101
|
Bacabac M, Xu W. Oncogenic super-enhancers in cancer: mechanisms and therapeutic targets. Cancer Metastasis Rev 2023; 42:471-480. [PMID: 37059907 PMCID: PMC10527203 DOI: 10.1007/s10555-023-10103-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
Activation of oncogenes to sustain proliferative signaling and initiate metastasis are important hallmarks of cancer. Oncogenes are amplified or overexpressed in cancer cells and overexpression is often controlled at the level of transcription. Gene expression is tightly controlled by many cis-regulatory elements and trans-acting factors. Large clusters of enhancers known as "super-enhancers" drive robust expression of cell-fate determining transcription factors in cell identity. Cancer cells can take advantage of super-enhancers and become transcriptionally addicted to them leading to tumorigenesis and metastasis. Additionally, the cis-regulatory landscape of cancer includes aberrant super-enhancers that are not present in normal cells. The landscape of super-enhancers in cancer is characterized by high levels of histone H3K27 acetylation and bromodomain-containing protein 4 (BRD4), and Mediator complex. These chromatin features facilitate the identification of cancer type-specific and cell-type-specific super-enhancers that control the expression of important oncogenes to stimulate their growth. Disruption of super-enhancers via inhibiting BRD4 or other epigenetic proteins is a potential therapeutic option. Here, we will describe the discovery of super-enhancers and their unique characteristics compared to typical enhancers. Then, we will highlight how super-enhancer-associated genes contribute to cancer progression in different solid tumor types. Lastly, we will cover therapeutic targets and their epigenetic modulators.
Collapse
Affiliation(s)
- Megan Bacabac
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
- School of Medicine and Public Health, UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA.
- School of Medicine and Public Health, UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
102
|
Duan W, Yu M, Chen J. BRD4: New Hope in the Battle Against Glioblastoma. Pharmacol Res 2023; 191:106767. [PMID: 37061146 DOI: 10.1016/j.phrs.2023.106767] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
The BET family proteins, comprising BRD2, BRD3 and BRD4, represent epigenetic readers of acetylated histone marks that play pleiotropic roles in the tumorigenesis and growth of multiple human malignancies, including glioblastoma (GBM). A growing body of investigation has proven BET proteins as valuable therapeutic targets for cancer treatment. Recently, several BRD4 inhibitors and degraders have been reported to successfully suppress GBM in preclinical and clinical studies. However, the precise role and mechanism of BRD4 in the pathogenesis of GBM have not been fully elucidated or summarized. This review focuses on summarizing the roles and mechanisms of BRD4 in the context of the initiation and development of GBM. In addition, several BRD4 inhibitors have been evaluated for therapeutic purposes as monotherapy or in combination with chemotherapy, radiotherapy, and immune therapies. Here, we provide a critical appraisal of studies evaluating various BRD4 inhibitors and degraders as novel treatment strategies against GBM.
Collapse
Affiliation(s)
- Weichen Duan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Miao Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jiajia Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
103
|
Seath CP, Burton AJ, Sun X, Lee G, Kleiner RE, MacMillan DWC, Muir TW. Tracking chromatin state changes using nanoscale photo-proximity labelling. Nature 2023; 616:574-580. [PMID: 37020029 PMCID: PMC10408239 DOI: 10.1038/s41586-023-05914-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/02/2023] [Indexed: 04/07/2023]
Abstract
Interactions between biomolecules underlie all cellular processes and ultimately control cell fate. Perturbation of native interactions through mutation, changes in expression levels or external stimuli leads to altered cellular physiology and can result in either disease or therapeutic effects1,2. Mapping these interactions and determining how they respond to stimulus is the genesis of many drug development efforts, leading to new therapeutic targets and improvements in human health1. However, in the complex environment of the nucleus, it is challenging to determine protein-protein interactions owing to low abundance, transient or multivalent binding and a lack of technologies that are able to interrogate these interactions without disrupting the protein-binding surface under study3. Here, we describe a method for the traceless incorporation of iridium-photosensitizers into the nuclear micro-environment using engineered split inteins. These Ir-catalysts can activate diazirine warheads through Dexter energy transfer to form reactive carbenes within an approximately 10 nm radius, cross-linking with proteins in the immediate micro-environment (a process termed µMap) for analysis using quantitative chemoproteomics4. We show that this nanoscale proximity-labelling method can reveal the critical changes in interactomes in the presence of cancer-associated mutations, as well as treatment with small-molecule inhibitors. µMap improves our fundamental understanding of nuclear protein-protein interactions and, in doing so, is expected to have a significant effect on the field of epigenetic drug discovery in both academia and industry.
Collapse
Affiliation(s)
- Ciaran P Seath
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Scripps-UF, Jupiter, FL, USA
| | - Antony J Burton
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Discovery Biology, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Waltham, MA, USA
| | - Xuemeng Sun
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Gihoon Lee
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Ralph E Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
104
|
Niu X, Zhang L, Wu Y, Zong Z, Wang B, Liu J, Zhang L, Zhou F. Biomolecular condensates: Formation mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e223. [PMID: 36875159 PMCID: PMC9974629 DOI: 10.1002/mco2.223] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023] Open
Abstract
Biomolecular condensates are cellular structures composed of membraneless assemblies comprising proteins or nucleic acids. The formation of these condensates requires components to change from a state of solubility separation from the surrounding environment by undergoing phase transition and condensation. Over the past decade, it has become widely appreciated that biomolecular condensates are ubiquitous in eukaryotic cells and play a vital role in physiological and pathological processes. These condensates may provide promising targets for the clinic research. Recently, a series of pathological and physiological processes have been found associated with the dysfunction of condensates, and a range of targets and methods have been demonstrated to modulate the formation of these condensates. A more extensive description of biomolecular condensates is urgently needed for the development of novel therapies. In this review, we summarized the current understanding of biomolecular condensates and the molecular mechanisms of their formation. Moreover, we reviewed the functions of condensates and therapeutic targets for diseases. We further highlighted the available regulatory targets and methods, discussed the significance and challenges of targeting these condensates. Reviewing the latest developments in biomolecular condensate research could be essential in translating our current knowledge on the use of condensates for clinical therapeutic strategies.
Collapse
Affiliation(s)
- Xin Niu
- Department of Otolaryngology Head and Neck SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Lei Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yuchen Wu
- Department of Clinical Medicine, The First School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Zhi Zong
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Bin Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Jisheng Liu
- Department of Otolaryngology Head and Neck SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhouChina
| |
Collapse
|
105
|
Regulation of Cell Plasticity by Bromodomain and Extraterminal Domain (BET) Proteins: A New Perspective in Glioblastoma Therapy. Int J Mol Sci 2023; 24:ijms24065665. [PMID: 36982740 PMCID: PMC10055343 DOI: 10.3390/ijms24065665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
BET proteins are a family of multifunctional epigenetic readers, mainly involved in transcriptional regulation through chromatin modelling. Transcriptome handling ability of BET proteins suggests a key role in the modulation of cell plasticity, both in fate decision and in lineage commitment during embryonic development and in pathogenic conditions, including cancerogenesis. Glioblastoma is the most aggressive form of glioma, characterized by a very poor prognosis despite the application of a multimodal therapy. Recently, new insights are emerging about the glioblastoma cellular origin, leading to the hypothesis that several putative mechanisms occur during gliomagenesis. Interestingly, epigenome dysregulation associated with loss of cellular identity and functions are emerging as crucial features of glioblastoma pathogenesis. Therefore, the emerging roles of BET protein in glioblastoma onco-biology and the compelling demand for more effective therapeutic strategies suggest that BET family members could be promising targets for translational breakthroughs in glioblastoma treatment. Primarily, “Reprogramming Therapy”, which is aimed at reverting the malignant phenotype, is now considered a promising strategy for GBM therapy.
Collapse
|
106
|
Eichner LJ, Curtis SD, Brun SN, McGuire CK, Gushterova I, Baumgart JT, Trefts E, Ross DS, Rymoff TJ, Shaw RJ. HDAC3 is critical in tumor development and therapeutic resistance in Kras-mutant non-small cell lung cancer. SCIENCE ADVANCES 2023; 9:eadd3243. [PMID: 36930718 PMCID: PMC10022903 DOI: 10.1126/sciadv.add3243] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
HDAC3 is one of the main targets of histone deacetylase (HDAC) inhibitors in clinical development as cancer therapies, yet the in vivo role of HDAC3 in solid tumors is unknown. We identified a critical role for HDAC3 in Kras-mutant lung cancer. Using genetically engineered mouse models (GEMMs), we found that HDAC3 is required for lung tumor growth in vivo. HDAC3 was found to direct and enhance the transcription effects of the lung cancer lineage transcription factor NKX2-1 to mediate expression of a common set of target genes. We identified FGFR1 as a critical previously unidentified target of HDAC3. Leveraging this, we identified that an HDAC3-dependent transcriptional cassette becomes hyperactivated as Kras/LKB1-mutant cells develop resistance to the MEK inhibitor trametinib, and this can be reversed by treatment with the HDAC1/HDAC3 inhibitor entinostat. We found that the combination of entinostat plus trametinib treatment elicits therapeutic benefit in the Kras/LKB1 GEMM.
Collapse
Affiliation(s)
- Lillian J. Eichner
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA USA
- Department of Biochemistry and Molecular Genetics, Northwestern University, 303 E. Superior Street, Chicago, IL USA
| | - Stephanie D. Curtis
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA USA
| | - Sonja N. Brun
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA USA
| | - Caroline K. McGuire
- Department of Biochemistry and Molecular Genetics, Northwestern University, 303 E. Superior Street, Chicago, IL USA
| | - Irena Gushterova
- Department of Biochemistry and Molecular Genetics, Northwestern University, 303 E. Superior Street, Chicago, IL USA
| | - Joshua T. Baumgart
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA USA
| | - Elijah Trefts
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA USA
| | - Debbie S. Ross
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA USA
| | - Tammy J. Rymoff
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA USA
| | - Reuben J. Shaw
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA USA
| |
Collapse
|
107
|
Moreno V, Vieito M, Sepulveda JM, Galvao V, Hernández-Guerrero T, Doger B, Saavedra O, Carlo-Stella C, Michot JM, Italiano A, Magagnoli M, Carpio C, Pinto A, Sarmiento R, Amoroso B, Aronchik I, Filvaroff E, Hanna B, Wei X, Nikolova Z, Braña I. BET inhibitor trotabresib in heavily pretreated patients with solid tumors and diffuse large B-cell lymphomas. Nat Commun 2023; 14:1359. [PMID: 36914652 PMCID: PMC10011554 DOI: 10.1038/s41467-023-36976-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Bromodomain and extraterminal proteins (BET) play key roles in regulation of gene expression, and may play a role in cancer-cell proliferation, survival, and oncogenic progression. CC-90010-ST-001 (NCT03220347) is an open-label phase I study of trotabresib, an oral BET inhibitor, in heavily pretreated patients with advanced solid tumors and relapsed/refractory diffuse large B-cell lymphoma (DLBCL). Primary endpoints were the safety, tolerability, maximum tolerated dose, and RP2D of trotabresib. Secondary endpoints were clinical benefit rate (complete response [CR] + partial response [PR] + stable disease [SD] of ≥4 months' duration), objective response rate (CR + PR), duration of response or SD, progression-free survival, overall survival, and the pharmacokinetics (PK) of trotabresib. In addition, part C assessed the effects of food on the PK of trotabresib as a secondary endpoint. The dose escalation (part A) showed that trotabresib was well tolerated, had single-agent activity, and determined the recommended phase 2 dose (RP2D) and schedule for the expansion study. Here, we report long-term follow-up results from part A (N = 69) and data from patients treated with the RP2D of 45 mg/day 4 days on/24 days off or an alternate RP2D of 30 mg/day 3 days on/11 days off in the dose-expansion cohorts (parts B [N = 25] and C [N = 41]). Treatment-related adverse events (TRAEs) are reported in almost all patients. The most common severe TRAEs are hematological. Toxicities are generally manageable, allowing some patients to remain on treatment for ≥2 years, with two patients receiving ≥3 years of treatment. Trotabresib monotherapy shows antitumor activity, with an ORR of 13.0% (95% CI, 2.8-33.6) in patients with R/R DLBCL (part B) and an ORR of 0.0% (95% CI, 0.0-8.6) and a CBR of 31.7% (95% CI, 18.1-48.1) in patients with advanced solid tumors (part C). These results support further investigation of trotabresib in combination with other anticancer agents.
