101
|
Wixler V, Hirner S, Müller JM, Gullotti L, Will C, Kirfel J, Günther T, Schneider H, Bosserhoff A, Schorle H, Park J, Schüle R, Buettner R. Deficiency in the LIM-only protein Fhl2 impairs skin wound healing. ACTA ACUST UNITED AC 2007; 177:163-72. [PMID: 17420295 PMCID: PMC2064120 DOI: 10.1083/jcb.200606043] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
After skin wounding, the repair process is initiated by the release of growth factors, cytokines, and bioactive lipids from injured vessels and coagulated platelets. These signal molecules induce synthesis and deposition of a provisional extracellular matrix, as well as fibroblast invasion into and contraction of the wounded area. We previously showed that sphingosine-1-phosphate (S1P) triggers a signal transduction cascade mediating nuclear translocation of the LIM-only protein Fhl2 in response to activation of the RhoA GTPase (Muller, J.M., U. Isele, E. Metzger, A. Rempel, M. Moser, A. Pscherer, T. Breyer, C. Holubarsch, R. Buettner, and R. Schule. 2000. EMBO J. 19:359-369; Muller, J.M., E. Metzger, H. Greschik, A.K. Bosserhoff, L. Mercep, R. Buettner, and R. Schule. 2002. EMBO J. 21:736-748.). We demonstrate impaired cutaneous wound healing in Fhl2-deficient mice rescued by transgenic expression of Fhl2. Furthermore, collagen contraction and cell migration are severely impaired in Fhl2-deficient cells. Consequently, we show that the expression of alpha-smooth muscle actin, which is regulated by Fhl2, is reduced and delayed in wounds of Fhl2-deficient mice and that the expression of p130Cas, which is essential for cell migration, is reduced in Fhl2-deficient cells. In summary, our data demonstrate a function of Fhl2 as a lipid-triggered signaling molecule in mesenchymal cells regulating their migration and contraction during cutaneous wound healing.
Collapse
Affiliation(s)
- Viktor Wixler
- Institute of Molecular Virology, Münster University Hospital Medical School, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Abstract
Smooth muscle cells (SMCs) possess remarkable phenotypic plasticity that allows rapid adaptation to fluctuating environmental cues. For example, vascular SMCs undergo profound changes in their phenotype during neointimal formation in response to vessel injury or within atherosclerotic plaques. Recent studies have shown that interaction of serum response factor (SRF) and its numerous accessory cofactors with CArG box DNA sequences within promoter chromatin of SMC genes is a nexus for integrating signals that influence SMC differentiation in development and disease. During development, SMC-restricted sets of posttranslational histone modifications are acquired within the CArG box chromatin of SMC genes. These modifications in turn control the chromatin-binding properties of SRF. The histone modifications appear to encode a SMC-specific epigenetic program that is used by extracellular cues to influence SMC differentiation, by regulating binding of SRF and its partners to the chromatin template. Thus, SMC differentiation is dynamically regulated by the interplay between SRF accessory cofactors, the SRF-CArG interaction, and the underlying histone modification program. As such, the inherent plasticity of the SMC lineage offers unique glimpses into how cellular differentiation is dynamically controlled at the level of chromatin within the context of changing microenvironments. Further elucidation of how chromatin regulates SMC differentiation will undoubtedly yield valuable insights into both normal developmental processes and the pathogenesis of several vascular diseases that display detrimental SMC phenotypic behavior.
Collapse
Affiliation(s)
- Oliver G McDonald
- Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville, VA 22903, USA
| | | |
Collapse
|
103
|
Muehlich S, Cicha I, Garlichs CD, Krueger B, Posern G, Goppelt-Struebe M. Actin-dependent regulation of connective tissue growth factor. Am J Physiol Cell Physiol 2007; 292:C1732-8. [PMID: 17215322 DOI: 10.1152/ajpcell.00552.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Expression of connective tissue growth factor (CTGF) in endothelial cells is modulated by shear stress affecting the organization of the cytoskeleton. The molecular connection between alterations of actin and CTGF expression was investigated in human umbilical vein endothelial cells (HUVEC) and a microvascular endothelial cell line. Overexpression of nonpolymerizable monomeric actin R62D interfered with stress fiber formation in HUVEC and concomitantly reduced immunoreactive CTGF. In microvascular endothelial cells, flow-dependent upregulation of CTGF was prevented by this actin mutant. In contrast, overexpression of actin S14C strengthened filamentous actin and increased CTGF expression. These data indicated an inverse relationship between CTGF expression and monomeric actin. Coexpression of the mutant actins and different CTGF promoter constructs revealed an actin-sensitive site between 3 and 4.5 kb of the CTGF promoter. A CArG-like box at −3791 bp was responsible for actin-dependent CTGF induction as shown by mutagenesis. Overexpression of actin S14C activated the nonmutated promoter significantly more strongly than the mutated promoter. Actin polymerization is regulated by the small GTPase RhoA and activation of serum response factor (SRF). Overexpression of constitutively active RhoA or SRF significantly increased CTGF protein synthesis. The 4.5-kb promoter construct, but not the construct with a mutation in the CArG box, was activated by SRF or RhoA, providing evidence for a functional role of this site in CTGF induction. These findings provide novel evidence that monomeric actin is the connecting link between alterations in the cytoskeleton and CTGF gene expression and demonstrate the importance of SRF in regulating CTGF transcription.
Collapse
Affiliation(s)
- Susanne Muehlich
- Department of Nephrology and Hypertension, University of Erlangen-Nuremberg, Loschgestrasse 8, D-91054 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
104
|
Kuwahara K, Pipes GCT, McAnally J, Richardson JA, Hill JA, Bassel-Duby R, Olson EN. Modulation of adverse cardiac remodeling by STARS, a mediator of MEF2 signaling and SRF activity. J Clin Invest 2007; 117:1324-34. [PMID: 17415416 PMCID: PMC1838928 DOI: 10.1172/jci31240] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 02/06/2007] [Indexed: 02/03/2023] Open
Abstract
Cytoskeletal proteins have been implicated in the pathogenesis of cardiomyopathy, but how the cytoskeleton influences the transcriptional alterations associated with adverse cardiac remodeling remains unclear. Striated muscle activator of Rho signaling (STARS) is a muscle-specific actin-binding protein localized to the Z disc that activates serum response factor-dependent (SRF-dependent) transcription by inducing nuclear translocation of the myocardin-related SRF coactivators MRTF-A and -B. We show that STARS expression is upregulated in mouse models of cardiac hypertrophy and in failing human hearts. A conserved region of the STARS promoter containing an essential binding site for myocyte enhancer factor-2 (MEF2), a stress-responsive transcriptional activator, mediates cardiac expression of STARS, which in turn activates SRF target genes. Forced overexpression of STARS in the heart sensitizes the heart to pressure overload and calcineurin signaling, resulting in exaggerated deterioration in cardiac function in response to these hypertrophic stimuli. These findings suggest that STARS modulates the responsiveness of the heart to stress signaling by functioning as a cytoskeletal intermediary between MEF2 and SRF.
