101
|
Giachino C, Boulay JL, Ivanek R, Alvarado A, Tostado C, Lugert S, Tchorz J, Coban M, Mariani L, Bettler B, Lathia J, Frank S, Pfister S, Kool M, Taylor V. A Tumor Suppressor Function for Notch Signaling in Forebrain Tumor Subtypes. Cancer Cell 2015; 28:730-742. [PMID: 26669487 DOI: 10.1016/j.ccell.2015.10.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/06/2015] [Accepted: 10/16/2015] [Indexed: 11/18/2022]
Abstract
In the brain, Notch signaling maintains normal neural stem cells, but also brain cancer stem cells, indicating an oncogenic role. Here, we identify an unexpected tumor suppressor function for Notch in forebrain tumor subtypes. Genetic inactivation of RBP-Jκ, a key Notch mediator, or Notch1 and Notch2 receptors accelerates PDGF-driven glioma growth in mice. Conversely, genetic activation of the Notch pathway reduces glioma growth and increases survival. In humans, high Notch activity strongly correlates with distinct glioma subtypes, increased patient survival, and lower tumor grade. Additionally, simultaneous inactivation of RBP-Jκ and p53 induces primitive neuroectodermal-like tumors in mice. Hence, Notch signaling cooperates with p53 to restrict cell proliferation and tumor growth in mouse models of human brain tumors.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Brain Neoplasms/genetics
- Brain Neoplasms/metabolism
- Brain Neoplasms/mortality
- Brain Neoplasms/pathology
- Cell Proliferation
- Databases, Genetic
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Gene Transfer Techniques
- Glioma/genetics
- Glioma/metabolism
- Glioma/mortality
- Glioma/pathology
- Humans
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism
- Infusions, Intraventricular
- Kaplan-Meier Estimate
- Mice, Knockout
- Neoplasm Grading
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Neural Stem Cells/metabolism
- Neural Stem Cells/pathology
- Phenotype
- Platelet-Derived Growth Factor/administration & dosage
- Prosencephalon/metabolism
- Prosencephalon/pathology
- Proto-Oncogene Proteins c-sis/genetics
- Proto-Oncogene Proteins c-sis/metabolism
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Receptor, Notch2/genetics
- Receptor, Notch2/metabolism
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Recombinant Proteins/administration & dosage
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction
- Time Factors
- Tumor Burden
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Claudio Giachino
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland.
| | - Jean-Louis Boulay
- Department of Biomedicine, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Robert Ivanek
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Alvaro Alvarado
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NC 10, Cleveland, OH 44195, USA
| | - Cristobal Tostado
- Department of Biomedicine, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Sebastian Lugert
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Jan Tchorz
- Department of Biomedicine, University of Basel, Kingelbergstrasse 50-70, 4056 Basel, Switzerland
| | - Mustafa Coban
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Luigi Mariani
- Department of Biomedicine, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Bernhard Bettler
- Department of Biomedicine, University of Basel, Kingelbergstrasse 50-70, 4056 Basel, Switzerland
| | - Justin Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NC 10, Cleveland, OH 44195, USA
| | - Stephan Frank
- Division of Neuropathology, Institute of Pathology, University of Basel, Schoenbeinstrasse 40, 4031 Basel, Switzerland
| | - Stefan Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Verdon Taylor
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland.
| |
Collapse
|
102
|
Soroceanu L, Matlaf L, Khan S, Akhavan A, Singer E, Bezrookove V, Decker S, Ghanny S, Hadaczek P, Bengtsson H, Ohlfest J, Luciani-Torres MG, Harkins L, Perry A, Guo H, Soteropoulos P, Cobbs CS. Cytomegalovirus Immediate-Early Proteins Promote Stemness Properties in Glioblastoma. Cancer Res 2015; 75:3065-76. [PMID: 26239477 DOI: 10.1158/0008-5472.can-14-3307] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) is the most common and aggressive human brain tumor. Human cytomegalovirus (HCMV) immediate-early (IE) proteins that are endogenously expressed in GBM cells are strong viral transactivators with oncogenic properties. Here, we show how HCMV IEs are preferentially expressed in glioma stem-like cells (GSC), where they colocalize with the other GBM stemness markers, CD133, Nestin, and Sox2. In patient-derived GSCs that are endogenously infected with HCMV, attenuating IE expression by an RNAi-based strategy was sufficient to inhibit tumorsphere formation, Sox2 expression, cell-cycle progression, and cell survival. Conversely, HCMV infection of HMCV-negative GSCs elicited robust self-renewal and proliferation of cells that could be partially reversed by IE attenuation. In HCMV-positive GSCs, IE attenuation induced a molecular program characterized by enhanced expression of mesenchymal markers and proinflammatory cytokines, resembling the therapeutically resistant GBM phenotype. Mechanistically, HCMV/IE regulation of Sox2 occurred via inhibition of miR-145, a negative regulator of Sox2 protein expression. In a spontaneous mouse model of glioma, ectopic expression of the IE1 gene (UL123) specifically increased Sox2 and Nestin levels in the IE1-positive tumors, upregulating stemness and proliferation markers in vivo. Similarly, human GSCs infected with the HCMV strain Towne but not the IE1-deficient strain CR208 showed enhanced growth as tumorspheres and intracranial tumor xenografts, compared with mock-infected human GSCs. Overall, our findings offer new mechanistic insights into how HCMV/IE control stemness properties in GBM cells.
Collapse
Affiliation(s)
- Liliana Soroceanu
- Department of Neurosciences, California Pacific Medical Center Research Institute, San Francisco, California.
| | - Lisa Matlaf
- Department of Neurosciences, California Pacific Medical Center Research Institute, San Francisco, California
| | - Sabeena Khan
- Department of Neurosciences, California Pacific Medical Center Research Institute, San Francisco, California
| | - Armin Akhavan
- Department of Neurosciences, California Pacific Medical Center Research Institute, San Francisco, California
| | - Eric Singer
- Department of Neurosciences, California Pacific Medical Center Research Institute, San Francisco, California
| | - Vladimir Bezrookove
- Department of Neurosciences, California Pacific Medical Center Research Institute, San Francisco, California
| | - Stacy Decker
- Department of Pediatrics and Neurosurgery, University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota
| | - Saleena Ghanny
- Center for Applied Genomics, Institute of Genomic Medicine, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Piotr Hadaczek
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Henrik Bengtsson
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
| | - John Ohlfest
- Department of Pediatrics and Neurosurgery, University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota
| | - Maria-Gloria Luciani-Torres
- Department of Neurosciences, California Pacific Medical Center Research Institute, San Francisco, California
| | - Lualhati Harkins
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Arie Perry
- Department of Pathology, University of California, San Francisco, California
| | - Hong Guo
- Center for Applied Genomics, Institute of Genomic Medicine, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Patricia Soteropoulos
- Center for Applied Genomics, Institute of Genomic Medicine, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Charles S Cobbs
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California. Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Seattle, Washington.
| |
Collapse
|
103
|
Galvez-Contreras AY, Gonzalez-Castaneda RE, Campos-Ordonez T, Luquin S, Gonzalez-Perez O. Phenytoin enhances the phosphorylation of epidermal growth factor receptor and fibroblast growth factor receptor in the subventricular zone and promotes the proliferation of neural precursor cells and oligodendrocyte differentiation. Eur J Neurosci 2015; 43:139-47. [PMID: 26370587 DOI: 10.1111/ejn.13079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/07/2015] [Indexed: 11/30/2022]
Abstract
Phenytoin is a widely used antiepileptic drug that induces cell proliferation in several tissues, such as heart, bone, skin, oral mucosa and neural precursors. Some of these effects are mediated via fibroblast growth factor receptor (FGFR) and epidermal growth factor receptor (EGFR). These receptors are strongly expressed in the adult ventricular-subventricular zone (V-SVZ), the main neurogenic niche in the adult brain. The aim of this study was to determine the cell lineage and cell fate of V-SVZ neural progenitors expanded by phenytoin, as well as the effects of this drug on EGFR/FGFR phosphorylation. Male BALB/C mice received 10 mg/kg phenytoin by oral cannula for 30 days. We analysed the proliferation of V-SVZ neural progenitors by immunohistochemistry and western blot. Our findings indicate that phenytoin enhanced twofold the phosphorylation of EGFR and FGFR in the V-SVZ, increased the number of bromodeoxyuridine (BrdU)+/Sox2+ and BrdU+/doublecortin+ cells in the V-SVZ, and expanded the population of Olig2-expressing cells around the lateral ventricles. After phenytoin removal, a large number of BrdU+/Receptor interacting protein (RIP)+ cells were observed in the olfactory bulb. In conclusion, phenytoin enhanced the phosphorylation of FGFR and EGFR, and promoted the expression of neural precursor markers in the V-SVZ. In parallel, the number of oligodendrocytes increased significantly after phenytoin removal.
Collapse
Affiliation(s)
- Alma Y Galvez-Contreras
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, Mexico
| | - Rocio E Gonzalez-Castaneda
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, Mexico
| | - Tania Campos-Ordonez
- Laboratory of Neuroscience, Facultad de Psicologia, Universidad de Colima, Av. Universidad 333, Colima, COL, 28040, Mexico
| | - Sonia Luquin
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, Mexico
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, Facultad de Psicologia, Universidad de Colima, Av. Universidad 333, Colima, COL, 28040, Mexico
| |
Collapse
|
104
|
Peng H, Jiang B, Zhao J, Chen B, Wang P. RETRACTED ARTICLE: Risperidone promotes differentiation of glioma stem-like cells through the Wnt signaling pathway. Tumour Biol 2015. [DOI: 10.1007/s13277-015-3087-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
105
|
Kusne Y, Sanai N. The SVZ and Its Relationship to Stem Cell Based Neuro-oncogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 853:23-32. [PMID: 25895705 DOI: 10.1007/978-3-319-16537-0_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gliomas are primary cancers of the brain and the most lethal cancers known to man. In recent years the discovery of germinal regions in the postnatal brain containing neuronal stem and progenitor cell populations has led to the hypothesis that these cells may themselves serve as an origin of brain tumors. Stem cells that reside within the glioma tumor have been shown to display nonneoplastic stem-like characteristics, including expression of various stem cell markers, as well as capacity for self-renewal and multipotency. Furthermore, glioma tumors display marked similarities to the germinal regions of the brain. Investigations of human neural stem cells and their potential for malignancy may finally identify a cell-of-origin for human gliomas. This, in turn, may facilitate better therapeutic targeting leading to improved prognosis for glioma patients.