Collapse
Affiliation(s)
- Victor Moreno
- START Madrid-FJD, Hospital Universitario Fundación Jimenez Diaz, Madrid, Spain.
| | - Maria Vieito
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Vladimir Galvao
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Bernard Doger
- START Madrid-FJD, Hospital Universitario Fundación Jimenez Diaz, Madrid, Spain
| | - Omar Saavedra
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Carmelo Carlo-Stella
- Department of Biological Sciences, Humanitas University, Rozzano, Milano, Italy
- Department of Oncology and Hematology, Humanitas Research Hospital - IRCCS, Rozzano, Milano, Italy
| | | | - Antoine Italiano
- Institut Bergonie Centre Regional de Lutte Contre Le Cancer de Bordeaux et Sud Ouest, Bordeaux, France
| | - Massimo Magagnoli
- Department of Oncology and Hematology, Humanitas Research Hospital - IRCCS, Rozzano, Milano, Italy
| | - Cecilia Carpio
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Antonio Pinto
- Hematology-Oncology & Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione G. Pascale, IRCCS, Naples, Italy
| | - Rafael Sarmiento
- Centre for Innovation and Translational Research Europe, a Bristol Myers Squibb Company, Seville, Spain
| | - Barbara Amoroso
- Centre for Innovation and Translational Research Europe, a Bristol Myers Squibb Company, Seville, Spain
| | | | | | | | - Xin Wei
- Bristol Myers Squibb, Princeton, NJ, USA
| | - Zariana Nikolova
- Centre for Innovation and Translational Research Europe, a Bristol Myers Squibb Company, Seville, Spain
| | - Irene Braña
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
108
|
Mandl A, Markowski MC, Carducci MA, Antonarakis ES. Role of bromodomain and extraterminal (BET) proteins in prostate cancer. Expert Opin Investig Drugs 2023; 32:213-228. [PMID: 36857796 DOI: 10.1080/13543784.2023.2186851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
INTRODUCTION The bromodomain and extraterminal (BET) family of proteins are epigenetic readers of acetylated histones and are critical activators of oncogenic networks across many cancers. Therapeutic targeting of BET proteins has been an attractive area of clinical development for metastatic castration-resistant prostate cancer. In recent years, many structurally diverse BET inhibitors have been discovered and tested. Preclinical studies have demonstrated significant antiproliferative activity of BET inhibitors against prostate cancer. However, their clinical success as monotherapies has been limited by treatment-associated toxicities, primary and acquired drug resistance, and a lack of predictive biomarkers of benefit. AREAS COVERED This review provides an overview of advancements in BET inhibitor design, preclinical research, and conclusions from clinical trials in prostate cancer. We speculate on incorporating BET inhibitors into combination regimens with other agents to improve the therapeutic index of BET inhibition in treating prostate cancer. EXPERT OPINION The therapeutic potential of BET inhibitors for prostate cancer has been demonstrated in preclinical studies. However, further research is needed to identify biomarkers that can predict sensitivity to BET inhibitors and to develop novel, highly selective inhibitors to reduce toxicities. Finally, BET inhibitors are likely to hold the most clinical potential in combination with other agents.
Collapse
Affiliation(s)
- Adel Mandl
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Mark C Markowski
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Michael A Carducci
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Emmanuel S Antonarakis
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
| |
Collapse
|
109
|
Kumari A, Gesumaria L, Liu YJ, Hughitt VK, Zhang X, Ceribelli M, Wilson KM, Klumpp-Thomas C, Chen L, McKnight C, Itkin Z, Thomas CJ, Mock BA, Schrump DS, Chen H. mTOR inhibition overcomes RSK3-mediated resistance to BET inhibitors in small cell lung cancer. JCI Insight 2023; 8:156657. [PMID: 36883564 PMCID: PMC10077471 DOI: 10.1172/jci.insight.156657] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/23/2023] [Indexed: 03/09/2023] Open
Abstract
Small cell lung cancer (SCLC) is a recalcitrant malignancy with limited treatment options. Bromodomain and extraterminal domain inhibitors (BETis) have shown promising preclinical activity in SCLC, but the broad sensitivity spectrum limits their clinical prospects. Here, we performed unbiased high-throughput drug combination screens to identify therapeutics that could augment the antitumor activities of BETis in SCLC. We found that multiple drugs targeting the PI-3K-AKT-mTOR pathway synergize with BETis, among which mTOR inhibitors (mTORis) show the highest synergy. Using various molecular subtypes of the xenograft models derived from patients with SCLC, we confirmed that mTOR inhibition potentiates the antitumor activities of BETis in vivo without substantially increasing toxicity. Furthermore, BETis induce apoptosis in both in vitro and in vivo SCLC models, and this antitumor effect is further amplified by combining mTOR inhibition. Mechanistically, BETis induce apoptosis in SCLC by activating the intrinsic apoptotic pathway. However, BET inhibition leads to RSK3 upregulation, which promotes survival by activating the TSC2-mTOR-p70S6K1-BAD cascade. mTORis block this protective signaling and augment the apoptosis induced by BET inhibition. Our findings reveal a critical role of RSK3 induction in tumor survival upon BET inhibition and warrant further evaluation of the combination of mTORis and BETis in patients with SCLC.
Collapse
Affiliation(s)
| | | | | | - V Keith Hughitt
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, USA
| | - Michele Ceribelli
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, USA
| | - Kelli M Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, USA
| | - Carleen Klumpp-Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, USA
| | - Lu Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, USA
| | - Crystal McKnight
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, USA
| | - Zina Itkin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, USA.,Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | | |
Collapse
|
110
|
Rosenthal AC, Munoz JL, Villasboas JC. Clinical advances in epigenetic therapies for lymphoma. Clin Epigenetics 2023; 15:39. [PMID: 36871057 PMCID: PMC9985856 DOI: 10.1186/s13148-023-01452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 02/19/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Advances in understanding of cancer biology, genomics, epigenomics, and immunology have resulted in development of several therapeutic options that expand cancer care beyond traditional chemotherapy or radiotherapy, including individualized treatment strategies, novel treatments based on monotherapies or combination therapy to reduce toxicities, and implementation of strategies for overcoming resistance to anticancer therapy. RESULTS This review covers the latest applications of epigenetic therapies for treatment of B cell, T cell, and Hodgkin lymphomas, highlighting key clinical trial results with monotherapies and combination therapies from the main classes of epigenetic therapies, including inhibitors of DNA methyltransferases, protein arginine methyltransferases, enhancer of zeste homolog 2, histone deacetylases, and the bromodomain and extraterminal domain. CONCLUSION Epigenetic therapies are emerging as an attractive add-on to traditional chemotherapy and immunotherapy regimens. New classes of epigenetic therapies promise low toxicity and may work synergistically with other cancer treatments to overcome drug resistance mechanisms.
Collapse
Affiliation(s)
- Allison C Rosenthal
- Division of Hematology, Medical Oncology, Mayo Clinic, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA.
| | - Javier L Munoz
- Division of Hematology, Medical Oncology, Mayo Clinic, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - J C Villasboas
- Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| |
Collapse
|
111
|
Martella N, Pensabene D, Varone M, Colardo M, Petraroia M, Sergio W, La Rosa P, Moreno S, Segatto M. Bromodomain and Extra-Terminal Proteins in Brain Physiology and Pathology: BET-ing on Epigenetic Regulation. Biomedicines 2023; 11:biomedicines11030750. [PMID: 36979729 PMCID: PMC10045827 DOI: 10.3390/biomedicines11030750] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
BET proteins function as histone code readers of acetylated lysins that determine the positive regulation in transcription of genes involved in cell cycle progression, differentiation, inflammation, and many other pathways. In recent years, thanks to the development of BET inhibitors, interest in this protein family has risen for its relevance in brain development and function. For example, experimental evidence has shown that BET modulation affects neuronal activity and the expression of genes involved in learning and memory. In addition, BET inhibition strongly suppresses molecular pathways related to neuroinflammation. These observations suggest that BET modulation may play a critical role in the onset and during the development of diverse neurodegenerative and neuropsychiatric disorders, such as Alzheimer’s disease, fragile X syndrome, and Rett syndrome. In this review article, we summarize the most recent evidence regarding the involvement of BET proteins in brain physiology and pathology, as well as their pharmacological potential as targets for therapeutic purposes.
Collapse
Affiliation(s)
- Noemi Martella
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Daniele Pensabene
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Santa Lucia Foundation, 64 via del Fosso di Fiorano, 00179 Rome, Italy
| | - Michela Varone
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Mayra Colardo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Michele Petraroia
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - William Sergio
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, via dei Marsi 78, 00185 Rome, Italy
| | - Sandra Moreno
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Santa Lucia Foundation, 64 via del Fosso di Fiorano, 00179 Rome, Italy
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
- Correspondence:
| |
Collapse
|
112
|
Romine KA, MacPherson K, Cho HJ, Kosaka Y, Flynn PA, Byrd KH, Coy JL, Newman MT, Pandita R, Loo CP, Scott J, Adey AC, Lind EF. BET inhibitors rescue anti-PD1 resistance by enhancing TCF7 accessibility in leukemia-derived terminally exhausted CD8 + T cells. Leukemia 2023; 37:580-592. [PMID: 36681742 PMCID: PMC9991923 DOI: 10.1038/s41375-023-01808-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/08/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023]
Abstract
Many acute myeloid leukemia (AML) patients exhibit hallmarks of immune exhaustion, such as increased myeloid-derived suppressor cells, suppressive regulatory T cells and dysfunctional T cells. Similarly, we have identified the same immune-related features, including exhausted CD8+ T cells (TEx) in a mouse model of AML. Here we show that inhibitors that target bromodomain and extra-terminal domain (BET) proteins affect tumor-intrinsic factors but also rescue T cell exhaustion and ICB resistance. Ex vivo treatment of cells from AML mice and AML patients with BET inhibitors (BETi) reversed CD8+ T cell exhaustion by restoring proliferative capacity and expansion of the more functional precursor-exhausted T cells. This reversal was enhanced by combined BETi and anti-PD1 treatment. BETi synergized with anti-PD1 in vivo, resulting in the reduction of circulating leukemia cells, enrichment of CD8+ T cells in the bone marrow, and increase in expression of Tcf7, Slamf6, and Cxcr5 in CD8+ T cells. Finally, we profiled the epigenomes of in vivo JQ1-treated AML-derived CD8+ T cells by single-cell ATAC-seq and found that JQ1 increases Tcf7 accessibility specifically in Tex cells, suggesting that BETi likely acts mechanistically by relieving repression of progenitor programs in Tex CD8+ T cells and maintaining a pool of anti-PD1 responsive CD8+ T cells.
Collapse
Affiliation(s)
- Kyle A Romine
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Kevin MacPherson
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Hyun-Jun Cho
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Yoko Kosaka
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Patrick A Flynn
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Kaelan H Byrd
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Jesse L Coy
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Matthew T Newman
- School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Ravina Pandita
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Christopher P Loo
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Jaime Scott
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Andrew C Adey
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
- Center for Early Detection Advanced Research, Oregon Health & Science University, Portland, OR, USA
| | - Evan F Lind
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA.
