101
|
Greenblatt SM, Man N, Hamard PJ, Asai T, Karl D, Martinez C, Bilbao D, Stathias V, Jermakowicz AM, Duffort S, Tadi M, Blumenthal E, Newman S, Vu L, Xu Y, Liu F, Schurer SC, McCabe MT, Kruger RG, Xu M, Yang FC, Tenen DG, Watts J, Vega F, Nimer SD. CARM1 Is Essential for Myeloid Leukemogenesis but Dispensable for Normal Hematopoiesis. Cancer Cell 2018; 33:1111-1127.e5. [PMID: 29894694 PMCID: PMC6191185 DOI: 10.1016/j.ccell.2018.05.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 03/02/2018] [Accepted: 05/11/2018] [Indexed: 02/08/2023]
Abstract
Chromatin-modifying enzymes, and specifically the protein arginine methyltransferases (PRMTs), have emerged as important targets in cancer. Here, we investigated the role of CARM1 in normal and malignant hematopoiesis. Using conditional knockout mice, we show that loss of CARM1 has little effect on normal hematopoiesis. Strikingly, knockout of Carm1 abrogates both the initiation and maintenance of acute myeloid leukemia (AML) driven by oncogenic transcription factors. We show that CARM1 knockdown impairs cell-cycle progression, promotes myeloid differentiation, and ultimately induces apoptosis. Finally, we utilize a selective, small-molecule inhibitor of CARM1 to validate the efficacy of CARM1 inhibition in leukemia cells in vitro and in vivo. Collectively, this work suggests that targeting CARM1 may be an effective therapeutic strategy for AML.
Collapse
Affiliation(s)
- Sarah M Greenblatt
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Na Man
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Pierre-Jacques Hamard
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Takashi Asai
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daniel Karl
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Concepcion Martinez
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vasileios Stathias
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL 33136, USA
| | - Anna M Jermakowicz
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL 33136, USA
| | - Stephanie Duffort
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Madhavi Tadi
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ezra Blumenthal
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Samantha Newman
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ly Vu
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Ye Xu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Fan Liu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Stephan C Schurer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL 33136, USA; Center for Computational Science, University of Miami, Miami, FL 33136, USA
| | - Michael T McCabe
- Cancer Epigenetics Discovery Performance Unit, Oncology R&D, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA 19426, USA
| | - Ryan G Kruger
- Cancer Epigenetics Discovery Performance Unit, Oncology R&D, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA 19426, USA
| | - Mingjiang Xu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Feng-Chun Yang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daniel G Tenen
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore
| | - Justin Watts
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Francisco Vega
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami, Miami, FL 33136, USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
102
|
Smith E, Zhou W, Shindiapina P, Sif S, Li C, Baiocchi RA. Recent advances in targeting protein arginine methyltransferase enzymes in cancer therapy. Expert Opin Ther Targets 2018; 22:527-545. [PMID: 29781349 PMCID: PMC6311705 DOI: 10.1080/14728222.2018.1474203] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Exploration in the field of epigenetics has revealed the diverse roles of the protein arginine methyltransferase (PRMT) family of proteins in multiple disease states. These findings have led to the development of specific inhibitors and discovery of several new classes of drugs with potential to treat both benign and malignant conditions. Areas covered: We provide an overview on the role of PRMT enzymes in healthy and malignant cells, highlighting the role of arginine methylation in specific pathways relevant to cancer pathogenesis. Additionally, we describe structure and catalytic activity of PRMT and discuss the mechanisms of action of novel small molecule inhibitors of specific members of the arginine methyltransferase family. Expert opinion: As the field of PRMT biology advances, it's becoming clear that this class of enzymes is highly relevant to maintaining normal physiologic processes as well and disease pathogenesis. We discuss the potential impact of PRMT inhibitors as a broad class of drugs, including the pleiotropic effects, off target effects the need for more detailed PRMT-centric interactomes, and finally, the potential for targeting this class of enzymes in clinical development of experimental therapeutics for cancer.
Collapse
Affiliation(s)
- Emily Smith
- The Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Wei Zhou
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Polina Shindiapina
- The Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Said Sif
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Chenglong Li
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Robert A. Baiocchi
- The Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
103
|
Nakayama K, Szewczyk MM, dela Sena C, Wu H, Dong A, Zeng H, Li F, de Freitas RF, Eram MS, Schapira M, Baba Y, Kunitomo M, Cary DR, Tawada M, Ohashi A, Imaeda Y, Saikatendu KS, Grimshaw CE, Vedadi M, Arrowsmith CH, Barsyte-Lovejoy D, Kiba A, Tomita D, Brown PJ. TP-064, a potent and selective small molecule inhibitor of PRMT4 for multiple myeloma. Oncotarget 2018; 9:18480-18493. [PMID: 29719619 PMCID: PMC5915086 DOI: 10.18632/oncotarget.24883] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 03/06/2018] [Indexed: 01/23/2023] Open
Abstract
Protein arginine methyltransferase (PRMT) 4 (also known as coactivator-associated arginine methyltransferase 1; CARM1) is involved in a variety of biological processes and is considered as a candidate oncogene owing to its overexpression in several types of cancer. Selective PRMT4 inhibitors are useful tools for clarifying the molecular events regulated by PRMT4 and for validating PRMT4 as a therapeutic target. Here, we report the discovery of TP-064, a potent, selective, and cell-active chemical probe of human PRMT4 and its co-crystal structure with PRMT4. TP-064 inhibited the methyltransferase activity of PRMT4 with high potency (half-maximal inhibitory concentration, IC50 < 10 nM) and selectivity over other PRMT family proteins, and reduced arginine dimethylation of the PRMT4 substrates BRG1-associated factor 155 (BAF155; IC50= 340 ± 30 nM) and Mediator complex subunit 12 (MED12; IC50 = 43 ± 10 nM). TP-064 treatment inhibited the proliferation of a subset of multiple myeloma cell lines, with affected cells arrested in G1 phase of the cell cycle. TP-064 and its negative control (TP-064N) will be valuable tools to further investigate the biology of PRMT4 and the therapeutic potential of PRMT4 inhibition.
Collapse
Affiliation(s)
- Kazuhide Nakayama
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Magdalena M. Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Carlo dela Sena
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Hong Wu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | | | - Mohammad S. Eram
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Yuji Baba
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Mihoko Kunitomo
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Douglas R. Cary
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Michiko Tawada
- Medicinal Chemistry Research Laboratory, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Akihiro Ohashi
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasuhiro Imaeda
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Kumar Singh Saikatendu
- Structiural Biology, Takeda California Inc., 10410 Science Center Drive, San Diego, CA 92121, USA
| | - Charles E. Grimshaw
- Enzymology and Biophysical Chemistry, Takeda California Inc., 10410 Science Center Drive, San Diego, CA 92121, USA
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Atsushi Kiba
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Daisuke Tomita
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Peter J. Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
104
|
Raposo AE, Piller SC. Protein arginine methylation: an emerging regulator of the cell cycle. Cell Div 2018; 13:3. [PMID: 29568320 PMCID: PMC5859524 DOI: 10.1186/s13008-018-0036-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/13/2018] [Indexed: 12/19/2022] Open
Abstract
Protein arginine methylation is a common post-translational modification where a methyl group is added onto arginine residues of a protein to alter detection by its binding partners or regulate its activity. It is known to be involved in many biological processes, such as regulation of signal transduction, transcription, facilitation of protein–protein interactions, RNA splicing and transport. The enzymes responsible for arginine methylation, protein arginine methyltransferases (PRMTs), have been shown to methylate or associate with important regulatory proteins of the cell cycle and DNA damage repair pathways, such as cyclin D1, p53, p21 and the retinoblastoma protein. Overexpression of PRMTs resulting in aberrant methylation patterns in cancers often correlates with poor recovery prognosis. This indicates that protein arginine methylation is also an important regulator of the cell cycle, and consequently a target for cancer regulation. The effect of protein arginine methylation on the cell cycle and how this emerging key player of cell cycle regulation may be used in therapeutic strategies for cancer are the focus of this review.
Collapse
Affiliation(s)
- Anita E Raposo
- School of Science and Health, Western Sydney University, Penrith, NSW 2751 Australia
| | - Sabine C Piller
- School of Science and Health, Western Sydney University, Penrith, NSW 2751 Australia
| |
Collapse
|
105
|
Drew AE, Moradei O, Jacques SL, Rioux N, Boriack-Sjodin AP, Allain C, Scott MP, Jin L, Raimondi A, Handler JL, Ott HM, Kruger RG, McCabe MT, Sneeringer C, Riera T, Shapiro G, Waters NJ, Mitchell LH, Duncan KW, Moyer MP, Copeland RA, Smith J, Chesworth R, Ribich SA. Identification of a CARM1 Inhibitor with Potent In Vitro and In Vivo Activity in Preclinical Models of Multiple Myeloma. Sci Rep 2017; 7:17993. [PMID: 29269946 PMCID: PMC5740082 DOI: 10.1038/s41598-017-18446-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/12/2017] [Indexed: 01/06/2023] Open
Abstract
CARM1 is an arginine methyltransferase with diverse histone and non-histone substrates implicated in the regulation of cellular processes including transcriptional co-activation and RNA processing. CARM1 overexpression has been reported in multiple cancer types and has been shown to modulate oncogenic pathways in in vitro studies. Detailed understanding of the mechanism of action of CARM1 in oncogenesis has been limited by a lack of selective tool compounds, particularly for in vivo studies. We describe the identification and characterization of, to our knowledge, the first potent and selective inhibitor of CARM1 that exhibits anti-proliferative effects both in vitro and in vivo and, to our knowledge, the first demonstration of a role for CARM1 in multiple myeloma (MM). EZM2302 (GSK3359088) is an inhibitor of CARM1 enzymatic activity in biochemical assays (IC50 = 6 nM) with broad selectivity against other histone methyltransferases. Treatment of MM cell lines with EZM2302 leads to inhibition of PABP1 and SMB methylation and cell stasis with IC50 values in the nanomolar range. Oral dosing of EZM2302 demonstrates dose-dependent in vivo CARM1 inhibition and anti-tumor activity in an MM xenograft model. EZM2302 is a validated chemical probe suitable for further understanding the biological role CARM1 plays in cancer and other diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lei Jin
- Epizyme, Inc., Cambridge, Massachusetts, USA
| | | | - Jessica L Handler
- Epigenetics Discovery Performance Unit, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Heidi M Ott
- Epigenetics Discovery Performance Unit, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Ryan G Kruger
- Epigenetics Discovery Performance Unit, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Michael T McCabe
- Epigenetics Discovery Performance Unit, Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | - Jesse Smith
- Epizyme, Inc., Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
106
|
徐 华, 徐 世, 磨 凯. [Transcription of protein arginine N-methyltransferase genes in mouse dorsal root ganglia following peripheral nerve injury]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1620-1625. [PMID: 29292255 PMCID: PMC6744029 DOI: 10.3969/j.issn.1673-4254.2017.12.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the changes in the transcription of protein arginine methylation enzyme family genes in the dorsal root ganglia (DRG) following peripheral nerve injury in mice. METHODS C57BL6 mouse models of neuropathic pain induced by peripheral nerve injury were established by bilateral L4 spinal nerve ligation (SNL). At 7 days after SNL or sham operation, the DRG tissue was collected for transcriptional analysis of 9 protein arginine methylation enzyme genes (Prmt1?3, Carm1, and Prmt5?9) using RNA?Seq to identify the differentially expressed genes in the injured DRGs. We also established mouse models of lateral L4 SNL and models of chronic constriction injury (CCI) of the sciatic nerve and tested the paw withdrawal frequency (PWF) in response to mechanical stimulation and paw withdrawal latency (PWL) in response to thermal stimulation on 0, 3, 7 and 14 days after SNL or CCI; the expressions of the differentially expressed genes in the injured DRGs were verified in the two models using RT?qPCR. RESULTS Among the 9 protein arginine methylation enzyme family genes that were tissue?specifically expressed in the DRG, Prmt2 and Prmt3 showed the highest and Prmt6 showed the lowest basal expression. Compared with the sham?operated mice group, the mice receiving SNL exhibited upregulated Carm1 gene transcription (by 1.7 folds) but downregulated Prmt5, Prmt8 and Prmt9 transcription in the injured DRG (Prmt8 gene showed the most significant down?regulation by 16.3 folds). In mouse models of SNL and CCI, Carm1 gene expression increased progressively with time while Prmt8 transcription was obviously lowered on days 3, 7 and 14 after the injury; the transcription levels of Prmt1, Prmt5 and Prmt9 presented with no significant changes following the injuries. Both SNL and CCI induced mechanical allodynia and thermal hypersensitivities in the mice shown by increased PWF and decreased PWL on days 3, 7 and 14 after the injuries. CONCLUSION Periphery nerve injury induces Carm1 upregulation and Prmt8 downregulation in the injured DRG in mice, which sheds light on new targets for treatment of neuropathic pain.
