101
|
Abadesco AD, Cilluffo M, Yvone GM, Carpenter EM, Howell BW, Phelps PE. Novel Disabled-1-expressing neurons identified in adult brain and spinal cord. Eur J Neurosci 2014; 39:579-92. [PMID: 24251407 DOI: 10.1111/ejn.12416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 09/19/2013] [Accepted: 10/08/2013] [Indexed: 12/12/2022]
Abstract
Components of the Reelin-signaling pathway are highly expressed in embryos and regulate neuronal positioning, whereas these molecules are expressed at low levels in adults and modulate synaptic plasticity. Reelin binds to Apolipoprotein E receptor 2 and Very-low-density lipoprotein receptors, triggers the phosphorylation of Disabled-1 (Dab1), and initiates downstream signaling. The expression of Dab1 marks neurons that potentially respond to Reelin, yet phosphorylated Dab1 is difficult to detect due to its rapid ubiquitination and degradation. Here we used adult mice with a lacZ gene inserted into the dab1 locus to first verify the coexpression of β-galactosidase (β-gal) in established Dab1-immunoreactive neurons and then identify novel Dab1-expressing neurons. Both cerebellar Purkinje cells and spinal sympathetic preganglionic neurons have coincident Dab1 protein and β-gal expression in dab1(lacZ/+) mice. Adult pyramidal neurons in cortical layers II-III and V are labeled with Dab1 and/or β-gal and are inverted in the dab1(lacZ/lacZ) neocortex, but not in the somatosensory barrel fields. Novel Dab1 expression was identified in GABAergic medial septum/diagonal band projection neurons, cerebellar Golgi interneurons, and small neurons in the deep cerebellar nuclei. Adult somatic motor neurons also express Dab1 and show ventromedial positioning errors in dab1-null mice. These findings suggest that: (i) Reelin regulates the somatosensory barrel cortex differently than other neocortical areas, (ii) most Dab1 medial septum/diagonal band neurons are probably GABAergic projection neurons, and (iii) positioning errors in adult mutant Dab1-labeled neurons vary from subtle to extensive.
Collapse
Affiliation(s)
- Autumn D Abadesco
- Department of Integrative Biology and Physiology, UCLA, Terasaki Life Science Building, 610 Charles Young Dr. E, Los Angeles, CA, 90095-7239, USA
| | | | | | | | | | | |
Collapse
|
102
|
Hermanstyne TO, Subedi K, Le WW, Hoffman GE, Meredith AL, Mong JA, Misonou H. Kv2.2: a novel molecular target to study the role of basal forebrain GABAergic neurons in the sleep-wake cycle. Sleep 2013; 36:1839-48. [PMID: 24293758 DOI: 10.5665/sleep.3212] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES The basal forebrain (BF) has been implicated as an important brain region that regulates the sleep-wake cycle of animals. Gamma-aminobutyric acidergic (GABAergic) neurons are the most predominant neuronal population within this region. However, due to the lack of specific molecular tools, the roles of the BF GABAergic neurons have not been fully elucidated. Previously, we have found high expression levels of the Kv2.2 voltage-gated potassium channel on approximately 60% of GABAergic neurons in the magnocellular preoptic area and horizontal limb of the diagonal band of Broca of the BF and therefore proposed it as a potential molecular target to study this neuronal population. In this study, we sought to determine the functional roles of the Kv2.2-expressing neurons in the regulation of the sleep-wake cycle. DESIGN Sleep analysis between two genotypes and within each genotype before and after sleep deprivation. SETTING Animal sleep research laboratory. PARTICIPANTS Adult mice. Wild-type and Kv2.2 knockout mice with C57/BL6 background. INTERVENTIONS EEG/EMG recordings from the basal state and after sleep-deprivation which was induced by mild agitation for 6 h. RESULTS Immunostaining of a marker of neuronal activity indicates that these Kv2.2-expressing neurons appear to be preferentially active during the wake state. Therefore, we tested whether Kv2.2-expressing neurons in the BF are involved in arousal using Kv2.2-deficient mice. BF GABAergic neurons exhibited augmented expression of c-Fos. These knockout mice exhibited longer consolidated wake bouts than wild-type littermates, and that phenotype was further exacerbated by sleep deprivation. Moreover, in-depth analyses of their cortical electroencephalogram revealed a significant decrease in the delta-frequency activity during the nonrapid eye movement sleep state. CONCLUSIONS These results revealed the significance of Kv2.2-expressing neurons in the regulation of the sleep-wake cycle.
