Dictyostelium. Semin Cell Dev Biol 2011; 22:89-96. [DOI: 10.1016/j.semcdb.2010.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 10/15/2010] [Accepted: 10/20/2010] [Indexed: 02/05/2023]
|
127
|
Wakasaya Y, Kawarabayashi T, Watanabe M, Yamamoto-Watanabe Y, Takamura A, Kurata T, Murakami T, Abe K, Yamada K, Wakabayashi K, Sasaki A, Westaway D, Hyslop PSG, Matsubara E, Shoji M. Factors responsible for neurofibrillary tangles and neuronal cell losses in tauopathy. J Neurosci Res 2011; 89:576-84. [DOI: 10.1002/jnr.22572] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/08/2010] [Accepted: 11/09/2010] [Indexed: 11/09/2022]
|
128
|
Evrard SG, Brusco A. Ethanol Effects on the Cytoskeleton of Nerve Tissue Cells. ADVANCES IN NEUROBIOLOGY 2011. [DOI: 10.1007/978-1-4419-6787-9_29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
129
|
Balthazart J, Charlier TD, Barker JM, Yamamura T, Ball GF. Sex steroid-induced neuroplasticity and behavioral activation in birds. Eur J Neurosci 2010; 32:2116-32. [PMID: 21143666 PMCID: PMC3058323 DOI: 10.1111/j.1460-9568.2010.07518.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The brain of adult homeothermic vertebrates exhibits a higher degree of morphological neuroplasticity than previously thought, and this plasticity is especially prominent in birds. In particular, incorporation of new neurons is widespread throughout the adult avian forebrain, and the volumes of specific nuclei vary seasonally in a prominent manner. We review here work on steroid-dependent plasticity in birds, based on two cases: the medial preoptic nucleus (POM) of Japanese quail in relation to male sexual behavior, and nucleus HVC in canaries, which regulates song behavior. In male quail, POM volume changes seasonally, and in castrated subjects testosterone almost doubles POM volume within 2 weeks. Significant volume increases are, however, already observable after 1 day. Steroid receptor coactivator-1 is part of the mechanism mediating these effects. Increases in POM volume reflect changes in cell size or spacing and dendritic branching, but are not associated with an increase in neuron number. In contrast, seasonal changes in HVC volume reflect incorporation of newborn neurons in addition to changes in cell size and spacing. These are induced by treatments with exogenous testosterone or its metabolites. Expression of doublecortin, a microtubule-associated protein, is increased by testosterone in the HVC but not in the adjacent nidopallium, suggesting that neuron production in the subventricular zone, the birthplace of newborn neurons, is not affected. Together, these data illustrate the high degree of plasticity that extends into adulthood and is characteristic of avian brain structures. Many questions still remain concerning the regulation and specific function of this plasticity.
Collapse
Affiliation(s)
- Jacques Balthazart
- University of Liège, GIGA Neurosciences, Research Group in Behavioral Neuroendocrinology, Avenue de l'Hopital, 1 (BAT. B36), B-4000 Liège 1, Belgium.
| | | | | | | | | |
Collapse
|
130
|
Fourniol FJ, Sindelar CV, Amigues B, Clare DK, Thomas G, Perderiset M, Francis F, Houdusse A, Moores CA. Template-free 13-protofilament microtubule-MAP assembly visualized at 8 A resolution. J Cell Biol 2010; 191:463-70. [PMID: 20974813 PMCID: PMC3003314 DOI: 10.1083/jcb.201007081] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 10/04/2010] [Indexed: 11/22/2022] Open
Abstract
Microtubule-associated proteins (MAPs) are essential for regulating and organizing cellular microtubules (MTs). However, our mechanistic understanding of MAP function is limited by a lack of detailed structural information. Using cryo-electron microscopy and single particle algorithms, we solved the 8 Å structure of doublecortin (DCX)-stabilized MTs. Because of DCX's unusual ability to specifically nucleate and stabilize 13-protofilament MTs, our reconstruction provides unprecedented insight into the structure of MTs with an in vivo architecture, and in the absence of a stabilizing drug. DCX specifically recognizes the corner of four tubulin dimers, a binding mode ideally suited to stabilizing both lateral and longitudinal lattice contacts. A striking consequence of this is that DCX does not bind the MT seam. DCX binding on the MT surface indirectly stabilizes conserved tubulin-tubulin lateral contacts in the MT lumen, operating independently of the nucleotide bound to tubulin. DCX's exquisite binding selectivity uncovers important insights into regulation of cellular MTs.
