101
|
Rao AN, Patil A, Black MM, Craig EM, Myers KA, Yeung HT, Baas PW. Cytoplasmic Dynein Transports Axonal Microtubules in a Polarity-Sorting Manner. Cell Rep 2018; 19:2210-2219. [PMID: 28614709 DOI: 10.1016/j.celrep.2017.05.064] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/20/2017] [Accepted: 05/18/2017] [Indexed: 01/20/2023] Open
Abstract
Axonal microtubules are predominantly organized into a plus-end-out pattern. Here, we tested both experimentally and with computational modeling whether a motor-based polarity-sorting mechanism can explain this microtubule pattern. The posited mechanism centers on cytoplasmic dynein transporting plus-end-out and minus-end-out microtubules into and out of the axon, respectively. When cytoplasmic dynein was acutely inhibited, the bi-directional transport of microtubules in the axon was disrupted in both directions, after which minus-end-out microtubules accumulated in the axon over time. Computational modeling revealed that dynein-mediated transport of microtubules can establish and preserve a predominantly plus-end-out microtubule pattern as per the details of the experimental findings, but only if a kinesin motor and a static cross-linker protein are also at play. Consistent with the predictions of the model, partial depletion of TRIM46, a protein that cross-links axonal microtubules in a manner that influences their polarity orientation, leads to an increase in microtubule transport.
Collapse
Affiliation(s)
- Anand N Rao
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA 19129, USA
| | - Ankita Patil
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA 19129, USA
| | - Mark M Black
- Department of Anatomy and Cell Biology, Temple University, Philadelphia, PA 19140, USA
| | - Erin M Craig
- Department of Physics, Central Washington University, Ellensburg, WA 98926, USA
| | - Kenneth A Myers
- Department Biological Sciences, University of the Sciences, Philadelphia, PA 19104, USA
| | - Howard T Yeung
- Department of Physics, Central Washington University, Ellensburg, WA 98926, USA
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA 19129, USA.
| |
Collapse
|
102
|
Atherton J, Stouffer M, Francis F, Moores CA. Microtubule architecture in vitro and in cells revealed by cryo-electron tomography. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:572-584. [PMID: 29872007 PMCID: PMC6096491 DOI: 10.1107/s2059798318001948] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/01/2018] [Indexed: 01/03/2023]
Abstract
Electron microscopy is a key methodology for studying microtubule structure and organization. Here, the results of cryo-electron tomography experiments on in vitro-polymerized microtubules and comparisons with microtubule ultrastructure in cells are described. The microtubule cytoskeleton is involved in many vital cellular processes. Microtubules act as tracks for molecular motors, and their polymerization and depolymerization can be harnessed to generate force. The structures of microtubules provide key information about the mechanisms by which their cellular roles are accomplished and the physiological context in which these roles are performed. Cryo-electron microscopy allows the visualization of in vitro-polymerized microtubules and has provided important insights into their overall morphology and the influence of a range of factors on their structure and dynamics. Cryo-electron tomography can be used to determine the unique three-dimensional structure of individual microtubules and their ends. Here, a previous cryo-electron tomography study of in vitro-polymerized GMPCPP-stabilized microtubules is revisited, the findings are compared with new tomograms of dynamic in vitro and cellular microtubules, and the information that can be extracted from such data is highlighted. The analysis shows the surprising structural heterogeneity of in vitro-polymerized microtubules. Lattice defects can be observed both in vitro and in cells. The shared ultrastructural properties in these different populations emphasize the relevance of three-dimensional structures of in vitro microtubules for understanding microtubule cellular functions.
Collapse
Affiliation(s)
- Joseph Atherton
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, England
| | | | - Fiona Francis
- INSERM UMR-S 839, 17 Rue du Fer à Moulin, 75005 Paris, France
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, England
| |
Collapse
|
103
|
Gong T, Yan Y, Zhang J, Liu S, Liu H, Gao J, Zhou X, Chen J, Shi A. PTRN-1/CAMSAP promotes CYK-1/formin-dependent actin polymerization during endocytic recycling. EMBO J 2018; 37:embj.201798556. [PMID: 29567645 DOI: 10.15252/embj.201798556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/18/2018] [Accepted: 02/27/2018] [Indexed: 01/01/2023] Open
Abstract
Cargo sorting and membrane carrier initiation in recycling endosomes require appropriately coordinated actin dynamics. However, the mechanism underlying the regulation of actin organization during recycling transport remains elusive. Here we report that the loss of PTRN-1/CAMSAP stalled actin exchange and diminished the cytosolic actin structures. Furthermore, we found that PTRN-1 is required for the recycling of clathrin-independent cargo hTAC-GFP The N-terminal calponin homology (CH) domain and central coiled-coils (CC) region of PTRN-1 can synergistically sustain the flow of hTAC-GFP We identified CYK-1/formin as a binding partner of PTRN-1. The N-terminal GTPase-binding domain (GBD) of CYK-1 serves as the binding interface for the PTRN-1 CH domain. The presence of the PTRN-1 CH domain promoted CYK-1-mediated actin polymerization, which suggests that the PTRN-1-CH:CYK-1-GBD interaction efficiently relieves autoinhibitory interactions within CYK-1. As expected, the overexpression of the CYK-1 formin homology domain 2 (FH2) substantially restored actin structures and partially suppressed the hTAC-GFP overaccumulation phenotype in ptrn-1 mutants. We conclude that the PTRN-1 CH domain is required to stimulate CYK-1 to facilitate actin dynamics during endocytic recycling.
Collapse
Affiliation(s)
- Ting Gong
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanling Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuai Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinghu Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China .,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
104
|
Chen L. Microtubules and axon regeneration in C. elegans. Mol Cell Neurosci 2018; 91:160-166. [PMID: 29551667 DOI: 10.1016/j.mcn.2018.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 11/28/2022] Open
Abstract
Axon regeneration is a fundamental and conserved process that allows the nervous system to repair circuits after trauma. Due to its conserved genome, transparent body, and relatively simple neuroanatomy, C. elegans has become a powerful model organism for studying the cellular and molecular mechanisms underlying axon regeneration. Various studies from different model organisms have found microtubule dynamics to be pivotal to axon regrowth. In this review, we will discuss the latest findings on how microtubule dynamics are regulated during axon regeneration in C. elegans. Understanding the mechanisms of axon regeneration will aid in the development of more effective therapeutic strategies for treatments of diseases involving disconnection of axons, such as spinal cord injury and stroke.
Collapse
Affiliation(s)
- Lizhen Chen
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, Department of Molecular Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
| |
Collapse
|
105
|
Martin M, Veloso A, Wu J, Katrukha EA, Akhmanova A. Control of endothelial cell polarity and sprouting angiogenesis by non-centrosomal microtubules. eLife 2018; 7:33864. [PMID: 29547120 PMCID: PMC5898915 DOI: 10.7554/elife.33864] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/13/2018] [Indexed: 12/11/2022] Open
Abstract
Microtubules control different aspects of cell polarization. In cells with a radial microtubule system, a pivotal role in setting up asymmetry is attributed to the relative positioning of the centrosome and the nucleus. Here, we show that centrosome loss had no effect on the ability of endothelial cells to polarize and move in 2D and 3D environments. In contrast, non-centrosomal microtubules stabilized by the microtubule minus-end-binding protein CAMSAP2 were required for directional migration on 2D substrates and for the establishment of polarized cell morphology in soft 3D matrices. CAMSAP2 was also important for persistent endothelial cell sprouting during in vivo zebrafish vessel development. In the absence of CAMSAP2, cell polarization in 3D could be partly rescued by centrosome depletion, indicating that in these conditions the centrosome inhibited cell polarity. We propose that CAMSAP2-protected non-centrosomal microtubules are needed for establishing cell asymmetry by enabling microtubule enrichment in a single-cell protrusion. Networks of blood vessels grow like trees. Sprouts appear on existing vessels, stretching out to form new branches in a process called angiogenesis. The cells responsible are the same cells that line the finished vessels. These “endothelial cells” start the process by reorganizing themselves to face the direction of the new sprout, changing shape to become asymmetrical, and then they begin to migrate. Beneath the surface, a network of protein scaffolding supports each migrating cell. The scaffolding includes tube-like fibers called microtubules that extend towards the cell membrane and organize the inside of the cell. Destroying microtubules damages blood vessel formation, but their exact role remains unclear. A structure called the centrosome can organize microtubules within cells. The centrosome was generally believed to act like a compass, pointing in the direction that the cell will move. Microtubules can anchor to the centrosome, and this structure is thought to play an important role in cell migration. Yet, many microtubules organize without it; these microtubules instead are organized by a compartment of the cell called the Golgi apparatus and are stabilized by a protein named CAMSAP2. Martin et al. now report that removing the cells’ centrosomes did not affect cell migration, but getting rid of CAMSAP2 did. Analysis of cell shape and movement in cells grown in the laboratory and in living animals revealed that cells cannot become asymmetrical, or “polarize”, and migrate without CAMSAP2. In a two-dimensional wound-healing assay, a sheet of cells originally grown from the vessels of a human umbilical cord was scratched, and a microscope was then used to record the cell’s movement as they repaired the injury. Normally, the cells on either side move in a straight line using their microtubules, and though the process was not affected in cells without centrosomes, it was in those without CAMSAP2. Even more striking results were seen in three-dimensional assays. When the same blood vessel cells from human umbilical cords are grown as spheres inside collagen gels, they form sprouts as they would in the body. Without CAMSAP2, the cells could not organize their microtubules and they were unable to elongate in one direction and form stable sprouts. Lastly, depleting CAMSAP2 also prevented the normal formation of blood vessels in zebrafish embryos. Taken together, these findings change our understanding of how microtubules affect cell movement and how important the centrosome is for this process. Further work could have an impact on human health, not least in cancer research. Tumors need a good blood supply to grow, so understanding how to block blood vessel formation could lead to new treatments. Microtubules are already a target for cancer therapy, so future work could help to optimize the use of existing drugs.
