101
|
Macchia PE, Nettore IC, Franchini F, Santana-Viera L, Ungaro P. Epigenetic regulation of adipogenesis by histone-modifying enzymes. Epigenomics 2021; 13:235-251. [PMID: 33502245 DOI: 10.2217/epi-2020-0304] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many studies investigating the transcriptional control of adipogenesis have been published so far; recently the research is focusing on the role of epigenetic mechanisms in regulating the process of adipocyte development. Histone-modifying enzymes and the histone tails post-transcriptional modifications catalyzed by them, are fundamentally involved in the epigenetic regulation of adipogenesis. In our review, we will discuss recent advances in epigenomic regulation of adipogenesis with a focus on histone-modifying enzymes implicated in the various phases of adipocytes differentiation process from mesenchymal stem cells to mature adipocytes. Understanding adipogenesis, may provide new ways to treat obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Paolo E Macchia
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Napoli, Italy
| | - Immacolata C Nettore
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Napoli, Italy
| | - Fabiana Franchini
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Napoli, Italy
| | - Laura Santana-Viera
- National Research Council - Institute for Experimental Endocrinology & Oncology 'Gaetano Salvatore', 80145 Napoli, Italy
| | - Paola Ungaro
- National Research Council - Institute for Experimental Endocrinology & Oncology 'Gaetano Salvatore', 80145 Napoli, Italy
| |
Collapse
|
102
|
The corepressors GPS2 and SMRT control enhancer and silencer remodeling via eRNA transcription during inflammatory activation of macrophages. Mol Cell 2021; 81:953-968.e9. [PMID: 33503407 DOI: 10.1016/j.molcel.2020.12.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/20/2020] [Accepted: 12/24/2020] [Indexed: 01/08/2023]
Abstract
While the role of transcription factors and coactivators in controlling enhancer activity and chromatin structure linked to gene expression is well established, the involvement of corepressors is not. Using inflammatory macrophage activation as a model, we investigate here a corepressor complex containing GPS2 and SMRT both genome-wide and at the Ccl2 locus, encoding the chemokine CCL2 (MCP-1). We report that corepressors co-occupy candidate enhancers along with the coactivators CBP (H3K27 acetylase) and MED1 (mediator) but act antagonistically by repressing eRNA transcription-coupled H3K27 acetylation. Genome editing, transcriptional interference, and cistrome analysis reveals that apparently related enhancer and silencer elements control Ccl2 transcription in opposite ways. 4C-seq indicates that corepressor depletion or inflammatory signaling functions mechanistically similarly to trigger enhancer activation. In ob/ob mice, adipose tissue macrophage-selective depletion of the Ccl2 enhancer-transcribed eRNA reduces metaflammation. Thus, the identified corepressor-eRNA-chemokine pathway operates in vivo and suggests therapeutic opportunities by targeting eRNAs in immuno-metabolic diseases.
Collapse
|
103
|
Dumesic DA, Tulberg A, Leung KL, Fisch SC, Grogan TR, Abbott DH, Naik R, Chazenbalk GD. Accelerated subcutaneous abdominal stem cell adipogenesis predicts insulin sensitivity in normal-weight women with polycystic ovary syndrome. Fertil Steril 2020; 116:232-242. [PMID: 33341231 DOI: 10.1016/j.fertnstert.2020.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To examine whether subcutaneous (SC) abdominal adipose stem cell differentiation into adipocytes in vitro predicts insulin sensitivity (Si) in vivo in normal-weight women with polycystic ovary syndrome (PCOS) and controls. DESIGN Prospective cohort study. SETTING Academic medical center. PATIENT(S) Eight normal-weight women with PCOS and 8 age- and body mass index-matched controls. INTERVENTION(S) Women underwent circulating hormone/metabolic determinations, intravenous glucose tolerance testing, total-body dual-energy x-ray absorptiometry, and SC abdominal fat biopsy. MAIN OUTCOME MEASURE(S) PPARγ and CEBPa gene expression and lipid content of adipocytes matured in vitro were compared between women with PCOS and control women, and correlated with patient characteristics, systemic Si, and adipose insulin resistance (adipose-IR). RESULT(S) Serum androgen levels, adipose-IR, and percentage of android fat were greater in women with PCOS than control women. Stem cell PPARγ and CEBPa gene expression increased maximally by day 12 without a female-type effect. In control cells, gene expression positively correlated with fasting serum insulin levels (both genes) and adipose-IR (CEBPa) and negatively correlated with Si (CEBPa). Conversely, CEBPa gene expression in PCOS cells negatively correlated with adipose-IR and serum free testosterone, whereas total lipid accumulation in these cells positively corelated with Si. CONCLUSION In normal-weight women with PCOS, accelerated SC abdominal adipose stem cell differentiation into adipocytes in vitro favors Si in vivo, suggesting a role for hyperandrogenism in the evolution of metabolic thrift to enhance fat storage through increased cellular glucose uptake.
Collapse
Affiliation(s)
- Daniel A Dumesic
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, California.
| | - Ayli Tulberg
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, California
| | - Karen L Leung
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, California
| | - Samantha C Fisch
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, California
| | - Tristan R Grogan
- Department of Medicine Statistics Core, University of California, Los Angeles, Los Angeles, California
| | - David H Abbott
- OB/GYN, Wisconsin National Primate Research Center, University of Wisconsin, Madison, Madison, Wisconsin
| | - Rajanigandha Naik
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, California
| | - Gregorio D Chazenbalk
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
104
|
Zhang N, Mendieta-Esteban J, Magli A, Lilja KC, Perlingeiro RCR, Marti-Renom MA, Tsirigos A, Dynlacht BD. Muscle progenitor specification and myogenic differentiation are associated with changes in chromatin topology. Nat Commun 2020; 11:6222. [PMID: 33277476 PMCID: PMC7718254 DOI: 10.1038/s41467-020-19999-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/03/2020] [Indexed: 12/31/2022] Open
Abstract
Using Hi-C, promoter-capture Hi-C (pCHi-C), and other genome-wide approaches in skeletal muscle progenitors that inducibly express a master transcription factor, Pax7, we systematically characterize at high-resolution the spatio-temporal re-organization of compartments and promoter-anchored interactions as a consequence of myogenic commitment and differentiation. We identify key promoter-enhancer interaction motifs, namely, cliques and networks, and interactions that are dependent on Pax7 binding. Remarkably, Pax7 binds to a majority of super-enhancers, and together with a cadre of interacting transcription factors, assembles feed-forward regulatory loops. During differentiation, epigenetic memory and persistent looping are maintained at a subset of Pax7 enhancers in the absence of Pax7. We also identify and functionally validate a previously uncharacterized Pax7-bound enhancer hub that regulates the essential myosin heavy chain cluster during skeletal muscle cell differentiation. Our studies lay the groundwork for understanding the role of Pax7 in orchestrating changes in the three-dimensional chromatin conformation in muscle progenitors.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Pathology and Perlmutter Cancer Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Julen Mendieta-Esteban
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Alessandro Magli
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Karin C Lilja
- Department of Pathology and Perlmutter Cancer Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Rita C R Perlingeiro
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Marc A Marti-Renom
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Aristotelis Tsirigos
- Department of Pathology and Perlmutter Cancer Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Brian David Dynlacht
- Department of Pathology and Perlmutter Cancer Institute, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
105
|
Leung KL, Sanchita S, Pham CT, Davis BA, Okhovat M, Ding X, Dumesic P, Grogan TR, Williams KJ, Morselli M, Ma F, Carbone L, Li X, Pellegrini M, Dumesic DA, Chazenbalk GD. Dynamic changes in chromatin accessibility, altered adipogenic gene expression, and total versus de novo fatty acid synthesis in subcutaneous adipose stem cells of normal-weight polycystic ovary syndrome (PCOS) women during adipogenesis: evidence of cellular programming. Clin Epigenetics 2020; 12:181. [PMID: 33228780 PMCID: PMC7686698 DOI: 10.1186/s13148-020-00970-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Background Normal-weight polycystic ovary syndrome (PCOS) women exhibit adipose resistance in vivo accompanied by enhanced subcutaneous (SC) abdominal adipose stem cell (ASC) development to adipocytes with accelerated lipid accumulation per cell in vitro. The present study examines chromatin accessibility, RNA expression and fatty acid (FA) synthesis during SC abdominal ASC differentiation into adipocytes in vitro of normal-weight PCOS versus age- and body mass index-matched normoandrogenic ovulatory (control) women to study epigenetic/genetic characteristics as well as functional alterations of PCOS and control ASCs during adipogenesis. Results SC abdominal ASCs from PCOS women versus controls exhibited dynamic chromatin accessibility during adipogenesis, from significantly less chromatin accessibility at day 0 to greater chromatin accessibility by day 12, with enrichment of binding motifs for transcription factors (TFs) of the AP-1 subfamily at days 0, 3, and 12. In PCOS versus control cells, expression of genes governing adipocyte differentiation (PPARγ, CEBPα, AGPAT2) and function (ADIPOQ, FABP4, LPL, PLIN1, SLC2A4) was increased two–sixfold at days 3, 7, and 12, while that involving Wnt signaling (FZD1, SFRP1, and WNT10B) was decreased. Differential gene expression in PCOS cells at these time points involved triacylglycerol synthesis, lipid oxidation, free fatty acid beta-oxidation, and oxidative phosphorylation of the TCA cycle, with TGFB1 as a significant upstream regulator. There was a broad correspondence between increased chromatin accessibility and increased RNA expression of those 12 genes involved in adipocyte differentiation and function, Wnt signaling, as well as genes involved in the triacylglycerol synthesis functional group at day 12 of adipogenesis. Total content and de novo synthesis of myristic (C14:0), palmitic (C16:0), palmitoleic (C16:1), and oleic (C18:1) acid increased from day 7 to day 12 in all cells, with total content and de novo synthesis of FAs significantly greater in PCOS than controls cells at day 12. Conclusions In normal-weight PCOS women, dynamic chromatin remodeling of SC abdominal ASCs during adipogenesis may enhance adipogenic gene expression as a programmed mechanism to promote greater fat storage.
Collapse
Affiliation(s)
- Karen L Leung
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Smriti Sanchita
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Catherine T Pham
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Brett A Davis
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Sciences University, Portland, OR, 97239, USA
| | - Mariam Okhovat
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Sciences University, Portland, OR, 97239, USA
| | - Xiangming Ding
- Technology Center for Genomics and Bioinformatics, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | | | - Tristan R Grogan
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Kevin J Williams
- UCLA Lipidomics Lab, Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Marco Morselli
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Feiyang Ma
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Lucia Carbone
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Sciences University, Portland, OR, 97239, USA.,Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, OR, 97239, USA.,Department of Medical Information and Clinical Epidemiology, Oregon Health and Sciences University, Portland, OR, 97239, USA.,Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Xinmin Li
- Technology Center for Genomics and Bioinformatics, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Daniel A Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Gregorio D Chazenbalk
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
106
|
Highly interconnected enhancer communities control lineage-determining genes in human mesenchymal stem cells. Nat Genet 2020; 52:1227-1238. [PMID: 33020665 DOI: 10.1038/s41588-020-0709-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 09/01/2020] [Indexed: 12/20/2022]
Abstract
Adipocyte differentiation is driven by waves of transcriptional regulators that reprogram the enhancer landscape and change the wiring of the promoter interactome. Here, we use high-throughput chromosome conformation enhancer capture to interrogate the role of enhancer-to-enhancer interactions during differentiation of human mesenchymal stem cells. We find that enhancers form an elaborate network that is dynamic during differentiation and coupled with changes in enhancer activity. Transcription factors (TFs) at baited enhancers amplify TF binding at target enhancers, a phenomenon we term cross-interaction stabilization of TFs. Moreover, highly interconnected enhancers (HICE) act as integration hubs orchestrating differentiation by the formation of three-dimensional enhancer communities, inside which, HICE, and other enhancers, converge on phenotypically important gene promoters. Collectively, these results indicate that enhancer interactions play a key role in the regulation of enhancer function, and that HICE are important for both signal integration and compartmentalization of the genome.