Collapse
Affiliation(s)
- Franck J. Fourniol
- Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, England, UK
| | | | - Béatrice Amigues
- Motilite Structurale, Institut Curie Centre National de la Recherche Scientifique, UMR 144, Paris F75005, France
| | - Daniel K. Clare
- Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, England, UK
| | - Geraint Thomas
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, England, UK
| | - Mylène Perderiset
- Motilite Structurale, Institut Curie Centre National de la Recherche Scientifique, UMR 144, Paris F75005, France
| | - Fiona Francis
- Institut National de la Santé et de la Recherche Médicale, UMR-S 839, Paris F75005, France
- Université Pierre et Marie Curie, Paris F75005, France
- Institut du Fer à Moulin, Paris, F75005, France
| | - Anne Houdusse
- Motilite Structurale, Institut Curie Centre National de la Recherche Scientifique, UMR 144, Paris F75005, France
| | - Carolyn A. Moores
- Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, England, UK
| |
Collapse
|
131
|
Kumar RA, Pilz DT, Babatz TD, Cushion TD, Harvey K, Topf M, Yates L, Robb S, Uyanik G, Mancini GM, Rees MI, Harvey RJ, Dobyns WB. TUBA1A mutations cause wide spectrum lissencephaly (smooth brain) and suggest that multiple neuronal migration pathways converge on alpha tubulins. Hum Mol Genet 2010; 19:2817-27. [PMID: 20466733 PMCID: PMC2893812 DOI: 10.1093/hmg/ddq182] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 04/30/2010] [Indexed: 11/12/2022] Open
Abstract
We previously showed that mutations in LIS1 and DCX account for approximately 85% of patients with the classic form of lissencephaly (LIS). Some rare forms of LIS are associated with a disproportionately small cerebellum, referred to as lissencephaly with cerebellar hypoplasia (LCH). Tubulin alpha1A (TUBA1A), encoding a critical structural subunit of microtubules, has recently been implicated in LIS. Here, we screen the largest cohort of unexplained LIS patients examined to date to determine: (i) the frequency of TUBA1A mutations in patients with lissencephaly, (ii) the spectrum of phenotypes associated with TUBA1A mutations and (iii) the functional consequences of different TUBA1A mutations on microtubule function. We identified novel and recurrent TUBA1A mutations in approximately 1% of children with classic LIS and in approximately 30% of children with LCH, making this the first major gene associated with the rare LCH phenotype. We also unexpectedly found a TUBA1A mutation in one child with agenesis of the corpus callosum and cerebellar hypoplasia without LIS. Thus, our data demonstrate a wider spectrum of phenotypes than previously reported and allow us to propose new recommendations for clinical testing. We also provide cellular and structural data suggesting that LIS-associated mutations of TUBA1A operate via diverse mechanisms that include disruption of binding sites for microtubule-associated proteins (MAPs).