Collapse
Affiliation(s)
- Koichiro Kuwahara
- Department of Molecular Biology,
Department of Pathology, and
Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Gordon C. Teg Pipes
- Department of Molecular Biology,
Department of Pathology, and
Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John McAnally
- Department of Molecular Biology,
Department of Pathology, and
Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - James A. Richardson
- Department of Molecular Biology,
Department of Pathology, and
Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joseph A. Hill
- Department of Molecular Biology,
Department of Pathology, and
Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology,
Department of Pathology, and
Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Eric N. Olson
- Department of Molecular Biology,
Department of Pathology, and
Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
105
|
Abstract
The association of transcriptional coactivators with DNA-binding proteins provides an efficient mechanism to expand and modulate genetic information encoded within the genome. Myocardin-related transcription factors (MRTFs), including myocardin, MRTF-A/MKL1/MAL, and MRTF-B/MKL2, comprise a family of related transcriptional coactivators that physically associate with the MADS box transcription factor, serum response factor, and synergistically activate transcription. MRTFs transduce cytoskeletal signals to the nucleus, activating a subset of serum response factor-dependent genes promoting myogenic differentiation and cytoskeletal organization. MRTFs are multifunctional proteins that share evolutionarily conserved domains required for actin-binding, homo- and heterodimerization, high-order chromatin organization, and transcriptional activation. Mice harboring loss-of-function mutations in myocardin, MRTF-A, and MRTF-B, respectively, display distinct phenotypes, including cell autonomous defects in vascular smooth muscle cell and myoepithelial cell differentiation and function. This article reviews the molecular basis of MRTF function with particular focus on the role MRTFs play in regulating cardiovascular patterning, vascular smooth muscle cell and cardiomyocyte differentiation and in the pathogenesis of congenital heart disease and vascular proliferative syndromes.
Collapse
Affiliation(s)
- Michael S Parmacek
- University of Pennsylvania Cardiovascular Institute and Department of Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
106
|
Abstract
The origins of vascular smooth muscle are far more diverse than previously thought. Lineage mapping studies show that the segmental organization of early vertebrate embryos leaves footprints on the adult vascular system in the form of a mosaic pattern of different smooth muscle types. Moreover, evolutionarily conserved tissue forming pathways produce vascular smooth muscle from a variety of unanticipated sources. A closer look at the diversity of smooth muscle origins in vascular development provides new perspectives about how blood vessels differ from one another and why they respond in disparate ways to common risk factors associated with vascular disease. The origins of vascular smooth muscle are far more diverse than previously thought. A closer look at the diversity of smooth muscle origins in vascular development provides new perspectives about how blood vessels differ from one another and why they respond in disparate ways to common risk factors associated with vascular disease.
Collapse
Affiliation(s)
- Mark W Majesky
- Department of Medicine, Carolina Cardiovascular Biology Center, University of North Carolina, Chapel Hill, NC 27599-7126, USA.
| |
Collapse
|
107
|
Nair SS, Guo Z, Mueller JM, Koochekpour S, Qiu Y, Tekmal RR, Schüle R, Kung HJ, Kumar R, Vadlamudi RK. Proline-, glutamic acid-, and leucine-rich protein-1/modulator of nongenomic activity of estrogen receptor enhances androgen receptor functions through LIM-only coactivator, four-and-a-half LIM-only protein 2. Mol Endocrinol 2007; 21:613-24. [PMID: 17192406 PMCID: PMC3725294 DOI: 10.1210/me.2006-0269] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Proline-, glutamic acid-, and leucine-rich protein-1 (PELP1) is a coregulator of multiple nuclear receptors. Molecular mechanisms of PELP1 function are not completely understood, but its expression is up-regulated in hormonal-dependent cancers. Using a yeast two-hybrid screen, we found that four-and-a-half LIM-only protein 2 (FHL2) interacted with PELP1. FHL2 is a transcriptional regulator that associates with nuclear cofactors, including androgen receptors (ARs), and contains an intrinsic activation domain. PELP1 and FHL2 interact in vitro and in vivo and colocalize in the nuclear compartment. PELP1 interacts with FHL2 via LIM domains 3 and 4 and synergistically enhances the transcriptional activity of FHL2. Src kinase is required for PELP1-mediated enhancement of FHL2 functions because knockdown of Src kinase expression or function abolished PELP1-mediated FHL2 activation functions. PELP1 interacted with AR and enhanced FHL2-mediated AR transactivation functions. PELP1 knockdown by small interfering RNA or PELP1 mutant, which lacks an activation domain, reduced FHL2-mediated AR transactivation. Biochemical analyses revealed a complex consisting of PELP1, FHL2, and AR in prostate cancer cells. PELP1/MNAR expression was elevated in high-grade prostate tumors. Our results suggest that PELP1 functions as a molecular adaptor, coupling FHL2 with nuclear receptors, and PELP1-FHL2 interactions may have a role in prostate cancer progression.