Collapse
Affiliation(s)
- 华丽 徐
- />南方医科大学珠江医院麻醉科,广东 广州 510282Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 世元 徐
- />南方医科大学珠江医院麻醉科,广东 广州 510282Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 凯 磨
- />南方医科大学珠江医院麻醉科,广东 广州 510282Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
107
|
Boehm D, Ott M. Host Methyltransferases and Demethylases: Potential New Epigenetic Targets for HIV Cure Strategies and Beyond. AIDS Res Hum Retroviruses 2017; 33:S8-S22. [PMID: 29140109 DOI: 10.1089/aid.2017.0180] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A successful HIV cure strategy may require reversing HIV latency to purge hidden viral reservoirs or enhancing HIV latency to permanently silence HIV transcription. Epigenetic modifying agents show promise as antilatency therapeutics in vitro and ex vivo, but also affect other steps in the viral life cycle. In this review, we summarize what we know about cellular DNA and protein methyltransferases (PMTs) as well as demethylases involved in HIV infection. We describe the biology and function of DNA methyltransferases, and their controversial role in HIV infection. We further explain the biology of PMTs and their effects on lysine and arginine methylation of histone and nonhistone proteins. We end with a focus on protein demethylases, their unique modes of action and their emerging influence on HIV infection. An outlook on the use of methylation-modifying agents in investigational HIV cure strategies is provided.
Collapse
Affiliation(s)
- Daniela Boehm
- Gladstone Institute of Virology and Immunology, San Francisco, California
- Department of Medicine, University of California, San Francisco, California
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California
- Department of Medicine, University of California, San Francisco, California
| |
Collapse
|
108
|
Stouth DW, vanLieshout TL, Shen NY, Ljubicic V. Regulation of Skeletal Muscle Plasticity by Protein Arginine Methyltransferases and Their Potential Roles in Neuromuscular Disorders. Front Physiol 2017; 8:870. [PMID: 29163212 PMCID: PMC5674940 DOI: 10.3389/fphys.2017.00870] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) are a family of enzymes that catalyze the methylation of arginine residues on target proteins, thereby mediating a diverse set of intracellular functions that are indispensable for survival. Indeed, full-body knockouts of specific PRMTs are lethal and PRMT dysregulation has been implicated in the most prevalent chronic disorders, such as cancers and cardiovascular disease (CVD). PRMTs are now emerging as important mediators of skeletal muscle phenotype and plasticity. Since their first description in muscle in 2002, a number of studies employing wide varieties of experimental models support the hypothesis that PRMTs regulate multiple aspects of skeletal muscle biology, including development and regeneration, glucose metabolism, as well as oxidative metabolism. Furthermore, investigations in non-muscle cell types strongly suggest that proteins, such as peroxisome proliferator-activated receptor-γ coactivator-1α, E2F transcription factor 1, receptor interacting protein 140, and the tumor suppressor protein p53, are putative downstream targets of PRMTs that regulate muscle phenotype determination and remodeling. Recent studies demonstrating that PRMT function is dysregulated in Duchenne muscular dystrophy (DMD), spinal muscular atrophy (SMA), and amyotrophic lateral sclerosis (ALS) suggests that altering PRMT expression and/or activity may have therapeutic value for neuromuscular disorders (NMDs). This review summarizes our understanding of PRMT biology in skeletal muscle, and identifies uncharted areas that warrant further investigation in this rapidly expanding field of research.
Collapse
Affiliation(s)
- Derek W Stouth
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | | | - Nicole Y Shen
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
109
|
PRMT5: A novel regulator of Hepatitis B virus replication and an arginine methylase of HBV core. PLoS One 2017; 12:e0186982. [PMID: 29065155 PMCID: PMC5655436 DOI: 10.1371/journal.pone.0186982] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/11/2017] [Indexed: 02/08/2023] Open
Abstract
In mammals, protein arginine methyltransferase 5, PRMT5, is the main type II enzyme responsible for the majority of symmetric dimethylarginine formation in polypeptides. Recent study reported that PRMT5 restricts Hepatitis B virus (HBV) replication through epigenetic repression of HBV DNA transcription and interference with encapsidation of pregenomic RNA. Here we demonstrate that PRMT5 interacts with the HBV core (HBc) protein and dimethylates arginine residues within the arginine-rich domain (ARD) of the carboxyl-terminus. ARD consists of four arginine rich subdomains, ARDI, ARDII, ARDIII and ARDIV. Mutation analysis of ARDs revealed that arginine methylation of HBc required the wild-type status of both ARDI and ARDII. Mass spectrometry analysis of HBc identified multiple potential ubiquitination, methylation and phosphorylation sites, out of which lysine K7 and arginines R150 (within ARDI) and R156 (outside ARDs) were shown to be modified by ubiquitination and methylation, respectively. The HBc symmetric dimethylation appeared to be linked to serine phosphorylation and nuclear import of HBc protein. Conversely, the monomethylated HBc retained in the cytoplasm. Thus, overexpression of PRMT5 led to increased nuclear accumulation of HBc, and vice versa, down-regulation of PRMT5 resulted in reduced levels of HBc in nuclei of transfected cells. In summary, we identified PRMT5 as a potent controller of HBc cell trafficking and function and described two novel types of HBc post-translational modifications (PTMs), arginine methylation and ubiquitination.
Collapse
|
110
|
Zhang Z, Nikolai BC, Gates LA, Jung SY, Siwak EB, He B, Rice AP, O'Malley BW, Feng Q. Crosstalk between histone modifications indicates that inhibition of arginine methyltransferase CARM1 activity reverses HIV latency. Nucleic Acids Res 2017. [PMID: 28637181 PMCID: PMC5766202 DOI: 10.1093/nar/gkx550] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In eukaryotic cells, the gene expression status is strictly controlled by epigenetic modifications on chromatin. The repressive status of chromatin largely contributes to HIV latency. Studies have shown that modification of histone H3K27 acts as a key molecular switch for activation or suppression of many cellular genes. In this study, we found that K27-acetylated histone H3 specifically recruited Super Elongation Complex (SEC), the transcriptional elongation complex essential for HIV-1 long terminal repeat (LTR)-mediated and general cellular transcription. Interestingly, H3K27 acetylation further stimulates H3R26 methylation, which subsequently abrogates the recruitment of SEC, forming a negative feedback regulatory loop. Importantly, by inhibiting methyltransferase activity of CARM1, the enzyme responsible for H3R26 methylation, HIV-1 transcription is reactivated in several HIV latency cell models, including a primary resting CD4+ T cell model. When combined with other latency disrupting compounds such as JQ1 or vorinostat/SAHA, the CARM1 inhibitor achieved synergistic effects on HIV-1 activation. This study suggests that coordinated and dynamic modifications at histone H3K27 and H3R26 orchestrate HIV-1 LTR-mediated transcription, and potentially opens a new avenue to disrupt latent HIV-1 infection by targeting specific epigenetic enzymes.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Bryan C Nikolai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Leah A Gates
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Edward B Siwak
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Bin He
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Department of Medicine-Hematology & Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Andrew P Rice
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Qin Feng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
111
|
Vhuiyan MI, Pak ML, Park MA, Thomas D, Lakowski TM, Chalfant CE, Frankel A. PRMT2 interacts with splicing factors and regulates the alternative splicing of BCL-X. J Biochem 2017; 162:17-25. [PMID: 28057797 DOI: 10.1093/jb/mvw102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/11/2016] [Indexed: 12/14/2022] Open
Abstract
Protein arginine N-methyltransferase 2 (PRMT2) functions in JAK-STAT and Wnt/β-catenin signalling pathways, serves as a nuclear receptor-dependent transcriptional co-activator, and represses NF-κB and E2F1 transcription factor activities to promote apoptosis. We have previously demonstrated that PRMT2 interacts with PRMT1 and increases its activity. Here, we reveal associations using proteomics between the PRMT2 SH3 domain and splicing factors including Src-associated in mitosis 68 kDa protein (SAM68), a PRMT1 substrate and trans-acting factor that mediates BCL-X alternative splicing. We determined that PRMT2 interacts with SAM68 in cells and regulates its subcellular localization via the SH3 domain of PRMT2, prompting us to investigate the potential role of PRMT2 in BCL-X alternative splicing. We found that the expression of the full-length, wildtype form of PRMT2 promotes an increase in the BCL-X(L)/BCL-X(s) ratio in TNF-α or LPS stimulated cells. These results indicate that active PRMT2 may play a role during inflammation in alternative splicing regulation.
Collapse
Affiliation(s)
- Mynol I Vhuiyan
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Magnolia L Pak
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Margaret A Park
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Dylan Thomas
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ted M Lakowski
- College of Pharmacy, Pharmaceutical Analysis Laboratory, The University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Charles E Chalfant
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA.,Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA 23224, USA.,The Massey Cancer Center, Richmond, VA 23298, USA
| | - Adam Frankel
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
112
|
Blanc RS, Richard S. Arginine Methylation: The Coming of Age. Mol Cell 2017; 65:8-24. [PMID: 28061334 DOI: 10.1016/j.molcel.2016.11.003] [Citation(s) in RCA: 735] [Impact Index Per Article: 91.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/24/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022]
Abstract
Arginine methylation is a common post-translational modification functioning as an epigenetic regulator of transcription and playing key roles in pre-mRNA splicing, DNA damage signaling, mRNA translation, cell signaling, and cell fate decision. Recently, a wealth of studies using transgenic mouse models and selective PRMT inhibitors helped define physiological roles for protein arginine methyltransferases (PRMTs) linking them to diseases such as cancer and metabolic, neurodegenerative, and muscular disorders. This review describes the recent molecular advances that have been uncovered in normal and diseased mammalian cells.
