101
|
Qin L, Ahn KJ, Wine Lee L, de Charleroy C, Crenshaw EB. Analyses with double knockouts of the Bmpr1a and Bmpr1b genes demonstrate that BMP signaling is involved in the formation of precerebellar mossy fiber nuclei derived from the rhombic lip. PLoS One 2019; 14:e0226602. [PMID: 31869353 PMCID: PMC6927620 DOI: 10.1371/journal.pone.0226602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/01/2019] [Indexed: 11/25/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) have been hypothesized to specify distinct dorsal neural fates. During neural development, BMPs are expressed in the roof plate and adjacent neuroepithelium. Because several hindbrain nuclei that form the proprioceptive/vestibular/auditory sensory network originate from the rhombic lip, near the roof plate, BMP signaling may regulate the development of these nuclei. To test this hypothesis genetically, we have examined the development of the hindbrain in BMP type I receptor knockout mice. Our results demonstrate that BMP signaling is involved in the formation of precerebellar mossy fiber nuclei, which give rise to cerebellar mossy fibers, but is not required for the development of the inferior olivary nucleus, which gives rise to cerebellar climbing fibers.
Collapse
Affiliation(s)
- Lihua Qin
- Division of Pediatric Otolaryngology, Mammalian Neurogenetics Group, Center for Childhood Communication, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Kyung J. Ahn
- Division of Pediatric Otolaryngology, Mammalian Neurogenetics Group, Center for Childhood Communication, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Lara Wine Lee
- Division of Pediatric Otolaryngology, Mammalian Neurogenetics Group, Center for Childhood Communication, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Neuroscience Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Charles de Charleroy
- Division of Pediatric Otolaryngology, Mammalian Neurogenetics Group, Center for Childhood Communication, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - E. Bryan Crenshaw
- Division of Pediatric Otolaryngology, Mammalian Neurogenetics Group, Center for Childhood Communication, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Neuroscience Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Otorhinolaryngology, Head and Neck Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
102
|
Ocasio J, Babcock B, Malawsky D, Weir SJ, Loo L, Simon JM, Zylka MJ, Hwang D, Dismuke T, Sokolsky M, Rosen EP, Vibhakar R, Zhang J, Saulnier O, Vladoiu M, El-Hamamy I, Stein LD, Taylor MD, Smith KS, Northcott PA, Colaneri A, Wilhelmsen K, Gershon TR. scRNA-seq in medulloblastoma shows cellular heterogeneity and lineage expansion support resistance to SHH inhibitor therapy. Nat Commun 2019; 10:5829. [PMID: 31863004 PMCID: PMC6925218 DOI: 10.1038/s41467-019-13657-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/14/2019] [Indexed: 01/23/2023] Open
Abstract
Targeting oncogenic pathways holds promise for brain tumor treatment, but inhibition of Sonic Hedgehog (SHH) signaling has failed in SHH-driven medulloblastoma. Cellular diversity within tumors and reduced lineage commitment can undermine targeted therapy by increasing the probability of treatment-resistant populations. Using single-cell RNA-seq and lineage tracing, we analyzed cellular diversity in medulloblastomas in transgenic, medulloblastoma-prone mice, and responses to the SHH-pathway inhibitor vismodegib. In untreated tumors, we find expected stromal cells and tumor-derived cells showing either a spectrum of neural progenitor-differentiation states or glial and stem cell markers. Vismodegib reduces the proliferative population and increases differentiation. However, specific cell types in vismodegib-treated tumors remain proliferative, showing either persistent SHH-pathway activation or stem cell characteristics. Our data show that even in tumors with a single pathway-activating mutation, diverse mechanisms drive tumor growth. This diversity confers early resistance to targeted inhibitor therapy, demonstrating the need to target multiple pathways simultaneously. Although the hedgehog (HH) pathway is known to be deregulated in medulloblastoma, inhibitors of the pathway have shown disappointing clinical benefit. Using single-cell sequencing in a mouse model of the disease, the authors show that the response to the HH pathway inhibitor vismodegib is cell-type specific.
Collapse
Affiliation(s)
- Jennifer Ocasio
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA.,UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Benjamin Babcock
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA.,Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Daniel Malawsky
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Seth J Weir
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Lipin Loo
- UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA.,Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Jeremy M Simon
- UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA.,Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Mark J Zylka
- UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA.,Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Duhyeong Hwang
- UNC Eshelman School of Pharmacy, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Taylor Dismuke
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Marina Sokolsky
- UNC Eshelman School of Pharmacy, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Elias P Rosen
- UNC Eshelman School of Pharmacy, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Jiao Zhang
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Olivier Saulnier
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Maria Vladoiu
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Ibrahim El-Hamamy
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 0A4, Canada.,Program in Computational Biology, Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
| | - Lincoln D Stein
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 0A4, Canada.,Program in Computational Biology, Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
| | - Michael D Taylor
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, M5S 3E1, Canada
| | - Kyle S Smith
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alejandro Colaneri
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA.,Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Kirk Wilhelmsen
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA. .,Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA. .,Renaissance Computing Institute at UNC (RENCI), Chapel Hill, NC, 27517, USA.
| | - Timothy R Gershon
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA. .,UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA. .,Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
103
|
Alexander CJ, Hammer JA. An Improved Method for Differentiating Mouse Embryonic Stem Cells into Cerebellar Purkinje Neurons. THE CEREBELLUM 2019; 18:406-421. [PMID: 30729383 DOI: 10.1007/s12311-019-1007-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While mixed primary cerebellar cultures prepared from embryonic tissue have proven valuable for dissecting structure-function relationships in cerebellar Purkinje neurons (PNs), this technique is technically challenging and often yields few cells. Recently, mouse embryonic stem cells (mESCs) have been successfully differentiated into PNs, although the published methods are very challenging as well. The focus of this study was to simplify the differentiation of mESCs into PNs. Using a recently described neural differentiation media, we generate monolayers of neural progenitor cells from mESCs and differentiate them into PN precursors using specific extrinsic factors. These PN precursors are then differentiated into mature PNs by co-culturing them with granule neuron (GN) precursors also derived from neural progenitors using different extrinsic factors. The morphology of mESC-derived PNs is indistinguishable from PNs grown in primary culture in terms of gross morphology, spine length, and spine density. Furthermore, mESC-derived PNs express Calbindin D28K, IP3R1, IRBIT, PLCβ4, PSD93, and myosin IIB-B2, all of which are either PN-specific or highly expressed in PNs. Moreover, we show that mESC-derived PNs form synapses with GN-like cells as in primary culture, express proteins driven by the PN-specific promoter Pcp2/L7, and exhibit the defect in spine ER inheritance seen in PNs isolated from dilute-lethal (myosin Va-null) mice when expressing a Pcp2/L7-driven miRNA directed against myosin Va. Finally, we define a novel extracellular matrix formulation that reproducibly yields monolayer cultures conducive for high-resolution imaging. Our improved method for differentiating mESCs into PNs should facilitate the dissection of molecular mechanisms and disease phenotypes in PNs.
Collapse
Affiliation(s)
- Christopher J Alexander
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - John A Hammer
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
104
|
Willett RT, Bayin NS, Lee AS, Krishnamurthy A, Wojcinski A, Lao Z, Stephen D, Rosello-Diez A, Dauber-Decker KL, Orvis GD, Wu Z, Tessier-Lavigne M, Joyner AL. Cerebellar nuclei excitatory neurons regulate developmental scaling of presynaptic Purkinje cell number and organ growth. eLife 2019; 8:e50617. [PMID: 31742552 PMCID: PMC6890462 DOI: 10.7554/elife.50617] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/18/2019] [Indexed: 01/17/2023] Open
Abstract
For neural systems to function effectively, the numbers of each cell type must be proportioned properly during development. We found that conditional knockout of the mouse homeobox genes En1 and En2 in the excitatory cerebellar nuclei neurons (eCN) leads to reduced postnatal growth of the cerebellar cortex. A subset of medial and intermediate eCN are lost in the mutants, with an associated cell non-autonomous loss of their presynaptic partner Purkinje cells by birth leading to proportional scaling down of neuron production in the postnatal cerebellar cortex. Genetic killing of embryonic eCN throughout the cerebellum also leads to loss of Purkinje cells and reduced postnatal growth but throughout the cerebellar cortex. Thus, the eCN play a key role in scaling the size of the cerebellum by influencing the survival of their Purkinje cell partners, which in turn regulate production of granule cells and interneurons via the amount of sonic hedgehog secreted.
Collapse
Affiliation(s)
- Ryan T Willett
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
| | - N Sumru Bayin
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
| | - Andrew S Lee
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
- Neuroscience ProgramWeill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | - Anjana Krishnamurthy
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
- Neuroscience ProgramWeill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | | | - Zhimin Lao
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
| | - Daniel Stephen
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
| | | | | | - Grant D Orvis
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
| | - Zhuhao Wu
- The Laboratory of Brain Development and RepairThe Rockefeller UniversityNew YorkUnited States
| | - Marc Tessier-Lavigne
- The Laboratory of Brain Development and RepairThe Rockefeller UniversityNew YorkUnited States
| | - Alexandra L Joyner
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
- Neuroscience ProgramWeill Cornell Graduate School of Medical SciencesNew YorkUnited States
- Biochemistry, Cell and Molecular Biology ProgramWeill Cornell Graduate School of Medical SciencesNew YorkUnited States
| |
Collapse
|
105
|
Ocasio JK, Bates RDP, Rapp CD, Gershon TR. GSK-3 modulates SHH-driven proliferation in postnatal cerebellar neurogenesis and medulloblastoma. Development 2019; 146:dev.177550. [PMID: 31540917 DOI: 10.1242/dev.177550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/04/2019] [Indexed: 12/28/2022]
Abstract
Cerebellar development requires regulated proliferation of cerebellar granule neuron progenitors (CGNPs). Inadequate CGNP proliferation causes cerebellar hypoplasia whereas excessive CGNP proliferation can cause medulloblastoma, the most common malignant pediatric brain tumor. Although sonic hedgehog (SHH) signaling is known to activate CGNP proliferation, the mechanisms downregulating proliferation are less defined. We investigated CGNP regulation by GSK-3, which downregulates proliferation in the forebrain, gut and breast by suppressing mitogenic WNT signaling in mouse. In striking contrast to these systems, we found that co-deleting Gsk3a and Gsk3b blocked CGNP proliferation, causing severe cerebellar hypoplasia. The GSK-3 inhibitor CHIR-98014 similarly downregulated SHH-driven proliferation. Transcriptomic analysis showed activated WNT signaling and upregulated Cdkn1a in Gsk3a/b -deleted CGNPs. Ctnnb co-deletion increased CGNP proliferation and rescued cerebellar hypoproliferation in Gsk3a/b mutants, demonstrating physiological control of CGNPs by GSK-3, mediated through WNT. SHH-driven medulloblastomas similarly required GSK-3, as co-deleting Gsk3a/b blocked tumor growth in medulloblastoma-prone SmoM2 mice. These data show that a GSK-3/WNT axis modulates the developmental proliferation of CGNPs and the pathological growth of SHH-driven medulloblastoma. The requirement for GSK-3 in SHH-driven proliferation suggests that GSK-3 may be targeted for SHH-driven medulloblastoma therapy.
Collapse
Affiliation(s)
- Jennifer K Ocasio
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA .,Department of Neurology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rolf Dale P Bates
- Department of Neurology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Carolyn D Rapp
- Department of Neurology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Timothy R Gershon
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA .,Department of Neurology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
106
|
Gill JS, Sillitoe RV. Functional Outcomes of Cerebellar Malformations. Front Cell Neurosci 2019; 13:441. [PMID: 31636540 PMCID: PMC6787289 DOI: 10.3389/fncel.2019.00441] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
The cerebellum is well-established as a primary center for controlling sensorimotor functions. However, recent experiments have demonstrated additional roles for the cerebellum in higher-order cognitive functions such as language, emotion, reward, social behavior, and working memory. Based on the diversity of behaviors that it can influence, it is therefore not surprising that cerebellar dysfunction is linked to motor diseases such as ataxia, dystonia, tremor, and Parkinson's disease as well to non-motor disorders including autism spectrum disorders (ASD), schizophrenia, depression, and anxiety. Regardless of the condition, there is a growing consensus that developmental disturbances of the cerebellum may be a central culprit in triggering a number of distinct pathophysiological processes. Here, we consider how cerebellar malformations and neuronal circuit wiring impact brain function and behavior during development. We use the cerebellum as a model to discuss the expanding view that local integrated brain circuits function within the context of distributed global networks to communicate the computations that drive complex behavior. We highlight growing concerns that neurological and neuropsychiatric diseases with severe behavioral outcomes originate from developmental insults to the cerebellum.