Collapse
|
107
|
Hernández-Hernández O, Ávila-Avilés RD, Hernández-Hernández JM. Chromatin Landscape During Skeletal Muscle Differentiation. Front Genet 2020; 11:578712. [PMID: 33193700 PMCID: PMC7530293 DOI: 10.3389/fgene.2020.578712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/31/2020] [Indexed: 12/02/2022] Open
Abstract
Cellular commitment and differentiation involve highly coordinated mechanisms by which tissue-specific genes are activated while others are repressed. These mechanisms rely on the activity of specific transcription factors, chromatin remodeling enzymes, and higher-order chromatin organization in order to modulate transcriptional regulation on multiple cellular contexts. Tissue-specific transcription factors are key mediators of cell fate specification with the ability to reprogram cell types into different lineages. A classic example of a master transcription factor is the muscle specific factor MyoD, which belongs to the family of myogenic regulatory factors (MRFs). MRFs regulate cell fate determination and terminal differentiation of the myogenic precursors in a multistep process that eventually culminate with formation of muscle fibers. This developmental progression involves the activation and proliferation of muscle stem cells, commitment, and cell cycle exit and fusion of mononucleated myoblast to generate myotubes and myofibers. Although the epigenetics of muscle regeneration has been extensively addressed and discussed over the recent years, the influence of higher-order chromatin organization in skeletal muscle regeneration is still a field of development. In this review, we will focus on the epigenetic mechanisms modulating muscle gene expression and on the incipient work that addresses three-dimensional genome architecture and its influence in cell fate determination and differentiation to achieve skeletal myogenesis. We will visit known alterations of genome organization mediated by chromosomal fusions giving rise to novel regulatory landscapes, enhancing oncogenic activation in muscle, such as alveolar rhabdomyosarcomas (ARMS).
Collapse
Affiliation(s)
- Oscar Hernández-Hernández
- Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Rodolfo Daniel Ávila-Avilés
- Laboratory of Epigenetics of Skeletal Muscle Regeneration, Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
| | - J Manuel Hernández-Hernández
- Laboratory of Epigenetics of Skeletal Muscle Regeneration, Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
108
|
Barilla S, Liang N, Mileti E, Ballaire R, Lhomme M, Ponnaiah M, Lemoine S, Soprani A, Gautier JF, Amri EZ, Le Goff W, Venteclef N, Treuter E. Loss of G protein pathway suppressor 2 in human adipocytes triggers lipid remodeling by upregulating ATP binding cassette subfamily G member 1. Mol Metab 2020; 42:101066. [PMID: 32798719 PMCID: PMC7509237 DOI: 10.1016/j.molmet.2020.101066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Adipogenesis is critical for adipose tissue remodeling during the development of obesity. While the role of transcription factors in the orchestration of adipogenic pathways is already established, the involvement of coregulators that transduce regulatory signals into epigenome alterations and transcriptional responses remains poorly understood. The aim of our study was to investigate which pathways are controlled by G protein pathway suppressor 2 (GPS2) during the differentiation of human adipocytes. METHODS We generated a unique loss-of-function model by RNAi depletion of GPS2 in human multipotent adipose-derived stem (hMADS) cells. We thoroughly characterized the coregulator depletion-dependent pathway alterations during adipocyte differentiation at the level of transcriptome (RNA-seq), epigenome (ChIP-seq H3K27ac), cistrome (ChIP-seq GPS2), and lipidome. We validated the in vivo relevance of the identified pathways in non-diabetic and diabetic obese patients. RESULTS The loss of GPS2 triggers the reprogramming of cellular processes related to adipocyte differentiation by increasing the responses to the adipogenic cocktail. In particular, GPS2 depletion increases the expression of BMP4, an important trigger for the commitment of fibroblast-like progenitors toward the adipogenic lineage and increases the expression of inflammatory and metabolic genes. GPS2-depleted human adipocytes are characterized by hypertrophy, triglyceride and phospholipid accumulation, and sphingomyelin depletion. These changes are likely a consequence of the increased expression of ATP-binding cassette subfamily G member 1 (ABCG1) that mediates sphingomyelin efflux from adipocytes and modulates lipoprotein lipase (LPL) activity. We identify ABCG1 as a direct transcriptional target, as GPS2 depletion leads to coordinated changes of transcription and H3K27 acetylation at promoters and enhancers that are occupied by GPS2 in wild-type adipocytes. We find that in omental adipose tissue of obese humans, GPS2 levels correlate with ABCG1 levels, type 2 diabetic status, and lipid metabolic status, supporting the in vivo relevance of the hMADS cell-derived in vitro data. CONCLUSION Our study reveals a dual regulatory role of GPS2 in epigenetically modulating the chromatin landscape and gene expression during human adipocyte differentiation and identifies a hitherto unknown GPS2-ABCG1 pathway potentially linked to adipocyte hypertrophy in humans.
Collapse
Affiliation(s)
- Serena Barilla
- Department of Biosciences and Nutrition, Karolinska Institute, 14183 Huddinge, Sweden.
| | - Ning Liang
- Department of Biosciences and Nutrition, Karolinska Institute, 14183 Huddinge, Sweden
| | - Enrichetta Mileti
- Department of Biosciences and Nutrition, Karolinska Institute, 14183 Huddinge, Sweden
| | - Raphaëlle Ballaire
- Centre de Recherche des Cordeliers, Inserm, University of Paris, IMMEDIAB Laboratory, F-75006, Paris, France; Inovarion, Paris, France
| | - Marie Lhomme
- ICANalytics Lipidomic, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Maharajah Ponnaiah
- ICANalytics Lipidomic, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Sophie Lemoine
- École Normale Supérieure, PSL Research University, Centre National de la Recherche Scientifique (CNRS), Inserm, Institut de Biologie de l'École Normale Supérieure (IBENS), Plateforme Génomique, Paris, France
| | - Antoine Soprani
- Centre de Recherche des Cordeliers, Inserm, University of Paris, IMMEDIAB Laboratory, F-75006, Paris, France; Department of Digestive Surgery, Générale de Santé (GDS), Geoffroy Saint Hilaire Clinic, 75005, Paris, France
| | - Jean-Francois Gautier
- Centre de Recherche des Cordeliers, Inserm, University of Paris, IMMEDIAB Laboratory, F-75006, Paris, France; Lariboisière Hospital, AP-HP, Diabetology Department, University of Paris, Paris, France
| | - Ez-Zoubir Amri
- University of Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | - Wilfried Le Goff
- Sorbonne University, Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Paris, F-75013, France
| | - Nicolas Venteclef
- Centre de Recherche des Cordeliers, Inserm, University of Paris, IMMEDIAB Laboratory, F-75006, Paris, France; Lariboisière Hospital, AP-HP, Diabetology Department, University of Paris, Paris, France
| | - Eckardt Treuter
- Department of Biosciences and Nutrition, Karolinska Institute, 14183 Huddinge, Sweden.
| |
Collapse
|
109
|
Ibragimov AN, Bylino OV, Shidlovskii YV. Molecular Basis of the Function of Transcriptional Enhancers. Cells 2020; 9:E1620. [PMID: 32635644 PMCID: PMC7407508 DOI: 10.3390/cells9071620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Transcriptional enhancers are major genomic elements that control gene activity in eukaryotes. Recent studies provided deeper insight into the temporal and spatial organization of transcription in the nucleus, the role of non-coding RNAs in the process, and the epigenetic control of gene expression. Thus, multiple molecular details of enhancer functioning were revealed. Here, we describe the recent data and models of molecular organization of enhancer-driven transcription.
Collapse
Affiliation(s)
- Airat N. Ibragimov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (A.N.I.); (O.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Oleg V. Bylino
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (A.N.I.); (O.V.B.)
| | - Yulii V. Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (A.N.I.); (O.V.B.)
- I.M. Sechenov First Moscow State Medical University, 8, bldg. 2 Trubetskaya St., 119048 Moscow, Russia
| |
Collapse
|
110
|
De Bosscher K, Desmet SJ, Clarisse D, Estébanez-Perpiña E, Brunsveld L. Nuclear receptor crosstalk - defining the mechanisms for therapeutic innovation. Nat Rev Endocrinol 2020; 16:363-377. [PMID: 32303708 DOI: 10.1038/s41574-020-0349-5] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 02/06/2023]
Abstract
Nuclear receptor crosstalk can be defined as the interplay between different nuclear receptors or between their overlapping signalling pathways. A subset of nuclear receptors (such as PPARs and RARs) engage in the formation of well-characterized 'typical' heterodimers with RXR. 'Atypical' heterodimers (such as GR with PPARs, or PPAR with ERR) might form a novel class of physical complexes that might be more transient in nature. These heterodimers might harbour strong transcriptional flexibility, with no strict need for DNA binding of both partners. Direct crosstalk could stem from a pairwise physical association between atypical nuclear receptor heterodimers, either via pre-existing interaction pairs or via interactions that are newly induced with small molecules; such crosstalk might constitute an uncharted space to target nuclear receptor physiological and/or pathophysiological actions. In this Review, we discuss the emerging aspects of crosstalk in the nuclear receptor field and present various mechanistic crosstalk modes with examples that support applicability of the atypical heterodimer concept. Stabilization or disruption, in a context-dependent or cell type-dependent manner, of these more transient heterodimers is expected to fuel unprecedented translational approaches to yield novel therapeutic agents to treat major human diseases with higher precision.
Collapse
Affiliation(s)
- Karolien De Bosscher
- Translational Nuclear Receptor Research, VIB Center for Medical Biotechnology, UGent Department of Biomolecular Medicine, Gent, Belgium.
| | - Sofie J Desmet
- Translational Nuclear Receptor Research, VIB Center for Medical Biotechnology, UGent Department of Biomolecular Medicine, Gent, Belgium
| | - Dorien Clarisse
- Translational Nuclear Receptor Research, VIB Center for Medical Biotechnology, UGent Department of Biomolecular Medicine, Gent, Belgium
| | - Eva Estébanez-Perpiña
- Laboratory of Structural Biology, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB) of the University of Barcelona (UB), Barcelona, Spain
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Eindhoven, Netherlands
| |
Collapse
|
111
|
Skeletal muscle enhancer interactions identify genes controlling whole-body metabolism. Nat Commun 2020; 11:2695. [PMID: 32483258 PMCID: PMC7264154 DOI: 10.1038/s41467-020-16537-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity and type 2 diabetes (T2D) are metabolic disorders influenced by lifestyle and genetic factors that are characterized by insulin resistance in skeletal muscle, a prominent site of glucose disposal. Numerous genetic variants have been associated with obesity and T2D, of which the majority are located in non-coding DNA regions. This suggests that most variants mediate their effect by altering the activity of gene-regulatory elements, including enhancers. Here, we map skeletal muscle genomic enhancer elements that are dynamically regulated after exposure to the free fatty acid palmitate or the inflammatory cytokine TNFα. By overlapping enhancer positions with the location of disease-associated genetic variants, and resolving long-range chromatin interactions between enhancers and gene promoters, we identify target genes involved in metabolic dysfunction in skeletal muscle. The majority of these genes also associate with altered whole-body metabolic phenotypes in the murine BXD genetic reference population. Thus, our combined genomic investigations identified genes that are involved in skeletal muscle metabolism. Obesity and type 2 diabetes (T2D) are metabolic disorders characterized by insulin resistance in skeletal muscle. Here, the authors map skeletal muscle enhancer elements dynamically regulated after exposure to free fatty acid palmitate or inflammatory cytokine TNFα and identify target genes involved in metabolic dysfunction in skeletal muscle.