Collapse
Affiliation(s)
- Maud Martin
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Alexandra Veloso
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liège, Liège, Belgium.,GIGA-Molecular Biology in Diseases, University of Liège, Liège, Belgium
| | - Jingchao Wu
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Eugene A Katrukha
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
106
|
Abstract
The contribution of microtubule tip dynamics to the assembly and function of plant microtubule arrays remains poorly understood. Here, we report that the Arabidopsis SPIRAL2 (SPR2) protein modulates the dynamics of the acentrosomal cortical microtubule plus and minus ends in an opposing manner. Live imaging of a functional SPR2-mRuby fusion protein revealed that SPR2 shows both microtubule plus- and minus-end tracking activity in addition to localization at microtubule intersections and along the lattice. Analysis of microtubule dynamics showed that cortical microtubule plus ends rarely undergo catastrophe in the spr2-2 knockout mutant compared to wild-type. In contrast, cortical microtubule minus ends in spr2-2 depolymerized at a much faster rate than in wild-type. Destabilization of the minus ends in spr2-2 caused a significant decrease in the lifetime of microtubule crossovers, which dramatically reduced the microtubule-severing frequency and inhibited light-induced microtubule array reorientation. Using in vitro reconstitution experiments combined with single-molecule imaging, we found that recombinant SPR2-GFP intrinsically localizes to microtubule minus ends, where it binds stably and inhibits their dynamics. Together, our data establish SPR2 as a new type of microtubule tip regulator that governs the length and lifetime of microtubules.
Collapse
Affiliation(s)
- Yuanwei Fan
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Graham M Burkart
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ram Dixit
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
107
|
Sood P, Murthy K, Kumar V, Nonet ML, Menon GI, Koushika SP. Cargo crowding at actin-rich regions along axons causes local traffic jams. Traffic 2018; 19:166-181. [PMID: 29178177 DOI: 10.1111/tra.12544] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 01/31/2023]
Abstract
Steady axonal cargo flow is central to the functioning of healthy neurons. However, a substantial fraction of cargo in axons remains stationary up to several minutes. We examine the transport of precursors of synaptic vesicles (pre-SVs), endosomes and mitochondria in Caenorhabditis elegans touch receptor neurons, showing that stationary cargo are predominantly present at actin-rich regions along the neuronal process. Stationary vesicles at actin-rich regions increase the propensity of moving vesicles to stall at the same location, resulting in traffic jams arising from physical crowding. Such local traffic jams at actin-rich regions are likely to be a general feature of axonal transport since they also occur in Drosophila neurons. Repeated touch stimulation of C. elegans reduces the density of stationary pre-SVs, indicating that these traffic jams can act as both sources and sinks of vesicles. This suggests that vesicles trapped in actin-rich regions are functional reservoirs that may contribute to maintaining robust cargo flow in the neuron. A video abstract of this article can be found at: Video S1; Video S2.
Collapse
Affiliation(s)
- Parul Sood
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Kausalya Murthy
- Neurobiology, National Centre for Biological Sciences, Bangalore, India
| | - Vinod Kumar
- The Institute of Mathematical Sciences, CIT Campus, Chennai, India
| | - Michael L Nonet
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, Missouri
| | - Gautam I Menon
- The Institute of Mathematical Sciences, CIT Campus, Chennai, India.,Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Sandhya P Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
108
|
The Axon Initial Segment: An Updated Viewpoint. J Neurosci 2018; 38:2135-2145. [PMID: 29378864 DOI: 10.1523/jneurosci.1922-17.2018] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/20/2018] [Accepted: 01/25/2018] [Indexed: 12/20/2022] Open
Abstract
At the base of axons sits a unique compartment called the axon initial segment (AIS). The AIS generates and shapes the action potential before it is propagated along the axon. Neuronal excitability thus depends crucially on the AIS composition and position, and these adapt to developmental and physiological conditions. The AIS also demarcates the boundary between the somatodendritic and axonal compartments. Recent studies have brought insights into the molecular architecture of the AIS and how it regulates protein trafficking. This Viewpoints article summarizes current knowledge about the AIS and highlights future challenges in understanding this key actor of neuronal physiology.
Collapse
|
109
|
Vibert L, Daulny A, Jarriault S. Wound healing, cellular regeneration and plasticity: the elegans way. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2018; 62:491-505. [PMID: 29938761 PMCID: PMC6161810 DOI: 10.1387/ijdb.180123sj] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regeneration and wound healing are complex processes that allow organs and tissues to regain their integrity and functionality after injury. Wound healing, a key property of epithelia, involves tissue closure that in some cases leads to scar formation. Regeneration, a process rather limited in mammals, is the capacity to regrow (parts of) an organ or a tissue, after damage or amputation. What are the properties of organs and the features of tissue permitting functional regrowth and repair? What are the cellular and molecular mechanisms underlying these processes? These questions are crucial both in fundamental and applied contexts, with important medical implications. The mechanisms and cells underlying tissue repair have thus been the focus of intense investigation. The last decades have seen rapid progress in the domain and new models emerging. Here, we review the fundamental advances and the perspectives that the use of C. elegans as a model have brought to the mechanisms of wound healing and cellular plasticity, axon regeneration and transdifferentiation in vivo.
Collapse
Affiliation(s)
- Laura Vibert
- Department of Development and Stem Cells, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), CNRS UMR 7104/INSERM U1258, Université de Strasbourg, Strasbourg, France
| | - Anne Daulny
- Department of Development and Stem Cells, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), CNRS UMR 7104/INSERM U1258, Université de Strasbourg, Strasbourg, France
| | - Sophie Jarriault
- Department of Development and Stem Cells, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), CNRS UMR 7104/INSERM U1258, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
110
|
Melkov A, Abdu U. Regulation of long-distance transport of mitochondria along microtubules. Cell Mol Life Sci 2018; 75:163-176. [PMID: 28702760 PMCID: PMC11105322 DOI: 10.1007/s00018-017-2590-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 11/29/2022]
Abstract
Mitochondria are cellular organelles of crucial importance, playing roles in cellular life and death. In certain cell types, such as neurons, mitochondria must travel long distances so as to meet metabolic demands of the cell. Mitochondrial movement is essentially microtubule (MT) based and is executed by two main motor proteins, Dynein and Kinesin. The organization of the cellular MT network and the identity of motors dictate mitochondrial transport. Tight coupling between MTs, motors, and the mitochondria is needed for the organelle precise localization. Two adaptor proteins are involved directly in mitochondria-motor coupling, namely Milton known also as TRAK, which is the motor adaptor, and Miro, which is the mitochondrial protein. Here, we discuss the active mitochondria transport process, as well as motor-mitochondria coupling in the context of MT organization in different cell types. We focus on mitochondrial trafficking in different cell types, specifically neurons, migrating cells, and polarized epithelial cells.
Collapse
Affiliation(s)
- Anna Melkov
- Department of Life Sciences, Ben-Gurion University, 8410500, Beersheba, Israel
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University, 8410500, Beersheba, Israel.
| |
Collapse
|
111
|
Tas RP, Bos TGAA, Kapitein LC. Purification and Application of a Small Actin Probe for Single-Molecule Localization Microscopy. Methods Mol Biol 2018; 1665:155-171. [PMID: 28940069 DOI: 10.1007/978-1-4939-7271-5_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cytoskeleton is involved in many cellular processes. Over the last decade, super-resolution microscopy has become widely available to image cytoskeletal structures, such as microtubules and actin, with great detail. For example, Single-Molecule Localization Microscopy (SMLM) achieves resolutions of 5-50 nm through repetitive sparse labeling of samples, followed by Point-Spread-Function analysis of individual fluorophores. Whereas initially this approach depended on the controlled photoswitching of fluorophores targeted to the structure of interest, alternative techniques now depend on the transient binding of fluorescently labeled probes, such as the small polypeptide lifeAct that can transiently interact with polymerized actin. These techniques allow for simple multicolor imaging and are no longer limited by a fluorophore's blinking properties. Here we describe a detailed step-by-step protocol to purify, label, and utilize the lifeAct fragment for SMLM. This purification and labeling strategy can potentially be extended to a variety of protein fragments compatible with SMLM.
Collapse
Affiliation(s)
- Roderick P Tas
- Cell Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Trusanne G A A Bos
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, Room N511, Utrecht, 3584, The Netherlands
| | - Lukas C Kapitein
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, Room N511, Utrecht, 3584, The Netherlands.
| |
Collapse
|
112
|
Barsh GR, Isabella AJ, Moens CB. Vagus Motor Neuron Topographic Map Determined by Parallel Mechanisms of hox5 Expression and Time of Axon Initiation. Curr Biol 2017; 27:3812-3825.e3. [PMID: 29225029 PMCID: PMC5755714 DOI: 10.1016/j.cub.2017.11.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/13/2017] [Accepted: 11/08/2017] [Indexed: 12/22/2022]
Abstract
Many networks throughout the nervous system are organized into topographic maps, where the positions of neuron cell bodies in the projecting field correspond with the positions of their axons in the target field. Previous studies of topographic map development show evidence for spatial patterning mechanisms, in which molecular determinants expressed across the projecting and target fields are matched directly in a point-to-point mapping process. Here, we describe a novel temporal mechanism of topographic map formation that depends on spatially regulated differences in the timing of axon outgrowth and functions in parallel with spatial point-to-point mapping mechanisms. We focus on the vagus motor neurons, which are topographically arranged in both mammals and fish. We show that cell position along the anterior-posterior axis of hindbrain rhombomere 8 determines expression of hox5 genes, which are expressed in posterior, but not anterior, vagus motor neurons. Using live imaging and transplantation in zebrafish embryos, we additionally reveal that axon initiation is delayed in posterior vagus motor neurons independent of neuron birth time. We show that hox5 expression directs topographic mapping without affecting time of axon outgrowth and that time of axon outgrowth directs topographic mapping without affecting hox5 expression. The vagus motor neuron topographic map is therefore determined by two mechanisms that act in parallel: a hox5-dependent spatial mechanism akin to classic mechanisms of topographic map formation and a novel axon outgrowth-dependent temporal mechanism in which time of axon formation is spatially regulated to direct axon targeting.