Collapse
Affiliation(s)
| | - Daniela T. Pilz
- Institute of Medical Genetics, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
| | | | - Thomas D. Cushion
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park SA2 8PP, UK
| | - Kirsten Harvey
- Department of Pharmacology, The School of Pharmacy, London WC1N 1AX, UK
| | - Maya Topf
- Institute of Structural and Molecular Biology, Crystallography, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Laura Yates
- Institute of Human Genetics, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK
| | - Stephanie Robb
- The Dubowitz Neuromuscular Centre, Great Ormond Street Hospital, London WC1N 3JN, UK
| | - Gökhan Uyanik
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany and
| | - Gracia M.S. Mancini
- Department of Clinical Genetics, Erasmus University Medical Center, PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Mark I. Rees
- Institute of Medical Genetics, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park SA2 8PP, UK
| | - Robert J. Harvey
- Department of Pharmacology, The School of Pharmacy, London WC1N 1AX, UK
| | - William B. Dobyns
- Department of Human Genetics
- Department of Neurology and
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
132
|
Tian G, Jaglin XH, Keays DA, Francis F, Chelly J, Cowan NJ. Disease-associated mutations in TUBA1A result in a spectrum of defects in the tubulin folding and heterodimer assembly pathway. Hum Mol Genet 2010; 19:3599-613. [PMID: 20603323 DOI: 10.1093/hmg/ddq276] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Malformations of cortical development are characteristic of a plethora of diseases that includes polymicrogyria, periventricular and subcortical heterotopia and lissencephaly. Mutations in TUBA1A and TUBB2B, each a member of the multigene families that encode alpha- and beta-tubulins, have recently been implicated in these diseases. Here we examine the defects that result from nine disease-causing mutations (I188L, I238V, P263T, L286F, V303G, L397P, R402C, 402H, S419L) in TUBA1A. We show that the expression of all the mutant proteins in vitro results in the generation of tubulin heterodimers in varying yield and that these can co-polymerize with microtubules in vitro. We identify several kinds of defects that result from these mutations. Among these are various defects in the chaperone-dependent pathway leading to de novo tubulin heterodimer formation. These include a defective interaction with the chaperone prefoldin, a reduced efficiency in the generation of productive folding intermediates as a result of inefficient interaction with the cytosolic chaperonin, CCT, and, in several cases, a failure to stably interact with TBCB, one of five tubulin-specific chaperones that act downstream of CCT in the tubulin heterodimer assembly pathway. Other defects include structural instability in vitro, diminished stability in vivo, a compromised ability to co-assemble with microtubules in vivo and a suppression of microtubule growth rate in the neurites (but not the soma) of cultured neurons. Our data are consistent with the notion that some mutations in TUBA1A result in tubulin deficit, whereas others reflect compromised interactions with one or more MAPs that are essential to proper neuronal migration.
Collapse
Affiliation(s)
- Guoling Tian
- Department of Biochemistry, NYU Langone Medical Center, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
133
|
Human lissencephaly with cerebellar hypoplasia due to mutations in TUBA1A: expansion of the foetal neuropathological phenotype. Acta Neuropathol 2010; 119:779-89. [PMID: 20376468 DOI: 10.1007/s00401-010-0684-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/29/2010] [Accepted: 03/31/2010] [Indexed: 10/19/2022]
Abstract
Neuronal migration disorders account for a substantial number of cortical malformations, the most severe forms being represented by lissencephalies. Classical lissencephaly has been shown to result from mutations in LIS1 (PAFAH1B1; MIM#601545), DCX (Doublecortin; MIM#300121), ARX (Aristaless-related homeobox gene; MIM#300382), RELN (Reelin; MIM#600514) and VLDLR (Very low density lipoprotein receptor; MIM#224050). More recently, de novo missense mutations in the alpha-tubulin 1a gene (TUBA1A) located on chromosome 12q13.12, have also been associated with more or less severe defects of cortical development, resulting in complete agyria in the most severe cases of lissencephaly. We report here the cerebral lesions in a 36 weeks' gestation female foetus with a novel de novo missense mutation in the TUBA1A gene, presenting the most severe antenatal phenotype reported so far. Using routine immunohistochemistry and confocal microscopy, we show evidence for defects in axonal transport in addition to defects in neuronal migration and differentiation, giving new insights to the pathophysiology of this form of lissencephaly.
Collapse
|
134
|
Bechstedt S, Albert J, Kreil D, Müller-Reichert T, Göpfert M, Howard J. A doublecortin containing microtubule-associated protein is implicated in mechanotransduction in Drosophila sensory cilia. Nat Commun 2010; 1:11. [PMID: 20975667 PMCID: PMC2892299 DOI: 10.1038/ncomms1007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 03/04/2010] [Indexed: 11/09/2022] Open
Abstract
Mechanoreceptors are sensory cells that transduce mechanical stimuli into electrical signals and mediate the perception of sound, touch and acceleration. Ciliated mechanoreceptors possess an elaborate microtubule cytoskeleton that facilitates the coupling of external forces to the transduction apparatus. In a screen for genes preferentially expressed in Drosophila campaniform mechanoreceptors, we identified DCX-EMAP, a unique member of the EMAP family (echinoderm-microtubule-associated proteins) that contains two doublecortin domains. DCX-EMAP localizes to the tubular body in campaniform receptors and to the ciliary dilation in chordotonal mechanoreceptors in Johnston's organ, the fly's auditory organ. Adult flies carrying a piggyBac insertion in the DCX-EMAP gene are uncoordinated and deaf and display loss of mechanosensory transduction and amplification. Electron microscopy of mutant sensilla reveals loss of electron-dense materials within the microtubule cytoskeleton in the tubular body and ciliary dilation. Our results establish a catalogue of candidate genes for Drosophila mechanosensation and show that one candidate, DCX-EMAP, is likely to be required for mechanosensory transduction and amplification.