Collapse
|
112
|
Fan Q, Nørgaard RC, Grytten I, Ness CM, Lucas C, Vekterud K, Soedling H, Matthews J, Lemma RB, Gabrielsen OS, Bindesbøll C, Ulven SM, Nebb HI, Grønning-Wang LM, Sæther T. LXRα Regulates ChREBPα Transactivity in a Target Gene-Specific Manner through an Agonist-Modulated LBD-LID Interaction. Cells 2020; 9:cells9051214. [PMID: 32414201 PMCID: PMC7290792 DOI: 10.3390/cells9051214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/19/2020] [Accepted: 05/07/2020] [Indexed: 01/02/2023] Open
Abstract
The cholesterol-sensing nuclear receptor liver X receptor (LXR) and the glucose-sensing transcription factor carbohydrate responsive element-binding protein (ChREBP) are central players in regulating glucose and lipid metabolism in the liver. More knowledge of their mechanistic interplay is needed to understand their role in pathological conditions like fatty liver disease and insulin resistance. In the current study, LXR and ChREBP co-occupancy was examined by analyzing ChIP-seq datasets from mice livers. LXR and ChREBP interaction was determined by Co-immunoprecipitation (CoIP) and their transactivity was assessed by real-time quantitative polymerase chain reaction (qPCR) of target genes and gene reporter assays. Chromatin binding capacity was determined by ChIP-qPCR assays. Our data show that LXRα and ChREBPα interact physically and show a high co-occupancy at regulatory regions in the mouse genome. LXRα co-activates ChREBPα and regulates ChREBP-specific target genes in vitro and in vivo. This co-activation is dependent on functional recognition elements for ChREBP but not for LXR, indicating that ChREBPα recruits LXRα to chromatin in trans. The two factors interact via their key activation domains; the low glucose inhibitory domain (LID) of ChREBPα and the ligand-binding domain (LBD) of LXRα. While unliganded LXRα co-activates ChREBPα, ligand-bound LXRα surprisingly represses ChREBPα activity on ChREBP-specific target genes. Mechanistically, this is due to a destabilized LXRα:ChREBPα interaction, leading to reduced ChREBP-binding to chromatin and restricted activation of glycolytic and lipogenic target genes. This ligand-driven molecular switch highlights an unappreciated role of LXRα in responding to nutritional cues that was overlooked due to LXR lipogenesis-promoting function.
Collapse
Affiliation(s)
- Qiong Fan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (Q.F.); (K.V.); (C.B.)
| | - Rikke Christine Nørgaard
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Ivar Grytten
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, N-0317 Oslo, Norway;
| | - Cecilie Maria Ness
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Christin Lucas
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Kristin Vekterud
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (Q.F.); (K.V.); (C.B.)
| | - Helen Soedling
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Roza Berhanu Lemma
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, N-0317 Oslo, Norway; (R.B.L.); (O.S.G.)
| | - Odd Stokke Gabrielsen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, N-0317 Oslo, Norway; (R.B.L.); (O.S.G.)
| | - Christian Bindesbøll
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (Q.F.); (K.V.); (C.B.)
| | - Stine Marie Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Hilde Irene Nebb
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Line Mariann Grønning-Wang
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Thomas Sæther
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (Q.F.); (K.V.); (C.B.)
- Correspondence: ; Tel.: +47-22-851510
| |
Collapse
|
113
|
Kang Z, Fan R. PPARα and NCOR/SMRT corepressor network in liver metabolic regulation. FASEB J 2020; 34:8796-8809. [DOI: 10.1096/fj.202000055rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Zhanfang Kang
- Department of Basic Medical Research Qingyuan People's HospitalThe Sixth Affiliated Hospital of Guangzhou Medical University Qingyuan China
| | - Rongrong Fan
- Department of Biosciences and Nutrition Karolinska Institute Stockholm Sweden
| |
Collapse
|
114
|
Higashijima Y, Matsui Y, Shimamura T, Nakaki R, Nagai N, Tsutsumi S, Abe Y, Link VM, Osaka M, Yoshida M, Watanabe R, Tanaka T, Taguchi A, Miura M, Ruan X, Li G, Inoue T, Nangaku M, Kimura H, Furukawa T, Aburatani H, Wada Y, Ruan Y, Glass CK, Kanki Y. Coordinated demethylation of H3K9 and H3K27 is required for rapid inflammatory responses of endothelial cells. EMBO J 2020; 39:e103949. [PMID: 32125007 DOI: 10.15252/embj.2019103949] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Histone H3 lysine-9 di-methylation (H3K9me2) and lysine-27 tri-methylation (H3K27me3) are linked to repression of gene expression, but the functions of repressive histone methylation dynamics during inflammatory responses remain enigmatic. Here, we report that lysine demethylases 7A (KDM7A) and 6A (UTX) play crucial roles in tumor necrosis factor (TNF)-α signaling in endothelial cells (ECs), where they are regulated by a novel TNF-α-responsive microRNA, miR-3679-5p. TNF-α rapidly induces co-occupancy of KDM7A and UTX at nuclear factor kappa-B (NF-κB)-associated elements in human ECs. KDM7A and UTX demethylate H3K9me2 and H3K27me3, respectively, and are both required for activation of NF-κB-dependent inflammatory genes. Chromosome conformation capture-based methods furthermore uncover increased interactions between TNF-α-induced super enhancers at NF-κB-relevant loci, coinciding with KDM7A and UTX recruitments. Simultaneous pharmacological inhibition of KDM7A and UTX significantly reduces leukocyte adhesion in mice, establishing the biological and potential translational relevance of this mechanism. Collectively, these findings suggest that rapid erasure of repressive histone marks by KDM7A and UTX is essential for NF-κB-dependent regulation of genes that control inflammatory responses of ECs.
Collapse
Affiliation(s)
- Yoshiki Higashijima
- Department of Bioinformational Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan.,Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Yusuke Matsui
- Division of Biomedical and Health Informatics, Graduate school of medicine, Nagoya university, Nagoya, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Nao Nagai
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Shuichi Tsutsumi
- Division of Genome Sciences, RCAST, The University of Tokyo, Tokyo, Japan
| | - Yohei Abe
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Verena M Link
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.,Faculty of Biology, Division of Evolutionary Biology, Ludwig-Maximilian University of Munich, Munich, Germany.,Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mizuko Osaka
- Department of Nutrition in Cardiovascular Disease, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Life Sciences and Bioethics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masayuki Yoshida
- Department of Life Sciences and Bioethics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryo Watanabe
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshihiro Tanaka
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akashi Taguchi
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Mai Miura
- Isotope Science Center, The University of Tokyo, Tokyo, Japan.,Laboratory for Systems Biology and Medicine, RCAST, The University of Tokyo, Tokyo, Japan
| | - Xiaoan Ruan
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Guoliang Li
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Tsuyoshi Inoue
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Tetsushi Furukawa
- Department of Bioinformational Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Aburatani
- Division of Genome Sciences, RCAST, The University of Tokyo, Tokyo, Japan
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Yijun Ruan
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yasuharu Kanki
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
115
|
Oruba A, Saccani S, van Essen D. Role of cell-type specific nucleosome positioning in inducible activation of mammalian promoters. Nat Commun 2020; 11:1075. [PMID: 32103026 PMCID: PMC7044431 DOI: 10.1038/s41467-020-14950-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/10/2020] [Indexed: 12/18/2022] Open
Abstract
The organization of nucleosomes across functional genomic elements represents a critical layer of control. Here, we present a strategy for high-resolution nucleosome profiling at selected genomic features, and use this to analyse dynamic nucleosome positioning at inducible and cell-type-specific mammalian promoters. We find that nucleosome patterning at inducible promoters frequently resembles that at active promoters, even before stimulus-driven activation. Accordingly, the nucleosome profile at many inactive inducible promoters is sufficient to predict cell-type-specific responsiveness. Induction of gene expression is generally not associated with major changes to nucleosome patterning, and a subset of inducible promoters can be activated without stable nucleosome depletion from their transcription start sites. These promoters are generally dependent on remodelling enzymes for their inducible activation, and exhibit transient nucleosome depletion only at alleles undergoing transcription initiation. Together, these data reveal how the responsiveness of inducible promoters to activating stimuli is linked to cell-type-specific nucleosome patterning. Nucleosome organisation plays important roles in regulating functional genomic elements. Here, the authors use high-resolution profiling to analyse dynamic nucleosome positioning at inducible and cell-type-specific promoters, providing a global view of chromatin architecture at inducible promoters.
Collapse
Affiliation(s)
- Agata Oruba
- Max Planck Institute for Immunobiology & Epigenetics, Stübeweg 51, Freiburg, D79108, Germany
| | - Simona Saccani
- Max Planck Institute for Immunobiology & Epigenetics, Stübeweg 51, Freiburg, D79108, Germany. .,Institute for Research on Cancer & Aging, Nice (IRCAN), 28 Avenue Valombrose, Nice, 06107, France.
| | - Dominic van Essen
- Max Planck Institute for Immunobiology & Epigenetics, Stübeweg 51, Freiburg, D79108, Germany. .,Institute for Research on Cancer & Aging, Nice (IRCAN), 28 Avenue Valombrose, Nice, 06107, France.
| |
Collapse
|
116
|
Altered chromatin landscape and enhancer engagement underlie transcriptional dysregulation in MED12 mutant uterine leiomyomas. Nat Commun 2020; 11:1019. [PMID: 32094355 PMCID: PMC7040020 DOI: 10.1038/s41467-020-14701-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/23/2020] [Indexed: 02/07/2023] Open
Abstract
Uterine leiomyomas (fibroids) are a major source of gynecologic morbidity in reproductive age women and are characterized by the excessive deposition of a disorganized extracellular matrix, resulting in rigid benign tumors. Although down regulation of the transcription factor AP-1 is highly prevalent in leiomyomas, the functional consequence of AP-1 loss on gene transcription in uterine fibroids remains poorly understood. Using high-resolution ChIP-sequencing, promoter capture Hi-C, and RNA-sequencing of matched normal and leiomyoma tissues, here we show that modified enhancer architecture is a major driver of transcriptional dysregulation in MED12 mutant uterine leiomyomas. Furthermore, modifications in enhancer architecture are driven by the depletion of AP-1 occupancy on chromatin. Silencing of AP-1 subunits in primary myometrium cells leads to transcriptional dysregulation of extracellular matrix associated genes and partly recapitulates transcriptional and epigenetic changes observed in leiomyomas. These findings establish AP-1 driven aberrant enhancer regulation as an important mechanism of leiomyoma disease pathogenesis.
Collapse
|
117
|
Qin Y, Grimm SA, Roberts JD, Chrysovergis K, Wade PA. Alterations in promoter interaction landscape and transcriptional network underlying metabolic adaptation to diet. Nat Commun 2020; 11:962. [PMID: 32075973 PMCID: PMC7031266 DOI: 10.1038/s41467-020-14796-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 01/27/2020] [Indexed: 02/08/2023] Open
Abstract
Metabolic adaptation to nutritional state requires alterations in gene expression in key tissues. Here, we investigated chromatin interaction dynamics, as well as alterations in cis-regulatory loci and transcriptional network in a mouse model system. Chronic consumption of a diet high in saturated fat, when compared to a diet high in carbohydrate, led to dramatic reprogramming of the liver transcriptional network. Long-range interaction of promoters with distal regulatory loci, monitored by promoter capture Hi-C, was regulated by metabolic status in distinct fashion depending on diet. Adaptation to a lipid-rich diet, mediated largely by nuclear receptors including Hnf4α, relied on activation of preformed enhancer/promoter loops. Adaptation to carbohydrate-rich diet led to activation of preformed loops and to de novo formation of new promoter/enhancer interactions. These results suggest that adaptation to nutritional changes and metabolic stress occurs through both de novo and pre-existing chromatin interactions which respond differently to metabolic signals. Metabolic adaptation to different diets results in changes to gene expression. Here, the authors characterise the chromatin landscape and transcriptional network in mice on a diet of high saturated fat, compared to a diet high in carbohydrate, finding a dramatic reprogramming of the liver transcriptional network.
