101
|
Prenatal Exposure to Diethylstilbestrol and Multigenerational Psychiatric Disorders: An Informative Family. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18199965. [PMID: 34639263 PMCID: PMC8507930 DOI: 10.3390/ijerph18199965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Psychiatric disorders in children exposed in utero to diethylstilbestrol (DES) are still debated. We report here the impact of DES prescribed to suppress lactation on the children born after such treatment and their progeny, focusing particularly on psychiatric disorders. CASE PRESENTATION We report here an informative family in which one or more psychiatric problems (e.g., bipolarity, suicide attempts and suicide, eating disorders) were detected in all children of second-generation (DES-exposed children; n = 9), but for II-2 who died at the age of 26 years due to rupture of a congenital brain aneurysm, and were associated with non-psychiatric disorders (particularly, endometriosis and hypospadias). In the third generation, 10 out of 19 DES-exposed grandchildren had psychiatric disorders (autism spectrum disorder, bipolar disorder, dyspraxia and learning disabilities, mood and behavioral disorders, and eating disorders), often associated with comorbidities. In the fourth generation (7 DES-exposed great-grandchildren, aged between 0 and 18 years), one child had dyspraxia and autism spectrum disorder. The first daughter of the second generation (not exposed to DES) and her children and grandchildren did not have any psychiatric symptoms or comorbidities. CONCLUSIONS To our knowledge, the high prevalence of psychiatric disorders of various severities in two, and likely three generations, including DES-free pregnancies and DES-exposed pregnancies from the same family, has never been reported. This work strengthens the hypothesis that in utero exposure to DES contributes to the pathogenesis of psychiatric disorders. It also highlights a multigenerational, and possibly transgenerational, effect of DES in neurodevelopment and psychiatric disorders.
Collapse
|
102
|
Ignatieva EV, Matrosova EA. Disease-associated genetic variants in the regulatory regions of human genes: mechanisms of action on transcription and genomic resources for dissecting these mechanisms. Vavilovskii Zhurnal Genet Selektsii 2021; 25:18-29. [PMID: 34541447 PMCID: PMC8408020 DOI: 10.18699/vj21.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 11/21/2022] Open
Abstract
Whole genome and whole exome sequencing technologies play a very important role in the studies of the genetic aspects of the pathogenesis of various diseases. The ample use of genome-wide and exome-wide association study
methodology (GWAS and EWAS) made it possible to identify a large number of genetic variants associated with diseases.
This information is accumulated in the databases like GWAS central, GWAS catalog, OMIM, ClinVar, etc. Most of the variants identified by the GWAS technique are located in the noncoding regions of the human genome. According to the
ENCODE project, the fraction of regions in the human genome potentially involved in transcriptional control is many times
greater than the fraction of coding regions. Thus, genetic variation in noncoding regions of the genome can increase the
susceptibility to diseases by disrupting various regulatory elements (promoters, enhancers, silencers, insulator regions,
etc.). However, identification of the mechanisms of influence of pathogenic genetic variants on the diseases risk is difficult
due to a wide variety of regulatory elements. The present review focuses on the molecular genetic mechanisms by which
pathogenic genetic variants affect gene expression. At the same time, attention is concentrated on the transcriptional level
of regulation as an initial step in the expression of any gene. A triggering event mediating the effect of a pathogenic genetic
variant on the level of gene expression can be, for example, a change in the functional activity of transcription factor binding sites (TFBSs) or DNA methylation change, which, in turn, affects the functional activity of promoters or enhancers. Dissecting the regulatory roles of polymorphic loci have been impossible without close integration of modern experimental
approaches with computer analysis of a growing wealth of genetic and biological data obtained using omics technologies.
The review provides a brief description of a number of the most well-known public genomic information resources containing data obtained using omics technologies, including (1) resources that accumulate data on the chromatin states and the
regions of transcription factor binding derived from ChIP-seq experiments; (2) resources containing data on genomic loci,
for which allele-specific transcription factor binding was revealed based on ChIP-seq technology; (3) resources containing
in silico predicted data on the potential impact of genetic variants on the transcription factor binding sites
Collapse
Affiliation(s)
- E V Ignatieva
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - E A Matrosova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
103
|
Kobayashi H. Canonical and Non-canonical Genomic Imprinting in Rodents. Front Cell Dev Biol 2021; 9:713878. [PMID: 34422832 PMCID: PMC8375499 DOI: 10.3389/fcell.2021.713878] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
Genomic imprinting is an epigenetic phenomenon that results in unequal expression of homologous maternal and paternal alleles. This process is initiated in the germline, and the parental epigenetic memories can be maintained following fertilization and induce further allele-specific transcription and chromatin modifications of single or multiple neighboring genes, known as imprinted genes. To date, more than 260 imprinted genes have been identified in the mouse genome, most of which are controlled by imprinted germline differentially methylated regions (gDMRs) that exhibit parent-of-origin specific DNA methylation, which is considered primary imprint. Recent studies provide evidence that a subset of gDMR-less, placenta-specific imprinted genes is controlled by maternal-derived histone modifications. To further understand DNA methylation-dependent (canonical) and -independent (non-canonical) imprints, this review summarizes the loci under the control of each type of imprinting in the mouse and compares them with the respective homologs in other rodents. Understanding epigenetic systems that differ among loci or species may provide new models for exploring genetic regulation and evolutionary divergence.
Collapse
Affiliation(s)
- Hisato Kobayashi
- Department of Embryology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
104
|
Hsu PS, Yu SH, Tsai YT, Chang JY, Tsai LK, Ye CH, Song NY, Yau LC, Lin SP. More than causing (epi)genomic instability: emerging physiological implications of transposable element modulation. J Biomed Sci 2021; 28:58. [PMID: 34364371 PMCID: PMC8349491 DOI: 10.1186/s12929-021-00754-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022] Open
Abstract
Transposable elements (TEs) initially attracted attention because they comprise a major portion of the genomic sequences in plants and animals. TEs may jump around the genome and disrupt both coding genes as well as regulatory sequences to cause disease. Host cells have therefore evolved various epigenetic and functional RNA-mediated mechanisms to mitigate the disruption of genomic integrity by TEs. TE associated sequences therefore acquire the tendencies of attracting various epigenetic modifiers to induce epigenetic alterations that may spread to the neighboring genes. In addition to posting threats for (epi)genome integrity, emerging evidence suggested the physiological importance of endogenous TEs either as cis-acting control elements for controlling gene regulation or as TE-containing functional transcripts that modulate the transcriptome of the host cells. Recent advances in long-reads sequence analysis technologies, bioinformatics and genetic editing tools have enabled the profiling, precise annotation and functional characterization of TEs despite their challenging repetitive nature. The importance of specific TEs in preimplantation embryonic development, germ cell differentiation and meiosis, cell fate determination and in driving species specific differences in mammals will be discussed.
Collapse
Affiliation(s)
- Pu-Sheng Hsu
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Yi-Tzang Tsai
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Jen-Yun Chang
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Li-Kuang Tsai
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Chih-Hung Ye
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Ning-Yu Song
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.,Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Lih-Chiao Yau
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan. .,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan. .,Center of Systems Biology, National Taiwan University, Taipei, Taiwan. .,The Research Center of Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
105
|
Anvar Z, Chakchouk I, Demond H, Sharif M, Kelsey G, Van den Veyver IB. DNA Methylation Dynamics in the Female Germline and Maternal-Effect Mutations That Disrupt Genomic Imprinting. Genes (Basel) 2021; 12:genes12081214. [PMID: 34440388 PMCID: PMC8394515 DOI: 10.3390/genes12081214] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Genomic imprinting is an epigenetic marking process that results in the monoallelic expression of a subset of genes. Many of these ‘imprinted’ genes in mice and humans are involved in embryonic and extraembryonic growth and development, and some have life-long impacts on metabolism. During mammalian development, the genome undergoes waves of (re)programming of DNA methylation and other epigenetic marks. Disturbances in these events can cause imprinting disorders and compromise development. Multi-locus imprinting disturbance (MLID) is a condition by which imprinting defects touch more than one locus. Although most cases with MLID present with clinical features characteristic of one imprinting disorder. Imprinting defects also occur in ‘molar’ pregnancies-which are characterized by highly compromised embryonic development-and in other forms of reproductive compromise presenting clinically as infertility or early pregnancy loss. Pathogenic variants in some of the genes encoding proteins of the subcortical maternal complex (SCMC), a multi-protein complex in the mammalian oocyte, are responsible for a rare subgroup of moles, biparental complete hydatidiform mole (BiCHM), and other adverse reproductive outcomes which have been associated with altered imprinting status of the oocyte, embryo and/or placenta. The finding that defects in a cytoplasmic protein complex could have severe impacts on genomic methylation at critical times in gamete or early embryo development has wider implications beyond these relatively rare disorders. It signifies a potential for adverse maternal physiology, nutrition, or assisted reproduction to cause epigenetic defects at imprinted or other genes. Here, we review key milestones in DNA methylation patterning in the female germline and the embryo focusing on humans. We provide an overview of recent findings regarding DNA methylation deficits causing BiCHM, MLID, and early embryonic arrest. We also summarize identified SCMC mutations with regard to early embryonic arrest, BiCHM, and MLID.
Collapse
Affiliation(s)
- Zahra Anvar
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; (Z.A.); (I.C.); (M.S.)
- Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Imen Chakchouk
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; (Z.A.); (I.C.); (M.S.)
- Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Hannah Demond
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK;
| | - Momal Sharif
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; (Z.A.); (I.C.); (M.S.)
- Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK;
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
- Correspondence: (G.K.); (I.B.V.d.V.); Tel.: +44-1223-496332 (G.K.); +832-824-8125 (I.B.V.d.V.)
| | - Ignatia B. Van den Veyver
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; (Z.A.); (I.C.); (M.S.)
- Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (G.K.); (I.B.V.d.V.); Tel.: +44-1223-496332 (G.K.); +832-824-8125 (I.B.V.d.V.)
| |
Collapse
|
106
|
Ochoa E. Alteration of Genomic Imprinting after Assisted Reproductive Technologies and Long-Term Health. Life (Basel) 2021; 11:728. [PMID: 34440472 PMCID: PMC8398258 DOI: 10.3390/life11080728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 01/16/2023] Open
Abstract
Assisted reproductive technologies (ART) are the treatment of choice for some infertile couples and even though these procedures are generally considered safe, children conceived by ART have shown higher reported risks of some perinatal and postnatal complications such as low birth weight, preterm birth, and childhood cancer. In addition, the frequency of some congenital imprinting disorders, like Beckwith-Wiedemann Syndrome and Silver-Russell Syndrome, is higher than expected in the general population after ART. Experimental evidence from animal studies suggests that ART can induce stress in the embryo and influence gene expression and DNA methylation. Human epigenome studies have generally revealed an enrichment of alterations in imprinted regions in children conceived by ART, but no global methylation alterations. ART procedures occur simultaneously with the establishment and maintenance of imprinting during embryonic development, so this may underlie the apparent sensitivity of imprinted regions to ART. The impact in adulthood of imprinting alterations that occurred during early embryonic development is still unclear, but some experimental evidence in mice showed higher risk to obesity and cardiovascular disease after the restriction of some imprinted genes in early embryonic development. This supports the hypothesis that imprinting alterations in early development might induce epigenetic programming of metabolism and affect long-term health. Given the growing use of ART, it is important to determine the impact of ART in genomic imprinting and long-term health.