Collapse
Affiliation(s)
- Yael Kusne
- Barrow Brain Tumor Research Center, 350 W. Thomas Road, Phoenix, AZ, 85013, USA
| | | |
Collapse
|
106
|
Platelet-Derived Growth Factor Receptor Alpha as a Marker of Mesenchymal Stem Cells in Development and Stem Cell Biology. Stem Cells Int 2015; 2015:362753. [PMID: 26257789 PMCID: PMC4519552 DOI: 10.1155/2015/362753] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 05/24/2015] [Accepted: 06/17/2015] [Indexed: 11/17/2022] Open
Abstract
Three decades on, the mesenchymal stem cells (MSCs) have been intensively researched on the bench top and used clinically. However, ambiguity still exists in regard to their anatomical locations, identities, functions, and extent of their differentiative abilities. One of the major impediments in the quest of the MSC research has been lack of appropriate in vivo markers. In recent years, this obstacle has been resolved to some degree as PDGFRα emerges as an important mesenchymal stem cell marker. Accumulating lines of evidence are showing that the PDGFRα (+) cells reside in the perivascular locations of many adult interstitium and fulfil the classic concepts of MSCs in vitro and in vivo. PDGFRα has long been recognised for its roles in the mesoderm formation and connective tissue development during the embryogenesis. Current review describes the lines of evidence regarding the role of PDGFRα in morphogenesis and differentiation and its implications for MSC biology.
Collapse
|
107
|
Dimou L, Gallo V. NG2-glia and their functions in the central nervous system. Glia 2015; 63:1429-51. [PMID: 26010717 DOI: 10.1002/glia.22859] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/04/2015] [Indexed: 12/12/2022]
Abstract
In the central nervous system, NG2-glia represent a neural cell population that is distinct from neurons, astrocytes, and oligodendrocytes. While in the past the main role ascribed to these cells was that of progenitors for oligodendrocytes, in the last years it has become more obvious that they have further functions in the brain. Here, we will discuss some of the most current and highly debated issues regarding NG2-glia: Do these cells represent a heterogeneous population? Can they give rise to different progenies, and does this change under pathological conditions? How do they respond to injury or pathology? What is the role of neurotransmitter signaling between neurons and NG2-glia? We will first give an overview on the developmental origin of NG2-glia, and then discuss whether their distinct properties in different brain regions are the result of environmental influences, or due to intrinsic differences. We will then review and discuss their in vitro differentiation potential and in vivo lineage under physiological and pathological conditions, together with their electrophysiological properties in distinct brain regions and at different developmental stages. Finally, we will focus on their potential to be used as therapeutic targets in demyelinating and neurodegenerative diseases. Therefore, this review article will highlight the importance of NG2-glia not only in the healthy, but also in the diseased brain.
Collapse
Affiliation(s)
- L Dimou
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University, Munich, 80336, Germany.,Institute for Stem Cell Research, Helmholtz Zentrum Munich, Neuherberg, 85764, Germany
| | - V Gallo
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, District of Columbia
| |
Collapse
|
108
|
Beyeler S, Joly S, Fries M, Obermair FJ, Burn F, Mehmood R, Tabatabai G, Raineteau O. Targeting the bHLH transcriptional networks by mutated E proteins in experimental glioma. Stem Cells 2015; 32:2583-95. [PMID: 24965159 DOI: 10.1002/stem.1776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 05/06/2014] [Accepted: 05/19/2013] [Indexed: 01/15/2023]
Abstract
Glioblastomas (GB) are aggressive primary brain tumors. Helix-loop-helix (HLH, ID proteins) and basic HLH (bHLH, e.g., Olig2) proteins are transcription factors that regulate stem cell proliferation and differentiation throughout development and into adulthood. Their convergence on many oncogenic signaling pathways combined with the observation that their overexpression in GB correlates with poor clinical outcome identifies these transcription factors as promising therapeutic targets. Important dimerization partners of HLH/bHLH proteins are E proteins that are necessary for nuclear translocation and DNA binding. Here, we overexpressed a wild type or a dominant negative form of E47 (dnE47) that lacks its nuclear localization signal thus preventing nuclear translocation of bHLH proteins in long-term glioma cell lines and in glioma-initiating cell lines and analyzed the effects in vitro and in vivo. While overexpression of E47 was sufficient to induce apoptosis in absence of bHLH proteins, dnE47 was necessary to prevent nuclear translocation of Olig2 and to achieve similar proapoptotic responses. Transcriptional analyses revealed downregulation of the antiapoptotic gene BCL2L1 and the proproliferative gene CDC25A as underlying mechanisms. Overexpression of dnE47 in glioma-initiating cell lines with high HLH and bHLH protein levels reduced sphere formation capacities and expression levels of Nestin, BCL2L1, and CDC25A. Finally, the in vivo induction of dnE47 expression in established xenografts prolonged survival. In conclusion, our data introduce a novel approach to jointly neutralize HLH and bHLH transcriptional networks activities, and identify these transcription factors as potential targets in glioma.
Collapse
Affiliation(s)
- Sarah Beyeler
- Brain Research Institute, University of Zurich/Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Furnari FB, Cloughesy TF, Cavenee WK, Mischel PS. Heterogeneity of epidermal growth factor receptor signalling networks in glioblastoma. Nat Rev Cancer 2015; 15:302-10. [PMID: 25855404 PMCID: PMC4875778 DOI: 10.1038/nrc3918] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As tumours evolve, the daughter cells of the initiating cell often become molecularly heterogeneous and develop different functional properties and therapeutic vulnerabilities. In glioblastoma (GBM), a lethal form of brain cancer, the heterogeneous expression of the epidermal growth factor receptor (EGFR) poses a substantial challenge for the effective use of EGFR-targeted therapies. Understanding the mechanisms that cause EGFR heterogeneity in GBM should provide better insights into how they, and possibly other amplified receptor tyrosine kinases, affect cellular signalling, metabolism and drug resistance.
Collapse
Affiliation(s)
- Frank B Furnari
- Ludwig Institute for Cancer Research and the Department of Pathology, University of California San Diego, La Jolla, California 92093, USA
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, California 90095, USA
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research and the Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Paul S Mischel
- Ludwig Institute for Cancer Research and the Department of Pathology, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
110
|
Franco PG, Pasquini JM, Silvestroff L. Optimizing culture medium composition to improve oligodendrocyte progenitor cell yields in vitro from subventricular zone-derived neural progenitor cell neurospheres. PLoS One 2015; 10:e0121774. [PMID: 25837625 PMCID: PMC4383518 DOI: 10.1371/journal.pone.0121774] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/11/2015] [Indexed: 12/20/2022] Open
Abstract
Neural Stem and Progenitor Cells (NSC/NPC) are gathering tangible recognition for their uses in cell therapy and cell replacement therapies for human disease, as well as a model system to continue research on overall neural developmental processes in vitro. The Subventricular Zone is one of the largest NSC/NPC niches in the developing mammalian Central Nervous System, and persists through to adulthood. Oligodendrocyte progenitor cell (OPC) enriched cultures are usefull tools for in vitro studies as well as for cell replacement therapies for treating demyelination diseases. We used Subventricular Zone-derived NSC/NPC primary cultures from newborn mice and compared the effects of different growth factor combinations on cell proliferation and OPC yield. The Platelet Derived Growth Factor-AA and BB homodimers had a positive and significant impact on OPC generation. Furthermore, heparin addition to the culture media contributed to further increase overall culture yields. The OPC generated by this protocol were able to mature into Myelin Basic Protein-expressing cells and to interact with neurons in an in vitro co-culture system. As a whole, we describe an optimized in vitro method for increasing OPC.
Collapse
Affiliation(s)
- Paula G. Franco
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, and Instituto de Química y Fisicoquímica Biológicas “Profesor Alejandro C. Paladini” (IQUIFIB), UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juana M. Pasquini
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, and Instituto de Química y Fisicoquímica Biológicas “Profesor Alejandro C. Paladini” (IQUIFIB), UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucas Silvestroff
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, and Instituto de Química y Fisicoquímica Biológicas “Profesor Alejandro C. Paladini” (IQUIFIB), UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
111
|
Gong AH, Wei P, Zhang S, Yao J, Yuan Y, Zhou AD, Lang FF, Heimberger AB, Rao G, Huang S. FoxM1 Drives a Feed-Forward STAT3-Activation Signaling Loop That Promotes the Self-Renewal and Tumorigenicity of Glioblastoma Stem-like Cells. Cancer Res 2015; 75:2337-48. [PMID: 25832656 DOI: 10.1158/0008-5472.can-14-2800] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 03/26/2015] [Indexed: 02/07/2023]
Abstract
The growth factor PDGF controls the development of glioblastoma (GBM), but its contribution to the function of GBM stem-like cells (GSC) has been little studied. Here, we report that the transcription factor FoxM1 promotes PDGFA-STAT3 signaling to drive GSC self-renewal and tumorigenicity. In GBM, we found a positive correlation between expression of FoxM1 and PDGF-A. In GSC and mouse neural stem cells, FoxM1 bound to the PDGF-A promoter to upregulate PDGF-A expression, acting to maintain the stem-like qualities of GSC in part through this mechanism. Analysis of the human cancer genomic database The Cancer Genome Atlas revealed that GBM expresses higher levels of STAT3, a PDGF-A effector signaling molecule, as compared with normal brain. FoxM1 regulated STAT3 transcription through interactions with the β-catenin/TCF4 complex. FoxM1 deficiency inhibited PDGF-A and STAT3 expression in neural stem cells and GSC, abolishing their stem-like and tumorigenic properties. Further mechanistic investigations defined a FoxM1-PDGFA-STAT3 feed-forward pathway that was sufficient to confer stem-like properties to glioma cells. Collectively, our findings showed how FoxM1 activates expression of PDGF-A and STAT3 in a pathway required to maintain the self-renewal and tumorigenicity of glioma stem-like cells.