Collapse
Affiliation(s)
- Yufeng Qin
- Eukaryotic Transcriptional Regulation Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Sara A Grimm
- Integrative Bioinformatics Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - John D Roberts
- Eukaryotic Transcriptional Regulation Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Kaliopi Chrysovergis
- Eukaryotic Transcriptional Regulation Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Paul A Wade
- Eukaryotic Transcriptional Regulation Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
118
|
Beesley J, Sivakumaran H, Moradi Marjaneh M, Lima LG, Hillman KM, Kaufmann S, Tuano N, Hussein N, Ham S, Mukhopadhyay P, Kazakoff S, Lee JS, Michailidou K, Barnes DR, Antoniou AC, Fachal L, Dunning AM, Easton DF, Waddell N, Rosenbluh J, Möller A, Chenevix-Trench G, French JD, Edwards SL. Chromatin interactome mapping at 139 independent breast cancer risk signals. Genome Biol 2020; 21:8. [PMID: 31910858 PMCID: PMC6947858 DOI: 10.1186/s13059-019-1877-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Genome-wide association studies have identified 196 high confidence independent signals associated with breast cancer susceptibility. Variants within these signals frequently fall in distal regulatory DNA elements that control gene expression. RESULTS We designed a Capture Hi-C array to enrich for chromatin interactions between the credible causal variants and target genes in six human mammary epithelial and breast cancer cell lines. We show that interacting regions are enriched for open chromatin, histone marks for active enhancers, and transcription factors relevant to breast biology. We exploit this comprehensive resource to identify candidate target genes at 139 independent breast cancer risk signals and explore the functional mechanism underlying altered risk at the 12q24 risk region. CONCLUSIONS Our results demonstrate the power of combining genetics, computational genomics, and molecular studies to rationalize the identification of key variants and candidate target genes at breast cancer GWAS signals.
Collapse
Affiliation(s)
- Jonathan Beesley
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Haran Sivakumaran
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Mahdi Moradi Marjaneh
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Current address: UK Dementia Research Institute, Imperial College London, London, UK
| | - Luize G Lima
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kristine M Hillman
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Susanne Kaufmann
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Natasha Tuano
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Nehal Hussein
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Sunyoung Ham
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Pamela Mukhopadhyay
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Stephen Kazakoff
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jason S Lee
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Daniel R Barnes
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Laura Fachal
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Nicola Waddell
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Joseph Rosenbluh
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Andreas Möller
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Juliet D French
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | - Stacey L Edwards
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| |
Collapse
|
119
|
Ferrari A, Longo R, Peri C, Coppi L, Caruso D, Mai A, Mitro N, De Fabiani E, Crestani M. Inhibition of class I HDACs imprints adipogenesis toward oxidative and brown-like phenotype. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158594. [PMID: 31904421 DOI: 10.1016/j.bbalip.2019.158594] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/18/2019] [Indexed: 12/23/2022]
Abstract
Obesity is characterized by uncontrolled expansion of adipose tissue mass, resulting in adipocyte hypertrophy (increased adipocyte size) and hyperplasia (increased number of adipocytes). The number of adipose cells is directly related to adipocyte differentiation process from stromal vascular cells to mature adipocytes. It is known that epigenetic factors influence adipose differentiation program. However, how specific epigenome modifiers affect white adipocyte differentiation and metabolic phenotype is still matter of research. Here, we provide evidence that class I histone deacetylases (HDACs) are involved both in the differentiation of adipocytes and in determining the metabolic features of these cells. We demonstrate that inhibition of class I HDACs from the very first stage of differentiation amplifies the differentiation process and imprints cells toward a highly oxidative phenotype. These effects are related to the capacity of the inhibitor to modulate H3K27 acetylation on enhancer regions regulating Pparg and Ucp1 genes. These epigenomic modifications result in improved white adipocyte functionality and metabolism and induce browning. Collectively, our results show that modulation of class I HDAC activity regulates the metabolic phenotype of white adipocytes via epigenetic imprinting on a key histone mark.
Collapse
Affiliation(s)
- Alessandra Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Raffaella Longo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Carolina Peri
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Lara Coppi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Antonello Mai
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Roma, Italy
| | - Nico Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Emma De Fabiani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Maurizio Crestani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
120
|
Graham AD, Pandey R, Tsancheva VS, Candeo A, Botchway SW, Allan AJ, Teboul L, Madi K, Babra TS, Zolkiewski LAK, Xue X, Bentley L, Gannon J, Olof SN, Cox RD. The development of a high throughput drug-responsive model of white adipose tissue comprising adipogenic 3T3-L1 cells in a 3D matrix. Biofabrication 2019; 12:015018. [PMID: 31715591 DOI: 10.1088/1758-5090/ab56fe] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adipose models have been applied to mechanistic studies of metabolic diseases (such as diabetes) and the subsequent discovery of new therapeutics. However, typical models are either insufficiently complex (2D cell cultures) or expensive and labor intensive (mice/in vivo). To bridge the gap between these models and in order to better inform pre-clinical studies we have developed a drug-responsive 3D model of white adipose tissue (WAT). Here, spheroids (680 ± 60 μm) comprising adipogenic 3T3-L1 cells encapsulated in 3D matrix were fabricated manually on a 96 well scale. Spheroids were highly characterised for lipid morphology, selected metabolite and adipokine secretion, and gene expression; displaying significant upregulation of certain adipogenic-specific genes compared with a 2D model. Furthermore, induction of lipolysis and promotion of lipogenesis in spheroids could be triggered by exposure to 8-br-cAMP and oleic-acid respectively. Metabolic and high content imaging data of spheroids exposed to an adipose-targeting drug, rosiglitazone, resulted in dose-responsive behavior. Thus, our 3D WAT model has potential as a powerful scalable tool for compound screening and for investigating adipose biology.
Collapse
Affiliation(s)
- Alexander D Graham
- OxSyBio Ltd, Building R27, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Abstract
The 3T3-L1 pre-adipocyte cell line is widely used to study the fat cell differentiation in vitro. Researchers also use this cell model to study obesity and insulin resistance. We surveyed the literature, the gene expression omnibus and the sequence read archive for RNA-Seq and ChIP-Seq datasets of MDI-induced 3T3-L1 differentiating cells sampled at one or more time points. The metadata of the relevant datasets were manually curated using unified language across the original studies. The raw reads were collected and pre-processed using a reproducible state-of-the-art pipeline. The final datasets are presented as reads count in genes for the RNA-Seq and reads count in peaks for the ChIP-Seq dataset. The curated datasets are available as two Bioconductor experimental data packages curatedAdipoRNA and curatedAdipoChIP. In addition, the packages document the source code of the data collection and the pre-processing pipelines. Here, we provide a descriptive analysis of the datasets with context and technical validation.
Collapse
Affiliation(s)
- Mahmoud Ahmed
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| |
Collapse
|
122
|
Hilgendorf KI, Johnson CT, Mezger A, Rice SL, Norris AM, Demeter J, Greenleaf WJ, Reiter JF, Kopinke D, Jackson PK. Omega-3 Fatty Acids Activate Ciliary FFAR4 to Control Adipogenesis. Cell 2019; 179:1289-1305.e21. [PMID: 31761534 DOI: 10.1016/j.cell.2019.11.005] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/23/2019] [Accepted: 10/31/2019] [Indexed: 10/25/2022]
Abstract
Adult mesenchymal stem cells, including preadipocytes, possess a cellular sensory organelle called the primary cilium. Ciliated preadipocytes abundantly populate perivascular compartments in fat and are activated by a high-fat diet. Here, we sought to understand whether preadipocytes use their cilia to sense and respond to external cues to remodel white adipose tissue. Abolishing preadipocyte cilia in mice severely impairs white adipose tissue expansion. We discover that TULP3-dependent ciliary localization of the omega-3 fatty acid receptor FFAR4/GPR120 promotes adipogenesis. FFAR4 agonists and ω-3 fatty acids, but not saturated fatty acids, trigger mitosis and adipogenesis by rapidly activating cAMP production inside cilia. Ciliary cAMP activates EPAC signaling, CTCF-dependent chromatin remodeling, and transcriptional activation of PPARγ and CEBPα to initiate adipogenesis. We propose that dietary ω-3 fatty acids selectively drive expansion of adipocyte numbers to produce new fat cells and store saturated fatty acids, enabling homeostasis of healthy fat tissue.
Collapse
Affiliation(s)
- Keren I Hilgendorf
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Carl T Johnson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stem Cell and Regenerative Medicine Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anja Mezger
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Selena L Rice
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Alessandra M Norris
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Janos Demeter
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Daniel Kopinke
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
123
|
Ray J, Munn PR, Vihervaara A, Lewis JJ, Ozer A, Danko CG, Lis JT. Chromatin conformation remains stable upon extensive transcriptional changes driven by heat shock. Proc Natl Acad Sci U S A 2019; 116:19431-19439. [PMID: 31506350 PMCID: PMC6765289 DOI: 10.1073/pnas.1901244116] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heat shock (HS) initiates rapid, extensive, and evolutionarily conserved changes in transcription that are accompanied by chromatin decondensation and nucleosome loss at HS loci. Here we have employed in situ Hi-C to determine how heat stress affects long-range chromatin conformation in human and Drosophila cells. We found that compartments and topologically associating domains (TADs) remain unchanged by an acute HS. Knockdown of Heat Shock Factor 1 (HSF1), the master transcriptional regulator of the HS response, identified HSF1-dependent genes and revealed that up-regulation is often mediated by distal HSF1 bound enhancers. HSF1-dependent genes were usually found in the same TAD as the nearest HSF1 binding site. Although most interactions between HSF1 binding sites and target promoters were established in the nonheat shock (NHS) condition, a subset increased contact frequency following HS. Integrating information about HSF1 binding strength, RNA polymerase abundance at the HSF1 bound sites (putative enhancers), and contact frequency with a target promoter accurately predicted which up-regulated genes were direct targets of HSF1 during HS. Our results suggest that the chromatin conformation necessary for a robust HS response is preestablished in NHS cells of diverse metazoan species.
Collapse
Affiliation(s)
- Judhajeet Ray
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Paul R Munn
- Baker Institute for Animal Health, Cornell University, Ithaca, NY 14853
| | - Anniina Vihervaara
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - James J Lewis
- Baker Institute for Animal Health, Cornell University, Ithaca, NY 14853
| | - Abdullah Ozer
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853;
| | - Charles G Danko
- Baker Institute for Animal Health, Cornell University, Ithaca, NY 14853
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853;
| |
Collapse
|
124
|
Briand N, Collas P. Laminopathy-causing lamin A mutations reconfigure lamina-associated domains and local spatial chromatin conformation. Nucleus 2019. [PMID: 29517398 PMCID: PMC5973257 DOI: 10.1080/19491034.2018.1449498] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The nuclear lamina contributes to the regulation of gene expression and to chromatin organization. Mutations in A-type nuclear lamins cause laminopathies, some of which are associated with a loss of heterochromatin at the nuclear periphery. Until recently however, little if any information has been provided on where and how lamin A interacts with the genome and on how disease-causing lamin A mutations may rearrange genome conformation. Here, we review aspects of nuclear lamin association with the genome. We highlight recent evidence of reorganization of lamin A-chromatin interactions in cellular models of laminopathies, and implications on the 3-dimensional rearrangement of chromatin in these models, including patient cells. We discuss how a hot-spot lipodystrophic lamin A mutation alters chromatin conformation and epigenetic patterns at an anti-adipogenic locus, and conclude with remarks on links between lamin A, Polycomb and the pathophysiology of laminopathies. The recent findings presented here collectively argue towards a deregulation of large-scale and local spatial genome organization by a subset of lamin A mutations causing laminopathies.
Collapse
Affiliation(s)
- Nolwenn Briand
- a Department of Molecular Medicine , Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo , Oslo , Norway
| | - Philippe Collas
- a Department of Molecular Medicine , Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo , Oslo , Norway.,b Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine , Oslo University Hospital , Oslo , Norway
| |
Collapse
|
125
|
Dall'Agnese A, Caputo L, Nicoletti C, di Iulio J, Schmitt A, Gatto S, Diao Y, Ye Z, Forcato M, Perera R, Bicciato S, Telenti A, Ren B, Puri PL. Transcription Factor-Directed Re-wiring of Chromatin Architecture for Somatic Cell Nuclear Reprogramming toward trans-Differentiation. Mol Cell 2019; 76:453-472.e8. [PMID: 31519520 DOI: 10.1016/j.molcel.2019.07.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/20/2019] [Accepted: 07/25/2019] [Indexed: 12/25/2022]
Abstract
MYOD-directed fibroblast trans-differentiation into skeletal muscle provides a unique model to investigate how one transcription factor (TF) reconfigures the three-dimensional chromatin architecture to control gene expression, which is otherwise achieved by the combinatorial activities of multiple TFs. Integrative analysis of genome-wide high-resolution chromatin interactions, MYOD and CTCF DNA-binding profile, and gene expression, revealed that MYOD directs extensive re-wiring of interactions involving cis-regulatory and structural genomic elements, including promoters, enhancers, and insulated neighborhoods (INs). Re-configured INs were hot-spots of differential interactions, whereby MYOD binding to highly constrained sequences at IN boundaries and/or inside INs led to alterations of promoter-enhancer interactions to repress cell-of-origin genes and to activate muscle-specific genes. Functional evidence shows that MYOD-directed re-configuration of chromatin interactions temporally preceded the effect on gene expression and was mediated by direct MYOD-DNA binding. These data illustrate a model whereby a single TF alters multi-loop hubs to drive somatic cell trans-differentiation.