Collapse
Affiliation(s)
- Eguzkine Ochoa
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| |
Collapse
|
107
|
Zfp57 inactivation illustrates the role of ICR methylation in imprinted gene expression during neural differentiation of mouse ESCs. Sci Rep 2021; 11:13802. [PMID: 34226608 PMCID: PMC8257706 DOI: 10.1038/s41598-021-93297-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/23/2021] [Indexed: 12/05/2022] Open
Abstract
ZFP57 is required to maintain the germline-marked differential methylation at imprinting control regions (ICRs) in mouse embryonic stem cells (ESCs). Although DNA methylation has a key role in genomic imprinting, several imprinted genes are controlled by different mechanisms, and a comprehensive study of the relationship between DMR methylation and imprinted gene expression is lacking. To address the latter issue, we differentiated wild-type and Zfp57-/- hybrid mouse ESCs into neural precursor cells (NPCs) and evaluated allelic expression of imprinted genes. In mutant NPCs, we observed a reduction of allelic bias of all the 32 genes that were imprinted in wild-type cells, demonstrating that ZFP57-dependent methylation is required for maintaining or acquiring imprinted gene expression during differentiation. Analysis of expression levels showed that imprinted genes expressed from the non-methylated chromosome were generally up-regulated, and those expressed from the methylated chromosome were down-regulated in mutant cells. However, expression levels of several imprinted genes acquiring biallelic expression were not affected, suggesting the existence of compensatory mechanisms that control their RNA level. Since neural differentiation was partially impaired in Zfp57-mutant cells, this study also indicates that imprinted genes and/or non-imprinted ZFP57-target genes are required for proper neurogenesis in cultured ESCs.
Collapse
|
108
|
Ohtani H, Iwasaki YW. Rewiring of chromatin state and gene expression by transposable elements. Dev Growth Differ 2021; 63:262-273. [DOI: 10.1111/dgd.12735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 01/18/2023]
Affiliation(s)
- Hitoshi Ohtani
- Laboratory of Genome and Epigenome Dynamics Department of Animal Sciences Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Yuka W. Iwasaki
- Department of Molecular Biology Keio University School of Medicine Tokyo Japan
- Japan Science and Technology Agency (JST) Precursory Research for Embryonic Science and Technology (PRESTO) Saitama Japan
| |
Collapse
|
109
|
Abstract
ZFP57 is a master regulator of genomic imprinting. It has both maternal and zygotic functions that are partially redundant in maintaining DNA methylation at some imprinting control regions (ICRs). In this study, we found that DNA methylation was lost at most known ICRs in Zfp57 mutant embryos. Furthermore, loss of ZFP57 caused loss of parent-of-origin-dependent monoallelic expression of the target imprinted genes. The allelic expression switch occurred in the ZFP57 target imprinted genes upon loss of differential DNA methylation at the ICRs in Zfp57 mutant embryos. Specifically, upon loss of ZFP57, the alleles of the imprinted genes located on the same chromosome with the originally methylated ICR switched their expression to mimic their counterparts on the other chromosome with unmethylated ICR. Consistent with our previous study, ZFP57 could regulate the NOTCH signaling pathway in mouse embryos by impacting allelic expression of a few regulators in the NOTCH pathway. In addition, the imprinted Dlk1 gene that has been implicated in the NOTCH pathway was significantly down-regulated in Zfp57 mutant embryos. Our allelic expression switch models apply to the examined target imprinted genes controlled by either maternally or paternally methylated ICRs. Our results support the view that ZFP57 controls imprinted expression of its target imprinted genes primarily through maintaining differential DNA methylation at the ICRs.
Collapse
|
110
|
Vanzan L, Soldati H, Ythier V, Anand S, Braun SMG, Francis N, Murr R. High throughput screening identifies SOX2 as a super pioneer factor that inhibits DNA methylation maintenance at its binding sites. Nat Commun 2021; 12:3337. [PMID: 34099689 PMCID: PMC8184831 DOI: 10.1038/s41467-021-23630-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Binding of mammalian transcription factors (TFs) to regulatory regions is hindered by chromatin compaction and DNA methylation of their binding sites. Nevertheless, pioneer transcription factors (PFs), a distinct class of TFs, have the ability to access nucleosomal DNA, leading to nucleosome remodelling and enhanced chromatin accessibility. Whether PFs can bind to methylated sites and induce DNA demethylation is largely unknown. Using a highly parallelized approach to investigate PF ability to bind methylated DNA and induce DNA demethylation, we show that the interdependence between DNA methylation and TF binding is more complex than previously thought, even within a select group of TFs displaying pioneering activity; while some PFs do not affect the methylation status of their binding sites, we identified PFs that can protect DNA from methylation and others that can induce DNA demethylation at methylated binding sites. We call the latter super pioneer transcription factors (SPFs), as they are seemingly able to overcome several types of repressive epigenetic marks. Finally, while most SPFs induce TET-dependent active DNA demethylation, SOX2 binding leads to passive demethylation, an activity enhanced by the co-binding of OCT4. This finding suggests that SPFs could interfere with epigenetic memory during DNA replication.
Collapse
Affiliation(s)
- Ludovica Vanzan
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hadrien Soldati
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Victor Ythier
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- Diagnostic Department, Clinical Pathology Division, University Hospital of Geneva, Geneva, Switzerland
| | - Santosh Anand
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- Department of Informatics, Systems and Communications (DISCo), University of Milano-Bicocca, Milan, Italy
| | - Simon M G Braun
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Nicole Francis
- Institut de Recherches Cliniques de Montréal (IRCM) and Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Canada
| | - Rabih Murr
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.
- Institute for Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| |
Collapse
|
111
|
Abstract
Genomic imprinting is the monoallelic expression of a gene based on parent of origin and is a consequence of differential epigenetic marking between the male and female germlines. Canonically, genomic imprinting is mediated by allelic DNA methylation. However, recently it has been shown that maternal H3K27me3 can result in DNA methylation-independent imprinting, termed "noncanonical imprinting." In this review, we compare and contrast what is currently known about the underlying mechanisms, the role of endogenous retroviral elements, and the conservation of canonical and noncanonical genomic imprinting.
Collapse
Affiliation(s)
- Courtney W Hanna
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| |
Collapse
|
112
|
Hara S, Terao M, Tsuji-Hosokawa A, Ogawa Y, Takada S. Humanization of a tandem repeat in IG-DMR causes stochastic restoration of paternal imprinting at mouse Dlk1-Dio3 domain. Hum Mol Genet 2021; 30:564-574. [PMID: 33709141 PMCID: PMC8120134 DOI: 10.1093/hmg/ddab071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/09/2021] [Accepted: 03/04/2021] [Indexed: 12/04/2022] Open
Abstract
The Dlk1-Dio3 imprinted domain, regulated by an intergenic differentially methylated region (IG-DMR), is important for mammalian embryonic development. Although previous studies have reported that DNA methylation of a tandem repeated array sequence in paternal IG-DMR (IG-DMR-Rep) plays an essential role in the maintenance of DNA methylation in mice, the function of a tandem repeated array sequence in human IG-DMR (hRep) is unknown. Here, we generated mice with a human tandem repeated sequence, which replaced the mouse IG-DMR-Rep. Mice that transmitted the humanized allele paternally exhibited variable methylation status at the IG-DMR and were stochastically rescued from the lethality of IG-DMR-Rep deficiency, suggesting that hRep plays a role in human IG-DMR for the regulation of imprinted expression. Moreover, chromatin immunoprecipitation analysis showed that TRIM28 was enriched in hypermethylated paternal hRep without ZFP57. Our results suggest that hRep contributes to the maintenance of human IG-DMR methylation imprints via the recruitment of TRIM28.
Collapse
Affiliation(s)
- Satoshi Hara
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Division of Molecular Genetics & Epigenetics, Department of Biomolecular Science, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Miho Terao
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Atsumi Tsuji-Hosokawa
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Yuya Ogawa
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Department of NCCHD, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Department of NCCHD, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| |
Collapse
|
113
|
Burton EM, Akinyemi IA, Frey TR, Xu H, Li X, Su LJ, Zhi J, McIntosh MT, Bhaduri-McIntosh S. A heterochromatin inducing protein differentially recognizes self versus foreign genomes. PLoS Pathog 2021; 17:e1009447. [PMID: 33730092 PMCID: PMC8007004 DOI: 10.1371/journal.ppat.1009447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/29/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
Krüppel-associated box-domain zinc finger protein (KRAB-ZFP) transcriptional repressors recruit TRIM28/KAP1 to heterochromatinize the mammalian genome while also guarding the host by silencing invading foreign genomes. However, how a KRAB-ZFP recognizes target sequences in the natural context of its own or foreign genomes is unclear. Our studies on B-lymphocytes permanently harboring the cancer-causing Epstein-Barr virus (EBV) have shown that SZF1, a KRAB-ZFP, binds to several lytic/replicative phase genes to silence them, thereby promoting the latent/quiescent phase of the virus. As a result, unless SZF1 and its binding partners are displaced from target regions on the viral genome, EBV remains dormant, i.e. refractory to lytic phase-inducing triggers. As SZF1 also heterochromatinizes the cellular genome, we performed in situ footprint mapping on both viral and host genomes in physically separated B-lymphocytes bearing latent or replicative/active EBV genomes. By analyzing footprints, we learned that SZF1 recognizes the host genome through a repeat sequence-bearing motif near centromeres. Remarkably, SZF1 does not use this motif to recognize the EBV genome. Instead, it uses distinct binding sites that lack obvious similarities to each other or the above motif, to silence the viral genome. Virus mutagenesis studies show that these distinct binding sites are not only key to maintaining the established latent phase but also silencing the lytic phase in newly-infected cells, thus enabling the virus to establish latency and transform cells. Notably, these binding sites on the viral genome, when also present on the human genome, are not used by SZF1 to silence host genes during latency. This differential approach towards target site recognition may reflect a strategy by which the host silences and regulates genomes of persistent invaders without jeopardizing its own homeostasis. Heterochromatin marks silenced portions of the human genome. Heterochromatin also serves as a defense strategy to silence foreign genomes. Yet, how the heterochromatin inducing KRAB-ZFP-TRIM28 machinery recognizes target sites on the native genome, whether self or foreign, is unclear. Using Epstein-Barr virus-infected cells in which a KRAB-ZFP, SZF1, silences lytic/replicative-phase genes of the virus, we performed in situ mapping of ZFP-footprints on cell and viral genomes. We find that while the ZFP uses a repeat sequence-bearing motif to target pericentromeric regions, it uses non-consensus sites to target viral genes. These findings point towards i) a mechanism for directing constitutive heterochromatin and ii) a strategy that allows the host to use the same heterochromatin machinery to regulate an invader without deregulating itself.