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
113
|
Yuan T, Ni P, Zhang Z, Wu D, Sun G, Zhang H, Chen B, Wang X, Cheng Z. Targeting BET proteins inhibited the growth of non-small cell lung carcinoma through downregulation of Met expression. Cell Biol Int 2023; 47:622-633. [PMID: 36448366 DOI: 10.1002/cbin.11962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/27/2022] [Accepted: 11/05/2022] [Indexed: 12/02/2022]
Abstract
Hepatocyte growth factor receptor (HGFR or Met) upregulation has been proven to play important roles in non-small cell lung carcinoma (NSCLC). Interestingly, chemoresistance against epidermal growth factor receptor (EGFR) inhibitors including erlotinib and gefitinib was also related to Met. Targeting bromodomain and extra terminal domain (BET) proteins, especially BRD4, has shown inhibitory effects on lung cancer, but the mechanism is unclear. Herein, we found that JQ1 (BET inhibitor) suppressed NSCLC cell growth, reduced the Met expression, and contributed to inactivation of PI3K/Akt and MAPK/ERK pathways. Moreover, another BET protein inhibitor I-BET151, or BRD4 depletion, also inhibited NSCLC cell growth and downregulated Met. JQ1 inhibited HGF-induced cell growth and Met/PI3K/Akt activation, also inhibited A549 tumor growth in xenograft mouse models, in parallel with Met downregulation. Moreover, JQ1 inhibited the growth of paired erlotinib-sensitive and resistant HCC827 cells in parallel with Met downregulation and PI3K/Akt signaling inactivation. JQ1 also exerted inhibitory influences on the growth of erlotinib-sensitive and resistant HCC827 tumors in xenograft mouse models. These results suggested that targeting BET proteins inhibited NSCLC via downregulating Met and inactivating PI3K/AKT pathway. Our findings reveal a novel mechanism of BET proteins implicated in NSCLC progression with Met taken into consideration.
Collapse
Affiliation(s)
- Ting Yuan
- Department of Oncology Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Neurology, Affiliated Nanjing Jiangbei Hospital of Nantong University, Nanjing, Jiangsu, China
| | - Ping Ni
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zuhao Zhang
- Department of Oncology Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dandan Wu
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Geng Sun
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haijun Zhang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xuerong Wang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhixiang Cheng
- Department of Oncology Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
114
|
Guo J, Zheng Q, Peng Y. BET proteins: Biological functions and therapeutic interventions. Pharmacol Ther 2023; 243:108354. [PMID: 36739915 DOI: 10.1016/j.pharmthera.2023.108354] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Bromodomain and extra-terminal (BET) family member proteins (BRD2, BRD3, BRD4 and BRDT) play a pivotal role in interpreting the epigenetic information of histone Kac modification, thus controlling gene expression, remodeling chromatin structures and avoid replicative stress-induced DNA damages. Abnormal activation of BET proteins is tightly correlated to various human diseases, including cancer. Therefore, BET bromodomain inhibitors (BBIs) were considered as promising therapeutics to treat BET-related diseases, raising >70 clinical trials in the past decades. Despite preliminary effects achieved, drug resistance and adverse events represent two major challenges for current BBIs development. In this review, we will introduce the biological functions of BET proteins in both physiological and pathological conditions; and summarize the progress in current BBI drug development. Moreover, we will also discuss the major challenges in the front of BET inhibitor development and provide rational strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Jiawei Guo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingquan Zheng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
115
|
Ali MM, Naz S, Ashraf S, Knapp S, Ul-Haq Z. Epigenetic modulation by targeting bromodomain containing protein 9 (BRD9): Its therapeutic potential and selective inhibition. Int J Biol Macromol 2023; 230:123428. [PMID: 36709803 DOI: 10.1016/j.ijbiomac.2023.123428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
The bromodomain-containing protein 9, a component of the SWI/SNF chromatin remodeling complex, functions as an 'epigenetic reader' selectively recognizing acetyl-lysine marks. It regulates chromatin structure and gene expression by recruitment of acetylated transcriptional regulators and by modulating the function of remodeling complexes. Recent data suggests that BRD9 plays an important role in regulating cellular growth and it has been suggested to drive progression of several malignant diseases such as cervical cancer, and acute myeloid leukemia. Its role in tumorigenesis suggests that selective BRD9 inhibitors may have therapeutic value in cancer therapy. Currently, there has been increasing interest in developing small molecules that can specifically target BRD9 or the closely related bromodomain protein BRD7. Available chemical probes will help to clarify biological functions of BRD9 and its potential for cancer therapy. Since the report of the first BRD9 inhibitor LP99 in 2015, numerous inhibitors have been developed. In this review, we summarized the biological roles of BRD9, structural details and the progress made in the development of BRD9 inhibitors.
Collapse
Affiliation(s)
- Maria Mushtaq Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Sehrish Naz
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Sajda Ashraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Goethe University Frankfurt, Max von Lauestrasse 9, 60438 Frankfurt, Germany; Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, Max von Lauestrasse 15, 60438 Frankfurt, Germany
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan.
| |
Collapse
|
116
|
Luo J, Zou H, Guo Y, Tong T, Chen Y, Xiao Y, Pan Y, Li P. The oncogenic roles and clinical implications of YAP/TAZ in breast cancer. Br J Cancer 2023; 128:1611-1624. [PMID: 36759723 PMCID: PMC10133323 DOI: 10.1038/s41416-023-02182-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed form of cancer and a leading cause of cancer-related deaths among women worldwide. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are homologous transcriptional coactivators and downstream effectors of Hippo signalling. YAP/TAZ activation has been revealed to play essential roles in multiple events of BC development, including tumour initiation, progression, metastasis, drug resistance and stemness regulations. In this review, we will first give an overview of YAP/TAZ-mediated oncogenesis in BC, and then systematically summarise the oncogenic roles of YAP/TAZ in various BC subtypes, BC stem cells (BCSCs) and tumour microenvironments (TMEs). Based on these findings, we will further discuss the clinical implications of YAP/TAZ-based targeted therapies in BC and the potential future direction.
Collapse
Affiliation(s)
- Juan Luo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China
| | - Hailin Zou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China
| | - Yibo Guo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China
| | - Tongyu Tong
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China.,Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China
| | - Yun Chen
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China
| | - Yunjun Xiao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China
| | - Yihang Pan
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China. .,Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China.
| | - Peng Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China. .,Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
117
|
Huang Y, Liu C, You L, Li X, Chen G, Fan J. Synergistic effect of PARP inhibitor and BRD4 inhibitor in multiple models of ovarian cancer. J Cell Mol Med 2023; 27:634-649. [PMID: 36753396 PMCID: PMC9983312 DOI: 10.1111/jcmm.17683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Ovarian cancer has the highest facility rate among gynaecological tumours. Current therapies including PARP inhibitors have a defect that ovarian tumour is easy to recurrent and become resistant to therapy. To solve this problem, we found that BRD4 inhibitor AZD5153 and PARP inhibitor olaparib had a widespread synergistic effect in multiple models with different gene backgrounds. AZD5153 sensitizes cells to olaparib and reverses the acquired resistance by down-regulating PTEN expression levels to destabilize hereditary materials. In this study, we used the following multiple ovarian cancer models PDX, PDO and 3D/2D cell lines to elucidate the co-effect of AZD5153 and olaparib in vivo and in vitro. The similar results of these models further proved that the mechanism identified was consistent with the biological process occurring in ovarian cancer patients after drug treatment. This consistency between the results of different models suggests the possibility of translating these laboratory research findings into clinical studies towards developing treatments.
Collapse
Affiliation(s)
- Yuhan Huang
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina,National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina,Department of Obstetrics and GynecologyShanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chen Liu
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina,National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina,Department of Obstetrics and GynecologyShanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lixin You
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina,National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Xi Li
- Department of Obstetrics and GynecologyShanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Gang Chen
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina,National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Junpeng Fan
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina,National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
118
|
Dong J, Wang X. Identification of novel BRD4 inhibitors by pharmacophore screening, molecular docking, and molecular dynamics simulation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
119
|
Bhardwaj BK, Venkatesh T, Suresh PS. Study on the interaction of the bromodomain inhibitor JQ1 with human serum albumin by spectroscopic and molecular docking studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
120
|
Chen H, Gesumaria L, Park YK, Oliver TG, Singer DS, Ge K, Schrump DS. BET Inhibitors Target the SCLC-N Subtype of Small-Cell Lung Cancer by Blocking NEUROD1 Transactivation. Mol Cancer Res 2023; 21:91-101. [PMID: 36378541 PMCID: PMC9898120 DOI: 10.1158/1541-7786.mcr-22-0594] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/27/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
Small-cell lung cancer (SCLC) is a recalcitrant malignancy that urgently needs new therapies. Four master transcription factors (ASCL1, NEUROD1, POU2F3, and YAP1) have been identified in SCLC, and each defines the transcriptome landscape of one molecular subtype. However, these master transcription factors have not been found directly druggable. We hypothesized that blocking their transcriptional coactivator(s) could provide an alternative approach to target these master transcription factors. Here, we identify that BET proteins physically interact with NEUROD1 and function as transcriptional coactivators. Using CRISPR knockout and ChIP-seq, we demonstrate that NEUROD1 plays a critical role in defining the landscapes of BET proteins in the SCLC genome. Blocking BET proteins by inhibitors led to broad suppression of the NEUROD1-target genes, especially those associated with superenhancers, resulting in the inhibition of SCLC growth in vitro and in vivo. LSAMP, a membrane protein in the IgLON family, was identified as one of the NEUROD1-target genes mediating BET inhibitor sensitivity in SCLC. Altogether, our study reveals that BET proteins are essential in regulating NEUROD1 transactivation and are promising targets in SCLC-N subtype tumors. IMPLICATIONS Our findings suggest that targeting transcriptional coactivators could be a novel approach to blocking the master transcription factors in SCLC for therapeutic purposes.
Collapse
Affiliation(s)
- Haobin Chen
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa Gesumaria
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Young-Kwon Park
- Adipocyte Biology and Gene Regulation Section, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Trudy G. Oliver
- Department of Pharmacology & Cancer Biology, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Dinah S. Singer
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kai Ge
- Adipocyte Biology and Gene Regulation Section, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David S. Schrump
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
121
|
Ye Y, Zhong W, Qian J, Zhang J, Xu T, Han R, Han J, Wang C, Song L, Zeng X, Wang H. Comprehensive analysis of the prognosis and immune infiltrates for the BET protein family reveals the significance of BRD4 in glioblastoma multiforme. Front Cell Dev Biol 2023; 11:1042490. [PMID: 36711038 PMCID: PMC9878708 DOI: 10.3389/fcell.2023.1042490] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023] Open
Abstract
Background: Glioblastoma multiforme (GBM) is the most common and invasive primary central nervous system tumor. The prognosis after surgery, radiation and chemotherapy is very poor. Bromodomain (BRD) proteins have been identified in oncogenic rearrangements, and play a key role in the development of multiple cancers. However, the relationship between BET proteins and prognosis of GBM are still worth exploring, and the distinct functions of BET proteins and tumor immunology in GBM have not been fully elucidated. Therefore, it is particularly important to develop effective biomarkers to predict the prognosis of GBM patients. Methods: Metascape, David, Kaplan-Meier Plotter, Oncomine, GEPIA, TCGA, TIMER, and LinkedOmics databases were used to assess the expression and prognosis for BET proteins in GBM. ROC analysis of risk model was established to identify the correlation between BET genes and overall survival in GBM patients. TIMER and GEPIA databases were used to comprehensively investigate the correlation between BET genes and tumor immune infiltration cells. Moreover, the image of immunohistochemistry staining of BET proteins in normal tissue and tumor tissue were retrived from the HPA database. In addition, differential analysis and pathway enrichment analysis of BRD4 gene expression profile were also carried out. Finally, immune-fluorescence and Western blot were used to clarify the expression of BRD4 in GBM cells. Results: Bioinformatics analysis showed that the expression levels of BET genes in GBM may play an important role in oncogenesis. Specifically, bioinformatic and immunohistochemistry analysis showed that BRD4 protein was more highly expressed in tumor tissues than that in normal tissues. The high expression of BRD4 was associated with poor prognosis in GBM. The expression of BET genes were closely related to the immune checkpoint in GBM. The correlation effect of BRD4 was significantly higher than other BET genes, which represented negative correlation with immune checkpoint. The expression of BRD4 was positively associated with tumor purity, and negatively associated with immune infiltration abundance of macrophage, neutrophil and CD8+ T-cell, respectively. Cox analysis showed that the model had good survival prediction and prognosis discrimination ability. In addition, the expression levels of BRD4 protein was significantly higher in U-251 MG cells than that in normal cells, which was consistent with the results of bioinformatics data. Conclusion: This study implied that BRD4 could be hopeful prognostic biomarker in GBM. The increased expression of BRD4 may act as a molecular marker to identify GBM patients with high-risk subgroups. BRD4 may be a valuable prognostic biomarker, and a potential target of precision therapy against GBM.