Collapse
Affiliation(s)
- Gabrielle R Barsh
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Adam J Isabella
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
113
|
Goldspink DA, Rookyard C, Tyrrell BJ, Gadsby J, Perkins J, Lund EK, Galjart N, Thomas P, Wileman T, Mogensen MM. Ninein is essential for apico-basal microtubule formation and CLIP-170 facilitates its redeployment to non-centrosomal microtubule organizing centres. Open Biol 2017; 7:rsob.160274. [PMID: 28179500 PMCID: PMC5356440 DOI: 10.1098/rsob.160274] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/17/2017] [Indexed: 01/08/2023] Open
Abstract
Differentiation of columnar epithelial cells involves a dramatic reorganization of the microtubules (MTs) and centrosomal components into an apico-basal array no longer anchored at the centrosome. Instead, the minus-ends of the MTs become anchored at apical non-centrosomal microtubule organizing centres (n-MTOCs). Formation of n-MTOCs is critical as they determine the spatial organization of MTs, which in turn influences cell shape and function. However, how they are formed is poorly understood. We have previously shown that the centrosomal anchoring protein ninein is released from the centrosome, moves in a microtubule-dependent manner and accumulates at n-MTOCs during epithelial differentiation. Here, we report using depletion and knockout (KO) approaches that ninein expression is essential for apico-basal array formation and epithelial elongation and that CLIP-170 is required for its redeployment to n-MTOCs. Functional inhibition also revealed that IQGAP1 and active Rac1 coordinate with CLIP-170 to facilitate microtubule plus-end cortical targeting and ninein redeployment. Intestinal tissue and in vitro organoids from the Clip1/Clip2 double KO mouse with deletions in the genes encoding CLIP-170 and CLIP-115, respectively, confirmed requirement of CLIP-170 for ninein recruitment to n-MTOCs, with possible compensation by other anchoring factors such as p150Glued and CAMSAP2 ensuring apico-basal microtubule formation despite loss of ninein at n-MTOCs.
Collapse
Affiliation(s)
| | - Chris Rookyard
- School of Computing Science, University of East Anglia, Norwich, UK
| | | | - Jonathan Gadsby
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - James Perkins
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Elizabeth K Lund
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Niels Galjart
- Department of Cell Biology and Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Paul Thomas
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Tom Wileman
- Medical School, University of East Anglia, Norwich, UK
| | - Mette M Mogensen
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
114
|
An Image-Based miRNA Screen Identifies miRNA-135s As Regulators of CNS Axon Growth and Regeneration by Targeting Krüppel-like Factor 4. J Neurosci 2017; 38:613-630. [PMID: 29196317 DOI: 10.1523/jneurosci.0662-17.2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 10/24/2017] [Accepted: 10/29/2017] [Indexed: 01/08/2023] Open
Abstract
During embryonic development, axons extend over long distances to establish functional connections. In contrast, axon regeneration in the adult mammalian CNS is limited in part by a reduced intrinsic capacity for axon growth. Therefore, insight into the intrinsic control of axon growth may provide new avenues for enhancing CNS regeneration. Here, we performed one of the first miRNome-wide functional miRNA screens to identify miRNAs with robust effects on axon growth. High-content screening identified miR-135a and miR-135b as potent stimulators of axon growth and cortical neuron migration in vitro and in vivo in male and female mice. Intriguingly, both of these developmental effects of miR-135s relied in part on silencing of Krüppel-like factor 4 (KLF4), a well known intrinsic inhibitor of axon growth and regeneration. These results prompted us to test the effect of miR-135s on axon regeneration after injury. Our results show that intravitreal application of miR-135s facilitates retinal ganglion cell (RGC) axon regeneration after optic nerve injury in adult mice in part by repressing KLF4. In contrast, depletion of miR-135s further reduced RGC axon regeneration. Together, these data identify a novel neuronal role for miR-135s and the miR-135-KLF4 pathway and highlight the potential of miRNAs as tools for enhancing CNS axon regeneration.SIGNIFICANCE STATEMENT Axon regeneration in the adult mammalian CNS is limited in part by a reduced intrinsic capacity for axon growth. Therefore, insight into the intrinsic control of axon growth may provide new avenues for enhancing regeneration. By performing an miRNome-wide functional screen, our studies identify miR-135s as stimulators of axon growth and neuron migration and show that intravitreal application of these miRNAs facilitates CNS axon regeneration after nerve injury in adult mice. Intriguingly, these developmental and regeneration-promoting effects rely in part on silencing of Krüppel-like factor 4 (KLF4), a well known intrinsic inhibitor of axon regeneration. Our data identify a novel neuronal role for the miR-135-KLF4 pathway and support the idea that miRNAs can be used for enhancing CNS axon regeneration.
Collapse
|
115
|
Tas RP, Chazeau A, Cloin BMC, Lambers MLA, Hoogenraad CC, Kapitein LC. Differentiation between Oppositely Oriented Microtubules Controls Polarized Neuronal Transport. Neuron 2017; 96:1264-1271.e5. [PMID: 29198755 PMCID: PMC5746200 DOI: 10.1016/j.neuron.2017.11.018] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/11/2017] [Accepted: 11/08/2017] [Indexed: 12/21/2022]
Abstract
Microtubules are essential for polarized transport in neurons, but how their organization guides motor proteins to axons or dendrites is unclear. Because different motors recognize distinct microtubule properties, we used optical nanoscopy to examine the relationship between microtubule orientations, stability, and modifications. Nanometric tracking of motors to super-resolve microtubules and determine their polarity revealed that in dendrites, stable and acetylated microtubules are mostly oriented minus-end out, while dynamic and tyrosinated microtubules are oriented oppositely. In addition, microtubules with similar orientations and modifications form bundles that bias transport. Importantly, because the plus-end-directed Kinesin-1 selectively interacts with acetylated microtubules, this organization guides this motor out of dendrites and into axons. In contrast, Kinesin-3 prefers tyrosinated microtubules and can enter both axons and dendrites. This separation of distinct microtubule subsets into oppositely oriented bundles constitutes a key architectural principle of the neuronal microtubule cytoskeleton that enables polarized sorting by different motor proteins. Motor-based nanoscopy enables direct observation of microtubule (MT) polarity In neurons, MTs organize into polarized bundles that locally bias transport In dendrites, bundles of opposite orientation differ in stability and composition Dendritic MTs bias Kinesin-1 transport toward the soma, ensuring axon selectivity
Collapse
Affiliation(s)
- Roderick P Tas
- Division of Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Anaël Chazeau
- Division of Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Bas M C Cloin
- Division of Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Maaike L A Lambers
- Division of Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Casper C Hoogenraad
- Division of Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Lukas C Kapitein
- Division of Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands.
| |
Collapse
|
116
|
|
117
|
Atherton J, Jiang K, Stangier MM, Luo Y, Hua S, Houben K, van Hooff JJ, Joseph AP, Scarabelli G, Grant BJ, Roberts AJ, Topf M, Steinmetz MO, Baldus M, Moores CA, Akhmanova A. A structural model for microtubule minus-end recognition and protection by CAMSAP proteins. Nat Struct Mol Biol 2017; 24:931-943. [PMID: 28991265 PMCID: PMC6134180 DOI: 10.1038/nsmb.3483] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 09/12/2017] [Indexed: 12/12/2022]
Abstract
CAMSAP and Patronin family members regulate microtubule minus-end stability and localization and thus organize noncentrosomal microtubule networks, which are essential for cell division, polarization and differentiation. Here, we found that the CAMSAP C-terminal CKK domain is widely present among eukaryotes and autonomously recognizes microtubule minus ends. Through a combination of structural approaches, we uncovered how mammalian CKK binds between two tubulin dimers at the interprotofilament interface on the outer microtubule surface. In vitro reconstitution assays combined with high-resolution fluorescence microscopy and cryo-electron tomography suggested that CKK preferentially associates with the transition zone between curved protofilaments and the regular microtubule lattice. We propose that minus-end-specific features of the interprotofilament interface at this site serve as the basis for CKK's minus-end preference. The steric clash between microtubule-bound CKK and kinesin motors explains how CKK protects microtubule minus ends against kinesin-13-induced depolymerization and thus controls the stability of free microtubule minus ends.
Collapse
Affiliation(s)
- Joseph Atherton
- Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Kai Jiang
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Marcel M. Stangier
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Yanzhang Luo
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Shasha Hua
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Klaartje Houben
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Jolien J.E. van Hooff
- Hubrecht Institute, Utrecht, the Netherlands
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Agnel-Praveen Joseph
- Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Guido Scarabelli
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Barry J. Grant
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anthony J. Roberts
- Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Michel O. Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
- University of Basel, Biozentrum, Basel, Switzerland
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Carolyn A. Moores
- Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
118
|
Establishing Neuronal Polarity with Environmental and Intrinsic Mechanisms. Neuron 2017; 96:638-650. [DOI: 10.1016/j.neuron.2017.10.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/14/2017] [Accepted: 10/15/2017] [Indexed: 12/31/2022]
|
119
|
Muroyama A, Lechler T. Microtubule organization, dynamics and functions in differentiated cells. Development 2017; 144:3012-3021. [PMID: 28851722 DOI: 10.1242/dev.153171] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past several decades, numerous studies have greatly expanded our knowledge about how microtubule organization and dynamics are controlled in cultured cells in vitro However, our understanding of microtubule dynamics and functions in vivo, in differentiated cells and tissues, remains under-explored. Recent advances in generating genetic tools and imaging technologies to probe microtubules in situ, coupled with an increased interest in the functions of this cytoskeletal network in differentiated cells, are resulting in a renaissance. Here, we discuss the lessons learned from such approaches, which have revealed that, although some differentiated cells utilize conserved strategies to remodel microtubules, there is considerable diversity in the underlying molecular mechanisms of microtubule reorganization. This highlights a continued need to explore how differentiated cells regulate microtubule geometry in vivo.