Collapse
Affiliation(s)
- Alessandra Dall'Agnese
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| | - Luca Caputo
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Chiara Nicoletti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | | | - Anthony Schmitt
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Sole Gatto
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Yarui Diao
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Zhen Ye
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Ranjan Perera
- Analytical Genomics and Bioinformatics, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | | | - Bing Ren
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, Moores Cancer Center and Institute of Genome Medicine, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
126
|
A compendium of promoter-centered long-range chromatin interactions in the human genome. Nat Genet 2019; 51:1442-1449. [PMID: 31501517 PMCID: PMC6778519 DOI: 10.1038/s41588-019-0494-8] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/31/2019] [Indexed: 01/01/2023]
Abstract
A large number of putative cis-regulatory sequences have
been annotated in the human genome, but the genes they control remain poorly
defined. To bridge this gap, we generate maps of long-range chromatin
interactions centered on 18,943 well-annotated promoters for protein-coding
genes in 27 human cell/tissue types. We use this information to infer the target
genes of 70,329 candidate regulatory elements, and suggest potential regulatory
function for 27,325 non-coding sequence variants associated with 2,117
physiological traits and diseases. Integrative analysis of these
promoter-centered interactome maps reveals widespread enhancer-like promoters
involved in gene regulation and common molecular pathways underlying distinct
groups of human traits and diseases.
Collapse
|
127
|
Kim K, Eom J, Jung I. Characterization of Structural Variations in the Context of 3D Chromatin Structure. Mol Cells 2019; 42:512-522. [PMID: 31362468 PMCID: PMC6681866 DOI: 10.14348/molcells.2019.0137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 01/17/2023] Open
Abstract
Chromosomes located in the nucleus form discrete units of genetic material composed of DNA and protein complexes. The genetic information is encoded in linear DNA sequences, but its interpretation requires an understanding of threedimensional (3D) structure of the chromosome, in which distant DNA sequences can be juxtaposed by highly condensed chromatin packing in the space of nucleus to precisely control gene expression. Recent technological innovations in exploring higher-order chromatin structure have uncovered organizational principles of the 3D genome and its various biological implications. Very recently, it has been reported that large-scale genomic variations may disrupt higher-order chromatin organization and as a consequence, greatly contribute to disease-specific gene regulation for a range of human diseases. Here, we review recent developments in studying the effect of structural variation in gene regulation, and the detection and the interpretation of structural variations in the context of 3D chromatin structure.
Collapse
Affiliation(s)
- Kyukwang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Junghyun Eom
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Inkyung Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| |
Collapse
|
128
|
Eres IE, Luo K, Hsiao CJ, Blake LE, Gilad Y. Reorganization of 3D genome structure may contribute to gene regulatory evolution in primates. PLoS Genet 2019; 15:e1008278. [PMID: 31323043 PMCID: PMC6668850 DOI: 10.1371/journal.pgen.1008278] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/31/2019] [Accepted: 06/28/2019] [Indexed: 12/22/2022] Open
Abstract
A growing body of evidence supports the notion that variation in gene regulation plays a crucial role in both speciation and adaptation. However, a comprehensive functional understanding of the mechanisms underlying regulatory evolution remains elusive. In primates, one of the crucial missing pieces of information towards a better understanding of regulatory evolution is a comparative annotation of interactions between distal regulatory elements and promoters. Chromatin conformation capture technologies have enabled genome-wide quantifications of such distal 3D interactions. However, relatively little comparative research in primates has been done using such technologies. To address this gap, we used Hi-C to characterize 3D chromatin interactions in induced pluripotent stem cells (iPSCs) from humans and chimpanzees. We also used RNA-seq to collect gene expression data from the same lines. We generally observed that lower-order, pairwise 3D genomic interactions are conserved in humans and chimpanzees, but higher order genomic structures, such as topologically associating domains (TADs), are not as conserved. Inter-species differences in 3D genomic interactions are often associated with gene expression differences between the species. To provide additional functional context to our observations, we considered previously published chromatin data from human stem cells. We found that inter-species differences in 3D genomic interactions, which are also associated with gene expression differences between the species, are enriched for both active and repressive marks. Overall, our data demonstrate that, as expected, an understanding of 3D genome reorganization is key to explaining regulatory evolution. The way in which a genome folds affects the regulation of gene expression. This is often due to loops in the three-dimensional structure that bring linearly distant genes and regulatory elements into close proximity. Most studies examining three-dimensional structure genome-wide are limited to a single species. In this study, we compared three-dimensional structure in the genomes of induced pluripotent stem cells from humans and chimpanzees. We collected gene expression data from the same samples, which allowed us to assess the contribution of three-dimensional chromatin conformation to gene regulatory evolution in primates. Our results demonstrate that gene expression differences between the species may often be mediated by differences in three-dimensional genomic interactions. Our data also suggest that large-scale chromatin structures (i.e. topologically associating domains, TADs) are not well conserved in their placement across species. We hope the analytical paradigms we present here could serve as a basis for future comparative studies of three-dimensional genome organization, elucidating the putative functional regulatory loci driving speciation.
Collapse
Affiliation(s)
- Ittai E. Eres
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Kaixuan Luo
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Chiaowen Joyce Hsiao
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Lauren E. Blake
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
129
|
Ben Zouari Y, Molitor AM, Sikorska N, Pancaldi V, Sexton T. ChiCMaxima: a robust and simple pipeline for detection and visualization of chromatin looping in Capture Hi-C. Genome Biol 2019; 20:102. [PMID: 31118054 PMCID: PMC6532271 DOI: 10.1186/s13059-019-1706-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/03/2019] [Indexed: 12/19/2022] Open
Abstract
Capture Hi-C (CHi-C) is a new technique for assessing genome organization based on chromosome conformation capture coupled to oligonucleotide capture of regions of interest, such as gene promoters. Chromatin loop detection is challenging because existing Hi-C/4C-like tools, which make different assumptions about the technical biases presented, are often unsuitable. We describe a new approach, ChiCMaxima, which uses local maxima combined with limited filtering to detect DNA looping interactions, integrating information from biological replicates. ChiCMaxima shows more stringency and robustness compared to previously developed tools. The tool includes a GUI browser for flexible visualization of CHi-C profiles alongside epigenomic tracks.
Collapse
Affiliation(s)
- Yousra Ben Zouari
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Anne M Molitor
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Natalia Sikorska
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Vera Pancaldi
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM U1037, Toulouse, France
- University Paul Sabatier III, Toulouse, France
- Barcelona Supercomputing Center, Barcelona, Spain
| | - Tom Sexton
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France.
- CNRS UMR7104, Illkirch, France.
- INSERM U1258, Illkirch, France.
- University of Strasbourg, Illkirch, France.
| |
Collapse
|
130
|
Abstract
Understanding adipogenesis, the process of adipocyte development, may provide new ways to treat obesity and related metabolic diseases. Adipogenesis is controlled by coordinated actions of lineage-determining transcription factors and epigenomic regulators. Peroxisome proliferator-activated receptor gamma (PPARγ) and C/EBPα are master "adipogenic" transcription factors. In recent years, a growing number of studies have reported the identification of novel transcriptional and epigenomic regulators of adipogenesis. However, many of these novel regulators have not been validated in adipocyte development in vivo and their working mechanisms are often far from clear. In this minireview, we discuss recent advances in transcriptional and epigenomic regulation of adipogenesis, with a focus on factors and mechanisms shared by both white adipogenesis and brown adipogenesis. Studies on the transcriptional regulation of adipogenesis highlight the importance of investigating adipocyte differentiation in vivo rather than drawing conclusions based on knockdown experiments in cell culture. Advances in understanding of epigenomic regulation of adipogenesis have revealed critical roles of histone methylation/demethylation, histone acetylation/deacetylation, chromatin remodeling, DNA methylation, and microRNAs in adipocyte differentiation. We also discuss future research directions that may help identify novel factors and mechanisms regulating adipogenesis.
Collapse
|
131
|
Schoenfelder S, Fraser P. Long-range enhancer–promoter contacts in gene expression control. Nat Rev Genet 2019; 20:437-455. [DOI: 10.1038/s41576-019-0128-0] [Citation(s) in RCA: 660] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
132
|
Laurette P, Coassolo S, Davidson G, Michel I, Gambi G, Yao W, Sohier P, Li M, Mengus G, Larue L, Davidson I. Chromatin remodellers Brg1 and Bptf are required for normal gene expression and progression of oncogenic Braf-driven mouse melanoma. Cell Death Differ 2019; 27:29-43. [PMID: 31065107 DOI: 10.1038/s41418-019-0333-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 03/04/2019] [Accepted: 03/28/2019] [Indexed: 11/09/2022] Open
Abstract
Somatic oncogenic mutation of BRAF coupled with inactivation of PTEN constitute a frequent combination of genomic alterations driving the development of human melanoma. Mice genetically engineered to conditionally express oncogenic BrafV600E and inactivate Pten in melanocytes following tamoxifen treatment rapidly develop melanoma. While early-stage melanomas comprised melanin-pigmented Mitf and Dct-expressing cells, expression of these and other melanocyte identity genes was lost in later stage tumours that showed histological and molecular characteristics of de-differentiated neural crest type cells. Melanocyte identity genes displayed loss of active chromatin marks and RNA polymerase II and gain of heterochromatin marks, indicating epigenetic reprogramming during tumour progression. Nevertheless, late-stage tumour cells grown in culture re-expressed Mitf, and melanocyte markers and Mitf together with Sox10 coregulated a large number of genes essential for their growth. In this melanoma model, somatic inactivation that the catalytic Brg1 (Smarca4) subunit of the SWI/SNF complex and the scaffolding Bptf subunit of the NuRF complex delayed tumour formation and deregulated large and overlapping gene expression programs essential for normal tumour cell growth. Moreover, we show that Brg1 and Bptf coregulated many genes together with Mitf and Sox10. Together these transcription factors and chromatin remodelling complexes orchestrate essential gene expression programs in mouse melanoma cells.
Collapse
Affiliation(s)
- Patrick Laurette
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
| | - Sébastien Coassolo
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
| | - Guillaume Davidson
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
| | - Isabelle Michel
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
| | - Giovanni Gambi
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
| | - Wenjin Yao
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
| | - Pierre Sohier
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Orsay, France.,Univ. Paris-Sud, Univ. Paris-Saclay, CNRS UMR3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Mei Li
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
| | - Gabrielle Mengus
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
| | - Lionel Larue
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Orsay, France.,Univ. Paris-Sud, Univ. Paris-Saclay, CNRS UMR3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Irwin Davidson
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France. .,Equipes Labellisées Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
133
|
Broekema M, Savage D, Monajemi H, Kalkhoven E. Gene-gene and gene-environment interactions in lipodystrophy: Lessons learned from natural PPARγ mutants. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:715-732. [PMID: 30742913 DOI: 10.1016/j.bbalip.2019.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/13/2019] [Accepted: 02/02/2019] [Indexed: 12/13/2022]
|
134
|
Paulsen J, Liyakat Ali TM, Nekrasov M, Delbarre E, Baudement MO, Kurscheid S, Tremethick D, Collas P. Long-range interactions between topologically associating domains shape the four-dimensional genome during differentiation. Nat Genet 2019; 51:835-843. [PMID: 31011212 DOI: 10.1038/s41588-019-0392-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/12/2019] [Indexed: 01/01/2023]
Abstract
Genomic information is selectively used to direct spatial and temporal gene expression during differentiation. Interactions between topologically associating domains (TADs) and between chromatin and the nuclear lamina organize and position chromosomes in the nucleus. However, how these genomic organizers together shape genome architecture is unclear. Here, using a dual-lineage differentiation system, we report long-range TAD-TAD interactions that form constitutive and variable TAD cliques. A differentiation-coupled relationship between TAD cliques and lamina-associated domains suggests that TAD cliques stabilize heterochromatin at the nuclear periphery. We also provide evidence of dynamic TAD cliques during mouse embryonic stem-cell differentiation and somatic cell reprogramming and of inter-TAD associations in single-cell high-resolution chromosome conformation capture (Hi-C) data. TAD cliques represent a level of four-dimensional genome conformation that reinforces the silencing of repressed developmental genes.