Collapse
Affiliation(s)
- Yintao Ye
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjins Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Wei Zhong
- Department of quality, Tianjin Plastics Research Institute Co., Ltd, Tianjin, China
| | - Junqiang Qian
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjins Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jie Zhang
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjins Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Tingting Xu
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjins Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Ruyi Han
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjins Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jiangeng Han
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjins Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Chunwei Wang
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjins Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Lichao Song
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjins Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xianwei Zeng
- Geriatric Health Engineering Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China,Rehabilitation hospital affiliated to National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Hong Wang
- Geriatric Health Engineering Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China,*Correspondence: Hong Wang,
| |
Collapse
|
122
|
Tien FM, Lu HH, Lin SY, Tsai HC. Epigenetic remodeling of the immune landscape in cancer: therapeutic hurdles and opportunities. J Biomed Sci 2023; 30:3. [PMID: 36627707 PMCID: PMC9832644 DOI: 10.1186/s12929-022-00893-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
The tumor immune microenvironment represents a sophisticated ecosystem where various immune cell subtypes communicate with cancer cells and stromal cells. The dynamic cellular composition and functional characteristics of the immune landscape along the trajectory of cancer development greatly impact the therapeutic efficacy and clinical outcome in patients receiving systemic antitumor therapy. Mounting evidence has suggested that epigenetic mechanisms are the underpinning of many aspects of antitumor immunity and facilitate immune state transitions during differentiation, activation, inhibition, or dysfunction. Thus, targeting epigenetic modifiers to remodel the immune microenvironment holds great potential as an integral part of anticancer regimens. In this review, we summarize the epigenetic profiles and key epigenetic modifiers in individual immune cell types that define the functional coordinates of tumor permissive and non-permissive immune landscapes. We discuss the immunomodulatory roles of current and prospective epigenetic therapeutic agents, which may open new opportunities in enhancing cancer immunotherapy or overcoming existing therapeutic challenges in the management of cancer.
Collapse
Affiliation(s)
- Feng-Ming Tien
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Hsuan-Hsuan Lu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
- Center for Frontier Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
| | - Shu-Yung Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Hsing-Chen Tsai
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan.
- Center for Frontier Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan.
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No. 1 Jen Ai Road Section 1, Rm542, Taipei, 100233, Taiwan.
- Department of Medical Research, National Taiwan University Hospital, Taipei, 100225, Taiwan.
| |
Collapse
|
123
|
Rossi T, Zamponi R, Chirico M, Pisanu ME, Iorio E, Torricelli F, Gugnoni M, Ciarrocchi A, Pistoni M. BETi enhance ATGL expression and its lipase activity to exert their antitumoral effects in triple-negative breast cancer (TNBC) cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:7. [PMID: 36604676 PMCID: PMC9817244 DOI: 10.1186/s13046-022-02571-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Triple-Negative Breast Cancer (TNBC) is a subtype of breast cancer that differs from other types of breast cancers in the faster spread and worse outcome. TNBC presented limited treatment options. BET (Bromodomain and extra-terminal domain) proteins are epigenetic readers that control the expression of different oncogenic proteins, and their inhibition (BETi) is considered a promising anti-cancer strategy. Recent evidence demonstrated the involvement of BET proteins in regulation of metabolic processes. METHODS MDA-MB231 cells treated with JQ1 followed by RNA-sequencing analysis showed altered expression of lipid metabolic genes; among these, we focused on ATGL, a lipase required for efficient mobilization of triglyceride. Different in vitro approaches were performed to validate the RNA-sequencing data (qRT-PCR, immunofluorescence and flow cytometry). NMR (Nuclear Magnetic Resonance) was used to analyze the lipid reprogramming upon treatment. ATGL expression was determined by immunoblot and qRT-PCR, and the impact of ATGL function or protein knockdown, alone and in combination with BETi, was assessed by analyzing cell proliferation, mitochondrial function, and metabolic activity in TNBC and non-TNBC cells culture models. RESULTS TNBC cells treated with two BETi markedly increased ATGL expression and lipolytic function and decreased intracellular lipid content in a dose and time-dependent manner. The intracellular composition of fatty acids (FAs) after BETi treatment reflected a significant reduction in neutral lipids. The short-chain FA propionate entered directly into the mitochondria mimicking ATGL activity. ATGL KD (knockdown) modulated the levels of SOD1 and CPT1a decreasing ROS and helped to downregulate the expression of mitochondrial ß-oxidation genes in favor of the upregulation of glycolytic markers. The enhanced glycolysis is reflected by the increased of the mitochondrial activity (MTT assay). Finally, we found that after BETi treatment, the FoxO1 protein is upregulated and binds to the PNPLA2 promoter leading to the induction of ATGL. However, FoxO1 only partially prompted the induction of ATGL expression by BETi. CONCLUSIONS The anti-proliferative effect achieved by BETi is helped by ATGL mediating lipolysis. This study showed that BETi altered the mitochondrial dynamics taking advantage of ATGL function to induce cell cycle arrest and cell death. Schematic representation of BETi mechanism of action on ATGL in TNBC cells. BETi induce the expression of FoxO1 and ATGL, lowering the expression of G0G2, leading to a switch in metabolic status. The induced expression of ATGL leads to increased lipolysis and a decrease in lipid droplet content and bioavailability of neutral lipid. At the same time, the mitochondria are enriched with fatty acids. This cellular status inhibits cell proliferation and increases ROS production and mitochondrial stress. Interfering for ATGL expression, the oxidative phenotypic status mildly reverted to a glycolytic status where neutral lipids are stored into lipid droplets with a consequent reduction of oxidative stress in the mitochondrial.
Collapse
Affiliation(s)
- Teresa Rossi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, RE Italy
| | - Raffaella Zamponi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, RE Italy
| | - Mattea Chirico
- grid.416651.10000 0000 9120 6856High Resolution NMR Unit, Core Facilities, Istituto Superiore Di Sanità, 00161 Rome, Italy
| | - Maria Elena Pisanu
- grid.416651.10000 0000 9120 6856High Resolution NMR Unit, Core Facilities, Istituto Superiore Di Sanità, 00161 Rome, Italy
| | - Egidio Iorio
- grid.416651.10000 0000 9120 6856High Resolution NMR Unit, Core Facilities, Istituto Superiore Di Sanità, 00161 Rome, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, RE Italy
| | - Mila Gugnoni
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, RE Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, RE Italy
| | - Mariaelena Pistoni
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, RE Italy
| |
Collapse
|
124
|
Bacterial nanocellulose production using Cantaloupe juice, statistical optimization and characterization. Sci Rep 2023; 13:51. [PMID: 36593253 PMCID: PMC9807561 DOI: 10.1038/s41598-022-26642-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023] Open
Abstract
The bacterial nanocellulose has been used in a wide range of biomedical applications including carriers for drug delivery, blood vessels, artificial skin and wound dressing. The total of ten morphologically different bacterial strains were screened for their potential to produce bacterial nanocellulose (BNC). Among these isolates, Bacillus sp. strain SEE-3 exhibited potent ability to produce the bacterial nanocellulose. The crystallinity, particle size and morphology of the purified biosynthesized nanocellulose were characterized. The cellulose nanofibers possess a negatively charged surface of - 14.7 mV. The SEM images of the bacterial nanocellulose confirms the formation of fiber-shaped particles with diameters of 20.12‒47.36 nm. The TEM images show needle-shaped particles with diameters of 30‒40 nm and lengths of 560‒1400 nm. X-ray diffraction show that the obtained bacterial nanocellulose has crystallinity degree value of 79.58%. FTIR spectra revealed the characteristic bands of the cellulose crystalline structure. The thermogravimetric analysis revealed high thermal stability. Optimization of the bacterial nanocellulose production was achieved using Plackett-Burman and face centered central composite designs. Using the desirability function, the optimum conditions for maximum bacterial nanocellulose production was determined theoretically and verified experimentally. Maximum BNC production (20.31 g/L) by Bacillus sp. strain SEE-3 was obtained using medium volume; 100 mL/250 mL conical flask, inoculum size; 5%, v/v, citric acid; 1.5 g/L, yeast extract; 5 g/L, temperature; 37 °C, Na2HPO4; 3 g/L, an initial pH level of 5, Cantaloupe juice concentration of 81.27 percent and peptone 11.22 g/L.
