101
|
Abstract
In eukaryotic cells, maintenance of genomic stability relies on the coordinated action of a network of cellular processes, including DNA replication, DNA repair, cell-cycle progression, and others. The DNA damage response (DDR) signaling pathway orchestrated by the ATM and ATR kinases is the central regulator of this network in response to DNA damage. Both ATM and ATR are activated by DNA damage and DNA replication stress, but their DNA-damage specificities are distinct and their functions are not redundant. Furthermore, ATM and ATR often work together to signal DNA damage and regulate downstream processes. Here, we will discuss the recent findings and current models of how ATM and ATR sense DNA damage, how they are activated by DNA damage, and how they function in concert to regulate the DDR.
Collapse
Affiliation(s)
- Alexandre Maréchal
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | |
Collapse
|
102
|
Ying S, Minocherhomji S, Chan KL, Palmai-Pallag T, Chu WK, Wass T, Mankouri HW, Liu Y, Hickson ID. MUS81 promotes common fragile site expression. Nat Cell Biol 2013; 15:1001-7. [PMID: 23811685 DOI: 10.1038/ncb2773] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 04/30/2013] [Indexed: 12/19/2022]
Abstract
Fragile sites are chromosomal loci with a propensity to form gaps or breaks during early mitosis, and their instability is implicated as being causative in certain neurological disorders and cancers. Recent work has demonstrated that the so-called common fragile sites (CFSs) often impair the faithful disjunction of sister chromatids in mitosis. However, the mechanisms by which CFSs express their fragility, and the cellular factors required to suppress CFS instability, remain largely undefined. Here, we report that the DNA structure-specific nuclease MUS81-EME1 localizes to CFS loci in early mitotic cells, and promotes the cytological appearance of characteristic gaps or breaks observed at CFSs in metaphase chromosomes. These data indicate that CFS breakage is an active, MUS81-EME1-dependent process, and not a result of inadvertent chromatid rupturing during chromosome condensation. Moreover, CFS cleavage by MUS81-EME1 promotes faithful sister chromatid disjunction. Our findings challenge the prevailing view that CFS breakage is a nonspecific process that is detrimental to cells, and indicate that CFS cleavage actually promotes genome stability.
Collapse
Affiliation(s)
- Songmin Ying
- Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Scully R, Xie A. Double strand break repair functions of histone H2AX. Mutat Res 2013; 750:5-14. [PMID: 23916969 DOI: 10.1016/j.mrfmmm.2013.07.007] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/15/2013] [Accepted: 07/19/2013] [Indexed: 12/12/2022]
Abstract
Chromosomal double strand breaks provoke an extensive reaction in neighboring chromatin, characterized by phosphorylation of histone H2AX on serine 139 of its C-terminal tail (to form "γH2AX"). The γH2AX response contributes to the repair of double strand breaks encountered in a variety of different contexts, including those induced by ionizing radiation, physiologically programmed breaks that characterize normal immune cell development and the pathological exposure of DNA ends triggered by telomere dysfunction. γH2AX also participates in the evolutionarily conserved process of sister chromatid recombination, a homologous recombination pathway involved in the suppression of genomic instability during DNA replication and directly implicated in tumor suppression. At a biochemical level, the γH2AX response provides a compelling example of how the "histone code" is adapted to the regulation of double strand break repair. Here, we review progress in research aimed at understanding how γH2AX contributes to double strand break repair in mammalian cells.
Collapse
Affiliation(s)
- Ralph Scully
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States.
| | | |
Collapse
|
104
|
Savic V. Do chromatin changes around a nascent double strand DNA break spread spherically into linearly non-adjacent chromatin? Front Genet 2013; 4:139. [PMID: 23882282 PMCID: PMC3715691 DOI: 10.3389/fgene.2013.00139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/02/2013] [Indexed: 01/30/2023] Open
Abstract
In the last decade, a lot has been done in elucidating the sequence of events that occur at the nascent double strand DNA break. Nevertheless, the overall structure formed by the DNA damage response (DDR) factors around the break site, the repair focus, remains poorly understood. Although most of the data presented so far only address events that occur in chromatin in cis around the break, there are strong indications that in mammalian systems it may also occur in trans, analogous to the recent findings showing this if budding yeast. There have been attempts to address the issue but the final proof is still missing due to lack of a proper experimental system. If found to be true, the spatial distribution of DDR factors would have a major impact on the neighboring chromatin both in cis and in trans, significantly affecting local chromatin function; gene transcription and potentially other functions.
Collapse
Affiliation(s)
- Velibor Savic
- Department of Clinical Medicine, Brighton-Sussex Medical School, University of Sussex Brighton, UK ; Genome Damage and Stability Centre, University of Sussex Brighton, UK
| |
Collapse
|
105
|
Siddiqui MS, Filomeni E, Francois M, Collins SR, Cooper T, Glatz RV, Taylor PW, Fenech M, Leifert WR. Exposure of insect cells to ionising radiation in vivo induces persistent phosphorylation of a H2AX homologue (H2AvB). Mutagenesis 2013; 28:531-41. [DOI: 10.1093/mutage/get030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
106
|
Hu J, Wang Y. p53 and the PWWP domain containing effector proteins in chromatin damage repair. CELL & DEVELOPMENTAL BIOLOGY 2013; 2:112. [PMID: 25264544 PMCID: PMC4175562 DOI: 10.4172/2168-9296.1000112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In eukaryotic cells, DNA damage repair occurs on a template DNA that is organized with histones to form nucleosomes and chromatin structures. As such, chromatin plays an important role in DNA damage repair. In this review, we will use "chromatin damage repair" as a framework and highlight recent progress in understanding the role of chromatin, chromatin modifiers, chromatin binding effectors (e.g., the PWWP domain proteins), and the p53 tumor suppressor. We view chromatin as an active participant during DNA damage repair.
Collapse
Affiliation(s)
- Jing Hu
- Graduate Program in Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802 USA
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802 USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802 USA
| | - Yanming Wang
- Graduate Program in Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802 USA
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802 USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802 USA
| |
Collapse
|
107
|
Price BD, D'Andrea AD. Chromatin remodeling at DNA double-strand breaks. Cell 2013; 152:1344-54. [PMID: 23498941 DOI: 10.1016/j.cell.2013.02.011] [Citation(s) in RCA: 446] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Indexed: 11/27/2022]
Abstract
DNA double-strand breaks (DSBs) can arise from multiple sources, including exposure to ionizing radiation. The repair of DSBs involves both posttranslational modification of nucleosomes and concentration of DNA-repair proteins at the site of damage. Consequently, nucleosome packing and chromatin architecture surrounding the DSB may limit the ability of the DNA-damage response to access and repair the break. Here, we review early chromatin-based events that promote the formation of open, relaxed chromatin structures at DSBs and that allow the DNA-repair machinery to access the spatially confined region surrounding the DSB, thereby facilitating mammalian DSB repair.
Collapse
Affiliation(s)
- Brendan D Price
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
108
|
Shiloh Y, Ziv Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 2013; 14:197-210. [DOI: 10.1038/nrm3546] [Citation(s) in RCA: 1219] [Impact Index Per Article: 101.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
109
|
Chung YL. Defective DNA damage response and repair in liver cells expressing hepatitis B virus surface antigen. FASEB J 2013; 27:2316-27. [PMID: 23444429 DOI: 10.1096/fj.12-226639] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hepatitis B virus (HBV) is implicated in liver cancer. The aim of this study was to find out whether HBV or its components [HBV surface antigen (HBsAg), HBV core protein (HBc), and HBV X protein (HBx)] could interfere with the host DNA damage response and repair pathway. The full HBV genome or individual HBV open-reading frame (ORF) was introduced into HepG2 cells to examine the effect on host genomic stability, DNA repair efficacy in response to double-strand DNA damage, and DNA damage-induced cell death. Responses to apoptosis induction in the HBV ORF-transfected HepG2 cells were also compared with those in HBV-positive and HBV-negative human hepatocellular carcinoma (HCC) cells. In the absence of HBV replication, accumulation of HBsAg in liver cells without other HBV proteins enhanced DNA repair protein and tumor suppressor promyelocytic leukemia (PML) degradation, which resulted in resistance to apoptosis induction and deficient double-strand DNA repair. However, HBsAg-positive cells exhibited increased cell death with exposure to the poly(ADP-ribose) polymerase inhibitor that blocks single-strand DNA repair. These results indicate that suppression of PML by HBsAg disrupts cellular mechanisms that respond to double-strand DNA damage for DNA repair or apoptosis induction, which may facilitate hepatocarcinogenesis and open up a synthetic lethality strategy for HBsAg-positive HCC treatment.