Collapse
Affiliation(s)
- Andrew Muroyama
- Departments of Dermatology and Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Terry Lechler
- Departments of Dermatology and Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
120
|
Dent EW. Of microtubules and memory: implications for microtubule dynamics in dendrites and spines. Mol Biol Cell 2017; 28:1-8. [PMID: 28035040 PMCID: PMC5221613 DOI: 10.1091/mbc.e15-11-0769] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/20/2016] [Accepted: 10/26/2016] [Indexed: 12/25/2022] Open
Abstract
Microtubules (MTs) are cytoskeletal polymers composed of repeating subunits of tubulin that are ubiquitously expressed in eukaryotic cells. They undergo a stochastic process of polymerization and depolymerization from their plus ends termed dynamic instability. MT dynamics is an ongoing process in all cell types and has been the target for the development of several useful anticancer drugs, which compromise rapidly dividing cells. Recent studies also suggest that MT dynamics may be particularly important in neurons, which develop a highly polarized morphology, consisting of a single axon and multiple dendrites that persist throughout adulthood. MTs are especially dynamic in dendrites and have recently been shown to polymerize directly into dendritic spines, the postsynaptic compartment of excitatory neurons in the CNS. These transient polymerization events into dendritic spines have been demonstrated to play important roles in synaptic plasticity in cultured neurons. Recent studies also suggest that MT dynamics in the adult brain function in the essential process of learning and memory and may be compromised in degenerative diseases, such as Alzheimer's disease. This raises the possibility of targeting MT dynamics in the design of new therapeutic agents.
Collapse
Affiliation(s)
- Erik W Dent
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
121
|
Janssen AFJ, Tas RP, van Bergeijk P, Oost R, Hoogenraad CC, Kapitein LC. Myosin-V Induces Cargo Immobilization and Clustering at the Axon Initial Segment. Front Cell Neurosci 2017; 11:260. [PMID: 28894417 PMCID: PMC5581344 DOI: 10.3389/fncel.2017.00260] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/11/2017] [Indexed: 12/30/2022] Open
Abstract
The selective transport of different cargoes into axons and dendrites underlies the polarized organization of the neuron. Although it has become clear that the combined activity of different motors determines the destination and selectivity of transport, little is known about the mechanistic details of motor cooperation. For example, the exact role of myosin-V in opposing microtubule-based axon entries has remained unclear. Here we use two orthogonal chemically-induced heterodimerization systems to independently recruit different motors to cargoes. We find that recruiting myosin-V to kinesin-propelled cargoes at approximately equal numbers is sufficient to stall motility. Kinesin-driven cargoes entering the axon were arrested in the axon initial segment (AIS) upon myosin-V recruitment and accumulated in distinct actin-rich hotspots. Importantly, unlike proposed previously, myosin-V did not return these cargoes to the cell body, suggesting that additional mechanism are required to establish cargo retrieval from the AIS.
Collapse
Affiliation(s)
- Anne F J Janssen
- Cell Biology, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | - Roderick P Tas
- Cell Biology, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | - Petra van Bergeijk
- Cell Biology, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | - Rosalie Oost
- Cell Biology, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | - Lukas C Kapitein
- Cell Biology, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|
122
|
Roostalu J, Surrey T. Microtubule nucleation: beyond the template. Nat Rev Mol Cell Biol 2017; 18:702-710. [PMID: 28831203 DOI: 10.1038/nrm.2017.75] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microtubules are cytoskeletal filaments central to a wide range of essential cellular functions in eukaryotic cells. Consequently, cells need to exert tight control over when, where and how many microtubules are being made. Whereas the regulation of microtubule dynamics is well studied, the molecular mechanisms of microtubule nucleation are still poorly understood. Next to the established master template of nucleation, the γ-tubulin ring complex, other microtubule-associated proteins that affect microtubule dynamic properties have recently been found to contribute to nucleation. It has begun to emerge that the nucleation efficiency is controlled not only by template activity but also by, either additionally or alternatively, the stabilization of the nascent microtubule 'nucleus'. This suggests a simple conceptual framework for the mechanisms regulating microtubule nucleation in cells.
Collapse
Affiliation(s)
| | - Thomas Surrey
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
123
|
Wei J, Xu H, Meng W. Noncentrosomal microtubules regulate autophagosome transport through CAMSAP2-EB1 cross-talk. FEBS Lett 2017; 591:2379-2393. [PMID: 28726242 DOI: 10.1002/1873-3468.12758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/02/2017] [Accepted: 07/13/2017] [Indexed: 12/24/2022]
Abstract
Microtubules (MTs) play essential roles in many steps of autophagy, an important degradation pathway in the maintenance of cellular homoeostasis. In many cells, MT networks are comprised of centrosomal MTs and noncentrosomal MTs. However, it is unknown whether noncentrosomal MTs and its binding proteins are involved in autophagy. Here, we show in HeLa cells that calmodulin-regulated spectrin-associated protein 2 (CAMSAP2), a noncentrosomal MT minus-end stabilizing protein, regulates retrograde transport of autophagosomes through MT dynamics. CAMSAP2 cooperates with EB1 to regulate end-binding protein 1 (EB1) behaviour at MT plus ends, MT growth directions and autophagosome transport. An association between CAMSAP2 and EB1 in the cytosol may modulate EB1 binding to MT plus ends. Collectively, our data indicate that noncentrosomal MTs regulate autophagy through a cross-talk between CAMSAP2 and EB1.
Collapse
Affiliation(s)
- Jieli Wei
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Honglin Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wenxiang Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
124
|
Dynamic Palmitoylation Targets MAP6 to the Axon to Promote Microtubule Stabilization during Neuronal Polarization. Neuron 2017; 94:809-825.e7. [PMID: 28521134 DOI: 10.1016/j.neuron.2017.04.042] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 02/19/2017] [Accepted: 04/27/2017] [Indexed: 11/22/2022]
Abstract
Microtubule-associated proteins (MAPs) are main candidates to stabilize neuronal microtubules, playing an important role in establishing axon-dendrite polarity. However, how MAPs are selectively targeted to specific neuronal compartments remains poorly understood. Here, we show specific localization of microtubule-associated protein 6 (MAP6)/stable tubule-only polypeptide (STOP) throughout neuronal maturation and its role in axonal development. In unpolarized neurons, MAP6 is present at the Golgi complex and in secretory vesicles. As neurons mature, MAP6 is translocated to the proximal axon, where it binds and stabilizes microtubules. Further, we demonstrate that dynamic palmitoylation, mediated by the family of α/β Hydrolase domain-containing protein 17 (ABHD17A-C) depalmitoylating enzymes, controls shuttling of MAP6 between membranes and microtubules and is required for MAP6 retention in axons. We propose a model in which MAP6's palmitoylation mediates microtubule stabilization, allows efficient organelle trafficking, and controls axon maturation in vitro and in situ.
Collapse
|
125
|
Microtubule Organization Determines Axonal Transport Dynamics. Neuron 2017; 92:449-460. [PMID: 27764672 DOI: 10.1016/j.neuron.2016.09.036] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 08/02/2016] [Accepted: 09/15/2016] [Indexed: 12/31/2022]
Abstract
Axonal microtubule (MT) arrays are the major cytoskeleton substrate for cargo transport. How MT organization, i.e., polymer length, number, and minus-end spacing, is regulated and how it impinges on axonal transport are unclear. We describe a method for analyzing neuronal MT organization using light microscopy. This method circumvents the need for electron microscopy reconstructions and is compatible with live imaging of cargo transport and MT dynamics. Examination of a C. elegans motor neuron revealed how age, MT-associated proteins, and signaling pathways control MT length, minus-end spacing, and coverage. In turn, MT organization determines axonal transport progression: cargoes pause at polymer termini, suggesting that switching MT tracks is rate limiting for efficient transport. Cargo run length is set by MT length, and higher MT coverage correlates with shorter pauses. These results uncover the principles and mechanisms of neuronal MT organization and its regulation of axonal cargo transport.
Collapse
|
126
|
Abstract
The organization of microtubule networks is crucial for controlling chromosome segregation during cell division, for positioning and transport of different organelles, and for cell polarity and morphogenesis. The geometry of microtubule arrays strongly depends on the localization and activity of the sites where microtubules are nucleated and where their minus ends are anchored. Such sites are often clustered into structures known as microtubule-organizing centers, which include the centrosomes in animals and spindle pole bodies in fungi. In addition, other microtubules, as well as membrane compartments such as the cell nucleus, the Golgi apparatus, and the cell cortex, can nucleate, stabilize, and tether microtubule minus ends. These activities depend on microtubule-nucleating factors, such as γ-tubulin-containing complexes and their activators and receptors, and microtubule minus end-stabilizing proteins with their binding partners. Here, we provide an overview of the current knowledge on how such factors work together to control microtubule organization in different systems.