Collapse
Affiliation(s)
- Sujit S Nair
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, Floyd Curl Drive, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Cooper SJ, Trinklein ND, Nguyen L, Myers RM. Serum response factor binding sites differ in three human cell types. Genome Res 2007; 17:136-44. [PMID: 17200232 PMCID: PMC1781345 DOI: 10.1101/gr.5875007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The serum response factor (SRF) is essential for embryonic development and maintenance of muscle cells and neurons. The mechanism by which this factor controls these divergent pathways is unclear. Here we present a genome-wide view of occupancy of SRF at its binding sites with a focus on those that vary with cell type. We used chromatin immunoprecipitation (ChIP) in combination with human promoter microarrays to identify 216 putative SRF binding sites in the human genome. We performed independent quantitative PCR validation at over half of these sites that resulted in 146 sites we assert to be true binding sites at over 90% confidence. Nearly half of the sites are bound by SRF in only one of the three cell types we tested, providing strong evidence for the diverse roles for SRF in different cell types. We also explore possible mechanisms controlling differential binding of SRF in these cell types by assaying cofactor binding, DNA methylation, histone methylation, and histone acetylation at a subset of sites bound preferentially in smooth muscle cells. Although we did not see a strong correlation between SRF binding and epigenetics modifications, at these sites, we propose that SRF cofactors may play an important role in determining cell-dependent SRF binding sites. ELK4 (previously known as SAP-1 [SRF-associated protein-1]) is ubiquitously expressed. Therefore, we expected it to occupy sites where SRF binding is common in all cell types. Indeed, 90% of SRF sites also bound by ELK4 were common to all three cell types. Together, our data provide a more complete understanding of the regulatory network controlled by SRF.
Collapse
Affiliation(s)
- Sara J. Cooper
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | - Nathan D. Trinklein
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | - Loan Nguyen
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | - Richard M. Myers
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
- Corresponding author.E-mail ; fax (650) 725-9689
| |
Collapse
|
109
|
Barrientos T, Frank D, Kuwahara K, Bezprozvannaya S, Pipes GCT, Bassel-Duby R, Richardson JA, Katus HA, Olson EN, Frey N. Two novel members of the ABLIM protein family, ABLIM-2 and -3, associate with STARS and directly bind F-actin. J Biol Chem 2006; 282:8393-403. [PMID: 17194709 DOI: 10.1074/jbc.m607549200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In addition to regulating cell motility, contractility, and cytokinesis, the actin cytoskeleton plays a critical role in the regulation of transcription and gene expression. We have previously identified a novel muscle-specific actin-binding protein, STARS (striated muscle activator of Rho signaling), which directly binds actin and stimulates serum-response factor (SRF)-dependent transcription. To further dissect the STARS/SRF pathway, we performed a yeast two-hybrid screen of a skeletal muscle cDNA library using STARS as bait, and we identified two novel members of the ABLIM protein family, ABLIM-2 and -3, as STARS-interacting proteins. ABLIM-1, which is expressed in retina, brain, and muscle tissue, has been postulated to function as a tumor suppressor. ABLIM-2 and -3 display distinct tissue-specific expression patterns with the highest expression levels in muscle and neuronal tissue. Moreover, these novel ABLIM proteins strongly bind F-actin, are localized to actin stress fibers, and synergistically enhance STARS-dependent activation of SRF. Conversely, knockdown of endogenous ABLIM expression utilizing small interfering RNA significantly blunted SRF-dependent transcription in C2C12 skeletal muscle cells. These findings suggest that the members of the novel ABLIM protein family may serve as a scaffold for signaling modules of the actin cytoskeleton and thereby modulate transcription.
Collapse
Affiliation(s)
- Tomasa Barrientos
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Kalita K, Kharebava G, Zheng JJ, Hetman M. Role of megakaryoblastic acute leukemia-1 in ERK1/2-dependent stimulation of serum response factor-driven transcription by BDNF or increased synaptic activity. J Neurosci 2006; 26:10020-32. [PMID: 17005865 PMCID: PMC6674463 DOI: 10.1523/jneurosci.2644-06.2006] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Serum response factor (SRF)-mediated transcription contributes to developmental and adult brain plasticity. Therefore, we investigated the role of a newly identified SRF coactivator, MKL1, in the regulation of SRF-driven transcription in rat forebrain neurons. MKL1 expression was found in newborn rat cortical or hippocampal neurons in culture as well as in adult rat forebrain. Immunostaining demonstrated constitutive nuclear localization of MKL1 in the CA1 region of the hippocampus, in the deep layers of the neocortex, and in cultured neurons. Overexpression of MKL1 in primary cortical neurons elevated SRF-driven transcription and enhanced its stimulation by BDNF. In addition, inhibition of endogenous MKL1 by overexpression of a dominant-negative MKL1 mutant or by small interfering RNA reduced BDNF activation of SRF-driven transcription. In neurons, endogenous MKL1 was associated with SRF-regulated chromatin regions of several endogenous genes including c-fos, JunB, Srf, and Cyr61. BDNF activation of MKL1/SRF-driven transcription was dependent on the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway, which also led to MKL1 phosphorylation. Finally, synaptic activity stimulation of SRF-driven transcription was reduced by inhibition of endogenous MKL1. Conversely, synaptic activity enhanced transcription by overexpressed MKL1. MKL1 regulation by synaptic activity was mediated through the NMDA receptor-activated ERK1/2. These results suggest that neuronal MKL1 contributes to SRF-regulated gene expression induced by BDNF or synaptic activity. In addition, MKL1 appears as a novel mediator of the signaling between ERK1/2 and SRF. Moreover, MKL1 is a likely regulator of SRF-driven transcription programs that underlie neuronal plasticity.