Collapse
|
125
|
Zhang M, Li Y, Zhang Z, Zhang X, Wang W, Song X, Zhang D. BRD4 Protein as a Target for Lung Cancer and Hematological Cancer Therapy: A Review. Curr Drug Targets 2023; 24:1079-1092. [PMID: 37846578 DOI: 10.2174/0113894501269090231012090351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023]
Abstract
The BET protein family plays a crucial role in regulating the epigenetic landscape of the genome. Their role in regulating tumor-related gene expression and its impact on the survival of tumor cells is widely acknowledged. Among the BET family constituents, BRD4 is a significant protein. It is a bromodomain-containing protein located at the outer terminal that recognizes histones that have undergone acetylation. It is present in the promoter or enhancer region of the target gene and is responsible for initiating and sustaining the expression of genes associated with tumorigenesis. BRD4 expression is significantly elevated in various tumor types. Research has indicated that BRD4 plays a significant role in regulating various transcription factors and chromatin modification, as well as in repairing DNA damage and preserving telomere function, ultimately contributing to the survival of cancerous cells. The protein BRD4 has a significant impact on antitumor therapy, particularly in the management of lung cancer and hematological malignancies, and the promising potential of BRD4 inhibitors in the realm of cancer prevention and treatment is a topic of great interest. Therefore, BRD4 is considered a promising candidate for prophylaxis and therapy of neoplastic diseases. However, further research is required to fully comprehend the significance and indispensability of BRD4 in cancer and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Mengmeng Zhang
- College of Humanities and Management, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, P.R. China
| | - Yingbo Li
- College of Humanities and Management, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, P.R. China
| | - Zilong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, P.R. China
| | - Xin Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, P.R. China
| | - Wei Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, P.R. China
| | - Xiaomei Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, P.R. China
| | - Dongdong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, P.R. China
| |
Collapse
|
126
|
Eischer N, Arnold M, Mayer A. Emerging roles of BET proteins in transcription and co-transcriptional RNA processing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1734. [PMID: 35491403 DOI: 10.1002/wrna.1734] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 01/31/2023]
Abstract
Transcription by RNA polymerase II (Pol II) gives rise to all nuclear protein-coding and a large set of non-coding RNAs, and is strictly regulated and coordinated with RNA processing. Bromodomain and extraterminal (BET) family proteins including BRD2, BRD3, and BRD4 have been implicated in the regulation of Pol II transcription in mammalian cells. However, only recent technological advances have allowed the analysis of direct functions of individual BET proteins with high precision in cells. These studies shed new light on the molecular mechanisms of transcription control by BET proteins challenging previous longstanding views. The most studied BET protein, BRD4, emerges as a master regulator of transcription elongation with roles also in coupling nascent transcription with RNA processing. In contrast, BRD2 is globally required for the formation of transcriptional boundaries to restrict enhancer activity to nearby genes. Although these recent findings suggest non-redundant functions of BRD4 and BRD2 in Pol II transcription, more research is needed for further clarification. Little is known about the roles of BRD3. Here, we illuminate experimental work that has initially linked BET proteins to Pol II transcription in mammalian cells, outline main methodological breakthroughs that have strongly advanced the understanding of BET protein functions, and discuss emerging roles of individual BET proteins in transcription and transcription-coupled RNA processing. Finally, we propose an updated model for the function of BRD4 in transcription and co-transcriptional RNA maturation. This article is categorized under: RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Nicole Eischer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Mirjam Arnold
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Andreas Mayer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
127
|
Ma L, Wang J, Zhang Y, Fang F, Ling J, Chu X, Zhang Z, Tao Y, Li X, Tian Y, Li Z, Sang X, Zhang K, Lu L, Wan X, Chen Y, Yu J, Zhuo R, Wu S, Lu J, Pan J, Hu S. BRD4 PROTAC degrader MZ1 exerts anticancer effects in acute myeloid leukemia by targeting c-Myc and ANP32B genes. Cancer Biol Ther 2022; 23:1-15. [PMID: 36170346 PMCID: PMC9543111 DOI: 10.1080/15384047.2022.2125748] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/17/2022] [Accepted: 09/06/2022] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a highly cancerous and aggressive hematologic disease with elevated levels of drug resistance and relapse resulting in high mortality. Recently, bromodomains and extra-terminal (BET) protein inhibitors have been extensively researched in hematological tumors as potential anticancer agents. MZ1 is a novel BET inhibitor that mediates selective proteins degradation and suppression of tumor growth through proteolysis-targeting chimeras (PROTAC) technology. Accordingly, this study aimed to investigate the role and therapeutic potential of MZ1 in AML. In this study, we first identified that AML patients with high BRD4 expression had poor overall survival than those with low expression group. MZ1 inhibited AML cell growth and induced apoptosis and cycle arrest in vitro. MZ1 induced degradation of BRD4, BRD3 and BRD2 in AML cell strains. Additionally, MZ1 also initiated the cleavage of poly-ADP-ribose polymerase (PARP), which showed cytotoxic effects on NB4 (PML-RARa), K562 (BCR-ABL), Kasumi-1 (AML1-ETO), and MV4-11 (MLL-AF4) cell lines representing different molecular subtypes of AML. In AML mouse leukemia model, MZ1 significantly decreased leukemia cell growth and increased the mouse survival time. According to the RNA-sequencing analysis, MZ1 led to c-Myc and ANP32B genes significant downregulation in AML cell lines. Knockdown of ANP32B promoted AML cell apoptosis and inhibited cell growth. Overall, our data indicated that MZ1 had broad anti-cancer effects on AML cell lines with different molecular lesions, which might be exploited as a novel therapeutic strategy for AML patients.
Collapse
Affiliation(s)
- Li Ma
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
- Department of Pediatrics, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, China
| | - Jianwei Wang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Yongping Zhang
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Fang Fang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Jing Ling
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Xinran Chu
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Yanfang Tao
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Xiaolu Li
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Yuanyuan Tian
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Zhiheng Li
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Xu Sang
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Kunlong Zhang
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Lihui Lu
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Xiaomei Wan
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Yanling Chen
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Juanjuan Yu
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Ran Zhuo
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Shuiyan Wu
- Intensive Care Unit, Children’s Hospital of Soochow University, Suzhou, China
| | - Jun Lu
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Jian Pan
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Shaoyan Hu
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
- CONTACT Shaoyan HuChildren’s Hospital of Soochow University, Suzhou, 215003, China
| |
Collapse
|
128
|
Hu J, Pan D, Li G, Chen K, Hu X. Regulation of programmed cell death by Brd4. Cell Death Dis 2022; 13:1059. [PMID: 36539410 PMCID: PMC9767942 DOI: 10.1038/s41419-022-05505-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Epigenetic factor Brd4 has emerged as a key regulator of cancer cell proliferation. Targeted inhibition of Brd4 suppresses growth and induces apoptosis of various cancer cells. In addition to apoptosis, Brd4 has also been shown to regulate several other forms of programmed cell death (PCD), including autophagy, necroptosis, pyroptosis, and ferroptosis, with different biological outcomes. PCD plays key roles in development and tissue homeostasis by eliminating unnecessary or detrimental cells. Dysregulation of PCD is associated with various human diseases, including cancer, neurodegenerative and infectious diseases. In this review, we discussed some recent findings on how Brd4 actively regulates different forms of PCD and the therapeutic potentials of targeting Brd4 in PCD-related human diseases. A better understanding of PCD regulation would provide not only new insights into pathophysiological functions of PCD but also provide new avenues for therapy by targeting Brd4-regulated PCD.
Collapse
Affiliation(s)
- Jinfeng Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Dun Pan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Guo Li
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Kunqi Chen
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Xiangming Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
129
|
Yang WQ, Liang R, Gao MQ, Liu YZ, Qi B, Zhao BS. Inhibition of bromodomain-containing protein 4 enhances the migration of esophageal squamous cell carcinoma cells by inducing cell autophagy. World J Gastrointest Oncol 2022; 14:2340-2352. [PMID: 36568944 PMCID: PMC9782615 DOI: 10.4251/wjgo.v14.i12.2340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/17/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC), the predominant type of esophageal cancer, has a 5-year survival rate less than 20%. Although the cause of poor prognosis is the high incidence and mortality of ESCC, the high rate of metastasis after esophageal cancer surgery is the main cause of death after the surgery. Bromodomain-containing protein 4 (BRD4), an epigenetic reader of chromatin-acetylated histones in tumorigenesis and development, plays an essential role in regulating oncogene expression. BRD4 inhibition and BRD4 inhibition-based treatment can potentially suppress ESCC growth. However, the effects and mechanisms of action of BRD4 on ESCC cell migration remain unclear.
AIM To explore the effect of BRD4 on cell migration of ESCC in vitro and its possible molecular mechanism.
METHODS Human ESCC cell lines KYSE-450 and KYSE-150 were used. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay was performed to examine cell proliferation, and the transwell migration assay was conducted to test ESCC cell migration. JQ1, a BRD4 inhibitor, was applied to cells, and BRD4 siRNA was transfected into ESCC cells to knockdown endogenous BRD4. GFP-RFP-LC3 adenovirus was infected into ESCC cells to evaluate the effect of JQ1 on autophagy. Western blotting was performed to determine the protein levels of BRD4, E-cadherin, vimentin, AMP-activated protein kinase (AMPK), and p-AMPK.
RESULTS BRD4 was either downregulated by small interfering RNA or pretreated with JQ1 in ESCC cells, leading to increased tumor migration in ESCC cells in a dose- and time-dependent manner. Inhibition of BRD4 not only significantly suppressed cell proliferation but also strongly increased cell migration by inducing epithelial-mesenchymal transition (EMT). The protein expression of vimentin was increased and E-cadherin decreased in a dose-dependent manner, subsequently promoting autophagy in KYSE-450 and KYSE-150 cells. Pretreatment with JQ1, a BRD4 inhibitor, inhibited BRD4-induced LC3-II activation and upregulated AMPK phosphorylation in a dose-dependent manner. Additionally, an increased number of autophagosomes and autolysosomes were observed in JQ1-treated ESCC cells. The autophagy inhibitor 3-methyladenine (3-MA) reversed the effects of BRD4 knockdown on ESCC cell migration and blocked JQ1-induced cell migration. 3-MA also downregulated the expression of vimentin and upregulation E-cadherin.
CONCLUSION BRD4 inhibition enhances cell migration by inducing EMT and autophagy in ESCC cells via the AMPK-modified pathway. Thus, the facilitating role on ESCC cell migration should be considered for BRD4 inhibitor clinical application to ESCC patients.
Collapse
Affiliation(s)
- Wen-Qian Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Esophageal Cancer Institute, Xinxiang Medical University, Weihui 453100, Henan Province, China
- Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Rui Liang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Esophageal Cancer Institute, Xinxiang Medical University, Weihui 453100, Henan Province, China
- Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Man-Qi Gao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Esophageal Cancer Institute, Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Yu-Zhen Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Esophageal Cancer Institute, Xinxiang Medical University, Weihui 453100, Henan Province, China
- Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Bo Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Bao-Sheng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Esophageal Cancer Institute, Xinxiang Medical University, Weihui 453100, Henan Province, China
| |
Collapse
|
130
|
Do TC, Lau JW, Sun C, Liu S, Kha KT, Lim ST, Oon YY, Kwan YP, Ma JJ, Mu Y, Liu X, Carney TJ, Wang X, Xing B. Hypoxia deactivates epigenetic feedbacks via enzyme-derived clicking proteolysis-targeting chimeras. SCIENCE ADVANCES 2022; 8:eabq2216. [PMID: 36516252 PMCID: PMC9750146 DOI: 10.1126/sciadv.abq2216] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 11/12/2022] [Indexed: 06/17/2023]
Abstract
Epigenetic mediation through bromodomain and extraterminal (BET) proteins have progressively translated protein imbalance into effective cancer treatment. Perturbation of druggable BET proteins through proteolysis-targeting chimeras (PROTACs) has recently contributed to the discovery of effective therapeutics. Unfortunately, precise and microenvironment-activatable BET protein degradation content with promising tumor selectivity and pharmacological suitability remains elusive. Here, we present an enzyme-derived clicking PROTACs (ENCTACs) capable of orthogonally cross-linking two disparate small-molecule warhead ligands that recognize BET bromodomain-containing protein 4 (BRD4) protein and E3 ligase within tumors only upon hypoxia-induced activation of nitroreductase enzyme. This localized formation of heterobifunctional degraders promotes specific down-regulation of BRD4, which subsequently alters expression of epigenetic targets and, therefore, allows precise modulation of hypoxic signaling in live cells, zebrafish, and living mice with solid tumors. Our activation-feedback system demonstrates compelling superiorities and may enable the PROTAC technology with more flexible practicality and druggable potency for precision medicine in the near future.
Collapse
Affiliation(s)
- Thang Cong Do
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jun Wei Lau
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Caixia Sun
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Songhan Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Khoa Tuan Kha
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Seok Ting Lim
- Duke-NUS Medical School, Singapore 169857, Singapore
- Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Yu Yang Oon
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yuet Ping Kwan
- Duke-NUS Medical School, Singapore 169857, Singapore
- Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Jia Jia Ma
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Thomas James Carney
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Xiaomeng Wang
- Duke-NUS Medical School, Singapore 169857, Singapore
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
131
|
Liu L, Lin B, Yin S, Ball LE, Delaney JR, Long DT, Gan W. Arginine methylation of BRD4 by PRMT2/4 governs transcription and DNA repair. SCIENCE ADVANCES 2022; 8:eadd8928. [PMID: 36475791 PMCID: PMC9728970 DOI: 10.1126/sciadv.add8928] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
BRD4 functions as an epigenetic reader and plays a crucial role in regulating transcription and genome stability. Dysregulation of BRD4 is frequently observed in various human cancers. However, the molecular details of BRD4 regulation remain largely unknown. Here, we report that PRMT2- and PRMT4-mediated arginine methylation is pivotal for BRD4 functions on transcription, DNA repair, and tumor growth. Specifically, PRMT2/4 interacts with and methylates BRD4 at R179, R181, and R183. This arginine methylation selectively controls a transcriptional program by promoting BRD4 recruitment to acetylated histones/chromatin. Moreover, BRD4 arginine methylation is induced by DNA damage and thereby promotes its binding to chromatin for DNA repair. Deficiency in BRD4 arginine methylation significantly suppresses tumor growth and sensitizes cells to BET inhibitors and DNA damaging agents. Therefore, our findings reveal an arginine methylation-dependent regulatory mechanism of BRD4 and highlight targeting PRMT2/4 for better antitumor effect of BET inhibitors and DNA damaging agents.