Collapse
Affiliation(s)
- Eric M. Burton
- Dept. of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Ibukun A. Akinyemi
- Child Health Research Institute, Dept. of Pediatrics, University of Florida, Gainesville, Florida, United States of America
| | - Tiffany R. Frey
- Child Health Research Institute, Dept. of Pediatrics, University of Florida, Gainesville, Florida, United States of America
| | - Huanzhou Xu
- Division of Infectious Disease, Dept. of Pediatrics, University of Florida, Gainesville, Florida, United States of America
| | - Xiaofan Li
- Division of Infectious Disease, Dept. of Pediatrics, University of Florida, Gainesville, Florida, United States of America
| | - Lai Jing Su
- Child Health Research Institute, Dept. of Pediatrics, University of Florida, Gainesville, Florida, United States of America
| | - Jizu Zhi
- Dept of Pathology, Stony Brook University, Stony Brook, New York, United States of America
| | - Michael T. McIntosh
- Child Health Research Institute, Depts. of Pediatrics and of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (MTM); (SB-M)
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Disease, Depts. of Pediatrics and of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (MTM); (SB-M)
| |
Collapse
|
114
|
Jönsson ME, Garza R, Sharma Y, Petri R, Södersten E, Johansson JG, Johansson PA, Atacho DA, Pircs K, Madsen S, Yudovich D, Ramakrishnan R, Holmberg J, Larsson J, Jern P, Jakobsson J. Activation of endogenous retroviruses during brain development causes an inflammatory response. EMBO J 2021; 40:e106423. [PMID: 33644903 PMCID: PMC8090857 DOI: 10.15252/embj.2020106423] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 01/09/2023] Open
Abstract
Endogenous retroviruses (ERVs) make up a large fraction of mammalian genomes and are thought to contribute to human disease, including brain disorders. In the brain, aberrant activation of ERVs is a potential trigger for an inflammatory response, but mechanistic insight into this phenomenon remains lacking. Using CRISPR/Cas9‐based gene disruption of the epigenetic co‐repressor protein Trim28, we found a dynamic H3K9me3‐dependent regulation of ERVs in proliferating neural progenitor cells (NPCs), but not in adult neurons. In vivo deletion of Trim28 in cortical NPCs during mouse brain development resulted in viable offspring expressing high levels of ERVs in excitatory neurons in the adult brain. Neuronal ERV expression was linked to activated microglia and the presence of ERV‐derived proteins in aggregate‐like structures. This study demonstrates that brain development is a critical period for the silencing of ERVs and provides causal in vivo evidence demonstrating that transcriptional activation of ERV in neurons results in an inflammatory response.
Collapse
Affiliation(s)
- Marie E Jönsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Raquel Garza
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Yogita Sharma
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Rebecca Petri
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Erik Södersten
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jenny G Johansson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Pia A Johansson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Diahann Am Atacho
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Karolina Pircs
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Sofia Madsen
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - David Yudovich
- Division of Molecular Medicine and Gene Therapy, Department of Laboratory Medicine and Lund Stem Cell Center, Lund University, Lund, Sweden
| | | | - Johan Holmberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Larsson
- Division of Molecular Medicine and Gene Therapy, Department of Laboratory Medicine and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Patric Jern
- Science for Life Laboratory, Department for Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Johan Jakobsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
115
|
KRAB-ZFP Transcriptional Regulators Acting as Oncogenes and Tumor Suppressors: An Overview. Int J Mol Sci 2021; 22:ijms22042212. [PMID: 33672287 PMCID: PMC7926519 DOI: 10.3390/ijms22042212] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/17/2022] Open
Abstract
Krüppel-associated box zinc finger proteins (KRAB-ZFPs) constitute the largest family of transcriptional factors exerting co-repressor functions in mammalian cells. In general, KRAB-ZFPs have a dual structure. They may bind to specific DNA sequences via zinc finger motifs and recruit a repressive complex through the KRAB domain. Such a complex mediates histone deacetylation, trimethylation of histone 3 at lysine 9 (H3K9me3), and subsequent heterochromatization. Nevertheless, apart from their repressive role, KRAB-ZFPs may also co-activate gene transcription, likely through interaction with other factors implicated in transcriptional control. KRAB-ZFPs play essential roles in various biological processes, including development, imprinting, retroelement silencing, and carcinogenesis. Cancer cells possess multiple genomic, epigenomic, and transcriptomic aberrations. A growing number of data indicates that the expression of many KRAB-ZFPs is altered in several tumor types, in which they may act as oncogenes or tumor suppressors. Hereby, we review the available literature describing the oncogenic and suppressive roles of various KRAB-ZFPs in cancer. We focused on their association with the clinicopathological features and treatment response, as well as their influence on the cancer cell phenotype. Moreover, we summarized the identified upstream and downstream molecular mechanisms that may govern the functioning of KRAB-ZFPs in a cancer setting.
Collapse
|
116
|
Abstract
In the past several decades, the establishment of in vitro models of pluripotency has ushered in a golden era for developmental and stem cell biology. Research in this arena has led to profound insights into the regulatory features that shape early embryonic development. Nevertheless, an integrative theory of the epigenetic principles that govern the pluripotent nucleus remains elusive. Here, we summarize the epigenetic characteristics that define the pluripotent state. We cover what is currently known about the epigenome of pluripotent stem cells and reflect on the use of embryonic stem cells as an experimental system. In addition, we highlight insights from super-resolution microscopy, which have advanced our understanding of the form and function of chromatin, particularly its role in establishing the characteristically "open chromatin" of pluripotent nuclei. Further, we discuss the rapid improvements in 3C-based methods, which have given us a means to investigate the 3D spatial organization of the pluripotent genome. This has aided the adaptation of prior notions of a "pluripotent molecular circuitry" into a more holistic model, where hotspots of co-interacting domains correspond with the accumulation of pluripotency-associated factors. Finally, we relate these earlier hypotheses to an emerging model of phase separation, which posits that a biophysical mechanism may presuppose the formation of a pluripotent-state-defining transcriptional program.
Collapse
Affiliation(s)
| | - Eran Meshorer
- Department of Genetics, the Institute of Life Sciences
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel 9190400
| |
Collapse
|
117
|
Ming X, Zhu B, Li Y. Mitotic inheritance of DNA methylation: more than just copy and paste. J Genet Genomics 2021; 48:1-13. [PMID: 33771455 DOI: 10.1016/j.jgg.2021.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
Decades of investigation on DNA methylation have led to deeper insights into its metabolic mechanisms and biological functions. This understanding was fueled by the recent development of genome editing tools and our improved capacity for analyzing the global DNA methylome in mammalian cells. This review focuses on the maintenance of DNA methylation patterns during mitotic cell division. We discuss the latest discoveries of the mechanisms for the inheritance of DNA methylation as a stable epigenetic memory. We also highlight recent evidence showing the rapid turnover of DNA methylation as a dynamic gene regulatory mechanism. A body of work has shown that altered DNA methylomes are common features in aging and disease. We discuss the potential links between methylation maintenance mechanisms and disease-associated methylation changes.
Collapse
Affiliation(s)
- Xuan Ming
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yingfeng Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
118
|
Carmel M, Michaelovsky E, Weinberger R, Frisch A, Mekori-Domachevsky E, Gothelf D, Weizman A. Differential methylation of imprinting genes and MHC locus in 22q11.2 deletion syndrome-related schizophrenia spectrum disorders. World J Biol Psychiatry 2021; 22:46-57. [PMID: 32212948 DOI: 10.1080/15622975.2020.1747113] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVES 22q11.2 deletion syndrome (DS) is the strongest known genetic risk for schizophrenia. Methylome screening was conducted to elucidate possible involvement of epigenetic alterations in the emergence of schizophrenia spectrum disorders (SZ-SD) in 22q11.2DS. METHODS Sixteen adult men with/without SZ-SD were recruited from a 22q11.2DS cohort and underwent genome-wide DNA methylation profile analysis. Differentially methylated probes (DMPs) and regions (DMRs) were analysed using the ChAMP software. RESULTS The DMPs (p-value <10-6) and DMRs (p-valueArea <0.01) were enriched in two gene sets, 'imprinting genes' and 'chr6p21', a region overlapping the MHC locus. Most of the identified imprinting genes are involved in neurodevelopment and located in clusters under imprinting control region (ICR) regulation, including PEG10, SGCE (7q21.3), GNAS, GNAS-AS1 (20q13.32) and SNHG14, SNURF-SNRPN, SNORD115 (15q11.2). The differentially methylated genes from the MHC locus included immune HLA-genes and non-immune genes, RNF39, PPP1R18 and NOTCH4, implicated in neurodevelopment and synaptic plasticity. The most significant DMR is located in MHC locus and covered the transcription regulator ZFP57 that is required for control and maintenance of gene imprinting at multiple ICRs. CONCLUSIONS The differential methylation in imprinting genes and in chr6p21-22 indicate the neurodevelopmental nature of 22q11.2DS-related SZ and the major role of MHC locus in the risk to develop SZ.
Collapse
Affiliation(s)
- Miri Carmel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Elena Michaelovsky
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Ronnie Weinberger
- The Behavioral Neurogenetics Center and Child Psychiatry Division, Sheba Medical Center, Ramat Gan, Israel
| | - Amos Frisch
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Ehud Mekori-Domachevsky
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Behavioral Neurogenetics Center and Child Psychiatry Division, Sheba Medical Center, Ramat Gan, Israel
| | - Doron Gothelf
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Behavioral Neurogenetics Center and Child Psychiatry Division, Sheba Medical Center, Ramat Gan, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Abraham Weizman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Petach Tikva, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Geha Mental Health Center, Petach Tikva, Israel
| |
Collapse
|
119
|
Monteagudo-Sánchez A, Hernandez Mora JR, Simon C, Burton A, Tenorio J, Lapunzina P, Clark S, Esteller M, Kelsey G, López-Siguero JP, de Nanclares GP, Torres-Padilla ME, Monk D. The role of ZFP57 and additional KRAB-zinc finger proteins in the maintenance of human imprinted methylation and multi-locus imprinting disturbances. Nucleic Acids Res 2020; 48:11394-11407. [PMID: 33053156 PMCID: PMC7672439 DOI: 10.1093/nar/gkaa837] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/10/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Genomic imprinting is an epigenetic process regulated by germline-derived DNA methylation that is resistant to embryonic reprogramming, resulting in parental origin-specific monoallelic gene expression. A subset of individuals affected by imprinting disorders (IDs) displays multi-locus imprinting disturbances (MLID), which may result from aberrant establishment of imprinted differentially methylated regions (DMRs) in gametes or their maintenance in early embryogenesis. Here we investigated the extent of MLID in a family harbouring a ZFP57 truncating variant and characterize the interactions between human ZFP57 and the KAP1 co-repressor complex. By ectopically targeting ZFP57 to reprogrammed loci in mouse embryos using a dCas9 approach, we confirm that ZFP57 recruitment is sufficient to protect oocyte-derived methylation from reprogramming. Expression profiling in human pre-implantation embryos and oocytes reveals that unlike in mice, ZFP57 is only expressed following embryonic-genome activation, implying that other KRAB-zinc finger proteins (KZNFs) recruit KAP1 prior to blastocyst formation. Furthermore, we uncover ZNF202 and ZNF445 as additional KZNFs likely to recruit KAP1 to imprinted loci during reprogramming in the absence of ZFP57. Together, these data confirm the perplexing link between KZFPs and imprint maintenance and highlight the differences between mouse and humans in this respect.