Collapse
Affiliation(s)
- Jason S. Gill
- Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX, United States
| | - Roy V. Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
107
|
Shiraishi RD, Miyashita S, Yamashita M, Adachi T, Shimoda MM, Owa T, Hoshino M. Expression of transcription factors and signaling molecules in the cerebellar granule cell development. Gene Expr Patterns 2019; 34:119068. [PMID: 31437514 DOI: 10.1016/j.gep.2019.119068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/29/2019] [Accepted: 08/14/2019] [Indexed: 01/16/2023]
Abstract
Cerebellar granule cell precursors (GCPs) and granule cells (GCs) constitute a good model system to investigate proliferation of neural precursors and differentiation of neurons. During development, GCPs proliferate in the outer external granule cell layer (outer EGL) and then exit the cell cycle in the inner EGL to become GCs, which inwardly migrate to the inner granule cell layer (IGL). Misregulation of GCP proliferation or GC differentiation leads to maldevelopment of the cerebellum and the formation of a cerebellar tumor, medulloblastoma. Despite many efforts in this field, the mechanisms underlying GC development remain elusive. In this study, we performed detailed immunostaining in the developing cerebellum, with particular focus on GCPs and GCs, looking at several transcription factors, signaling molecules, cell cycle regulators, some of which are known to regulate neural development. Interestingly, we found distinct distribution patterns of certain proteins within the outer and inner EGL, suggesting the existence of subpopulations of GCPs and GCs in those layers. This study provides a basis for future studies on the cerebellar GC development and medulloblastoma.
Collapse
Affiliation(s)
- Ryo D Shiraishi
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan; Department of NCNP Brain Function and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, TMDU, Tokyo, 113- 8510, Japan
| | - Sathoshi Miyashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
| | - Mariko Yamashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan; Department of NCNP Brain Function and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, TMDU, Tokyo, 113- 8510, Japan
| | - Toma Adachi
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan; Department of Life Science and Medical Bioscience, Graduate School of Advance Science and Engineering, TWIns, Waseda University, Tokyo, 162-8480, Japan
| | - Mana M Shimoda
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan; Department of Life Science and Medical Bioscience, Graduate School of Advance Science and Engineering, TWIns, Waseda University, Tokyo, 162-8480, Japan
| | - Tomoo Owa
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan.
| |
Collapse
|
108
|
Atoh1 Controls Primary Cilia Formation to Allow for SHH-Triggered Granule Neuron Progenitor Proliferation. Dev Cell 2019; 48:184-199.e5. [PMID: 30695697 DOI: 10.1016/j.devcel.2018.12.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/11/2018] [Accepted: 12/19/2018] [Indexed: 11/23/2022]
Abstract
During cerebellar development, granule neuron progenitors (GNPs) proliferate by transducing Sonic Hedgehog (SHH) signaling via the primary cilium. Precise regulation of ciliogenesis, thus, ensures proper GNP pool expansion. Here, we report that Atoh1, a transcription factor required for GNPs formation, controls the presence of primary cilia, maintaining GNPs responsiveness to SHH. Loss of primary cilia abolishes the ability of Atoh1 to keep GNPs in a proliferative state. Mechanistically, Atoh1 promotes ciliogenesis by transcriptionally regulating Cep131, which facilitates centriolar satellite (CS) clustering to the basal body. Importantly, ectopic expression of Cep131 counteracts the effects of Atoh1 loss in GNPs by restoring proper localization of CS and ciliogenesis. This Atoh1-CS-primary cilium-SHH pro-proliferative pathway is also conserved in SHH-type medulloblastoma, a pediatric brain tumor arising from the GNPs. Together, our data reveal how Atoh1 modulates the primary cilium to regulate GNPs development.
Collapse
|
109
|
Du F, Yuelling L, Lee EH, Wang Y, Liao S, Cheng Y, Zhang L, Zheng C, Peri S, Cai KQ, Ng JMY, Curran T, Li P, Yang ZJ. Leukotriene Synthesis Is Critical for Medulloblastoma Progression. Clin Cancer Res 2019; 25:6475-6486. [PMID: 31300449 DOI: 10.1158/1078-0432.ccr-18-3549] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/18/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Here, we examined the role of leukotrienes, well-known inflammatory mediators, in the tumorigenesis of hedgehog pathway-associated medulloblastoma, and tested the efficacies of antagonists of leukotriene biosynthesis in medulloblastoma treatment.Experimental Design: We examined the leukotriene levels in medulloblastoma cells by ELISA. We next tested whether leukotriene synthesis in medulloblastoma cells relied on activation of hedgehog pathway, or the presence of hedgehog ligand secreted by astrocytes. We then investigated whether leukotriene mediated hedgehog-induced Nestin expression in tumor cells. The functions of leukotriene in tumor cell proliferation and tumor growth in medulloblastoma were determined through knocking down 5-lipoxygenase (a critical enzyme for leukotriene synthesis) by shRNAs, or using 5-lipoxygenase-deficient mice. Finally, the efficacies of antagonists of leukotriene synthesis in medulloblastoma treatment were tested in vivo and in vitro. RESULTS Leukotriene was significantly upregulated in medulloblastoma cells. Increased leukotriene synthesis relied on hedgehog ligand secreted by astrocytes, a major component of medulloblastoma microenvironment. Leukotriene stimulated tumor cells to express Nestin, a cytoskeletal protein essential for medulloblastoma growth. Genetic blockage of leukotriene synthesis dramatically suppressed medulloblastoma cell proliferation and tumor growth in vivo. Pharmaceutical inhibition of leukotriene synthesis markedly repressed medulloblastoma cell proliferation, but had no effect on proliferation of normal neuronal progenitors. Moreover, antagonists of leukotriene synthesis exhibited promising tumor inhibitory efficacies on drug-resistant medulloblastoma. CONCLUSIONS Our findings reveal a novel signaling pathway that is critical for medulloblastoma cell proliferation and tumor progression, and that leukotriene biosynthesis represents a promising therapeutic target for medulloblastoma treatment.
Collapse
Affiliation(s)
- Fang Du
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Larra Yuelling
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Eric H Lee
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Yuan Wang
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Shengyou Liao
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yan Cheng
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Li Zhang
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chaonan Zheng
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Suraj Peri
- Biostatistics and Bioinformatics Research Facility, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Kathy Q Cai
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Jessica M Y Ng
- Children's Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| | - Tom Curran
- Children's Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| | - Peng Li
- Department of Pharmacognosy and Traditional Chinese Pharmacology, College of Pharmacy, Army Medical University, Chongqing, China
| | - Zeng-Jie Yang
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania.
| |
Collapse
|
110
|
Badaloni A, Casoni F, Croci L, Chiara F, Bizzoca A, Gennarini G, Cremona O, Hawkes R, Consalez GG. Dynamic Expression and New Functions of Early B Cell Factor 2 in Cerebellar Development. THE CEREBELLUM 2019; 18:999-1010. [DOI: 10.1007/s12311-019-01051-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
111
|
Marzban H, Rahimi-Balaei M, Hawkes R. Early trigeminal ganglion afferents enter the cerebellum before the Purkinje cells are born and target the nuclear transitory zone. Brain Struct Funct 2019; 224:2421-2436. [PMID: 31256239 DOI: 10.1007/s00429-019-01916-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/25/2019] [Indexed: 12/20/2022]
Abstract
In the standard model for the development of climbing and mossy fiber afferent pathways to the cerebellum, the ingrowing axons target the embryonic Purkinje cell somata (around embryonic ages (E13-E16 in mice). In this report, we describe a novel earlier stage in afferent development. Immunostaining for a neurofilament-associated antigen (NAA) reveals the early axon distributions with remarkable clarity. Using a combination of DiI axon tract tracing, analysis of neurogenin1 null mice, which do not develop trigeminal ganglia, and mouse embryos maintained in vitro, we show that the first axons to innervate the cerebellar primordium as early as E9 arise from the trigeminal ganglion. Therefore, early trigeminal axons are in situ before the Purkinje cells are born. Double immunostaining for NAA and markers of the different domains in the cerebellar primordium reveal that afferents first target the nuclear transitory zone (E9-E10), and only later (E10-E11) are the axons, either collaterals from the trigeminal ganglion or a new afferent source (e.g., vestibular ganglia), seen in the Purkinje cell plate. The finding that the earliest axons to the cerebellum derive from the trigeminal ganglion and enter the cerebellar primordium before the Purkinje cells are born, where they seem to target the cerebellar nuclei, reveals a novel stage in the development of the cerebellar afferents.
Collapse
Affiliation(s)
- Hassan Marzban
- Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada. .,Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Rm 129 BMSB, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| | - Maryam Rahimi-Balaei
- Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Richard Hawkes
- Department of Cell Biology and Anatomy and Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
112
|
Hawkes R. The Ferdinando Rossi Memorial Lecture: Zones and Stripes-Pattern Formation in the Cerebellum. THE CEREBELLUM 2019; 17:12-16. [PMID: 28965328 DOI: 10.1007/s12311-017-0887-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The cerebellum has a complex architecture-highly reproducible and conserved through evolution. Cerebellar architecture is organized around the Purkinje cell. Purkinje cells in the mouse cerebellum come in many different subtypes, identifiable by expression markers, sensitivity to mutation, etc. These are organized first into five "transverse zones," each of which is further subdivided into dozens of reproducible "stripes." This arrangement serves as the scaffolding to organize afferent topography and restrict the distribution of excitatory and inhibitory interneurons. This brief review will survey some of the mechanisms that lead to the formation of this elaborate pattern during cerebellar development. Pattern formation in the cerebellar cortex is a multistage process that begins early in development with the generation of the various Purkinje cell subtypes, and matures through the dispersal of Purkinje cell clusters into stripes. Two developmental processes will be discussed in particular: the mechanisms that lead to Purkinje cell subtype specification (i.e., how different kinds of Purkinje cells are made) and the role played by Purkinje cell migration in pattern formation (i.e., how these Purkinje cell subtypes end up in a reproducible array of stripes).
Collapse
Affiliation(s)
- Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4NI, Canada.
| |
Collapse
|
113
|
Iulianella A, Wingate RJ, Moens CB, Capaldo E. The generation of granule cells during the development and evolution of the cerebellum. Dev Dyn 2019; 248:506-513. [PMID: 31131952 DOI: 10.1002/dvdy.64] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/10/2019] [Accepted: 05/16/2019] [Indexed: 12/19/2022] Open
Abstract
The cerebellum coordinates vestibular input into the hindbrain to control balance and movement, and its anatomical complexity is increasingly viewed as a high-throughput processing center for sensory and cognitive functions. Cerebellum development however is relatively simple, and arises from a specialized structure in the anterior hindbrain called the rhombic lip, which along with the ventricular zone of the rostral-most dorsal hindbrain region, give rise to the distinct cell types that constitute the cerebellum. Granule cells, being the most numerous cell types, arise from the rhombic lip and form a dense and distinct layer of the cerebellar cortex. In this short review, we describe the various strategies used by amniotes and anamniotes to generate and diversify granule cell types during cerebellar development.