Collapse
Affiliation(s)
- Katarzyna Kalita
- Kentucky Spinal Cord Injury Research Center and Department of Neurological Surgery and
| | - Giorgi Kharebava
- Kentucky Spinal Cord Injury Research Center and Department of Neurological Surgery and
| | - Jing-Juan Zheng
- Kentucky Spinal Cord Injury Research Center and Department of Neurological Surgery and
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center and Department of Neurological Surgery and
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292
| |
Collapse
|
111
|
Posern G, Treisman R. Actin’ together: serum response factor, its cofactors and the link to signal transduction. Trends Cell Biol 2006; 16:588-96. [DOI: 10.1016/j.tcb.2006.09.008] [Citation(s) in RCA: 429] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 08/29/2006] [Accepted: 09/25/2006] [Indexed: 11/30/2022]
|
112
|
Dunne J, Cullmann C, Ritter M, Soria NM, Drescher B, Debernardi S, Skoulakis S, Hartmann O, Krause M, Krauter J, Neubauer A, Young BD, Heidenreich O. siRNA-mediated AML1/MTG8 depletion affects differentiation and proliferation-associated gene expression in t(8;21)-positive cell lines and primary AML blasts. Oncogene 2006; 25:6067-78. [PMID: 16652140 DOI: 10.1038/sj.onc.1209638] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 03/15/2006] [Accepted: 03/23/2006] [Indexed: 11/09/2022]
Abstract
The chromosomal translocation t(8;21) is associated with 10-15% of all cases of acute myeloid leukaemia (AML). The resultant fusion protein AML1/MTG8 interferes with haematopoietic gene expression and is an important regulator of leukaemogenesis. We studied the effects of small interfering RNA (siRNA)-mediated AML1/MTG8 depletion on global gene expression in t(8;21)-positive leukaemic cell lines and in primary AML blasts using cDNA arrays, oligonucleotide arrays and real-time reverse transcription-polymerase chain reaction (RT-PCR). Suppression of AML1/MTG8 results in the increased expression of genes associated with myeloid differentiation, such as AZU1, BPI, CTSG, LYZ and RNASE2 as well as of antiproliferative genes such as IGFBP7, MS4A3 and SLA both in blasts and in cell lines. Furthermore, expression levels of several genes affiliated with drug resistance or indicative of poor prognosis AML (BAALC, CD34, PRG2, TSPAN7) are affected by AML1/MTG8 depletion. In conclusion, siRNA-mediated suppression of AML1/MTG8 cause very similar changes in gene expression pattern in t(8;21)-positive cell lines and in primary AML blasts. Furthermore, the results suggest that the specific targeting of AML1/MTG8 function may be a promising approach for complementing existing treatment strategies.
Collapse
MESH Headings
- Acute Disease
- Base Sequence
- Cell Differentiation/genetics
- Cell Line, Tumor
- Cell Proliferation
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 8
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/physiology
- DNA Primers
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/physiology
- Humans
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/pathology
- Male
- Middle Aged
- Oligonucleotide Array Sequence Analysis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- RNA, Small Interfering/physiology
- RUNX1 Translocation Partner 1 Protein
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/genetics
- Transcription Factors/physiology
- Translocation, Genetic
Collapse
Affiliation(s)
- J Dunne
- Cancer Research UK Medical Oncology Laboratory, Barts and the London School of Medicine, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Kawai-Kowase K, Owens GK. Multiple repressor pathways contribute to phenotypic switching of vascular smooth muscle cells. Am J Physiol Cell Physiol 2006; 292:C59-69. [PMID: 16956962 DOI: 10.1152/ajpcell.00394.2006] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Smooth muscle cell (SMC) differentiation is an essential component of vascular development and these cells perform biosynthetic, proliferative, and contractile roles in the vessel wall. SMCs are not terminally differentiated and possess the ability to modulate their phenotype in response to changing local environmental cues. The focus of this review is to provide an overview of the current state of knowledge of molecular mechanisms involved in controlling phenotypic switching of SMC with particular focus on examination of processes that contribute to the repression of SMC marker genes. We discuss the environmental cues which actively regulate SMC phenotypic switching, such as platelet-derived growth factor-BB, as well as several important regulatory mechanisms required for suppressing expression of SMC-specific/selective marker genes in vivo, including those dependent on conserved G/C-repressive elements, and/or highly conserved degenerate CArG elements found in the promoters of many of these marker genes. Finally, we present evidence indicating that SMC phenotypic switching involves multiple active repressor pathways, including Krüppel-like zinc finger type 4, HERP, and ERK-dependent phosphorylation of Elk-1 that act in a complementary fashion.
Collapse
Affiliation(s)
- Keiko Kawai-Kowase
- Department of Molecular Physiology and Biological Physics, University of Virginia, 415 Lane Road, Charlottesville, VA 22908, USA
| | | |
Collapse
|
114
|
Miano JM, Long X, Fujiwara K. Serum response factor: master regulator of the actin cytoskeleton and contractile apparatus. Am J Physiol Cell Physiol 2006; 292:C70-81. [PMID: 16928770 DOI: 10.1152/ajpcell.00386.2006] [Citation(s) in RCA: 374] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Serum response factor (SRF) is a highly conserved and widely expressed, single copy transcription factor that theoretically binds up to 1,216 permutations of a 10-base pair cis element known as the CArG box. SRF-binding sites were defined initially in growth-related genes. Gene inactivation or knockdown studies in species ranging from unicellular eukaryotes to mice have consistently shown loss of SRF to be incompatible with life. However, rather than being critical for proliferation and growth, these genetic studies point to a crucial role for SRF in cellular migration and normal actin cytoskeleton and contractile biology. In fact, recent genomic studies reveal nearly half of the >200 SRF target genes encoding proteins with functions related to actin dynamics, lamellipodial/filopodial formation, integrin-cytoskeletal coupling, myofibrillogenesis, and muscle contraction. SRF has therefore emerged as a dispensable transcription factor for cellular growth but an absolutely essential orchestrator of actin cytoskeleton and contractile homeostasis. This review summarizes the recent genomic and genetic analyses of CArG-SRF that support its role as an ancient, master regulator of the actin cytoskeleton and contractile machinery.
Collapse
Affiliation(s)
- Joseph M Miano
- Cardiovascular Research Institute, University of Rochester School of Medicine, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
115
|
Canault M, Tellier E, Bonardo B, Mas E, Aumailley M, Juhan-Vague I, Nalbone G, Peiretti F. FHL2 interacts with both ADAM-17 and the cytoskeleton and regulates ADAM-17 localization and activity. J Cell Physiol 2006; 208:363-72. [PMID: 16619241 DOI: 10.1002/jcp.20671] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
ADAM-17 is a metalloprotease-disintegrin responsible for the ectodomain shedding of several transmembrane proteins. Using the yeast two-hybrid system, we showed that ADAM-17 interacts with the Four and Half LIM domain 2 protein (FHL2), a LIM domain protein that is involved in multiple protein-protein interaction. We demonstrated that this interaction involved the amino-acid sequence of ADAM-17 from position 721 to739. In the cardiomyoblast cells H9C2, ADAM-17 and FHL2 colocalize with the actin-based cytoskeleton and we showed that FHL2 binds both ADAM-17 and the actin-based cytoskeleton. We found that mainly the mature form of ADAM-17 associates with the cytoskeleton, although the maturation of ADAM-17 by furin is not necessary for its binding to the cytoskeleton. Interestingly, less ADAM-17 was detected at the surface of wild-type mouse macrophages compared to FHL2 deficient macrophages. However, wild-type cells have a higher ability to release ADAM-17 substrates under PMA stimulation. Altogether, these results demonstrate a physical and functional interaction between ADAM-17 and FHL2 that implies that FHL2 has a role in the regulation of ADAM-17.