Collapse
Affiliation(s)
- Roméo S Blanc
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Departments of Oncology and Medicine, McGill University, Montréal, QC H2W 1S6, Canada
| | - Stéphane Richard
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Departments of Oncology and Medicine, McGill University, Montréal, QC H2W 1S6, Canada.
| |
Collapse
|
113
|
Lambert CA, Garbacki N, Colige AC. Chemotherapy induces alternative transcription and splicing: Facts and hopes for cancer treatment. Int J Biochem Cell Biol 2017; 91:84-97. [PMID: 28433505 DOI: 10.1016/j.biocel.2017.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/04/2017] [Accepted: 04/15/2017] [Indexed: 01/14/2023]
|
114
|
Histone H3 Methylated at Arginine 17 Is Essential for Reprogramming the Paternal Genome in Zygotes. Cell Rep 2017; 20:2756-2765. [DOI: 10.1016/j.celrep.2017.08.088] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/31/2017] [Accepted: 08/25/2017] [Indexed: 01/29/2023] Open
|
115
|
Li S, Cheng D, Zhu B, Yang Q. The Overexpression of CARM1 Promotes Human Osteosarcoma Cell Proliferation through the pGSK3β/β-Catenin/cyclinD1 Signaling Pathway. Int J Biol Sci 2017; 13:976-984. [PMID: 28924379 PMCID: PMC5599903 DOI: 10.7150/ijbs.19191] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 04/16/2017] [Indexed: 12/28/2022] Open
Abstract
Osteosarcoma (OS) is a kind of malignant bone tumor that occurs frequently in the region surrounding the knee joint and poses a threat to the health of teenagers. Since the application of chemotherapy to treat OS, 5-year survival rate in patients has improved from 10% to 70%, but patient survival has not changed over the past four decades. Coactivator-associated arginine methyltransferase 1 (CARM1) is a member of the PRMT protein family; it acts as an oncogene in many cancers, but its function in OS is still unknown. In this study, we found that CARM1 is overexpressed in OS and its expression is correlated with the Enneking stage. CCK-8 and colony forming assays showed that proliferation in OS cell lines was downregulated when siRNA was used to knockdown CARM1 expression. The cell cycle was inhibited in S phase after si-CARM1 transfection in OS cell lines. An antibody array indicated that Erk1/2 (Thr202/Tyr204), PARS40 (Thr246), and GSK3β (Ser9) expression are affected by CARM1, and western blotting verified that CARM1 promotes OS cell proliferation via pGSK3β/β-catenin/cyclinD1 signaling. Accordingly, CARM1 is a crucial gene in OS and is a potential new treatment target.
Collapse
Affiliation(s)
- Shijie Li
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233, China
| | - Dongdong Cheng
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233, China
| | - Bin Zhu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233, China
| | - Qingcheng Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233, China
| |
Collapse
|
116
|
Li X, Lai Y, Li J, Zou M, Zou C. Oxidative stress destabilizes protein arginine methyltransferase 4 via glycogen synthase kinase 3β to impede lung epithelial cell migration. Am J Physiol Cell Physiol 2017. [PMID: 28637674 DOI: 10.1152/ajpcell.00073.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative stress impacts normal cellular function leading to the pathogenesis of various diseases including pulmonary illnesses. Protein arginine methyltransferase 4 (PRMT4) is critical for normal lung alveolar epithelial cell development; however, the regulation of PRMT4 within such pulmonary diseases has yet to be elucidated. Using biochemical approaches, we uncovered that peroxide (H2O2) treatment decreases PRMT4 protein stability in murine lung epithelial (MLE12) cells to impede cell migration. Protein kinase glycogen synthase kinase 3β (GSK-3β) interacts with PRMT4 and catalyzes PRMT4 T132 phosphorylation that protects PRMT4 from ubiquitin proteasomal degradation. H2O2 downregulates GSK-3β to reduce PRMT4 at protein level. PRMT4 promotes cell migration and H2O2 degrades PRMT4 to inhibit lung epithelial cell migration. These observations demonstrate that oxidative stress destabilizes PRMT4 via GSK-3β signaling to impede lung epithelial cell migration that may hinder the lung repair and regeneration process.
Collapse
Affiliation(s)
- Xiuying Li
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yandong Lai
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jin Li
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mingyi Zou
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Chunbin Zou
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
117
|
Shishkova E, Zeng H, Liu F, Kwiecien NW, Hebert AS, Coon JJ, Xu W. Global mapping of CARM1 substrates defines enzyme specificity and substrate recognition. Nat Commun 2017; 8:15571. [PMID: 28537268 PMCID: PMC5458078 DOI: 10.1038/ncomms15571] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 04/05/2017] [Indexed: 12/14/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) introduce arginine methylation, a post-translational modification with the increasingly eminent role in normal physiology and disease. PRMT4 or coactivator-associated arginine methyltransferase 1 (CARM1) is a propitious target for cancer therapy; however, few CARM1 substrates are known, and its mechanism of substrate recognition is poorly understood. Here we employed a quantitative mass spectrometry approach to globally profile CARM1 substrates in breast cancer cell lines. We identified >130 CARM1 protein substrates and validated in vitro >90% of sites they encompass. Bioinformatics analyses reveal enrichment of proline-containing motifs, in which both methylation sites and their proximal sequences are frequently targeted by somatic mutations in cancer. Finally, we demonstrate that the N-terminus of CARM1 is involved in substrate recognition and nearly indispensable for substrate methylation. We propose that development of CARM1-specific inhibitors should focus on its N-terminus and predict that other PRMTs may employ similar mechanism for substrate recognition.
Collapse
Affiliation(s)
- Evgenia Shishkova
- The Department of Biomolecular Chemistry, University of Wisconsin – Madison, Madison, Wisconsin 53705, USA
| | - Hao Zeng
- McArdle Laboratory for Cancer Research, University of Wisconsin – Madison, Madison, Wisconsin 53705, USA
| | - Fabao Liu
- McArdle Laboratory for Cancer Research, University of Wisconsin – Madison, Madison, Wisconsin 53705, USA
| | - Nicholas W. Kwiecien
- The Genome Center of Wisconsin, University of Wisconsin – Madison, Madison, Wisconsin 53705, USA
| | - Alexander S. Hebert
- The Genome Center of Wisconsin, University of Wisconsin – Madison, Madison, Wisconsin 53705, USA
| | - Joshua J. Coon
- The Department of Biomolecular Chemistry, University of Wisconsin – Madison, Madison, Wisconsin 53705, USA
- The Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin 53705, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin – Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
118
|
Jin S, Su H, Tran NT, Song J, Lu SS, Li Y, Huang S, Abdel-Wahab O, Liu Y, Zhao X. Splicing factor SF3B1K700E mutant dysregulates erythroid differentiation via aberrant alternative splicing of transcription factor TAL1. PLoS One 2017; 12:e0175523. [PMID: 28545085 PMCID: PMC5436638 DOI: 10.1371/journal.pone.0175523] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/27/2017] [Indexed: 11/18/2022] Open
Abstract
More than 60% of myeloid dysplasia syndrome (MDS) contains mutations in genes encoding for splicing factors such as SF3B1, U2AF, SRSF2 and ZRSR2. Mutations in SF3B1 are associated with 80% cases of refractory anemia with ring sideroblast (RARS), a subtype of MDS. SF3B1K700E is the most frequently mutated site among mutations on SF3B1. Yet the molecular mechanisms on how mutations of splicing factors lead to defective erythropoiesis are not clear. SF3B1K700E mutant binds to an RNA binding protein, RBM15, stronger than the wild type SF3B1 protein in co-immunoprecipitation assays. In addition, K700E mutant alters the RNA splicing of transcription factors TAL1 and GATA1. Via alternative RNA splicing, a novel short TAL1 transcript variant (TAL1s) is generated. Enhanced interaction between SF3B1 and RBM15 promotes the production of full-length TAL1 (TAL1fl) mRNA, while reduction of RBM15 protein level via PRMT1-mediated degradation pathway changes TAL1s/TAL1fl ratio in favor of TAL1s. TAL1s contains the helix-loop-helix DNA binding domain but not the N terminal region upstream of the DNA binding domain. The TAL1s protein loses its interaction with ETO2, which represses early erythropoiesis. In this vein, overexpression of TAL1s stimulates the transcription of β-hemoglobin in human leukemia K562 cells and promotes erythroid differentiation of human cord blood CD34+ cells cultured in erythropoietin-containing medium. Therefore, mutations of SF3B1 may block erythropoiesis via dysregulation of alternative RNA splicing of transcription factor TAL1, and targeting PRMT1 may alleviate the anemic symptoms in MDS patients.
Collapse
Affiliation(s)
- Shuiling Jin
- Department of Internal Medicine, Henan Cancer Hospital & Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Hairui Su
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ngoc-Tung Tran
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jing Song
- Department of Internal Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sydney S. Lu
- Human Oncology & Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Ying Li
- Macau Institute for Applied Research in Medicine and Health, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau. China
| | - Suming Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Omar Abdel-Wahab
- Human Oncology & Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Yanyan Liu
- Department of Internal Medicine, Henan Cancer Hospital & Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyang Zhao
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
119
|
Muddukrishna B, Jackson CA, Yu MC. Protein arginine methylation of Npl3 promotes splicing of the SUS1 intron harboring non-consensus 5' splice site and branch site. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:730-739. [PMID: 28392442 DOI: 10.1016/j.bbagrm.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/20/2017] [Accepted: 04/04/2017] [Indexed: 11/18/2022]
Abstract
Protein arginine methylation occurs on spliceosomal components and spliceosome-associated proteins, but how this modification contributes to their function in pre-mRNA splicing remains sparse. Here we provide evidence that protein arginine methylation of the yeast SR-/hnRNP-like protein Npl3 plays a role in facilitating efficient splicing of the SUS1 intron that harbors a non-consensus 5' splice site and branch site. In yeast cells lacking the major protein arginine methyltransferase HMT1, we observed a change in the co-transcriptional recruitment of the U1 snRNP subunit Snp1 and Npl3 to pre-mRNAs harboring both consensus (ECM33 and ASC1) and non-consensus (SUS1) 5' splice site and branch site. Using an Npl3 mutant that phenocopies wild-type Npl3 when expressed in Δhmt1 cells, we showed that the arginine methylation of Npl3 is responsible for this. Examination of pre-mRNA splicing efficiency in these mutants reveals the requirement of Npl3 methylation for the efficient splicing of SUS1 intron 1, but not of ECM33 or ASC1. Changing the 5' splice site and branch site in SUS1 intron 1 to the consensus form restored splicing efficiency in an Hmt1-independent manner. Results from biochemical studies show that methylation of Npl3 promotes its optimal association with the U1 snRNP through its association with the U1 snRNP subunit Mud1. Based on these data, we propose a model in which Hmt1, via arginine methylation of Npl3, facilitates U1 snRNP engagement with the pre-mRNA to promote usage of non-consensus splice sites by the splicing machinery.