Collapse
Affiliation(s)
- Liu Liu
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Baicheng Lin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Shasha Yin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lauren E. Ball
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Joe R. Delaney
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - David T. Long
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Wenjian Gan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
132
|
Bromodomain Protein BRD4-Mediated Mutant p53 Transcription Promotes TNBC Progression. Int J Mol Sci 2022; 23:ijms232315163. [PMID: 36499487 PMCID: PMC9738555 DOI: 10.3390/ijms232315163] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
TP53 is the most common mutated gene in human cancer. Mutant p53 protein loses its tumor-suppressor properties and gains oncogenic activity. Mutant p53 is a therapeutic target in a broad range of cancer types. However, how mutant p53 is epigenetically regulated during tumor progression remains elusive. In this study, we found that the upregulation of mutant p53 is mediated by bromodomain protein BRD4 in triple-negative breast cancer (TNBC) cells. Inhibition of BRD4 with its inhibitor JQ1 or knockdown of BRD4 suppressed the transcription of mutant p53, which led to the re-expression of p21, the inhibition of S-phase entry, and colony formation in TNBC cells. BRD4 also positively regulated the transcription of wild-type p53, whereas JQ1 treatment and knockdown of BRD4 decreased the expression of p21 in MCF-7 cells. Knockdown of BRD4 resulted in attenuation of TNBC tumor growth in vivo. Taken together, our results uncover a novel regulatory mechanism of mutant p53 via BRD4, and suggest that the bromodomain inhibitor suppresses tumorigenesis through targeting mutant p53 in TNBC.
Collapse
|
133
|
Guo AH, Kumar S, Lombard DB. Epigenetic mechanisms of cadmium-induced nephrotoxicity. CURRENT OPINION IN TOXICOLOGY 2022; 32:100372. [PMID: 37193357 PMCID: PMC10168606 DOI: 10.1016/j.cotox.2022.100372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cadmium (Cd) is a widespread toxic pollutant that affects millions of individuals worldwide. Cd exposure in humans occurs primarily through consumption of contaminated food and water, cigarette smoking, and industrial applications. The kidney proximal tubular (PT) epithelial cells are the primary target of Cd toxicity. Cd-induced injury to PT cells impedes tubular reabsorption. Despite the many long-term sequelae of Cd exposure, molecular mechanisms of Cd toxicity are poorly understood, and no specific therapies exist to mitigate the effects of Cd exposure. In this review, we summarize recent work linking Cd-mediated damage to epigenetic perturbations - DNA methylation, and levels of histone modifications, including methylation and acetylation. New insights into the links between Cd intoxication and epigenetic damage will contribute to an improved understanding of Cd's pleiotropic impacts on cells, and perhaps lead to new, mechanism-based treatments for this condition.
Collapse
Affiliation(s)
- Angela H Guo
- Cell Signaling Technology, Danvers, MA 01923, USA
| | - Surinder Kumar
- Sylvester Comprehensive Cancer Center, Department of Pathology & Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - David B Lombard
- Sylvester Comprehensive Cancer Center, Department of Pathology & Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
134
|
Ma L, Li G, Yang T, Zhang L, Wang X, Xu X, Ni H. An inhibitor of BRD4, GNE987, inhibits the growth of glioblastoma cells by targeting C-Myc and S100A16. Cancer Chemother Pharmacol 2022; 90:431-444. [PMID: 36224471 PMCID: PMC9637061 DOI: 10.1007/s00280-022-04483-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/05/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE Among children, glioblastomas (GBMs) are a relatively common type of brain tumor. BRD4 expression was elevated in GBM and negatively correlated with the prognosis of glioma. We investigated the anti-GBM effects of a novel BRD4 inhibitor GNE987. METHODS We evaluated the anti-tumor effect of GNE987 in vitro and in vivo by Western blot, CCK8, flow cytometry detection, clone formation, the size of xenografts, and Ki67 immunohistochemical staining, and combined ChIP-seq with RNA-seq techniques to find its anti-tumor mechanism. RESULTS In vitro experiments showed that GNE987 significantly degraded BRD4, inhibited the proliferation of GBM cells, blocked the cell cycle, and induced apoptosis. Similarly, in vivo experiments, GNE987 also inhibited GBM growth as seen from the size of xenografts and Ki67 immunohistochemical staining. Based on Western blotting, GNE987 can significantly reduce the protein level of C-Myc; meanwhile, we combined ChIP-seq with RNA-seq techniques to confirm that GNE987 downregulated the transcription of S100A16 by disturbing H3K27Ac. Furthermore, we validated that S100A16 is indispensable in GBM growth. CONCLUSION GNE987 may be effective against GBM that targets C-Myc expression and influences S100A16 transcription through downregulation of BRD4.
Collapse
Affiliation(s)
- Liya Ma
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
| | - Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
- Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Tianquan Yang
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
| | - Li Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
| | - Xinxin Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
| | - Xiaowen Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
| | - Hong Ni
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China.
| |
Collapse
|
135
|
Elrakaybi A, Ruess DA, Lübbert M, Quante M, Becker H. Epigenetics in Pancreatic Ductal Adenocarcinoma: Impact on Biology and Utilization in Diagnostics and Treatment. Cancers (Basel) 2022; 14:cancers14235926. [PMID: 36497404 PMCID: PMC9738647 DOI: 10.3390/cancers14235926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies with high potential of metastases and therapeutic resistance. Although genetic mutations drive PDAC initiation, they alone do not explain its aggressive nature. Epigenetic mechanisms, including aberrant DNA methylation and histone modifications, significantly contribute to inter- and intratumoral heterogeneity, disease progression and metastasis. Thus, increased understanding of the epigenetic landscape in PDAC could offer new potential biomarkers and tailored therapeutic approaches. In this review, we shed light on the role of epigenetic modifications in PDAC biology and on the potential clinical applications of epigenetic biomarkers in liquid biopsy. In addition, we provide an overview of clinical trials assessing epigenetically targeted treatments alone or in combination with other anticancer therapies to improve outcomes of patients with PDAC.
Collapse
Affiliation(s)
- Asmaa Elrakaybi
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Clinical Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Dietrich A. Ruess
- Department of General and Visceral Surgery, Center of Surgery, Medical Center University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany
| | - Michael Lübbert
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany
| | - Michael Quante
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany
- Department of Gastroenterology and Hepatology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Heiko Becker
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany
- Correspondence: ; Tel.: +49-761-270-36000
| |
Collapse
|
136
|
Multiprotein GLI Transcriptional Complexes as Therapeutic Targets in Cancer. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121967. [PMID: 36556332 PMCID: PMC9786339 DOI: 10.3390/life12121967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The Hedgehog signaling pathway functions in both embryonic development and adult tissue homeostasis. Importantly, its aberrant activation is also implicated in the progression of multiple types of cancer, including basal cell carcinoma and medulloblastoma. GLI transcription factors function as the ultimate effectors of the Hedgehog signaling pathway. Their activity is regulated by this signaling cascade via their mRNA expression, protein stability, subcellular localization, and ultimately their transcriptional activity. Further, GLI proteins are also regulated by a variety of non-canonical mechanisms in addition to the canonical Hedgehog pathway. Recently, with an increased understanding of epigenetic gene regulation, novel transcriptional regulators have been identified that interact with GLI proteins in multi-protein complexes to regulate GLI transcriptional activity. Such complexes have added another layer of complexity to the regulation of GLI proteins. Here, we summarize recent work on the regulation of GLI transcriptional activity by these novel protein complexes and describe their relevance to cancer, as such GLI regulators represent alternative and innovative druggable targets in GLI-dependent cancers.
Collapse
|
137
|
Orekhova A, De Angelis M, Cacciotti A, Reverberi M, Rotili D, Giorgi A, Protto V, Bonincontro G, Fiorentino F, Zgoda V, Mai A, Palamara AT, Simonetti G. Modulation of Virulence-Associated Traits in Aspergillus fumigatus by BET Inhibitor JQ1. Microorganisms 2022; 10:2292. [PMID: 36422362 PMCID: PMC9698166 DOI: 10.3390/microorganisms10112292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 08/18/2024] Open
Abstract
Aspergillus fumigatus is a disease-causing, opportunistic fungus that can establish infection due to its capacity to respond to a wide range of environmental conditions. Secreted proteins and metabolites, which play a critical role in fungal-host interactions and pathogenesis, are modulated by epigenetic players, such as bromodomain and extraterminal domain (BET) proteins. In this study, we evaluated the in vitro and in vivo capability of the BET inhibitor JQ1 to modulate the extracellular proteins and virulence of A. fumigatus. The abundance of 25 of the 76 extracellular proteins identified through LC-MS/MS proteomic analysis changed following JQ1 treatment. Among them, a ribonuclease, a chitinase, and a superoxide dismutase were dramatically downregulated. Moreover, the proteomic analysis of A. fumigatus intracellular proteins indicated that Abr2, an intracellular laccase involved in the last step of melanin synthesis, was absent in the JQ1-treated group. To investigate at which level this downregulation occurred and considering the ability of JQ1 to modulate gene expression we checked the level of ABR2, Chitinase, and Superoxide dismutase mRNA expression by qRT-PCR. Finally, the capacity of JQ1 to reduce the virulence of A. fumigatus has been proved using Galleria mellonella larvae, which are an in vivo model to evaluate fungal virulence. Overall, the promising activity exhibited by JQ1 suggests that A. fumigatus is sensitive to BET inhibition and BET proteins may be a viable target for developing antifungal agents.
Collapse
Affiliation(s)
- Anastasia Orekhova
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Marta De Angelis
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Andrea Cacciotti
- Department of Environmental Biology, “Sapienza” University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Massimo Reverberi
- Department of Environmental Biology, “Sapienza” University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Alessandra Giorgi
- Department of Biochemical Sciences, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Virginia Protto
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Graziana Bonincontro
- Department of Environmental Biology, “Sapienza” University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Fiorentino
- Department of Drug Chemistry and Technologies, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Moscow, 10 Pogodinskaya Street, Moscow 119121, Russia
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giovanna Simonetti
- Department of Environmental Biology, “Sapienza” University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
138
|
Xie D, Wang Q, Wu G. Research progress in inducing immunogenic cell death of tumor cells. Front Immunol 2022; 13:1017400. [PMID: 36466838 PMCID: PMC9712455 DOI: 10.3389/fimmu.2022.1017400] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/02/2022] [Indexed: 08/29/2023] Open
Abstract
Immunogenic cell death (ICD) is a regulated cell death (RCD) pathway. In response to physical and chemical signals, tumor cells activate specific signaling pathways that stimulate stress responses in the endoplasmic reticulum (ER) and expose damage-associated molecular patterns (DAMPs), which promote antitumor immune responses. As a result, the tumor microenvironment is altered, and many tumor cells are killed. The ICD response in tumor cells requires inducers. These inducers can be from different sources and contribute to the development of the ICD either indirectly or directly. The combination of ICD inducers with other tumor treatments further enhances the immune response in tumor cells, and more tumor cells are killed; however, it also produces side effects of varying severity. New induction methods based on nanotechnology improve the antitumor ability and significantly reduces side effects because they can target tumor cells precisely. In this review, we introduce the characteristics and mechanisms of ICD responses in tumor cells and the DAMPs associated with ICD responses, summarize the current methods of inducing ICD response in tumor cells in five distinct categories: chemical sources, physical sources, pathogenic sources, combination therapies, and innovative therapies. At the same time, we introduce the limitations of current ICD inducers and make a summary of the use of ICD responses in clinical trials. Finally, we provide an outlook on the future of ICD inducer development and provide some constructive suggestions.