Collapse
Affiliation(s)
- Yih-Lin Chung
- Department of Radiation Oncology, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan.
| |
Collapse
|
110
|
Ray A, Milum K, Battu A, Wani G, Wani AA. NER initiation factors, DDB2 and XPC, regulate UV radiation response by recruiting ATR and ATM kinases to DNA damage sites. DNA Repair (Amst) 2013; 12:273-83. [PMID: 23422745 DOI: 10.1016/j.dnarep.2013.01.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 01/07/2013] [Accepted: 01/16/2013] [Indexed: 12/27/2022]
Abstract
ATR and ATM kinases are central to the checkpoint activation in response to DNA damage and replication stress. However, the nature of the signal, which initially activates these kinases in response to UV damage, is unclear. Here, we have shown that DDB2 and XPC, two early UV damage recognition factors, are required for the damage-specific ATR and ATM recruitment and phosphorylation. ATR and ATM physically interacted with XPC and promptly localized to the UV damage sites. ATR and ATM recruitment and their phosphorylation were negatively affected in cells defective in DDB2 or XPC functions. Consequently, the phosphorylation of ATR and ATM substrates, Chk1, Chk2, H2AX, and BRCA1 was significantly reduced or abrogated in mutant cells. Furthermore, UV exposure of cells defective in DDB2 or XPC resulted in a marked decrease in BRCA1 and Rad51 recruitment to the damage site. Conversely, ATR- and ATM-deficiency failed to affect the recruitment of DDB2 and XPC to the damage site, and therefore did not influence the NER efficiency. These findings demonstrate a novel function of DDB2 and XPC in maintaining a vital cross-talk with checkpoint proteins, and thereby coordinating subsequent repair and checkpoint activation.
Collapse
Affiliation(s)
- Alo Ray
- Department of Radiology, The Ohio State University, Columbus, OH 43210, United States.
| | | | | | | | | |
Collapse
|
111
|
Smeenk G, van Attikum H. The chromatin response to DNA breaks: leaving a mark on genome integrity. Annu Rev Biochem 2013; 82:55-80. [PMID: 23414304 DOI: 10.1146/annurev-biochem-061809-174504] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic, biochemical, and cellular studies have uncovered many of the molecular mechanisms underlying the signaling and repair of chromosomal DNA breaks. However, efficient repair of DNA damage is complicated in that genomic DNA is packaged, through histone and nonhistone proteins, into chromatin. The DNA repair machinery has to overcome this physical barrier to gain access to damaged DNA and repair DNA lesions. Posttranslational modifications of chromatin as well as ATP-dependent chromatin remodeling factors help to overcome this barrier and facilitate access to damaged DNA by altering chromatin structure at sites of DNA damage. Here we review and discuss our current knowledge of and recent advances in chromatin changes induced by chromosome breakage in mammalian cells and their implications for genome stability and human disease.
Collapse
Affiliation(s)
- Godelieve Smeenk
- Department of Toxicogenetics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | | |
Collapse
|
112
|
Steinel NC, Lee BS, Tubbs AT, Bednarski JJ, Schulte E, Yang-Iott KS, Schatz DG, Sleckman BP, Bassing CH. The ataxia telangiectasia mutated kinase controls Igκ allelic exclusion by inhibiting secondary Vκ-to-Jκ rearrangements. ACTA ACUST UNITED AC 2013; 210:233-9. [PMID: 23382544 PMCID: PMC3570110 DOI: 10.1084/jem.20121605] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
DNA double-strand breaks induced during Igκ recombination signal through ATM to suppress the initiation of additional Vκ-to-Jκ rearrangements. Allelic exclusion is enforced through the ability of antigen receptor chains expressed from one allele to signal feedback inhibition of V-to-(D)J recombination on the other allele. To achieve allelic exclusion by such means, only one allele can initiate V-to-(D)J recombination within the time required to signal feedback inhibition. DNA double-strand breaks (DSBs) induced by the RAG endonuclease during V(D)J recombination activate the Ataxia Telangiectasia mutated (ATM) and DNA-dependent protein kinase (DNA-PK) kinases. We demonstrate that ATM enforces Igκ allelic exclusion, and that RAG DSBs induced during Igκ recombination in primary pre–B cells signal through ATM, but not DNA-PK, to suppress initiation of additional Igκ rearrangements. ATM promotes high-density histone H2AX phosphorylation to create binding sites for MDC1, which functions with H2AX to amplify a subset of ATM-dependent signals. However, neither H2AX nor MDC1 is required for ATM to enforce Igκ allelic exclusion and suppress Igκ rearrangements. Upon activation in response to RAG Igκ cleavage, ATM signals down-regulation of Gadd45α with concomitant repression of the Gadd45α targets Rag1 and Rag2. Our data indicate that ATM kinases activated by RAG DSBs during Igκ recombination transduce transient H2AX/MDC1-independent signals that suppress initiation of further Igκ rearrangements to control Igκ allelic exclusion.
Collapse
Affiliation(s)
- Natalie C Steinel
- Immunology Graduate Group, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Barlow J, Faryabi RB, Callen E, Wong N, Malhowski A, Chen HT, Gutierez-Cruz G, Sun HW, McKinnon P, Wright G, Casellas R, Robbiani DF, Staudt L, Fernandez-Capetillo O, Nussenzweig A. Identification of early replicating fragile sites that contribute to genome instability. Cell 2013; 152:620-32. [PMID: 23352430 PMCID: PMC3629730 DOI: 10.1016/j.cell.2013.01.006] [Citation(s) in RCA: 318] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/10/2012] [Accepted: 01/02/2013] [Indexed: 12/20/2022]
Abstract
DNA double-strand breaks (DSBs) in B lymphocytes arise stochastically during replication or as a result of targeted DNA damage by activation-induced cytidine deaminase (AID). Here we identify recurrent, early replicating, and AID-independent DNA lesions, termed early replication fragile sites (ERFSs), by genome-wide localization of DNA repair proteins in B cells subjected to replication stress. ERFSs colocalize with highly expressed gene clusters and are enriched for repetitive elements and CpG dinucleotides. Although distinct from late-replicating common fragile sites (CFS), the stability of ERFSs and CFSs is similarly dependent on the replication-stress response kinase ATR. ERFSs break spontaneously during replication, but their fragility is increased by hydroxyurea, ATR inhibition, or deregulated c-Myc expression. Moreover, greater than 50% of recurrent amplifications/deletions in human diffuse large B cell lymphoma map to ERFSs. In summary, we have identified a source of spontaneous DNA lesions that drives instability at preferred genomic sites.
Collapse
Affiliation(s)
- Jacqueline Barlow
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda MD 20892
| | - Robert B. Faryabi
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda MD 20892
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda MD 20892
| | - Nancy Wong
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda MD 20892
| | - Amy Malhowski
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda MD 20892
| | - Hua Tang Chen
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda MD 20892
| | - Gustavo Gutierez-Cruz
- Laboratory of Muscle Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH Bethesda MD 20892
| | - Hong-Wei Sun
- Biodata Mining and Discovery Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH Bethesda MD 20892
| | - Peter McKinnon
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - George Wright
- Metabolism Branch Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892
| | - Rafael Casellas
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH Bethesda MD 20892
| | - Davide F. Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Louis Staudt
- Metabolism Branch Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892
| | | | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda MD 20892
| |
Collapse
|
114
|
Rass E, Chandramouly G, Zha S, Alt FW, Xie A. Ataxia telangiectasia mutated (ATM) is dispensable for endonuclease I-SceI-induced homologous recombination in mouse embryonic stem cells. J Biol Chem 2013; 288:7086-95. [PMID: 23355489 DOI: 10.1074/jbc.m112.445825] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ataxia telangiectasia mutated (ATM) is activated upon DNA double strand breaks (DSBs) and phosphorylates numerous DSB response proteins, including histone H2AX on serine 139 (Ser-139) to form γ-H2AX. Through interaction with MDC1, γ-H2AX promotes DSB repair by homologous recombination (HR). H2AX Ser-139 can also be phosphorylated by DNA-dependent protein kinase catalytic subunit and ataxia telangiectasia- and Rad3-related kinase. Thus, we tested whether ATM functions in HR, particularly that controlled by γ-H2AX, by comparing HR occurring at the euchromatic ROSA26 locus between mouse embryonic stem cells lacking either ATM, H2AX, or both. We show here that loss of ATM does not impair HR, including H2AX-dependent HR, but confers sensitivity to inhibition of poly(ADP-ribose) polymerases. Loss of ATM or H2AX has independent contributions to cellular sensitivity to ionizing radiation. The ATM-independent HR function of H2AX requires both Ser-139 phosphorylation and γ-H2AX/MDC1 interaction. Our data suggest that ATM is dispensable for HR, including that controlled by H2AX, in the context of euchromatin, excluding the implication of such an HR function in genomic instability, hypersensitivity to DNA damage, and poly(ADP-ribose) polymerase inhibition associated with ATM deficiency.