Collapse
Affiliation(s)
- Jingchao Wu
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, The Netherlands; ,
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, The Netherlands; ,
| |
Collapse
|
127
|
Nashchekin D, Fernandes AR, St Johnston D. Patronin/Shot Cortical Foci Assemble the Noncentrosomal Microtubule Array that Specifies the Drosophila Anterior-Posterior Axis. Dev Cell 2017; 38:61-72. [PMID: 27404359 PMCID: PMC4943857 DOI: 10.1016/j.devcel.2016.06.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/03/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023]
Abstract
Noncentrosomal microtubules play an important role in polarizing differentiated cells, but little is known about how these microtubules are organized. Here we identify the spectraplakin, Short stop (Shot), as the cortical anchor for noncentrosomal microtubule organizing centers (ncMTOCs) in the Drosophila oocyte. Shot interacts with the cortex through its actin-binding domain and recruits the microtubule minus-end-binding protein, Patronin, to form cortical ncMTOCs. Shot/Patronin foci do not co-localize with γ-tubulin, suggesting that they do not nucleate new microtubules. Instead, they capture and stabilize existing microtubule minus ends, which then template new microtubule growth. Shot/Patronin foci are excluded from the oocyte posterior by the Par-1 polarity kinase to generate the polarized microtubule network that localizes axis determinants. Both proteins also accumulate apically in epithelial cells, where they are required for the formation of apical-basal microtubule arrays. Thus, Shot/Patronin ncMTOCs may provide a general mechanism for organizing noncentrosomal microtubules in differentiated cells. The Drosophila spectraplakin, Shot, recruits Patronin to form noncentrosomal MTOCs The actin-binding domain of Shot anchors the ncMTOCs to the oocyte cortex Par-1 excludes Shot from the posterior cortex to define the anterior-posterior axis Shot/Patronin ncMTOCs lack γ-tubulin and grow MTs from stabilized minus-end stumps
Collapse
Affiliation(s)
- Dmitry Nashchekin
- The Gurdon Institute and the Department of Genetics, the University of Cambridge, Cambridge CB2 1QN, UK
| | - Artur Ribeiro Fernandes
- The Gurdon Institute and the Department of Genetics, the University of Cambridge, Cambridge CB2 1QN, UK
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, the University of Cambridge, Cambridge CB2 1QN, UK.
| |
Collapse
|
128
|
Neuronal polarization: From spatiotemporal signaling to cytoskeletal dynamics. Mol Cell Neurosci 2017; 84:11-28. [PMID: 28363876 DOI: 10.1016/j.mcn.2017.03.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/24/2017] [Accepted: 03/26/2017] [Indexed: 12/20/2022] Open
Abstract
Neuronal polarization establishes distinct molecular structures to generate a single axon and multiple dendrites. Studies over the past years indicate that this efficient separation is brought about by a network of feedback loops. Axonal growth seems to play a major role in fueling those feedback loops and thereby stabilizing neuronal polarity. Indeed, various effectors involved in feedback loops are pivotal for axonal growth by ultimately acting on the actin and microtubule cytoskeleton. These effectors have key roles in interconnecting actin and microtubule dynamics - a mechanism crucial to commanding the growth of axons. We propose a model connecting signaling with cytoskeletal dynamics and neurite growth to better describe the underlying processes involved in neuronal polarization. We will discuss the current views on feedback loops and highlight the current limits of our understanding.
Collapse
|
129
|
van Riel WE, Rai A, Bianchi S, Katrukha EA, Liu Q, Heck AJ, Hoogenraad CC, Steinmetz MO, Kapitein LC, Akhmanova A. Kinesin-4 KIF21B is a potent microtubule pausing factor. eLife 2017; 6. [PMID: 28290984 PMCID: PMC5383399 DOI: 10.7554/elife.24746] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/09/2017] [Indexed: 12/20/2022] Open
Abstract
Microtubules are dynamic polymers that in cells can grow, shrink or pause, but the factors that promote pausing are poorly understood. Here, we show that the mammalian kinesin-4 KIF21B is a processive motor that can accumulate at microtubule plus ends and induce pausing. A few KIF21B molecules are sufficient to induce strong growth inhibition of a microtubule plus end in vitro. This property depends on non-motor microtubule-binding domains located in the stalk region and the C-terminal WD40 domain. The WD40-containing KIF21B tail displays preference for a GTP-type over a GDP-type microtubule lattice and contributes to the interaction of KIF21B with microtubule plus ends. KIF21B also contains a motor-inhibiting domain that does not fully block the interaction of the protein with microtubules, but rather enhances its pause-inducing activity by preventing KIF21B detachment from microtubule tips. Thus, KIF21B combines microtubule-binding and regulatory activities that together constitute an autonomous microtubule pausing factor. DOI:http://dx.doi.org/10.7554/eLife.24746.001 Microtubules are tiny tubes that cells use as rails to move various cell compartments and structures to different locations within the cell. They are made of building blocks called tubulin and form extensive networks across the cell. Depending on the cell’s needs, microtubule networks can be rapidly assembled and disassembled by adding or removing tubulin subunits at the ends of individual microtubules. While a lot is known about how cells regulate the growth and shrinkage of microtubules, much less is known about the factors that can pause these processes and thus stabilize a microtubule. Proteins belonging to the kinesin family are molecular motors that can walk along microtubules and control how microtubules grow and shrink. A kinesin known as KIF21B is found in several types of cells including neurons and immune cells and genetic alterations in this protein have been linked with several neurodegenerative diseases. KIF21B is made up of three regions: a motor domain, a stalk and a tail domain that binds to microtubules. Recent studies have suggested that this kinesin affects the ability of one end of microtubules (known as the plus end) to grow. Here, van Riel, Rai, Bianchi et al. used a biochemical approach to investigate the activity of KIF21B. The experiments show that KIF21B can walk to the plus end of microtubules and efficiently pause growth. Small numbers of KIF21B molecules are enough to inhibit microtubule growth and this activity depends on the motor domain and the tail domain of KIF21B working together. These experiments were performed a cell-free system and so the next challenge is to investigate how KIF21B works in living cells, including neurons and immune cells. DOI:http://dx.doi.org/10.7554/eLife.24746.002
Collapse
Affiliation(s)
- Wilhelmina E van Riel
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Ankit Rai
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Sarah Bianchi
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Eugene A Katrukha
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Qingyang Liu
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Albert Jr Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and The Netherlands Proteomics Centre, Utrecht University, Utrecht, Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Lukas C Kapitein
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
130
|
Nishita M, Satake T, Minami Y, Suzuki A. Regulatory mechanisms and cellular functions of non-centrosomal microtubules. J Biochem 2017; 162:1-10. [DOI: 10.1093/jb/mvx018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/02/2017] [Indexed: 02/07/2023] Open
|
131
|
Satake T, Yamashita K, Hayashi K, Miyatake S, Tamura-Nakano M, Doi H, Furuta Y, Shioi G, Miura E, Takeo YH, Yoshida K, Yahikozawa H, Matsumoto N, Yuzaki M, Suzuki A. MTCL1 plays an essential role in maintaining Purkinje neuron axon initial segment. EMBO J 2017; 36:1227-1242. [PMID: 28283581 DOI: 10.15252/embj.201695630] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/07/2017] [Accepted: 02/10/2017] [Indexed: 11/09/2022] Open
Abstract
The axon initial segment (AIS) is a specialized domain essential for neuronal function, the formation of which begins with localization of an ankyrin-G (AnkG) scaffold. However, the mechanism directing and maintaining AnkG localization is largely unknown. In this study, we demonstrate that in vivo knockdown of microtubule cross-linking factor 1 (MTCL1) in cerebellar Purkinje cells causes loss of axonal polarity coupled with AnkG mislocalization. MTCL1 lacking MT-stabilizing activity failed to restore these defects, and stable MT bundles spanning the AIS were disorganized in knockdown cells. Interestingly, during early postnatal development, colocalization of MTCL1 with these stable MT bundles was observed prominently in the axon hillock and proximal axon. These results indicate that MTCL1-mediated formation of stable MT bundles is crucial for maintenance of AnkG localization. We also demonstrate that Mtcl1 gene disruption results in abnormal motor coordination with Purkinje cell degeneration, and provide evidence suggesting possible involvement of MTCL1 dysfunction in the pathogenesis of spinocerebellar ataxia.
Collapse
Affiliation(s)
- Tomoko Satake
- Molecular Cellular Biology Laboratory, Yokohama City University Graduate School of Medical Life Science, Tsurumi-ku Yokohama, Japan
| | - Kazunari Yamashita
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Kanazawa-ku Yokohama, Japan
| | - Kenji Hayashi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Kanazawa-ku Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medical Science, Kanazawa-ku Yokohama, Japan
| | - Miwa Tamura-Nakano
- Communal Laboratory, Research Institute, National Center for Global Health and Medicine, Toyama Shinjuku-ku Tokyo, Japan
| | - Hiroshi Doi
- Department of Neurology, Yokohama City University Graduate School of Medical Science, Kanazawa-ku Yokohama, Japan
| | - Yasuhide Furuta
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Chuou-ku Kobe, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, Chuou-ku Kobe, Japan
| | - Go Shioi
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, Chuou-ku Kobe, Japan
| | - Eriko Miura
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku Tokyo, Japan
| | - Yukari H Takeo
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku Tokyo, Japan
| | - Kunihiro Yoshida
- Division of Neurogenetics, Department of Brain Disease Research, Shinshu University School of Medicine, Asahi Matsumoto, Japan
| | | | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medical Science, Kanazawa-ku Yokohama, Japan
| | - Michisuke Yuzaki
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku Tokyo, Japan
| | - Atsushi Suzuki
- Molecular Cellular Biology Laboratory, Yokohama City University Graduate School of Medical Life Science, Tsurumi-ku Yokohama, Japan
| |
Collapse
|
132
|
CAMSAP3-dependent microtubule dynamics regulates Golgi assembly in epithelial cells. J Genet Genomics 2017; 44:39-49. [DOI: 10.1016/j.jgg.2016.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/19/2016] [Accepted: 11/30/2016] [Indexed: 11/24/2022]
|
133
|
Sanchez AD, Feldman JL. Microtubule-organizing centers: from the centrosome to non-centrosomal sites. Curr Opin Cell Biol 2016; 44:93-101. [PMID: 27666167 DOI: 10.1016/j.ceb.2016.09.003] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/19/2016] [Accepted: 09/08/2016] [Indexed: 11/25/2022]
Abstract
The process of cellular differentiation requires the distinct spatial organization of the microtubule cytoskeleton, the arrangement of which is specific to cell type. Microtubule patterning does not occur randomly, but is imparted by distinct subcellular sites called microtubule-organizing centers (MTOCs). Since the discovery of MTOCs fifty years ago, their study has largely focused on the centrosome. All animal cells use centrosomes as MTOCs during mitosis. However in many differentiated cells, MTOC function is reassigned to non-centrosomal sites to generate non-radial microtubule organization better suited for new cell functions, such as mechanical support or intracellular transport. Here, we review the current understanding of non-centrosomal MTOCs (ncMTOCs) and the mechanisms by which they form in differentiating animal cells.