Collapse
Affiliation(s)
- Bhavana Muddukrishna
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Christopher A Jackson
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Michael C Yu
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
120
|
Audagnotto M, Dal Peraro M. Protein post-translational modifications: In silico prediction tools and molecular modeling. Comput Struct Biotechnol J 2017; 15:307-319. [PMID: 28458782 PMCID: PMC5397102 DOI: 10.1016/j.csbj.2017.03.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 02/09/2023] Open
Abstract
Post-translational modifications (PTMs) occur in almost all proteins and play an important role in numerous biological processes by significantly affecting proteins' structure and dynamics. Several computational approaches have been developed to study PTMs (e.g., phosphorylation, sumoylation or palmitoylation) showing the importance of these techniques in predicting modified sites that can be further investigated with experimental approaches. In this review, we summarize some of the available online platforms and their contribution in the study of PTMs. Moreover, we discuss the emerging capabilities of molecular modeling and simulation that are able to complement these bioinformatics methods, providing deeper molecular insights into the biological function of post-translational modified proteins.
Collapse
Affiliation(s)
- Martina Audagnotto
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
121
|
Abstract
![]()
Post-translational
modifications of histones by protein methyltransferases
(PMTs) and histone demethylases (KDMs) play an important role in the
regulation of gene expression and transcription and are implicated
in cancer and many other diseases. Many of these enzymes also target
various nonhistone proteins impacting numerous crucial biological
pathways. Given their key biological functions and implications in
human diseases, there has been a growing interest in assessing these
enzymes as potential therapeutic targets. Consequently, discovering
and developing inhibitors of these enzymes has become a very active
and fast-growing research area over the past decade. In this review,
we cover the discovery, characterization, and biological application
of inhibitors of PMTs and KDMs with emphasis on key advancements in
the field. We also discuss challenges, opportunities, and future directions
in this emerging, exciting research field.
Collapse
Affiliation(s)
- H Ümit Kaniskan
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Michael L Martini
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Jian Jin
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| |
Collapse
|
122
|
Singh RN, Howell MD, Ottesen EW, Singh NN. Diverse role of survival motor neuron protein. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2017; 1860:299-315. [PMID: 28095296 PMCID: PMC5325804 DOI: 10.1016/j.bbagrm.2016.12.008] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 12/23/2016] [Accepted: 12/30/2016] [Indexed: 02/07/2023]
Abstract
The multifunctional Survival Motor Neuron (SMN) protein is required for the survival of all organisms of the animal kingdom. SMN impacts various aspects of RNA metabolism through the formation and/or interaction with ribonucleoprotein (RNP) complexes. SMN regulates biogenesis of small nuclear RNPs, small nucleolar RNPs, small Cajal body-associated RNPs, signal recognition particles and telomerase. SMN also plays an important role in DNA repair, transcription, pre-mRNA splicing, histone mRNA processing, translation, selenoprotein synthesis, macromolecular trafficking, stress granule formation, cell signaling and cytoskeleton maintenance. The tissue-specific requirement of SMN is dictated by the variety and the abundance of its interacting partners. Reduced expression of SMN causes spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. SMA displays a broad spectrum ranging from embryonic lethality to an adult onset. Aberrant expression and/or localization of SMN has also been associated with male infertility, inclusion body myositis, amyotrophic lateral sclerosis and osteoarthritis. This review provides a summary of various SMN functions with implications to a better understanding of SMA and other pathological conditions.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States.
| | - Matthew D Howell
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| |
Collapse
|
123
|
Rodriguez PC, Ochoa AC, Al-Khami AA. Arginine Metabolism in Myeloid Cells Shapes Innate and Adaptive Immunity. Front Immunol 2017; 8:93. [PMID: 28223985 PMCID: PMC5293781 DOI: 10.3389/fimmu.2017.00093] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/19/2017] [Indexed: 01/02/2023] Open
Abstract
Arginine metabolism has been a key catabolic and anabolic process throughout the evolution of the immune response. Accruing evidence indicates that arginine-catabolizing enzymes, mainly nitric oxide synthases and arginases, are closely integrated with the control of immune response under physiological and pathological conditions. Myeloid cells are major players that exploit the regulators of arginine metabolism to mediate diverse, although often opposing, immunological and functional consequences. In this article, we focus on the importance of arginine catabolism by myeloid cells in regulating innate and adaptive immunity. Revisiting this matter could result in novel therapeutic approaches by which the immunoregulatory nodes instructed by arginine metabolism can be targeted.
Collapse
Affiliation(s)
| | - Augusto C Ochoa
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA; Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Amir A Al-Khami
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA; Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
124
|
Yakubu RR, Silmon de Monerri NC, Nieves E, Kim K, Weiss LM. Comparative Monomethylarginine Proteomics Suggests that Protein Arginine Methyltransferase 1 (PRMT1) is a Significant Contributor to Arginine Monomethylation in Toxoplasma gondii. Mol Cell Proteomics 2017; 16:567-580. [PMID: 28143887 DOI: 10.1074/mcp.m117.066951] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Indexed: 12/16/2022] Open
Abstract
Arginine methylation is a common posttranslational modification found on nuclear and cytoplasmic proteins that has roles in transcriptional regulation, RNA metabolism and DNA repair. The protozoan parasite Toxoplasma gondii has a complex life cycle requiring transcriptional plasticity and has unique transcriptional regulatory pathways. Arginine methylation may play an important part in transcriptional regulation and splicing biology in this organism. The T. gondii genome contains five putative protein arginine methyltransferases (PRMTs), of which PRMT1 is important for cell division and growth. In order to better understand the function(s) of the posttranslational modification monomethyl arginine (MMA) in T. gondii, we performed a proteomic analysis of MMA proteins using affinity purification employing anti-MMA specific antibodies followed by mass spectrometry. The arginine monomethylome of T. gondii contains a large number of RNA binding proteins and multiple ApiAP2 transcription factors, suggesting a role for arginine methylation in RNA biology and transcriptional regulation. Surprisingly, 90% of proteins that are arginine monomethylated were detected as being phosphorylated in a previous phosphoproteomics study which raises the possibility of interplay between MMA and phosphorylation in this organism. Supporting this, a number of kinases are also arginine methylated. Because PRMT1 is thought to be a major PRMT in T. gondii, an organism which lacks a MMA-specific PRMT, we applied comparative proteomics to understand how PRMT1 might contribute to the MMA proteome in T. gondii We identified numerous putative PRMT1 substrates, which include RNA binding proteins, transcriptional regulators (e.g. AP2 transcription factors), and kinases. Together, these data highlight the importance of MMA and PRMT1 in arginine methylation in T. gondii, as a potential regulator of a large number of processes including RNA biology and transcription.
Collapse
Affiliation(s)
- Rama R Yakubu
- From the ‡Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Natalie C Silmon de Monerri
- §Department of Medicine- Division of Infectious Diseases, Albert Einstein College of Medicine, Bronx, New York
| | - Edward Nieves
- ¶Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York.,‖Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Kami Kim
- From the ‡Department of Pathology, Albert Einstein College of Medicine, Bronx, New York; .,§Department of Medicine- Division of Infectious Diseases, Albert Einstein College of Medicine, Bronx, New York.,**Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Louis M Weiss
- From the ‡Department of Pathology, Albert Einstein College of Medicine, Bronx, New York; .,§Department of Medicine- Division of Infectious Diseases, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
125
|
Peng C, Wong CC. The story of protein arginine methylation: characterization, regulation, and function. Expert Rev Proteomics 2017; 14:157-170. [PMID: 28043171 DOI: 10.1080/14789450.2017.1275573] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Arginine methylation is an important post-translational modification (PTM) in cells, which is catalyzed by a group of protein arginine methyltransferases (PRMTs). It plays significant roles in diverse cellular processes and various diseases. Misregulation and aberrant expression of PRMTs can provide potential biomarkers and therapeutic targets for drug discovery. Areas covered: Herein, we review the arginine methylation literature and summarize the methodologies for the characterization of this modification, as well as describe the recent insights into arginine methyltransferases and their biological functions in diseases. Expert commentary: Benefits from the enzyme-based large-scale screening approach, the novel affinity enrichment strategies, arginine methylated protein family is the focus of attention. Although a number of arginine methyltransferases and related substrates are identified, the catalytic mechanism of different types of PRMTs remains unclear and few related demethylases are characterized. Novel functional studies continuously reveal the importance of this modification in the cell cycle and diseases. A deeper understanding of arginine methylated proteins, modification sites, and their mechanisms of regulation is needed to explore their role in life processes, especially their relationship with diseases, thus accelerating the generation of potent, selective, cell-penetrant drug candidates.
Collapse
Affiliation(s)
- Chao Peng
- a National Center for Protein Science (Shanghai), Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai , China.,b Shanghai Science Research Center , Chinese Academy of Sciences , Shanghai , China
| | - Catherine Cl Wong
- a National Center for Protein Science (Shanghai), Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai , China.,b Shanghai Science Research Center , Chinese Academy of Sciences , Shanghai , China
| |
Collapse
|
126
|
Cura V, Marechal N, Troffer-Charlier N, Strub JM, van Haren MJ, Martin NI, Cianférani S, Bonnefond L, Cavarelli J. Structural studies of protein arginine methyltransferase 2 reveal its interactions with potential substrates and inhibitors. FEBS J 2016; 284:77-96. [PMID: 27879050 DOI: 10.1111/febs.13953] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/27/2016] [Accepted: 11/02/2016] [Indexed: 12/18/2022]
Abstract
PRMT2 is the less-characterized member of the protein arginine methyltransferase family in terms of structure, activity, and cellular functions. PRMT2 is a modular protein containing a catalytic Ado-Met-binding domain and unique Src homology 3 domain that binds proteins with proline-rich motifs. PRMT2 is involved in a variety of cellular processes and has diverse roles in transcriptional regulation through different mechanisms depending on its binding partners. PRMT2 has been demonstrated to have weak methyltransferase activity on a histone H4 substrate, but its optimal substrates have not yet been identified. To obtain insights into the function and activity of PRMT2, we solve several crystal structures of PRMT2 from two homologs (zebrafish and mouse) in complex with either the methylation product S-adenosyl-L-homocysteine or other compounds including the first synthetic PRMT2 inhibitor (Cp1) studied so far. We reveal that the N-terminal-containing SH3 module is disordered in the full-length crystal structures, and highlights idiosyncratic features of the PRMT2 active site. We identify a new nonhistone protein substrate belonging to the serine-/arginine-rich protein family which interacts with PRMT2 and we characterize six methylation sites by mass spectrometry. To better understand structural basis for Cp1 binding, we also solve the structure of the complex PRMT4:Cp1. We compare the inhibitor-protein interactions occurring in the PRMT2 and PRMT4 complex crystal structures and show that this compound inhibits efficiently PRMT2. These results are a first step toward a better understanding of PRMT2 substrate recognition and may accelerate the development of structure-based drug design of PRMT2 inhibitors. DATABASE All coordinates and structure factors have been deposited in the Protein Data Bank: zPRMT21-408 -SFG = 5g02; zPRMT273-408 -SAH = 5fub; mPRMT21-445 -SAH = 5ful; mPRMT21-445 -Cp1 = 5fwa, mCARM1130-487 -Cp1 = 5k8v.