Collapse
Affiliation(s)
- Ai-Hua Gong
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ping Wei
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sicong Zhang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas. Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Jun Yao
- Department of Neuro-oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ai-Dong Zhou
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Suyun Huang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas. Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas.
| |
Collapse
|
112
|
Cobbs C, Khan S, Matlaf L, McAllister S, Zider A, Yount G, Rahlin K, Harkins L, Bezrookove V, Singer E, Soroceanu L. HCMV glycoprotein B is expressed in primary glioblastomas and enhances growth and invasiveness via PDGFR-alpha activation. Oncotarget 2015; 5:1091-100. [PMID: 24658280 PMCID: PMC4011586 DOI: 10.18632/oncotarget.1787] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Our laboratory first demonstrated that human cytomegalovirus (HCMV) is associated with the most deadly form of primary brain tumor, glioblastoma (GBM). We showed that HCMV glycoprotein B (gB) mediates viral cellular entry via the receptor tyrosine kinase PDGFR-alpha (PDGFRα), resulting in activation of the PI3K/Akt pathway, a critical signaling axis gliomagenesis. Here, we investigated the effects of gB overexpression on glioma progression. We demonstrate that gB is endogenously expressed in primary GBM samples and show that ectopic gB expression in glioma cells induced sustained phosphorylation of PDGFRα, Akt, and Src. Recombinant gB protein and the whole virus enhanced invasion of primary glioblastoma cells into Matrigel and rat brain slices, and this effect was specifically inhibited by neutralizing antibodies to either gB or PDGFRα. Importantly, neutralizing antibodies to gB significantly inhibited the invasiveness of patient-derived HCMV-positive glioblastoma cells, suggesting that functional inhibition of this viral protein could hinder glioblastoma progression. gB overexpression promoted in vivo glioma growth and enhanced phosphor-Akt levels and tumor cell dispersal relative to controls. Taken together, our results demonstrate that HCMV gB promotes key hallmarks of glioblastoma and suggest that targeting gB may have therapeutic benefits for patients with HCMV -positive gliomas.
Collapse
Affiliation(s)
- Charles Cobbs
- California Pacific Medical Center Research Institute, San Francisco, CA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Double minute amplification of mutant PDGF receptor α in a mouse glioma model. Sci Rep 2015; 5:8468. [PMID: 25683249 PMCID: PMC4329559 DOI: 10.1038/srep08468] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/21/2015] [Indexed: 01/24/2023] Open
Abstract
In primary brain tumors, oncogenes are frequently amplified and maintained on extrachromosomal DNA as double minutes (DM), but the underlying mechanisms remain poorly understood. We have generated a mouse model of malignant glioma based on knock-in of a mutant PDGF receptor α (PDGFRα) that is expressed in oligodendrocyte precursor cells (OPCs) after activation by a Cre recombinase. In the tumor suppressor INK4/Arf−/− background, mutant animals frequently developed brain tumors resembling anaplastic human gliomas (WHO grade III). Besides brain tumors, most animals also developed aggressive fibrosarcomas, likely triggered by Cre activation of mutant PDGFRα in fibroblastic cell lineages. Importantly, in the brain tumors and cell lines derived from brain tumor tissues, we identified a high prevalence of DM Pdgfra gene amplification, suggesting its occurrence as an early mutational event contributing to the malignant transformation of OPCs. Amplicons extended beyond the Pdgfra locus and included in some cases neighboring genes Kit and Kdr. Our genetically defined mouse brain tumor model therefore supports OPC as a cell of origin for malignant glioma and offers an example of a defined temporal sequence of mutational events, thus providing an entry point for a mechanistic understanding of DM gene amplification and its functionality in gliomagenesis.
Collapse
|
114
|
Rueger MA, Schroeter M. In vivo imaging of endogenous neural stem cells in the adult brain. World J Stem Cells 2015; 7:75-83. [PMID: 25621107 PMCID: PMC4300938 DOI: 10.4252/wjsc.v7.i1.75] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/02/2014] [Accepted: 10/29/2014] [Indexed: 02/06/2023] Open
Abstract
The discovery of endogenous neural stem cells (eNSCs) in the adult mammalian brain with their ability to self-renew and differentiate into functional neurons, astrocytes and oligodendrocytes has raised the hope for novel therapies of neurological diseases. Experimentally, those eNSCs can be mobilized in vivo, enhancing regeneration and accelerating functional recovery after, e.g., focal cerebral ischemia, thus constituting a most promising approach in stem cell research. In order to translate those current experimental approaches into a clinical setting in the future, non-invasive imaging methods are required to monitor eNSC activation in a longitudinal and intra-individual manner. As yet, imaging protocols to assess eNSC mobilization non-invasively in the live brain remain scarce, but considerable progress has been made in this field in recent years. This review summarizes and discusses the current imaging modalities suitable to monitor eNSCs in individual experimental animals over time, including optical imaging, magnetic resonance tomography and-spectroscopy, as well as positron emission tomography (PET). Special emphasis is put on the potential of each imaging method for a possible clinical translation, and on the specificity of the signal obtained. PET-imaging with the radiotracer 3’-deoxy-3’-[18F]fluoro-L-thymidine in particular constitutes a modality with excellent potential for clinical translation but low specificity; however, concomitant imaging of neuroinflammation is feasible and increases its specificity. The non-invasive imaging strategies presented here allow for the exploitation of novel treatment strategies based upon the regenerative potential of eNSCs, and will help to facilitate a translation into the clinical setting.
Collapse
|
115
|
Michailidou I, de Vries HE, Hol EM, van Strien ME. Activation of endogenous neural stem cells for multiple sclerosis therapy. Front Neurosci 2015; 8:454. [PMID: 25653584 PMCID: PMC4299409 DOI: 10.3389/fnins.2014.00454] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/22/2014] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system, leading to severe neurological deficits. Current MS treatment regimens, consist of immunomodulatory agents aiming to reduce the rate of relapses. However, these agents are usually insufficient to treat chronic neurological disability. A promising perspective for future therapy of MS is the regeneration of lesions with replacement of the damaged oligodendrocytes or neurons. Therapies targeting to the enhancement of endogenous remyelination, aim to promote the activation of either the parenchymal oligodendrocyte progenitor cells or the subventricular zone-derived neural stem cells (NSCs). Less studied but highly potent, is the strategy of neuronal regeneration with endogenous NSCs that although being linked to numerous limitations, is anticipated to ameliorate cognitive disability in MS. Focusing on the forebrain, this review highlights the role of NSCs in the regeneration of MS lesions.
Collapse
Affiliation(s)
- Iliana Michailidou
- Department of Astrocyte Biology and Neurodegeneration, The Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Sciences Amsterdam, Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, VU University Medical Center Amsterdam, Netherlands
| | - Elly M Hol
- Department of Astrocyte Biology and Neurodegeneration, The Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Sciences Amsterdam, Netherlands ; Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands ; Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Miriam E van Strien
- Department of Astrocyte Biology and Neurodegeneration, The Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Sciences Amsterdam, Netherlands ; Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
116
|
Radiation therapy for glioma stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 853:85-110. [PMID: 25895709 DOI: 10.1007/978-3-319-16537-0_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Radiation therapy is the most effective adjuvant treatment modality for virtually all patients with high-grade glioma. Its ability to improve patient survival has been recognized for decades. Cancer stem cells provide new insights into how tumor biology is affected by radiation and the role that this cell population can play in disease recurrence. Glioma stem cells possess a variety of intracellular mechanisms to resist and even flourish in spite of radiation, and their proliferation and maintenance appear tied to supportive stimuli from the tumor microenvironment. This chapter reviews the basis for our current use of radiation to treat high-grade gliomas, and addresses this model in the context of therapeutically resistant stem cells. We discuss the available evidence highlighting current clinical efforts to improve radiosensitivity, and newer targets worthy of further development.
Collapse
|
117
|
Swartling FJ, Čančer M, Frantz A, Weishaupt H, Persson AI. Deregulated proliferation and differentiation in brain tumors. Cell Tissue Res 2015; 359:225-54. [PMID: 25416506 PMCID: PMC4286433 DOI: 10.1007/s00441-014-2046-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 10/22/2014] [Indexed: 01/24/2023]
Abstract
Neurogenesis, the generation of new neurons, is deregulated in neural stem cell (NSC)- and progenitor-derived murine models of malignant medulloblastoma and glioma, the most common brain tumors of children and adults, respectively. Molecular characterization of human malignant brain tumors, and in particular brain tumor stem cells (BTSCs), has identified neurodevelopmental transcription factors, microRNAs, and epigenetic factors known to inhibit neuronal and glial differentiation. We are starting to understand how these factors are regulated by the major oncogenic drivers in malignant brain tumors. In this review, we will focus on the molecular switches that block normal neuronal differentiation and induce brain tumor formation. Genetic or pharmacological manipulation of these switches in BTSCs has been shown to restore the ability of tumor cells to differentiate. We will discuss potential brain tumor therapies that will promote differentiation in order to reduce treatment resistance, suppress tumor growth, and prevent recurrence in patients.
Collapse
Affiliation(s)
- Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Matko Čančer
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Aaron Frantz
- Departments of Neurology and Neurological Surgery, Sandler Neurosciences Center, University of California, San Francisco, CA, 94158, USA
- Brain Tumor Research Center, University of California, San Francisco, CA, 94158, USA
| | - Holger Weishaupt
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Anders I Persson
- Departments of Neurology and Neurological Surgery, Sandler Neurosciences Center, University of California, San Francisco, CA, 94158, USA
- Brain Tumor Research Center, University of California, San Francisco, CA, 94158, USA
| |
Collapse
|
118
|
Sundar SJ, Hsieh JK, Manjila S, Lathia JD, Sloan A. The role of cancer stem cells in glioblastoma. Neurosurg Focus 2014; 37:E6. [DOI: 10.3171/2014.9.focus14494] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recurrence in glioblastoma is nearly universal, and its prognosis remains dismal despite significant advances in treatment over the past decade. Glioblastoma demonstrates considerable intratumoral phenotypic and molecular heterogeneity and contains a population of cancer stem cells that contributes to tumor propagation, maintenance, and treatment resistance. Cancer stem cells are functionally defined by their ability to self-renew and to differentiate, and they constitute the diverse hierarchy of cells composing a tumor. When xenografted into an appropriate host, they are capable of tumorigenesis. Given the critical role of cancer stem cells in the pathogenesis of glioblastoma, research into their molecular and phenotypic characteristics is a therapeutic priority. In this review, the authors discuss the evolution of the cancer stem cell model of tumorigenesis and describe the specific role of cancer stem cells in the pathogenesis of glioblastoma and their molecular and microenvironmental characteristics. They also discuss recent clinical investigations into targeted therapies against cancer stem cells in the treatment of glioblastoma.