Collapse
Affiliation(s)
- Ariana D Sanchez
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| | - Jessica L Feldman
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA.
| |
Collapse
|
134
|
Sharma G, Tsutsumi K, Saito T, Asada A, Ando K, Tomomura M, Hisanaga SI. Kinase activity of endosomal kinase LMTK1A regulates its cellular localization and interactions with cytoskeletons. Genes Cells 2016; 21:1080-1094. [PMID: 27600567 DOI: 10.1111/gtc.12404] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/31/2016] [Indexed: 01/07/2023]
Abstract
Neurite formation, a fundamental process in neuronal maturation, requires the coordinated regulation of cytoskeletal reorganization and membrane transport. Compared to the understanding of cytoskeletal functions, less is known about the supply of membranes to growing neurites. Lemur kinase 1A (LMTK1A) is an endosomal protein kinase that is highly expressed in neurons. We recently reported that LMTK1A regulates the trafficking of Rab11-positive recycling endosomes in growing axons and dendrites. Here, we used the kinase-negative (kn) mutant to investigate the role of the kinase activity of LMTK1A in its cellular localization and interactions with the cytoskeleton in Neuro2A and PC-12 cells. Kinase activity was required for the localization of LMTK1A in the perinuclear endocytic recycling compartment. Perinuclear accumulation was microtubule dependent, and LMTK1A wild type (wt) localized mainly on microtubules, whereas kn LMTK1A was found in the actin-rich cell periphery. In the neurites of PC-12 cells, LMTK1A showed contrasting distributions depending on the kinase activity, with wt being located in the microtubule-rich shaft and the kn form in the actin-rich tip. Taken together, these results suggest that the kinase activity of LMTK1A regulates the pathway for endosomal vesicles to transfer from microtubules to actin filaments at the tip of growing neurites.
Collapse
Affiliation(s)
- Govinda Sharma
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Koji Tsutsumi
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Taro Saito
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Akiko Asada
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Kanae Ando
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Mineko Tomomura
- Integral Education Center, Meikai University, Urayasu, Chiba, 279-9950, Japan
| | - Shin-Ichi Hisanaga
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
135
|
Baas PW, Rao AN, Matamoros AJ, Leo L. Stability properties of neuronal microtubules. Cytoskeleton (Hoboken) 2016; 73:442-60. [PMID: 26887570 PMCID: PMC5541393 DOI: 10.1002/cm.21286] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/02/2016] [Accepted: 02/12/2016] [Indexed: 01/12/2023]
Abstract
Neurons are terminally differentiated cells that use their microtubule arrays not for cell division but rather as architectural elements required for the elaboration of elongated axons and dendrites. In addition to acting as compression-bearing struts that provide for the shape of the neuron, microtubules also act as directional railways for organelle transport. The stability properties of neuronal microtubules are commonly discussed in the biomedical literature as crucial to the development and maintenance of the nervous system, and have recently gained attention as central to the etiology of neurodegenerative diseases. Drugs that affect microtubule stability are currently under investigation as potential therapies for disease and injury of the nervous system. There is often a lack of consistency, however, in how the issue of microtubule stability is discussed in the literature, and this can affect the design and interpretation of experiments as well as potential therapeutic regimens. Neuronal microtubules are considered to be more stable than microtubules in dividing cells. On average, this is true, but in addition to an abundant stable microtubule fraction in neurons, there is also an abundant labile microtubule fraction. Both are functionally important. Individual microtubules consist of domains that differ in their stability properties, and these domains can also differ markedly in their composition as well as how they interact with various microtubule-related proteins in the neuron. Myriad proteins and pathways have been discussed as potential contributors to microtubule stability in neurons. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| | - Anand N Rao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Andrew J Matamoros
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Lanfranco Leo
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
136
|
Structural basis for misregulation of kinesin KIF21A autoinhibition by CFEOM1 disease mutations. Sci Rep 2016; 6:30668. [PMID: 27485312 PMCID: PMC4971492 DOI: 10.1038/srep30668] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 07/08/2016] [Indexed: 11/09/2022] Open
Abstract
Tight regulation of kinesin activity is crucial and malfunction is linked to neurological diseases. Point mutations in the KIF21A gene cause congenital fibrosis of the extraocular muscles type 1 (CFEOM1) by disrupting the autoinhibitory interaction between the motor domain and a regulatory region in the stalk. However, the molecular mechanism underlying the misregulation of KIF21A activity in CFEOM1 is not understood. Here, we show that the KIF21A regulatory domain containing all disease-associated substitutions in the stalk forms an intramolecular antiparallel coiled coil that inhibits the kinesin. CFEOM1 mutations lead to KIF21A hyperactivation by affecting either the structural integrity of the antiparallel coiled coil or the autoinhibitory binding interface, thereby reducing its affinity for the motor domain. Interaction of the KIF21A regulatory domain with the KIF21B motor domain and sequence similarities to KIF7 and KIF27 strongly suggest a conservation of this regulatory mechanism in other kinesin-4 family members.
Collapse
|
137
|
van Beuningen SFB, Hoogenraad CC. Neuronal polarity: remodeling microtubule organization. Curr Opin Neurobiol 2016; 39:1-7. [DOI: 10.1016/j.conb.2016.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/12/2016] [Indexed: 01/16/2023]
|
138
|
Non-centrosomal nucleation mediated by augmin organizes microtubules in post-mitotic neurons and controls axonal microtubule polarity. Nat Commun 2016; 7:12187. [PMID: 27405868 PMCID: PMC4947180 DOI: 10.1038/ncomms12187] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/09/2016] [Indexed: 12/19/2022] Open
Abstract
Neurons display a highly polarized microtubule network that mediates trafficking throughout the extensive cytoplasm and is crucial for neuronal differentiation and function. In newborn migrating neurons, the microtubule network is organized by the centrosome. During neuron maturation, however, the centrosome gradually loses this activity, and how microtubules are organized in more mature neurons remains poorly understood. Here, we demonstrate that microtubule organization in post-mitotic neurons strongly depends on non-centrosomal nucleation mediated by augmin and by the nucleator γTuRC. Disruption of either complex not only reduces microtubule density but also microtubule bundling. These microtubule defects impair neurite formation, interfere with axon specification and growth, and disrupt axonal trafficking. In axons augmin does not merely mediate nucleation of microtubules but ensures their uniform plus end-out orientation. Thus, the augmin-γTuRC module, initially identified in mitotic cells, may be commonly used to generate and maintain microtubule configurations with specific polarity. In mature neurons the centrosome no longer functions as the main microtubule organizer and it is unclear how ordered microtubule arrays are assembled. Here, the authors show that in post-mitotic neurons this process depends on non-centrosomal nucleation mediated by the protein complex augmin and the nucleator gamma-TuRC.
Collapse
|
139
|
Microtubules in health and degenerative disease of the nervous system. Brain Res Bull 2016; 126:217-225. [PMID: 27365230 DOI: 10.1016/j.brainresbull.2016.06.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 01/04/2023]
Abstract
Microtubules are essential for the development and maintenance of axons and dendrites throughout the life of the neuron, and are vulnerable to degradation and disorganization in a variety of neurodegenerative diseases. Microtubules, polymers of tubulin heterodimers, are intrinsically polar structures with a plus end favored for assembly and disassembly and a minus end less favored for these dynamics. In the axon, microtubules are nearly uniformly oriented with plus ends out, whereas in dendrites, microtubules have mixed orientations. Microtubules in developing neurons typically have a stable domain toward the minus end and a labile domain toward the plus end. This domain structure becomes more complex during neuronal maturation when especially stable patches of polyaminated tubulin become more prominent within the microtubule. Microtubules are the substrates for molecular motor proteins that transport cargoes toward the plus or minus end of the microtubule, with motor-driven forces also responsible for organizing microtubules into their distinctive polarity patterns in axons and dendrites. A vast array of microtubule-regulatory proteins impart direct and indirect changes upon the microtubule arrays of the neuron, and these include microtubule-severing proteins as well as proteins responsible for the stability properties of the microtubules. During neurodegenerative diseases, microtubule mass is commonly diminished, and the potential exists for corruption of the microtubule polarity patterns and microtubule-mediated transport. These ill effects may be a primary causative factor in the disease or may be secondary effects, but regardless, therapeutics capable of correcting these microtubule abnormalities have great potential to improve the status of the degenerating nervous system.