Collapse
Affiliation(s)
- Jonas Paulsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tharvesh M Liyakat Ali
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Maxim Nekrasov
- Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.,Biomolecular Research Facility, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Erwan Delbarre
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marie-Odile Baudement
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sebastian Kurscheid
- Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - David Tremethick
- Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway. .,Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
135
|
Chen W, Schwalie PC, Pankevich EV, Gubelmann C, Raghav SK, Dainese R, Cassano M, Imbeault M, Jang SM, Russeil J, Delessa T, Duc J, Trono D, Wolfrum C, Deplancke B. ZFP30 promotes adipogenesis through the KAP1-mediated activation of a retrotransposon-derived Pparg2 enhancer. Nat Commun 2019; 10:1809. [PMID: 31000713 PMCID: PMC6472429 DOI: 10.1038/s41467-019-09803-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 03/29/2019] [Indexed: 12/15/2022] Open
Abstract
Krüppel-associated box zinc finger proteins (KZFPs) constitute the largest family of mammalian transcription factors, but most remain completely uncharacterized. While initially proposed to primarily repress transposable elements, recent reports have revealed that KFZPs contribute to a wide variety of other biological processes. Using murine and human in vitro and in vivo models, we demonstrate here that one poorly studied KZFP, ZFP30, promotes adipogenesis by directly targeting and activating a retrotransposon-derived Pparg2 enhancer. Through mechanistic studies, we further show that ZFP30 recruits the co-regulator KRAB-associated protein 1 (KAP1), which, surprisingly, acts as a ZFP30 co-activator in this adipogenic context. Our findings provide an understanding of both adipogenic and KZFP-KAP1 complex-mediated gene regulation, showing that the KZFP-KAP1 axis can also function in a non-repressive manner.
Collapse
Affiliation(s)
- Wanze Chen
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), CH-1015, Lausanne, Switzerland
| | - Petra C Schwalie
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), CH-1015, Lausanne, Switzerland
| | - Eugenia V Pankevich
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234, Moscow, Russian Federation
| | - Carine Gubelmann
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), CH-1015, Lausanne, Switzerland
| | - Sunil K Raghav
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Immunogenomics & Systems Biology group, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Riccardo Dainese
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), CH-1015, Lausanne, Switzerland
| | - Marco Cassano
- Laboratory of Virology and Genetics, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Michael Imbeault
- Laboratory of Virology and Genetics, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Suk Min Jang
- Laboratory of Virology and Genetics, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Julie Russeil
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), CH-1015, Lausanne, Switzerland
| | - Tenagne Delessa
- Institute of Food Nutrition and Health, Eidgenössische Technische Hochschule Zürich (ETHZ), CH-8603, Schwerzenbach, Switzerland
| | - Julien Duc
- Laboratory of Virology and Genetics, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Didier Trono
- Laboratory of Virology and Genetics, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Christian Wolfrum
- Institute of Food Nutrition and Health, Eidgenössische Technische Hochschule Zürich (ETHZ), CH-8603, Schwerzenbach, Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics (SIB), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
136
|
Abstract
Vast repertoires of unique antigen receptors are created in developing lymphocytes. The antigen receptor loci contain many variable (V), diversity (D), and joining (J) gene segments that are arrayed across very large genomic expanses and are joined to form variable-region exons. This process creates the potential for an organism to respond to large numbers of different pathogens. Here, we consider the underlying molecular mechanisms that favor some V genes for recombination prior to selection of the final antigen receptor repertoire. We discuss chromatin structures that form in antigen receptor loci to permit spatial proximity among the V, D, and J gene segments and how these relate to the generation of antigen receptor diversity.
Collapse
Affiliation(s)
- Amy L Kenter
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
| | - Ann J Feeney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
137
|
Greenwald WW, Li H, Benaglio P, Jakubosky D, Matsui H, Schmitt A, Selvaraj S, D'Antonio M, D'Antonio-Chronowska A, Smith EN, Frazer KA. Subtle changes in chromatin loop contact propensity are associated with differential gene regulation and expression. Nat Commun 2019; 10:1054. [PMID: 30837461 PMCID: PMC6401380 DOI: 10.1038/s41467-019-08940-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/04/2019] [Indexed: 12/13/2022] Open
Abstract
While genetic variation at chromatin loops is relevant for human disease, the relationships between contact propensity (the probability that loci at loops physically interact), genetics, and gene regulation are unclear. We quantitatively interrogate these relationships by comparing Hi-C and molecular phenotype data across cell types and haplotypes. While chromatin loops consistently form across different cell types, they have subtle quantitative differences in contact frequency that are associated with larger changes in gene expression and H3K27ac. For the vast majority of loci with quantitative differences in contact frequency across haplotypes, the changes in magnitude are smaller than those across cell types; however, the proportional relationships between contact propensity, gene expression, and H3K27ac are consistent. These findings suggest that subtle changes in contact propensity have a biologically meaningful role in gene regulation and could be a mechanism by which regulatory genetic variants in loop anchors mediate effects on expression.
Collapse
Affiliation(s)
- William W Greenwald
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - He Li
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Paola Benaglio
- Department of Pediatrics and Rady Children's Hospital, University of California, San Diego, La Jolla, CA, 92093, USA
| | - David Jakubosky
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Biomedical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hiroko Matsui
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | | | - Matteo D'Antonio
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Erin N Smith
- Department of Pediatrics and Rady Children's Hospital, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Kelly A Frazer
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Pediatrics and Rady Children's Hospital, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
138
|
Rauch A, Haakonsson AK, Madsen JGS, Larsen M, Forss I, Madsen MR, Van Hauwaert EL, Wiwie C, Jespersen NZ, Tencerova M, Nielsen R, Larsen BD, Röttger R, Baumbach J, Scheele C, Kassem M, Mandrup S. Osteogenesis depends on commissioning of a network of stem cell transcription factors that act as repressors of adipogenesis. Nat Genet 2019; 51:716-727. [PMID: 30833796 DOI: 10.1038/s41588-019-0359-1] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
Mesenchymal (stromal) stem cells (MSCs) constitute populations of mesodermal multipotent cells involved in tissue regeneration and homeostasis in many different organs. Here we performed comprehensive characterization of the transcriptional and epigenomic changes associated with osteoblast and adipocyte differentiation of human MSCs. We demonstrate that adipogenesis is driven by considerable remodeling of the chromatin landscape and de novo activation of enhancers, whereas osteogenesis involves activation of preestablished enhancers. Using machine learning algorithms for in silico modeling of transcriptional regulation, we identify a large and diverse transcriptional network of pro-osteogenic and antiadipogenic transcription factors. Intriguingly, binding motifs for these factors overlap with SNPs related to bone and fat formation in humans, and knockdown of single members of this network is sufficient to modulate differentiation in both directions, thus indicating that lineage determination is a delicate balance between the activities of many different transcription factors.
Collapse
Affiliation(s)
- Alexander Rauch
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Anders K Haakonsson
- Molecular Endocrinology and Stem Cell Research Unit (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jesper G S Madsen
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mette Larsen
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Isabel Forss
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Martin R Madsen
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Elvira L Van Hauwaert
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Christian Wiwie
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Naja Z Jespersen
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Danish Diabetes Academy, Odense University Hospital, Odense, Denmark
| | - Michaela Tencerova
- Molecular Endocrinology and Stem Cell Research Unit (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Ronni Nielsen
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Bjørk D Larsen
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Richard Röttger
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Jan Baumbach
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark.,Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Camilla Scheele
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Moustapha Kassem
- Molecular Endocrinology and Stem Cell Research Unit (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Susanne Mandrup
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
139
|
Gérard D, Schmidt F, Ginolhac A, Schmitz M, Halder R, Ebert P, Schulz MH, Sauter T, Sinkkonen L. Temporal enhancer profiling of parallel lineages identifies AHR and GLIS1 as regulators of mesenchymal multipotency. Nucleic Acids Res 2019; 47:1141-1163. [PMID: 30544251 PMCID: PMC6380961 DOI: 10.1093/nar/gky1240] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 11/23/2018] [Accepted: 12/03/2018] [Indexed: 01/04/2023] Open
Abstract
Temporal data on gene expression and context-specific open chromatin states can improve identification of key transcription factors (TFs) and the gene regulatory networks (GRNs) controlling cellular differentiation. However, their integration remains challenging. Here, we delineate a general approach for data-driven and unbiased identification of key TFs and dynamic GRNs, called EPIC-DREM. We generated time-series transcriptomic and epigenomic profiles during differentiation of mouse multipotent bone marrow stromal cell line (ST2) toward adipocytes and osteoblasts. Using our novel approach we constructed time-resolved GRNs for both lineages and identifed the shared TFs involved in both differentiation processes. To take an alternative approach to prioritize the identified shared regulators, we mapped dynamic super-enhancers in both lineages and associated them to target genes with correlated expression profiles. The combination of the two approaches identified aryl hydrocarbon receptor (AHR) and Glis family zinc finger 1 (GLIS1) as mesenchymal key TFs controlled by dynamic cell type-specific super-enhancers that become repressed in both lineages. AHR and GLIS1 control differentiation-induced genes and their overexpression can inhibit the lineage commitment of the multipotent bone marrow-derived ST2 cells.
Collapse
Affiliation(s)
- Deborah Gérard
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Florian Schmidt
- Excellence Cluster for Multimodal Computing and Interaction, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Computational Biology & Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Aurélien Ginolhac
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Martine Schmitz
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Rashi Halder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, L-4362, Luxembourg
| | - Peter Ebert
- Computational Biology & Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Marcel H Schulz
- Excellence Cluster for Multimodal Computing and Interaction, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Computational Biology & Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Thomas Sauter
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Lasse Sinkkonen
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| |
Collapse
|
140
|
Panigrahi AK, Foulds CE, Lanz RB, Hamilton RA, Yi P, Lonard DM, Tsai MJ, Tsai SY, O'Malley BW. SRC-3 Coactivator Governs Dynamic Estrogen-Induced Chromatin Looping Interactions during Transcription. Mol Cell 2019; 70:679-694.e7. [PMID: 29775582 DOI: 10.1016/j.molcel.2018.04.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/15/2018] [Accepted: 04/18/2018] [Indexed: 01/09/2023]
Abstract
Enhancers are thought to activate transcription by physically contacting promoters via looping. However, direct assays demonstrating these contacts are required to mechanistically verify such cellular determinants of enhancer function. Here, we present versatile cell-free assays to further determine the role of enhancer-promoter contacts (EPCs). We demonstrate that EPC is linked to mutually stimulatory transcription at the enhancer and promoter in vitro. SRC-3 was identified as a critical looping determinant for the estradiol-(E2)-regulated GREB1 locus. Surprisingly, the GREB1 enhancer and promoter contact two internal gene body SRC-3 binding sites, GBS1 and GBS2, which stimulate their transcription. Utilizing time-course 3C assays, we uncovered SRC-3-dependent dynamic chromatin interactions involving the enhancer, promoter, GBS1, and GBS2. Collectively, these data suggest that the enhancer and promoter remain "poised" for transcription via their contacts with GBS1 and GBS2. Upon E2 induction, GBS1 and GBS2 disengage from the enhancer, allowing direct EPC for active transcription.