Collapse
Affiliation(s)
- Vincent Cura
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U596, Université de Strasbourg, Illkirch, France
| | - Nils Marechal
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U596, Université de Strasbourg, Illkirch, France
| | - Nathalie Troffer-Charlier
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U596, Université de Strasbourg, Illkirch, France
| | - Jean-Marc Strub
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, UMR7178, Université de Strasbourg, France
| | - Matthijs J van Haren
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands
| | - Nathaniel I Martin
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands
| | - Sarah Cianférani
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, UMR7178, Université de Strasbourg, France
| | - Luc Bonnefond
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U596, Université de Strasbourg, Illkirch, France
| | - Jean Cavarelli
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U596, Université de Strasbourg, Illkirch, France
| |
Collapse
|
127
|
Transcriptional Elongation Regulator 1 Affects Transcription and Splicing of Genes Associated with Cellular Morphology and Cytoskeleton Dynamics and Is Required for Neurite Outgrowth in Neuroblastoma Cells and Primary Neuronal Cultures. Mol Neurobiol 2016; 54:7808-7823. [PMID: 27844289 DOI: 10.1007/s12035-016-0284-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/31/2016] [Indexed: 12/22/2022]
Abstract
TCERG1 is a highly conserved human protein implicated in interactions with the transcriptional and splicing machinery that is associated with neurodegenerative disorders. Biochemical, neuropathological, and genetic evidence suggests an important role for TCERG1 in Huntington's disease (HD) pathogenesis. At present, the molecular mechanism underlying TCERG1-mediated neuronal effects is unknown. Here, we show that TCERG1 depletion led to widespread alterations in mRNA processing that affected different types of alternative transcriptional or splicing events, indicating that TCERG1 plays a broad role in the regulation of alternative splicing. We observed considerable changes in the transcription and alternative splicing patterns of genes involved in cytoskeleton dynamics and neurite outgrowth. Accordingly, TCERG1 depletion in the neuroblastoma SH-SY5Y cell line and primary mouse neurons affected morphogenesis and resulted in reduced dendritic outgrowth, with a major effect on dendrite ramification and branching complexity. These defects could be rescued by ectopic expression of TCERG1. Our results indicate that TCERG1 affects expression of multiple mRNAs involved in neuron projection development, whose misregulation may be involved in TCERG1-linked neurological disorders.
Collapse
|
128
|
Ye F, Zhang W, Lu W, Xie Y, Jiang H, Jin J, Luo C. Identification of Novel Inhibitors against Coactivator Associated Arginine Methyltransferase 1 Based on Virtual Screening and Biological Assays. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7086390. [PMID: 27872854 PMCID: PMC5107250 DOI: 10.1155/2016/7086390] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/19/2016] [Accepted: 10/03/2016] [Indexed: 11/17/2022]
Abstract
Overexpression of coactivator associated arginine methyltransferase 1 (CARM1), a protein arginine N-methyltransferase (PRMT) family enzyme, is associated with various diseases including cancers. Consequently, the development of small-molecule inhibitors targeting PRMTs has significant value for both research and therapeutic purposes. In this study, together with structure-based virtual screening with biochemical assays, two compounds DC_C11 and DC_C66 were identified as novel inhibitors of CARM1. Cellular studies revealed that the two inhibitors are cell membrane permeable and effectively blocked proliferation of cancer cells including HELA, K562, and MCF7. We further predicted the binding mode of these inhibitors through molecular docking analysis, which indicated that the inhibitors competitively occupied the binding site of the substrate and destroyed the protein-protein interactions between CARM1 and its substrates. Overall, this study has shed light on the development of small-molecule CARM1 inhibitors with novel scaffolds.
Collapse
Affiliation(s)
- Fei Ye
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Hangzhou, China
| | - Weiyao Zhang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wenchao Lu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiqian Xie
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hao Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia Jin
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
129
|
Luo C, Cai XT, Du J, Zhao TL, Wang PF, Zhao PX, Liu R, Xie Q, Cao XF, Xiang CB. PARAQUAT TOLERANCE3 Is an E3 Ligase That Switches off Activated Oxidative Response by Targeting Histone-Modifying PROTEIN METHYLTRANSFERASE4b. PLoS Genet 2016; 12:e1006332. [PMID: 27676073 PMCID: PMC5038976 DOI: 10.1371/journal.pgen.1006332] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/30/2016] [Indexed: 11/28/2022] Open
Abstract
Oxidative stress is unavoidable for aerobic organisms. When abiotic and biotic stresses are encountered, oxidative damage could occur in cells. To avoid this damage, defense mechanisms must be timely and efficiently modulated. While the response to oxidative stress has been extensively studied in plants, little is known about how the activated response is switched off when oxidative stress is diminished. By studying Arabidopsis mutant paraquat tolerance3, we identified the genetic locus PARAQUAT TOLERANCE3 (PQT3) as a major negative regulator of oxidative stress tolerance. PQT3, encoding an E3 ubiquitin ligase, is rapidly down-regulated by oxidative stress. PQT3 has E3 ubiquitin ligase activity in ubiquitination assay. Subsequently, we identified PRMT4b as a PQT3-interacting protein. By histone methylation, PRMT4b upregulates the expression of APX1 and GPX1, encoding two key enzymes against oxidative stress. On the other hand, PRMT4b is recognized by PQT3 for targeted degradation via 26S proteasome. Therefore, we have identified PQT3 as an E3 ligase that acts as a negative regulator of activated response to oxidative stress and found that histone modification by PRMT4b at APX1 and GPX1 loci plays an important role in oxidative stress tolerance. Oxidative stress is a major stress in plant cells when biotic and abiotic stresses are imposed. While the response to oxidative stress has been extensively studied, little is known about how the activated response is switched off when oxidative stress is diminished. By studying Arabidopsis mutant paraquat tolerance3, we identified the genetic locus PARAQUAT TOLERANCE3 (PQT3) as a major negative regulator of oxidative tolerance. PQT3 encodes an E3 ubiquitin ligase and is rapidly down-regulated by oxidative stress. Subsequently, we identified PRMT4b as a PQT3-interacting protein. PQT3 was demonstrated to recognize PRMT4b for targeted degradation via 26S proteasome. By histone methylation, PRMT4b may regulate the expression of APX1 and GPX1, encoding two key enzymes against oxidative stress. Therefore, we have identified PQT3 as an E3 ubiquitin ligase that turns off the activated response to oxidative stress. Our study provides new insights into the post-translational regulation of plant oxidative stress response and ROS signaling.
Collapse
Affiliation(s)
- Chao Luo
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Xiao-Teng Cai
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Jin Du
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Tao-Lan Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, China
| | - Peng-Fei Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, China
| | - Ping-Xia Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Rui Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, China
| | - Xiao-Feng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, China
| | - Cheng-Bin Xiang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| |
Collapse
|
130
|
Shen Y, Szewczyk MM, Eram MS, Smil D, Kaniskan HÜ, de Freitas RF, Senisterra G, Li F, Schapira M, Brown PJ, Arrowsmith CH, Barsyte-Lovejoy D, Liu J, Vedadi M, Jin J. Discovery of a Potent, Selective, and Cell-Active Dual Inhibitor of Protein Arginine Methyltransferase 4 and Protein Arginine Methyltransferase 6. J Med Chem 2016; 59:9124-9139. [PMID: 27584694 DOI: 10.1021/acs.jmedchem.6b01033] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Well-characterized selective inhibitors of protein arginine methyltransferases (PRMTs) are invaluable chemical tools for testing biological and therapeutic hypotheses. Based on 4, a fragment-like inhibitor of type I PRMTs, we conducted structure-activity relationship (SAR) studies and explored three regions of this scaffold. The studies led to the discovery of a potent, selective, and cell-active dual inhibitor of PRMT4 and PRMT6, 17 (MS049). As compared to 4, 17 displayed much improved potency for PRMT4 and PRMT6 in both biochemical and cellular assays. It was selective for PRMT4 and PRMT6 over other PRMTs and a broad range of other epigenetic modifiers and nonepigenetic targets. We also developed 46 (MS049N), which was inactive in biochemical and cellular assays, as a negative control for chemical biology studies. Considering possible overlapping substrate specificity of PRMTs, 17 and 46 are valuable chemical tools for dissecting specific biological functions and dysregulation of PRMT4 and PRMT6 in health and disease.
Collapse
Affiliation(s)
- Yudao Shen
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Mohammad S Eram
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - David Smil
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - H Ümit Kaniskan
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | | | - Guillermo Senisterra
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada.,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 2M9, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Jing Liu
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Jian Jin
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
131
|
Larsen SC, Sylvestersen KB, Mund A, Lyon D, Mullari M, Madsen MV, Daniel JA, Jensen LJ, Nielsen ML. Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells. Sci Signal 2016; 9:rs9. [DOI: 10.1126/scisignal.aaf7329] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
132
|
Marino F, Mommen GPM, Jeko A, Meiring HD, van Gaans-van den Brink JAM, Scheltema RA, van Els CACM, Heck AJR. Arginine (Di)methylated Human Leukocyte Antigen Class I Peptides Are Favorably Presented by HLA-B*07. J Proteome Res 2016; 16:34-44. [PMID: 27503676 DOI: 10.1021/acs.jproteome.6b00528] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alterations in protein post-translational modification (PTM) are recognized hallmarks of diseases. These modifications potentially provide a unique source of disease-related human leukocyte antigen (HLA) class I-presented peptides that can elicit specific immune responses. While phosphorylated HLA peptides have already received attention, arginine methylated HLA class I peptide presentation has not been characterized in detail. In a human B-cell line we detected 149 HLA class I peptides harboring mono- and/or dimethylated arginine residues by mass spectrometry. A striking preference was observed in the presentation of arginine (di)methylated peptides for HLA-B*07 molecules, likely because the binding motifs of this allele resemble consensus sequences recognized by arginine methyl-transferases. Moreover, HLA-B*07-bound peptides preferentially harbored dimethylated groups at the P3 position, thus consecutively to the proline anchor residue. Such a proline-arginine sequence has been associated with the arginine methyl-transferases CARM1 and PRMT5. Making use of the specific neutral losses in fragmentation spectra, we found most of the peptides to be asymmetrically dimethylated, most likely by CARM1. These data expand our knowledge of the processing and presentation of arginine (di)methylated HLA class I peptides and demonstrate that these types of modified peptides can be presented for recognition by T-cells. HLA class I peptides with mono- and dimethylated arginine residues may therefore offer a novel target for immunotherapy.