Collapse
Affiliation(s)
- Matthias Canault
- Inserm, U626, Marseilles, France; Université de la Méditerranée, Faculté de Médecine, Marseilles, Cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Chaqour B, Yang R, Sha Q. Mechanical stretch modulates the promoter activity of the profibrotic factor CCN2 through increased actin polymerization and NF-kappaB activation. J Biol Chem 2006; 281:20608-22. [PMID: 16707502 DOI: 10.1074/jbc.m600214200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The connective tissue growth factor known as CCN2 is an inducible, profibrotic molecule that becomes aberrantly expressed in mechanical overload-bearing tissues. In this study, we found that CCN2 gene expression is rapidly induced in cyclically stretched bladder smooth muscle cells (SMCs) in vitro and in the detrusor muscle of a mechanically overloaded bladder in a rat model of experimental urethral obstruction. The activity of CCN2 promoter constructs, transiently transfected into cultured SMCs, was increased (up to 6-fold) by continuous cyclic stretching. Molecular analyses of the CCN2 promoter by serial construct deletions, cis-element mutagenesis, and electrophoretic mobility shift assays revealed that a highly conserved NF-kappaB binding site located within the CCN2 proximal promoter region is responsible for the activation of the promoter by stretch. Chromatin immunoprecipitation assays showed that NF-kappaB binds to the endogenous CCN2 promoter in both stretched cells and mechanically overloaded bladder tissues. Furthermore, stretch-dependent CCN2 promoter activity was significantly reduced upon inhibition of either phosphatidylinositol 3-kinase, p38 stress-activated kinase, or RhoA GTPase and was completely abolished upon inhibition of actin polymerization. Concordantly, actin polymerization was increased in either mechanically stretched cells or overloaded bladder tissues. Incubation of cultured SMCs with a cell-penetrating peptide containing the N-terminal sequence, Ac-EEED, of smooth muscle alpha-actin, altered both actin cytoskeleton organization and stretch-mediated nuclear relocation of NF-kappaB, and subsequently, it reduced CCN2 promoter activity. Thus, mechanical stretch-induced changes in actin dynamics mediate NF-kappaB activation and induce CCN2 gene expression, which probably initiates the fibrotic reactions observed in mechanical overload-associated pathologies.
Collapse
Affiliation(s)
- Brahim Chaqour
- Department of Anatomy and Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA.
| | | | | |
Collapse
|
117
|
Shiota J, Ishikawa M, Sakagami H, Tsuda M, Baraban JM, Tabuchi A. Developmental expression of the SRF co-activator MAL in brain: role in regulating dendritic morphology. J Neurochem 2006; 98:1778-88. [PMID: 16945101 DOI: 10.1111/j.1471-4159.2006.03992.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dynamic changes in dendritic morphology displayed by developing and mature neurons have stimulated interest in deciphering the signaling pathways involved. Recent studies have identified megakaryocytic acute leukemia (MAL), a serum response factor (SRF) co-activator, as a key component of a signaling pathway linking changes in the actin cytoskeleton to SRF-mediated transcription. To help define the role of this pathway in regulating dendritic morphology, we have characterized the pattern of MAL expression in the developing and adult brain, and have examined its role in regulating dendritic morphology in cultured cortical neurons. In histological studies of mouse brain, we found prominent expression of MAL in neurons in adult hippocampus and cerebral cortex. MAL immunostaining revealed localization of this protein in neuronal cell bodies and apical dendrites. During development, an increase in MAL expression occurs during the second post-natal week. Expression of dominant negative MAL constructs or MAL siRNA in cortical neurons grown in primary culture reduces the number of dendritic processes and decreases the basal level of SRF-mediated transcription. Taken together, these findings indicate that the MAL-SRF signaling pathway plays a key role in regulating dendritic morphology.
Collapse
Affiliation(s)
- Jun Shiota
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama City, Japan
| | | | | | | | | | | |
Collapse
|
118
|
Lindskog H, Athley E, Larsson E, Lundin S, Hellström M, Lindahl P. New Insights to Vascular Smooth Muscle Cell and Pericyte Differentiation of Mouse Embryonic Stem Cells In Vitro. Arterioscler Thromb Vasc Biol 2006; 26:1457-64. [PMID: 16627807 DOI: 10.1161/01.atv.0000222925.49817.17] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The molecular mechanisms that regulate pericyte differentiation are not well understood, partly because of the lack of well-characterized in vitro systems that model this process. In this article, we develop a mouse embryonic stem (ES) cell-based angiogenesis/vasculogenesis assay and characterize the system for vascular smooth muscle cell (VSMC) and pericyte differentiation. METHODS AND RESULTS ES cells that were cultured for 5 days on OP9 stroma cells upregulated their transcription of VSMC and pericyte selective genes. Other SMC marker genes were induced at a later time point, which suggests that vascular SMC/pericyte genes are regulated by a separate mechanism. Moreover, sequence analysis failed to identify any conserved CArG elements in the vascular SMC and pericyte gene promoters, which indicates that serum response factor is not involved in their regulation. Gleevec, a tyrosine kinase inhibitor that blocks platelet-derived growth factor (PDGF) spell-receptor signaling, and a neutralizing antibody against transforming growth factor (TGF) beta1, beta2, and beta3 failed to inhibit the induction of vascular SMC/pericyte genes. Finally, ES-derived vascular sprouts recruited cocultured MEF cells to pericyte-typical locations. The recruited cells activated expression of a VSMC- and pericyte-specific reporter gene. CONCLUSIONS We conclude that OP9 stroma cells induce pericyte differentiation of cocultured mouse ES cells. The induction of pericyte marker genes is temporally separated from the induction of SMC genes and does not require platelet-derived growth factor B or TGFbeta1 signaling.