Collapse
Affiliation(s)
- Emilie Rass
- Department of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
115
|
Altmeyer M, Lukas J. To spread or not to spread--chromatin modifications in response to DNA damage. Curr Opin Genet Dev 2013; 23:156-65. [PMID: 23312207 DOI: 10.1016/j.gde.2012.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/31/2012] [Accepted: 11/05/2012] [Indexed: 10/27/2022]
Abstract
Chromatin modifications in response to DNA damage are vital for genome integrity. Multiple proteins and pathways required to generate specialized chromatin domains around DNA lesions have been identified and the increasing amount of information calls for unifying concepts that would allow us to grasp the ever-increasing complexity. This review aims at contributing to this trend by focusing on feed-forward and feedback mechanisms, which in mammalian cells determine the extent of chromatin modifications after DNA damage. We highlight the emerging notion that the nodal points of these highly dynamic pathways operate in a rate-limiting mode, whose deregulation can disrupt physiological boundaries between damaged and undamaged chromatin, dictate repair pathway choice, and determine the fate of cells exposed to genotoxic stress.
Collapse
Affiliation(s)
- Matthias Altmeyer
- Chromosome Stability and Dynamics Unit, Department of Disease Biology, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark.
| | | |
Collapse
|
116
|
Hartlerode AJ, Guan Y, Rajendran A, Ura K, Schotta G, Xie A, Shah JV, Scully R. Impact of histone H4 lysine 20 methylation on 53BP1 responses to chromosomal double strand breaks. PLoS One 2012; 7:e49211. [PMID: 23209566 PMCID: PMC3509127 DOI: 10.1371/journal.pone.0049211] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 10/04/2012] [Indexed: 11/28/2022] Open
Abstract
Recruitment of 53BP1 to chromatin flanking double strand breaks (DSBs) requires γH2AX/MDC1/RNF8-dependent ubiquitination of chromatin and interaction of 53BP1 with histone H4 methylated on lysine 20 (H4K20me). Several histone methyltransferases have been implicated in 53BP1 recruitment, but their quantitative contributions to the 53BP1 response are unclear. We have developed a multi-photon laser (MPL) system to target DSBs to subfemtoliter nuclear volumes and used this to mathematically model DSB response kinetics of MDC1 and of 53BP1. In contrast to MDC1, which revealed first order kinetics, the 53BP1 MPL-DSB response is best fitted by a Gompertz growth function. The 53BP1 MPL response shows the expected dependency on MDC1 and RNF8. We determined the impact of altered H4K20 methylation on 53BP1 MPL response kinetics in mouse embryonic fibroblasts (MEFs) lacking key H4K20 histone methyltransferases. This revealed no major requirement for the known H4K20 dimethylases Suv4-20h1 and Suv4-20h2 in 53BP1 recruitment or DSB repair function, but a key role for the H4K20 monomethylase, PR-SET7. The histone methyltransferase MMSET/WHSC1 has recently been implicated in 53BP1 DSB recruitment. We found that WHSC1 homozygous mutant MEFs reveal an alteration in balance of H4K20 methylation patterns; however, 53BP1 DSB responses in these cells appear normal.
Collapse
Affiliation(s)
- Andrea J. Hartlerode
- Department of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Yinghua Guan
- Department of Systems Biology, Harvard Medical School and Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Anbazhagan Rajendran
- Department of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Kiyoe Ura
- Division of Gene Therapy Science, Osaka University School of Medicine, Osaka, Japan
| | - Gunnar Schotta
- Ludwig Maximilians University and Munich Center for Integrated Protein Science (CiPSM), Adolf-Butenandt-Institute, Munich, Germany
| | - Anyong Xie
- Department of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Jagesh V. Shah
- Department of Systems Biology, Harvard Medical School and Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- * E-mail: (JVS); (RS)
| | - Ralph Scully
- Department of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- * E-mail: (JVS); (RS)
| |
Collapse
|
117
|
Bednarski JJ, Sleckman BP. Integrated signaling in developing lymphocytes: the role of DNA damage responses. Cell Cycle 2012; 11:4129-34. [PMID: 23032308 DOI: 10.4161/cc.22021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Lymphocyte development occurs in a stepwise progression through distinct developmental stages. This ordered maturation ensures that cells express a single, non-autoreactive antigen receptor, which is the cornerstone of a diverse adaptive immune response. Expression of a mature antigen receptor requires assembly of the antigen receptor genes by the process of V(D)J recombination, a reaction that joins distant gene segments through DNA double-strand break (DSB) intermediates. These physiologic DSBs are generated by the recombinase-activating gene (RAG) -1 and -2 proteins, and their generation is regulated by lymphocyte and developmental stage-specific signals from cytokine receptors and antigen receptor chains. Collectively, these signals ensure that V(D)J recombination of specific antigen receptor genes occurs at discrete developmental stages. Once generated, RAG-induced DSBs activate the ataxia-telangiectasia mutated (ATM) kinase to orchestrate a multifaceted DNA damage response that ensures proper DSB repair. In response to RAG DSBs, ATM also regulates a cell type-specific transcriptional response, and here we discuss how this genetic program integrates with other cellular cues to regulate lymphocyte development.
Collapse
Affiliation(s)
- Jeffrey J Bednarski
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
118
|
Beishline K, Kelly CM, Olofsson BA, Koduri S, Emrich J, Greenberg RA, Azizkhan-Clifford J. Sp1 facilitates DNA double-strand break repair through a nontranscriptional mechanism. Mol Cell Biol 2012; 32:3790-9. [PMID: 22826432 PMCID: PMC3430196 DOI: 10.1128/mcb.00049-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 07/08/2012] [Indexed: 12/18/2022] Open
Abstract
Sp1 is a ubiquitously expressed transcription factor that is phosphorylated by ataxia telangiectasia mutated kinase (ATM) in response to ionizing radiation and H(2)O(2). Here, we show by indirect immunofluorescence that Sp1 phosphorylated on serine 101 (pSp1) localizes to ionizing radiation-induced foci with phosphorylated histone variant γH2Ax and members of the MRN (Mre11, Rad50, and Nbs1) complex. More precise analysis of occupancy of DNA double-strand breaks (DSBs) by chromatin immunoprecipitation (ChIP) shows that Sp1, like Nbs1, resides within 200 bp of DSBs. Using laser microirradiation of cells, we demonstrate that pSp1 is present at DNA DSBs by 7.5 min after induction of damage and remains at the break site for at least 8 h. Depletion of Sp1 inhibits repair of site-specific DNA breaks, and the N-terminal 182-amino-acid peptide, which contains targets of ATM kinase but lacks the zinc finger DNA binding domain, is phosphorylated, localizes to DSBs, and rescues the repair defect resulting from Sp1 depletion. Together, these data demonstrate that Sp1 is rapidly recruited to the region immediately adjacent to sites of DNA DSBs and is required for DSB repair, through a mechanism independent of its sequence-directed transcriptional effects.
Collapse
Affiliation(s)
- Kate Beishline
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Crystal M. Kelly
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Beatrix A. Olofsson
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Sravanthi Koduri
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Jacqueline Emrich
- Department of Radiation Oncology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Roger A. Greenberg
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jane Azizkhan-Clifford
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
119
|
Thompson LH. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res 2012; 751:158-246. [PMID: 22743550 DOI: 10.1016/j.mrrev.2012.06.002] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 06/09/2012] [Accepted: 06/16/2012] [Indexed: 12/15/2022]
Abstract
The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology & Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, United States.
| |
Collapse
|
120
|
Yin B, Lee BS, Yang-Iott KS, Sleckman BP, Bassing CH. Redundant and nonredundant functions of ATM and H2AX in αβ T-lineage lymphocytes. THE JOURNAL OF IMMUNOLOGY 2012; 189:1372-9. [PMID: 22730535 DOI: 10.4049/jimmunol.1200829] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ataxia telangiectasia mutated (ATM) kinase and H2AX histone tumor suppressor proteins are each critical for maintenance of cellular genomic stability and suppression of lymphomas harboring clonal translocations. ATM is the predominant kinase that phosphorylates H2AX in chromatin around DNA double-strand breaks, including along lymphocyte Ag receptor loci cleaved during V(D)J recombination. However, combined germline inactivation of Atm and H2ax in mice causes early embryonic lethality associated with substantial cellular genomic instability, indicating that ATM and H2AX exhibit nonredundant functions in embryonic cells. To evaluate potential nonredundant roles of ATM and H2AX in somatic cells, we generated and analyzed Atm-deficient mice with conditional deletion of H2ax in αβ T-lineage lymphocytes. Combined Atm/H2ax inactivation starting in early-stage CD4(-)/CD8(-) thymocytes resulted in lower numbers of later-stage CD4(+)/CD8(+) thymocytes, but led to no discernible V(D)J recombination defect in G1 phase cells beyond that observed in Atm-deficient cells. H2ax deletion in Atm-deficient thymocytes also did not affect the incidence or mortality of mice from thymic lymphomas with clonal chromosome 14 (TCRα/δ) translocations. Yet, in vitro-stimulated Atm/H2ax-deficient splenic αβ T cells exhibited a higher frequency of genomic instability, including radial chromosome translocations and TCRβ translocations, compared with cells lacking Atm or H2ax. Collectively, our data demonstrate that both redundant and nonredundant functions of ATM and H2AX are required for normal recombination of TCR loci, proliferative expansion of developing thymocytes, and maintenance of genomic stability in cycling αβ T-lineage cells.