Collapse
Affiliation(s)
- S. Bechstedt
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - D.P. Kreil
- Chair of Bioinformatics, Boku University Vienna, Vienna, Austria
| | - T. Müller-Reichert
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - M.C. Göpfert
- Department of Cellular Neurobiology, University of Göttingen, Göttingen, Germany
| | - J. Howard
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
135
|
Baran R, Castelblanco L, Tang G, Shapiro I, Goncharov A, Jin Y. Motor neuron synapse and axon defects in a C. elegans alpha-tubulin mutant. PLoS One 2010; 5:e9655. [PMID: 20300184 PMCID: PMC2836382 DOI: 10.1371/journal.pone.0009655] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 02/02/2010] [Indexed: 12/03/2022] Open
Abstract
Regulation of microtubule dynamics underlies many fundamental cellular mechanisms including cell division, cell motility, and transport. In neurons, microtubules play key roles in cell migration, axon outgrowth, control of axon and synapse growth, and the regulated transport of vesicles and structural components of synapses. Loss of synapse and axon integrity and disruption of axon transport characterize many neurodegenerative diseases. Recently, mutations that specifically alter the assembly or stability of microtubules have been found to directly cause neurodevelopmental defects or neurodegeneration in vertebrates. We report here the characterization of a missense mutation in the C-terminal domain of C. elegans alpha-tubulin, tba-1(ju89), that disrupts motor neuron synapse and axon development. Mutant ju89 animals exhibit reduction in the number and size of neuromuscular synapses, altered locomotion, and defects in axon extension. Although null mutations of tba-1 show a nearly wild-type pattern, similar axon outgrowth defects were observed in animals lacking the beta-tubulin TBB-2. Genetic analysis reveals that tba-1(ju89) affects synapse development independent of its role in axon outgrowth. tba-1(ju89) is an altered function allele that most likely perturbs interactions between TBA-1 and specific microtubule-associated proteins that control microtubule dynamics and transport of components needed for synapse and axon growth.
Collapse
Affiliation(s)
- Renee Baran
- Biology Department, Occidental College, Los Angeles, California, United States of America
| | - Liliana Castelblanco
- Biology Department, Occidental College, Los Angeles, California, United States of America
| | - Garland Tang
- Biology Department, Occidental College, Los Angeles, California, United States of America
| | - Ian Shapiro
- Biology Department, Occidental College, Los Angeles, California, United States of America
| | - Alexandr Goncharov
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, San Diego, California, United States of America
- Howard Hughes Medical Institute, University of California San Diego, San Diego, California, United States of America
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, San Diego, California, United States of America
- Howard Hughes Medical Institute, University of California San Diego, San Diego, California, United States of America
| |
Collapse
|
136
|
Molecular layers underlying cytoskeletal remodelling during cortical development. Trends Neurosci 2010; 33:38-47. [DOI: 10.1016/j.tins.2009.09.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 09/16/2009] [Accepted: 09/28/2009] [Indexed: 11/24/2022]
|
137
|
Abstract
Tubulin and other flagellar and ciliary proteins are the substrates for a host of posttranslational modifications (PTMs), many of which have been highly conserved over evolutionary time. In addition to the binding of MAPs (microtubule-associated proteins) that provide a specific functionality, or the use of different tubulin isotypes to convey a specific function, most cells rely on an array of PTMs. These include phosphorylation, acetylation, glycylation, glutamylation, and methylation. The first and the last of this list are not unique to the tubulin in cilia and flagella, while the others are. This chapter will review briefly these varying modifications and will conclude with detailed methods for their detection and localization at the limit of resolution provided by electron microscopy.