Collapse
Affiliation(s)
- Angelo Iulianella
- Department of Medical Neuroscience and Brain Repair Centre, Life Science Research Institute, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Richard J Wingate
- MRC Centre of Neurodevelopmental Disorders, King's College London, London, UK
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Emily Capaldo
- Department of Medical Neuroscience and Brain Repair Centre, Life Science Research Institute, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
114
|
Zhuang M, Li X, Zhu J, Zhang J, Niu F, Liang F, Chen M, Li D, Han P, Ji SJ. The m6A reader YTHDF1 regulates axon guidance through translational control of Robo3.1 expression. Nucleic Acids Res 2019; 47:4765-4777. [PMID: 30843071 PMCID: PMC6511866 DOI: 10.1093/nar/gkz157] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/02/2022] Open
Abstract
N 6-Methyladenosine (m6A) is a dynamic mRNA modification which regulates protein expression in various posttranscriptional levels. Functional studies of m6A in nervous system have focused on its writers and erasers so far, whether and how m6A readers mediate m6A functions through recognizing and binding their target mRNA remains poorly understood. Here, we find that the expression of axon guidance receptor Robo3.1 which plays important roles in midline crossing of spinal commissural axons is regulated precisely at translational level. The m6A reader YTHDF1 binds to and positively regulates translation of m6A-modified Robo3.1 mRNA. Either mutation of m6A sites in Robo3.1 mRNA or YTHDF1 knockdown or knockout leads to dramatic reduction of Robo3.1 protein without affecting Robo3.1 mRNA level. Specific ablation of Ythdf1 in spinal commissural neurons results in pre-crossing axon guidance defects. Our findings identify a mechanism that YTHDF1-mediated translation of m6A-modified Robo3.1 mRNA controls pre-crossing axon guidance in spinal cord.
Collapse
Affiliation(s)
- Mengru Zhuang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- SUSTech-HKUST Joint PhD Program, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xinbei Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Junda Zhu
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jian Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Fugui Niu
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- SUSTech-HIT Joint Graduate Program, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Fanghao Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- SUSTech-HIT Joint Graduate Program, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Mengxian Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Duo Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Peng Han
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Sheng-Jian Ji
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Institute of Neuroscience, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
115
|
Hellwig M, Merk DJ, Lutz B, Schüller U. Preferential sensitivity to HDAC inhibitors in tumors with CREBBP mutation. Cancer Gene Ther 2019; 27:294-300. [PMID: 31068675 DOI: 10.1038/s41417-019-0099-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/27/2019] [Indexed: 11/09/2022]
Abstract
Mutations in the gene encoding for the histone acetyltransferase (HAT) CREBBP are common driver events in multiple types of human cancer, such as small cell lung cancer (SCLC) or Sonic Hedgehog medulloblastoma (SHH MB). Therefore, therapeutic options targeting such alterations are highly desired. We used human cell lines from SCLC as well as primary mouse tumor cells and genetically engineered mouse models for SHH MB to test treatment options with histone deacetylase inhibitors (HDACi) in CREBBP wild-type and mutated tumors. In contrast to CREBBP wild-type SCLC cells, CREBBP-mutated SCLC cells showed significantly lower IC50 values after treatment with HDACi. In addition, both in vitro and in vivo, HDACi had significant effects on cell proliferation of SHH-driven tumor MB cells harboring a CREBBP-mutation as compared to CREBBP wild-type controls. These data suggest that HDACi may serve as an additional therapeutic option for patients suffering from tumors driven by CREBBP mutations.
Collapse
Affiliation(s)
- Malte Hellwig
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute, Children's Cancer Center Hamburg, Hamburg, Germany
| | - Daniel J Merk
- Center for Neuropathology, Ludwig-Maximilians-University of Munich, Munich, Germany.,Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Research Institute, Children's Cancer Center Hamburg, Hamburg, Germany. .,Center for Neuropathology, Ludwig-Maximilians-University of Munich, Munich, Germany. .,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
116
|
Jen HI, Hill MC, Tao L, Sheng K, Cao W, Zhang H, Yu HV, Llamas J, Zong C, Martin JF, Segil N, Groves AK. Transcriptomic and epigenetic regulation of hair cell regeneration in the mouse utricle and its potentiation by Atoh1. eLife 2019; 8:e44328. [PMID: 31033441 PMCID: PMC6504235 DOI: 10.7554/elife.44328] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/28/2019] [Indexed: 12/30/2022] Open
Abstract
The mammalian cochlea loses its ability to regenerate new hair cells prior to the onset of hearing. In contrast, the adult vestibular system can produce new hair cells in response to damage, or by reprogramming of supporting cells with the hair cell transcription factor Atoh1. We used RNA-seq and ATAC-seq to probe the transcriptional and epigenetic responses of utricle supporting cells to damage and Atoh1 transduction. We show that the regenerative response of the utricle correlates with a more accessible chromatin structure in utricle supporting cells compared to their cochlear counterparts. We also provide evidence that Atoh1 transduction of supporting cells is able to promote increased transcriptional accessibility of some hair cell genes. Our study offers a possible explanation for regenerative differences between sensory organs of the inner ear, but shows that additional factors to Atoh1 may be required for optimal reprogramming of hair cell fate.
Collapse
Affiliation(s)
- Hsin-I Jen
- Program in Developmental BiologyBaylor College of MedicineHoustonUnited States
| | - Matthew C Hill
- Program in Developmental BiologyBaylor College of MedicineHoustonUnited States
| | - Litao Tao
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
- Caruso Department of Otolaryngology - Head and Neck Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
| | - Kuanwei Sheng
- Program in Integrative Molecular and Biomedical SciencesBaylor College of MedicineHoustonUnited States
| | - Wenjian Cao
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUnited States
| | - Hongyuan Zhang
- Department of NeuroscienceBaylor College of MedicineHoustonUnited States
| | - Haoze V Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
- Caruso Department of Otolaryngology - Head and Neck Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
| | - Juan Llamas
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
- Caruso Department of Otolaryngology - Head and Neck Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
| | - Chenghang Zong
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUnited States
| | - James F Martin
- Program in Developmental BiologyBaylor College of MedicineHoustonUnited States
- Department of Molecular Physiology and BiophysicsBaylor College of MedicineHoustonUnited States
- The Texas Heart InstituteHoustonUnited States
| | - Neil Segil
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
- Caruso Department of Otolaryngology - Head and Neck Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
| | - Andrew K Groves
- Program in Developmental BiologyBaylor College of MedicineHoustonUnited States
- Department of NeuroscienceBaylor College of MedicineHoustonUnited States
| |
Collapse
|
117
|
Lawton AK, Engstrom T, Rohrbach D, Omura M, Turnbull DH, Mamou J, Zhang T, Schwarz JM, Joyner AL. Cerebellar folding is initiated by mechanical constraints on a fluid-like layer without a cellular pre-pattern. eLife 2019; 8:e45019. [PMID: 30990415 PMCID: PMC6467563 DOI: 10.7554/elife.45019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/30/2019] [Indexed: 12/28/2022] Open
Abstract
Models based in differential expansion of elastic material, axonal constraints, directed growth, or multi-phasic combinations have been proposed to explain brain folding. However, the cellular and physical processes present during folding have not been defined. We used the murine cerebellum to challenge folding models with in vivo data. We show that at folding initiation differential expansion is created by the outer layer of proliferating progenitors expanding faster than the core. However, the stiffness differential, compressive forces, and emergent thickness variations required by elastic material models are not present. We find that folding occurs without an obvious cellular pre-pattern, that the outer layer expansion is uniform and fluid-like, and that the cerebellum is under radial and circumferential constraints. Lastly, we find that a multi-phase model incorporating differential expansion of a fluid outer layer and radial and circumferential constraints approximates the in vivo shape evolution observed during initiation of cerebellar folding.
Collapse
Affiliation(s)
- Andrew K Lawton
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
| | - Tyler Engstrom
- Department of PhysicsSyracuse UniversitySyracuseUnited States
| | - Daniel Rohrbach
- Lizzi Center for Biomedical EngineeringRiverside ResearchNew YorkUnited States
| | - Masaaki Omura
- Lizzi Center for Biomedical EngineeringRiverside ResearchNew YorkUnited States
- Department of Radiology, Skirball Institute of Biomolecular MedicineNYU School of MedicineNew YorkUnited States
- Graduate School of Science and EngineeringChiba UniversityChibaJapan
| | - Daniel H Turnbull
- Department of Radiology, Skirball Institute of Biomolecular MedicineNYU School of MedicineNew YorkUnited States
| | - Jonathan Mamou
- Lizzi Center for Biomedical EngineeringRiverside ResearchNew YorkUnited States
| | - Teng Zhang
- Department of Mechanical & Aerospace EngineeringSyracuse UniversitySyracuseUnited States
| | - J M Schwarz
- Department of PhysicsSyracuse UniversitySyracuseUnited States
| | - Alexandra L Joyner
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
- Biochemistry, Cell and Molecular Biology Program, Weill Graduate School of Medical SciencesCornell UniversityNew YorkUnited States
| |
Collapse
|
118
|
Hellwig M, Lauffer MC, Bockmayr M, Spohn M, Merk DJ, Harrison L, Ahlfeld J, Kitowski A, Neumann JE, Ohli J, Holdhof D, Niesen J, Schoof M, Kool M, Kraus C, Zweier C, Holmberg D, Schüller U. TCF4 (E2-2) harbors tumor suppressive functions in SHH medulloblastoma. Acta Neuropathol 2019; 137:657-673. [PMID: 30830316 DOI: 10.1007/s00401-019-01982-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/31/2022]
Abstract
The TCF4 gene encodes for the basic helix-loop-helix transcription factor 4 (TCF4), which plays an important role in the development of the central nervous system (CNS). Haploinsufficiency of TCF4 was found to cause Pitt-Hopkins syndrome (PTHS), a severe neurodevelopmental disorder. Recently, the screening of a large cohort of medulloblastoma (MB), a highly aggressive embryonal brain tumor, revealed almost 20% of adult patients with MB of the Sonic hedgehog (SHH) subtype carrying somatic TCF4 mutations. Interestingly, many of these mutations have previously been detected as germline mutations in patients with PTHS. We show here that overexpression of wild-type TCF4 in vitro significantly suppresses cell proliferation in MB cells, whereas mutant TCF4 proteins do not to the same extent. Furthermore, RNA sequencing revealed significant upregulation of multiple well-known tumor suppressors upon expression of wild-type TCF4. In vivo, a prenatal knockout of Tcf4 in mice caused a significant increase in apoptosis accompanied by a decreased proliferation and failed migration of cerebellar granule neuron precursor cells (CGNP), which are thought to be the cells of origin for SHH MB. In contrast, postnatal in vitro and in vivo knockouts of Tcf4 with and without an additional constitutive activation of the SHH pathway led to significantly increased proliferation of CGNP or MB cells. Finally, publicly available data from human MB show that relatively low expression levels of TCF4 significantly correlate with a worse clinical outcome. These results not only point to time-specific roles of Tcf4 during cerebellar development but also suggest a functional linkage between TCF4 mutations and the formation of SHH MB, proposing that TCF4 acts as a tumor suppressor during postnatal stages of cerebellar development.
Collapse
Affiliation(s)
- Malte Hellwig
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
| | - Marlen C Lauffer
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Michael Bockmayr
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael Spohn
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel J Merk
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany
- Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Tübingen, Germany
| | - Luke Harrison
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany
- Research Unit Neurobiology of Diabetes, Helmholtz Center Munich, Neuherberg, Germany
| | - Julia Ahlfeld
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Annabel Kitowski
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Julia E Neumann
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Ohli
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Dörthe Holdhof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
| | - Judith Niesen
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
| | - Melanie Schoof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cornelia Kraus
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Dan Holmberg
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany.
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany.
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
119
|
Campo-Paysaa F, Clarke JD, Wingate RJ. Generation of the squamous epithelial roof of the 4 th ventricle. eLife 2019; 8:38485. [PMID: 30775968 PMCID: PMC6395062 DOI: 10.7554/elife.38485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 02/18/2019] [Indexed: 12/30/2022] Open
Abstract
We use the transparency of zebrafish embryos to reveal the de novo generation of a simple squamous epithelium and identify the cellular architecture in the epithelial transition zone that ties this squamous epithelium to the columnar neuroepithelium within the embryo's brain. The simple squamous epithelium of the rhombencephalic roof plate is pioneered by distinct mesenchymal cells at the dorsal midline of the neural tube. Subsequently, a progenitor zone is established at the interface between columnar epithelium of the rhombic lip and the expanding squamous epithelium of the roof plate. Surprisingly, this interface consists of a single progenitor cell type that we have named the veil cell. Veil cells express gdf6a and constitute a lineage restricted stem zone that generates the squamous roof plate by direct transformation and asymmetrically fated divisions. Experimental restriction of roof plate expansion leads to extrusion of veil cell daughters and squamous cells, suggesting veil cell fate is regulated by the space available for roof plate growth.