Collapse
Affiliation(s)
- Bu Yin
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
121
|
Lorat Y, Schanz S, Schuler N, Wennemuth G, Rübe C, Rübe CE. Beyond repair foci: DNA double-strand break repair in euchromatic and heterochromatic compartments analyzed by transmission electron microscopy. PLoS One 2012; 7:e38165. [PMID: 22666473 PMCID: PMC3364237 DOI: 10.1371/journal.pone.0038165] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 05/01/2012] [Indexed: 01/29/2023] Open
Abstract
Purpose DNA double-strand breaks (DSBs) generated by ionizing radiation pose a serious threat to the preservation of genetic and epigenetic information. The known importance of local chromatin configuration in DSB repair raises the question of whether breaks in different chromatin environments are recognized and repaired by the same repair machinery and with similar efficiency. An essential step in DSB processing by non-homologous end joining is the high-affinity binding of Ku70-Ku80 and DNA-PKcs to double-stranded DNA ends that holds the ends in physical proximity for subsequent repair. Methods and Materials Using transmission electron microscopy to localize gold-labeled pKu70 and pDNA-PKcs within nuclear ultrastructure, we monitored the formation and repair of actual DSBs within euchromatin (electron-lucent) and heterochromatin (electron-dense) in cortical neurons of irradiated mouse brain. Results While DNA lesions in euchromatin (characterized by two pKu70-gold beads, reflecting the Ku70-Ku80 heterodimer) are promptly sensed and rejoined, DNA packaging in heterochromatin appears to retard DSB processing, due to the time needed to unravel higher-order chromatin structures. Complex pKu70-clusters formed in heterochromatin (consisting of 4 or ≥6 gold beads) may represent multiple breaks in close proximity caused by ionizing radiation of highly-compacted DNA. All pKu70-clusters disappeared within 72 hours post-irradiation, indicating efficient DSB rejoining. However, persistent 53BP1 clusters in heterochromatin (comprising ≥10 gold beads), occasionally co-localizing with γH2AX, but not pKu70 or pDNA-PKcs, may reflect incomplete or incorrect restoration of chromatin structure rather than persistently unrepaired DNA damage. Discussion Higher-order organization of chromatin determines the accessibility of DNA lesions to repair complexes, defining how readily DSBs are detected and processed. DNA lesions in heterochromatin appear to be more complex, with multiple breaks in spatial vicinity inducing severe chromatin disruptions. Imperfect restoration of chromatin configurations may leave DSB-induced epigenetic memory of damage with potentially pathological repercussions.
Collapse
Affiliation(s)
- Yvonne Lorat
- Department of Radiation Oncology, Saarland University, Homburg/Saar, Germany
| | - Stefanie Schanz
- Department of Radiation Oncology, Saarland University, Homburg/Saar, Germany
| | - Nadine Schuler
- Department of Radiation Oncology, Saarland University, Homburg/Saar, Germany
| | - Gunther Wennemuth
- Department of Anatomy and Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Christian Rübe
- Department of Radiation Oncology, Saarland University, Homburg/Saar, Germany
| | - Claudia E. Rübe
- Department of Radiation Oncology, Saarland University, Homburg/Saar, Germany
- * E-mail:
| |
Collapse
|
122
|
Liu J, Luo S, Zhao H, Liao J, Li J, Yang C, Xu B, Stern DF, Xu X, Ye K. Structural mechanism of the phosphorylation-dependent dimerization of the MDC1 forkhead-associated domain. Nucleic Acids Res 2012; 40:3898-912. [PMID: 22234877 PMCID: PMC3351156 DOI: 10.1093/nar/gkr1296] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MDC1 is a key mediator of the DNA-damage response in mammals with several phosphorylation-dependent protein interaction domains. The function of its N-terminal forkhead-associated (FHA) domain remains elusive. Here, we show with structural, biochemical and cellular data that the FHA domain mediates phosphorylation-dependent dimerization of MDC1 in response to DNA damage. Crystal structures of the FHA domain reveal a face-to-face dimer with pseudo-dyad symmetry. We found that the FHA domain recognizes phosphothreonine 4 (pT4) at the N-terminus of MDC1 and determined its crystal structure in complex with a pT4 peptide. Biochemical analysis further revealed that in the dimer, the FHA domain binds in trans to pT4 from the other subunit, which greatly stabilizes the otherwise unstable dimer. We show that T4 is phosphorylated primarily by ATM upon DNA damage. MDC1 mutants with the FHA domain deleted or impaired in its ability to dimerize formed fewer foci at DNA-damage sites, but the localization defect was largely rescued by an artificial dimerization module, suggesting that dimerization is the primary function of the MDC1 FHA domain. Our results suggest a novel mechanism for the regulation of MDC1 function through T4 phosphorylation and FHA-mediated dimerization.
Collapse
Affiliation(s)
- Jinping Liu
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing 100048, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Abstract
Developing lymphocytes must assemble antigen receptor genes encoding the B cell and T cell receptors. This process is executed by the V(D)J recombination reaction, which can be divided into DNA cleavage and DNA joining steps. The former is carried out by a lymphocyte-specific RAG endonuclease, which mediates DNA cleavage at two recombining gene segments and their flanking RAG recognition sequences. RAG cleavage generates four broken DNA ends that are repaired by nonhomologous end joining forming coding and signal joints. On rare occasions, these DNA ends may join aberrantly forming chromosomal lesions such as translocations, deletions and inversions that have the potential to cause cellular transformation and lymphoid tumors. We discuss the activation of DNA damage responses by RAG-induced DSBs focusing on the component pathways that promote their normal repair and guard against their aberrant resolution. Moreover, we discuss how this DNA damage response impacts processes important for lymphocyte development.
Collapse
Affiliation(s)
- Beth A Helmink
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
124
|
Bednarski JJ, Sleckman BP. Lymphocyte development: integration of DNA damage response signaling. Adv Immunol 2012; 116:175-204. [PMID: 23063077 DOI: 10.1016/b978-0-12-394300-2.00006-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lymphocytes traverse functionally discrete stages as they develop into mature B and T cells. This development is directed by cues from a variety of different cell surface receptors. To complete development, all lymphocytes must express a functional nonautoreactive heterodimeric antigen receptor. The genes that encode antigen receptor chains are assembled through the process of V(D)J recombination, a reaction that proceeds through DNA double-stranded break (DSB) intermediates. These DSBs are generated by the RAG endonuclease in G1-phase developing lymphocytes and activate ataxia-telangiectasia mutated (ATM), the kinase that orchestrates cellular DSB responses. The canonical DNA damage response includes cell cycle arrest, DNA break repair, and apoptosis of cells when DSBs are not repaired. However, recent studies have demonstrated that ATM activation in response to RAG DSBs also regulates a transcriptional program including many genes with no known function in canonical DNA damage responses. Rather, these genes have activities that would be important for lymphocyte development. Here, these findings and the broader concept that signals initiated by physiologic DNA DSBs provide cues that regulate cell type-specific processes and functions are discussed.
Collapse
Affiliation(s)
- Jeffrey J Bednarski
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
125
|
Caron P, Aymard F, Iacovoni JS, Briois S, Canitrot Y, Bugler B, Massip L, Losada A, Legube G. Cohesin protects genes against γH2AX Induced by DNA double-strand breaks. PLoS Genet 2012; 8:e1002460. [PMID: 22275873 PMCID: PMC3261922 DOI: 10.1371/journal.pgen.1002460] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 11/21/2011] [Indexed: 11/18/2022] Open
Abstract
Chromatin undergoes major remodeling around DNA double-strand breaks (DSB) to promote repair and DNA damage response (DDR) activation. We recently reported a high-resolution map of γH2AX around multiple breaks on the human genome, using a new cell-based DSB inducible system. In an attempt to further characterize the chromatin landscape induced around DSBs, we now report the profile of SMC3, a subunit of the cohesin complex, previously characterized as required for repair by homologous recombination. We found that recruitment of cohesin is moderate and restricted to the immediate vicinity of DSBs in human cells. In addition, we show that cohesin controls γH2AX distribution within domains. Indeed, as we reported previously for transcription, cohesin binding antagonizes γH2AX spreading. Remarkably, depletion of cohesin leads to an increase of γH2AX at cohesin-bound genes, associated with a decrease in their expression level after DSB induction. We propose that, in agreement with their function in chromosome architecture, cohesin could also help to isolate active genes from some chromatin remodelling and modifications such as the ones that occur when a DSB is detected on the genome.