Collapse
Affiliation(s)
- Henrik Lindskog
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, Göteborg University, Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
119
|
Paul C, Lacroix M, Iankova I, Julien E, Schäfer BW, Labalette C, Wei Y, Le Cam A, Le Cam L, Sardet C. The LIM-only protein FHL2 is a negative regulator of E4F1. Oncogene 2006; 25:5475-84. [PMID: 16652157 DOI: 10.1038/sj.onc.1209567] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The E1A-targeted transcription factor E4F1 is a key player in the control of mammalian embryonic and somatic cell proliferation and survival. Mouse embryos lacking E4F die at an early developmental stage, whereas enforced expression of E4F1 in various cell lines inhibits cell cycle progression. E4F1-antiproliferative effects have been shown to depend on its capacity to repress transcription and to interact with pRb and p53. Here we show that full-length E4F1 protein (p120(E4F1)) but not its E1A-activated and truncated form (p50(E4F1)), interacts directly in vitro and in vivo with the LIM-only protein FHL2, the product of the p53-responsive gene FHL2/DRAL (downregulated in rhabdomyosarcoma Lim protein). This E4F1-FHL2 association occurs in the nuclear compartment and inhibits the capacity of E4F1 to block cell proliferation. Consistent with this effect, ectopic expression of FHL2 inhibits E4F1 repressive effects on transcription and correlates with a reduction of nuclear E4F1-p53 complexes. Overall, these results suggest that FHL2/DRAL is an inhibitor of E4F1 activity. Finally, we show that endogenous E4F1-FHL2 complexes form in U2OS cells upon UV-light-induced nuclear accumulation of FHL2.
Collapse
Affiliation(s)
- C Paul
- Institut de Génétique Moleculaire, UMR 5535/IFR122, CNRS, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Vogel JL, Kristie TM. Site-specific proteolysis of the transcriptional coactivator HCF-1 can regulate its interaction with protein cofactors. Proc Natl Acad Sci U S A 2006; 103:6817-22. [PMID: 16624878 PMCID: PMC1440766 DOI: 10.1073/pnas.0602109103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Limited proteolytic processing is an important transcriptional regulatory mechanism. In various contexts, proteolysis controls the cytoplasmic-to-nuclear transport of important transcription factors or removes domains to produce factors with altered activities. The transcriptional coactivator host cell factor-1 (HCF-1) is proteolytically processed within a unique domain consisting of 20-aa reiterations. Site-specific cleavage within one or more repeats generates a family of amino- and carboxyl-terminal subunits that remain tightly associated. However, the consequences of HCF-1 processing have been undefined. In this study, it was determined that the HCF-1-processing domain interacts with several proteins including the transcriptional coactivator/corepressor four-and-a-half LIM domain-2 (FHL2). Analysis of this interaction has uncovered specificity with both sequence and context determinants within the reiterations of this processing domain. In cells, FHL2 interacts exclusively with the nonprocessed coactivator and costimulates transcription of an HCF-1-dependent target gene. The functional interaction of HCF-1 with FHL2 supports a model in which site-specific proteolysis regulates the interaction of HCF-1 with protein partners and thus can modulate the activity of this coactivator. This paradigm expands the biological significance of limited proteolytic processing as a regulatory mechanism in gene transcription.
Collapse
Affiliation(s)
- Jodi L. Vogel
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 4-131, 4 Center Drive, Bethesda, MD 20892
| | - Thomas M. Kristie
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 4-131, 4 Center Drive, Bethesda, MD 20892
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
121
|
Hoshijima M. Mechanical stress-strain sensors embedded in cardiac cytoskeleton: Z disk, titin, and associated structures. Am J Physiol Heart Circ Physiol 2006; 290:H1313-25. [PMID: 16537787 PMCID: PMC3241960 DOI: 10.1152/ajpheart.00816.2005] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiac muscle is equipped with intricate intrinsic mechanisms to regulate adaptive remodeling. Recent and extensive experimental findings powered by novel strategies for screening protein-protein interactions, improved imaging technologies, and versatile transgenic mouse methodologies reveal that Z disks and titin filaments possess unexpectedly complicated sensory and modulatory mechanisms for signal reception and transduction. These mechanisms employ molecules such as muscle-enriched LIM domain proteins, PDZ-LIM domain proteins, myozenin gene family members, titin-associated ankyrin repeat family proteins, and muscle-specific ring finger proteins, which have been identified as potential molecular sensor components. Moreover, classic transmembrane signaling processes, including mitogen-activated kinase, protein kinase C, and calcium signaling, also involve novel interactions with the Z disk/titin network. This compartmentalization of signaling complexes permits alteration of receptor-dependent transcriptional regulation by direct sensing of intrinsic stress. Newly identified mechanical stress sensors are not limited to Z-disk region and to I-band and M-band regions of titin but are also embedded in muscle-specific membrane systems such as the costamere, intercalated disks, and caveolae-like microdomains. This review summarizes current knowledge of this rapidly developing area with focus on how the heart adjusts physiological remodeling process to meet with mechanical demands and how this process fails in cardiac pathologies.
Collapse
Affiliation(s)
- Masahiko Hoshijima
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0734, USA.
| |
Collapse
|
122
|
Sun Q, Chen G, Streb JW, Long X, Yang Y, Stoeckert CJ, Miano JM. Defining the mammalian CArGome. Genes Dev 2006; 16:197-207. [PMID: 16365378 PMCID: PMC1361715 DOI: 10.1101/gr.4108706] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 11/01/2005] [Indexed: 11/24/2022]
Abstract
Serum response factor (SRF) binds a 1216-fold degenerate cis element known as the CArG box. CArG boxes are found primarily in muscle- and growth-factor-associated genes although the full spectrum of functional CArG elements in the genome (the CArGome) has yet to be defined. Here we describe a genome-wide screen to further define the functional mammalian CArGome. A computational approach involving comparative genomic analyses of human and mouse orthologous genes uncovered >100 hypothetical SRF-dependent genes, including 10 previously identified SRF targets, harboring a conserved CArG element within 4000 bp of the annotated transcription start site (TSS). We PCR-cloned 89 hypothetical SRF targets and subjected each of them to at least two of several validations including luciferase reporter, gel shift, chromatin immunoprecipitation, and mRNA expression following RNAi knockdown of SRF; 60/89 (67%) of the targets were validated. Interestingly, 26 of the validated SRF target genes encode for cytoskeletal/contractile or adhesion proteins. RNAi knockdown of SRF diminishes expression of several SRF-dependent cytoskeletal genes and elicits an attending perturbation in the cytoarchitecture of both human and rodent cells. These data illustrate the power of integrating existing algorithms to interrogate the genome in a relatively unbiased fashion for cis-regulatory element discovery. In this manner, we have further expanded the mammalian CArGome with the discovery of an array of cyto-contractile genes that coordinate normal cytoskeletal homeostasis. We suggest one function of SRF is that of an ancient master regulator of the actin cytoskeleton.