Collapse
Affiliation(s)
- Florent Campo-Paysaa
- Department of Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jonathan Dw Clarke
- Department of Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Richard Jt Wingate
- Department of Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
120
|
Opposite regulation of Wnt/β-catenin and Shh signaling pathways by Rack1 controls mammalian cerebellar development. Proc Natl Acad Sci U S A 2019; 116:4661-4670. [PMID: 30765517 DOI: 10.1073/pnas.1813244116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The development of the cerebellum depends on intricate processes of neurogenesis, migration, and differentiation of neural stem cells (NSCs) and progenitor cells. Defective cerebellar development often results in motor dysfunctions and psychiatric disorders. Understanding the molecular mechanisms that underlie the complex development of the cerebellum will facilitate the development of novel treatment options. Here, we report that the receptor for activated C kinase (Rack1), a multifaceted signaling adaptor protein, regulates mammalian cerebellar development in a cell type-specific manner. Selective deletion of Rack1 in mouse NSCs or granule neuron progenitors (GNPs), but not Bergmann glial cells (BGs), causes severe defects in cerebellar morphogenesis, including impaired folia and fissure formation. NSCs and GNPs lacking Rack1 exhibit enhanced Wnt/β-catenin signaling but reduced Sonic hedgehog (Shh) signaling. Simultaneous deletion of β-catenin in NSCs, but not GNPs, significantly rescues the Rack1 mutant phenotype. Interestingly, Rack1 controls the activation of Shh signaling by regulating the ubiquitylation and stability of histone deacetylase 1 (HDAC1)/HDAC2. Suppression of HDAC1/HDAC2 activity in the developing cerebellum phenocopies the Rack1 mutant. Together, these results reveal a previously unknown role of Rack1 in controlling mammalian cerebellar development by opposite regulation of Wnt/β-catenin and Shh signaling pathways.
Collapse
|
121
|
Wojcinski A, Morabito M, Lawton AK, Stephen DN, Joyner AL. Genetic deletion of genes in the cerebellar rhombic lip lineage can stimulate compensation through adaptive reprogramming of ventricular zone-derived progenitors. Neural Dev 2019; 14:4. [PMID: 30764875 PMCID: PMC6375182 DOI: 10.1186/s13064-019-0128-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/17/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The cerebellum is a foliated posterior brain structure involved in coordination of motor movements and cognition. The cerebellum undergoes rapid growth postnataly due to Sonic Hedgehog (SHH) signaling-dependent proliferation of ATOH1+ granule cell precursors (GCPs) in the external granule cell layer (EGL), a key step for generating cerebellar foliation and the correct number of granule cells. Due to its late development, the cerebellum is particularly vulnerable to injury from preterm birth and stress around birth. We recently uncovered an intrinsic capacity of the developing cerebellum to replenish ablated GCPs via adaptive reprogramming of Nestin-expressing progenitors (NEPs). However, whether this compensation mechanism occurs in mouse mutants affecting the developing cerebellum and could lead to mis-interpretation of phenotypes was not known. METHODS We used two different approaches to remove the main SHH signaling activator GLI2 in GCPs: 1) Our mosaic mutant analysis with spatial and temporal control of recombination (MASTR) technique to delete Gli2 in a small subset of GCPs; 2) An Atoh1-Cre transgene to delete Gli2 in most of the EGL. Genetic Inducible Fate Mapping (GIFM) and live imaging were used to analyze the behavior of NEPs after Gli2 deletion. RESULTS Mosaic analysis demonstrated that SHH-GLI2 signaling is critical for generating the correct pool of granule cells by maintaining GCPs in an undifferentiated proliferative state and promoting their survival. Despite this, inactivation of GLI2 in a large proportion of GCPs in the embryo did not lead to the expected dramatic reduction in the size of the adult cerebellum. GIFM uncovered that NEPs do indeed replenish GCPs in Gli2 conditional mutants, and then expand and partially restore the production of granule cells. Furthermore, the SHH signaling-dependent NEP compensation requires Gli2, demonstrating that the activator side of the pathway is involved. CONCLUSION We demonstrate that a mouse conditional mutation that results in loss of SHH signaling in GCPs is not sufficient to induce long term severe cerebellum hypoplasia. The ability of the neonatal cerebellum to regenerate after loss of cells via a response by NEPs must therefore be considered when interpreting the phenotypes of Atoh1-Cre conditional mutants affecting GCPs.
Collapse
Affiliation(s)
- Alexandre Wojcinski
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, Box 511, New York, NY, 10065, USA
| | - Morgane Morabito
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, Box 511, New York, NY, 10065, USA
| | - Andrew K Lawton
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, Box 511, New York, NY, 10065, USA
| | - Daniel N Stephen
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, Box 511, New York, NY, 10065, USA
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, Box 511, New York, NY, 10065, USA.
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, 10065, USA.
| |
Collapse
|
122
|
Brown AM, Arancillo M, Lin T, Catt DR, Zhou J, Lackey EP, Stay TL, Zuo Z, White JJ, Sillitoe RV. Molecular layer interneurons shape the spike activity of cerebellar Purkinje cells. Sci Rep 2019; 9:1742. [PMID: 30742002 PMCID: PMC6370775 DOI: 10.1038/s41598-018-38264-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/14/2018] [Indexed: 12/03/2022] Open
Abstract
Purkinje cells receive synaptic input from several classes of interneurons. Here, we address the roles of inhibitory molecular layer interneurons in establishing Purkinje cell function in vivo. Using conditional genetics approaches in mice, we compare how the lack of stellate cell versus basket cell GABAergic neurotransmission sculpts the firing properties of Purkinje cells. We take advantage of an inducible Ascl1CreER allele to spatially and temporally target the deletion of the vesicular GABA transporter, Vgat, in developing neurons. Selective depletion of basket cell GABAergic neurotransmission increases the frequency of Purkinje cell simple spike firing and decreases the frequency of complex spike firing in adult behaving mice. In contrast, lack of stellate cell communication increases the regularity of Purkinje cell simple spike firing while increasing the frequency of complex spike firing. Our data uncover complementary roles for molecular layer interneurons in shaping the rate and pattern of Purkinje cell activity in vivo.
Collapse
Affiliation(s)
- Amanda M Brown
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Marife Arancillo
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Tao Lin
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Daniel R Catt
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Joy Zhou
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Elizabeth P Lackey
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Trace L Stay
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Zhongyuan Zuo
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Joshua J White
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA.
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA.
- Program in Developmental Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA.
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas, 77030, USA.
| |
Collapse
|
123
|
Wizeman JW, Guo Q, Wilion EM, Li JYH. Specification of diverse cell types during early neurogenesis of the mouse cerebellum. eLife 2019; 8:e42388. [PMID: 30735127 PMCID: PMC6382353 DOI: 10.7554/elife.42388] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/07/2019] [Indexed: 12/22/2022] Open
Abstract
We applied single-cell RNA sequencing to profile genome-wide gene expression in about 9400 individual cerebellar cells from the mouse embryo at embryonic day 13.5. Reiterative clustering identified the major cerebellar cell types and subpopulations of different lineages. Through pseudotemporal ordering to reconstruct developmental trajectories, we identified novel transcriptional programs controlling cell fate specification of populations arising from the ventricular zone and the rhombic lip, two distinct germinal zones of the embryonic cerebellum. Together, our data revealed cell-specific markers for studying the cerebellum, gene-expression cascades underlying cell fate specification, and a number of previously unknown subpopulations that may play an integral role in the formation and function of the cerebellum. Our findings will facilitate new discovery by providing insights into the molecular and cell type diversity in the developing cerebellum.
Collapse
Affiliation(s)
- John W Wizeman
- Department of Genetics and Genome Sciences, School of MedicineUniversity of ConnecticutFarmingtonUnited States
| | - Qiuxia Guo
- Department of Genetics and Genome Sciences, School of MedicineUniversity of ConnecticutFarmingtonUnited States
| | | | - James YH Li
- Department of Genetics and Genome Sciences, School of MedicineUniversity of ConnecticutFarmingtonUnited States
- Institute for Systems GenomicsUniversity of ConnecticutFarmingtonUnited States
| |
Collapse
|
124
|
NeuroD2 controls inhibitory circuit formation in the molecular layer of the cerebellum. Sci Rep 2019; 9:1448. [PMID: 30723302 PMCID: PMC6363755 DOI: 10.1038/s41598-018-37850-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
The cerebellar cortex is involved in the control of diverse motor and non-motor functions. Its principal circuit elements are the Purkinje cells that integrate incoming excitatory and local inhibitory inputs and provide the sole output of the cerebellar cortex. However, the transcriptional control of circuit assembly in the cerebellar cortex is not well understood. Here, we show that NeuroD2, a neuronal basic helix-loop-helix (bHLH) transcription factor, promotes the postnatal survival of both granule cells and molecular layer interneurons (basket and stellate cells). However, while NeuroD2 is not essential for the integration of surviving granule cells into the excitatory circuit, it is required for the terminal differentiation of basket cells. Axons of surviving NeuroD2-deficient basket cells follow irregular trajectories and their inhibitory terminals are virtually absent from Purkinje cells in Neurod2 mutants. As a result inhibitory, but not excitatory, input to Purkinje cells is strongly reduced in the absence of NeuroD2. Together, we conclude that NeuroD2 is necessary to instruct a terminal differentiation program in basket cells that regulates targeted axon growth and inhibitory synapse formation. An imbalance of excitation and inhibition in the cerebellar cortex affecting Purkinje cell output may underlay impaired adaptive motor learning observed in Neurod2 mutants.
Collapse
|
125
|
Lipovsek M, Wingate RJ. Conserved and divergent development of brainstem vestibular and auditory nuclei. eLife 2018; 7:40232. [PMID: 30566077 PMCID: PMC6317910 DOI: 10.7554/elife.40232] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022] Open
Abstract
Vestibular function was established early in vertebrates and has remained, for the most part, unchanged. In contrast, each group of tetrapods underwent independent evolutionary processes to solve the problem of hearing on land, resulting in a remarkable mixture of conserved, divergent and convergent features that define extant auditory systems. The vestibuloacoustic nuclei of the hindbrain develop from a highly conserved ground plan and provide an ideal framework on which to address the participation of developmental processes to the evolution of neuronal circuits. We employed an electroporation strategy to unravel the contribution of two dorsoventral and four axial lineages to the development of the chick hindbrain vestibular and auditory nuclei. We compare the chick developmental map with recently established genetic fate-maps of the developing mouse hindbrain. Overall, we find considerable conservation of developmental origin for the vestibular nuclei. In contrast, a comparative analysis of the developmental origin of hindbrain auditory structures echoes the complex evolutionary history of the auditory system. In particular, we find that the developmental origin of the chick auditory interaural time difference circuit supports its emergence from an ancient vestibular network, unrelated to the analogous mammalian counterpart.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Richard Jt Wingate
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
126
|
Martinez-Chavez E, Scheerer C, Wizenmann A, Blaess S. The zinc-finger transcription factor GLI3 is a regulator of precerebellar neuronal migration. Development 2018; 145:dev.166033. [PMID: 30470704 DOI: 10.1242/dev.166033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/15/2018] [Indexed: 01/24/2023]
Abstract
Hindbrain precerebellar neurons arise from progenitor pools at the dorsal edge of the embryonic hindbrain: the caudal rhombic lip. These neurons follow distinct migratory routes to establish nuclei that provide climbing or mossy fiber inputs to the cerebellum. Gli3, a zinc-finger transcription factor in the Sonic hedgehog signaling pathway, is an important regulator of dorsal brain development. We demonstrate that in Gli3-null mutant mice, disrupted neuronal migratory streams lead to a disorganization of precerebellar nuclei. Precerebellar progenitors are properly established in Gli3-null embryos and, using conditional gene inactivation, we provide evidence that Gli3 does not play a cell-autonomous role in migrating precerebellar neurons. Thus, GLI3 likely regulates the development of other hindbrain structures, such as non-precerebellar nuclei or cranial ganglia and their respective projections, which may in turn influence precerebellar migration. Although the organization of non-precerebellar hindbrain nuclei appears to be largely unaffected in absence of Gli3, trigeminal ganglia and their central descending tracts are disrupted. We show that rostrally migrating precerebellar neurons are normally in close contact with these tracts, but are detached in Gli3-null embryos.