Collapse
Affiliation(s)
- Anil K Panigrahi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Center for Precision Environmental Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Rainer B Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ross A Hamilton
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ping Yi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Sophia Y Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
141
|
Hansen P, Ali S, Blau H, Danis D, Hecht J, Kornak U, Lupiáñez DG, Mundlos S, Steinhaus R, Robinson PN. GOPHER: Generator Of Probes for capture Hi-C Experiments at high Resolution. BMC Genomics 2019; 20:40. [PMID: 30642251 PMCID: PMC6332836 DOI: 10.1186/s12864-018-5376-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/16/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Target enrichment combined with chromosome conformation capturing methodologies such as capture Hi-C (CHC) can be used to investigate spatial layouts of genomic regions with high resolution and at scalable costs. A common application of CHC is the investigation of regulatory elements that are in contact with promoters, but CHC can be used for a range of other applications. Therefore, probe design for CHC needs to be adapted to experimental needs, but no flexible tool is currently available for this purpose. RESULTS We present a Java desktop application called GOPHER (Generator Of Probes for capture Hi-C Experiments at high Resolution) that implements three strategies for CHC probe design. GOPHER's simple approach is similar to the probe design of previous approaches that employ CHC to investigate all promoters, with one probe being placed at each margin of a single digest that overlaps the transcription start site (TSS) of each promoter. GOPHER's simple-patched approach extends this methodology with a heuristic that improves coverage of viewpoints in which the TSS is located near to one of the boundaries of the digest. GOPHER's extended approach is intended mainly for focused investigations of smaller gene sets. GOPHER can also be used to design probes for regions other than TSS such as GWAS hits or large blocks of genomic sequence. GOPHER additionally provides a number of features that allow users to visualize and edit viewpoints, and outputs a range of files useful for documentation, ordering probes, and downstream analysis. CONCLUSION GOPHER is an easy-to-use and robust desktop application for CHC probe design. Source code and a precompiled executable can be downloaded from the GOPHER GitHub page at https://github.com/TheJacksonLaboratory/Gopher .
Collapse
Affiliation(s)
- Peter Hansen
- Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Salaheddine Ali
- Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, Berlin, 14195, Germany
| | - Hannah Blau
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, 06032, CT, United States
| | - Daniel Danis
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, 06032, CT, United States
| | - Jochen Hecht
- Genomics Unit, Centre for Genomic Regulation, Carrer del Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, 13353, Germany.,Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, 13125, Germany
| | - Stefan Mundlos
- Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, 13353, Germany.,Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, Berlin, 14195, Germany.,Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Robin Steinhaus
- Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, 06032, CT, United States. .,Institute for Systems Genomics, University of Connecticut, Farmington, 06032, CT, United States.
| |
Collapse
|
142
|
Wnt3a disrupts GR-TEAD4-PPARγ2 positive circuits and cytoskeletal rearrangement in a β-catenin-dependent manner during early adipogenesis. Cell Death Dis 2019; 10:16. [PMID: 30622240 PMCID: PMC6325140 DOI: 10.1038/s41419-018-1249-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/25/2018] [Accepted: 11/30/2018] [Indexed: 11/09/2022]
Abstract
Adipogenesis is a process which induces or represses many genes in a way to drive irreversible changes of cell phenotypes; lipid accumulation, round cell-shape, secreting many adipokines. As a master transcription factor (TF), PPARγ2 induces several target genes to orchestrate these adipogenic changes. Thus induction of Pparg2 gene is tightly regulated by many adipogenic and also anti-adipogenic factors. Four hours after the treatment of adipogenic hormones, more than fifteen TFs including glucocorticoid receptor (GR), C/EBPβ and AP-1 cooperatively bind the promoter of Pparg2 gene covering 400 bps, termed "hotspot". In this study, we show that TEA domain family transcription factor (TEAD)4 reinforces occupancy of both GR and C/EBPβ on the hotspot of Pparg2 during early adipogenesis. Our findings that TEAD4 requires GR for its expression and for the ability to bind its own promoter and the hotspot region of Pparg2 gene indicate that GR is a common component of two positive circuits, which regulates the expression of both Tead4 and Pparg2. Wnt3a disrupts these mutually related positive circuits by limiting the nuclear location of GR in a β-catenin dependent manner. The antagonistic effects of β-catenin extend to cytoskeletal remodeling during the early phase of adipogenesis. GR is necessary for the rearrangements of both cytoskeleton and chromatin of Pparg2, whereas Wnt3a inhibits both processes in a β-catenin-dependent manner. Our results suggest that hotspot formation during early adipogenesis is related to cytoskeletal remodeling, which is regulated by the antagonistic action of GR and β-catenin, and that Wnt3a reinforces β-catenin function.
Collapse
|
143
|
Raviram R, Rocha PP, Luo VM, Swanzey E, Miraldi ER, Chuong EB, Feschotte C, Bonneau R, Skok JA. Analysis of 3D genomic interactions identifies candidate host genes that transposable elements potentially regulate. Genome Biol 2018; 19:216. [PMID: 30541598 PMCID: PMC6292174 DOI: 10.1186/s13059-018-1598-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 11/28/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The organization of chromatin in the nucleus plays an essential role in gene regulation. About half of the mammalian genome comprises transposable elements. Given their repetitive nature, reads associated with these elements are generally discarded or randomly distributed among elements of the same type in genome-wide analyses. Thus, it is challenging to identify the activities and properties of individual transposons. As a result, we only have a partial understanding of how transposons contribute to chromatin folding and how they impact gene regulation. RESULTS Using PCR and Capture-based chromosome conformation capture (3C) approaches, collectively called 4Tran, we take advantage of the repetitive nature of transposons to capture interactions from multiple copies of endogenous retrovirus (ERVs) in the human and mouse genomes. With 4Tran-PCR, reads are selectively mapped to unique regions in the genome. This enables the identification of transposable element interaction profiles for individual ERV families and integration events specific to particular genomes. With this approach, we demonstrate that transposons engage in long-range intra-chromosomal interactions guided by the separation of chromosomes into A and B compartments as well as topologically associated domains (TADs). In contrast to 4Tran-PCR, Capture-4Tran can uniquely identify both ends of an interaction that involve retroviral repeat sequences, providing a powerful tool for uncovering the individual transposable element insertions that interact with and potentially regulate target genes. CONCLUSIONS 4Tran provides new insight into the manner in which transposons contribute to chromosome architecture and identifies target genes that transposable elements can potentially control.
Collapse
Affiliation(s)
- Ramya Raviram
- Department of Pathology, New York University School of Medicine, New York, NY 10016 USA
- Department of Biology, New York University, New York, NY 10003 USA
- Ludwig Institute for Cancer Research, La Jolla, CA USA
| | - Pedro P. Rocha
- Department of Pathology, New York University School of Medicine, New York, NY 10016 USA
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892 USA
| | - Vincent M. Luo
- Department of Pathology, New York University School of Medicine, New York, NY 10016 USA
- Department of Biology, New York University, New York, NY 10003 USA
| | - Emily Swanzey
- Department of Developmental Genetics, New York University School of Medicine, New York, NY 10016 USA
| | - Emily R. Miraldi
- Department of Biology, New York University, New York, NY 10003 USA
- Department of Computer Science, Courant Institute of Mathematical Sciences, New York, NY 10003 USA
- Simons Center for Data Analysis, New York, NY 10010 USA
- Divisions of Immunobiology and Biomedical Informatics, Cincinnati Children’s Hospital, Cincinnati, OH 45229 USA
| | - Edward B. Chuong
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309 USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850 USA
| | - Richard Bonneau
- Department of Biology, New York University, New York, NY 10003 USA
- Department of Computer Science, Courant Institute of Mathematical Sciences, New York, NY 10003 USA
- Simons Center for Data Analysis, New York, NY 10010 USA
| | - Jane A. Skok
- Department of Pathology, New York University School of Medicine, New York, NY 10016 USA
| |
Collapse
|
144
|
Hall DD, Spitler KM, Grueter CE. Disruption of cardiac Med1 inhibits RNA polymerase II promoter occupancy and promotes chromatin remodeling. Am J Physiol Heart Circ Physiol 2018; 316:H314-H325. [PMID: 30461303 DOI: 10.1152/ajpheart.00580.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Mediator coactivator complex directs gene-specific expression by binding distal enhancer-bound transcription factors through its Med1 subunit while bridging to RNA polymerase II (Pol II) at gene promoters. In addition, Mediator scaffolds epigenetic modifying enzymes that determine local DNA accessibility. Previously, we found that deletion of Med1 in cardiomyocytes deregulates more than 5,000 genes and promotes acute heart failure. Therefore, we hypothesized that Med1 deficiency disrupts enhancer-promoter coupling. Using chromatin immunoprecipitation-coupled deep sequencing (ChIP-seq; n = 3/ChIP assay), we found that the Pol II pausing index is increased in Med1 knockout versus floxed control mouse hearts primarily due to a decrease in Pol II occupancy at the majority of transcriptional start sites without a corresponding increase in elongating species. Parallel ChIP-seq assays reveal that Med1-dependent gene expression correlates strongly with histone H3 K27 acetylation, which is indicative of open and active chromatin at transcriptional start sites, whereas H3 K27 trimethylated levels, representing condensed and repressed DNA, are broadly increased and inversely correlate with absolute expression levels. Furthermore, Med1 deletion leads to dynamic changes in acetyl-K27 associated superenhancer regions and their enriched transcription factor-binding motifs that are consistent with altered gene expression. Our findings suggest that Med1 is important in establishing enhancer-promoter coupling in the heart and supports the proposed role of Mediator in establishing preinitiation complex formation. We also found that Med1 determines chromatin accessibility within genes and enhancer regions and propose that the composition of transcription factors associated with superenhancer changes to direct gene-specific expression. NEW & NOTEWORTHY Based on our previous findings that transcriptional homeostasis and cardiac function are disturbed by cardiomyocyte deletion of the Mediator coactivator Med1 subunit, we investigated potential underlying changes in RNA polymerase II localization and global chromatin accessibility. Using chromatin immunoprecipitation sequencing, we found that disrupted transcription arises from a deficit in RNA polymerase II recruitment to gene promoters. Furthermore, active versus repressive chromatin marks are redistributed within gene loci and at enhancer regions correlated with gene expression changes.
Collapse
Affiliation(s)
- Duane D Hall
- Division of Cardiovascular Medicine, Department of Internal Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine , Iowa City, Iowa
| | - Kathryn M Spitler
- Division of Cardiovascular Medicine, Department of Internal Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine , Iowa City, Iowa
| | - Chad E Grueter
- Division of Cardiovascular Medicine, Department of Internal Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine , Iowa City, Iowa
| |
Collapse
|
145
|
Zhang S, Wang L, Li S, Zhang W, Ma X, Cheng G, Yang W, Zan L. Identification of Potential Key Genes Associated with Adipogenesis through Integrated Analysis of Five Mouse Transcriptome Datasets. Int J Mol Sci 2018; 19:ijms19113557. [PMID: 30424473 PMCID: PMC6274731 DOI: 10.3390/ijms19113557] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 01/12/2023] Open
Abstract
Adipose tissue is the most important energy metabolism and secretion organ, and these functions are conferred during the adipogenesis process. However, the cause and the molecular events underlying adipogenesis are still unclear. In this study, we performed integrated bioinformatics analyses to identify vital genes involved in adipogenesis and reveal potential molecular mechanisms. Five mouse high-throughput expression profile datasets were downloaded from the Gene Expression Omnibus (GEO) database; these datasets contained 24 samples of 3T3-L1 cells during adipogenesis, including 12 undifferentiated samples and 12 differentiated samples. The five datasets were reanalyzed and integrated to select differentially expressed genes (DEGs) during adipogenesis via the robust rank aggregation (RRA) method. Functional annotation of these DEGs and mining of key genes were then performed. We also verified the expression levels of some potential key genes during adipogenesis. A total of 386 consistent DEGs were identified, with 230 upregulated genes and 156 downregulated genes. Gene Ontology (GO) analysis showed that the biological functions of the DEGs primarily included fat cell differentiation, lipid metabolic processes, and cell adhesion. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these DEGs were mainly associated with metabolic pathways, the peroxisome proliferator-activated receptor (PPAR) signaling pathway, regulation of lipolysis in adipocytes, the tumor necrosis factor (TNF) signaling pathway, and the FoxO signaling pathway. The 30 most closely related genes among the DEGs were identified from the protein⁻protein interaction (PPI) network and verified by real-time quantification during 3T3-L1 preadipocyte differentiation. In conclusion, we obtained a list of consistent DEGs during adipogenesis through integrated analysis, which may offer potential targets for the regulation of adipogenesis and treatment of adipose dysfunction.