Collapse
Affiliation(s)
- Fabio Marino
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Centre , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Geert P M Mommen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Centre , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Institute for Translational Vaccinology , P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Anita Jeko
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Centre , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Hugo D Meiring
- Institute for Translational Vaccinology , P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | | | - Richard A Scheltema
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Centre , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment , P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Centre , Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
133
|
Kaniskan HÜ, Eram MS, Liu J, Smil D, Martini ML, Shen Y, Santhakumar V, Brown PJ, Arrowsmith C, Vedadi M, Jin J. Design and synthesis of selective, small molecule inhibitors of coactivator-associated arginine methyltransferase 1 (CARM1). MEDCHEMCOMM 2016; 7:1793-1796. [PMID: 28042453 DOI: 10.1039/c6md00342g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) is a type I protein arginine methyltransferase (PRMT) that catalyzes the conversion of arginine into monomethylarginine (MMA) and further into asymmetric dimethylarginine (ADMA). CARM1 methylates histone 3 arginines 17 and 26, as well as numerous non-histone proteins including CBP/p300, SRC-3, NCOA2, PABP1, and SAP49, while also functioning as a coactivator for various proteins that have been linked to cancer such as p53, NF-κβ, β-catenin, E2F1 and steroid hormone receptor ERα. As a result, CARM1 is involved in transcriptional activation, cellular differentiation, cell cycle progression, RNA splicing and DNA damage response. It has been associated with several human cancers including breast, colon, prostate and lung cancers and thus, is a potential oncological target. Herein, we present the design and synthesis of a series of CARM1 inhibitors. Based on a fragment hit, we discovered compound 9 as a potent inhibitor that displayed selectivity for CARM1 over other PRMTs.
Collapse
Affiliation(s)
- H Ü Kaniskan
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - M S Eram
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - J Liu
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - D Smil
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - M L Martini
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Y Shen
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - V Santhakumar
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - P J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - C Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada; Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - M Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - J Jin
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
134
|
Ferreira de Freitas R, Eram MS, Smil D, Szewczyk MM, Kennedy S, Brown PJ, Santhakumar V, Barsyte-Lovejoy D, Arrowsmith CH, Vedadi M, Schapira M. Discovery of a Potent and Selective Coactivator Associated Arginine Methyltransferase 1 (CARM1) Inhibitor by Virtual Screening. J Med Chem 2016; 59:6838-47. [PMID: 27390919 DOI: 10.1021/acs.jmedchem.6b00668] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protein arginine methyltransferases (PRMTs) represent an emerging target class in oncology and other disease areas. So far, the most successful strategy to identify PRMT inhibitors has been to screen large to medium-size chemical libraries. Attempts to develop PRMT inhibitors using receptor-based computational methods have met limited success. Here, using virtual screening approaches, we identify 11 CARM1 (PRMT4) inhibitors with ligand efficiencies ranging from 0.28 to 0.84. CARM1 selective hits were further validated by orthogonal methods. Two structure-based rounds of optimization produced 27 (SGC2085), a CARM1 inhibitor with an IC50 of 50 nM and more than hundred-fold selectivity over other PRMTs. These results indicate that virtual screening strategies can be successfully applied to Rossmann-fold protein methyltransferases.
Collapse
Affiliation(s)
| | - Mohammad S Eram
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada
| | - David Smil
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada
| | - Steven Kennedy
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada
| | | | | | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada.,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto , Toronto, ON M5G 1L7, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto , Toronto, ON M5S 1A8, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto , Toronto, ON M5S 1A8, Canada
| |
Collapse
|
135
|
Using oriented peptide array libraries to evaluate methylarginine-specific antibodies and arginine methyltransferase substrate motifs. Sci Rep 2016; 6:28718. [PMID: 27338245 PMCID: PMC4919620 DOI: 10.1038/srep28718] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/08/2016] [Indexed: 12/29/2022] Open
Abstract
Signal transduction in response to stimuli relies on the generation of cascades of posttranslational modifications that promote protein-protein interactions and facilitate the assembly of distinct signaling complexes. Arginine methylation is one such modification, which is catalyzed by a family of nine protein arginine methyltransferases, or PRMTs. Elucidating the substrate specificity of each PRMT will promote a better understanding of which signaling networks these enzymes contribute to. Although many PRMT substrates have been identified, and their methylation sites mapped, the optimal target motif for each of the nine PRMTs has not been systematically addressed. Here we describe the use of Oriented Peptide Array Libraries (OPALs) to methodically dissect the preferred methylation motifs for three of these enzymes - PRMT1, CARM1 and PRMT9. In parallel, we show that an OPAL platform with a fixed methylarginine residue can be used to validate the methyl-specific and sequence-specific properties of antibodies that have been generated against different PRMT substrates, and can also be used to confirm the pan nature of some methylarginine-specific antibodies.
Collapse
|
136
|
Bigaud E, Corrales FJ. Methylthioadenosine (MTA) Regulates Liver Cells Proteome and Methylproteome: Implications in Liver Biology and Disease. Mol Cell Proteomics 2016; 15:1498-1510. [PMID: 26819315 PMCID: PMC4858935 DOI: 10.1074/mcp.m115.055772] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/22/2016] [Indexed: 12/21/2022] Open
Abstract
Methylthioadenosine phosphorylase (MTAP), a key enzyme in the adenine and methionine salvage pathways, catalyzes the hydrolysis of methylthioadenosine (MTA), a compound suggested to affect pivotal cellular processes in part through the regulation of protein methylation. MTAP is expressed in a wide range of cell types and tissues, and its deletion is common to cancer cells and in liver injury. The aim of this study was to investigate the proteome and methyl proteome alterations triggered by MTAP deficiency in liver cells to define novel regulatory mechanisms that may explain the pathogenic processes of liver diseases. iTRAQ analysis resulted in the identification of 216 differential proteins (p < 0.05) that suggest deregulation of cellular pathways as those mediated by ERK or NFκB. R-methyl proteome analysis led to the identification of 74 differentially methylated proteins between SK-Hep1 and SK-Hep1+ cells, including 116 new methylation sites. Restoring normal MTA levels in SK-Hep1+ cells parallels the specific methylation of 56 proteins, including KRT8, TGF, and CTF8A, which provides a novel regulatory mechanism of their activity with potential implications in carcinogenesis. Inhibition of RNA-binding proteins methylation is especially relevant upon accumulation of MTA. As an example, methylation of quaking protein in Arg(242) and Arg(256) in SK-Hep1+ cells may play a pivotal role in the regulation of its activity as indicated by the up-regulation of its target protein p27(kip1) The phenotype associated with a MTAP deficiency was further verified in the liver of MTAP± mice. Our data support that MTAP deficiency leads to MTA accumulation and deregulation of central cellular pathways, increasing proliferation and decreasing the susceptibility to chemotherapeutic drugs, which involves differential protein methylation. Data are available via ProteomeXchange with identifier PXD002957 (http://www.ebi.ac.uk/pride/archive/projects/PXD002957).
Collapse
Affiliation(s)
- Emilie Bigaud
- From the §Department of Hepatology, Proteomics Laboratory, CIMA, University of Navarra; CIBERehd; IDISNA, Pamplona, 31008 Spain
| | - Fernando J Corrales
- From the §Department of Hepatology, Proteomics Laboratory, CIMA, University of Navarra; CIBERehd; IDISNA, Pamplona, 31008 Spain
| |
Collapse
|
137
|
Sánchez-Hernández N, Boireau S, Schmidt U, Muñoz-Cobo JP, Hernández-Munain C, Bertrand E, Suñé C. The in vivo dynamics of TCERG1, a factor that couples transcriptional elongation with splicing. RNA (NEW YORK, N.Y.) 2016; 22:571-582. [PMID: 26873599 PMCID: PMC4793212 DOI: 10.1261/rna.052795.115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 12/23/2015] [Indexed: 06/05/2023]
Abstract
Coupling between transcription and RNA processing is key for gene regulation. Using live-cell photobleaching techniques, we investigated the factor TCERG1, which coordinates transcriptional elongation with splicing. We demonstrate that TCERG1 is highly mobile in the nucleoplasm and that this mobility is slightly decreased when it is associated with speckles. Dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) but not α-amanitin treatment reduced the mobility of TCERG1, which suggests interaction with paused transcription elongation complexes. We found that TCERG1 mobility is rapid at the transcription site (TS) of a reporter that splices post-transcriptionally and that TCERG1 is recruited to the active TS independent of the CTD of RNAPII, thus excluding phosphorylated CTD as a requirement for recruiting this factor to the TS. Importantly, the mobility of TCERG1 is reduced when the reporter splices cotranscriptionally, which suggests that TCERG1 forms new macromolecular complexes when splicing occurs cotranscriptionally. In this condition, spliceostatin A has no effect, indicating that TCERG1 rapidly binds and dissociates from stalled spliceosomal complexes and that the mobility properties of TCERG1 do not depend on events occurring after the initial spliceosome formation. Taken together, these data suggest that TCERG1 binds independently to elongation and splicing complexes, thus performing their coupling by transient interactions rather than by stable association with one or the other complexes. This finding has conceptual implications for understanding the coupling between transcription and RNA processing.
Collapse
Affiliation(s)
- Noemí Sánchez-Hernández
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain
| | - Stéphanie Boireau
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier, France
| | - Ute Schmidt
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier, France
| | - Juan Pablo Muñoz-Cobo
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain
| | - Cristina Hernández-Munain
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier, France
| | - Carlos Suñé
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain
| |
Collapse
|
138
|
Greenblatt SM, Liu F, Nimer SD. Arginine methyltransferases in normal and malignant hematopoiesis. Exp Hematol 2016; 44:435-41. [PMID: 27026282 DOI: 10.1016/j.exphem.2016.03.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 02/02/2023]
Abstract
Arginine methylation is an abundant covalent modification that regulates diverse cellular processes, including transcription, translation, DNA repair, and RNA processing. The enzymes that catalyze these marks are known as the protein arginine methyltransferases (PRMTs), and they can generate asymmetric dimethyl arginine (type I arginine methyltransferases), symmetric dimethylarginine (type II arginine methyltransferases), or monomethyarginine (type III arginine methyltransferases). The PRMTs are capable of modifying diverse substrates, from histone components to specific nuclear and cytoplasmic proteins. Additionally, the PRMTs can orchestrate chromatin remodeling by blocking the docking of other epigenetic modifying enzymes or by recruiting them to specific gene loci. In the hematopoietic system, PRMTs can regulate cell behavior, including the critical balance between stem cell self-renewal and differentiation, in at least two critical ways, via (i) the covalent modification of transcription factors and (ii) the regulation of histone modifications at promoters critical to cell fate determination. Given these important functions, it is not surprising that these processes are altered in hematopoietic malignancies, such as acute myeloid leukemia, where they promote increased self-renewal and impair hematopoietic stem and progenitor cell differentiation.
Collapse
Affiliation(s)
| | - Fan Liu
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL.
| |
Collapse
|
139
|
Abstract
The post-translational modification of arginine residues represents a key mechanism for the epigenetic control of gene expression. Aberrant levels of histone arginine modifications have been linked to the development of several diseases including cancer. In recent years, great progress has been made in understanding the physiological role of individual arginine modifications and their effects on chromatin function. The present review aims to summarize the structural and functional aspects of histone arginine modifying enzymes and their impact on gene transcription. We will discuss the potential for targeting these proteins with small molecules in a variety of disease states.