Collapse
Affiliation(s)
| | - Jason K. Hsieh
- 1Case Western Reserve University School of Medicine
- 2Cleveland Clinic Lerner College of Medicine
| | - Sunil Manjila
- 3Department of Neurological Surgery, University Hospitals Case Medical Center
| | - Justin D. Lathia
- 2Cleveland Clinic Lerner College of Medicine
- 4Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic; and
- 5Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Andrew Sloan
- 1Case Western Reserve University School of Medicine
- 3Department of Neurological Surgery, University Hospitals Case Medical Center
- 5Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
119
|
Trépant AL, Bouchart C, Rorive S, Sauvage S, Decaestecker C, Demetter P, Salmon I. Identification of OLIG2 as the most specific glioblastoma stem cell marker starting from comparative analysis of data from similar DNA chip microarray platforms. Tumour Biol 2014; 36:1943-53. [PMID: 25384509 DOI: 10.1007/s13277-014-2800-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 11/03/2014] [Indexed: 12/15/2022] Open
Abstract
Despite advances in surgical and adjuvant treatments, overall survival of glioblastoma (GBM) patients remains poor. The cancer stem cell concept suggests that a rare stem cell population, called glioma stem cells (GSCs), has high ability to self-renewal leading to recurrence in GBM. The identification of specific markers of GSCs would provide a powerful tool to detect and to characterise them in order to develop targeted therapies. We carried out a comparative analysis based on the identification of inter-study concordances to identify the genes that exhibit at best differential levels of expression between GSC-enriched cell cultures and differentiated tumour cell cultures from independent studies using DNA chip microarray technologies. We finally studied the protein expression of the marker we considered the most specific by immunohistochemistry and semi-quantitative analysis on a retrospective series of 18 GBMs. Of the selected studies, 32 genes were retained. Among them, eight genes were identified to be overexpressed in GSC-enriched cultures compared to differentiated tumour cell cultures. Finally, among the eight genes, oligodendrocyte lineage transcription factor 2 (OLIG2) was characterised by the most different expression level in the "GSC model" compared to the "differentiated tumour cells model". Our approach suggests that OLIG2 is the most specific GSC marker; additional investigations with careful considerations about methodology and strategies of validation are, however, mandatory.
Collapse
Affiliation(s)
- Anne-Laure Trépant
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
120
|
Giachino C, Basak O, Lugert S, Knuckles P, Obernier K, Fiorelli R, Frank S, Raineteau O, Alvarez-Buylla A, Taylor V. Molecular diversity subdivides the adult forebrain neural stem cell population. Stem Cells 2014; 32:70-84. [PMID: 23964022 DOI: 10.1002/stem.1520] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/18/2013] [Accepted: 07/24/2013] [Indexed: 11/09/2022]
Abstract
Neural stem cells (NSCs) in the ventricular domain of the subventricular zone (V-SVZ) of rodents produce neurons throughout life while those in humans become largely inactive or may be lost during infancy. Most adult NSCs are quiescent, express glial markers, and depend on Notch signaling for their self-renewal and the generation of neurons. Using genetic markers and lineage tracing, we identified subpopulations of adult V-SVZ NSCs (type 1, 2, and 3) indicating a striking heterogeneity including activated, brain lipid binding protein (BLBP, FABP7) expressing stem cells. BLBP(+) NSCs are mitotically active components of pinwheel structures in the lateral ventricle walls and persistently generate neurons in adulthood. BLBP(+) NSCs express epidermal growth factor (EGF) receptor, proliferate in response to EGF, and are a major clonogenic population in the SVZ. We also find BLBP expressed by proliferative ventricular and subventricular progenitors in the fetal and postnatal human brain. Loss of BLBP(+) stem/progenitor cells correlates with reduced neurogenesis in aging rodents and postnatal humans. These findings of molecular heterogeneity and proliferative differences subdivide the NSC population and have implications for neurogenesis in the forebrain of mammals during aging.
Collapse
Affiliation(s)
- Claudio Giachino
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Basel, Switzerland; Department of Molecular Embryology, Max Planck Institute of Immunobiology, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Abstract
The platelet-derived growth factor (PDGF) family of mitogens exerts vital functions during embryonal development, e.g. in the central nervous system, where PDGF drives the proliferation of oligodendrocyte precursors. PDGF and PDGF receptors are co-expressed in human glioblastoma (GBM). Whether an aberrant activation of the PDGF receptor pathway is a driving force in glioma development has remained an open question. In experimental animals, overexpression of PDGF has convincingly been shown to induce tumors, both in wild-type animals (marmoset, rat, mouse) and in mice with targeted deletions of suppressor genes, e.g. Tp53 or Ink4A. Targeting the PDGF receptor in tumor-bearing mice leads to growth inhibition and reversion of the transformed phenotype. Findings of PDGF receptor amplification or mutations in human GBM are strong indicators of a causative role of the PDGF receptor pathway. However, clinical trials using PDGF receptor antagonists have been disappointing. In conclusion, a PDGF receptor profile may be a biomarker for a subgroup of GBM originating from a PDGF receptor-responsive cell. Although compelling experimental and clinical evidence supports the notion that the PDGF receptor pathway is a driver in GBM, formal proof is still missing.
Collapse
Affiliation(s)
- Bengt Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
122
|
Adepoju A, Micali N, Ogawa K, Hoeppner DJ, McKay RDG. FGF2 and insulin signaling converge to regulate cyclin D expression in multipotent neural stem cells. Stem Cells 2014; 32:770-8. [PMID: 24155149 DOI: 10.1002/stem.1575] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 09/25/2013] [Indexed: 12/13/2022]
Abstract
The ex vivo expansion of stem cells is making major contribution to biomedical research. The multipotent nature of neural precursors acutely isolated from the developing central nervous system has been established in a series of studies. Understanding the mechanisms regulating cell expansion in tissue culture would support their expanded use either in cell therapies or to define disease mechanisms. Basic fibroblast growth factor (FGF2) and insulin, ligands for tyrosine kinase receptors, are sufficient to sustain neural stem cells (NSCs) in culture. Interestingly, real-time imaging shows that these cells become multipotent every time they are passaged. Here, we analyze the role of FGF2 and insulin in the brief period when multipotent cells are present. FGF2 signaling results in the phosphorylation of Erk1/2, and activation of c-Fos and c-Jun that lead to elevated cyclin D mRNA levels. Insulin signals through the PI3k/Akt pathway to regulate cyclins at the post-transcriptional level. This precise Boolean regulation extends our understanding of the proliferation of multipotent NSCs and provides a basis for further analysis of proliferation control in the cell states defined by real-time mapping of the cell lineages that form the central nervous system.
Collapse
Affiliation(s)
- Adedamola Adepoju
- National Institute for Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA; University of Massachusetts School of Medicine, Amherst, Massachusetts, USA
| | | | | | | | | |
Collapse
|
123
|
Swartling FJ, Bolin S, Phillips JJ, Persson AI. Signals that regulate the oncogenic fate of neural stem cells and progenitors. Exp Neurol 2014; 260:56-68. [PMID: 23376224 PMCID: PMC3758390 DOI: 10.1016/j.expneurol.2013.01.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/19/2013] [Accepted: 01/24/2013] [Indexed: 12/16/2022]
Abstract
Brain tumors have frequently been associated with a neural stem cell (NSC) origin and contain stem-like tumor cells, so-called brain tumor stem cells (BTSCs) that share many features with normal NSCs. A stem cell state of BTSCs confers resistance to radiotherapy and treatment with alkylating agents. It is also a hallmark of aggressive brain tumors and is maintained by transcriptional networks that are also active in embryonic stem cells. Advances in reprogramming of somatic cells into induced pluripotent stem (iPS) cells have further identified genes that drive stemness. In this review, we will highlight the possible drivers of stemness in medulloblastoma and glioma, the most frequent types of primary malignant brain cancer in children and adults, respectively. Signals that drive expansion of developmentally defined neural precursor cells are also active in corresponding brain tumors. Transcriptomal subgroups of human medulloblastoma and glioma match features of NSCs but also more restricted progenitors. Lessons from genetically-engineered mouse (GEM) models show that temporally and regionally defined NSCs can give rise to distinct subgroups of medulloblastoma and glioma. We will further discuss how acquisition of stem cell features may drive brain tumorigenesis from a non-NSC origin. Genetic alterations, signaling pathways, and therapy-induced changes in the tumor microenvironment can drive reprogramming networks and induce stemness in brain tumors. Finally, we propose a model where dysregulation of microRNAs (miRNAs) that normally provide barriers against reprogramming plays an integral role in promoting stemness in brain tumors.
Collapse
Affiliation(s)
- Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Sara Bolin
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Joanna J Phillips
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, USA; Department of Pathology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, USA
| | - Anders I Persson
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, USA; Department of Neurology, Sandler Neurosciences Center, University of California, San Francisco, USA.
| |
Collapse
|
124
|
Hede SM, Savov V, Weishaupt H, Sangfelt O, Swartling FJ. Oncoprotein stabilization in brain tumors. Oncogene 2014; 33:4709-21. [PMID: 24166497 DOI: 10.1038/onc.2013.445] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 12/12/2022]
Abstract
Proteins involved in promoting cell proliferation and viability need to be timely expressed and carefully controlled for the proper development of the brain but also efficiently degraded in order to prevent cells from becoming brain cancer cells. A major pathway for targeted protein degradation in cells is the ubiquitin-proteasome system (UPS). Oncoproteins that drive tumor development and tumor maintenance are often deregulated and stabilized in malignant cells. This can occur when oncoproteins escape degradation by the UPS because of mutations in either the oncoprotein itself or in the UPS components responsible for recognition and ubiquitylation of the oncoprotein. As the pathogenic accumulation of an oncoprotein can lead to effectively sustained cell growth, viability and tumor progression, it is an indisputable target for cancer treatment. The most common types of malignant brain tumors in children and adults are medulloblastoma and glioma, respectively. Here, we review different ways of how deregulated proteolysis of oncoproteins involved in major signaling cancer pathways contributes to medulloblastoma and glioma development. We also describe means of targeting relevant oncoproteins in brain tumors with treatments affecting their stability or therapeutic strategies directed against the UPS itself.