Collapse
Affiliation(s)
- Roger D Sloboda
- Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| |
Collapse
|
138
|
Abstract
+TIPs (plus-end tracking proteins) are an increasing group of molecules that localize preferentially to the end of growing microtubules. +TIPs regulate microtubule dynamics and contribute to the organization of the microtubular network within the cell. Thus they participate in a wide range of cellular processes including cell division, motility and morphogenesis. EB1 (end-binding 1) is a highly conserved key member of the +TIP group that has been shown to modulate microtubule dynamics both in vitro and in cells. EB1 is involved in accurate chromosome segregation during mitosis and in the polarization of the microtubule cytoskeleton in migrating cells. Here, we review recent in vitro studies that have started to reveal a regulating activity of EB1, and its yeast orthologue Mal3p, on microtubule structure. In particular, we examine how EB1-mediated changes in the microtubule architecture may explain its effects on microtubule dynamics.
Collapse
|
139
|
Jaglin XH, Chelly J. Tubulin-related cortical dysgeneses: microtubule dysfunction underlying neuronal migration defects. Trends Genet 2009; 25:555-66. [PMID: 19864038 DOI: 10.1016/j.tig.2009.10.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 10/02/2009] [Accepted: 10/03/2009] [Indexed: 01/14/2023]
Abstract
The fine tuning of proliferation and neurogenesis, neuronal migration and differentiation and connectivity underlies the proper development of the cerebral cortex. Mutations in genes involved in these processes are responsible for neurodevelopmental disorders, such as cortical dysgeneses, which are usually associated with severe mental retardation and epilepsy. Over the past few years, the importance of cytoskeleton components in cellular processes crucial for cortical development has emerged from a body of functional data. This was reinforced by the association of mutations in the LIS1 and DCX genes, which both encode proteins involved in microtubule (MT) homeostasis, with cerebral cortex developmental disorders. The recent discovery of patients with lissencephaly and bilateral asymmetrical polymicrogyria (PMG) carrying mutations in the alpha- and beta-tubulin-encoding genes TUBA1A and TUBB2B further supports this view, and also raises interesting questions about the specific roles played by certain tubulin isotypes during the development of the cortex.
Collapse
Affiliation(s)
- Xavier H Jaglin
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
| | | |
Collapse
|
140
|
Gibson NJ, Tolbert LP, Oland LA. Roles of specific membrane lipid domains in EGF receptor activation and cell adhesion molecule stabilization in a developing olfactory system. PLoS One 2009; 4:e7222. [PMID: 19787046 PMCID: PMC2746287 DOI: 10.1371/journal.pone.0007222] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 09/06/2009] [Indexed: 11/18/2022] Open
Abstract
Background Reciprocal interactions between glial cells and olfactory receptor neurons (ORNs) cause ORN axons entering the brain to sort, to fasciculate into bundles destined for specific glomeruli, and to form stable protoglomeruli in the developing olfactory system of an experimentally advantageous animal species, the moth Manduca sexta. Epidermal growth factor receptors (EGFRs) and the cell adhesion molecules (IgCAMs) neuroglian and fasciclin II are known to be important players in these processes. Methodology/Principal Findings We report in situ and cell-culture studies that suggest a role for glycosphingolipid-rich membrane subdomains in neuron-glia interactions. Disruption of these subdomains by the use of methyl-β-cyclodextrin results in loss of EGFR activation, depletion of fasciclin II in ORN axons, and loss of neuroglian stabilization in the membrane. At the cellular level, disruption leads to aberrant ORN axon trajectories, small antennal lobes, abnormal arrays of olfactory glomerul, and loss of normal glial cell migration. Conclusions/Significance We propose that glycosphingolipid-rich membrane subdomains (possible membrane rafts or platforms) are essential for IgCAM-mediated EGFR activation and for anchoring of neuroglian to the cytoskeleton, both required for normal extension and sorting of ORN axons.
Collapse
Affiliation(s)
- Nicholas J Gibson
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson, Arizona, United States of America.