Collapse
Affiliation(s)
- Ana Monteagudo-Sánchez
- Imprinting and Cancer group, Bellvitge Institute for Biomedical Research, Gran via, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jose Ramon Hernandez Mora
- Imprinting and Cancer group, Bellvitge Institute for Biomedical Research, Gran via, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Carlos Simon
- Department of Obstetrics and Gynecology, Valencia University and INCLIVA, Valencia, Spain.,Department of Obstetrics and Gynecology, BIDMC, Harvard University, Boston, MA, USA
| | - Adam Burton
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, München, Germany
| | - Jair Tenorio
- Medical and Molecular Genetics Institute, University Hospital La Paz, Madrid, Spain.,CIBERER, Centro de Investigacion Biomedica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Pablo Lapunzina
- Medical and Molecular Genetics Institute, University Hospital La Paz, Madrid, Spain.,CIBERER, Centro de Investigacion Biomedica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.,ITHACA, European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability
| | - Stephen Clark
- Epigenetics Programme, The Babraham Institute, Babraham, Cambridge, UK
| | - Manel Esteller
- Josep Carreras Leukeamia Research Institute, Can Ruti, Cami de les Escoles, Badalona, Barcelona, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Babraham, Cambridge, UK.,Centre for Trophoblast Research, University of Cambridge, UK
| | | | - Guiomar Perez de Nanclares
- (Epi)Genetics Laboratory, BioAraba Research Health Institute, Araba University Hospital, Vitoria-Gasteiz, Alava, Spain
| | | | - David Monk
- Imprinting and Cancer group, Bellvitge Institute for Biomedical Research, Gran via, L'Hospitalet de Llobregat, Barcelona, Spain.,Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
120
|
Oleksiewicz U, Machnik M. Causes, effects, and clinical implications of perturbed patterns within the cancer epigenome. Semin Cancer Biol 2020; 83:15-35. [PMID: 33359485 DOI: 10.1016/j.semcancer.2020.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Somatic mutations accumulating over a patient's lifetime are well-defined causative factors that fuel carcinogenesis. It is now clear, however, that epigenomic signature is also largely perturbed in many malignancies. These alterations support the transcriptional program crucial for the acquisition and maintenance of cancer hallmarks. Epigenetic instability may arise due to the genetic mutations or transcriptional deregulation of the proteins implicated in epigenetic signaling. Moreover, external stimulation and physiological aging may also participate in this phenomenon. The epigenomic signature is frequently associated with a cell of origin, as well as with tumor stage and differentiation, which all reflect its high heterogeneity across and within various tumors. Here, we will overview the current understanding of the causes and effects of the altered and heterogeneous epigenomic landscape in cancer. We will focus mainly on DNA methylation and post-translational histone modifications as the key regulatory epigenetic signaling marks. In addition, we will describe how this knowledge is translated into the clinic. We will particularly concentrate on the applicability of epigenetic alterations as biomarkers for improved diagnosis, prognosis, and prediction. Finally, we will also review current developments regarding epi-drug usage in clinical and experimental settings.
Collapse
Affiliation(s)
- Urszula Oleksiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznan, Poland; Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Poznan, Poland.
| | - Marta Machnik
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznan, Poland; Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
121
|
Shalev D, Melamed P. The role of the hypothalamus and pituitary epigenomes in central activation of the reproductive axis at puberty. Mol Cell Endocrinol 2020; 518:111031. [PMID: 32956708 DOI: 10.1016/j.mce.2020.111031] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/02/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022]
Abstract
Puberty is programmed through a multifactorial gene network which works to activate the pulsatile secretion of the gonadotropin releasing hormone (GnRH), and subsequently elevate circulating levels of the pituitary gonadotropins that stimulate gonadal activity. Although this developmental transition normally occurs at a limited age-range in individuals of the same genetic background and environment, pubertal onset can occur prematurely or be delayed following changes in ambient conditions, or due to genetic variations or mutations, many of which have remained elusive due to their location in distal regulatory elements. Growing evidence is pointing to a pivotal role for the epigenome in regulating key genes in the reproductive hypothalamus and pituitary at this time, which might mediate some of the plasticity of pubertal timing. This review will address epigenetic mechanisms which have been demonstrated in the KNDy neurons that increase the output of pulsatile GnRH, and those involved in activation of the GnRH gene and its receptor, and describes how GnRH utilizes epigenetic mechanisms to stimulate transcription of the pituitary gonadotropin genes in the context of the chromatin landscape.
Collapse
Affiliation(s)
- Dor Shalev
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
122
|
Abstract
Abstract
Genomic imprinting ensures the parent-specific expression of either the maternal or the paternal allele, by different epigenetic processes (DNA methylation and histone modifications) that confer parent-specific marks (imprints) in the paternal and maternal germline, respectively. Most protein-coding imprinted genes are involved in embryonic growth, development, and behavior. They are usually organized in genomic domains that are regulated by differentially methylated regions (DMRs). Genomic imprints are erased in the primordial germ cells and then reset in a gene-specific manner according to the sex of the germline. The imprinted genes regulate and interact with other genes, consistent with the existence of an imprinted gene network. Defects of genomic imprinting result in syndromal imprinting disorders. To date a dozen congenital imprinting disorders are known. Usually, a given imprinting disorder can be caused by different types of defects, including point mutations, deletions/duplications, uniparental disomy, and epimutations. Causative trans-acting factors in imprinting disorders, including ZFP57 and the subcortical maternal complex (SCMC), have the potential to affect multiple DMRs across the genome, resulting in a multi-locus imprinting disturbance. There is evidence that mutations in components of the SCMC can confer an increased risk for imprinting disorders.
Collapse
Affiliation(s)
- Dirk Prawitt
- Center for Pediatrics and Adolescent Medicine , University Medical Centre Johannes Gutenberg University Mainz , Obere Zahlbacher Str. 63 , Mainz , Germany
| | - Thomas Haaf
- Institute of Human Genetics , Julius Maximilians University , Würzburg , Germany
| |
Collapse
|
123
|
Maternal DNMT3A-dependent de novo methylation of the paternal genome inhibits gene expression in the early embryo. Nat Commun 2020; 11:5417. [PMID: 33110091 PMCID: PMC7591512 DOI: 10.1038/s41467-020-19279-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022] Open
Abstract
De novo DNA methylation (DNAme) during mammalian spermatogenesis yields a densely methylated genome, with the exception of CpG islands (CGIs), which are hypomethylated in sperm. While the paternal genome undergoes widespread DNAme loss before the first S-phase following fertilization, recent mass spectrometry analysis revealed that the zygotic paternal genome is paradoxically also subject to a low level of de novo DNAme. However, the loci involved, and impact on transcription were not addressed. Here, we employ allele-specific analysis of whole-genome bisulphite sequencing data and show that a number of genomic regions, including several dozen CGI promoters, are de novo methylated on the paternal genome by the 2-cell stage. A subset of these promoters maintains DNAme through development to the blastocyst stage. Consistent with paternal DNAme acquisition, many of these loci are hypermethylated in androgenetic blastocysts but hypomethylated in parthenogenetic blastocysts. Paternal DNAme acquisition is lost following maternal deletion of Dnmt3a, with a subset of promoters, which are normally transcribed from the paternal allele in blastocysts, being prematurely transcribed at the 4-cell stage in maternal Dnmt3a knockout embryos. These observations uncover a role for maternal DNMT3A activity in post-fertilization epigenetic reprogramming and transcriptional silencing of the paternal genome. The paternal genome in mice undergoes widespread DNA methylation loss post-fertilization. Here, the authors apply allele-specific analysis of WGBS data to show that a number of genomic regions are simultaneously de novo methylated on the paternal genome dependent on maternal DNMT3A activity, which induces transcriptional silencing of this allele in the early embryo.
Collapse
|
124
|
Cusack M, King HW, Spingardi P, Kessler BM, Klose RJ, Kriaucionis S. Distinct contributions of DNA methylation and histone acetylation to the genomic occupancy of transcription factors. Genome Res 2020; 30:1393-1406. [PMID: 32963030 PMCID: PMC7605266 DOI: 10.1101/gr.257576.119] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
Epigenetic modifications on chromatin play important roles in regulating gene expression. Although chromatin states are often governed by multilayered structure, how individual pathways contribute to gene expression remains poorly understood. For example, DNA methylation is known to regulate transcription factor binding but also to recruit methyl-CpG binding proteins that affect chromatin structure through the activity of histone deacetylase complexes (HDACs). Both of these mechanisms can potentially affect gene expression, but the importance of each, and whether these activities are integrated to achieve appropriate gene regulation, remains largely unknown. To address this important question, we measured gene expression, chromatin accessibility, and transcription factor occupancy in wild-type or DNA methylation-deficient mouse embryonic stem cells following HDAC inhibition. We observe widespread increases in chromatin accessibility at retrotransposons when HDACs are inhibited, and this is magnified when cells also lack DNA methylation. A subset of these elements has elevated binding of the YY1 and GABPA transcription factors and increased expression. The pronounced additive effect of HDAC inhibition in DNA methylation-deficient cells demonstrates that DNA methylation and histone deacetylation act largely independently to suppress transcription factor binding and gene expression.