Collapse
Affiliation(s)
- S-M Hede
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - V Savov
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - H Weishaupt
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - O Sangfelt
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - F J Swartling
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
125
|
Abstract
As stem cells (SCs) in adult organs continue to be identified and characterized, it becomes clear that their survival, quiescence, and activation depend on specific signals in their microenvironment, or niche. Although adult SCs of diverse tissues differ by their developmental origin, cycling activity, and regenerative capacity, there appear to be conserved similarities regarding the cellular and molecular components of the SC niche. Interestingly, many organs house both slow-cycling and fast-cycling SC populations, which rely on the coexistence of quiescent and inductive niches for proper regulation. In this review we present a general definition of adult SC niches in the most studied mammalian systems. We further focus on dissecting their cellular organization and on highlighting recently identified key molecular regulators. Finally, we detail the potential involvement of the SC niche in tissue degeneration, with a particular emphasis on aging and cancer.
Collapse
Affiliation(s)
- Amélie Rezza
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Rachel Sennett
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Michael Rendl
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
126
|
Tan B, Yu J, Yin Y, Jia G, Jiang W, Yu L. The Olig family affects central nervous system development and disease. Neural Regen Res 2014; 9:329-36. [PMID: 25206819 PMCID: PMC4146145 DOI: 10.4103/1673-5374.128232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2013] [Indexed: 11/04/2022] Open
Abstract
Neural cell differentiation and maturation is a critical step during central nervous system development. The oligodendrocyte transcription family (Olig family) is known to be an important factor in regulating neural cell differentiation. Because of this, the Olig family also affects acute and chronic central nervous system diseases, including brain injury, multiple sclerosis, and even gliomas. Improved understanding about the functions of the Olig family in central nervous system development and disease will greatly aid novel breakthroughs in central nervous system diseases. This review investigates the role of the Olig family in central nervous system development and related diseases.
Collapse
Affiliation(s)
- Botao Tan
- Department of Rehabilitation Medicine, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jing Yu
- Department of Rehabilitation Medicine, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ying Yin
- Department of Rehabilitation Medicine, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Gongwei Jia
- Department of Rehabilitation Medicine, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wei Jiang
- Department of Rehabilitation Medicine, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lehua Yu
- Department of Rehabilitation Medicine, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
127
|
Yi F, Ma J, Ni W, Chang R, Liu W, Han X, Pan D, Liu X, Qiu J. The top cited articles on glioma stem cells in Web of Science. Neural Regen Res 2014; 8:1431-8. [PMID: 25206439 PMCID: PMC4107765 DOI: 10.3969/j.issn.1673-5374.2013.15.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/19/2013] [Indexed: 12/15/2022] Open
Abstract
Background: Glioma is the most common intracranial tumor and has a poor patient prognosis. The presence of brain tumor stem cells was gradually being understood and recognized, which might be beneficial for the treatment of glioma. Objective: To use bibliometric indexes to track study focuses on glioma stem cell, and to investigate the relationships among geographic origin, impact factors, and highly cited articles indexed in Web of Science. Methods: A list of citation classics for glioma stem cells was generated by searching the database of Web of Science-Expanded using the terms “glioma stem cell” or “glioma, stem cell” or “brain tumor stem cell”. The top 63 cited research articles which were cited more than 100 times were retrieved by reading the abstract or full text if needed. Each eligible article was reviewed for basic information on subject categories, country of origin, journals, authors, and source of journals. Inclusive criteria: (1) articles in the field of glioma stem cells which was cited more than 100 times; (2) fundamental research on humans or animals, clinical trials and case reports; (3) research article; (4) year of publication: 1899–2012; and (5) citation database: Science Citation Index-Expanded. Exclusive criteria: (1) articles needing to be manually searched or accessed only by telephone; (2) unpublished articles; and (3) reviews, conference proceedings, as well as corrected papers. Results: Of 2 040 articles published, the 63 top-cited articles were published between 1992 and 2010. The number of citations ranged from 100 to 1 754, with a mean of 280 citations per article. These citation classics came from nineteen countries, of which 46 articles came from the United States. Duke University and University of California, San Francisco led the list of classics with seven papers each. The 63 top-cited articles were published in 28 journals, predominantly Cancer Research and Cancer Cell, followed by Cell Stem Cell and Nature. Conclusion: Our bibliometric analysis provides a historical perspective on the progress of glioma stem cell research. Articles originating from outstanding institutions of the United States and published in high-impact journals are most likely to be cited.
Collapse
Affiliation(s)
- Fuxin Yi
- Department of Neurosurgery, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning Province, China
| | - Jun Ma
- Department of Neurosurgery, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning Province, China
| | - Weimin Ni
- Department of Neurosurgery, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning Province, China
| | - Rui Chang
- Department of Neurosurgery, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning Province, China
| | - Wenda Liu
- Department of Neurosurgery, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning Province, China
| | - Xiubin Han
- Department of Neurosurgery, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning Province, China
| | - Dongxiao Pan
- Department of Neurosurgery, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning Province, China
| | - Xingbo Liu
- Department of Neurosurgery, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning Province, China
| | - Jianwu Qiu
- Department of Neurosurgery, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning Province, China
| |
Collapse
|
128
|
Schrimpf C, Teebken OE, Wilhelmi M, Duffield JS. The role of pericyte detachment in vascular rarefaction. J Vasc Res 2014; 51:247-58. [PMID: 25195856 DOI: 10.1159/000365149] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 06/07/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Pericytes surround endothelial cells at the perivascular interface. Signaling between endothelial cells and pericytes is crucial for capillary homeostasis, as pericytes stabilize vessels and regulate many microvascular functions. Recently it has been shown that pericytes are able to detach from the vascular wall and contribute to fibrosis by becoming scar-forming myofibroblasts in many organs including the kidney. At the same time, the loss of pericytes within the perivascular compartment results in vulnerable capillaries which are prone to instability, pathological angiogenesis, and, ultimately, rarefaction. AIMS This review will give an overview of pericyte-endothelial cell interactions, summarize the signaling pathways that have been identified to be involved in pericyte detachment from the vascular wall, and present pathological endothelial responses in the context of disease of the kidney.
Collapse
Affiliation(s)
- Claudia Schrimpf
- Division of Vascular and Endovascular Surgery, Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | | | | | | |
Collapse
|
129
|
Chua CEL, Goh ELK, Tang BL. Rab31 is expressed in neural progenitor cells and plays a role in their differentiation. FEBS Lett 2014; 588:3186-3194. [PMID: 24999186 DOI: 10.1016/j.febslet.2014.06.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/16/2014] [Accepted: 06/27/2014] [Indexed: 12/16/2022]
Abstract
Rab31 is expressed in both GFAP- and nestin- positive fibres in regions of neurogenic potential in the adult mouse brain. To investigate the role of Rab31 in neural progenitor cells (NPCs), we cultured NPCs and found significant levels of Rab31 expression in these cells. Rab31 levels showed a sharp initial decrease and then reappeared gradually in a subpopulation of astrocytes when NPCs were induced to differentiate. Silencing of Rab31 hindered, while overexpression enhanced, the differentiation of NPCs to astrocytes. Our results suggest a previously unrecognised role for Rab31 in influencing the differentiation and fate of NPCs.
Collapse
Affiliation(s)
- Christelle En Lin Chua
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, 8 Medical Drive, Singapore 117597, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore.
| | - Eyleen Lay Keow Goh
- Program in Neuroscience and Behavioural Disorder, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, 8 Medical Drive, Singapore 117597, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore.
| |
Collapse
|
130
|
Primary cilia are required in a unique subpopulation of neural progenitors. Proc Natl Acad Sci U S A 2014; 111:12438-43. [PMID: 25114218 DOI: 10.1073/pnas.1321425111] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The apical domain of embryonic (radial glia) and adult (B1 cells) neural stem cells (NSCs) contains a primary cilium. This organelle has been suggested to function as an antenna for the detection of morphogens or growth factors. In particular, primary cilia are essential for Hedgehog (Hh) signaling, which plays key roles in brain development. Their unique location facing the ventricular lumen suggests that primary cilia in NSCs could play an important role in reception of signals within the cerebrospinal fluid. Surprisingly, ablation of primary cilia using conditional alleles for genes essential for intraflagellar transport [kinesin family member 3A (Kif3a) and intraflagellar transport 88 (Ift88)] and Cre drivers that are activated at early [Nestin; embryonic day 10.5 (E10.5)] and late [human glial fibrillary acidic protein (hGFAP); E13.5] stages of mouse neural development resulted in no apparent developmental defects. Neurogenesis in the ventricular-subventricular zone (V-SVZ) shortly after birth was also largely unaffected, except for a restricted ventral domain previously known to be regulated by Hh signaling. However, Kif3a and Ift88 genetic ablation also disrupts ependymal cilia, resulting in hydrocephalus by postnatal day 4. To directly study the role of B1 cells' primary cilia without the confounding effects of hydrocephalus, we stereotaxically targeted elimination of Kif3a from a subpopulation of radial glia, which resulted in ablation of primary cilia in a subset of B1 cells. Again, this experiment resulted in decreased neurogenesis only in the ventral V-SVZ. Primary cilia ablation led to disruption of Hh signaling in this subdomain. We conclude that primary cilia are required in a specific Hh-regulated subregion of the postnatal V-SVZ.
Collapse
|
131
|
Ozawa T, Riester M, Cheng YK, Huse JT, Squatrito M, Helmy K, Charles N, Michor F, Holland EC. Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma. Cancer Cell 2014; 26:288-300. [PMID: 25117714 PMCID: PMC4143139 DOI: 10.1016/j.ccr.2014.06.005] [Citation(s) in RCA: 301] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 02/20/2014] [Accepted: 06/11/2014] [Indexed: 01/16/2023]
Abstract
To understand the relationships between the non-GCIMP glioblastoma (GBM) subgroups, we performed mathematical modeling to predict the temporal sequence of driver events during tumorigenesis. The most common order of evolutionary events is 1) chromosome (chr) 7 gain and chr10 loss, followed by 2) CDKN2A loss and/or TP53 mutation, and 3) alterations canonical for specific subtypes. We then developed a computational methodology to identify drivers of broad copy number changes, identifying PDGFA (chr7) and PTEN (chr10) as driving initial nondisjunction events. These predictions were validated using mouse modeling, showing that PDGFA is sufficient to induce proneural-like gliomas and that additional NF1 loss converts proneural to the mesenchymal subtype. Our findings suggest that most non-GCIMP mesenchymal GBMs arise as, and evolve from, a proneural-like precursor.