Collapse
Affiliation(s)
- Jakob Fuhrmann
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Paul R. Thompson
- Department
of Biochemistry and Molecular Pharmacology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
- Program
in Chemical Biology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|
140
|
Boriack-Sjodin PA, Jin L, Jacques SL, Drew A, Sneeringer C, Scott MP, Moyer MP, Ribich S, Moradei O, Copeland RA. Structural Insights into Ternary Complex Formation of Human CARM1 with Various Substrates. ACS Chem Biol 2016; 11:763-71. [PMID: 26551522 DOI: 10.1021/acschembio.5b00773] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) is a protein arginine N-methyltransferase (PRMT) enzyme that has been implicated in a variety of cancers. CARM1 is known to methylate histone H3 and nonhistone substrates. To date, several crystal structures of CARM1 have been solved, including structures with small molecule inhibitors, but no ternary structures with nucleoside and peptide substrates have been reported. Here, the crystal structures of human CARM1 with the S-adenosylmethione (SAM) mimic sinefungin and three different peptide sequences from histone H3 and PABP1 are presented, with both nonmethylated and singly methylated arginine residues exemplified. This is the first example of multiple substrate sequences solved in a single PRMT enzyme and demonstrates how the CARM1 binding site is capable of accommodating a variety of peptide sequences while maintaining a core binding mode for the unmethylated and monomethylated substrates. Comparison of these with other PRMT enzyme-peptide structures shows hydrogen bonding patterns that may be thematic of these binding sites.
Collapse
Affiliation(s)
| | - Lei Jin
- Epizyme, Inc. 400 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Suzanne L. Jacques
- Epizyme, Inc. 400 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Allison Drew
- Epizyme, Inc. 400 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Chris Sneeringer
- Epizyme, Inc. 400 Technology Square, Cambridge, Massachusetts 02139, United States
| | | | - Mikel P. Moyer
- Epizyme, Inc. 400 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Scott Ribich
- Epizyme, Inc. 400 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Oscar Moradei
- Epizyme, Inc. 400 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Robert A. Copeland
- Epizyme, Inc. 400 Technology Square, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
141
|
The Role of Protein Arginine Methyltransferases in Inflammatory Responses. Mediators Inflamm 2016; 2016:4028353. [PMID: 27041824 PMCID: PMC4793140 DOI: 10.1155/2016/4028353] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/14/2016] [Indexed: 12/29/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) mediate the methylation of a number of protein substrates of arginine residues and serve critical functions in many cellular responses, including cancer development, progression, and aggressiveness, T-lymphocyte activation, and hepatic gluconeogenesis. There are nine members of the PRMT family, which are divided into 4 types (types I–IV). Although most PRMTs do not require posttranslational modification (PTM) to be activated, fine-tuning modifications, such as interactions between cofactor proteins, subcellular compartmentalization, and regulation of RNA, via micro-RNAs, seem to be required. Inflammation is an essential defense reaction of the body to eliminate harmful stimuli, including damaged cells, irritants, or pathogens. However, chronic inflammation can eventually cause several types of diseases, including some cancers, atherosclerosis, rheumatoid arthritis, and periodontitis. Therefore, inflammation responses should be well modulated. In this review, we briefly discuss the role of PRMTs in the control of inflammation. More specifically, we review the roles of four PRMTs (CARM1, PRMT1, PRMT5, and PRMT6) in modulating inflammation responses, particularly in terms of modulating the transcriptional factors or cofactors related to inflammation. Based on the regulatory roles known so far, we propose that PRMTs should be considered one of the target molecule groups that modulate inflammatory responses.
Collapse
|
142
|
Hu H, Qian K, Ho MC, Zheng YG. Small Molecule Inhibitors of Protein Arginine Methyltransferases. Expert Opin Investig Drugs 2016; 25:335-58. [PMID: 26789238 DOI: 10.1517/13543784.2016.1144747] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Arginine methylation is an abundant posttranslational modification occurring in mammalian cells and catalyzed by protein arginine methyltransferases (PRMTs). Misregulation and aberrant expression of PRMTs are associated with various disease states, notably cancer. PRMTs are prominent therapeutic targets in drug discovery. AREAS COVERED The authors provide an updated review of the research on the development of chemical modulators for PRMTs. Great efforts are seen in screening and designing potent and selective PRMT inhibitors, and a number of micromolar and submicromolar inhibitors have been obtained for key PRMT enzymes such as PRMT1, CARM1, and PRMT5. The authors provide a focus on their chemical structures, mechanism of action, and pharmacological activities. Pros and cons of each type of inhibitors are also discussed. EXPERT OPINION Several key challenging issues exist in PRMT inhibitor discovery. Structural mechanisms of many PRMT inhibitors remain unclear. There lacks consistency in potency data due to divergence of assay methods and conditions. Physiologically relevant cellular assays are warranted. Substantial engagements are needed to investigate pharmacodynamics and pharmacokinetics of the new PRMT inhibitors in pertinent disease models. Discovery and evaluation of potent, isoform-selective, cell-permeable and in vivo-active PRMT modulators will continue to be an active arena of research in years ahead.
Collapse
Affiliation(s)
- Hao Hu
- a Department of Pharmaceutical and Biomedical Sciences , The University of Georgia , Athens , GA , USA
| | - Kun Qian
- a Department of Pharmaceutical and Biomedical Sciences , The University of Georgia , Athens , GA , USA
| | - Meng-Chiao Ho
- b Institute of Biological Chemistry , Academia Sinica , Nankang , Taipei , Taiwan
| | - Y George Zheng
- a Department of Pharmaceutical and Biomedical Sciences , The University of Georgia , Athens , GA , USA
| |
Collapse
|
143
|
Jacques SL, Aquino KP, Gureasko J, Boriack-Sjodin PA, Porter Scott M, Copeland RA, Riera TV. CARM1 Preferentially Methylates H3R17 over H3R26 through a Random Kinetic Mechanism. Biochemistry 2016; 55:1635-44. [DOI: 10.1021/acs.biochem.5b01071] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Jodi Gureasko
- Epizyme Inc., Cambridge, Massachusetts 02139, United States
| | | | | | | | | |
Collapse
|
144
|
So BR, Wan L, Zhang Z, Li P, Babiash E, Duan J, Younis I, Dreyfuss G. A U1 snRNP-specific assembly pathway reveals the SMN complex as a versatile hub for RNP exchange. Nat Struct Mol Biol 2016; 23:225-30. [PMID: 26828962 PMCID: PMC4834709 DOI: 10.1038/nsmb.3167] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/04/2016] [Indexed: 02/01/2023]
Abstract
Despite equal snRNP stoichiometry in spliceosomes, U1 snRNP (U1) is typically the most abundant vertebrate snRNP. Mechanisms regulating U1 overabundance and snRNP repertoire are unknown. In Sm-core assembly, a key snRNP-biogenesis step mediated by the SMN complex, the snRNA-specific RNA-binding protein (RBP) Gemin5 delivers pre-snRNAs, which join SMN-Gemin2-recruited Sm proteins. We show that the human U1-specific RBP U1-70K can bridge pre-U1 to SMN-Gemin2-Sm, in a Gemin5-independent manner, thus establishing an additional and U1-exclusive Sm core-assembly pathway. U1-70K hijacks SMN-Gemin2-Sm, enhancing Sm-core assembly on U1s and inhibiting that on other snRNAs, thereby promoting U1 overabundance and regulating snRNP repertoire. SMN-Gemin2's ability to facilitate transactions between different RBPs and RNAs explains its multi-RBP valency and the myriad transcriptome perturbations associated with SMN deficiency in neurodegenerative spinal muscular atrophy. We propose that SMN-Gemin2 is a versatile hub for RNP exchange that functions broadly in RNA metabolism.
Collapse
Affiliation(s)
- Byung Ran So
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lili Wan
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Zhenxi Zhang
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Pilong Li
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Eric Babiash
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jingqi Duan
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ihab Younis
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Gideon Dreyfuss
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
145
|
Ferreira de Freitas R, Eram MS, Szewczyk MM, Steuber H, Smil D, Wu H, Li F, Senisterra G, Dong A, Brown PJ, Hitchcock M, Moosmayer D, Stegmann CM, Egner U, Arrowsmith C, Barsyte-Lovejoy D, Vedadi M, Schapira M. Discovery of a Potent Class I Protein Arginine Methyltransferase Fragment Inhibitor. J Med Chem 2016; 59:1176-83. [PMID: 26824386 DOI: 10.1021/acs.jmedchem.5b01772] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein methyltransferases (PMTs) are a promising target class in oncology and other disease areas. They are composed of SET domain methyltransferases and structurally unrelated Rossman-fold enzymes that include protein arginine methyltransferases (PRMTs). In the absence of a well-defined medicinal chemistry tool-kit focused on PMTs, most current inhibitors were identified by screening large and diverse libraries of leadlike molecules. So far, no successful fragment-based approach was reported against this target class. Here, by deconstructing potent PRMT inhibitors, we find that chemical moieties occupying the substrate arginine-binding site can act as efficient fragment inhibitors. Screening a fragment library against PRMT6 produced numerous hits, including a 300 nM inhibitor (ligand efficiency of 0.56) that decreased global histone 3 arginine 2 methylation in cells, and can serve as a warhead for the development of PRMT chemical probes.
Collapse
Affiliation(s)
| | - Mohammad S Eram
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada
| | - Holger Steuber
- Pharmaceuticals Division, Bayer Pharma AG, 13353 Berlin, Germany
| | - David Smil
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada
| | - Hong Wu
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada
| | - Guillermo Senisterra
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada
| | - Marion Hitchcock
- Pharmaceuticals Division, Bayer Pharma AG, 13353 Berlin, Germany
| | - Dieter Moosmayer
- Pharmaceuticals Division, Bayer Pharma AG, 13353 Berlin, Germany
| | | | - Ursula Egner
- Pharmaceuticals Division, Bayer Pharma AG, 13353 Berlin, Germany
| | - Cheryl Arrowsmith
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada.,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto , Toronto, ON M5G 1L7, Canada
| | | | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto , Toronto, ON M5S 1A8, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto , Toronto, ON M5S 1A8, Canada
| |
Collapse
|
146
|
DesJarlais R, Tummino PJ. Role of Histone-Modifying Enzymes and Their Complexes in Regulation of Chromatin Biology. Biochemistry 2016; 55:1584-99. [DOI: 10.1021/acs.biochem.5b01210] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Renee DesJarlais
- Lead Discovery, Janssen Research & Development, Spring House, Pennsylvania 19477, United States
| | - Peter J. Tummino
- Lead Discovery, Janssen Research & Development, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
147
|
Sanchez G, Bondy-Chorney E, Laframboise J, Paris G, Didillon A, Jasmin BJ, Côté J. A novel role for CARM1 in promoting nonsense-mediated mRNA decay: potential implications for spinal muscular atrophy. Nucleic Acids Res 2015; 44:2661-76. [PMID: 26656492 PMCID: PMC4824080 DOI: 10.1093/nar/gkv1334] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/16/2015] [Indexed: 01/09/2023] Open
Abstract
Loss of ‘Survival of Motor Neurons’ (SMN) leads to spinal muscular atrophy (SMA), a disease characterized by degeneration of spinal cord alpha motor neurons, resulting in muscle weakness, paralysis and death during early childhood. SMN is required for assembly of the core splicing machinery, and splicing defects were documented in SMA. We previously uncovered that Coactivator-Associated Methyltransferase-1 (CARM1) is abnormally up-regulated in SMA, leading to mis-regulation of a number of transcriptional and alternative splicing events. We report here that CARM1 can promote decay of a premature terminating codon (PTC)-containing mRNA reporter, suggesting it can act as a mediator of nonsense-mediated mRNA decay (NMD). Interestingly, this pathway, while originally perceived as solely a surveillance mechanism preventing expression of potentially detrimental proteins, is now emerging as a highly regulated RNA decay pathway also acting on a subset of normal mRNAs. We further show that CARM1 associates with major NMD factor UPF1 and promotes its occupancy on PTC-containing transcripts. Finally, we identify a specific subset of NMD targets that are dependent on CARM1 for degradation and that are also misregulated in SMA, potentially adding exacerbated targeting of PTC-containing mRNAs to the already complex array of molecular defects associated with this disease.