Collapse
|
140
|
Dendrites In Vitro and In Vivo Contain Microtubules of Opposite Polarity and Axon Formation Correlates with Uniform Plus-End-Out Microtubule Orientation. J Neurosci 2016; 36:1071-85. [PMID: 26818498 DOI: 10.1523/jneurosci.2430-15.2016] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED In cultured vertebrate neurons, axons have a uniform arrangement of microtubules with plus-ends distal to the cell body (plus-end-out), whereas dendrites contain mixed polarity orientations with both plus-end-out and minus-end-out oriented microtubules. Rather than non-uniform microtubules, uniparallel minus-end-out microtubules are the signature of dendrites in Drosophila and Caenorhabditis elegans neurons. To determine whether mixed microtubule organization is a conserved feature of vertebrate dendrites, we used live-cell imaging to systematically analyze microtubule plus-end orientations in primary cultures of rat hippocampal and cortical neurons, dentate granule cells in mouse organotypic slices, and layer 2/3 pyramidal neurons in the somatosensory cortex of living mice. In vitro and in vivo, all microtubules had a plus-end-out orientation in axons, whereas microtubules in dendrites had mixed orientations. When dendritic microtubules were severed by laser-based microsurgery, we detected equal numbers of plus- and minus-end-out microtubule orientations throughout the dendritic processes. In dendrites, the minus-end-out microtubules were generally more stable and comparable with plus-end-out microtubules in axons. Interestingly, at early stages of neuronal development in nonpolarized cells, newly formed neurites already contained microtubules of opposite polarity, suggesting that the establishment of uniform plus-end-out microtubules occurs during axon formation. We propose a model in which the selective formation of uniform plus-end-out microtubules in the axon is a critical process underlying neuronal polarization. SIGNIFICANCE STATEMENT Live-cell imaging was used to systematically analyze microtubule organization in primary cultures of rat hippocampal neurons, dentate granule cells in mouse organotypic slices, and layer 2/3 pyramidal neuron in somatosensory cortex of living mice. In vitro and in vivo, all microtubules have a plus-end-out orientation in axons, whereas microtubules in dendrites have mixed orientations. Interestingly, newly formed neurites of nonpolarized neurons already contain mixed microtubules, and the specific organization of uniform plus-end-out microtubules only occurs during axon formation. Based on these findings, the authors propose a model in which the selective formation of uniform plus-end-out microtubules in the axon is a critical process underlying neuronal polarization.
Collapse
|
141
|
Abstract
The growth and migration of neurons require continuous remodelling of the neuronal cytoskeleton, providing a versatile cellular framework for force generation and guided movement, in addition to structural support. Actin filaments and microtubules are central to the dynamic action of the cytoskeleton and rapid advances in imaging technologies are enabling ever more detailed visualisation of the dynamic intracellular networks that they form. However, these filaments do not act individually and an expanding body of evidence emphasises the importance of actin-microtubule crosstalk in orchestrating cytoskeletal dynamics. Here, we summarise our current understanding of the structure and dynamics of actin and microtubules in isolation, before reviewing both the mechanisms and the molecular players involved in mediating actin-microtubule crosstalk in neurons.
Collapse
Affiliation(s)
- Charlotte H Coles
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| | - Frank Bradke
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| |
Collapse
|
142
|
Rao AN, Falnikar A, O'Toole ET, Morphew MK, Hoenger A, Davidson MW, Yuan X, Baas PW. Sliding of centrosome-unattached microtubules defines key features of neuronal phenotype. J Cell Biol 2016; 213:329-41. [PMID: 27138250 PMCID: PMC4862329 DOI: 10.1083/jcb.201506140] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 03/28/2016] [Indexed: 12/25/2022] Open
Abstract
Contemporary models for neuronal migration are grounded in the view that virtually all functionally relevant microtubules (MTs) in migrating neurons are attached to the centrosome, which occupies a position between the nucleus and a short leading process. It is assumed that MTs do not undergo independent movements but rather transduce forces that enable movements of the centrosome and nucleus. The present results demonstrate that although this is mostly true, a small fraction of the MTs are centrosome-unattached, and this permits limited sliding of MTs. When this sliding is pharmacologically inhibited, the leading process becomes shorter, migration of the neuron deviates from its normal path, and the MTs within the leading process become buckled. Partial depletion of ninein, a protein that attaches MTs to the centrosome, leads to greater numbers of centrosome-unattached MTs as well as greater sliding of MTs. Concomitantly, the soma becomes less mobile and the leading process acquires an elongated morphology akin to an axon.
Collapse
Affiliation(s)
- Anand N Rao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Aditi Falnikar
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Eileen T O'Toole
- Boulder Laboratory for 3D Electron Microscopy of Cells, University of Colorado, Boulder, CO 80309
| | - Mary K Morphew
- Boulder Laboratory for 3D Electron Microscopy of Cells, University of Colorado, Boulder, CO 80309
| | - Andreas Hoenger
- Boulder Laboratory for 3D Electron Microscopy of Cells, University of Colorado, Boulder, CO 80309
| | - Michael W Davidson
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 Department of Biological Science, Florida State University, Tallahassee, FL 32310
| | - Xiaobing Yuan
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| |
Collapse
|
143
|
Muhia M, Thies E, Labonté D, Ghiretti AE, Gromova KV, Xompero F, Lappe-Siefke C, Hermans-Borgmeyer I, Kuhl D, Schweizer M, Ohana O, Schwarz JR, Holzbaur ELF, Kneussel M. The Kinesin KIF21B Regulates Microtubule Dynamics and Is Essential for Neuronal Morphology, Synapse Function, and Learning and Memory. Cell Rep 2016; 15:968-977. [PMID: 27117409 DOI: 10.1016/j.celrep.2016.03.086] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/19/2016] [Accepted: 03/24/2016] [Indexed: 01/19/2023] Open
Abstract
The kinesin KIF21B is implicated in several human neurological disorders, including delayed cognitive development, yet it remains unclear how KIF21B dysfunction may contribute to pathology. One limitation is that relatively little is known about KIF21B-mediated physiological functions. Here, we generated Kif21b knockout mice and used cellular assays to investigate the relevance of KIF21B in neuronal and in vivo function. We show that KIF21B is a processive motor protein and identify an additional role for KIF21B in regulating microtubule dynamics. In neurons lacking KIF21B, microtubules grow more slowly and persistently, leading to tighter packing in dendrites. KIF21B-deficient neurons exhibit decreased dendritic arbor complexity and reduced spine density, which correlate with deficits in synaptic transmission. Consistent with these observations, Kif21b-null mice exhibit behavioral changes involving learning and memory deficits. Our study provides insight into the cellular function of KIF21B and the basis for cognitive decline resulting from KIF21B dysregulation.
Collapse
Affiliation(s)
- Mary Muhia
- Department of Molecular Neurogenetics, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Edda Thies
- Department of Molecular Neurogenetics, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Dorthe Labonté
- Department of Molecular Neurogenetics, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Amy E Ghiretti
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085, USA
| | - Kira V Gromova
- Department of Molecular Neurogenetics, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Francesca Xompero
- Department of Molecular and Cellular Cognition, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Corinna Lappe-Siefke
- Department of Molecular Neurogenetics, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Transgenic Animal Unit, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Dietmar Kuhl
- Department of Molecular and Cellular Cognition, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Michaela Schweizer
- Morphology Unit, Center for Molecular Neurobiology ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Ora Ohana
- Department of Molecular and Cellular Cognition, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Jürgen R Schwarz
- Department of Molecular Neurogenetics, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085, USA
| | - Matthias Kneussel
- Department of Molecular Neurogenetics, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.
| |
Collapse
|
144
|
Abstract
Dendrite branching is an essential process for building complex nervous systems. It determines the number, distribution and integration of inputs into a neuron, and is regulated to create the diverse dendrite arbor branching patterns characteristic of different neuron types. The microtubule cytoskeleton is critical to provide structure and exert force during dendrite branching. It also supports the functional requirements of dendrites, reflected by differential microtubule architectural organization between neuron types, illustrated here for sensory neurons. Both anterograde and retrograde microtubule polymerization occur within growing dendrites, and recent studies indicate that branching is enhanced by anterograde microtubule polymerization events in nascent branches. The polarities of microtubule polymerization events are regulated by the position and orientation of microtubule nucleation events in the dendrite arbor. Golgi outposts are a primary microtubule nucleation center in dendrites and share common nucleation machinery with the centrosome. In addition, pre-existing dendrite microtubules may act as nucleation sites. We discuss how balancing the activities of distinct nucleation machineries within the growing dendrite can alter microtubule polymerization polarity and dendrite branching, and how regulating this balance can generate neuron type-specific morphologies.
Collapse
Affiliation(s)
- Caroline Delandre
- a Laboratory for Genetic Control of Neuronal Architecture, RIKEN Brain Science Institute , Wako , Saitama , Japan
| | - Reiko Amikura
- a Laboratory for Genetic Control of Neuronal Architecture, RIKEN Brain Science Institute , Wako , Saitama , Japan
| | - Adrian W Moore
- a Laboratory for Genetic Control of Neuronal Architecture, RIKEN Brain Science Institute , Wako , Saitama , Japan
| |
Collapse
|
145
|
Ti SC, Pamula MC, Howes SC, Duellberg C, Cade NI, Kleiner RE, Forth S, Surrey T, Nogales E, Kapoor TM. Mutations in Human Tubulin Proximal to the Kinesin-Binding Site Alter Dynamic Instability at Microtubule Plus- and Minus-Ends. Dev Cell 2016; 37:72-84. [PMID: 27046833 PMCID: PMC4832424 DOI: 10.1016/j.devcel.2016.03.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/12/2016] [Accepted: 03/04/2016] [Indexed: 01/10/2023]
Abstract
The assembly of microtubule-based cellular structures depends on regulated tubulin polymerization and directional transport. Here, we purify and characterize tubulin heterodimers that have human β-tubulin isotype III (TUBB3), as well as heterodimers with one of two β-tubulin mutations (D417H or R262H). Both point mutations are proximal to the kinesin-binding site and have been linked to an ocular motility disorder in humans. Compared to wild-type, microtubules with these mutations have decreased catastrophe frequencies and increased average lifetimes of plus- and minus-end-stabilizing caps. Importantly, the D417H mutation does not alter microtubule lattice structure or Mal3 binding to growing filaments. Instead, this mutation reduces the affinity of tubulin for TOG domains and colchicine, suggesting that the distribution of tubulin heterodimer conformations is changed. Together, our findings reveal how residues on the surface of microtubules, distal from the GTP-hydrolysis site and inter-subunit contacts, can alter polymerization dynamics at the plus- and minus-ends of microtubules.