Collapse
Affiliation(s)
- Tracey O Hermanstyne
- Department of Neural and Pain Sciences ; Program in Neurosciences ; Department of Developmental Biology, Washington University, St. Louis, MO
| | | | | | | | | | | | | |
Collapse
|
103
|
Deurveilher S, Ryan N, Burns J, Semba K. Social and environmental contexts modulate sleep deprivation-induced c-Fos activation in rats. Behav Brain Res 2013; 256:238-49. [PMID: 23973763 DOI: 10.1016/j.bbr.2013.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 08/15/2013] [Accepted: 08/19/2013] [Indexed: 12/28/2022]
Abstract
People often sleep deprive themselves voluntarily for social and lifestyle reasons. Animals also appear to stay awake longer as a result of their natural curiosity to explore novel environments and interact socially with conspecifics. Although multiple arousal systems in the brain are known to act jointly to promote and maintain wakefulness, it remains unclear whether these systems are similarly engaged during voluntary vs. forced wakefulness. Using c-Fos immunohistochemistry, we compared neuronal responses in rats deprived of sleep for 2 h by gentle sensory stimulation, exploration under social isolation, or exploration with social interaction, and rats under undisturbed control conditions. In many arousal, limbic, and autonomic nuclei examined (e.g., anterior cingulate cortex and locus coeruleus), the two sleep deprivation procedures involving exploration were similarly effective, and both were more effective than sleep deprivation with sensory stimulation, in increasing the number of c-Fos immunoreactive neurons. However, some nuclei (e.g., paraventricular hypothalamic nucleus and select amygdala nuclei) were more responsive to exploration with social interaction, while others (e.g., histaminergic tuberomammillary nucleus) responded more strongly to exploration in social isolation. In the rostral basal forebrain, cholinergic and GABAergic neurons responded preferentially to exploration with social interaction, whereas resident neurons in general responded most strongly to exploration without social interaction. These results indicate that voluntary exploration with/without social interaction is more effective than forced sleep deprivation with gentle sensory stimulation for inducing c-Fos in arousal and limbic/autonomic brain regions, and suggest that these nuclei participate in different aspects of arousal during sustained voluntary wakefulness.
Collapse
Affiliation(s)
- Samuel Deurveilher
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
104
|
Teles-Grilo Ruivo LM, Mellor JR. Cholinergic modulation of hippocampal network function. Front Synaptic Neurosci 2013; 5:2. [PMID: 23908628 PMCID: PMC3726829 DOI: 10.3389/fnsyn.2013.00002] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/10/2013] [Indexed: 11/13/2022] Open
Abstract
Cholinergic septohippocampal projections from the medial septal area to the hippocampus are proposed to have important roles in cognition by modulating properties of the hippocampal network. However, the precise spatial and temporal profile of acetylcholine release in the hippocampus remains unclear making it difficult to define specific roles for cholinergic transmission in hippocampal dependent behaviors. This is partly due to a lack of tools enabling specific intervention in, and recording of, cholinergic transmission. Here, we review the organization of septohippocampal cholinergic projections and hippocampal acetylcholine receptors as well as the role of cholinergic transmission in modulating cellular excitability, synaptic plasticity, and rhythmic network oscillations. We point to a number of open questions that remain unanswered and discuss the potential for recently developed techniques to provide a radical reappraisal of the function of cholinergic inputs to the hippocampus.