| | | | | |
Collapse
|
141
|
Doublecortin associates with microtubules preferentially in regions of the axon displaying actin-rich protrusive structures. J Neurosci 2009; 29:10995-1010. [PMID: 19726658 DOI: 10.1523/jneurosci.3399-09.2009] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Here we studied doublecortin (DCX) in cultured hippocampal and sympathetic neurons during axonal development. In both types of neurons, DCX is abundant in the growth cone, in which it primarily localizes with microtubules. Its abundance is lowest on microtubules in the neck region of the growth cone and highest on microtubules extending into the actin-rich lamellar regions. Interestingly, the microtubule polymer richest in DCX is also deficient in tau. In hippocampal neurons but not sympathetic neurons, discrete focal patches of microtubules rich in DCX and deficient in tau are present along the axonal shaft. Invariably, these patches have actin-rich protrusions resembling those of growth cones. Many of the DCX/actin filament patches exhibit vigorous protrusive activity and also undergo a proximal-to-distal redistribution within the axon at average rates approximately 2 microm/min and thus closely resemble the growth-cone-like waves described by previous authors. Depletion of DCX using small interfering RNA had little effect on the appearance of the growth cone or on axonal growth in either type of neuron. However, DCX depletion significantly delayed collateral branching in hippocampal neurons and also significantly lowered the frequency of actin-rich patches along hippocampal axons. Branching by sympathetic neurons, which occurs by growth cone splitting, was not impaired by DCX depletion. These findings reveal a functional relationship between the DCX/actin filament patches and collateral branching. Based on the striking resemblance of these patches to growth cones, we discuss the possibility that they reflect a mechanism for locally boosting morphogenetic activity to facilitate axonal growth and collateral branching.
Collapse
|
142
|
The microtubule network and neuronal morphogenesis: Dynamic and coordinated orchestration through multiple players. Mol Cell Neurosci 2009; 43:15-32. [PMID: 19660553 DOI: 10.1016/j.mcn.2009.07.012] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 07/27/2009] [Indexed: 11/24/2022] Open
Abstract
Nervous system function and plasticity rely on the complex architecture of neuronal networks elaborated during development, when neurons acquire their specific and complex shape. During neuronal morphogenesis, the formation and outgrowth of functionally and structurally distinct axons and dendrites require a coordinated and dynamic reorganization of the microtubule cytoskeleton involving numerous regulators. While most of these factors act directly on microtubules to stabilize them or promote their assembly, depolymerization or fragmentation, others are now emerging as essential regulators of neuronal differentiation by controlling tubulin availability and modulating microtubule dynamics. In this review, we recapitulate how the microtubule network is actively regulated during the successive phases of neuronal morphogenesis, and what are the specific roles of the various microtubule-regulating proteins in that process. We then describe the specific signaling pathways and inter-regulations that coordinate the different activities of these proteins to sustain neuronal development in response to environmental cues.
Collapse
|
143
|
Assessment of neuron differentiation during embryogenesis in rats using immunocytochemical detection of doublecortin. ACTA ACUST UNITED AC 2009; 39:513-6. [PMID: 19517249 DOI: 10.1007/s11055-009-9164-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Indexed: 10/20/2022]
Abstract
In vitro and in vivo studies addressing the differentiation of neural stem and progenitor cells in the CNS require the use of highly specific markers for neurons and gliocytes. The aim of the present work was to study the distribution of a marker for differentiating neurons, i.e., doublecortin (DCX), in structures of the brain and spinal cord in rat embryos during the period preceding the formation of the cortical plate using immunocytochemical methods and light and confocal microscopy. DCX was detected in three types of cell in the developing nervous system at 13-14 days of embryogenesis: neurons giving reactions for the nuclear marker for differentiated nerve cells NeuN, migrating and differentiating neuroblasts, and some cells which are members of the population of radial gliocytes. The quite high selectivity of DCX expression allows use of this marker to be recommended for studies of the early stages of nervous system development in mammals.
Collapse
|
144
|
Wilcke A, Weissfuss J, Kirsten H, Wolfram G, Boltze J, Ahnert P. The role of gene DCDC2 in German dyslexics. ANNALS OF DYSLEXIA 2009; 59:1-11. [PMID: 19238550 DOI: 10.1007/s11881-008-0020-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 11/11/2008] [Indexed: 05/23/2023]
Abstract
Dyslexia is a complex reading and writing disorder with a strong genetic component. In a German case-control cohort, we studied the influence of the suspected dyslexia-associated gene DCDC2. For the first time in a German cohort, we describe association of a 2445 basepair deletion, first identified in an American study. Evidence of association for three DCDC2 single nucleotide polymorphisms (rs807724, rs793862, rs807701), previously identified in German or American cohorts, was replicated. A haplotype of these polymorphisms showed evidence for association as well. Thus, our data further corroborate association of DCDC2 with dyslexia. Analysis of functional subgroups suggests association of investigated DCDC2 variants mainly with nondysphonetic, nonsevere, but probably dyseidetic (surface) dyslexia. Based on the presumed function of DCDC2, our findings point to a role of impaired neuronal migration in the etiology of the disease.