Collapse
Affiliation(s)
- Gabriel Sanchez
- Centre for Neuromuscular Disease, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Emma Bondy-Chorney
- Centre for Neuromuscular Disease, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Janik Laframboise
- Centre for Neuromuscular Disease, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Geneviève Paris
- Centre for Neuromuscular Disease, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Andréanne Didillon
- Centre for Neuromuscular Disease, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Bernard J Jasmin
- Centre for Neuromuscular Disease, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jocelyn Côté
- Centre for Neuromuscular Disease, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
148
|
Zhang L, Tran NT, Su H, Wang R, Lu Y, Tang H, Aoyagi S, Guo A, Khodadadi-Jamayran A, Zhou D, Qian K, Hricik T, Côté J, Han X, Zhou W, Laha S, Abdel-Wahab O, Levine RL, Raffel G, Liu Y, Chen D, Li H, Townes T, Wang H, Deng H, Zheng YG, Leslie C, Luo M, Zhao X. Cross-talk between PRMT1-mediated methylation and ubiquitylation on RBM15 controls RNA splicing. eLife 2015; 4:07938. [PMID: 26575292 PMCID: PMC4775220 DOI: 10.7554/elife.07938] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 11/16/2015] [Indexed: 12/24/2022] Open
Abstract
RBM15, an RNA binding protein, determines cell-fate specification of many tissues including blood. We demonstrate that RBM15 is methylated by protein arginine methyltransferase 1 (PRMT1) at residue R578, leading to its degradation via ubiquitylation by an E3 ligase (CNOT4). Overexpression of PRMT1 in acute megakaryocytic leukemia cell lines blocks megakaryocyte terminal differentiation by downregulation of RBM15 protein level. Restoring RBM15 protein level rescues megakaryocyte terminal differentiation blocked by PRMT1 overexpression. At the molecular level, RBM15 binds to pre-messenger RNA intronic regions of genes important for megakaryopoiesis such as GATA1, RUNX1, TAL1 and c-MPL. Furthermore, preferential binding of RBM15 to specific intronic regions recruits the splicing factor SF3B1 to the same sites for alternative splicing. Therefore, PRMT1 regulates alternative RNA splicing via reducing RBM15 protein concentration. Targeting PRMT1 may be a curative therapy to restore megakaryocyte differentiation for acute megakaryocytic leukemia. DOI:http://dx.doi.org/10.7554/eLife.07938.001 The many different cell types in an adult animal all develop from a single fertilized egg. The development of cells into more specialized cell types is called ‘differentiation’. Proteins and other molecules from both inside and outside of the cells regulate the differentiation process. RNA is a molecule that is similar to DNA, and performs several important roles inside cells. Perhaps most importantly, RNA molecules act as messengers and carry genetic instructions during gene expression. RBM15 is an RNA-binding protein that is found throughout nature, and is involved in a number of developmental processes. Previous research has linked the incorrect control of RBM15 with an increased risk of certain cancers, including megakaryocytic leukemia. However, it is not clear what role RNA-binding proteins such as RBM15 play during differentiation. Now, Zhang, Tran, Su et al. have investigated the role of RBM15 during the development of large cells found in human bone marrow (called megakaryocytes). First, the experiments demonstrated that an enzyme called PRMT1 modifies RBM15. This enzyme adds a chemical mark called a methyl group at a specific site (an arginine amino acid) on the RNA-binding protein. Next, Zhang, Tran, Su et al. showed that the addition of this methyl group earmarks RBM15 for destruction. This means that an increase in PRMT1 levels reduces the amount of RBM15 in cells, while decreases in PRMT1 have the opposite effect. Further experiments showed that RBM15 normally processes the RNA messengers that carry the genetic instructions needed for the differentiation of bone marrow cells. An excess of PRMT1 enzyme leads to a lack of this RNA-binding protein. This in turn interferes with the differentiation process, and can contribute to the development of cancers such as megakaryocytic leukemia. Future work will therefore explore whether targeting PRMT1 with drugs could represent an effective treatment for these kinds of cancers. DOI:http://dx.doi.org/10.7554/eLife.07938.002
Collapse
Affiliation(s)
- Li Zhang
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Ngoc-Tung Tran
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Hairui Su
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Rui Wang
- Program of Molecular Pharmacology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Yuheng Lu
- Computational Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Haiping Tang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Sayura Aoyagi
- Cell Signaling Technology, Inc., Danvers, United States
| | - Ailan Guo
- Cell Signaling Technology, Inc., Danvers, United States
| | - Alireza Khodadadi-Jamayran
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Dewang Zhou
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Kun Qian
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, United States
| | - Todd Hricik
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Xiaosi Han
- Department of Neurology, Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, United States
| | - Wenping Zhou
- Department of Internal Medicine, Zhengzhou - Henan Cancer Hospital, Zhengzhou, China
| | - Suparna Laha
- Division of Hematology and Oncology, University of Massachusetts Medical School, Worcester, United States
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Glen Raffel
- Division of Hematology and Oncology, University of Massachusetts Medical School, Worcester, United States
| | - Yanyan Liu
- Department of Internal Medicine, Zhengzhou - Henan Cancer Hospital, Zhengzhou, China
| | - Dongquan Chen
- Division of Preventive Medicine, The University of Alabama at Birmingham, Birmingham, United States
| | - Haitao Li
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Tim Townes
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Hengbin Wang
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Haiteng Deng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, United States
| | - Christina Leslie
- Computational Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Minkui Luo
- Program of Molecular Pharmacology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Xinyang Zhao
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| |
Collapse
|
149
|
Purcell DJ, Chauhan S, Jimenez-Stinson D, Elliott KR, Tsewang TD, Lee YH, Marples B, Lee DY. Novel CARM1-Interacting Protein, DZIP3, Is a Transcriptional Coactivator of Estrogen Receptor-α. Mol Endocrinol 2015; 29:1708-19. [PMID: 26505218 DOI: 10.1210/me.2015-1083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) is known to promote estrogen receptor (ER)α-mediated transcription in breast cancer cells. To further characterize the regulation of ERα-mediated transcription by CARM1, we screened CARM1-interacting proteins by yeast two-hybrid. Here, we have identified an E3 ubiquitin ligase, DAZ (deleted in azoospermia)-interacting protein 3 (DZIP3), as a novel CARM1-binding protein. DZIP3-dependent ubiquitination of histone H2A has been associated with repression of transcription. However, ERα reporter gene assays demonstrated that DZIP3 enhanced ERα-mediated transcription and cooperated synergistically with CARM1. Interaction with CARM1 was observed with the E3 ligase RING domain of DZIP3. The methyltransferase activity of CARM1 partially contributed to the synergy with DZIP3 for transcription activation, but the E3 ubiquitin ligase activity of DZIP3 was dispensable. DZIP3 also interacted with the C-terminal activation domain 2 of glucocorticoid receptor-interacting protein 1 (GRIP1) and enhanced the interaction between GRIP1 and CARM1. Depletion of DZIP3 by small interfering RNA in MCF7 cells reduced estradiol-induced gene expression of ERα target genes, GREB1 and pS2, and DZIP3 was recruited to the estrogen response elements of the same ERα target genes. These results indicate that DZIP3 is a novel coactivator of ERα target gene expression.
Collapse
Affiliation(s)
- Daniel J Purcell
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| | - Swati Chauhan
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| | - Diane Jimenez-Stinson
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| | - Kathleen R Elliott
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| | - Tenzin D Tsewang
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| | - Young-Ho Lee
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| | - Brian Marples
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| | - David Y Lee
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| |
Collapse
|
150
|
Becerra S, Andrés-León E, Prieto-Sánchez S, Hernández-Munain C, Suñé C. Prp40 and early events in splice site definition. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:17-32. [PMID: 26494226 DOI: 10.1002/wrna.1312] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/18/2015] [Accepted: 09/22/2015] [Indexed: 12/14/2022]
Abstract
The alternative splicing (AS) of precursor messenger RNA (pre-mRNA) is a tightly regulated process through which introns are removed to leave the resulting exons in the mRNA appropriately aligned and ligated. The AS of pre-mRNA is a key mechanism for increasing the complexity of proteins encoded in the genome. In humans, more than 90% of genes undergo AS, underscoring the importance of this process in RNA biogenesis. As such, AS misregulation underlies multiple human diseases. The splicing reaction is catalyzed by the spliceosome, a highly dynamic complex that assembles at or near the intron/exon boundaries and undergoes sequential conformational and compositional changes during splicing. The initial recognition of splice sites defines the exons that are going to be removed, which is a critical step in the highly regulated splicing process. Although the available lines of evidence are increasing, the molecular mechanisms governing AS, including the initial interactions occurring at intron/exon boundaries, and the factors that modulate these critical connections by functioning as a scaffold for active-site RNAs or proteins, remain poorly understood. In this review, we summarize the major hallmarks of the initial steps in the splicing process and the role of auxiliary factors that contribute to the assembly of the spliceosomal complex. We also discuss the role of the essential yeast Prp40 protein and its mammalian homologs in the specificity of this pre-mRNA processing event. In addition, we provide the first exhaustive phylogenetic analysis of the molecular evolution of Prp40 family members. WIREs RNA 2016, 7:17-32. doi: 10.1002/wrna.1312 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Soraya Becerra
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), PTS Granada 18016, Spain
| | - Eduardo Andrés-León
- Bioinformatics Unit, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), PTS Granada 18016, Spain
| | - Silvia Prieto-Sánchez
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), PTS Granada 18016, Spain
| | - Cristina Hernández-Munain
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), PTS Granada 18016, Spain
| | - Carlos Suñé
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), PTS Granada 18016, Spain
| |
Collapse
|