Collapse
Affiliation(s)
- Tatsuya Ozawa
- Division of Human Biology and Solid Tumor Translational Research, Fred Hutchinson Cancer Research Center, Department of Neurosurgery and Alvord Brain Tumor Center, University of Washington, Seattle, WA 98109, USA
| | - Markus Riester
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02215, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215, USA
| | - Yu-Kang Cheng
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02215, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215, USA
| | - Jason T Huse
- Department of Pathology and Human Oncology, Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Massimo Squatrito
- Cancer Cell Biology Programme, Spanish National Cancer Research Centre, Madrid 28029, Spain
| | - Karim Helmy
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Nikki Charles
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Franziska Michor
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02215, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215, USA.
| | - Eric C Holland
- Division of Human Biology and Solid Tumor Translational Research, Fred Hutchinson Cancer Research Center, Department of Neurosurgery and Alvord Brain Tumor Center, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
132
|
Foret MR, Sandstrom RS, Rhodes CT, Wang Y, Berger MS, Lin CHA. Molecular targets of chromatin repressive mark H3K9me3 in primate progenitor cells within adult neurogenic niches. Front Genet 2014; 5:252. [PMID: 25126093 PMCID: PMC4115620 DOI: 10.3389/fgene.2014.00252] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/10/2014] [Indexed: 12/13/2022] Open
Abstract
Histone 3 Lysine 9 (H3K9) methylation is known to be associated with pericentric heterochromatin and important in genomic stability. In this study, we show that trimethylation at H3K9 (H3K9me3) is enriched in an adult neural stem cell niche- the subventricular zone (SVZ) on the walls of the lateral ventricle in both rodent and non-human primate baboon brain. Previous studies have shown that there is significant correlation between baboon and human regarding genomic similarity and brain structure, suggesting that findings in baboon are relevant to human. To understand the function of H3K9me3 in this adult neurogenic niche, we performed genome-wide analyses using ChIP-Seq (chromatin immunoprecipitation and deep-sequencing) and RNA-Seq for in vivo SVZ cells purified from baboon brain. Through integrated analyses of ChIP-Seq and RNA-Seq, we found that H3K9me3-enriched genes associated with cellular maintenance, post-transcriptional and translational modifications, signaling pathways, and DNA replication are expressed, while genes involved in axon/neuron, hepatic stellate cell, or immune-response activation are not expressed. As neurogenesis progresses in the adult SVZ, cell fate restriction is essential to direct proper lineage commitment. Our findings highlight that H3K9me3 repression in undifferentiated SVZ cells is engaged in the maintenance of cell type integrity, implicating a role for H3K9me3 as an epigenetic mechanism to control cell fate transition within this adult germinal niche.
Collapse
Affiliation(s)
- Michael R Foret
- Department of Biology, University of Texas at San Antonio San Antonio, TX, USA
| | | | | | - Yufeng Wang
- Department of Biology, University of Texas at San Antonio San Antonio, TX, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California at San Francisco San Francisco, CA, USA
| | - Chin-Hsing Annie Lin
- Department of Biology, University of Texas at San Antonio San Antonio, TX, USA ; Neurobiology, Neuroscience Institute, University of Texas at San Antonio San Antonio, TX, USA
| |
Collapse
|
133
|
Simeonova I, Huillard E. In vivo models of brain tumors: roles of genetically engineered mouse models in understanding tumor biology and use in preclinical studies. Cell Mol Life Sci 2014; 71:4007-26. [PMID: 25008045 PMCID: PMC4175043 DOI: 10.1007/s00018-014-1675-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 06/20/2014] [Accepted: 06/30/2014] [Indexed: 01/09/2023]
Abstract
Although our knowledge of the biology of brain tumors has increased tremendously over the past decade, progress in treatment of these deadly diseases remains modest. Developing in vivo models that faithfully mirror human diseases is essential for the validation of new therapeutic approaches. Genetically engineered mouse models (GEMMs) provide elaborate temporally and genetically controlled systems to investigate the cellular origins of brain tumors and gene function in tumorigenesis. Furthermore, they can prove to be valuable tools for testing targeted therapies. In this review, we discuss GEMMs of brain tumors, focusing on gliomas and medulloblastomas. We describe how they provide critical insights into the molecular and cellular events involved in the initiation and maintenance of brain tumors, and illustrate their use in preclinical drug testing.
Collapse
Affiliation(s)
- Iva Simeonova
- Université Pierre et Marie Curie (UPMC) UMR-S975, Inserm U1127, CNRS UMR7225, Institut du Cerveau et de la Moelle Epiniere, 47 boulevard de l'Hôpital, 75013, Paris, France
| | | |
Collapse
|
134
|
Nishiyama A, Suzuki R, Zhu X. NG2 cells (polydendrocytes) in brain physiology and repair. Front Neurosci 2014; 8:133. [PMID: 25018689 PMCID: PMC4072963 DOI: 10.3389/fnins.2014.00133] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 05/14/2014] [Indexed: 01/27/2023] Open
Abstract
NG2 cells, also referred to as oligodendrocyte precursor cells (OPCs) or polydendrocytes, represent a major resident glial cell population that is distinct from mature astrocytes, oligodendrocytes, microglia, and neural stem cells and exist throughout the gray and white matter of the developing and mature central nervous system (CNS). While their most established fate is the oligodendrocyte, they retain lineage plasticity in an age- and region-specific manner. During development, they contribute to 36% of protoplasmic astrocytes in the ventral forebrain. Despite intense investigation on the neuronal fate of NG2 cells, there is no definitive evidence that they contribute substantially to the neuronal population. NG2 cells have attributes that suggest that they have functions other than to generate oligodendrocytes, but their exact role in the neural network remains unknown. Under pathological states, NG2 cells not only contribute to myelin repair, but they become activated in response to a wide variety of insults and could play a primary role in pathogenesis.
Collapse
Affiliation(s)
- Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut Storrs, CT, USA
| | - Ryusuke Suzuki
- Department of Physiology and Neurobiology, University of Connecticut Storrs, CT, USA
| | - Xiaoqin Zhu
- Department of Physiology and Neurobiology, University of Connecticut Storrs, CT, USA
| |
Collapse
|
135
|
Zhang Z, Lin CCJ. Taking advantage of neural development to treat glioblastoma. Eur J Neurosci 2014; 40:2859-66. [PMID: 24964151 DOI: 10.1111/ejn.12655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/29/2014] [Accepted: 05/11/2014] [Indexed: 01/02/2023]
Abstract
Glioblastoma (GBM) is by far the most common and most malignant primary adult brain tumor (World Health Organization grade IV), containing a fraction of stem-like cells that are highly tumorigenic and multipotent. Recent research has revealed that GBM stem-like cells play important roles in GBM pathogenesis. GBM is thought to arise from genetic anomalies in glial development. Over the past decade, a wide range of studies have shown that several signaling pathways involved in neural development, including basic helix-loop-helix, Wnt-β-catenin, bone morphogenetic proteins-Smads, epidermal growth factor-epidermal growth factor receptor, and Notch, play important roles in GBM pathogenesis. In this review, we highlight the significance of these pathways in the context of developing treatments for GBM. Extrapolating knowledge and concepts from neural development will have significant implications for designing better strategies with which to treat GBM.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, School of Medicine, Nanjing University, Jiangsu Province, China; Center for Cell and Gene Therapy, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | | |
Collapse
|
136
|
Kong DS. Cancer stem cells in brain tumors and their lineage hierarchy. Int J Stem Cells 2014; 5:12-5. [PMID: 24298350 DOI: 10.15283/ijsc.2012.5.1.12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2012] [Indexed: 01/30/2023] Open
Abstract
Despite recent advances in the development of novel targeted chemotherapies, the prognosis of malignant glioma remains dismal. The chemo-resistance of this tumor is attributed to tumor heterogeneity. To explain this unique chemo- resistance, the concept of cancer stem cells has been evoked. Cancer stem cells, a subpopulation of whole tumor cells, are now regarded as candidate therapeutic targets. Here, the author reviews and discusses the cancer stem cell concept.
Collapse
Affiliation(s)
- Doo-Sik Kong
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
137
|
Jeon HM, Kim SH, Jin X, Park JB, Kim SH, Joshi K, Nakano I, Kim H. Crosstalk between glioma-initiating cells and endothelial cells drives tumor progression. Cancer Res 2014; 74:4482-92. [PMID: 24962027 DOI: 10.1158/0008-5472.can-13-1597] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glioma-initiating cells (GIC), which reside within the perivascular microenvironment to maintain self-renewal capacity, are responsible for glioblastoma initiation, progression, and recurrence. However, the molecular mechanisms controlling crosstalk between GICs and endothelial cells are poorly understood. Here, we report that, in both GICs and endothelial cells, platelet-derived growth factor (PDGF)-driven activation of nitric oxide (NO) synthase increases NO-dependent inhibitor of differentiation 4 (ID4) expression, which in turn promotes JAGGED1-NOTCH activity through suppression of miR129 that specifically represses JAGGED1 suppression. This signaling axis promotes tumor progression along with increased GIC self-renewal and growth of tumor vasculature in the xenograft tumors, which is dramatically suppressed by NOTCH inhibitor. ID4 levels correlate positively with NOS2 (NO synthase-2), HES1, and HEY1 and negatively with miR129 in primary GICs. Thus, targeting the PDGF-NOS-ID4-miR129 axis and NOTCH activity in the perivascular microenvironment might serve as an efficacious therapeutic modality for glioblastoma.