Collapse
Affiliation(s)
- Erick Martinez-Chavez
- Institute of Reconstructive Neurobiology, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Claudia Scheerer
- Institute of Reconstructive Neurobiology, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Andrea Wizenmann
- Institute of Clinical Anatomy and Cell Analysis, Department of Anatomy, University of Tübingen, 72074 Tübingen, Germany
| | - Sandra Blaess
- Institute of Reconstructive Neurobiology, University of Bonn Medical Center, 53127 Bonn, Germany
| |
Collapse
|
127
|
Rahimi-Balaei M, Bergen H, Kong J, Marzban H. Neuronal Migration During Development of the Cerebellum. Front Cell Neurosci 2018; 12:484. [PMID: 30618631 PMCID: PMC6304365 DOI: 10.3389/fncel.2018.00484] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/27/2018] [Indexed: 01/19/2023] Open
Abstract
Neuronal migration is a fundamental process in central nervous system (CNS) development. The assembly of functioning neuronal circuits relies on neuronal migration occurring in the appropriate spatio-temporal pattern. A defect in the neuronal migration may result in a neurological disorder. The cerebellum, as a part of the CNS, plays a pivotal role in motor coordination and non-motor functions such as emotion, cognition and language. The excitatory and inhibitory neurons within the cerebellum originate from different distinct germinal zones and migrate through complex routes to assemble in a well-defined neuronal organization in the cerebellar cortex and nuclei. In this review article, the neuronal migration modes and pathways from germinal zones to the final position in the cerebellar cortex and nuclei will be described. The cellular and molecular mechanisms involved in cerebellar neuronal migration during development will also be reviewed. Finally, some diseases and animal models associated with defects in neuronal migration will be presented.
Collapse
Affiliation(s)
- Maryam Rahimi-Balaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hugo Bergen
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
128
|
Fraser J, Essebier A, Brown AS, Davila RA, Sengar AS, Tu Y, Ensbey KS, Day BW, Scott MP, Gronostajski RM, Wainwright BJ, Boden M, Harvey TJ, Piper M. Granule neuron precursor cell proliferation is regulated by NFIX and intersectin 1 during postnatal cerebellar development. Brain Struct Funct 2018; 224:811-827. [PMID: 30511336 DOI: 10.1007/s00429-018-1801-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/24/2018] [Indexed: 01/06/2023]
Abstract
Cerebellar granule neurons are the most numerous neuronal subtype in the central nervous system. Within the developing cerebellum, these neurons are derived from a population of progenitor cells found within the external granule layer of the cerebellar anlage, namely the cerebellar granule neuron precursors (GNPs). The timely proliferation and differentiation of these precursor cells, which, in rodents occurs predominantly in the postnatal period, is tightly controlled to ensure the normal morphogenesis of the cerebellum. Despite this, our understanding of the factors mediating how GNP differentiation is controlled remains limited. Here, we reveal that the transcription factor nuclear factor I X (NFIX) plays an important role in this process. Mice lacking Nfix exhibit reduced numbers of GNPs during early postnatal development, but elevated numbers of these cells at postnatal day 15. Moreover, Nfix-/- GNPs exhibit increased proliferation when cultured in vitro, suggestive of a role for NFIX in promoting GNP differentiation. At a mechanistic level, profiling analyses using both ChIP-seq and RNA-seq identified the actin-associated factor intersectin 1 as a downstream target of NFIX during cerebellar development. In support of this, mice lacking intersectin 1 also displayed delayed GNP differentiation. Collectively, these findings highlight a key role for NFIX and intersectin 1 in the regulation of cerebellar development.
Collapse
Affiliation(s)
- James Fraser
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Alexandra Essebier
- The School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Alexander S Brown
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Raul Ayala Davila
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Ameet S Sengar
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, M5G 0A8, Canada
| | - YuShan Tu
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, M5G 0A8, Canada
| | - Kathleen S Ensbey
- Cell and Molecular Biology Department, Translational Brain Cancer Research Laboratory, QIMR Berghofer MRI, Brisbane, QLD, 4006, Australia
| | - Bryan W Day
- Cell and Molecular Biology Department, Translational Brain Cancer Research Laboratory, QIMR Berghofer MRI, Brisbane, QLD, 4006, Australia
| | - Matthew P Scott
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Brandon J Wainwright
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Mikael Boden
- The School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Tracey J Harvey
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia.
| | - Michael Piper
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia. .,Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
129
|
The Transcriptional Regulator SnoN Promotes the Proliferation of Cerebellar Granule Neuron Precursors in the Postnatal Mouse Brain. J Neurosci 2018; 39:44-62. [PMID: 30425119 DOI: 10.1523/jneurosci.0688-18.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 02/08/2023] Open
Abstract
Control of neuronal precursor cell proliferation is essential for normal brain development, and deregulation of this fundamental developmental event contributes to brain diseases. Typically, neuronal precursor cell proliferation extends over long periods of time during brain development. However, how neuronal precursor proliferation is regulated in a temporally specific manner remains to be elucidated. Here, we report that conditional KO of the transcriptional regulator SnoN in cerebellar granule neuron precursors robustly inhibits the proliferation of these cells and promotes their cell cycle exit at later stages of cerebellar development in the postnatal male and female mouse brain. In laser capture microdissection followed by RNA-Seq, designed to profile gene expression specifically in the external granule layer of the cerebellum, we find that SnoN promotes the expression of cell proliferation genes and concomitantly represses differentiation genes in granule neuron precursors in vivo Remarkably, bioinformatics analyses reveal that SnoN-regulated genes contain binding sites for the transcription factors N-myc and Pax6, which promote the proliferation and differentiation of granule neuron precursors, respectively. Accordingly, we uncover novel physical interactions of SnoN with N-myc and Pax6 in cells. In behavior analyses, conditional KO of SnoN impairs cerebellar-dependent learning in a delayed eye-blink conditioning paradigm, suggesting that SnoN-regulation of granule neuron precursor proliferation bears functional consequences at the organismal level. Our findings define a novel function and mechanism for the major transcriptional regulator SnoN in the control of granule neuron precursor proliferation in the mammalian brain.SIGNIFICANCE STATEMENT This study reports the discovery that the transcriptional regulator SnoN plays a crucial role in the proliferation of cerebellar granule neuron precursors in the postnatal mouse brain. Conditional KO of SnoN in granule neuron precursors robustly inhibits the proliferation of these cells and promotes their cycle exit specifically at later stages of cerebellar development, with biological consequences of impaired cerebellar-dependent learning. Genomics and bioinformatics analyses reveal that SnoN promotes the expression of cell proliferation genes and concomitantly represses cell differentiation genes in vivo Although SnoN has been implicated in distinct aspects of the development of postmitotic neurons, this study identifies a novel function for SnoN in neuronal precursors in the mammalian brain.
Collapse
|
130
|
Apps R, Hawkes R, Aoki S, Bengtsson F, Brown AM, Chen G, Ebner TJ, Isope P, Jörntell H, Lackey EP, Lawrenson C, Lumb B, Schonewille M, Sillitoe RV, Spaeth L, Sugihara I, Valera A, Voogd J, Wylie DR, Ruigrok TJH. Cerebellar Modules and Their Role as Operational Cerebellar Processing Units: A Consensus paper [corrected]. CEREBELLUM (LONDON, ENGLAND) 2018; 17:654-682. [PMID: 29876802 PMCID: PMC6132822 DOI: 10.1007/s12311-018-0952-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The compartmentalization of the cerebellum into modules is often used to discuss its function. What, exactly, can be considered a module, how do they operate, can they be subdivided and do they act individually or in concert are only some of the key questions discussed in this consensus paper. Experts studying cerebellar compartmentalization give their insights on the structure and function of cerebellar modules, with the aim of providing an up-to-date review of the extensive literature on this subject. Starting with an historical perspective indicating that the basis of the modular organization is formed by matching olivocorticonuclear connectivity, this is followed by consideration of anatomical and chemical modular boundaries, revealing a relation between anatomical, chemical, and physiological borders. In addition, the question is asked what the smallest operational unit of the cerebellum might be. Furthermore, it has become clear that chemical diversity of Purkinje cells also results in diversity of information processing between cerebellar modules. An additional important consideration is the relation between modular compartmentalization and the organization of the mossy fiber system, resulting in the concept of modular plasticity. Finally, examination of cerebellar output patterns suggesting cooperation between modules and recent work on modular aspects of emotional behavior are discussed. Despite the general consensus that the cerebellum has a modular organization, many questions remain. The authors hope that this joint review will inspire future cerebellar research so that we are better able to understand how this brain structure makes its vital contribution to behavior in its most general form.
Collapse
Affiliation(s)
- Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Richard Hawkes
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Sho Aoki
- Neurobiology Research Unit, Okinawa Institute of Science and Technology, Onna, Japan
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Fredrik Bengtsson
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Amanda M. Brown
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX USA
| | - Gang Chen
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
| | - Timothy J. Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Henrik Jörntell
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Elizabeth P. Lackey
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX USA
| | - Charlotte Lawrenson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Bridget Lumb
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Martijn Schonewille
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Roy V. Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX USA
| | - Ludovic Spaeth
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Antoine Valera
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jan Voogd
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Douglas R. Wylie
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB Canada
| | - Tom J. H. Ruigrok
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
131
|
Carter RA, Bihannic L, Rosencrance C, Hadley JL, Tong Y, Phoenix TN, Natarajan S, Easton J, Northcott PA, Gawad C. A Single-Cell Transcriptional Atlas of the Developing Murine Cerebellum. Curr Biol 2018; 28:2910-2920.e2. [PMID: 30220501 DOI: 10.1016/j.cub.2018.07.062] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 06/30/2018] [Accepted: 07/25/2018] [Indexed: 01/31/2023]
Abstract
The cerebellum develops from a restricted number of cell types that precisely organize to form the circuitry that controls sensory-motor coordination and some higher-order cognitive processes. To acquire an enhanced understanding of the molecular processes that mediate cerebellar development, we performed single-cell RNA-sequencing of 39,245 murine cerebellar cells at twelve critical developmental time points. Using recognized lineage markers, we confirmed that the single-cell data accurately recapitulate cerebellar development. We then followed distinct populations from emergence through migration and differentiation, and determined the associated transcriptional cascades. After identifying key lineage commitment decisions, focused analyses uncovered waves of transcription factor expression at those branching points. Finally, we created Cell Seek, a flexible online interface that facilitates exploration of the dataset. Our study provides a transcriptional summarization of cerebellar development at single-cell resolution that will serve as a valuable resource for future investigations of cerebellar development, neurobiology, and disease.
Collapse
Affiliation(s)
- Robert A Carter
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Laure Bihannic
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Celeste Rosencrance
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jennifer L Hadley
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yiai Tong
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Timothy N Phoenix
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sivaraman Natarajan
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Charles Gawad
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
132
|
Sox14 Is Required for a Specific Subset of Cerebello-Olivary Projections. J Neurosci 2018; 38:9539-9550. [PMID: 30242051 DOI: 10.1523/jneurosci.1456-18.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/02/2018] [Accepted: 09/04/2018] [Indexed: 02/02/2023] Open
Abstract
We identify Sox14 as an exclusive marker of inhibitory projection neurons in the lateral and interposed, but not the medial, cerebellar nuclei. Sox14+ neurons make up ∼80% of Gad1+ neurons in these nuclei and are indistinguishable by soma size from other inhibitory neurons. All Sox14+ neurons of the lateral and interposed cerebellar nuclei are generated at approximately E10/10.5 and extend long-range, predominantly contralateral projections to the inferior olive. A small Sox14+ population in the adjacent vestibular nucleus "Y" sends an ipsilateral projection to the oculomotor nucleus. Cerebellar Sox14+ and glutamatergic projection neurons assemble in non-overlapping populations at the nuclear transition zone, and their integration into a coherent nucleus depends on Sox14 function. Targeted ablation of Sox14+ cells by conditional viral expression of diphtheria toxin leads to significantly impaired motor learning. Contrary to expectations, associative learning is unaffected by unilateral Sox14+ neuron elimination in the interposed and lateral nuclei.SIGNIFICANCE STATEMENT The cerebellar nuclei are central to cerebellar function, yet how they modulate and process cerebellar inputs and outputs is still primarily unknown. Our study gives a direct insight into how nucleo-olivary projection neurons are generated, their projections, and their function in an intact behaving mouse. These neurons play a critical conceptual role in all models of cerebellar function, and this study represents the first specific analysis of their molecular identity and function and offers a powerful model for future investigation of cerebellar function in motor control and learning.