Collapse
Affiliation(s)
- Martin Cusack
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Hamish W King
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Paolo Spingardi
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Benedikt M Kessler
- Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ, United Kingdom
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Skirmantas Kriaucionis
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ, United Kingdom;
| |
Collapse
|
125
|
Genome-wide CRISPR knockout screen identifies ZNF304 as a silencer of HIV transcription that promotes viral latency. PLoS Pathog 2020; 16:e1008834. [PMID: 32956422 PMCID: PMC7529202 DOI: 10.1371/journal.ppat.1008834] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 10/01/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Despite the widespread use of anti-retroviral therapy, human immunodeficiency virus (HIV) still persists in an infected cell reservoir that harbors transcriptionally silent yet replication-competent proviruses. While significant progress has been made in understanding how the HIV reservoir is established, transcription repression mechanisms that are enforced on the integrated viral promoter have not been fully revealed. In this study, we performed a whole-genome CRISPR knockout screen in HIV infected T cells to identify host genes that potentially promote HIV latency. Of several top candidates, the KRAB-containing zinc finger protein, ZNF304, was identified as the top hit. ZNF304 silences HIV gene transcription through associating with TRIM28 and recruiting to the viral promoter heterochromatin-inducing methyltransferases, including the polycomb repression complex (PRC) and SETB1. Depletion of ZNF304 expression reduced levels of H3K9me3, H3K27me3 and H2AK119ub repressive histone marks on the HIV promoter as well as SETB1 and TRIM28, ultimately enhancing HIV gene transcription. Significantly, ZNF304 also promoted HIV latency, as its depletion delayed the entry of HIV infected cells into latency. In primary CD4+ cells, ectopic expression of ZNF304 silenced viral transcription. We conclude that by associating with TRIM28 and recruiting host transcriptional repressive complexes, SETB1 and PRC, to the HIV promoter, ZNF304 silences HIV gene transcription and promotes viral latency. Antiretroviral therapy has significantly decreased the morbidity and mortality associated with HIV infection. However, a complete cure remains out of reach, as HIV persists in a cell reservoir that is highly stable in the face of therapy. While developing novel therapeutic strategies to eliminate the reservoir is a well-recognized goal, knowledge of the molecular events that establish HIV latency is still not complete. To obtain insights into the silencing mechanisms of HIV gene transcription and the establishment of viral latency, a genome-wide CRISPR screen was employed to identify host factors that control viral latency. We identified zinc-finger protein 304 (ZNF304) and showed that through association with TRIM28, it recruits the histone methyltransferases SETB1 and PRC to deposit repressive marks on chromatin of the HIV promoter, thereby facilitating the silencing of viral gene transcription. Moreover, we found that depletion of ZNF304 expression activated HIV gene expression, while ZNF304 overexpression repressed viral gene transcription both in a T cell line and in primary CD4+ cells. Finally, our study showed that ZNF304 is also involved in modulating HIV latency, as its depletion delayed entry of the virus into a latency state. Our results offer an additional mechanistic explanation for how host histone repression complexes are tethered to the HIV promoter to promote chromatin compaction, thereby defining a potentially new target for perturbing the establishment of the viral reservoir.
Collapse
|
126
|
NSD1-deposited H3K36me2 directs de novo methylation in the mouse male germline and counteracts Polycomb-associated silencing. Nat Genet 2020; 52:1088-1098. [PMID: 32929285 DOI: 10.1038/s41588-020-0689-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022]
Abstract
De novo DNA methylation (DNAme) in mammalian germ cells is dependent on DNMT3A and DNMT3L. However, oocytes and spermatozoa show distinct patterns of DNAme. In mouse oocytes, de novo DNAme requires the lysine methyltransferase (KMTase) SETD2, which deposits H3K36me3. We show here that SETD2 is dispensable for de novo DNAme in the male germline. Instead, the lysine methyltransferase NSD1, which broadly deposits H3K36me2 in euchromatic regions, plays a critical role in de novo DNAme in prospermatogonia, including at imprinted genes. However, males deficient in germline NSD1 show a more severe defect in spermatogenesis than Dnmt3l-/- males. Notably, unlike DNMT3L, NSD1 safeguards a subset of genes against H3K27me3-associated transcriptional silencing. In contrast, H3K36me2 in oocytes is predominantly dependent on SETD2 and coincides with H3K36me3. Furthermore, females with NSD1-deficient oocytes are fertile. Thus, the sexually dimorphic pattern of DNAme in mature mouse gametes is orchestrated by distinct profiles of H3K36 methylation.
Collapse
|
127
|
Hop PJ, Luijk R, Daxinger L, van Iterson M, Dekkers KF, Jansen R, van Meurs JBJ, 't Hoen PAC, Ikram MA, van Greevenbroek MMJ, Boomsma DI, Slagboom PE, Veldink JH, van Zwet EW, Heijmans BT. Genome-wide identification of genes regulating DNA methylation using genetic anchors for causal inference. Genome Biol 2020; 21:220. [PMID: 32859263 PMCID: PMC7453518 DOI: 10.1186/s13059-020-02114-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND DNA methylation is a key epigenetic modification in human development and disease, yet there is limited understanding of its highly coordinated regulation. Here, we identify 818 genes that affect DNA methylation patterns in blood using large-scale population genomics data. RESULTS By employing genetic instruments as causal anchors, we establish directed associations between gene expression and distant DNA methylation levels, while ensuring specificity of the associations by correcting for linkage disequilibrium and pleiotropy among neighboring genes. The identified genes are enriched for transcription factors, of which many consistently increased or decreased DNA methylation levels at multiple CpG sites. In addition, we show that a substantial number of transcription factors affected DNA methylation at their experimentally determined binding sites. We also observe genes encoding proteins with heterogenous functions that have widespread effects on DNA methylation, e.g., NFKBIE, CDCA7(L), and NLRC5, and for several examples, we suggest plausible mechanisms underlying their effect on DNA methylation. CONCLUSION We report hundreds of genes that affect DNA methylation and provide key insights in the principles underlying epigenetic regulation.
Collapse
Affiliation(s)
- Paul J Hop
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
- Department of Neurology, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - René Luijk
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Maarten van Iterson
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Koen F Dekkers
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Rick Jansen
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Peter A C 't Hoen
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, 3015 CE, Rotterdam, The Netherlands
| | - Marleen M J van Greevenbroek
- Department of Internal Medicine, Maastricht University Medical Center, 6211 LK, Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center, 6229 ER, Maastricht, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Neuroscience Campus Amsterdam, 1081 BT, Amsterdam, The Netherlands
| | - P Eline Slagboom
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Jan H Veldink
- Department of Neurology, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Erik W van Zwet
- Medical Statistics, Department of Biomedical Data Sciences, Leiden University Medical Center, 2333 ZC, Leiden, Zuid-Holland, The Netherlands
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands.
| |
Collapse
|
128
|
Singh PB, Belyakin SN, Laktionov PP. Biology and Physics of Heterochromatin- Like Domains/Complexes. Cells 2020; 9:E1881. [PMID: 32796726 PMCID: PMC7465696 DOI: 10.3390/cells9081881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 11/17/2022] Open
Abstract
The hallmarks of constitutive heterochromatin, HP1 and H3K9me2/3, assemble heterochromatin-like domains/complexes outside canonical constitutively heterochromatic territories where they regulate chromatin template-dependent processes. Domains are more than 100 kb in size; complexes less than 100 kb. They are present in the genomes of organisms ranging from fission yeast to human, with an expansion in size and number in mammals. Some of the likely functions of domains/complexes include silencing of the donor mating type region in fission yeast, preservation of DNA methylation at imprinted germline differentially methylated regions (gDMRs) and regulation of the phylotypic progression during vertebrate development. Far cis- and trans-contacts between micro-phase separated domains/complexes in mammalian nuclei contribute to the emergence of epigenetic compartmental domains (ECDs) detected in Hi-C maps. A thermodynamic description of micro-phase separation of heterochromatin-like domains/complexes may require a gestalt shift away from the monomer as the "unit of incompatibility" that determines the sign and magnitude of the Flory-Huggins parameter, χ. Instead, a more dynamic structure, the oligo-nucleosomal "clutch", consisting of between 2 and 10 nucleosomes is both the long sought-after secondary structure of chromatin and its unit of incompatibility. Based on this assumption we present a simple theoretical framework that enables an estimation of χ for domains/complexes flanked by euchromatin and thereby an indication of their tendency to phase separate. The degree of phase separation is specified by χN, where N is the number of "clutches" in a domain/complex. Our approach could provide an additional tool for understanding the biophysics of the 3D genome.
Collapse
Affiliation(s)
- Prim B. Singh
- Nazarbayev University School of Medicine, Nur-Sultan City 010000, Kazakhstan
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Stepan N. Belyakin
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Genomics laboratory, Institute of molecular and cellular biology SD RAS, Lavrentyev ave, 8/2, 630090 Novosibirsk, Russia; (S.N.B.); (P.P.L.)
| | - Petr P. Laktionov
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Genomics laboratory, Institute of molecular and cellular biology SD RAS, Lavrentyev ave, 8/2, 630090 Novosibirsk, Russia; (S.N.B.); (P.P.L.)
| |
Collapse
|
129
|
Barberet J, Barry F, Choux C, Guilleman M, Karoui S, Simonot R, Bruno C, Fauque P. What impact does oocyte vitrification have on epigenetics and gene expression? Clin Epigenetics 2020; 12:121. [PMID: 32778156 PMCID: PMC7418205 DOI: 10.1186/s13148-020-00911-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Children conceived by assisted reproductive technologies (ART) have a moderate risk for a number of adverse events and conditions. The question whether this additional risk is associated with specific procedures used in ART or whether it is related to the intrinsic biological factors associated with infertility remains unresolved. One of the main hypotheses is that laboratory procedures could have an effect on the epigenome of gametes and embryos. This suspicion is linked to the fact that ART procedures occur precisely during the period when there are major changes in the organization of the epigenome. Oocyte freezing protocols are generally considered safe; however, some evidence suggests that vitrification may be associated with modifications of the epigenetic marks. In this manuscript, after describing the main changes that occur during epigenetic reprogramming, we will provide current information regarding the impact of oocyte vitrification on epigenetic regulation and the consequences on gene expression, both in animals and humans. Overall, the literature suggests that epigenetic and transcriptomic profiles are sensitive to the stress induced by oocyte vitrification, and it also underlines the need to improve our knowledge in this field.
Collapse
Affiliation(s)
- Julie Barberet
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Fatima Barry
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Cécile Choux
- Gynécologie-Obstétrique, CHU Dijon Bourgogne, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Magali Guilleman
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Sara Karoui
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Raymond Simonot
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Céline Bruno
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Patricia Fauque
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| |
Collapse
|
130
|
Predicting Preference of Transcription Factors for Methylated DNA Using Sequence Information. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:1043-1050. [PMID: 33294291 PMCID: PMC7691157 DOI: 10.1016/j.omtn.2020.07.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022]
Abstract
Transcription factors play key roles in cell-fate decisions by regulating 3D genome conformation and gene expression. The traditional view is that methylation of DNA hinders transcription factors binding to them, but recent research has shown that many transcription factors prefer to bind to methylated DNA. Therefore, identifying such transcription factors and understanding their functions is a stepping-stone for studying methylation-mediated biological processes. In this paper, a two-step discriminated method was proposed to recognize transcription factors and their preference for methylated DNA based only on sequences information. In the first step, the proposed model was used to discriminate transcription factors from non-transcription factors. The areas under the curve (AUCs) are 0.9183 and 0.9116, respectively, for the 5-fold cross-validation test and independent dataset test. Subsequently, for the classification of transcription factors that prefer methylated DNA and transcription factors that prefer non-methylated DNA, our model could produce the AUCs of 0.7744 and 0.7356, respectively, for the 5-fold cross-validation test and independent dataset test. Based on the proposed model, a user-friendly web server called TFPred was built, which can be freely accessed at http://lin-group.cn/server/TFPred/.