Collapse
Affiliation(s)
- Hye-Min Jeon
- School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea. Institute of Life Science and Natural Resources, Korea University, Seoul, Republic of Korea
| | - Sung-Hak Kim
- Institute of Life Science and Natural Resources, Korea University, Seoul, Republic of Korea. Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Xun Jin
- School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jong Bae Park
- Specific Organs Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University of School of Medicine, Seoul, Republic of Korea
| | - Kaushal Joshi
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Ichiro Nakano
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Hyunggee Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea. Institute of Life Science and Natural Resources, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
138
|
Epigenetic regulation by chromatin activation mark H3K4me3 in primate progenitor cells within adult neurogenic niche. Sci Rep 2014; 4:5371. [PMID: 24947819 PMCID: PMC4064326 DOI: 10.1038/srep05371] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/02/2014] [Indexed: 02/01/2023] Open
Abstract
Histone 3 lysine 4 trimethylation (H3K4me3) is known to be associated with transcriptionally active or poised genes and required for postnatal neurogenesis within the subventricular zone (SVZ) in the rodent model. Previous comparisons have shown significant correlation between baboon (Papio anubis) and human brain. In this study, we demonstrate that chromatin activation mark H3K4me3 is present in undifferentiated progenitor cells within the SVZ of adult baboon brain. To identify the targets and regulatory role of H3K4me3 within the baboon SVZ, we developed a technique to purify undifferentiated SVZ cells while preserving the endogenous nature without introducing culture artifact to maintain the in vivo chromatin state for genome-wide studies (ChIP-Seq and RNA-Seq). Overall, H3K4me3 is significantly enriched for genes involved in cell cycle, metabolism, protein synthesis, signaling pathways, and cancer mechanisms. Additionally, we found elevated levels of H3K4me3 in the MRI-classified SVZ-associated Glioblastoma Multiforme (GBM), which has a transcriptional profile that reflects the H3K4me3 modifications in the undifferentiated progenitor cells of the baboon SVZ. Our findings highlight the importance of H3K4me3 in coordinating distinct networks and pathways for life-long neurogenesis, and suggest that subtypes of GBM could occur, at least in part, due to aberrant H3K4me3 epigenetic regulation.
Collapse
|
139
|
El Waly B, Macchi M, Cayre M, Durbec P. Oligodendrogenesis in the normal and pathological central nervous system. Front Neurosci 2014; 8:145. [PMID: 24971048 PMCID: PMC4054666 DOI: 10.3389/fnins.2014.00145] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/23/2014] [Indexed: 12/26/2022] Open
Abstract
Oligodendrocytes (OLGs) are generated late in development and myelination is thus a tardive event in the brain developmental process. It is however maintained whole life long at lower rate, and myelin sheath is crucial for proper signal transmission and neuronal survival. Unfortunately, OLGs present a high susceptibility to oxidative stress, thus demyelination often takes place secondary to diverse brain lesions or pathologies. OLGs can also be the target of immune attacks, leading to primary demyelination lesions. Following oligodendrocytic death, spontaneous remyelination may occur to a certain extent. In this review, we will mainly focus on the adult brain and on the two main sources of progenitor cells that contribute to oligodendrogenesis: parenchymal oligodendrocyte precursor cells (OPCs) and subventricular zone (SVZ)-derived progenitors. We will shortly come back on the main steps of oligodendrogenesis in the postnatal and adult brain, and summarize the key factors involved in the determination of oligodendrocytic fate. We will then shed light on the main causes of demyelination in the adult brain and present the animal models that have been developed to get insight on the demyelination/remyelination process. Finally, we will synthetize the results of studies searching for factors able to modulate spontaneous myelin repair.
Collapse
Affiliation(s)
- Bilal El Waly
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| | - Magali Macchi
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| | - Myriam Cayre
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| | - Pascale Durbec
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| |
Collapse
|
140
|
Stein LR, Imai SI. Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging. EMBO J 2014; 33:1321-40. [PMID: 24811750 DOI: 10.1002/embj.201386917] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Neural stem/progenitor cell (NSPC) proliferation and self-renewal, as well as insult-induced differentiation, decrease markedly with age. The molecular mechanisms responsible for these declines remain unclear. Here, we show that levels of NAD(+) and nicotinamide phosphoribosyltransferase (Nampt), the rate-limiting enzyme in mammalian NAD(+) biosynthesis, decrease with age in the hippocampus. Ablation of Nampt in adult NSPCs reduced their pool and proliferation in vivo. The decrease in the NSPC pool during aging can be rescued by enhancing hippocampal NAD(+) levels. Nampt is the main source of NSPC NAD(+) levels and required for G1/S progression of the NSPC cell cycle. Nampt is also critical in oligodendrocytic lineage fate decisions through a mechanism mediated redundantly by Sirt1 and Sirt2. Ablation of Nampt in the adult NSPCs in vivo reduced NSPC-mediated oligodendrogenesis upon insult. These phenotypes recapitulate defects in NSPCs during aging, giving rise to the possibility that Nampt-mediated NAD(+) biosynthesis is a mediator of age-associated functional declines in NSPCs.
Collapse
Affiliation(s)
- Liana R Stein
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shin-ichiro Imai
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
141
|
Role of receptor tyrosine kinases and their ligands in glioblastoma. Cells 2014; 3:199-235. [PMID: 24709958 PMCID: PMC4092852 DOI: 10.3390/cells3020199] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/12/2014] [Accepted: 03/21/2014] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma multiforme is the most frequent, aggressive and fatal type of brain tumor. Glioblastomas are characterized by their infiltrating nature, high proliferation rate and resistance to chemotherapy and radiation. Recently, oncologic therapy experienced a rapid evolution towards “targeted therapy,” which is the employment of drugs directed against particular targets that play essential roles in proliferation, survival and invasiveness of cancer cells. A number of molecules involved in signal transduction pathways are used as molecular targets for the treatment of various tumors. In fact, inhibitors of these molecules have already entered the clinic or are undergoing clinical trials. Cellular receptors are clear examples of such targets and in the case of glioblastoma multiforme, some of these receptors and their ligands have become relevant. In this review, the importance of glioblastoma multiforme in signaling pathways initiated by extracellular tyrosine kinase receptors such as EGFR, PDGFR and IGF-1R will be discussed. We will describe their ligands, family members, structure, activation mechanism, downstream molecules, as well as the interaction among these pathways. Lastly, we will provide an up-to-date review of the current targeted therapies in cancer, in particular glioblastoma that employ inhibitors of these pathways and their benefits.
Collapse
|
142
|
The taxonomy of brain cancer stem cells: what's in a name? Oncoscience 2014; 1:241-7. [PMID: 25594016 PMCID: PMC4278291 DOI: 10.18632/oncoscience.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 03/31/2014] [Indexed: 12/12/2022] Open
Abstract
With the increasing recognition that stem cells play vital roles in the formation, maintenance, and potential targeted treatment of brain tumors, there has been an exponential increase in basic laboratory and translational research on these cell types. However, there are several different classes of stem cells germane to brain cancer, each with distinct capabilities and functions. In this perspective, we discuss the types of stem cells relevant to brain tumor pathogenesis, and suggest a nomenclature for future preclinical and clinical investigation.
Collapse
|
143
|
Favaro R, Appolloni I, Pellegatta S, Sanga AB, Pagella P, Gambini E, Pisati F, Ottolenghi S, Foti M, Finocchiaro G, Malatesta P, Nicolis SK. Sox2 is required to maintain cancer stem cells in a mouse model of high-grade oligodendroglioma. Cancer Res 2014; 74:1833-44. [PMID: 24599129 DOI: 10.1158/0008-5472.can-13-1942] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The stem cell-determining transcription factor Sox2 is required for the maintenance of normal neural stem cells. In this study, we investigated the requirement for Sox2 in neural cancer stem-like cells using a conditional genetic deletion mutant in a mouse model of platelet-derived growth factor-induced malignant oligodendroglioma. Transplanting wild-type oligodendroglioma cells into the brain generated lethal tumors, but mice transplanted with Sox2-deleted cells remained free of tumors. Loss of the tumor-initiating ability of Sox2-deleted cells was reversed by lentiviral-mediated expression of Sox2. In cell culture, Sox2-deleted tumor cells were highly sensitive to differentiation stimuli, displaying impaired proliferation, increased cell death, and aberrant differentiation. Gene expression analysis revealed an early transcriptional response to Sox2 loss. The observed requirement of oligodendroglioma stem cells for Sox2 suggested its relevance as a target for therapy. In support of this possibility, an immunotherapeutic approach based on immunization of mice with SOX2 peptides delayed tumor development and prolonged survival. Taken together, our results showed that Sox2 is essential for tumor initiation by mouse oligodendroglioma cells, and they illustrated a Sox2-directed strategy of immunotherapy to eradicate tumor-initiating cells.
Collapse
Affiliation(s)
- Rebecca Favaro
- Authors' Affiliations: Department of Biotechnology and Biosciences, University of Milano-Bicocca; Department of Molecular Neuro-Oncology, Fondazione I.R.C.C.S. Istituto Neurologico C.Besta; Department of Experimental Oncology, European Institute of Oncology at IFOM-IEO Campus; Tissue Processing Unit, The FIRC Institute of Molecular Oncology Foundation-IFOM, IFOM-IEO Campus, Milano; and IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Xapelli S, Agasse F, Grade S, Bernardino L, Ribeiro FF, Schitine CS, Heimann AS, Ferro ES, Sebastião AM, De Melo Reis RA, Malva JO. Modulation of subventricular zone oligodendrogenesis: a role for hemopressin? Front Cell Neurosci 2014; 8:59. [PMID: 24578683 PMCID: PMC3936357 DOI: 10.3389/fncel.2014.00059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 02/07/2014] [Indexed: 11/13/2022] Open
Abstract
Neural stem cells (NSCs) from the subventricular zone (SVZ) have been indicated as a source of new oligodendrocytes to use in regenerative medicine for myelin pathologies. Indeed, NSCs are multipotent cells that can self-renew and differentiate into all neural cell types of the central nervous system. In normal conditions, SVZ cells are poorly oligodendrogenic, nevertheless their oligodendrogenic potential is boosted following demyelination. Importantly, progressive restriction into the oligodendrocyte fate is specified by extrinsic and intrinsic factors, endocannabinoids being one of these factors. Although a role for endocannabinoids in oligodendrogenesis has already been foreseen, selective agonists and antagonists of cannabinoids receptors produce severe adverse side effects. Herein, we show that hemopressin (Hp), a modulator of CB1 receptors, increased oligodendroglial differentiation in SVZ neural stem/progenitor cell cultures derived from neonatal mice. The original results presented in this work suggest that Hp and derivates may be of potential interest for the development of future strategies to treat demyelinating diseases.