Collapse
Affiliation(s)
- Shih-Chieh Ti
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Melissa C Pamula
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Stuart C Howes
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA
| | - Christian Duellberg
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Nicholas I Cade
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Ralph E Kleiner
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Scott Forth
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Thomas Surrey
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Eva Nogales
- Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
146
|
Britt DJ, Farías GG, Guardia CM, Bonifacino JS. Mechanisms of Polarized Organelle Distribution in Neurons. Front Cell Neurosci 2016; 10:88. [PMID: 27065809 PMCID: PMC4814528 DOI: 10.3389/fncel.2016.00088] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/21/2016] [Indexed: 01/10/2023] Open
Abstract
Neurons are highly polarized cells exhibiting axonal and somatodendritic domains with distinct complements of cytoplasmic organelles. Although some organelles are widely distributed throughout the neuronal cytoplasm, others are segregated to either the axonal or somatodendritic domains. Recent findings show that organelle segregation is largely established at a pre-axonal exclusion zone (PAEZ) within the axon hillock. Polarized sorting of cytoplasmic organelles at the PAEZ is proposed to depend mainly on their selective association with different microtubule motors and, in turn, with distinct microtubule arrays. Somatodendritic organelles that escape sorting at the PAEZ can be subsequently retrieved at the axon initial segment (AIS) by a microtubule- and/or actin-based mechanism. Dynamic sorting along the PAEZ-AIS continuum can thus explain the polarized distribution of cytoplasmic organelles between the axonal and somatodendritic domains.
Collapse
Affiliation(s)
- Dylan J Britt
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | - Ginny G Farías
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | - Carlos M Guardia
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
147
|
Kevenaar JT, Bianchi S, van Spronsen M, Olieric N, Lipka J, Frias CP, Mikhaylova M, Harterink M, Keijzer N, Wulf PS, Hilbert M, Kapitein LC, de Graaff E, Ahkmanova A, Steinmetz MO, Hoogenraad CC. Kinesin-Binding Protein Controls Microtubule Dynamics and Cargo Trafficking by Regulating Kinesin Motor Activity. Curr Biol 2016; 26:849-61. [PMID: 26948876 DOI: 10.1016/j.cub.2016.01.048] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/31/2015] [Accepted: 01/20/2016] [Indexed: 11/24/2022]
Abstract
Kinesin motor proteins play a fundamental role for normal neuronal development by controlling intracellular cargo transport and microtubule (MT) cytoskeleton organization. Regulating kinesin activity is important to ensure their proper functioning, and their misregulation often leads to severe human neurological disorders. Homozygous nonsense mutations in kinesin-binding protein (KBP)/KIAA1279 cause the neurological disorder Goldberg-Shprintzen syndrome (GOSHS), which is characterized by intellectual disability, microcephaly, and axonal neuropathy. Here, we show that KBP regulates kinesin activity by interacting with the motor domains of a specific subset of kinesins to prevent their association with the MT cytoskeleton. The KBP-interacting kinesins include cargo-transporting motors such as kinesin-3/KIF1A and MT-depolymerizing motor kinesin-8/KIF18A. We found that KBP blocks KIF1A/UNC-104-mediated synaptic vesicle transport in cultured hippocampal neurons and in C. elegans PVD sensory neurons. In contrast, depletion of KBP results in the accumulation of KIF1A motors and synaptic vesicles in the axonal growth cone. We also show that KBP regulates neuronal MT dynamics by controlling KIF18A activity. Our data suggest that KBP functions as a kinesin inhibitor that modulates MT-based cargo motility and depolymerizing activity of a subset of kinesin motors. We propose that misregulation of KBP-controlled kinesin motors may represent the underlying molecular mechanism that contributes to the neuropathological defects observed in GOSHS patients.
Collapse
Affiliation(s)
- Josta T Kevenaar
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Sarah Bianchi
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Myrrhe van Spronsen
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands; Department of Neuroscience, Erasmus Medical Center, 3015 Rotterdam, the Netherlands
| | - Natacha Olieric
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Joanna Lipka
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands; International Institute of Molecular and Cell Biology, 02-1009 Warsaw, Poland
| | - Cátia P Frias
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Marina Mikhaylova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands; RG Neuroplasticity, Leibniz-Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Martin Harterink
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Nanda Keijzer
- Department of Neuroscience, Erasmus Medical Center, 3015 Rotterdam, the Netherlands
| | - Phebe S Wulf
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands; Department of Neuroscience, Erasmus Medical Center, 3015 Rotterdam, the Netherlands
| | - Manuel Hilbert
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Lukas C Kapitein
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands; Department of Neuroscience, Erasmus Medical Center, 3015 Rotterdam, the Netherlands
| | - Esther de Graaff
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands; Department of Neuroscience, Erasmus Medical Center, 3015 Rotterdam, the Netherlands
| | - Anna Ahkmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands; Department of Neuroscience, Erasmus Medical Center, 3015 Rotterdam, the Netherlands.
| |
Collapse
|
148
|
Yau KW, Schätzle P, Tortosa E, Pagès S, Holtmaat A, Kapitein LC, Hoogenraad CC. Dendrites In Vitro and In Vivo Contain Microtubules of Opposite Polarity and Axon Formation Correlates with Uniform Plus-End-Out Microtubule Orientation. J Neurosci 2016. [PMID: 26818498 DOI: 10.1523/jneurosci.2430-15.20166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
UNLABELLED In cultured vertebrate neurons, axons have a uniform arrangement of microtubules with plus-ends distal to the cell body (plus-end-out), whereas dendrites contain mixed polarity orientations with both plus-end-out and minus-end-out oriented microtubules. Rather than non-uniform microtubules, uniparallel minus-end-out microtubules are the signature of dendrites in Drosophila and Caenorhabditis elegans neurons. To determine whether mixed microtubule organization is a conserved feature of vertebrate dendrites, we used live-cell imaging to systematically analyze microtubule plus-end orientations in primary cultures of rat hippocampal and cortical neurons, dentate granule cells in mouse organotypic slices, and layer 2/3 pyramidal neurons in the somatosensory cortex of living mice. In vitro and in vivo, all microtubules had a plus-end-out orientation in axons, whereas microtubules in dendrites had mixed orientations. When dendritic microtubules were severed by laser-based microsurgery, we detected equal numbers of plus- and minus-end-out microtubule orientations throughout the dendritic processes. In dendrites, the minus-end-out microtubules were generally more stable and comparable with plus-end-out microtubules in axons. Interestingly, at early stages of neuronal development in nonpolarized cells, newly formed neurites already contained microtubules of opposite polarity, suggesting that the establishment of uniform plus-end-out microtubules occurs during axon formation. We propose a model in which the selective formation of uniform plus-end-out microtubules in the axon is a critical process underlying neuronal polarization. SIGNIFICANCE STATEMENT Live-cell imaging was used to systematically analyze microtubule organization in primary cultures of rat hippocampal neurons, dentate granule cells in mouse organotypic slices, and layer 2/3 pyramidal neuron in somatosensory cortex of living mice. In vitro and in vivo, all microtubules have a plus-end-out orientation in axons, whereas microtubules in dendrites have mixed orientations. Interestingly, newly formed neurites of nonpolarized neurons already contain mixed microtubules, and the specific organization of uniform plus-end-out microtubules only occurs during axon formation. Based on these findings, the authors propose a model in which the selective formation of uniform plus-end-out microtubules in the axon is a critical process underlying neuronal polarization.
Collapse
Affiliation(s)
- Kah Wai Yau
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands, and
| | - Philipp Schätzle
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands, and
| | - Elena Tortosa
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands, and
| | - Stéphane Pagès
- Department of Basic Neurosciences, Faculty of Medicine and the Center for Neuroscience, University of Geneva, 1211 Geneva, Switzerland
| | - Anthony Holtmaat
- Department of Basic Neurosciences, Faculty of Medicine and the Center for Neuroscience, University of Geneva, 1211 Geneva, Switzerland
| | - Lukas C Kapitein
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands, and
| | - Casper C Hoogenraad
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands, and
| |
Collapse
|
149
|
Lipka J, Kapitein LC, Jaworski J, Hoogenraad CC. Microtubule-binding protein doublecortin-like kinase 1 (DCLK1) guides kinesin-3-mediated cargo transport to dendrites. EMBO J 2016; 35:302-18. [PMID: 26758546 DOI: 10.15252/embj.201592929] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/08/2015] [Indexed: 01/02/2023] Open
Abstract
In neurons, the polarized distribution of vesicles and other cellular materials is established through molecular motors that steer selective transport between axons and dendrites. It is currently unclear whether interactions between kinesin motors and microtubule-binding proteins can steer polarized transport. By screening all 45 kinesin family members, we systematically addressed which kinesin motors can translocate cargo in living cells and drive polarized transport in hippocampal neurons. While the majority of kinesin motors transport cargo selectively into axons, we identified five members of the kinesin-3 (KIF1) and kinesin-4 (KIF21) subfamily that can also target dendrites. We found that microtubule-binding protein doublecortin-like kinase 1 (DCLK1) labels a subset of dendritic microtubules and is required for KIF1-dependent dense-core vesicles (DCVs) trafficking into dendrites and dendrite development. Our study demonstrates that microtubule-binding proteins can provide local signals for specific kinesin motors to drive polarized cargo transport.
Collapse
Affiliation(s)
- Joanna Lipka
- Cell Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Lukas C Kapitein
- Cell Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jacek Jaworski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Casper C Hoogenraad
- Cell Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
150
|
|