Collapse
|
131
|
Zhang Y, Wang C, Liu X, Yang Q, Ji H, Yang M, Xu M, Zhou Y, Xie W, Luo Z, Lin C. AFF3-DNA methylation interplay in maintaining the mono-allelic expression pattern of XIST in terminally differentiated cells. J Mol Cell Biol 2020; 11:761-769. [PMID: 30535390 PMCID: PMC7727261 DOI: 10.1093/jmcb/mjy074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/15/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022] Open
Abstract
X chromosome inactivation and genomic imprinting are two classic epigenetic regulatory processes that cause mono-allelic gene expression. In female mammals, mono-allelic expression of the long non-coding RNA gene X-inactive specific transcript (XIST) is essential for initiation of X chromosome inactivation upon differentiation. We have previously demonstrated that the central factor of super elongation complex-like 3 (SEC-L3), AFF3, is enriched at gamete differentially methylated regions (DMRs) of the imprinted loci and regulates the imprinted gene expression. Here, we found that AFF3 can also bind to the DMR downstream of the XIST promoter. Knockdown of AFF3 leads to de-repression of the inactive allele of XIST in terminally differentiated cells. In addition, the binding of AFF3 to the XIST DMR relies on DNA methylation and also regulates DNA methylation level at DMR region. However, the KAP1-H3K9 methylation machineries, which regulate the imprinted loci, might not play major roles in maintaining the mono-allelic expression pattern of XIST in these cells. Thus, our results suggest that the differential mechanisms involved in the XIST DMR and gDMR regulation, which both require AFF3 and DNA methylation.
Collapse
Affiliation(s)
- Yue Zhang
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Chao Wang
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Xiaoxu Liu
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Qian Yang
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Hongliang Ji
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Mengjun Yang
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Manman Xu
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yunyan Zhou
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Wei Xie
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhuojuan Luo
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Chengqi Lin
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
132
|
Żylicz JJ, Heard E. Molecular Mechanisms of Facultative Heterochromatin Formation: An X-Chromosome Perspective. Annu Rev Biochem 2020; 89:255-282. [PMID: 32259458 DOI: 10.1146/annurev-biochem-062917-012655] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Facultative heterochromatin (fHC) concerns the developmentally regulated heterochromatinization of different regions of the genome and, in the case of the mammalian X chromosome and imprinted loci, of only one allele of a homologous pair. The formation of fHC participates in the timely repression of genes, by resisting strong trans activators. In this review, we discuss the molecular mechanisms underlying the establishment and maintenance of fHC in mammals using a mouse model. We focus on X-chromosome inactivation (XCI) as a paradigm for fHC but also relate it to genomic imprinting and homeobox (Hox) gene cluster repression. A vital role for noncoding transcription and/or transcripts emerges as the general principle of triggering XCI and canonical imprinting. However, other types of fHC are established through an unknown mechanism, independent of noncoding transcription (Hox clusters and noncanonical imprinting). We also extensively discuss polycomb-group repressive complexes (PRCs), which frequently play a vital role in fHC maintenance.
Collapse
Affiliation(s)
- Jan J Żylicz
- Mammalian Developmental Epigenetics Group, Institut Curie, CNRS UMR 3215, INSERM U934, PSL University, 75248 Paris Cedex 05, France.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EL, United Kingdom
| | - Edith Heard
- Directors' Research, EMBL Heidelberg, 69117 Heidelberg, Germany;
| |
Collapse
|
133
|
Cao L, He Y, Huang Q, Zhang Y, Deng P, Du W, Hua Z, Zhu M, Wei H. Clinical features and partial proportional molecular genetics in neonatal diabetes mellitus: a retrospective analysis in southwestern China. Endocrine 2020; 69:53-62. [PMID: 32279225 DOI: 10.1007/s12020-020-02279-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/23/2020] [Indexed: 01/29/2023]
Abstract
PURPOSE To explore the relationship of phenotype and genotype of neonatal diabetes mellitus (NDM) in southwestern China. METHODS Sixteen cases of NDM admitted to Children's Hospital of Chongqing Medical University from May 2009 to May 2019 were included in this study. The clinical features of the included infants were retrospectively analyzed. Peripheral blood samples of the patients and their parents were collected for mutation detection. RESULTS Among the 16 cases of NDM, 8 cases were permanent neonatal diabetes mellitus (PNDM) (including 3 clinical syndromes), and 3 cases were transient neonatal diabetes mellitus (TNDM). Mutation detection was performed in six cases. The mutation genes and their loci were FOXP3 p.V408M, KCNJ11 p.C166Y, ABCC8 p.S830P, KCNJ11 p.I182T, KCNJ11 p.G334D, and ZFP57 p.R125X,412. ABCC8 p.S830P was the new found pathogenic site of gene mutation. According to the clinical features and follow-up results, one case was diagnosed as IPEX syndrome, two as DEND syndrome, two as simple PNDM, and one as TNDM. All the TNDM could spontaneously alleviate and then insulin was withdrawn. In PNDM, 75% of those with KATP channel gene mutation could be completely or partially converted to oral sulfonylureas treatment, however, the rest cases needed lifelong insulin replacement therapy. CONCLUSION The clinical manifestations and treatment regimens of patients with NDM vary according to the type of gene mutation. Even the same mutant genotype has differences in phenotype and response to treatment.
Collapse
Affiliation(s)
- Luying Cao
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yi He
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Qinrong Huang
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yu Zhang
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Pinglan Deng
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Weixia Du
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Ziyu Hua
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Min Zhu
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Hong Wei
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, PR China.
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
134
|
Yamazawa K, Inoue T, Sakemi Y, Nakashima T, Yamashita H, Khono K, Fujita H, Enomoto K, Nakabayashi K, Hata K, Nakashima M, Matsunaga T, Nakamura A, Matsubara K, Ogata T, Kagami M. Loss of imprinting of the human-specific imprinted gene ZNF597 causes prenatal growth retardation and dysmorphic features: implications for phenotypic overlap with Silver-Russell syndrome. J Med Genet 2020; 58:427-432. [PMID: 32576657 PMCID: PMC8142457 DOI: 10.1136/jmedgenet-2020-107019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND ZNF597, encoding a zinc-finger protein, is the human-specific maternally expressed imprinted gene located on 16p13.3. The parent-of-origin expression of ZNF597 is regulated by the ZNF597:TSS-DMR, of which only the paternal allele acquires methylation during postimplantation period. Overexpression of ZNF597 may contribute to some of the phenotypes associated with maternal uniparental disomy of chromosome 16 (UPD(16)mat), and some patients with UPD(16)mat presenting with Silver-Russell syndrome (SRS) phenotype have recently been reported. METHODS A 6-year-old boy presented with prenatal growth restriction, macrocephaly at birth, forehead protrusion in infancy and clinodactyly of the fifth finger. Methylation, expression, microsatellite marker, single nucleotide polymorphism array and trio whole-exome sequencing analyses were conducted. RESULTS Isolated hypomethylation of the ZNF597:TSS-DMR and subsequent loss of imprinting and overexpression of ZNF597 were confirmed in the patient. Epigenetic alterations, such as UPD including UPD(16)mat and other methylation defects, were excluded. Pathogenic sequence or copy number variants affecting his phenotypes were not identified, indicating that primary epimutation occurred postzygotically. CONCLUSION We report the first case of isolated ZNF597 imprinting defect, showing phenotypic overlap with SRS despite not satisfying the clinical SRS criteria. A novel imprinting disorder entity involving the ZNF597 imprinted domain can be speculated.
Collapse
Affiliation(s)
- Kazuki Yamazawa
- Medical Genetics Center, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Takanobu Inoue
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, University of Tokyo, Tokyo, Japan
| | - Yoshihiro Sakemi
- Department of Pediatrics, National Hospital Organization Kokura Medical Center, Kitakyushu, Japan
| | - Toshinori Nakashima
- Department of Pediatrics, National Hospital Organization Kokura Medical Center, Kitakyushu, Japan
| | - Hironori Yamashita
- Department of Pediatrics, National Hospital Organization Kokura Medical Center, Kitakyushu, Japan
| | | | | | | | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Moeko Nakashima
- Medical Genetics Center, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Tatsuo Matsunaga
- Medical Genetics Center, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Akie Nakamura
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
135
|
Shanak S, Helms V. DNA methylation and the core pluripotency network. Dev Biol 2020; 464:145-160. [PMID: 32562758 DOI: 10.1016/j.ydbio.2020.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/01/2020] [Accepted: 06/04/2020] [Indexed: 01/06/2023]
Abstract
From the onset of fertilization, the genome undergoes cell division and differentiation. All of these developmental transitions and differentiation processes include cell-specific signatures and gradual changes of the epigenome. Understanding what keeps stem cells in the pluripotent state and what leads to differentiation are fascinating and biomedically highly important issues. Numerous studies have identified genes, proteins, microRNAs and small molecules that exert essential effects. Notably, there exists a core pluripotency network that consists of several transcription factors and accessory proteins. Three eminent transcription factors, OCT4, SOX2 and NANOG, serve as hubs in this core pluripotency network. They bind to the enhancer regions of their target genes and modulate, among others, the expression levels of genes that are associated with Gene Ontology terms related to differentiation and self-renewal. Also, much has been learned about the epigenetic rewiring processes during these changes of cell fate. For example, DNA methylation dynamics is pivotal during embryonic development. The main goal of this review is to highlight an intricate interplay of (a) DNA methyltransferases controlling the expression levels of core pluripotency factors by modulation of the DNA methylation levels in their enhancer regions, and of (b) the core pluripotency factors controlling the transcriptional regulation of DNA methyltransferases. We discuss these processes both at the global level and in atomistic detail based on information from structural studies and from computer simulations.
Collapse
Affiliation(s)
- Siba Shanak
- Faculty of Science, Arab-American University, Jenin, Palestine; Center for Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany.
| |
Collapse
|
136
|
H1 linker histones silence repetitive elements by promoting both histone H3K9 methylation and chromatin compaction. Proc Natl Acad Sci U S A 2020; 117:14251-14258. [PMID: 32513732 DOI: 10.1073/pnas.1920725117] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nearly 50% of mouse and human genomes are composed of repetitive sequences. Transcription of these sequences is tightly controlled during development to prevent genomic instability, inappropriate gene activation and other maladaptive processes. Here, we demonstrate an integral role for H1 linker histones in silencing repetitive elements in mouse embryonic stem cells. Strong H1 depletion causes a profound de-repression of several classes of repetitive sequences, including major satellite, LINE-1, and ERV. Activation of repetitive sequence transcription is accompanied by decreased H3K9 trimethylation of repetitive sequence chromatin. H1 linker histones interact directly with Suv39h1, Suv39h2, and SETDB1, the histone methyltransferases responsible for H3K9 trimethylation of chromatin within these regions, and stimulate their activity toward chromatin in vitro. However, we also implicate chromatin compaction mediated by H1 as an additional, dominant repressive mechanism for silencing of repetitive major satellite sequences. Our findings elucidate two distinct, H1-mediated pathways for silencing heterochromatin.