Collapse
Affiliation(s)
- Pierre Caron
- Université de Toulouse, UPS, LBCMCP, Toulouse, France
- CNRS, LBCMCP, Toulouse, France
| | - Francois Aymard
- Université de Toulouse, UPS, LBCMCP, Toulouse, France
- CNRS, LBCMCP, Toulouse, France
| | - Jason S. Iacovoni
- Bioinformatic Plateau I2MC, INSERM and University of Toulouse, Toulouse, France
| | - Sébastien Briois
- Université de Toulouse, UPS, LBCMCP, Toulouse, France
- CNRS, LBCMCP, Toulouse, France
| | - Yvan Canitrot
- Université de Toulouse, UPS, LBCMCP, Toulouse, France
- CNRS, LBCMCP, Toulouse, France
| | - Beatrix Bugler
- Université de Toulouse, UPS, LBCMCP, Toulouse, France
- CNRS, LBCMCP, Toulouse, France
| | - Laurent Massip
- Université de Toulouse, UPS, LBCMCP, Toulouse, France
- CNRS, LBCMCP, Toulouse, France
| | - Ana Losada
- Chromosome Dynamics Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Gaëlle Legube
- Université de Toulouse, UPS, LBCMCP, Toulouse, France
- CNRS, LBCMCP, Toulouse, France
| |
Collapse
|
126
|
Lukas J, Lukas C, Bartek J. More than just a focus: The chromatin response to DNA damage and its role in genome integrity maintenance. Nat Cell Biol 2011; 13:1161-9. [PMID: 21968989 DOI: 10.1038/ncb2344] [Citation(s) in RCA: 488] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Following the discovery in 1998 of γ-H2AX, the first histone modification induced by DNA damage, interest in the changes to chromatin induced by DNA damage has exploded, and a vast amount of information has been generated. However, there has been a discrepancy between our rapidly advancing knowledge of how chromatin responds to DNA damage and the understanding of why cells mobilize large segments of chromatin to protect the genome against destabilizing effects posed by tiny DNA lesions. Recent research has provided insights into these issues and suggests that chromatin responses induced by DNA damage are not simply the accumulation of 'nuclear foci' but are mechanisms required to guard genome integrity.
Collapse
Affiliation(s)
- Jiri Lukas
- Centre for Genotoxic Stress Research, Institute of Cancer Biology, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
127
|
Gammaherpesvirus gene expression and DNA synthesis are facilitated by viral protein kinase and histone variant H2AX. Virology 2011; 420:73-81. [PMID: 21943826 DOI: 10.1016/j.virol.2011.08.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 08/03/2011] [Accepted: 08/25/2011] [Indexed: 11/22/2022]
Abstract
Gammaherpesvirus protein kinases are an attractive therapeutic target as they support lytic replication and latency. Via an unknown mechanism these kinases enhance expression of select viral genes and DNA synthesis. Importantly, the kinase phenotypes have not been examined in primary cell types. Mouse gammaherpesvirus-68 (MHV68) protein kinase orf36 activates the DNA damage response (DDR) and facilitates lytic replication in primary macrophages. Significantly, H2AX, a DDR component and putative orf36 substrate, enhances MHV68 replication. Here we report that orf36 facilitated expression of RTA, an immediate early MHV68 gene, and DNA synthesis during de novo infection of primary macrophages. H2AX expression supported efficient RTA transcription and phosphorylated H2AX associated with RTA promoter. Furthermore, viral DNA synthesis was attenuated in H2AX-deficient macrophages, suggesting that the DDR system was exploited throughout the replication cycle. The interactions between a cancer-associated gammaherpesvirus and host tumor suppressor system have important implications for the pathogenesis of gammaherpesvirus infection.
Collapse
|
128
|
Bhatti S, Kozlov S, Farooqi AA, Naqi A, Lavin M, Khanna KK. ATM protein kinase: the linchpin of cellular defenses to stress. Cell Mol Life Sci 2011; 68:2977-3006. [PMID: 21533982 PMCID: PMC11115042 DOI: 10.1007/s00018-011-0683-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/24/2011] [Accepted: 03/29/2011] [Indexed: 01/23/2023]
Abstract
ATM is the most significant molecule involved in monitoring the genomic integrity of the cell. Any damage done to DNA relentlessly challenges the cellular machinery involved in recognition, processing and repair of these insults. ATM kinase is activated early to detect and signal lesions in DNA, arrest the cell cycle, establish DNA repair signaling and faithfully restore the damaged chromatin. ATM activation plays an important role as a barrier to tumorigenesis, metabolic syndrome and neurodegeneration. Therefore, studies of ATM-dependent DNA damage signaling pathways hold promise for treatment of a variety of debilitating diseases through the development of new therapeutics capable of modulating cellular responses to stress. In this review, we have tried to untangle the complex web of ATM signaling pathways with the purpose of pinpointing multiple roles of ATM underlying the complex phenotypes observed in AT patients.
Collapse
Affiliation(s)
- Shahzad Bhatti
- Institute of Molecular Biology and Biotechnology, The University of Lahore, 1 Km Raiwind Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Sergei Kozlov
- Queensland Institute of Medical Research, QIMR, 300 Herston Rd, Herston, Brisbane, 4029 Australia
| | - Ammad Ahmad Farooqi
- Institute of Molecular Biology and Biotechnology, The University of Lahore, 1 Km Raiwind Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Ali Naqi
- Institute of Molecular Biology and Biotechnology, The University of Lahore, 1 Km Raiwind Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Martin Lavin
- Queensland Institute of Medical Research, QIMR, 300 Herston Rd, Herston, Brisbane, 4029 Australia
| | - Kum Kum Khanna
- Queensland Institute of Medical Research, QIMR, 300 Herston Rd, Herston, Brisbane, 4029 Australia
| |
Collapse
|
129
|
Sirbu BM, Couch FB, Feigerle JT, Bhaskara S, Hiebert SW, Cortez D. Analysis of protein dynamics at active, stalled, and collapsed replication forks. Genes Dev 2011; 25:1320-7. [PMID: 21685366 DOI: 10.1101/gad.2053211] [Citation(s) in RCA: 356] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Successful DNA replication and packaging of newly synthesized DNA into chromatin are essential to maintain genome integrity. Defects in the DNA template challenge genetic and epigenetic inheritance. Unfortunately, tracking DNA damage responses (DDRs), histone deposition, and chromatin maturation at replication forks is difficult in mammalian cells. Here we describe a technology called iPOND (isolation of proteins on nascent DNA) to analyze proteins at active and damaged replication forks at high resolution. Using this methodology, we define the timing of histone deposition and chromatin maturation. Class 1 histone deacetylases are enriched at replisomes and remove predeposition marks on histone H4. Chromatin maturation continues even when decoupled from replisome movement. Furthermore, fork stalling causes changes in the recruitment and phosphorylation of proteins at the damaged fork. Checkpoint kinases catalyze H2AX phosphorylation, which spreads from the stalled fork to include a large chromatin domain even prior to fork collapse and double-strand break formation. Finally, we demonstrate a switch in the DDR at persistently stalled forks that includes MRE11-dependent RAD51 assembly. These data reveal a dynamic recruitment of proteins and post-translational modifications at damaged forks and surrounding chromatin. Furthermore, our studies establish iPOND as a useful methodology to study DNA replication and chromatin maturation.
Collapse
Affiliation(s)
- Bianca M Sirbu
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
130
|
Regulation of DNA end joining, resection, and immunoglobulin class switch recombination by 53BP1. Mol Cell 2011; 42:319-29. [PMID: 21549309 DOI: 10.1016/j.molcel.2011.03.019] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/08/2011] [Accepted: 03/28/2011] [Indexed: 01/24/2023]
Abstract
53BP1 is a DNA damage protein that forms phosphorylated H2AX (γ-H2AX) dependent foci in a 1 Mb region surrounding DNA double-strand breaks (DSBs). In addition, 53BP1 promotes genomic stability by regulating the metabolism of DNA ends. We have compared the joining rates of paired DSBs separated by 1.2 kb to 27 Mb on chromosome 12 in the presence or absence of 53BP1. 53BP1 facilitates joining of intrachromosomal DSBs but only at distances corresponding to γ-H2AX spreading. In contrast, DNA end protection by 53BP1 is distance independent. Furthermore, analysis of 53BP1 mutants shows that chromatin association, oligomerization, and N-terminal ATM phosphorylation are all required for DNA end protection and joining as measured by immunoglobulin class switch recombination. These data elucidate the molecular events that are required for 53BP1 to maintain genomic stability and point to a model wherein 53BP1 and H2AX cooperate to repress resection of DSBs.
Collapse
|
131
|
Gapud EJ, Lee BS, Mahowald GK, Bassing CH, Sleckman BP. Repair of chromosomal RAG-mediated DNA breaks by mutant RAG proteins lacking phosphatidylinositol 3-like kinase consensus phosphorylation sites. THE JOURNAL OF IMMUNOLOGY 2011; 187:1826-34. [PMID: 21742970 DOI: 10.4049/jimmunol.1101388] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase catalytic subunits (DNA-PKcs) are members of the phosphatidylinositol 3-like family of serine/threonine kinases that phosphorylate serines or threonines when positioned adjacent to a glutamine residue (SQ/TQ). Both kinases are activated rapidly by DNA double-strand breaks (DSBs) and regulate the function of proteins involved in DNA damage responses. In developing lymphocytes, DSBs are generated during V(D)J recombination, which is required to assemble the second exon of all Ag receptor genes. This reaction is initiated through a DNA cleavage step by the RAG1 and RAG2 proteins, which together comprise an endonuclease that generates DSBs at the border of two recombining gene segments and their flanking recombination signals. This DNA cleavage step is followed by a joining step, during which pairs of DNA coding and signal ends are ligated to form a coding joint and a signal joint, respectively. ATM and DNA-PKcs are integrally involved in the repair of both signal and coding ends, but the targets of these kinases involved in the repair process have not been fully elucidated. In this regard, the RAG1 and RAG2 proteins, which each have several SQ/TQ motifs, have been implicated in the repair of RAG-mediated DSBs. In this study, we use a previously developed approach for studying chromosomal V(D)J recombination that has been modified to allow for the analysis of RAG1 and RAG2 function. We show that phosphorylation of RAG1 or RAG2 by ATM or DNA-PKcs at SQ/TQ consensus sites is dispensable for the joining step of V(D)J recombination.