Collapse
|
133
|
Hartman BH, Bӧscke R, Ellwanger DC, Keymeulen S, Scheibinger M, Heller S. Fbxo2 VHC mouse and embryonic stem cell reporter lines delineate in vitro-generated inner ear sensory epithelia cells and enable otic lineage selection and Cre-recombination. Dev Biol 2018; 443:64-77. [PMID: 30179592 DOI: 10.1016/j.ydbio.2018.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 12/12/2022]
Abstract
While the mouse has been a productive model for inner ear studies, a lack of highly specific genes and tools has presented challenges. The absence of definitive otic lineage markers and tools is limiting in vitro studies of otic development, where innate cellular heterogeneity and disorganization increase the reliance on lineage-specific markers. To address this challenge in mice and embryonic stem (ES) cells, we targeted the lineage-specific otic gene Fbxo2 with a multicistronic reporter cassette (Venus/Hygro/CreER = VHC). In otic organoids derived from ES cells, Fbxo2VHC specifically delineates otic progenitors and inner ear sensory epithelia. In mice, Venus expression and CreER activity reveal a cochlear developmental gradient, label the prosensory lineage, show enrichment in a subset of type I vestibular hair cells, and expose strong expression in adult cerebellar granule cells. We provide a toolbox of multiple spectrally distinct reporter combinations for studies that require use of fluorescent reporters, hygromycin selection, and conditional Cre-mediated recombination.
Collapse
Affiliation(s)
- Byron H Hartman
- Department of Otolaryngology - Head&Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, United States; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States.
| | - Robert Bӧscke
- Department of Otolaryngology - Head&Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, United States; Department of Otolaryngology, Head and Neck Surgery, University of Lübeck, Lübeck, Germany
| | - Daniel C Ellwanger
- Department of Otolaryngology - Head&Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, United States; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Sawa Keymeulen
- Department of Otolaryngology - Head&Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, United States; Program in Human Biology, Stanford University School of Humanities and Sciences, Stanford, CA 94305, United States
| | - Mirko Scheibinger
- Department of Otolaryngology - Head&Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, United States; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Stefan Heller
- Department of Otolaryngology - Head&Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, United States; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
134
|
Lackey EP, Heck DH, Sillitoe RV. Recent advances in understanding the mechanisms of cerebellar granule cell development and function and their contribution to behavior. F1000Res 2018; 7. [PMID: 30109024 PMCID: PMC6069759 DOI: 10.12688/f1000research.15021.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2018] [Indexed: 12/20/2022] Open
Abstract
The cerebellum is the focus of an emergent series of debates because its circuitry is now thought to encode an unexpected level of functional diversity. The flexibility that is built into the cerebellar circuit allows it to participate not only in motor behaviors involving coordination, learning, and balance but also in non-motor behaviors such as cognition, emotion, and spatial navigation. In accordance with the cerebellum’s diverse functional roles, when these circuits are altered because of disease or injury, the behavioral outcomes range from neurological conditions such as ataxia, dystonia, and tremor to neuropsychiatric conditions, including autism spectrum disorders, schizophrenia, and attention-deficit/hyperactivity disorder. Two major questions arise: what types of cells mediate these normal and abnormal processes, and how might they accomplish these seemingly disparate functions? The tiny but numerous cerebellar granule cells may hold answers to these questions. Here, we discuss recent advances in understanding how the granule cell lineage arises in the embryo and how a stem cell niche that replenishes granule cells influences wiring when the postnatal cerebellum is injured. We discuss how precisely coordinated developmental programs, gene expression patterns, and epigenetic mechanisms determine the formation of synapses that integrate multi-modal inputs onto single granule cells. These data lead us to consider how granule cell synaptic heterogeneity promotes sensorimotor and non-sensorimotor signals in behaving animals. We discuss evidence that granule cells use ultrafast neurotransmission that can operate at kilohertz frequencies. Together, these data inspire an emerging view for how granule cells contribute to the shaping of complex animal behaviors.
Collapse
Affiliation(s)
- Elizabeth P Lackey
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Detlef H Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Avenue, Memphis, TN, 38163, USA
| | - Roy V Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
135
|
Li C, Shu Y, Wang G, Zhang H, Lu Y, Li X, Li G, Song L, Liu Z. Characterizing a novel vGlut3-P2A-iCreER knockin mouse strain in cochlea. Hear Res 2018; 364:12-24. [PMID: 29706463 DOI: 10.1016/j.heares.2018.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/05/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022]
Abstract
Precise mouse genetic studies rely on specific tools that can label specific cell types. In mouse cochlea, previous studies suggest that vesicular glutamate transporter 3 (vGlut3), also known as Slc17a8, is specifically expressed in inner hair cells (IHCs) and loss of vGlut3 causes deafness. To take advantage of its unique expression pattern, here we generate a novel vGlut3-P2A-iCreER knockin mouse strain. The P2A-iCreER cassette is precisely inserted before stop codon of vGlut3, by which the endogenous vGlut3 is intact and paired with iCreER as well. Approximately, 10.7%, 85.6% and 41.8% of IHCs are tdtomato + when tamoxifen is given to vGlut3-P2A-iCreER/+; Rosa26-LSL-tdtomato/+ reporter strain at P2/P3, P10/P11 and P30/P31, respectively. Tdtomato + OHCs are never observed. Interestingly, besides IHCs, glia cells, but not spiral ganglion neurons (SGNs), are tdtomato+, which is further evidenced by the presence of Sox10+/tdtomato+ and tdtomato+/Prox1(Gata3 or Tuj1)-negative cells in SGN region. We further independently validate vGlut3 expression in SGN region by vGlut3 in situ hybridization and antibody staining. Moreover, total number of tdtomato + glia cells decreased gradually when tamoxifen is given from P2/P3 to P30/P31. Taken together, vGlut3-P2A-iCreER is an efficient genetic tool to specifically target IHCs for gene manipulation, which is complimentary to Prestin-CreER strain exclusively labelling cochlear outer hair cells (OHCs).
Collapse
MESH Headings
- Acoustic Stimulation
- Amino Acid Transport Systems, Acidic/genetics
- Amino Acid Transport Systems, Acidic/metabolism
- Animals
- Cochlea/embryology
- Cochlea/metabolism
- Evoked Potentials, Auditory, Brain Stem
- Female
- Gene Knock-In Techniques
- Genes, Reporter
- Genotype
- Hair Cells, Auditory, Outer/metabolism
- Integrases/genetics
- Integrases/metabolism
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Neuroglia/metabolism
- Phenotype
- Reaction Time
- Receptors, Estrogen/drug effects
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Selective Estrogen Receptor Modulators/pharmacology
- Spiral Ganglion/metabolism
- Tamoxifen/pharmacology
- Time Factors
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Chao Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yilai Shu
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China; Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, China
| | - Guangqin Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - He Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Lu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiang Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Gen Li
- Department of Otolaryngology-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Lei Song
- Department of Otolaryngology-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Zhiyong Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
136
|
Andreotti JP, Prazeres PHDM, Magno LAV, Romano-Silva MA, Mintz A, Birbrair A. Neurogenesis in the postnatal cerebellum after injury. Int J Dev Neurosci 2018; 67:33-36. [PMID: 29555564 PMCID: PMC6069997 DOI: 10.1016/j.ijdevneu.2018.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 12/21/2022] Open
Abstract
The cerebellum plays major role in motor coordination and learning. It contains half of the neurons in the brain. Thus, deciphering the mechanisms by which cerebellar neurons are generated is essential to understand the cerebellar functions and the pathologies associated with it. In a recent study, Wojcinski et al. (2017) by using in vivo Cre/loxP technologies reveal that Nestin-expressing progenitors repopulated the external granular cell layer after injury. Depletion of postnatal external granular cell layer is not sufficient to induce motor behavior defects in adults, as the cerebellum recovers these neurons. Strikingly, Nestin-expressing progenitors differentiate into granule cell precursors and mature granule neurons after ablation of perinatal external granular layer, either by irradiation or by genetic ablation. This work identified a novel role of Nestin-expressing progenitors in the cerebellar microenvironment during development, and revealed that extracellular signals can convert specified progenitors into multipotent stem cells. Here, we discuss the findings from this study, and evaluate recent advances in our understanding of the cerebellar neurogenesis.
Collapse
Affiliation(s)
- Julia P Andreotti
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro H D M Prazeres
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiz A V Magno
- Department of Mental Health, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marco A Romano-Silva
- Department of Mental Health, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
137
|
Cheng FY, Fleming JT, Chiang C. Bergmann glial Sonic hedgehog signaling activity is required for proper cerebellar cortical expansion and architecture. Dev Biol 2018; 440:152-166. [PMID: 29792854 DOI: 10.1016/j.ydbio.2018.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/07/2018] [Accepted: 05/18/2018] [Indexed: 01/21/2023]
Abstract
Neuronal-glial relationships play a critical role in the maintenance of central nervous system architecture and neuronal specification. A deeper understanding of these relationships can elucidate cellular cross-talk capable of sustaining proper development of neural tissues. In the cerebellum, cerebellar granule neuron precursors (CGNPs) proliferate in response to Purkinje neuron-derived Sonic hedgehog (Shh) before ultimately exiting the cell cycle and migrating radially along Bergmann glial fibers. However, the function of Bergmann glia in CGNP proliferation remains not well defined. Interestingly, the Hh pathway is also activated in Bergmann glia, but the role of Shh signaling in these cells is unknown. In this study, we show that specific ablation of Shh signaling using the tamoxifen-inducible TNCYFP-CreER line to eliminate Shh pathway activator Smoothened in Bergmann glia is sufficient to cause severe cerebellar hypoplasia and a significant reduction in CGNP proliferation. TNCYFP-CreER; SmoF/- (SmoCKO) mice demonstrate an obvious reduction in cerebellar size within two days of ablation of Shh signaling. Mutant cerebella have severely reduced proliferation and increased differentiation of CGNPs due to a significant decrease in Shh activity and concomitant activation of Wnt signaling in SmoCKO CGNPs, suggesting that this pathway is involved in cross-talk with the Shh pathway in regulating CGNP proliferation. In addition, Purkinje cells are ectopically located, their dendrites stunted, and the Bergmann glial network disorganized. Collectively, these data demonstrate a previously unappreciated role for Bergmann glial Shh signaling activity in the proliferation of CGNPs and proper maintenance of cerebellar architecture.
Collapse
Affiliation(s)
- Frances Y Cheng
- Department of Cell and Developmental Biology, Vanderbilt University, 4114 MRB III, Nashville, TN 37232, USA
| | - Jonathan T Fleming
- Department of Cell and Developmental Biology, Vanderbilt University, 4114 MRB III, Nashville, TN 37232, USA
| | - Chin Chiang
- Department of Cell and Developmental Biology, Vanderbilt University, 4114 MRB III, Nashville, TN 37232, USA.
| |
Collapse
|
138
|
Schilling K. Moving into shape: cell migration during the development and histogenesis of the cerebellum. Histochem Cell Biol 2018; 150:13-36. [DOI: 10.1007/s00418-018-1677-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2018] [Indexed: 12/31/2022]
|
139
|
Beckinghausen J, Sillitoe RV. Insights into cerebellar development and connectivity. Neurosci Lett 2018; 688:2-13. [PMID: 29746896 DOI: 10.1016/j.neulet.2018.05.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023]
Abstract
The cerebellum has a well-established role in controlling motor functions such coordination, balance, posture, and skilled learning. There is mounting evidence that it might also play a critical role in non-motor functions such as cognition and emotion. It is therefore not surprising that cerebellar defects are associated with a wide array of diseases including ataxia, dystonia, tremor, schizophrenia, dyslexia, and autism spectrum disorder. What is intriguing is that a seemingly uniform circuit that is often described as being "simple" should carry out all of these behaviors. Analyses of how cerebellar circuits develop have revealed that such descriptions massively underestimate the complexity of the cerebellum. The cerebellum is in fact highly patterned and organized around a series of parasagittal stripes and transverse zones. This topographic architecture partitions all cerebellar circuits into functional modules that are thought to enhance processing power during cerebellar dependent behaviors. What are arguably the most remarkable features of cerebellar topography are the developmental processes that produce them. This review is concerned with the genetic and cellular mechanisms that orchestrate cerebellar patterning. We place a major focus on how Purkinje cells control multiple aspects of cerebellar circuit assembly. Using this model, we discuss evidence for how "zebra-like" patterns in Purkinje cells sculpt the cerebellum, how specific genetic cues mediate the process, and how activity refines the patterns into an adult map that is capable of executing various functions. We also discuss how defective Purkinje cell patterning might impact the pathogenesis of neurological conditions.