Collapse
Affiliation(s)
- A Wilcke
- Fraunhofer-Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
145
|
Cayre M, Canoll P, Goldman JE. Cell migration in the normal and pathological postnatal mammalian brain. Prog Neurobiol 2009; 88:41-63. [PMID: 19428961 PMCID: PMC2728466 DOI: 10.1016/j.pneurobio.2009.02.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 12/23/2008] [Accepted: 02/05/2009] [Indexed: 02/07/2023]
Abstract
In the developing brain, cell migration is a crucial process for structural organization, and is therefore highly regulated to allow the correct formation of complex networks, wiring neurons, and glia. In the early postnatal brain, late developmental processes such as the production and migration of astrocyte and oligodendrocyte progenitors still occur. Although the brain is completely formed and structured few weeks after birth, it maintains a degree of plasticity throughout life, including axonal remodeling, synaptogenesis, but also neural cell birth, migration and integration. The subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus are the two main neurogenic niches in the adult brain. Neural stem cells reside in these structures and produce progenitors that migrate toward their ultimate location: the olfactory bulb and granular cell layer of the DG respectively. The aim of this review is to synthesize the increasing information concerning the organization, regulation and function of cell migration in a mature brain. In a normal brain, proteins involved in cell-cell or cell-matrix interactions together with secreted proteins acting as chemoattractant or chemorepellant play key roles in the regulation of neural progenitor cell migration. In addition, recent data suggest that gliomas arise from the transformation of neural stem cells or progenitor cells and that glioma cell infiltration recapitulates key aspects of glial progenitor migration. Thus, we will consider glioma migration in the context of progenitor migration. Finally, many observations show that brain lesions and neurological diseases trigger neural stem/progenitor cell activation and migration toward altered structures. The factors involved in such cell migration/recruitment are just beginning to be understood. Inflammation which has long been considered as thoroughly disastrous for brain repair is now known to produce some positive effects on stem/progenitor cell recruitment via the regulation of growth factor signaling and the secretion of a number of chemoattractant cytokines. This knowledge is crucial for the development of new therapeutic strategies. One of these strategies could consist in increasing the mobilization of endogenous progenitor cells that could replace lost cells and improve functional recovery.
Collapse
Affiliation(s)
- Myriam Cayre
- Institut de Biologie du Developpement de Marseille Luminy (IBDML), Parc scientifique de Luminy, case 907, 13288 Marseille Cedex 09, France.
| | | | | |
Collapse
|
146
|
Reiner O, Sapir T. Polarity regulation in migrating neurons in the cortex. Mol Neurobiol 2009; 40:1-14. [PMID: 19330467 DOI: 10.1007/s12035-009-8065-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 03/12/2009] [Indexed: 12/25/2022]
Abstract
The formation of the cerebral cortex requires migration of billions of cells from their birth position to their final destination. A motile cell must have internal polarity in order to move in a specified direction. Locomotory polarity requires the coordinated polymerization of cytoskeletal elements such as microtubules and actin combined with regulated activities of the associated molecular motors. This review is focused on migrating neurons in the developing cerebral cortex, which need to attain internal polarity in order to reach their proper target. The position and dynamics of the centrosome plays an important function in this directed motility. We highlight recent interesting findings connecting polarity proteins with neuronal migration events regulated by the microtubule-associated molecular motor, cytoplasmic dynein.
Collapse
Affiliation(s)
- Orly Reiner
- Department of Molecular Genetics, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| | | |
Collapse
|
147
|
Abstract
Abnormal neuronal migration is manifested in brain malformations such as lissencephaly. The impairment in coordinated cell motility likely reflects a faulty mechanism of cell polarization or coupling between polarization and movement. Here we report on the relationship between the polarity kinase MARK2/Par-1 and its substrate, the well-known lissencephaly-associated gene doublecortin (DCX), during cortical radial migration. We have previously shown using in utero electroporation that reduced MARK2 levels resulted in multipolar neurons stalled at the intermediate zone border, similar to the phenotype observed in the case of DCX silencing. However, whereas reduced MARK2 stabilized microtubules, we show here that knock-down of DCX increased microtubule dynamics. This led to the hypothesis that simultaneous reduction may alleviate the phenotype. Coreduction of MARK2 and DCX resulted in a partial restoration of the normal neuronal migration phenotype in vivo. The kinetic behavior of the centrosomes reflected the different molecular mechanisms activated when either protein was reduced. In the case of reducing MARK2 processive motility of the centrosome was hindered, whereas when DCX was reduced, centrosomes moved quickly but bidirectionally. Our results stress the necessity for successful coupling between the polarity pathway and cytoplasmic dynein-dependent activities for proper neuronal migration.