Collapse
Affiliation(s)
- Sara Xapelli
- Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra Coimbra, Portugal ; Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon Lisboa, Portugal ; Unit of Neurosciences, Institute of Molecular Medicine, University of Lisbon Lisboa, Portugal
| | - Fabienne Agasse
- Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra Coimbra, Portugal
| | - Sofia Grade
- Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra Coimbra, Portugal ; Institute for Stem Cell Research, Helmholtz Centre Munich, German Research Centre for Environmental Health Neuherberg, Germany ; Department of Physiological Genomics, Faculty of Medicine, Ludwig-Maximilians University of Munich Munich, Germany
| | - Liliana Bernardino
- Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra Coimbra, Portugal ; Health Sciences Research Center, University of Beira Interior Covilhã, Portugal
| | - Filipa F Ribeiro
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon Lisboa, Portugal ; Unit of Neurosciences, Institute of Molecular Medicine, University of Lisbon Lisboa, Portugal
| | - Clarissa S Schitine
- Neurochemistry Laboratory, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | | | - Emer S Ferro
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas São Paulo, Brazil
| | - Ana M Sebastião
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon Lisboa, Portugal ; Unit of Neurosciences, Institute of Molecular Medicine, University of Lisbon Lisboa, Portugal
| | - Ricardo A De Melo Reis
- Neurochemistry Laboratory, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - João O Malva
- Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra Coimbra, Portugal ; Center of Investigation in Environment, Genetics and Oncobiology, Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra Coimbra, Portugal
| |
Collapse
|
145
|
Janbazian L, Karamchandani J, Das S. Mouse models of glioblastoma: lessons learned and questions to be answered. J Neurooncol 2014; 118:1-8. [PMID: 24522719 DOI: 10.1007/s11060-014-1401-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/31/2014] [Indexed: 12/11/2022]
Abstract
Glioblastoma is the most common primary brain tumour in adults. While many patients achieve disease remission following treatment with surgical resection, radiation therapy and chemotherapy, this remission is brief and invariably followed by tumour recurrence and progression. Recent work using mouse models of the disease, coupled with data generated by The Cancer Genome Atlas, have given us new insights into the mechanisms that underlie gliomagenesis and result in glioblastoma heterogeneity. These findings suggest that the treatment of glioblastoma will require a more nuanced understanding of their biology and the employment of targeted therapeutic approaches. In this review, we will summarize the current state of mouse modeling in glioma, with a focus on how these models may inform our understanding of this disease and its treatment.
Collapse
Affiliation(s)
- Loury Janbazian
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for SickKids, University of Toronto, 30 Bond St, Toronto, ON, M5B 1W8, Canada
| | | | | |
Collapse
|
146
|
Abstract
The SVZ (subventricular zone) contains neural stem cells and progenitors of various potentialities. Although initially parsed into A, B, and C cells, this germinal zone is comprised of a significantly more diverse population of cells. Here, we characterized a subset of postnatal PRPs (PDGF-AA-responsive precursors) that express functional PDGFα and β receptors from birth to adulthood. When grown in PDGF-AA, dissociated neonatal rat SVZ cells divided to produce non-adherent clusters of progeny. Unlike the self-renewing EGF/FGF-2-responsive precursors that produce neurospheres, these PRPs failed to self-renew after three passages; therefore, we refer to the colonies they produce as spheroids. Upon differentiation these spheroids could produce neurons, type 1 astrocytes and oligodendrocytes. When maintained in medium supplemented with BMP-4 they also produced type 2 astrocytes. Using lineage tracing methods, it became evident that there were multiple types of PRPs, including a subset that could produce neurons, oligodendrocytes, and type 1 and type 2 astrocytes; thus some of these PRPs represent a unique population of precursors that are quatropotential. Spheroids also could be generated from the newborn neocortex and they had the same potentiality as those from the SVZ. By contrast, the adult neocortex produced less than 20% of the numbers of spheroids than the adult SVZ and spheroids from the adult neocortex only differentiated into glial cells. Interestingly, SVZ spheroid producing capacity diminished only slightly from birth to adulthood. Altogether these data demonstrate that there are PRPs that persist in the SVZ that includes a unique population of quatropotential PRPs.
Collapse
|
147
|
Strickland DK, Au DT, Cunfer P, Muratoglu SC. Low-density lipoprotein receptor-related protein-1: role in the regulation of vascular integrity. Arterioscler Thromb Vasc Biol 2014; 34:487-98. [PMID: 24504736 DOI: 10.1161/atvbaha.113.301924] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) is a large endocytic and signaling receptor that is widely expressed. In the liver, LRP1 plays an important role in regulating the plasma levels of blood coagulation factor VIII (fVIII) by mediating its uptake and subsequent degradation. fVIII is a key plasma protein that is deficient in hemophilia A and circulates in complex with von Willebrand factor. Because von Willebrand factor blocks binding of fVIII to LRP1, questions remain on the molecular mechanisms by which LRP1 removes fVIII from the circulation. LRP1 also regulates cell surface levels of tissue factor, a component of the extrinsic blood coagulation pathway. This occurs when tissue factor pathway inhibitor bridges the fVII/tissue factor complex to LRP1, resulting in rapid LRP1-mediated internalization and downregulation of coagulant activity. In the vasculature LRP1 also plays protective role from the development of aneurysms. Mice in which the lrp1 gene is selectively deleted in vascular smooth muscle cells develop a phenotype similar to the progression of aneurysm formation in human patient, revealing that these mice are ideal for investigating molecular mechanisms associated with aneurysm formation. Studies suggest that LRP1 protects against elastin fiber fragmentation by reducing excess protease activity in the vessel wall. These proteases include high-temperature requirement factor A1, matrix metalloproteinase 2, matrix metalloproteinase-9, and membrane associated type 1-matrix metalloproteinase. In addition, LRP1 regulates matrix deposition, in part, by modulating levels of connective tissue growth factor. Defining pathways modulated by LRP1 that lead to aneurysm formation and defining its role in thrombosis may allow for more effective intervention in patients.
Collapse
Affiliation(s)
- Dudley K Strickland
- From the Center for Vascular and Inflammatory Disease (D.K.S., D.T.A., P.C., S.C.M.), Departments of Surgery (D.K.S.), and Physiology (S.C.M.), University of Maryland School of Medicine, Baltimore
| | | | | | | |
Collapse
|
148
|
Glioma cell proliferation controlled by ERK activity-dependent surface expression of PDGFRA. PLoS One 2014; 9:e87281. [PMID: 24489888 PMCID: PMC3906156 DOI: 10.1371/journal.pone.0087281] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 12/19/2013] [Indexed: 12/14/2022] Open
Abstract
Increased PDGFRA signaling is an essential pathogenic factor in many subtypes of gliomas. In this context the cell surface expression of PDGFRA is an important determinant of ligand sensing in the glioma microenvironment. However, the regulation of spatial distribution of PDGFRA in glioma cells remains poorly characterized. Here, we report that cell surface PDGFRA expression in gliomas is negatively regulated by an ERK-dependent mechanism, resulting in reduced proliferation of glioma cells. Glioma tumor tissues and their corresponding cell lines were isolated from 14 patients and analyzed by single-cell imaging and flow cytometry. In both cell lines and their corresponding tumor samples, glioma cell proliferation correlated with the extent of surface expression of PDGFRA. High levels of surface PDGFRA also correlated to high tubulin expression in glioma tumor tissue in vivo. In glioma cell lines, surface PDGFRA declined following treatment with inhibitors of tubulin, actin and dynamin. Screening of a panel of small molecule compounds identified the MEK inhibitor U0126 as a potent inhibitor of surface PDGFRA expression. Importantly, U0126 inhibited surface expression in a reversible, dose- and time-dependent manner, without affecting general PDGFRA expression. Treatment with U0126 resulted in reduced co-localization between PDGFRA and intracellular trafficking molecules e.g. clathrin, RAB11 and early endosomal antigen-1, in parallel with enhanced co-localization between PDGFRA and the Golgi cisternae maker, Giantin, suggesting a deviation of PDGFRA from the endosomal trafficking and recycling compartment, to the Golgi network. Furthermore, U0126 treatment in glioma cells induced an initial inhibition of ERK1/2 phosphorylation, followed by up-regulated ERK1/2 phosphorylation concomitant with diminished surface expression of PDGFRA. Finally, down-regulation of surface PDGFRA expression by U0126 is concordant with reduced glioma cell proliferation. These findings suggest that manipulation of spatial expression of PDGFRA can potentially be used to combat gliomas.
Collapse
|
149
|
Proliferation and cilia dynamics in neural stem cells prospectively isolated from the SEZ. Sci Rep 2014; 4:3803. [PMID: 24448162 PMCID: PMC3898048 DOI: 10.1038/srep03803] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 12/16/2013] [Indexed: 01/10/2023] Open
Abstract
Neural stem cells (NSCs) generate new neurons in vivo and in vitro throughout adulthood and therefore are physiologically and clinically relevant. Unveiling the mechanisms regulating the lineage progression from NSCs to newborn neurons is critical for the transition from basic research to clinical application. However, the direct analysis of NSCs and their progeny is still elusive due to the problematic identification of the cells. We here describe the isolation of highly purified genetically unaltered NSCs and transit-amplifying precursors (TAPs) from the adult subependymal zone (SEZ). Using this approach we show that a primary cilium and high levels of epidermal growth factor receptor (EGFR) at the cell membrane characterize quiescent and cycling NSCs, respectively. However, we also observed non-ciliated quiescent NSCs and NSCs progressing into the cell cycle without up-regulating EGFR expression. Thus, the existence of NSCs displaying distinct molecular and structural conformations provides more flexibility to the regulation of quiescence and cell cycle progression.
Collapse
|
150
|
Dietrich J, Diamond EL, Kesari S. Glioma stem cell signaling: therapeutic opportunities and challenges. Expert Rev Anticancer Ther 2014; 10:709-22. [DOI: 10.1586/era.09.190] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|