Collapse
Affiliation(s)
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
139
|
Anichini A, Molla A, Nicolini G, Perotti VE, Sgambelluri F, Covre A, Fazio C, Lofiego MF, Di Giacomo AM, Coral S, Manca A, Sini MC, Pisano M, Noviello T, Caruso F, Brich S, Pruneri G, Maurichi A, Santinami M, Ceccarelli M, Palmieri G, Maio M, Mortarini R, On behalf of the EPigenetic Immune-oncology Consortium AIRC (EPICA) investigators. Landscape of immune-related signatures induced by targeting of different epigenetic regulators in melanoma: implications for immunotherapy. J Exp Clin Cancer Res 2022; 41:325. [PMID: 36397155 PMCID: PMC9670381 DOI: 10.1186/s13046-022-02529-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background Improvement of efficacy of immune checkpoint blockade (ICB) remains a major clinical goal. Association of ICB with immunomodulatory epigenetic drugs is an option. However, epigenetic inhibitors show a heterogeneous landscape of activities. Analysis of transcriptional programs induced in neoplastic cells by distinct classes of epigenetic drugs may foster identification of the most promising agents. Methods Melanoma cell lines, characterized for mutational and differentiation profile, were treated with inhibitors of DNA methyltransferases (guadecitabine), histone deacetylases (givinostat), BET proteins (JQ1 and OTX-015), and enhancer of zeste homolog 2 (GSK126). Modulatory effects of epigenetic drugs were evaluated at the gene and protein levels. Master molecules explaining changes in gene expression were identified by Upstream Regulator (UR) analysis. Gene set enrichment and IPA were used respectively to test modulation of guadecitabine-specific gene and UR signatures in baseline and on-treatment tumor biopsies from melanoma patients in the Phase Ib NIBIT-M4 Guadecitabine + Ipilimumab Trial. Prognostic significance of drug-specific immune-related genes was tested with Timer 2.0 in TCGA tumor datasets. Results Epigenetic drugs induced different profiles of gene expression in melanoma cell lines. Immune-related genes were frequently upregulated by guadecitabine, irrespective of the mutational and differentiation profiles of the melanoma cell lines, to a lesser extent by givinostat, but mostly downregulated by JQ1 and OTX-015. GSK126 was the least active drug. Quantitative western blot analysis confirmed drug-specific modulatory profiles. Most of the guadecitabine-specific signature genes were upregulated in on-treatment NIBIT-M4 tumor biopsies, but not in on-treatment lesions of patients treated only with ipilimumab. A guadecitabine-specific UR signature, containing activated molecules of the TLR, NF-kB, and IFN innate immunity pathways, was induced in drug-treated melanoma, mesothelioma and hepatocarcinoma cell lines and in a human melanoma xenograft model. Activation of guadecitabine-specific UR signature molecules in on-treatment tumor biopsies discriminated responding from non-responding NIBIT-M4 patients. Sixty-five % of the immune-related genes upregulated by guadecitabine were prognostically significant and conferred a reduced risk in the TCGA cutaneous melanoma dataset. Conclusions The DNMT inhibitor guadecitabine emerged as the most promising immunomodulatory agent among those tested, supporting the rationale for usage of this class of epigenetic drugs in combinatorial immunotherapy approaches. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02529-5.
Collapse
|
140
|
Humphreys PG, Anderson NA, Bamborough P, Baxter A, Chung CW, Cookson R, Craggs PD, Dalton T, Fournier JCL, Gordon LJ, Gray HF, Gray MW, Gregory R, Hirst DJ, Jamieson C, Jones KL, Kessedjian H, Lugo D, McGonagle G, Patel VK, Patten C, Poole DL, Prinjha RK, Ramirez-Molina C, Rioja I, Seal G, Stafford KAJ, Shah RR, Tape D, Theodoulou NH, Tomlinson L, Ukuser S, Wall ID, Wellaway N, White G. Identification and Optimization of a Ligand-Efficient Benzoazepinone Bromodomain and Extra Terminal (BET) Family Acetyl-Lysine Mimetic into the Oral Candidate Quality Molecule I-BET432. J Med Chem 2022; 65:15174-15207. [DOI: 10.1021/acs.jmedchem.2c01102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Niall A. Anderson
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paul Bamborough
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Andrew Baxter
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Chun-wa Chung
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Rosa Cookson
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Peter D. Craggs
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Toryn Dalton
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Laurie J. Gordon
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Heather F. Gray
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Matthew W. Gray
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Richard Gregory
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - David J. Hirst
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Craig Jamieson
- WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | | | | | - David Lugo
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Grant McGonagle
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | | | - Darren L. Poole
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Rab K. Prinjha
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Inmaculada Rioja
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Gail Seal
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Rishi R. Shah
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Daniel Tape
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Laura Tomlinson
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Sabri Ukuser
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Ian D. Wall
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Natalie Wellaway
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Gemma White
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| |
Collapse
|
141
|
Bromodomain-containing protein 4 (BRD4) as an epigenetic regulator of fatty acid metabolism genes and ferroptosis. Cell Death Dis 2022; 13:912. [PMID: 36309482 PMCID: PMC9617950 DOI: 10.1038/s41419-022-05344-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Reprogramming lipid metabolism is considered a fundamental step in tumourigenesis that influences ferroptosis. However, molecular mechanisms between lipid metabolism and ferroptosis remain largely unknown. Results from the drug screening of 464 inhibitors (for 164 targets) applied to ferroptosis cells indicated that 4 inhibitors targeted bromodomain-containing protein 4 (BRD4) significantly inhibiting erastin-induced ferroptosis. Functional studies proved that the loss of BRD4 weakened oxidative catabolism in mitochondria, protecting cells from the excessive accumulation of lipid peroxides. Mechanism research revealed that the transcriptional levels of fatty acid metabolism-related genes (HADH, ACSL1 and ACAA2) participating in the β-oxidation of fatty acids (FAO) and polyunsaturated fatty acids (PUFAs) synthesis depended on the activity of super-enhancers (SEs) formed by BRD4 and HMGB2 in their promoter regions. Conclusively, this study demonstrated that BRD4 was indispensable for fatty acid metabolism based on its epigenetic regulatory mechanisms and affecting erastin-induced ferroptosis, providing a new theoretical reference for understanding the relationship between lipid metabolism and ferroptosis deeply.
Collapse
|
142
|
Zhong X, Chen Z, Wang Y, Mao M, Deng Y, Shi M, Xu Y, Chen L, Cao W. JQ1 attenuates neuroinflammation by inhibiting the inflammasome-dependent canonical pyroptosis pathway in SAE. Brain Res Bull 2022; 189:174-183. [PMID: 36100190 DOI: 10.1016/j.brainresbull.2022.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/19/2022]
Abstract
Sepsis-associated encephalopathy (SAE) manifests clinically in hyperneuroinflammation. Pyroptosis, which can induce an inflammatory cascade response, has been considered to be a causative factor of SAE. Evidence has shown that the bromo- and extraterminal (BET) proteins (including BRD2, BRD3, BRD4 and BRDT) inhibitor JQ1 can inhibit inflammation and suppress pyroptosis in various diseases. Therefore, we examined the effect of JQ1 on inflammasome-induced pyroptosis in the hippocampus in a mouse model of sepsis induced by lipopolysaccharide (LPS) injection. The results showed that JQ1 treatment alleviated sepsis-related symptoms, protected the blood-brain barrier (BBB), as indicated by upregulated expression of the tight junction proteins occludin and ZO-1, and remarkably rescued neuronal damage in SAE mice. Mechanistically, we demonstrated that JQ1 intervention inhibited the expression of BRD proteins and decreased the expression of inflammasomes by blocking phospho-nuclear factor kappa B (p-NF-κB) signalling, attenuating the canonical pyroptosis (mediated by cleaved-Caspase1/11) pathway and the release of proinflammatory factors in the hippocampus of septic mice. Interestingly, we also found that JQ1 selectively suppressed the activation of hippocampal microglia in SAE mice. Thus, JQ1 protected the hippocampal BBB and neuronal damage through the attenuation of neuroinflammation by inhibiting the inflammasome-dependent canonical pyroptosis pathway induced by LPS injection in mice, and JQ1 may be a promising target for the prevention of SAE.
Collapse
Affiliation(s)
- Xiaolin Zhong
- The First Affiliated Hospital, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Zuyao Chen
- The First Affiliated Hospital, Department of Otorhinolaryngology, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Yajuan Wang
- The First Affiliated Hospital, Department of Laboratory Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Mingli Mao
- The First Affiliated Hospital, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Yingcheng Deng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Mengmeng Shi
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Yang Xu
- Institute of Neuroscience, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Ling Chen
- The First Affiliated Hospital, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.
| | - Wenyu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.
| |
Collapse
|
143
|
Pharmacophore-Model-Based Virtual-Screening Approaches Identified Novel Natural Molecular Candidates for Treating Human Neuroblastoma. Curr Issues Mol Biol 2022; 44:4838-4858. [PMID: 36286044 PMCID: PMC9600652 DOI: 10.3390/cimb44100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
The mortality of cancer patients with neuroblastoma is increasing due to the limited availability of specific treatment options. Few drug candidates for combating neuroblastoma have been developed, and identifying novel therapeutic candidates against the disease is an urgent issue. It has been found that muc-N protein is amplified in one-third of human neuroblastomas and expressed as an attractive drug target against the disease. The myc-N protein interferes with the bromodomain and extraterminal (BET) family proteins. Pharmacologically inhibition of the protein potently depletes MYCN in neuroblastoma cells. BET inhibitors target MYCN transcription and show therapeutic efficacy against neuroblastoma. Therefore, the study aimed to identify potential inhibitors against the BET family protein, specifically Brd4 (brodamine-containing protein 4), to hinder the activity of neuroblastoma cells. To identify effective molecular candidates against the disease, a structure-based pharmacophore model was created for the binding site of the Brd4 protein. The pharmacophore model generated from the protein Brd4 was validated to screen potential natural active compounds. The compounds identified through the pharmacophore-model-based virtual-screening process were further screened through molecular docking, ADME (absorption, distribution, metabolism, and excretion), toxicity, and molecular dynamics (MD) simulation approach. The pharmacophore-model-based screening process initially identified 136 compounds, further evaluated based on molecular docking, ADME analysis, and toxicity approaches, identifying four compounds with good binding affinity and lower side effects. The stability of the selected compounds was also confirmed by dynamic simulation and molecular mechanics with generalized Born and surface area solvation (MM-GBSA) methods. Finally, the study identified four natural lead compounds, ZINC2509501, ZINC2566088, ZINC1615112, and ZINC4104882, that will potentially inhibit the activity of the desired protein and help to fight against neuroblastoma and related diseases. However, further evaluations through in vitro and in vivo assays are suggested to identify their efficacy against the desired protein and disease.
Collapse
|
144
|
Wernersson S, Bobby R, Flavell L, Milbradt AG, Holdgate GA, Embrey KJ, Akke M. Bromodomain Interactions with Acetylated Histone 4 Peptides in the BRD4 Tandem Domain: Effects on Domain Dynamics and Internal Flexibility. Biochemistry 2022; 61:2303-2318. [PMID: 36215732 PMCID: PMC9631989 DOI: 10.1021/acs.biochem.2c00226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The bromodomain and extra-terminal (BET) protein BRD4
regulates
gene expression via recruitment of transcriptional regulatory complexes
to acetylated chromatin. Like other BET proteins, BRD4 contains two
bromodomains, BD1 and BD2, that can interact cooperatively with target
proteins and designed ligands, with important implications for drug
discovery. Here, we used nuclear magnetic resonance (NMR) spectroscopy
to study the dynamics and interactions of the isolated bromodomains,
as well as the tandem construct including both domains and the intervening
linker, and investigated the effects of binding a tetra-acetylated
peptide corresponding to the tail of histone 4. The peptide affinity
is lower for both domains in the tandem construct than for the isolated
domains. Using 15N spin relaxation, we determined the global
rotational correlation times and residue-specific order parameters
for BD1 and BD2. Isolated BD1 is monomeric in the apo state but apparently
dimerizes upon binding the tetra-acetylated peptide. Isolated BD2
partially dimerizes in both the apo and peptide-bound states. The
backbone order parameters reveal marked differences between BD1 and
BD2, primarily in the acetyl-lysine binding site where the ZA loop
is more flexible in BD2. Peptide binding reduces the order parameters
of the ZA loop in BD1 and the ZA and BC loops in BD2. The AB loop,
located distally from the binding site, shows variable dynamics that
reflect the different dimerization propensities of the domains. These
results provide a basis for understanding target recognition by BRD4.