Collapse
|
148
|
Immunocytochemical Detection of Newly Generated Neurons in the Perilesional Area of Cortical Infarcts After Intraventricular Application of Brain-Derived Neurotrophic Factor. J Neuropathol Exp Neurol 2009; 68:83-93. [DOI: 10.1097/nen.0b013e31819308e9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
149
|
Morris-Rosendahl DJ, Najm J, Lachmeijer AMA, Sztriha L, Martins M, Kuechler A, Haug V, Zeschnigk C, Martin P, Santos M, Vasconcelos C, Omran H, Kraus U, Van der Knaap MS, Schuierer G, Kutsche K, Uyanik G. Refining the phenotype of alpha-1a Tubulin (TUBA1A) mutation in patients with classical lissencephaly. Clin Genet 2008; 74:425-33. [PMID: 18954413 DOI: 10.1111/j.1399-0004.2008.01093.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations in the alpha-1a Tubulin (TUBA1A) gene have recently been found to cause cortical malformations resemblant of classical lissencephaly but with a specific combination of features. To date, TUBA1A mutations have been described in five patients and three foetuses. Our aims were to establish how common TUBA1A mutations are in patients with lissencephaly and to contribute to defining the phenotype associated with TUBA1A mutation. We performed mutation analysis in the TUBA1A gene in 46 patients with classical lissencephaly. In 44 of the patients, mutations in the LIS1 and/or DCX genes had previously been excluded; in 2 patients, mutation analysis was only performed in TUBA1A based on magnetic resonance imaging (MRI) findings. We identified three new mutations and one recurrent mutation in five patients with variable patterns of lissencephaly on brain MRI. Four of the five patients had congenital microcephaly, and all had dysgenesis of the corpus callosum and cerebellar hypoplasia, and variable cortical malformations, including subtle subcortical band heterotopia and absence or hypoplasia of the anterior limb of the internal capsule. We estimate the frequency of mutation in TUBA1A gene in patients with classical lissencephaly to be approximately 4%, and although not as common as mutations in the LIS1 or DCX genes, mutation analysis in TUBA1A should be included in the molecular genetic diagnosis of classical lissencephaly, particularly in patients with the combination of features highlighted in this paper.
Collapse
Affiliation(s)
- D J Morris-Rosendahl
- Institute for Human Genetics and Anthropology, Albert-Ludwigs University of Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
des Georges A, Katsuki M, Drummond DR, Osei M, Cross RA, Amos LA. Mal3, the Schizosaccharomyces pombe homolog of EB1, changes the microtubule lattice. Nat Struct Mol Biol 2008; 15:1102-8. [PMID: 18794845 PMCID: PMC2575238 DOI: 10.1038/nsmb.1482] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 07/29/2008] [Indexed: 11/09/2022]
Abstract
In vitro studies of pure tubulin have suggested that tubulin heterodimers in cells assemble into B-lattice microtubules, where the 8-nm dimers in adjacent protofilaments are staggered by 0.9 nm. This arrangement requires the tube to close by forming a seam with an A-lattice, in which the protofilaments are staggered by 4.9 nm. Here we show that Mal3, an EB1 family tip-tracking protein, drives tubulin to assemble in vitro into exclusively 13-protofilament microtubules with a high proportion of A-lattice protofilament contacts. We present a three-dimensional cryo-EM reconstruction of a purely A-lattice microtubule decorated with Mal3, in which Mal3 occupies the groove between protofilaments and associates closely with one tubulin monomer. We propose that Mal3 promotes assembly by binding to freshly formed tubulin polymer and particularly favors any with A-lattice arrangement. These results reopen the question of microtubule structure in cells.
Collapse
|