Collapse
Affiliation(s)
- Eric J Gapud
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
132
|
Gapud EJ, Sleckman BP. Unique and redundant functions of ATM and DNA-PKcs during V(D)J recombination. Cell Cycle 2011; 10:1928-35. [PMID: 21673501 DOI: 10.4161/cc.10.12.16011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lymphocyte antigen receptor genes are assembled through the process of V(D)J recombination, during which pairwise DNA cleavage of gene segments results in the formation of four DNA ends that are resolved into a coding joint and a signal joint. The joining of these DNA ends occurs in G1-phase lymphocytes and is mediated by the non-homologous end-joining (NHEJ) pathway of DNA double-strand break (DSB) repair. The ataxia telangiectasia mutated (ATM) and the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), two related kinases, both function in the repair of DNA breaks generated during antigen receptor gene assembly. Although these proteins have unique functions during coding joint formation, their activities in signal joint formation, if any, have been less clear. However, two recent studies demonstrated that ATM and DNA-PKcs have overlapping activities important for signal joint formation. Here, we discuss the unique and shared activities of the ATM and DNA-PKcs kinases during V(D)J recombination, a process that is essential for lymphocyte development and the diversification of antigen receptors.
Collapse
Affiliation(s)
- Eric J Gapud
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
133
|
Greenberg RA. Histone tails: Directing the chromatin response to DNA damage. FEBS Lett 2011; 585:2883-90. [PMID: 21621538 DOI: 10.1016/j.febslet.2011.05.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 05/13/2011] [Accepted: 05/13/2011] [Indexed: 01/09/2023]
Abstract
Considerable energetic investment is devoted to altering large stretches of chromatin adjacent to DNA double strand breaks (DSBs). Immediately ensuing DSB formation, a myriad of histone modifications are elicited to create a platform for inducible and modular assembly of DNA repair protein complexes in the vicinity of the DNA lesion. This complex signaling network is critical to repair DNA damage and communicate with cellular processes that occur in cis and in trans to the genomic lesion. Failure to properly execute DNA damage inducible chromatin changes is associated with developmental abnormalities, immunodeficiency, and malignancy in humans and in genetically engineered mouse models. This review will discuss current knowledge of DNA damage responsive histone changes that occur in mammalian cells, highlighting their involvement in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Roger A Greenberg
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104-6160, USA.
| |
Collapse
|
134
|
Hartlerode A, Odate S, Shim I, Brown J, Scully R. Cell cycle-dependent induction of homologous recombination by a tightly regulated I-SceI fusion protein. PLoS One 2011; 6:e16501. [PMID: 21408059 PMCID: PMC3052302 DOI: 10.1371/journal.pone.0016501] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 12/30/2010] [Indexed: 01/05/2023] Open
Abstract
Double-strand break repair is executed by two major repair pathways: non-homologous end joining (NHEJ) and homologous recombination (HR). Whereas NHEJ contributes to the repair of ionizing radiation (IR)-induced double strand breaks (DSBs) throughout the cell cycle, HR acts predominantly during the S and G2 phases of the cell cycle. The rare-cutting restriction endonuclease, I-SceI, is in common use to study the repair of site-specific chromosomal DSBs in vertebrate cells. To facilitate analysis of I-SceI-induced DSB repair, we have developed a stably expressed I-SceI fusion protein that enables precise temporal control of I-SceI activation, and correspondingly tight control of the timing of onset of site-specific chromosome breakage. I-SceI-induced HR showed a strong, positive linear correlation with the percentage of cells in S phase, and was negatively correlated with the G1 fraction. Acute depletion of BRCA1, a key regulator of HR, disrupted the relationship between S phase fraction and I-SceI-induced HR, consistent with the hypothesis that BRCA1 regulates HR during S phase.
Collapse
Affiliation(s)
- Andrea Hartlerode
- Department of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Shobu Odate
- Department of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Inbo Shim
- Department of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Jenifer Brown
- Department of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Ralph Scully
- Department of Medicine, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
135
|
|
136
|
Lukas C, Savic V, Bekker-Jensen S, Doil C, Neumann B, Sølvhøj Pedersen R, Grøfte M, Chan KL, Hickson ID, Bartek J, Lukas J. 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat Cell Biol 2011; 13:243-53. [DOI: 10.1038/ncb2201] [Citation(s) in RCA: 514] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 12/21/2010] [Indexed: 12/17/2022]
|
137
|
Ataxia telangiectasia mutated (Atm) and DNA-PKcs kinases have overlapping activities during chromosomal signal joint formation. Proc Natl Acad Sci U S A 2011; 108:2022-7. [PMID: 21245316 DOI: 10.1073/pnas.1013295108] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lymphocyte antigen receptor gene assembly occurs through the process of V(D)J recombination, which is initiated when the RAG endonuclease introduces DNA DSBs at two recombining gene segments to form broken DNA coding end pairs and signal end pairs. These paired DNA ends are joined by proteins of the nonhomologous end-joining (NHEJ) pathway of DSB repair to form a coding joint and signal joint, respectively. RAG DSBs are generated in G1-phase developing lymphocytes, where they activate the ataxia telangiectasia mutated (Atm) and DNA-PKcs kinases to orchestrate diverse cellular DNA damage responses including DSB repair. Paradoxically, although Atm and DNA-PKcs both function during coding joint formation, Atm appears to be dispensible for signal joint formation; and although some studies have revealed an activity for DNA-PKcs during signal joint formation, others have not. Here we show that Atm and DNA-PKcs have overlapping catalytic activities that are required for chromosomal signal joint formation and for preventing the aberrant resolution of signal ends as potentially oncogenic chromosomal translocations.
Collapse
|
138
|
Abstract
DNA double-strand breaks (DSBs) arise through both replication errors and from exogenous events such as exposure to ionizing radiation. DSBs are potentially lethal, and cells have evolved a highly conserved mechanism to detect and repair these lesions. This mechanism involves phosphorylation of histone H2AX (γH2AX) and the loading of DNA repair proteins onto the chromatin adjacent to the DSB. It is now clear that the chromatin architecture in the region surrounding the DSB has a critical impact on the ability of cells to mount an effective DNA damage response. DSBs promote the direct the formation of open, relaxed chromatin domains which are spatially confined to the area surrounding the break. These relaxed chromatin structures are created through the coupled action of the p400 SWI/SNF ATPase and histone acetylation by the Tip60 acetyltransferase. The resulting destabilization of nucleosomes at the DSB by Tip60 and p400 is required for ubiquitination of the chromatin by the RNF8 ubiquitin ligase, and for the subsequent recruitment of the brca1 complex. Chromatin dynamics at DSBs can therefore exert a powerful influence on the process of DSB repair. Further, there is emerging evidence that the different chromatin structures in the cell, such as heterochromatin and euchromatin, utilize distinct remodeling complexes and pathways to facilitate DSB. The processing and repair of DSB is therefore critically influenced by the nuclear architecture in which the lesion arises.
Collapse
Affiliation(s)
- Ye Xu
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
139
|
H2AX prevents CtIP-mediated DNA end resection and aberrant repair in G1-phase lymphocytes. Nature 2010; 469:245-9. [PMID: 21160476 PMCID: PMC3150591 DOI: 10.1038/nature09585] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 10/15/2010] [Indexed: 11/11/2022]
Abstract
DNA double stranded breaks (DSBs) are generated by the RAG endonuclease in all developing lymphocytes as they assemble antigen receptor genes1. DNA cleavage by RAG occurs only at the G1-phase of the cell cycle and generates two hairpin-sealed DNA (coding) ends that require nucleolytic opening prior to their repair by classical non-homologous end-joining (NHEJ)1–3. Although there are several cellular nucleases that could perform this function, only the Artemis nuclease is able to do so efficiently2, 3. Here we show, in vivo, that the histone protein H2AX prevents nucleases other than Artemis from processing hairpin-sealed coding ends; in the absence of H2AX, CtIP can efficiently promote the hairpin opening and resection of DNA ends generated by RAG cleavage. This CtIP-mediated resection is inhibited by γ-H2AX and by MDC-1, which binds to γ-H2AX in chromatin flanking DNA DSBs. Moreover, the ATM kinase activates antagonistic pathways that modulate this resection. CtIP DNA end resection activity is normally limited to cells at post-replicative stages of the cell cycle where it is essential for homology-mediated repair4, 5. In G1-phase lymphocytes, DNA ends that are processed by CtIP are not efficiently joined by classical NHEJ and the joints that do form frequently use micro-homologies and exhibit significant chromosomal deletions. Thus, H2AX preserves the structural integrity of broken DNA ends in G1-phase lymphocytes thereby preventing these DNA ends from accessing repair pathways that promote genomic instability.