Collapse
|
137
|
Chen Z, Zhang Y. Maternal H3K27me3-dependent autosomal and X chromosome imprinting. Nat Rev Genet 2020; 21:555-571. [PMID: 32514155 DOI: 10.1038/s41576-020-0245-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 12/19/2022]
Abstract
Genomic imprinting and X-chromosome inactivation (XCI) are classic epigenetic phenomena that involve transcriptional silencing of one parental allele. Germline-derived differential DNA methylation is the best-studied epigenetic mark that initiates imprinting, but evidence indicates that other mechanisms exist. Recent studies have revealed that maternal trimethylation of H3 on lysine 27 (H3K27me3) mediates autosomal maternal allele-specific gene silencing and has an important role in imprinted XCI through repression of maternal Xist. Furthermore, loss of H3K27me3-mediated imprinting contributes to the developmental defects observed in cloned embryos. This novel maternal H3K27me3-mediated non-canonical imprinting mechanism further emphasizes the important role of parental chromatin in development and could provide the basis for improving the efficiency of embryo cloning.
Collapse
Affiliation(s)
- Zhiyuan Chen
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA. .,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA. .,Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA. .,Department of Genetics, Harvard Medical School, Boston, MA, USA. .,Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
138
|
Sensitivity of transcription factors to DNA methylation. Essays Biochem 2020; 63:727-741. [PMID: 31755929 PMCID: PMC6923324 DOI: 10.1042/ebc20190033] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022]
Abstract
Dynamic binding of transcription factors (TFs) to regulatory elements controls transcriptional states throughout organism development. Epigenetics modifications, such as DNA methylation mostly within cytosine-guanine dinucleotides (CpGs), have the potential to modulate TF binding to DNA. Although DNA methylation has long been thought to repress TF binding, a more recent model proposes that TF binding can also inhibit DNA methylation. Here, we review the possible scenarios by which DNA methylation and TF binding affect each other. Further in vivo experiments will be required to generalize these models.
Collapse
|
139
|
The role and mechanisms of DNA methylation in the oocyte. Essays Biochem 2020; 63:691-705. [PMID: 31782490 PMCID: PMC6923320 DOI: 10.1042/ebc20190043] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/27/2022]
Abstract
Epigenetic information in the mammalian oocyte has the potential to be transmitted to the next generation and influence gene expression; this occurs naturally in the case of imprinted genes. Therefore, it is important to understand how epigenetic information is patterned during oocyte development and growth. Here, we review the current state of knowledge of de novo DNA methylation mechanisms in the oocyte: how a distinctive gene-body methylation pattern is created, and the extent to which the DNA methylation machinery reads chromatin states. Recent epigenomic studies building on advances in ultra-low input chromatin profiling methods, coupled with genetic studies, have started to allow a detailed interrogation of the interplay between DNA methylation establishment and chromatin states; however, a full mechanistic description awaits.
Collapse
|
140
|
The influence of DNA methylation on monoallelic expression. Essays Biochem 2020; 63:663-676. [PMID: 31782494 PMCID: PMC6923323 DOI: 10.1042/ebc20190034] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 01/02/2023]
Abstract
Monoallelic gene expression occurs in diploid cells when only one of the two alleles of a gene is active. There are three main classes of genes that display monoallelic expression in mammalian genomes: (1) imprinted genes that are monoallelically expressed in a parent-of-origin dependent manner; (2) X-linked genes that undergo random X-chromosome inactivation in female cells; (3) random monoallelically expressed single and clustered genes located on autosomes. The heritability of monoallelic expression patterns during cell divisions implies that epigenetic mechanisms are involved in the cellular memory of these expression states. Among these, methylation of CpG sites on DNA is one of the best described modification to explain somatic inheritance. Here, we discuss the relevance of DNA methylation for the establishment and maintenance of monoallelic expression patterns among these three groups of genes, and how this is intrinsically linked to development and cellular states.
Collapse
|
141
|
Hori N, Kubo S, Sakasegawa T, Sakurai C, Hatsuzawa K. OCT3/4-binding sequence-dependent maintenance of the unmethylated state of CTCF-binding sequences with DNA demethylation and suppression of de novo DNA methylation in the H19 imprinted control region. Gene 2020; 743:144606. [DOI: 10.1016/j.gene.2020.144606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 11/25/2022]
|
142
|
Jönsson ME, Garza R, Johansson PA, Jakobsson J. Transposable Elements: A Common Feature of Neurodevelopmental and Neurodegenerative Disorders. Trends Genet 2020; 36:610-623. [PMID: 32499105 DOI: 10.1016/j.tig.2020.05.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/30/2022]
Abstract
The etiology of most neurological disorders is poorly understood and current treatments are largely ineffective. New ideas and concepts are therefore vitally important for future research in this area. This review explores the concept that dysregulation of transposable elements (TEs) contributes to the appearance and pathology of neurodevelopmental and neurodegenerative disorders. Despite TEs making up at least half of the human genome, they are vastly understudied in relation to brain disorders. However, recent advances in sequencing technologies and gene editing approaches are now starting to unravel the pathological role of TEs. Aberrant activation of TEs has been found in many neurological disorders; the resulting pathogenic effects, which include alterations of gene expression, neuroinflammation, and direct neurotoxicity, are starting to be resolved. An increased understanding of the relationship between TEs and pathological processes in the brain improves the potential for novel diagnostics and interventions for brain disorders.
Collapse
Affiliation(s)
- Marie E Jönsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
| | - Raquel Garza
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
| | - Pia A Johansson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
| | - Johan Jakobsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
143
|
Bina M. Discovering candidate imprinted genes and imprinting control regions in the human genome. BMC Genomics 2020; 21:378. [PMID: 32475352 PMCID: PMC7262774 DOI: 10.1186/s12864-020-6688-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Genomic imprinting is a process thereby a subset of genes is expressed in a parent-of-origin specific manner. This evolutionary novelty is restricted to mammals and controlled by genomic DNA segments known as Imprinting Control Regions (ICRs) and germline Differentially Methylated Regions (gDMRs). Previously, I showed that in the mouse genome, the fully characterized ICRs/gDMRs often includes clusters of 2 or more of a set of composite-DNA-elements known as ZFBS-morph overlaps. RESULTS Because of the importance of the ICRs to regulating parent-of-origin specific gene expression, I developed a genome-wide strategy for predicting their positions in the human genome. My strategy consists of creating plots to display the density of ZFBS-morph overlaps along the entire chromosomal DNA sequences. In initial evaluations, I found that peaks in these plots pinpointed several of the known ICRs/gDMRs along the DNA in chromosomal bands. I deduced that in density-plots, robust peaks corresponded to actual or candidate ICRs in the DNA. By locating the genes in the vicinity of candidate ICRs, I could discover potential imprinting genes. Additionally, my assessments revealed a connection between several of the potential imprinted genes and human developmental anomalies. Examples include Leber congenital amaurosis 11, Coffin-Siris syndrome, progressive myoclonic epilepsy-10, microcephalic osteodysplastic primordial dwarfism type II, and microphthalmia, cleft lip and palate, and agenesis of the corpus callosum. CONCLUSION With plots displaying the density of ZFBS-morph overlaps, researchers could locate candidate ICRs and imprinted genes. Since the datafiles are available for download and display at the UCSC genome browser, it is possible to examine the plots in the context of Single nucleotide polymorphisms (SNPs) to design experiments to discover novel ICRs and imprinted genes in the human genome.
Collapse
Affiliation(s)
- Minou Bina
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN, 47907, USA.
| |
Collapse
|
144
|
Nikolova EN, Stanfield RL, Dyson HJ, Wright PE. A Conformational Switch in the Zinc Finger Protein Kaiso Mediates Differential Readout of Specific and Methylated DNA Sequences. Biochemistry 2020; 59:1909-1926. [PMID: 32352758 PMCID: PMC7253346 DOI: 10.1021/acs.biochem.0c00253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recognition of the epigenetic mark 5-methylcytosine (mC) at CpG sites in DNA has emerged as a novel function of many eukaryotic transcription factors (TFs). It remains unclear why the sequence specificity of these TFs differs for CpG-methylated motifs and consensus motifs. Here, we dissect the structural and dynamic basis for this differential DNA binding specificity in the human zinc finger TF Kaiso, which exhibits high affinity for two consecutive mCpG sites in variable contexts and also for a longer, sequence-specific Kaiso binding site (KBS). By integrating structural analysis and DNA binding studies with targeted protein mutagenesis and nucleotide substitutions, we identify distinct mechanisms for readout of methylated and KBS motifs by Kaiso. We show that a key glutamate residue (E535), critical for mCpG site recognition, adopts different conformations in complexes with specific and methylated DNA. These conformational differences, together with intrinsic variations in DNA flexibility and/or solvation at TpG versus mCpG sites, contribute to the different DNA affinity and sequence specificity. With methylated DNA, multiple direct contacts between E535 and the 5' mCpG site dominate the binding affinity, allowing for tolerance of different flanking DNA sequences. With KBS, Kaiso employs E535 as part of an indirect screen of the 5' flanking sequence, relying on key tyrosine-DNA interactions to stabilize an optimal DNA conformation and select against noncognate sites. These findings demonstrate how TFs use conformational adaptation and exploit variations in DNA flexibility to achieve distinct DNA readout outcomes and target a greater variety of regulatory and epigenetic sites than previously appreciated.
Collapse
|
145
|
Higashimoto K, Watanabe H, Tanoue Y, Tonoki H, Tokutomi T, Hara S, Yatsuki H, Soejima H. Hypomethylation of a centromeric block of ICR1 is sufficient to cause Silver-Russell syndrome. J Med Genet 2020; 58:422-425. [PMID: 32447322 PMCID: PMC8142445 DOI: 10.1136/jmedgenet-2020-106907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 11/15/2022]
Abstract
Silver-Russell syndrome (SRS) is a representative imprinting disorder. A major cause is the loss of methylation (LOM) of imprinting control region 1 (ICR1) within the IGF2/H19 domain. ICR1 is a gametic differentially methylated region (DMR) consisting of two repeat blocks, with each block including three CTCF target sites (CTSs). ICR1-LOM on the paternal allele allows CTCF to bind to CTSs, resulting in IGF2 repression on the paternal allele and biallelic expression of H19. We analysed 10 differentially methylated sites (DMSs) (ie, seven CTSs and three somatic DMRs within the IGF2/H19 domain, including two IGF2-DMRs and the H19-promoter) in five SRS patients with ICR1-LOM. Four patients showed consistent hypomethylation at all DMSs; however, one exhibited a peculiar LOM pattern, showing LOM at the centromeric region of the IGF2/H19 domain but normal methylation at the telomeric region. This raised important points: there may be a separate regulation of DNA methylation for the two repeat blocks within ICR1; there is independent control of somatic DMRs under each repeat block; sufficient IGF2 repression to cause SRS phenotypes occurs by LOM only in the centromeric block; and the need for simultaneous methylation analysis of several DMSs in both blocks for a correct molecular diagnosis.