Collapse
Affiliation(s)
- Song Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Li Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Shijun Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Wenzhen Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Xueyao Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
146
|
He M, Li Y, Tang Q, Li D, Jin L, Tian S, Che T, He S, Deng L, Gao G, Gu Y, Jiang Z, Li X, Li M. Genome-Wide Chromatin Structure Changes During Adipogenesis and Myogenesis. Int J Biol Sci 2018; 14:1571-1585. [PMID: 30263009 PMCID: PMC6158721 DOI: 10.7150/ijbs.25328] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/29/2018] [Indexed: 12/14/2022] Open
Abstract
The recently developed high-throughput chromatin conformation capture (Hi-C) technology enables us to explore the spatial architecture of genomes, which is increasingly considered an important regulator of gene expression. To investigate the changes in three-dimensional (3D) chromatin structure and its mediated gene expression during adipogenesis and myogenesis, we comprehensively mapped 3D chromatin organization for four cell types (3T3-L1 pre-adipocytes, 3T3-L1-D adipocytes, C2C12 myoblasts, and C2C12-D myotubes). We demonstrate that the dynamic spatial genome architecture affected gene expression during cell differentiation. A considerable proportion (~22%) of the mouse genome underwent compartment A/B rearrangement during adipogenic and myogenic differentiation, and most (~80%) upregulated marker genes exhibited an active chromatin state with B to A switch or stable A compartment. More than half (65.4%-73.2%) of the topologically associating domains (TADs) are dynamic. The newly formed TAD and intensified local interactions in the Fabp gene cluster indicated more precise structural regulation of the expression of pro-differentiation genes during adipogenesis. About half (32.39%-59.04%) of the differential chromatin interactions (DCIs) during differentiation are promoter interactions, although these DCIs only account for a small proportion of genome-wide interactions (~9.67% in adipogenesis and ~4.24% in myogenesis). These differential promoter interactions were enriched with promoter-enhancer interactions (PEIs), which were mediated by typical adipogenic and myogenic transcription factors. Differential promoter interactions also included more differentially expressed genes than nonpromoter interactions. Our results provide a global view of dynamic chromatin interactions during adipogenesis and myogenesis and are a resource for studying long-range chromatin interactions mediating the expression of pro-differentiation genes.
Collapse
Affiliation(s)
- Mengnan He
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Diyan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shilin Tian
- Novogene Bioinformatics Institute, Beijing 100089, China
| | - Tiandong Che
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shen He
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lamei Deng
- Novogene Bioinformatics Institute, Beijing 100089, China
| | - Guangliang Gao
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.,Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Yiren Gu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Pig Science Institute, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Zhi Jiang
- Novogene Bioinformatics Institute, Beijing 100089, China
| | - Xuewei Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
147
|
p53 Functions in Adipose Tissue Metabolism and Homeostasis. Int J Mol Sci 2018; 19:ijms19092622. [PMID: 30181511 PMCID: PMC6165290 DOI: 10.3390/ijms19092622] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 12/25/2022] Open
Abstract
As a tumor suppressor and the most frequently mutated gene in cancer, p53 is among the best-described molecules in medical research. As cancer is in most cases an age-related disease, it seems paradoxical that p53 is so strongly conserved from early multicellular organisms to humans. A function not directly related to tumor suppression, such as the regulation of metabolism in nontransformed cells, could explain this selective pressure. While this role of p53 in cellular metabolism is gradually emerging, it is imperative to dissect the tissue- and cell-specific actions of p53 and its downstream signaling pathways. In this review, we focus on studies reporting p53’s impact on adipocyte development, function, and maintenance, as well as the causes and consequences of altered p53 levels in white and brown adipose tissue (AT) with respect to systemic energy homeostasis. While whole body p53 knockout mice gain less weight and fat mass under a high-fat diet owing to increased energy expenditure, modifying p53 expression specifically in adipocytes yields more refined insights: (1) p53 is a negative regulator of in vitro adipogenesis; (2) p53 levels in white AT are increased in diet-induced and genetic obesity mouse models and in obese humans; (3) functionally, elevated p53 in white AT increases senescence and chronic inflammation, aggravating systemic insulin resistance; (4) p53 is not required for normal development of brown AT; and (5) when p53 is activated in brown AT in mice fed a high-fat diet, it increases brown AT temperature and brown AT marker gene expression, thereby contributing to reduced fat mass accumulation. In addition, p53 is increasingly being recognized as crucial player in nutrient sensing pathways. Hence, despite existence of contradictory findings and a varying density of evidence, several functions of p53 in adipocytes and ATs have been emerging, positioning p53 as an essential regulatory hub in ATs. Future studies need to make use of more sophisticated in vivo model systems and should identify an AT-specific set of p53 target genes and downstream pathways upon different (nutrient) challenges to identify novel therapeutic targets to curb metabolic diseases.
Collapse
|
148
|
Wu B, Sun X, Gupta HB, Yuan B, Li J, Ge F, Chiang HC, Zhang X, Zhang C, Zhang D, Yang J, Hu Y, Curiel TJ, Li R. Adipose PD-L1 Modulates PD-1/PD-L1 Checkpoint Blockade Immunotherapy Efficacy in Breast Cancer. Oncoimmunology 2018; 7:e1500107. [PMID: 30393583 PMCID: PMC6209395 DOI: 10.1080/2162402x.2018.1500107] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/03/2018] [Accepted: 07/07/2018] [Indexed: 12/31/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) and its receptor programmed cell death protein 1 (PD-1) modulate antitumor immunity and are major targets of checkpoint blockade immunotherapy. However, clinical trials of anti-PD-L1 and anti-PD-1 antibodies in breast cancer demonstrate only modest efficacy. Furthermore, specific PD-L1 contributions in various tissue and cell compartments to antitumor immunity remain incompletely elucidated. Here we show that PD-L1 expression is markedly elevated in mature adipocytes versus preadipocytes. Adipocyte PD-L1 prevents anti-PD-L1 antibody from activating important antitumor functions of CD8+ T cells in vitro. Adipocyte PD-L1 ablation obliterates, whereas forced preadipocyte PD-L1 expression confers, these inhibitory effects. Pharmacologic inhibition of adipogenesis selectively reduces PD-L1 expression in mouse adipose tissue and enhances the antitumor efficacy of anti-PD-L1 or anti-PD-1 antibodies in syngeneic mammary tumor models. Our findings provide a previously unappreciated approach to bolster anticancer immunotherapy efficacy and suggest a mechanism for the role of adipose tissue in breast cancer progression.
Collapse
Affiliation(s)
- Bogang Wu
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Xiujie Sun
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Harshita B. Gupta
- Department of Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Bin Yuan
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Jingwei Li
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Fei Ge
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Huai-Chin Chiang
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Xiaowen Zhang
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Chi Zhang
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Deyi Zhang
- Department of Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Jing Yang
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Yanfen Hu
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Tyler J. Curiel
- Department of Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Rong Li
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| |
Collapse
|
149
|
Elster D, Tollot M, Schlegelmilch K, Ori A, Rosenwald A, Sahai E, von Eyss B. TRPS1 shapes YAP/TEAD-dependent transcription in breast cancer cells. Nat Commun 2018; 9:3115. [PMID: 30082728 PMCID: PMC6079100 DOI: 10.1038/s41467-018-05370-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 07/03/2018] [Indexed: 12/25/2022] Open
Abstract
Yes-associated protein (YAP), the downstream transducer of the Hippo pathway, is a key regulator of organ size, differentiation and tumorigenesis. To uncover Hippo-independent YAP regulators, we performed a genome-wide CRISPR screen that identifies the transcriptional repressor protein Trichorhinophalangeal Syndrome 1 (TRPS1) as a potent repressor of YAP-dependent transactivation. We show that TRPS1 globally regulates YAP-dependent transcription by binding to a large set of joint genomic sites, mainly enhancers. TRPS1 represses YAP-dependent function by recruiting a spectrum of corepressor complexes to joint sites. Loss of TRPS1 leads to activation of enhancers due to increased H3K27 acetylation and an altered promoter-enhancer interaction landscape. TRPS1 is commonly amplified in breast cancer, which suggests that restrained YAP activity favours tumour growth. High TRPS1 activity is associated with decreased YAP activity and leads to decreased frequency of tumour-infiltrating immune cells. Our study uncovers TRPS1 as an epigenetic regulator of YAP activity in breast cancer.
Collapse
Affiliation(s)
- Dana Elster
- Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Beutenbergstr. 11, 07745, Jena, Germany
| | - Marie Tollot
- Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Beutenbergstr. 11, 07745, Jena, Germany
| | - Karin Schlegelmilch
- Tumour Cell Biology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Alessandro Ori
- Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Beutenbergstr. 11, 07745, Jena, Germany
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg, and Comprehensive Cancer Center Mainfranken (CCCMF), Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Erik Sahai
- Tumour Cell Biology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Björn von Eyss
- Leibniz Institute on Aging, Fritz Lipmann Institute e.V., Beutenbergstr. 11, 07745, Jena, Germany.
| |
Collapse
|
150
|
Montefiori LE, Sobreira DR, Sakabe NJ, Aneas I, Joslin AC, Hansen GT, Bozek G, Moskowitz IP, McNally EM, Nóbrega MA. A promoter interaction map for cardiovascular disease genetics. eLife 2018; 7:e35788. [PMID: 29988018 PMCID: PMC6053306 DOI: 10.7554/elife.35788] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022] Open
Abstract
Over 500 genetic loci have been associated with risk of cardiovascular diseases (CVDs); however, most loci are located in gene-distal non-coding regions and their target genes are not known. Here, we generated high-resolution promoter capture Hi-C (PCHi-C) maps in human induced pluripotent stem cells (iPSCs) and iPSC-derived cardiomyocytes (CMs) to provide a resource for identifying and prioritizing the functional targets of CVD associations. We validate these maps by demonstrating that promoters preferentially contact distal sequences enriched for tissue-specific transcription factor motifs and are enriched for chromatin marks that correlate with dynamic changes in gene expression. Using the CM PCHi-C map, we linked 1999 CVD-associated SNPs to 347 target genes. Remarkably, more than 90% of SNP-target gene interactions did not involve the nearest gene, while 40% of SNPs interacted with at least two genes, demonstrating the importance of considering long-range chromatin interactions when interpreting functional targets of disease loci.
Collapse
Affiliation(s)
| | - Debora R Sobreira
- Department of Human GeneticsThe University of ChicagoChicagoUnited States
| | - Noboru J Sakabe
- Department of Human GeneticsThe University of ChicagoChicagoUnited States
| | - Ivy Aneas
- Department of Human GeneticsThe University of ChicagoChicagoUnited States
| | - Amelia C Joslin
- Department of Human GeneticsThe University of ChicagoChicagoUnited States
| | - Grace T Hansen
- Department of Human GeneticsThe University of ChicagoChicagoUnited States
| | - Grazyna Bozek
- Department of Human GeneticsThe University of ChicagoChicagoUnited States
| | - Ivan P Moskowitz
- Department of Human GeneticsThe University of ChicagoChicagoUnited States
- Department of Pediatrics and PathologyThe University of ChicagoChicagoUnited States
| | - Elizabeth M McNally
- Center for Genetic MedicineNorthwestern University Feinberg School of MedicineChicagoUnited States
| | - Marcelo A Nóbrega
- Department of Human GeneticsThe University of ChicagoChicagoUnited States
| |
Collapse
|