Collapse
|
140
|
The role of mechanistic factors in promoting chromosomal translocations found in lymphoid and other cancers. Adv Immunol 2010; 106:93-133. [PMID: 20728025 DOI: 10.1016/s0065-2776(10)06004-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recurrent chromosomal abnormalities, especially chromosomal translocations, are strongly associated with certain subtypes of leukemia, lymphoma and solid tumors. The appearance of particular translocations or associated genomic alterations can be important indicators of disease prognosis, and in some cases, certain translocations may indicate appropriate therapy protocols. To date, most of our knowledge about chromosomal translocations has derived from characterization of the highly selected recurrent translocations found in certain cancers. Until recently, mechanisms that promote or suppress chromosomal translocations, in particular, those responsible for their initiation, have not been addressed. For translocations to occur, two distinct chromosomal loci must be broken, brought together (synapsed) and joined. Here, we discuss recent findings on processes and pathways that influence the initiation of chromosomal translocations, including the generation fo DNA double strand breaks (DSBs) by general factors or in the context of the Lymphocyte-specific V(D)J and IgH class-switch recombination processes. We also discuss the role of spatial proximity of DSBs in the interphase nucleus with respect to how DSBs on different chromosomes are justaposed for joining. In addition, we discuss the DNA DSB response and its role in recognizing and tethering chromosomal DSBs to prevent translocations, as well as potential roles of the classical and alternative DSB end-joining pathways in suppressing or promoting translocations. Finally, we discuss the potential roles of long range regulatory elements, such as the 3'IgH enhancer complex, in promoting the expression of certain translocations that are frequent in lymphomas and, thereby, contributing to their frequent appearance in tumors.
Collapse
|
141
|
Bekker-Jensen S, Mailand N. Assembly and function of DNA double-strand break repair foci in mammalian cells. DNA Repair (Amst) 2010; 9:1219-28. [PMID: 21035408 DOI: 10.1016/j.dnarep.2010.09.010] [Citation(s) in RCA: 267] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2010] [Indexed: 12/16/2022]
Abstract
DNA double-strand breaks (DSBs) are among the most cytotoxic types of DNA damage, which if left unrepaired can lead to mutations or gross chromosomal aberrations, and promote the onset of diseases associated with genomic instability such as cancer. One of the most discernible hallmarks of the cellular response to DSBs is the accumulation and local concentration of a plethora of DNA damage signaling and repair proteins in the vicinity of the lesion, initiated by ATM-mediated phosphorylation of H2AX (γ-H2AX) and culminating in the generation of distinct nuclear compartments, so-called Ionizing Radiation-Induced Foci (IRIF). The assembly of proteins at the DSB-flanking chromatin occurs in a highly ordered and strictly hierarchical fashion. To a large extent, this is achieved by regulation of protein-protein interactions triggered by a variety of post-translational modifications including phosphorylation, ubiquitylation, SUMOylation, and acetylation. Over the last decade, insight into the identity of proteins residing in IRIF and the molecular underpinnings of their retention at these structures has been vastly expanded. Despite such advances, however, our understanding of the biological relevance of such DNA repair foci still remains limited. In this review, we focus on recent discoveries on the mechanisms that govern the formation of IRIF, and discuss the implications of such findings in light of our understanding of the physiological importance of these structures.
Collapse
Affiliation(s)
- Simon Bekker-Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | | |
Collapse
|
142
|
Cellular context-dependent effects of H2ax and p53 deletion on the development of thymic lymphoma. Blood 2010; 117:175-85. [PMID: 20947684 DOI: 10.1182/blood-2010-03-273045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
H2AX and Artemis each cooperate with p53 to suppress lymphoma. Germline H2ax(-/-)p53(-/-) mice die of T-cell receptor-β(-) (TCR-β(-)) thymic lymphomas with translocations and other lesions characteristic of human T-cell acute lymphoblastic leukemia. Here, we demonstrate that mice with inactivation of H2ax and p53 in thymocytes die at later ages to TCR-β(-) or TCR-β(+) thymic lymphomas containing a similar pattern of translocations as H2ax(-/-)p53(-/-) tumors. Germline Artemis(-/-) p53(-/-) mice die of lymphomas with antigen receptor locus translocations, whereas Artemis(-/-)H2ax(-/-)p53(-/-) mice die at earlier ages from multiple malignancies. We show here that Artemis(-/-) mice with p53 deletion in thymocytes die of TCR-β(-) tumors containing Tcrα/δ translocations, other clonal translocations, or aneuploidy, as well as Notch1 mutations. Strikingly, Artemis(-/-) mice with H2ax and p53 deletion in thymocytes exhibited a lower rate of mortality from TCR-β(-) tumors, which harbored significantly elevated levels of genomic instability. Our data reveal that the cellular origin of H2ax and p53 loss impacts the rate of mortality from and developmental stage of thymic lymphomas, and suggest that conditional deletion of tumor suppressor genes may provide more physiologic models for human lymphoid malignancies than germline inactivation.
Collapse
|
143
|
Rossetto D, Truman AW, Kron SJ, Côté J. Epigenetic modifications in double-strand break DNA damage signaling and repair. Clin Cancer Res 2010; 16:4543-52. [PMID: 20823147 DOI: 10.1158/1078-0432.ccr-10-0513] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Factors involved in the cellular response to double-strand break (DSB) DNA damage have been identified as potential therapeutic targets that would greatly sensitize cancer cells to radiotherapy and genotoxic chemotherapy. These targets could disable the repair machinery and/or reinstate normal cell-cycle checkpoint leading to growth arrest, senescence, and apoptosis. It is now clear that a major aspect of the DNA damage response occurs through specific interactions with chromatin structure and its modulation. It implicates highly dynamic posttranslational modifications of histones that are critical for DNA damage recognition and/or signaling, repair of the lesion, and release of cell-cycle arrest. Therefore, drugs that target the enzymes responsible for these modifications, or the protein modules reading them, have very high therapeutic potential. This review presents the current state of knowledge on the different chromatin modifications and their roles in each step of eukaryotic DSB DNA damage response.
Collapse
Affiliation(s)
- Dorine Rossetto
- Laval University Cancer Research Center, Hôtel-Dieu de Québec, Quebec City, Canada
| | | | | | | |
Collapse
|
144
|
Xie A, Odate S, Chandramouly G, Scully R. H2AX post-translational modifications in the ionizing radiation response and homologous recombination. Cell Cycle 2010; 9:3602-10. [PMID: 20703100 DOI: 10.4161/cc.9.17.12884] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Histone H2AX phosphorylation on a C-terminal serine residue to form "γ-H2AX" is a critical early event in the chromatin response to chromosomal DNA double strand breaks in eukaryotes. In mammalian cells, γ-H2AX is formed when H2AX is phosphorylated on serine 139 by ATM or by other DNA damage response kinases. H2AX prevents genomic instability and tumorigenesis, and supports class-switch recombination at immunoglobulin heavy chain loci in mammals. We showed previously that H2AX controls double strand break repair by homologous recombination (HR) between sister chromatids. The HR functions of H2AX are mediated by interaction of γ-H2AX with the chromatin-associated adaptor protein MDC1. H2AX is potentially subject to additional post-translational modifications associated with the DNA damage response and with other chromatin functions. To test this idea, we used mass spectroscopy to identify H2AX residues additional to serine 139 that are post-translationally modified following exposure of cells to ionizing radiation (IR) and identified several new IR-responsive residues of H2AX. We determined the impact of IR-responsive H2AX residues on cellular resistance to IR and on H2AX-dependent HR, and also analyzed the contribution to HR of other known or potential post-translationally modified residues of H2AX. The results suggest that the HR and IR-resistance functions of H2AX are controlled in large part by specific MDC1-interacting residues of H2AX, but that additional H2AX residues modulate these core functions of H2AX.