Collapse
Affiliation(s)
- Ken Higashimoto
- Division of Molecular Genetics & Epigenetics, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan
| | - Hijiri Watanabe
- Department of Pediatrics, Amakusa Medical Center, Amakusa, Japan
| | - Yuka Tanoue
- Division of Molecular Genetics & Epigenetics, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan
| | - Hidefumi Tonoki
- Medical Genetics Center, Department of Pediatrics, Tenshi Hospital, Sapporo, Japan
| | - Tomoharu Tokutomi
- Department of Clinical Genetics, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Satoshi Hara
- Division of Molecular Genetics & Epigenetics, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan
| | - Hitomi Yatsuki
- Division of Molecular Genetics & Epigenetics, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics & Epigenetics, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan
| |
Collapse
|
146
|
Kumar J, Kaur G, Ren R, Lu Y, Lin K, Li J, Huang Y, Patel A, Barton MC, Macfarlan T, Zhang X, Cheng X. KRAB domain of ZFP568 disrupts TRIM28-mediated abnormal interactions in cancer cells. NAR Cancer 2020; 2:zcaa007. [PMID: 32743551 PMCID: PMC7380489 DOI: 10.1093/narcan/zcaa007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/25/2020] [Accepted: 04/30/2020] [Indexed: 01/31/2023] Open
Abstract
Interactions of KRAB (Krüppel-associated box)-associated protein KAP1 [also known as TRIM28 (tripartite motif containing protein 28)] with DNA-binding KRAB zinc finger (KRAB-ZF) proteins silence many transposable elements during embryogenesis. However, in some cancers, TRIM28 is upregulated and interacts with different partners, many of which are transcription regulators such as EZH2 in MCF7 cells, to form abnormal repressive or activating complexes that lead to misregulation of genes. We ask whether a KRAB domain-the TRIM28 interaction domain present in native binding partners of TRIM28 that mediate repression of transposable elements-could be used as a tool molecule to disrupt aberrant TRIM28 complexes. Expression of KRAB domain containing fragments from a KRAB-ZF protein (ZFP568) in MCF7 cells, without the DNA-binding zinc fingers, inhibited TRIM28-EZH2 interactions and caused degradation of both TRIM28 and EZH2 proteins as well as other components of the EZH2-associated polycomb repressor 2 complex. In consequence, the product of EZH2 enzymatic activity, trimethylation of histone H3 lysine 27 level, was significantly reduced. The expression of a synthetic KRAB domain significantly inhibits the growth of breast cancer cells (MCF7) but has no effect on normal (immortalized) human mammary epithelial cells (MCF10a). Further, we found that TRIM28 is a positive regulator of TRIM24 protein levels, as observed previously in prostate cancer cells, and expression of the KRAB domain also lowered TRIM24 protein. Importantly, reduction of TRIM24 levels, by treatment with either the KRAB domain or a small-molecule degrader targeted to TRIM24, is accompanied by an elevated level of tumor suppressor p53. Taken together, this study reveals a novel mechanism for a TRIM28-associated protein stability network and establishes TRIM28 as a potential therapeutic target in cancers where TRIM28 is elevated. Finally, we discuss a potential mechanism of KRAB-ZF gene expression controlled by a regulatory feedback loop of TRIM28-KRAB.
Collapse
Affiliation(s)
- Janani Kumar
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gundeep Kaur
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jia Li
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Yun Huang
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Anamika Patel
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Michelle C Barton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Todd Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
147
|
Ivanova E, Canovas S, Garcia-Martínez S, Romar R, Lopes JS, Rizos D, Sanchez-Calabuig MJ, Krueger F, Andrews S, Perez-Sanz F, Kelsey G, Coy P. DNA methylation changes during preimplantation development reveal inter-species differences and reprogramming events at imprinted genes. Clin Epigenetics 2020; 12:64. [PMID: 32393379 PMCID: PMC7216732 DOI: 10.1186/s13148-020-00857-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/23/2020] [Indexed: 02/08/2023] Open
Abstract
Preimplantation embryos experience profound resetting of epigenetic information inherited from the gametes. Genome-wide analysis at single-base resolution has shown similarities but also species differences between human and mouse preimplantation embryos in DNA methylation patterns and reprogramming. Here, we have extended such analysis to two key livestock species, the pig and the cow. We generated genome-wide DNA methylation and whole-transcriptome datasets from gametes to blastocysts in both species. In oocytes from both species, a distinctive bimodal methylation landscape is present, with hypermethylated domains prevalent over hypomethylated domains, similar to human, while in the mouse the proportions are reversed.An oocyte-like pattern of methylation persists in the cleavage stages, albeit with some reduction in methylation level, persisting to blastocysts in cow, while pig blastocysts have a highly hypomethylated landscape. In the pig, there was evidence of transient de novo methylation at the 8-16 cell stages of domains unmethylated in oocytes, revealing a complex dynamic of methylation reprogramming. The methylation datasets were used to identify germline differentially methylated regions (gDMRs) of known imprinted genes and for the basis of detection of novel imprinted loci. Strikingly in the pig, we detected a consistent reduction in gDMR methylation at the 8-16 cell stages, followed by recovery to the blastocyst stage, suggesting an active period of imprint stabilization in preimplantation embryos. Transcriptome analysis revealed absence of expression in oocytes of both species of ZFP57, a key factor in the mouse for gDMR methylation maintenance, but presence of the alternative imprint regulator ZNF445. In conclusion, our study reveals species differences in DNA methylation reprogramming and suggests that porcine or bovine models may be closer to human in key aspects than in the mouse model.
Collapse
Affiliation(s)
- Elena Ivanova
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Sebastian Canovas
- Physiology of Reproduction Group, Departamento de Fisiología, Universidad de Murcia, Campus Mare Nostrum, 30100, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria, IMIB-Arrixaca-UMU, 30120, Murcia, Spain
| | - Soledad Garcia-Martínez
- Physiology of Reproduction Group, Departamento de Fisiología, Universidad de Murcia, Campus Mare Nostrum, 30100, Murcia, Spain
| | - Raquel Romar
- Physiology of Reproduction Group, Departamento de Fisiología, Universidad de Murcia, Campus Mare Nostrum, 30100, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria, IMIB-Arrixaca-UMU, 30120, Murcia, Spain
| | - Jordana S Lopes
- Physiology of Reproduction Group, Departamento de Fisiología, Universidad de Murcia, Campus Mare Nostrum, 30100, Murcia, Spain
| | | | | | - Felix Krueger
- Bioinformatics Group, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Simon Andrews
- Bioinformatics Group, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Fernando Perez-Sanz
- Instituto Murciano de Investigación Biosanitaria, IMIB-Arrixaca-UMU, 30120, Murcia, Spain
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK.
| | - Pilar Coy
- Physiology of Reproduction Group, Departamento de Fisiología, Universidad de Murcia, Campus Mare Nostrum, 30100, Murcia, Spain.
- Instituto Murciano de Investigación Biosanitaria, IMIB-Arrixaca-UMU, 30120, Murcia, Spain.
| |
Collapse
|
148
|
Abstract
As the maternal–foetal interface, the placenta is essential for the establishment and progression of healthy pregnancy, regulating both foetal growth and maternal adaptation to pregnancy. The evolution and functional importance of genomic imprinting are inextricably linked to mammalian placentation. Recent technological advances in mapping and manipulating the epigenome in embryogenesis in mouse models have revealed novel mechanisms regulating genomic imprinting in placental trophoblast, the physiological implications of which are only just beginning to be explored. This review will highlight important recent discoveries and exciting new directions in the study of placental imprinting. The placenta is essential for healthy pregnancy because it supports the growth of the baby, helps the mother’s body adapt, and provides a connection between mother and the developing baby. Studying gene regulation and the early steps in placental development is challenging in human pregnancy, so mouse models have been key in building our understanding of these processes. In particular, these studies have identified a subset of genes that are essential for placentation, termed imprinted genes. Imprinted genes are those that are expressed from only one copy, depending on whether they were inherited from mom or dad. In this review, I describe recent novel approaches used to study the mechanisms regulating these imprinted genes in mouse models, and I highlight several new discoveries. It has become apparent that the regulation of imprinted genes in placenta is often unique from other tissues and that there are species-specific mechanisms allowing the evolution of new imprinted genes specifically in the placenta.
Collapse
Affiliation(s)
- Courtney W. Hanna
- Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
149
|
Abstract
In 1993, Denise Barlow proposed that genomic imprinting might have arisen from a host defense mechanism designed to inactivate retrotransposons. Although there were few examples at hand, she suggested that there should be maternal-specific and paternal-specific factors involved, with cognate imprinting boxes that they recognized; furthermore, the system should build on conserved biochemical factors, including DNA methylation, and maternal control should predominate for imprints. Here, we revisit this hypothesis in the light of recent advances in our understanding of host defense and DNA methylation and in particular, the link with Krüppel-associated box–zinc finger (KRAB-ZF) proteins.
Collapse
Affiliation(s)
- Miroslava Ondičová
- School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Rebecca J. Oakey
- Department of Medical & Molecular Genetics, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Colum P. Walsh
- School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
- * E-mail:
| |
Collapse
|
150
|
DNA Methylation in the Diagnosis of Monogenic Diseases. Genes (Basel) 2020; 11:genes11040355. [PMID: 32224912 PMCID: PMC7231024 DOI: 10.3390/genes11040355] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
DNA methylation in the human genome is largely programmed and shaped by transcription factor binding and interaction between DNA methyltransferases and histone marks during gamete and embryo development. Normal methylation profiles can be modified at single or multiple loci, more frequently as consequences of genetic variants acting in cis or in trans, or in some cases stochastically or through interaction with environmental factors. For many developmental disorders, specific methylation patterns or signatures can be detected in blood DNA. The recent use of high-throughput assays investigating the whole genome has largely increased the number of diseases for which DNA methylation analysis provides information for their diagnosis. Here, we review the methylation abnormalities that have been associated with mono/oligogenic diseases, their relationship with genotype and phenotype and relevance for diagnosis, as well as the limitations in their use and interpretation of results.
Collapse
|