Collapse
Affiliation(s)
- Qiang Sun
- Cardiovascular Research Institute, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
123
|
Knöll B, Kretz O, Fiedler C, Alberti S, Schütz G, Frotscher M, Nordheim A. Serum response factor controls neuronal circuit assembly in the hippocampus. Nat Neurosci 2006; 9:195-204. [PMID: 16415869 DOI: 10.1038/nn1627] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 12/08/2005] [Indexed: 11/09/2022]
Abstract
Higher organisms rely on multiple modes of memory storage using the hippocampal network, which is built by precisely orchestrated mechanisms of axonal outgrowth, guidance and synaptic targeting. We demonstrate essential roles of the transcription factor serum response factor (SRF), a sensor of cytoskeletal actin dynamics, in all these processes. Conditional deletion of the mouse Srf gene reduced neurite outgrowth and abolished mossy fiber segregation, resulting in ectopic fiber growth inside the pyramidal layer. SRF-deficient mossy fibers aberrantly targeted CA3 somata for synapse formation. Axon guidance assays showed that SRF was a key mediator of ephrin-A and semaphorin guidance cues; in SRF-deficient neurons, these resulted in the formation of F-actin-microtubule rings rather than complete growth cone collapse. Dominant-negative variants of the SRF cofactor megakaryocytic acute leukemia (MAL) severely impeded neurite outgrowth and guidance. These data highlight essential links between SRF-mediated transcription and axon guidance and circuit formation in the hippocampus.
Collapse
Affiliation(s)
- Bernd Knöll
- Interfakultäres Institut für Zellbiologie, Abt. Molekularbiologie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
124
|
Lee SW, Kim EJ, Um SJ. FHL2 mediates p53-induced transcriptional activation through a direct association with HIPK2. Biochem Biophys Res Commun 2006; 339:1056-62. [PMID: 16343438 DOI: 10.1016/j.bbrc.2005.11.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Accepted: 11/17/2005] [Indexed: 11/25/2022]
Abstract
To understand the molecular mechanism underlying HIPK2 regulation of the transcriptional activation by p53, we sought to identify the protein that interacts with HIPK2. From our yeast two-hybrid screen, we found that four and a half LIM domains 2 (FHL2) could bind to the C-terminal half of HIPK2. Further assays in yeast mapped the minimal interaction domain to amino acids 812-907 in HIPK2. The interaction was confirmed using a GST pull-down assay in vitro, and an immunoprecipitation (IP) assay and fluorescence microscopy in vivo. FHL2 alone spread throughout both the cytoplasm and nucleus but was redistributed to dot-like structures in the nucleus when HIPK2 was coexpressed in HEK293 cells. When tethered to the Gal4-responsive promoter through the Gal4 DBD fusion, FHL2 showed autonomous transcriptional activity that was enhanced by wild-type HIPK2, but not by the kinase-defective mutant. In addition, FHL2 increased the p53-dependent transcriptional activation and had an additive effect on the activation when coexpressed with HIPK2, which was again not observed with the kinase-defective mutant of HIPK2. Finally, we found a ternary complex of p53, HIPK2, and FHL2 using IP, and their recruitment to the p53-responsive p21Waf1 promoter in chromatin IP assays. Overall, our findings indicate that FHL2 can also regulate p53 via a direct association with HIPK2.
Collapse
Affiliation(s)
- Sang-Wang Lee
- Department of Bioscience and Biotechnology/Institute of Bioscience, Sejong University, Seoul, Republic of Korea
| | | | | |
Collapse
|
125
|
Balza RO, Misra RP. Role of the serum response factor in regulating contractile apparatus gene expression and sarcomeric integrity in cardiomyocytes. J Biol Chem 2005; 281:6498-510. [PMID: 16368687 DOI: 10.1074/jbc.m509487200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The serum response factor (SRF) is a transcriptional regulator required for mesodermal development, including heart formation and function. Previous studies have described the role of SRF in controlling expression of structural genes involved in conferring the myogenic phenotype. Recent studies by us and others have demonstrated embryonic lethal cardiovascular phenotypes in SRF-null animals, but have not directly addressed the mechanistic role of SRF in controlling broad regulatory programs in cardiac cells. In this study, we used a loss-of-function approach to delineate the role of SRF in cardiomyocyte gene expression and function. In SRF-null neonatal cardiomyocytes, we observed severe defects in the contractile apparatus, including Z-disc and stress fiber formation, as well as mislocalization and/or attenuation of sarcomeric proteins. Consistent with this, gene array and reverse transcription-PCR analyses showed down-regulation of genes encoding key cardiac transcriptional regulatory factors and proteins required for the maintenance of sarcomeric structure, function, and regulation. Chromatin immunoprecipitation analysis revealed that at least a subset of these proteins are likely regulated directly by SRF. The results presented here indicate that SRF is an essential coordinator of cardiomyocyte function due to its ability to regulate expression of numerous genes (some previously identified and at least 28 targets newly identified in this study) that are involved in multiple and disparate levels of sarcomeric function and assembly.
Collapse
Affiliation(s)
- Robert O Balza
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
126
|
Lange S, Ehler E, Gautel M. From A to Z and back? Multicompartment proteins in the sarcomere. Trends Cell Biol 2005; 16:11-8. [PMID: 16337382 DOI: 10.1016/j.tcb.2005.11.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 10/03/2005] [Accepted: 11/21/2005] [Indexed: 12/11/2022]
Abstract
Sarcomeres, the smallest contractile units of striated muscle, are conventionally perceived as the most regular macromolecular assemblies in biology, with precisely assigned localizations for their constituent proteins. However, recent studies have revealed complex multiple locations for several sarcomere proteins within the sarcomere and other cellular compartments such as the nucleus. Several of these proteins appear to relocalize in response to mechanical stimuli. Here, we review the emerging role of these protein networks as dynamic information switchboards that communicate between the contractile machinery and the nucleus to central pathways controlling cell survival, protein breakdown, gene expression and extracellular signaling.