Collapse
Affiliation(s)
- Anyong Xie
- Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | |
Collapse
|
145
|
Tsai HP, Lin LW, Lai ZY, Wu JY, Chen CE, Hwang J, Chen CS, Lin CM. Immobilizing topoisomerase I on a surface plasmon resonance biosensor chip to screen for inhibitors. J Biomed Sci 2010; 17:49. [PMID: 20565729 PMCID: PMC2898767 DOI: 10.1186/1423-0127-17-49] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 06/17/2010] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The topoisomerase I (TopI) reaction intermediate consists of an enzyme covalently linked to a nicked DNA molecule, known as a TopI-DNA complex, that can be trapped by inhibitors and results in failure of re-ligation. Attempts at new derivative designs for TopI inhibition are enthusiastically being pursued, and TopI inhibitors were developed for a variety of applications. Surface plasmon resonance (SPR) was recently used in TopI-inhibition studies. However, most such immobilized small molecules or short-sequence nucleotides are used as ligands onto sensor chips, and TopI was used as the analyte that flowed through the sensor chip. METHODS We established a sensor chip on which the TopI protein is immobilized to evaluate TopI inhibition by SPR. Camptothecin (CPT) targeting the DNA-TopI complex was used as a representative inhibitor to validate this label-free method. RESULTS Purified recombinant human TopI was covalently coupled to the sensor chip for the SPR assay. The binding of anti-human (h)TopI antibodies and plasmid pUC19, respectively, to the immobilized hTopI was observed with dose-dependent increases in resonance units (RU) suggesting that the immobilized hTopI retains its DNA-binding activity. Neither CPT nor evodiamine alone in the analyte flowing through the sensor chip showed a significant increase in RU. The combination of pUC19 and TopI inhibitors as the analyte flowing through the sensor chip caused increases in RU. This confirms its reliability for binding kinetic studies of DNA-TopI binders for interaction and for primary screening of TopI inhibitors. CONCLUSIONS TopI immobilized on the chip retained its bioactivities of DNA binding and catalysis of intermediates of the DNA-TopI complex. This provides DNA-TopI binders for interaction and primary screening with a label-free method. In addition, this biochip can also ensure the reliability of binding kinetic studies of TopI.
Collapse
Affiliation(s)
- Hsiang-Ping Tsai
- Department of Biochemistry, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Moon SH, Nguyen TA, Darlington Y, Lu X, Donehower LA. Dephosphorylation of γ-H2AX by WIP1: an important homeostatic regulatory event in DNA repair and cell cycle control. Cell Cycle 2010; 9:2092-6. [PMID: 20495376 DOI: 10.4161/cc.9.11.11810] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
DNA double strand breaks are a particularly toxic form of DNA damage and the mammalian cell has evolved an intricate set of responses to repair this type of DNA lesion. A key early event in the DNA damage response (DDR) is ATM phosphorylation of the histone variant H2AX at serine 139 at the site of the DNA break. Phosphorylated S139 H2AX, or γ-H2AX, forms a docking site for binding of MDC1, leading to sustained recruitment of other DNA repair factors that mediate the repair of the DNA double strand break. Moreover, recruitment of MDC1 to the break site activates cell cycle checkpoints, protecting the cell from replication of damaged DNA templates. While the molecular events leading to DNA double strand break repair have been well described, the deactivating or homeostatic mechanisms following completion of repair remain largely unexplored. Recent publications by our laboratories and the Medema laboratory shed new light on this issue. Both publications showed that the Wild-type p53-Induced Phosphatase 1 (WIP1) directly dephosphorylates γ-H2AX. WIP1 migrates to the sites of irradiation-induced foci (IRIF), though at a delayed rate relative to MDC1 and mediates γ-H2AX dephosphorylation, presumably after DNA repair is complete. This prevents recruitment of other repair factors such as MDC1 and 53BP1 to the DNA damage sites and promotes the dissolution of IRIF. In addition, overexpression of WIP1 has a suppressive effect on DNA double strand break repair. Taken together, these reports further implicate WIP1 as a critical homeostatic regulator of the DDR.
Collapse
Affiliation(s)
- Sung-Hwan Moon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | |
Collapse
|
147
|
Venkitaraman AR. Modifying chromatin architecture during the response to DNA breakage. Crit Rev Biochem Mol Biol 2010; 45:2-13. [PMID: 19874211 DOI: 10.3109/10409230903325446] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The human genome is compacted in a dynamic macromolecular complex, chromatin, whose structure presents a considerable barrier to the cellular machinery which responds to DNA double-strand breaks. This review discusses current understanding of the processes that modify chromatin architecture to enable, first, the sensing of DNA breakage, next, the assembly of the protein complexes that resolve the lesion, and finally, the restoration of epigenetic marks after its repair. The importance of these fundamental biological processes is underscored by the growing appreciation that they are aberrant in human diseases, and that their modulation could provide new approaches to disease therapy.
Collapse
Affiliation(s)
- Ashok R Venkitaraman
- University of Cambridge, Department of Oncology & The Medical Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, UK
| |
Collapse
|
148
|
Nussenzweig A, Nussenzweig MC. Origin of chromosomal translocations in lymphoid cancer. Cell 2010; 141:27-38. [PMID: 20371343 DOI: 10.1016/j.cell.2010.03.016] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/13/2010] [Accepted: 03/16/2010] [Indexed: 11/26/2022]
Abstract
Aberrant fusions between heterologous chromosomes are among the most prevalent cytogenetic abnormalities found in cancer cells. Oncogenic chromosomal translocations provide cells with a proliferative or survival advantage. They may either initiate transformation or be acquired secondarily as a result of genomic instability. Here, we highlight recent advances toward understanding the origin of chromosomal translocations in incipient lymphoid cancers and how tumor-suppressive pathways normally limit the frequency of these aberrant recombination events. Deciphering the mechanisms that mediate chromosomal fusions will open new avenues for developing therapeutic strategies aimed at eliminating lesions that lead to the initiation, maintenance, and progression of cancer.
Collapse
Affiliation(s)
- André Nussenzweig
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
149
|
Mah LJ, Vasireddy RS, Tang MM, Georgiadis GT, El-Osta A, Karagiannis TC. Quantification of gammaH2AX foci in response to ionising radiation. J Vis Exp 2010:1957. [PMID: 20372103 DOI: 10.3791/1957] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
DNA double-strand breaks (DSBs), which are induced by either endogenous metabolic processes or by exogenous sources, are one of the most critical DNA lesions with respect to survival and preservation of genomic integrity. An early response to the induction of DSBs is phosphorylation of the H2A histone variant, H2AX, at the serine-139 residue, in the highly conserved C-terminal SQEY motif, forming gammaH2AX(1). Following induction of DSBs, H2AX is rapidly phosphorylated by the phosphatidyl-inosito 3-kinase (PIKK) family of proteins, ataxia telangiectasia mutated (ATM), DNA-protein kinase catalytic subunit and ATM and RAD3-related (ATR)(2). Typically, only a few base-pairs (bp) are implicated in a DSB, however, there is significant signal amplification, given the importance of chromatin modifications in DNA damage signalling and repair. Phosphorylation of H2AX mediated predominantly by ATM spreads to adjacent areas of chromatin, affecting approximately 0.03% of total cellular H2AX per DSB(2,3). This corresponds to phosphorylation of approximately 2000 H2AX molecules spanning approximately 2 Mbp regions of chromatin surrounding the site of the DSB and results in the formation of discrete gammaH2AX foci which can be easily visualized and quantitated by immunofluorescence microscopy(2). The loss of gammaH2AX at DSB reflects repair, however, there is some controversy as to what defines complete repair of DSBs; it has been proposed that rejoining of both strands of DNA is adequate however, it has also been suggested that re-instatement of the original chromatin state of compaction is necessary(4-8). The disappearence of gammaH2AX involves at least in part, dephosphorylation by phosphatases, phosphatase 2A and phosphatase 4C(5,6). Further, removal of gammaH2AX by redistribution involving histone exchange with H2A.Z has been implicated(7,8). Importantly, the quantitative analysis of gammaH2AX foci has led to a wide range of applications in medical and nuclear research. Here, we demonstrate the most commonly used immunofluorescence method for evaluation of initial DNA damage by detection and quantitation of gammaH2AX foci in gamma-irradiated adherent human keratinocytes(9).
Collapse
Affiliation(s)
- Li-Jeen Mah
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct
| | | | | | | | | | | |
Collapse
|
150
|
Iacovoni JS, Caron P, Lassadi I, Nicolas E, Massip L, Trouche D, Legube G. High-resolution profiling of gammaH2AX around DNA double strand breaks in the mammalian genome. EMBO J 2010; 29:1446-57. [PMID: 20360682 DOI: 10.1038/emboj.2010.38] [Citation(s) in RCA: 375] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 02/19/2010] [Indexed: 01/16/2023] Open
Abstract
Chromatin acts as a key regulator of DNA-related processes such as DNA damage repair. Although ChIP-chip is a powerful technique to provide high-resolution maps of protein-genome interactions, its use to study DNA double strand break (DSB) repair has been hindered by the limitations of the available damage induction methods. We have developed a human cell line that permits induction of multiple DSBs randomly distributed and unambiguously positioned within the genome. Using this system, we have generated the first genome-wide mapping of gammaH2AX around DSBs. We found that all DSBs trigger large gammaH2AX domains, which spread out from the DSB in a bidirectional, discontinuous and not necessarily symmetrical manner. The distribution of gammaH2AX within domains is influenced by gene transcription, as parallel mappings of RNA Polymerase II and strand-specific expression showed that gammaH2AX does not propagate on active genes. In addition, we showed that transcription is accurately maintained within gammaH2AX domains, indicating that mechanisms may exist to protect gene transcription from gammaH2AX spreading and from the chromatin rearrangements induced by DSBs.
Collapse
|