Collapse
Affiliation(s)
- Sven Wernersson
- Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, SE-221 00Lund, Sweden
| | - Romel Bobby
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, CambridgeCB4 0WG, U.K
| | - Liz Flavell
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge Science Park, CambridgeCB4 0WG, U.K
| | - Alexander G Milbradt
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, CambridgeCB4 0WG, U.K
| | - Geoffrey A Holdgate
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, CambridgeCB4 0WG, U.K
| | - Kevin J Embrey
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, CambridgeCB4 0WG, U.K
| | - Mikael Akke
- Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, SE-221 00Lund, Sweden
| |
Collapse
|
145
|
Zhang J, Li Y, Fan TY, Liu D, Zou WD, Li H, Li YK. Identification of bromodomain-containing proteins prognostic value and expression significance based on a genomic landscape analysis of ovarian serous cystadenocarcinoma. Front Oncol 2022; 12:1021558. [PMID: 36276071 PMCID: PMC9579433 DOI: 10.3389/fonc.2022.1021558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundOvarian serous cystadenocarcinoma (OSC), a common gynecologic tumor, is characterized by high mortality worldwide. Bromodomain (BRD)-containing proteins are a series of evolutionarily conserved proteins that bind to acetylated Lys residues of histones to regulate the transcription of multiple genes. The ectopic expression of BRDs is often observed in multiple cancer types, but the role of BRDs in OSC is still unclear.MethodsWe performed the differential expression, GO enrichment, GSEA, immune infiltration, risk model, subtype classification, stemness feature, DNA alteration, and epigenetic modification analysis for these BRDs based on multiple public databases.ResultsMost BRDs were dysregulated in OSC tissues compared to normal ovary tissues. These BRDs were positively correlated with each other in OSC patients. Gene alteration and epigenetic modification were significant for the dysregulation of BRDs in OSC patients. GO enrichment suggested that BRDs played key roles in histone acetylation, viral carcinogenesis, and transcription coactivator activity. Two molecular subtypes were classified by BRDs for OSC, which were significantly correlated with stemness features, m6A methylation, ferroptosis, drug sensitivity, and immune infiltration. The risk model constructed by LASSO regression with BRDs performed moderately well in prognostic predictions for OSC patients. Moreover, BRPF1 plays a significant role in these BRDs for the development and progression of OSC patients.ConclusionBRDs are potential targets and biomarkers for OSC patients, especially BRPF1.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Yan Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Ting-yu Fan
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
| | - Dan Liu
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Wen-da Zou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Hui Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
- *Correspondence: Hui Li, ; Yu-kun Li,
| | - Yu-kun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
- *Correspondence: Hui Li, ; Yu-kun Li,
| |
Collapse
|
146
|
Zhuang JJ, Liu Q, Wu DL, Tie L. Current strategies and progress for targeting the "undruggable" transcription factors. Acta Pharmacol Sin 2022; 43:2474-2481. [PMID: 35132191 PMCID: PMC9525275 DOI: 10.1038/s41401-021-00852-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/23/2021] [Indexed: 11/08/2022]
Abstract
Transcription factors (TFs) specifically bind to DNA, recruit cofactor proteins and modulate target gene expression, rendering them essential roles in the regulation of numerous biological processes. Meanwhile, mutated or dysregulated TFs are involved in a variety of human diseases. As multiple signaling pathways ultimately converge at TFs, targeting these TFs directly may prove to be more specific and cause fewer side effects, than targeting the upfront conventional targets in these pathways. All these features together endue TFs with great potential and high selectivity as therapeutic drug targets. However, TFs have been historically considered "undruggable", mainly due to their lack of structural information, especially about the appropriate ligand-binding sites and protein-protein interactions, leading to relatively limited choices in the TF-targeting drug design. In this review, we summarize the recent progress of TF-targeting drugs and highlight certain strategies used for targeting TFs, with a number of representative drugs that have been approved or in the clinical trials as examples. Various approaches in targeting TFs directly or indirectly have been developed. Common direct strategies include aiming at defined binding pockets, proteolysis-targeting chimaera (PROTAC), and mutant protein reactivation. In contrast, the indirect ones comprise inhibition of protein-protein interactions between TF and other proteins, blockade of TF expression, targeting the post-translational modifications, and targeting the TF-DNA interactions. With more comprehensive structural information about TFs revealed by the powerful cryo-electron microscopy technology and predicted by machine-learning algorithms, plus more efficient compound screening platforms and a deeper understanding of TF-disease relationships, the development of TF-targeting drugs will certainly be accelerated in the near future.
Collapse
Affiliation(s)
- Jing-Jing Zhuang
- Marine College, Shandong University, Weihai, 264209, China
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Qian Liu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Da-Lei Wu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China.
| |
Collapse
|
147
|
Zhang MF, Luo XY, Zhang C, Wang C, Wu XS, Xiang QP, Xu Y, Zhang Y. Design, synthesis and pharmacological characterization of N-(3-ethylbenzo[d]isoxazol-5-yl) sulfonamide derivatives as BRD4 inhibitors against acute myeloid leukemia. Acta Pharmacol Sin 2022; 43:2735-2748. [PMID: 35264812 PMCID: PMC8905034 DOI: 10.1038/s41401-022-00881-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/25/2022] [Indexed: 11/23/2022]
Abstract
BRD4 plays a key role in the regulation of gene transcription and has been identified as an attractive target for cancer treatment. In this study, we designed 26 new compounds by modifying 3-ethyl-benzo[d]isoxazole core with sulfonamides. Most compounds exhibited potent BRD4 binding activities with ΔTm values exceeding 6 °C. Two crystal structures of 11h and 11r in complex with BRD4(1) were obtained to characterize the binding patterns. Compounds 11h and 11r were effective for BRD4(1) binding and showed remarkable anti-proliferative activity against MV4-11 cells with IC50 values of 0.78 and 0.87 μM. Furthermore, 11r (0.5-10 μM) concentration-dependently inhibited the expression levels of oncogenes including c-Myc and CDK6 in MV4-11 cells. Moreover, 11r (0.5-10 μM) concentration-dependently blocked cell cycle in MV4-11 cells at G0/G1 phase and induced cell apoptosis. Compound 11r may serve as a new lead compound for further drug development.
Collapse
Affiliation(s)
- Mao-Feng Zhang
- College of Pharmacy, Taizhou Polytechnic College, Taizhou, 225300, China.
| | - Xiao-Yu Luo
- Guangzhou Younan Technology Co., Ltd, Guangzhou, 510663, China
| | - Cheng Zhang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Chao Wang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi-Shan Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Qiu-Ping Xiang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yong Xu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China.
| | - Yan Zhang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
148
|
Zhang GM, Huang SS, Ye LX, Liu XL, Shi WH, Ren ZL, Zhou RH, Zhang JJ, Pan JX, Liu SW, Yu L, Li YL. Reciprocal positive regulation between BRD4 and YAP in GNAQ-mutant uveal melanoma cells confers sensitivity to BET inhibitors. Pharmacol Res 2022; 184:106464. [PMID: 36162600 DOI: 10.1016/j.phrs.2022.106464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
Uveal melanoma (UM) is the most common intraocular cancer in adults. UMs are usually initiated by a mutation in GNAQ or GNA11 (encoding Gq or G11, respectively), unlike cutaneous melanomas (CMs), which usually carry a BRAF or NRAS mutation. Currently, there are no clinically effective targeted therapies for UM carrying Gq/11 mutations. Here, we identified a causal link between Gq activating mutations and hypersensitivity to bromodomain and extra-terminal (BET) inhibitors. BET inhibitors transcriptionally repress YAP via BRD4 regardless of Gq mutation status, independently of Hippo core components LATS1/2. In contrast, YAP/TAZ downregulation reduces BRD4 transcription exclusively in Gq-mutant cells and LATS1/2 double knockout cells, both of which are featured by constitutively active YAP/TAZ. The transcriptional interdependency between BRD4 and YAP identified in Gq-mutated cells is responsible for the preferential inhibitory effect of BET inhibitors on the growth and dissemination of Gq-mutated UM cells compared to BRAF-mutated CM cells in both culture cells and animal models. Our findings suggest BRD4 as a viable therapeutic target for Gq-driven UMs that are addicted to unrestrained YAP function.
Collapse
Affiliation(s)
- Gui-Ming Zhang
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Si-Si Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lin-Xuan Ye
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Lian Liu
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wen-Hui Shi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhong-Lu Ren
- College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Run-Hua Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jia-Jie Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing-Xuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Shu-Wen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Le Yu
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Yi-Lei Li
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
149
|
Shi X, Wang Y, Zhang L, Zhao W, Dai X, Yang YG, Zhang X. Targeting bromodomain and extra-terminal proteins to inhibit neuroblastoma tumorigenesis through regulating MYCN. Front Cell Dev Biol 2022; 10:1021820. [PMID: 36187481 PMCID: PMC9523081 DOI: 10.3389/fcell.2022.1021820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Bromodomain and extra-terminal domain (BET) family proteins play important roles in regulating the expression of multiple proto-oncogenes by recognizing acetylation of histones and non-histone proteins including transcription factors, which subsequently promote tumor cell proliferation, survival, metastasis and immune escape. Therefore, BET family proteins are considered attractive therapeutic targets in various cancers. Currently, blocking of the BET proteins is a widely used therapeutic strategy for MYCN amplified high-risk neuroblastoma. Here, we summarized and reviewed the recent research progresses for the critical function of BET proteins, as an epigenetic reader, on tumorigenesis and the therapeutic potential of the BET/BRD4 inhibitors on MYCN amplified neuroblastoma. We also discussed the combined therapeutic strategies for BET inhibitor-resistant neuroblastoma.
Collapse
|
150
|
Yang J, Song C, Zhan X. The role of protein acetylation in carcinogenesis and targeted drug discovery. Front Endocrinol (Lausanne) 2022; 13:972312. [PMID: 36171897 PMCID: PMC9510633 DOI: 10.3389/fendo.2022.972312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/23/2022] [Indexed: 12/01/2022] Open
Abstract
Protein acetylation is a reversible post-translational modification, and is involved in many biological processes in cells, such as transcriptional regulation, DNA damage repair, and energy metabolism, which is an important molecular event and is associated with a wide range of diseases such as cancers. Protein acetylation is dynamically regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs) in homeostasis. The abnormal acetylation level might lead to the occurrence and deterioration of a cancer, and is closely related to various pathophysiological characteristics of a cancer, such as malignant phenotypes, and promotes cancer cells to adapt to tumor microenvironment. Therapeutic modalities targeting protein acetylation are a potential therapeutic strategy. This article discussed the roles of protein acetylation in tumor pathology and therapeutic drugs targeting protein acetylation, which offers the contributions of protein acetylation in clarification of carcinogenesis, and discovery of therapeutic drugs for cancers, and lays the foundation for precision medicine in oncology.
Collapse
Affiliation(s)
- Jingru Yang
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Cong Song
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| |
Collapse
|