Collapse
Affiliation(s)
- Jaclyn Beckinghausen
- Department of Pathology and Immunology, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Department of Neuroscience, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute of TX Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Department of Neuroscience, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA; Jan and Dan Duncan Neurological Research Institute of TX Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.
| |
Collapse
|
140
|
Merk DJ, Ohli J, Merk ND, Thatikonda V, Morrissy S, Schoof M, Schmid SN, Harrison L, Filser S, Ahlfeld J, Erkek S, Raithatha K, Andreska T, Weißhaar M, Launspach M, Neumann JE, Shakarami M, Plenker D, Marra MA, Li Y, Mungall AJ, Moore RA, Ma Y, Jones SJM, Lutz B, Ertl-Wagner B, Rossi A, Wagener R, Siebert R, Jung A, Eberhart CG, Lach B, Sendtner M, Pfister SM, Taylor MD, Chavez L, Kool M, Schüller U. Opposing Effects of CREBBP Mutations Govern the Phenotype of Rubinstein-Taybi Syndrome and Adult SHH Medulloblastoma. Dev Cell 2018; 44:709-724.e6. [PMID: 29551561 DOI: 10.1016/j.devcel.2018.02.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/08/2018] [Accepted: 02/12/2018] [Indexed: 10/17/2022]
Abstract
Recurrent mutations in chromatin modifiers are specifically prevalent in adolescent or adult patients with Sonic hedgehog-associated medulloblastoma (SHH MB). Here, we report that mutations in the acetyltransferase CREBBP have opposing effects during the development of the cerebellum, the primary site of origin of SHH MB. Our data reveal that loss of Crebbp in cerebellar granule neuron progenitors (GNPs) during embryonic development of mice compromises GNP development, in part by downregulation of brain-derived neurotrophic factor (Bdnf). Interestingly, concomitant cerebellar hypoplasia was also observed in patients with Rubinstein-Taybi syndrome, a congenital disorder caused by germline mutations of CREBBP. By contrast, loss of Crebbp in GNPs during postnatal development synergizes with oncogenic activation of SHH signaling to drive MB growth, thereby explaining the enrichment of somatic CREBBP mutations in SHH MB of adult patients. Together, our data provide insights into time-sensitive consequences of CREBBP mutations and corresponding associations with human diseases.
Collapse
Affiliation(s)
- Daniel J Merk
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany; Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Neurobiology, Harvard Medical School, Boston, MA 02215, USA
| | - Jasmin Ohli
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Natalie D Merk
- Munich Center for Integrated Protein Science at the Chemistry Department, Technical University, 85747 Munich, Germany
| | - Venu Thatikonda
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sorana Morrissy
- Arthur and Sonia Labatt Brain Tumour Research Centre and Division of Neurosurgery, Hospital for Sick Children (HSC), Toronto, ON M5G 1L7, Canada; Program in Developmental and Stem Cell Biology, HSC, Toronto, ON M5G 1X8, Canada
| | - Melanie Schoof
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), Hamburg 20251, Germany
| | - Susanne N Schmid
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany; Department of Neuropathology, University Medical Center Göttingen, 37099 Göttingen, Germany
| | - Luke Harrison
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Severin Filser
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Julia Ahlfeld
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany; Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Serap Erkek
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany; German Cancer Consortium (DKTK), Core Center Heidelberg, 69120 Heidelberg, Germany
| | - Kaamini Raithatha
- Microarray and Deep-Sequencing Core Facility, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Thomas Andreska
- Institute for Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Marc Weißhaar
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Michael Launspach
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Julia E Neumann
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany; Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Mehdi Shakarami
- Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Dennis Plenker
- Department of Translational Genomics, University of Cologne, 50931 Cologne, Germany
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC VSZ 4S6, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Yisu Li
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC VSZ 4S6, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC VSZ 4S6, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC VSZ 4S6, Canada
| | - Yussanne Ma
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC VSZ 4S6, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC VSZ 4S6, Canada
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Birgit Ertl-Wagner
- Institute of Clinical Radiology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Andrea Rossi
- Department of Pediatric Neuroradiology, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Rabea Wagener
- Institute of Human Genetics, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; Institute for Human Genetics, Ulm University and Ulm University Medical Center, 89081 Ulm, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; Institute for Human Genetics, Ulm University and Ulm University Medical Center, 89081 Ulm, Germany
| | - Andreas Jung
- Institute of Pathology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Charles G Eberhart
- Division of Neuropathology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Boleslaw Lach
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Michael Sendtner
- Institute for Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), Core Center Heidelberg, 69120 Heidelberg, Germany; Department of Pediatric Hematology and Oncology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Michael D Taylor
- Arthur and Sonia Labatt Brain Tumour Research Centre and Division of Neurosurgery, Hospital for Sick Children (HSC), Toronto, ON M5G 1L7, Canada; Program in Developmental and Stem Cell Biology, HSC, Toronto, ON M5G 1X8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lukas Chavez
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), Core Center Heidelberg, 69120 Heidelberg, Germany
| | - Ulrich Schüller
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany; Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), Hamburg 20251, Germany; Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
141
|
Multiple zebrafish atoh1 genes specify a diversity of neuronal types in the zebrafish cerebellum. Dev Biol 2018; 438:44-56. [PMID: 29548943 DOI: 10.1016/j.ydbio.2018.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/16/2018] [Accepted: 03/03/2018] [Indexed: 11/21/2022]
Abstract
A single Atoh1 basic-helix-loop-helix transcription factor specifies multiple neuron types in the mammalian cerebellum and anterior hindbrain. The zebrafish genome encodes three paralagous atoh1 genes whose functions in cerebellum and anterior hindbrain development we explore here. With use of a transgenic reporter, we report that zebrafish atoh1c-expressing cells are organized in two distinct domains that are separated both by space and developmental time. An early isthmic expression domain gives rise to an extracerebellar population in rhombomere 1 and an upper rhombic lip domain gives rise to granule cell progenitors that migrate to populate all four granule cell territories of the fish cerebellum. Using genetic mutants we find that of the three zebrafish atoh1 paralogs, atoh1c and atoh1a are required for the full complement of granule neurons. Surprisingly, the two genes are expressed in non-overlapping granule cell progenitor populations, indicating that fish use duplicate atoh1 genes to generate granule cell diversity that is not detected in mammals. Finally, live imaging of granule cell migration in wildtype and atoh1c mutant embryos reveals that while atoh1c is not required for granule cell specification per se, it is required for granule cells to delaminate and migrate away from the rhombic lip.
Collapse
|
142
|
Chouchane M, Costa MR. Instructing neuronal identity during CNS development and astroglial-lineage reprogramming: Roles of NEUROG2 and ASCL1. Brain Res 2018; 1705:66-74. [PMID: 29510143 DOI: 10.1016/j.brainres.2018.02.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/16/2018] [Accepted: 02/27/2018] [Indexed: 01/02/2023]
Abstract
The adult mammalian brain contains an enormous variety of neuronal types, which are generally categorized in large groups, based on their neurochemical identity, hodological properties and molecular markers. This broad classification has allowed the correlation between individual neural progenitor populations and their neuronal progeny, thus contributing to probe the cellular and molecular mechanisms involved in neuronal identity determination during central nervous system (CNS) development. In this review, we discuss the contribution of the proneural genes Neurogenin2 (Neurog2) and Achaete-scute homolog 1 (Ascl1) for the specification of neuronal phenotypes in the developing neocortex, cerebellum and retina. Then, we revise recent data on astroglia cell lineage reprogramming into induced neurons using the same proneural proteins to compare the neuronal phenotypes obtained from astroglial cells originated in those CNS regions. We conclude that Ascl1 and Neurog2 have different contributions to determine neuronal fates, depending on the neural progenitor or astroglial population expressing those proneural factors. Finally, we discuss some possible explanations for these seemingly conflicting effects of Ascl1 and Neurog2 and propose future approaches to further dissect the molecular mechanisms of neuronal identity specification.
Collapse
Affiliation(s)
- Malek Chouchane
- Brain Institute, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil; Neurological Surgery Department, University of California, San Francisco 94158, USA
| | - Marcos R Costa
- Brain Institute, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil.
| |
Collapse
|
143
|
Yung AR, Druckenbrod NR, Cloutier JF, Wu Z, Tessier-Lavigne M, Goodrich LV. Netrin-1 Confines Rhombic Lip-Derived Neurons to the CNS. Cell Rep 2018; 22:1666-1680. [PMID: 29444422 PMCID: PMC5877811 DOI: 10.1016/j.celrep.2018.01.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/13/2017] [Accepted: 01/22/2018] [Indexed: 02/02/2023] Open
Abstract
During brainstem development, newborn neurons originating from the rhombic lip embark on exceptionally long migrations to generate nuclei important for audition, movement, and respiration. Along the way, this highly motile population passes several cranial nerves yet remains confined to the CNS. We found that Ntn1 accumulates beneath the pial surface separating the CNS from the PNS, with gaps at nerve entry sites. In mice null for Ntn1 or its receptor DCC, hindbrain neurons enter cranial nerves and migrate into the periphery. CNS neurons also escape when Ntn1 is selectively lost from the sub-pial region (SPR), and conversely, expression of Ntn1 throughout the mutant hindbrain can prevent their departure. These findings identify a permissive role for Ntn1 in maintaining the CNS-PNS boundary. We propose that Ntn1 confines rhombic lip-derived neurons by providing a preferred substrate for tangentially migrating neurons in the SPR, preventing their entry into nerve roots.
Collapse
Affiliation(s)
- Andrea R Yung
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Jean-François Cloutier
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Zhuhao Wu
- Laboratory of Brain Development & Repair, The Rockefeller University, New York, NY 10065, USA
| | - Marc Tessier-Lavigne
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
144
|
Bay SN, Long AB, Caspary T. Disruption of the ciliary GTPase Arl13b suppresses Sonic hedgehog overactivation and inhibits medulloblastoma formation. Proc Natl Acad Sci U S A 2018; 115:1570-1575. [PMID: 29378965 PMCID: PMC5816136 DOI: 10.1073/pnas.1706977115] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant pediatric brain tumor, and overactivation of the Sonic Hedgehog (Shh) signaling pathway, which requires the primary cilium, causes 30% of MBs. Current treatments have known negative side effects or resistance mechanisms, so new treatments are necessary. Shh signaling mutations, like those that remove Patched1 (Ptch1) or activate Smoothened (Smo), cause tumors dependent on the presence of cilia. Genetic ablation of cilia prevents these tumors by removing Gli activator, but cilia are a poor therapeutic target since they support many biological processes. A more appropriate strategy would be to identify a protein that functionally disentangles Gli activation and ciliogenesis. Our mechanistic understanding of the ciliary GTPase Arl13b predicts that it could be such a target. Arl13b mutants retain short cilia, and loss of Arl13b results in ligand-independent, constitutive, low-level pathway activation but prevents maximal signaling without disrupting Gli repressor. Here, we show that deletion of Arl13b reduced Shh signaling levels in the presence of oncogenic SmoA1, suggesting Arl13b acts downstream of known tumor resistance mechanisms. Knockdown of ARL13B in human MB cell lines and in primary mouse MB cell culture decreased proliferation. Importantly, loss of Arl13b in a Ptch1-deleted mouse model of MB inhibited tumor formation. Postnatal depletion of Arl13b does not lead to any overt phenotypes in the epidermis, liver, or cerebellum. Thus, our in vivo and in vitro studies demonstrate that disruption of Arl13b inhibits cilia-dependent oncogenic Shh overactivation.