Collapse
Affiliation(s)
- Stephan Lange
- King's College London, Muscle Signalling and Development, The Randall Division of Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, UK
| | | | | |
Collapse
|
127
|
Pipes GCT, Sinha S, Qi X, Zhu CH, Gallardo TD, Shelton J, Creemers EE, Sutherland L, Richardson JA, Garry DJ, Wright WE, Owens GK, Olson EN. Stem cells and their derivatives can bypass the requirement of myocardin for smooth muscle gene expression. Dev Biol 2005; 288:502-13. [PMID: 16310178 DOI: 10.1016/j.ydbio.2005.10.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 09/28/2005] [Accepted: 10/03/2005] [Indexed: 10/25/2022]
Abstract
The Serum Response Factor (SRF) coactivator myocardin stimulates the transcription of multiple muscle genes during cardiac and smooth muscle development. Mouse embryos lacking myocardin die during the earliest stages of smooth muscle development and fail to express multiple smooth muscle marker genes in the embryonic dorsal aorta and other vascular structures. In this study, we used mutant embryonic stem cell lines to further define the role of myocardin in smooth muscle differentiation and vascular development. Misexpression of myocardin in undifferentiated muscle stem cells resulted in efficient activation of smooth muscle genes, and weaker activation of genes involved in cardiac and skeletal muscle differentiation. Remarkably, myocardin(-/-) embryonic stem cell lines differentiated into smooth muscle cells in vitro, although these cells expressed significantly decreased levels of smooth muscle contractile genes. Moreover, genetically labeled myocardin(-/-) ES cells were able to contribute to smooth muscle lineages in vivo. These results indicate that while myocardin function is sufficient for activation of SRF-dependent muscle gene expression in multiple cell types, myocardin-independent mechanism(s) can suffice for expression in some smooth muscle lineages.
Collapse
Affiliation(s)
- G C Teg Pipes
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Günther T, Poli C, Müller JM, Catala-Lehnen P, Schinke T, Yin N, Vomstein S, Amling M, Schüle R. Fhl2 deficiency results in osteopenia due to decreased activity of osteoblasts. EMBO J 2005; 24:3049-56. [PMID: 16079911 PMCID: PMC1201354 DOI: 10.1038/sj.emboj.7600773] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 07/14/2005] [Indexed: 11/09/2022] Open
Abstract
Osteoporosis is one of the major health problems today, yet little is known about the loss of bone mass caused by reduced activity of the bone-forming osteoblasts. Here we show that mice deficient for the transcriptional cofactor four and a half LIM domains 2 (Fhl2) exhibit a dramatic decrease of bone mass in both genders. Osteopenia is caused by a reduced bone formation rate that is solely due to the diminished activity of Fhl2-deficient osteoblasts, while their number remains unchanged. The number and activity of the bone-resorbing cells, the osteoclasts, is not altered. Enforced expression of Fhl2 in differentiated osteoblasts boosts mineralization in cell culture and, importantly, enhances bone formation in transgenic animals. Fhl2 increases the transcriptional activity of runt-related transcription factor 2 (Runx2), a key regulator of osteoblast function, and both proteins interact in vitro and in vivo. In summary, we present Fhl2-deficient mice as a unique model for osteopenia due to decreased osteoblast activity. Our data offer a novel concept to fight osteoporosis by modulating the anabolic activity of osteoblasts via Fhl2.
Collapse
Affiliation(s)
- Thomas Günther
- Universitäts-Frauenklinik und Zentrum für Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - Cecilia Poli
- Universitäts-Frauenklinik und Zentrum für Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - Judith M Müller
- Universitäts-Frauenklinik und Zentrum für Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - Philip Catala-Lehnen
- Department of Trauma, Hand and Reconstructive Surgery, Hamburg University School of Medicine, Hamburg, Germany
- Experimental Trauma Surgery and Skeletal Biology, Center for Biomechanics, Hamburg University School of Medicine, Hamburg, Germany
| | - Thorsten Schinke
- Department of Trauma, Hand and Reconstructive Surgery, Hamburg University School of Medicine, Hamburg, Germany
- Experimental Trauma Surgery and Skeletal Biology, Center for Biomechanics, Hamburg University School of Medicine, Hamburg, Germany
| | - Na Yin
- Universitäts-Frauenklinik und Zentrum für Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - Sandra Vomstein
- Universitäts-Frauenklinik und Zentrum für Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - Michael Amling
- Department of Trauma, Hand and Reconstructive Surgery, Hamburg University School of Medicine, Hamburg, Germany
- Experimental Trauma Surgery and Skeletal Biology, Center for Biomechanics, Hamburg University School of Medicine, Hamburg, Germany
| | - Roland Schüle
- Universitäts-Frauenklinik und Zentrum für Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
- Zentrum für Klinische Forschung, Molekulare Gynäkologie, Universitäts-Frauenklinik, Breisacherstr. 66, 79106 Freiburg, Germany. Tel.: +49 761 270 6310; Fax: +49 761 270 6311; E-mail:
| |
Collapse
|
129
|
Alberti S, Krause SM, Kretz O, Philippar U, Lemberger T, Casanova E, Wiebel FF, Schwarz H, Frotscher M, Schütz G, Nordheim A. Neuronal migration in the murine rostral migratory stream requires serum response factor. Proc Natl Acad Sci U S A 2005; 102:6148-53. [PMID: 15837932 PMCID: PMC1087932 DOI: 10.1073/pnas.0501191102] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The central nervous system is fundamentally dependent on guided cell migration, both during development and in adulthood. We report an absolute requirement of the transcription factor serum response factor (SRF) for neuronal migration in the mouse forebrain. Conditional, late-prenatal deletion of Srf causes neurons to accumulate ectopically at the subventricular zone (SVZ), a prime neurogenic region in the brain. SRF-deficient cells of the SVZ exhibit impaired tangential chain migration along the rostral migratory stream into the olfactory bulb. SVZ explants display retarded chain migration in vitro. Regarding target genes, SRF deficiency impairs expression of the beta-actin and gelsolin genes, accompanied by reduced cytoskeletal actin fiber density. At the posttranslational level, cofilin, a key regulator of actin dynamics, displays dramatically elevated inhibitory phosphorylation at Ser-3. Our studies indicate that SRF-controlled gene expression directs both the structure and dynamics of the actin microfilament, thereby determining cell-autonomous neuronal migration.
Collapse
Affiliation(s)
- Siegfried Alberti
- Department of Molecular Biology, Institute for Cell Biology, Tübingen University, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|