Collapse
Affiliation(s)
- Sarah N Bay
- Department of Human Genetics, Emory University, Atlanta, GA 30322
- Genetics and Molecular Biology Program, Emory University, Atlanta, GA 30322
| | - Alyssa B Long
- Department of Human Genetics, Emory University, Atlanta, GA 30322
| | - Tamara Caspary
- Department of Human Genetics, Emory University, Atlanta, GA 30322;
| |
Collapse
|
145
|
Hashimoto M, Yamanaka A, Kato S, Tanifuji M, Kobayashi K, Yaginuma H. Anatomical Evidence for a Direct Projection from Purkinje Cells in the Mouse Cerebellar Vermis to Medial Parabrachial Nucleus. Front Neural Circuits 2018; 12:6. [PMID: 29467628 PMCID: PMC5808303 DOI: 10.3389/fncir.2018.00006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 01/12/2018] [Indexed: 11/28/2022] Open
Abstract
Cerebellar malformations cause changes to the sleep-wake cycle, resulting in sleep disturbance. However, it is unclear how the cerebellum contributes to the sleep-wake cycle. To examine the neural connections between the cerebellum and the nuclei involved in the sleep-wake cycle, we investigated the axonal projections of Purkinje cells in the mouse posterior vermis by using an adeno-associated virus (AAV) vector (serotype rh10) as an anterograde tracer. When an AAV vector expressing humanized renilla green fluorescent protein was injected into the cerebellar lobule IX, hrGFP and synaptophysin double-positive axonal terminals were observed in the region of medial parabrachial nucleus (MPB). The MPB is involved in the phase transition from rapid eye movement (REM) sleep to Non-REM sleep and vice versa, and the cardiovascular and respiratory responses. The hrGFP-positive axons from lobule IX went through the ventral spinocerebellar tract and finally reached the MPB. By contrast, when the AAV vector was injected into cerebellar lobule VI, no hrGFP-positive axons were observed in the MPB. To examine neurons projecting to the MPB, we unilaterally injected Fast Blue and AAV vector (retrograde serotype, rAAV2-retro) as retrograde tracers into the MPB. The cerebellar Purkinje cells in lobules VIII–X on the ipsilateral side of the Fast Blue-injected MPB were retrogradely labeled by Fast Blue and AAV vector (retrograde serotype), but no retrograde-labeled Purkinje cells were observed in lobules VI–VII and the cerebellar hemispheres. These results indicated that Purkinje cells in lobules VIII–X directly project their axons to the ipsilateral MPB but not lobules VI–VII. The direct connection between lobules VIII–X and the MPB suggests that the cerebellum participates in the neural network controlling the sleep-wake cycle, and cardiovascular and respiratory responses, by modulating the physiological function of the MPB.
Collapse
Affiliation(s)
- Mitsuhiro Hashimoto
- Department of Neuroanatomy and Embryology, Fukushima Medical University Graduate School of Medicine, Fukushima, Japan.,Brain Interdisciplinary Research Division, Research Institute for Science and Technology, Tokyo University of Science, Noda-shi, Japan.,Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya-shi, Japan.,Laboratory for Integrative Neural Systems, RIKEN Brain Science Institute, Saitama, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya-shi, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University Graduate School of Medicine, Fukushima, Japan
| | - Manabu Tanifuji
- Laboratory for Integrative Neural Systems, RIKEN Brain Science Institute, Saitama, Japan.,Department of Life Science and Medical Bio-Science, Faculty of Science and Engineering, Waseda University, Tokyo, Japan.,Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University Graduate School of Medicine, Fukushima, Japan
| | - Hiroyuki Yaginuma
- Department of Neuroanatomy and Embryology, Fukushima Medical University Graduate School of Medicine, Fukushima, Japan
| |
Collapse
|
146
|
Shimada IS, Hwang SH, Somatilaka BN, Wang X, Skowron P, Kim J, Kim M, Shelton JM, Rajaram V, Xuan Z, Taylor MD, Mukhopadhyay S. Basal Suppression of the Sonic Hedgehog Pathway by the G-Protein-Coupled Receptor Gpr161 Restricts Medulloblastoma Pathogenesis. Cell Rep 2018; 22:1169-1184. [PMID: 29386106 PMCID: PMC5813698 DOI: 10.1016/j.celrep.2018.01.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 12/22/2022] Open
Abstract
Sonic hedgehog (Shh) determines cerebellar granule cell (GC) progenitor proliferation and medulloblastoma pathogenesis. However, the pathways regulating GC progenitors during embryogenesis before Shh production by Purkinje neurons and their roles in tumorigenesis remain unclear. The cilium-localized G-protein-coupled receptor Gpr161 suppresses Shh-mediated signaling in the neural tube. Here, by deleting Gpr161 in mouse neural stem cells or GC progenitors, we establish Gpr161 as a tumor suppressor in Shh subtype medulloblastoma. Irrespective of Shh production in the cerebellum, Gpr161 deletion increased downstream activity of the Shh pathway by restricting Gli3-mediated repression, causing more extensive generation and proliferation of GC progenitors. Moreover, earlier deletion of Gpr161 during embryogenesis increased tumor incidence and severity. GC progenitor overproduction during embryogenesis from Gpr161 deletion was cilium dependent, unlike normal development. Low GPR161 expression correlated with poor survival of SHH subtype medulloblastoma patients. Gpr161 restricts GC progenitor production by preventing premature and Shh-dependent pathway activity, highlighting the importance of basal pathway suppression in tumorigenesis.
Collapse
Affiliation(s)
- Issei S Shimada
- Department of Cell Biology , University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sun-Hee Hwang
- Department of Cell Biology , University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bandarigoda N Somatilaka
- Department of Cell Biology , University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xin Wang
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON M5C 1X8, Canada
| | - Patryk Skowron
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON M5C 1X8, Canada
| | - Jiwoong Kim
- Department of Bioinformatics , University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Min Kim
- Department of Bioinformatics , University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John M Shelton
- Department of Internal Medicine , University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Veena Rajaram
- Department of Pathology and Laboratory Medicine, Children's Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhenyu Xuan
- Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Michael D Taylor
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON M5C 1X8, Canada
| | - Saikat Mukhopadhyay
- Department of Cell Biology , University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
147
|
Bovio P, Roidl D, Heidrich S, Vogel T, Franz H. Isolation and Cultivation of Neural Progenitors Followed by Chromatin-Immunoprecipitation of Histone 3 Lysine 79 Dimethylation Mark. J Vis Exp 2018:56631. [PMID: 29443015 PMCID: PMC5908698 DOI: 10.3791/56631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Brain development is a complex process, which is controlled in a temporo-spatial manner by gradients of morphogens and different transcriptional programs. Additionally, epigenetic chromatin modifications, like histone methylation, have an important role for establishing and maintaining specific cell fates within this process. The vast majority of histone methylation occurs on the flexible histone tail, which is accessible to histone modifiers, erasers, and histone reader proteins. In contrast, H3K79 methylation is located in the globular domain of histone 3 and is implicated in different developmental functions. H3K79 methylation is evolutionarily conserved and can be found in a wide range of species from Homo sapiens to Saccharomyces cerevisiae. The modification occurs in different cell populations within organisms, including neural progenitors. The location of H3K79 methylation in the globular domain of histone 3 makes it difficult to assess. Here, we present methods to isolate and culture cortical progenitor cells (CPCs) from embryonic cortical brain tissue (E11.5-E14.5) or cerebellar granular neuron progenitors (CGNPs) from postnatal tissue (P5-P7), and to efficiently immunoprecipitate H3K79me2 for quantitative PCR (qPCR) and genome-wide sequencing.
Collapse
Affiliation(s)
- Patrick Bovio
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg; Faculty of Biology, University of Freiburg
| | - Deborah Roidl
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg
| | - Stefanie Heidrich
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg
| | - Tanja Vogel
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg;
| | - Henriette Franz
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg;
| |
Collapse
|
148
|
Abstract
The formation of the nervous system is a multistep process that yields a mature brain. Failure in any of the steps of this process may cause brain malfunction. In the early stages of embryonic development, neural progenitors quickly proliferate and then, at a specific moment, differentiate into neurons or glia. Once they become postmitotic neurons, they migrate to their final destinations and begin to extend their axons to connect with other neurons, sometimes located in quite distant regions, to establish different neural circuits. During the last decade, it has become evident that Zic genes, in addition to playing important roles in early development (e.g., gastrulation and neural tube closure), are involved in different processes of late brain development, such as neuronal migration, axon guidance, and refinement of axon terminals. ZIC proteins are therefore essential for the proper wiring and connectivity of the brain. In this chapter, we review our current knowledge of the role of Zic genes in the late stages of neural circuit formation.
Collapse
|
149
|
Abstract
With the growing recognition of the extent and prevalence of human cerebellar disorders, an understanding of developmental programs that build the mature cerebellum is necessary. In this chapter we present an overview of the basic epochs and key molecular regulators of the developmental programs of cerebellar development. These include early patterning of the cerebellar territory, the genesis of cerebellar cells from multiple spatially distinct germinal zones, and the extensive migration and coordinated cellular rearrangements that result in the formation of the exquisitely foliated and laminated mature cerebellum. This knowledge base is founded on extensive analysis of animal models, particularly mice, due in large part to the ease of genetic manipulation of this important model organism. Since cerebellar structure and function are largely conserved across species, mouse cerebellar development is highly relevant to humans and has led to important insights into the developmental pathogenesis of human cerebellar disorders. Human fetal cerebellar development remains largely undescribed; however, several human-specific developmental features are known which are relevant to human disease and underline the importance of ongoing human fetal research.
Collapse
Affiliation(s)
- Parthiv Haldipur
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, United States
| | - Derek Dang
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, United States
| | - Kathleen J Millen
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, United States; Department of Pediatrics, Genetics Division, University of Washington, Seattle, WA, United States.
| |
Collapse
|
150
|
Ryan KE, Kim PS, Fleming JT, Brignola E, Cheng FY, Litingtung Y, Chiang C. Lkb1 regulates granule cell migration and cortical folding of the cerebellar cortex. Dev Biol 2017; 432:165-177. [PMID: 28974424 PMCID: PMC5694378 DOI: 10.1016/j.ydbio.2017.09.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 12/17/2022]
Abstract
Cerebellar growth and foliation require the Hedgehog-driven proliferation of granule cell precursors (GCPs) in the external granule layer (EGL). However, that increased or extended GCP proliferation generally does not elicit ectopic folds suggests that additional determinants control cortical expansion and foliation during cerebellar development. Here, we find that genetic loss of the serine-threonine kinase Liver Kinase B1 (Lkb1) in GCPs increased cerebellar cortical size and foliation independent of changes in proliferation or Hedgehog signaling. This finding is unexpected given that Lkb1 has previously shown to be critical for Hedgehog pathway activation in cultured cells. Consistent with unchanged proliferation rate of GCPs, the cortical expansion of Lkb1 mutants is accompanied by thinning of the EGL. The plane of cell division, which has been implicated in diverse processes from epithelial surface expansions to gyrification of the human cortex, remains unchanged in the mutants when compared to wild-type controls. However, we find that Lkb1 mutants display delayed radial migration of post-mitotic GCPs that coincides with increased cortical size, suggesting that aberrant cell migration may contribute to the cortical expansion and increase foliation. Taken together, our results reveal an important role for Lkb1 in regulating cerebellar cortical size and foliation in a Hedgehog-independent manner.
Collapse
Affiliation(s)
- Kaitlyn E Ryan
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN 37232, USA
| | - Patrick S Kim
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN 37232, USA
| | - Jonathan T Fleming
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN 37232, USA
| | - Emily Brignola
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN 37232, USA
| | - Frances Y Cheng
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN 37232, USA
| | - Ying Litingtung
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN 37232, USA
| | - Chin Chiang
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN 37232, USA.
| |
Collapse
|