Collapse
Affiliation(s)
- Leonor M Teles-Grilo Ruivo
- Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, University Walk Bristol, UK
| | | |
Collapse
|
105
|
Keimpema E, Zheng K, Barde SS, Berghuis P, Dobszay MB, Schnell R, Mulder J, Luiten PGM, Xu ZD, Runesson J, Langel Ü, Lu B, Hökfelt T, Harkany T. GABAergic terminals are a source of galanin to modulate cholinergic neuron development in the neonatal forebrain. ACTA ACUST UNITED AC 2013; 24:3277-88. [PMID: 23897649 DOI: 10.1093/cercor/bht192] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The distribution and (patho-)physiological role of neuropeptides in the adult and aging brain have been extensively studied. Galanin is an inhibitory neuropeptide that can coexist with γ-aminobutyric acid (GABA) in the adult forebrain. However, galanin's expression sites, mode of signaling, impact on neuronal morphology, and colocalization with amino acid neurotransmitters during brain development are less well understood. Here, we show that galaninergic innervation of cholinergic projection neurons, which preferentially express galanin receptor 2 (GalR2) in the neonatal mouse basal forebrain, develops by birth. Nerve growth factor (NGF), known to modulate cholinergic morphogenesis, increases GalR2 expression. GalR2 antagonism (M871) in neonates reduces the in vivo expression and axonal targeting of the vesicular acetylcholine transporter (VAChT), indispensable for cholinergic neurotransmission. During cholinergic neuritogenesis in vitro, GalR2 can recruit Rho-family GTPases to induce the extension of a VAChT-containing primary neurite, the prospective axon. In doing so, GalR2 signaling dose-dependently modulates directional filopodial growth and antagonizes NGF-induced growth cone differentiation. Galanin accumulates in GABA-containing nerve terminals in the neonatal basal forebrain, suggesting its contribution to activity-driven cholinergic development during the perinatal period. Overall, our data define the cellular specificity and molecular complexity of galanin action in the developing basal forebrain.
Collapse
Affiliation(s)
- Erik Keimpema
- Department of Neuroscience, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | | | | | - Paul Berghuis
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Márton B Dobszay
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Jan Mulder
- Department of Neuroscience, Science for Life Laboratory, Royal Institute of Technology, Stockholm SE-17121, Sweden
| | - Paul G M Luiten
- Department of Molecular Neurobiology, University of Groningen, Groningen NL-9747 AG, The Netherlands
| | - Zhiqing David Xu
- Department of Neuroscience, Beijing Institute for Neuroscience, Beijing Center for Neural Regeneration and Repairing, Department of Neurobiology, Capital Medical University, Beijing 100069, China
| | - Johan Runesson
- Department of Neurochemistry, Stockholm University, Stockholm SE-10691, Sweden and
| | - Ülo Langel
- Department of Neurochemistry, Stockholm University, Stockholm SE-10691, Sweden and
| | - Bai Lu
- R&D China, GlaxoSmithKline, Pudong, Shanghai 201203, China
| | | | - Tibor Harkany
- Department of Neuroscience, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-17177, Sweden
| |
Collapse
|
106
|
Yang C, Franciosi S, Brown RE. Adenosine inhibits the excitatory synaptic inputs to Basal forebrain cholinergic, GABAergic, and parvalbumin neurons in mice. Front Neurol 2013; 4:77. [PMID: 23801984 PMCID: PMC3687201 DOI: 10.3389/fneur.2013.00077] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/07/2013] [Indexed: 12/17/2022] Open
Abstract
Coffee and tea contain the stimulants caffeine and theophylline. These compounds act as antagonists of adenosine receptors. Adenosine promotes sleep and its extracellular concentration rises in association with prolonged wakefulness, particularly in the basal forebrain (BF) region involved in activating the cerebral cortex. However, the effect of adenosine on identified BF neurons, especially non-cholinergic neurons, is incompletely understood. Here we used whole-cell patch-clamp recordings in mouse brain slices prepared from two validated transgenic mouse lines with fluorescent proteins expressed in GABAergic or parvalbumin (PV) neurons to determine the effect of adenosine. Whole-cell recordings were made from BF cholinergic neurons and from BF GABAergic and PV neurons with the size (>20 μm) and intrinsic membrane properties (prominent H-currents) corresponding to cortically projecting neurons. A brief (2 min) bath application of adenosine (100 μM) decreased the frequency but not the amplitude of spontaneous excitatory postsynaptic currents (EPSCs) in all groups of BF cholinergic, GABAergic, and PV neurons we recorded. In addition, adenosine decreased the frequency of miniature EPSCs in BF cholinergic neurons. Adenosine had no effect on the frequency of spontaneous inhibitory postsynaptic currents in cholinergic neurons or GABAergic neurons with large H-currents but reduced them in a group of GABAergic neurons with smaller H-currents. All effects of adenosine were blocked by a selective, adenosine A1 receptor antagonist, cyclopentyltheophylline (CPT, 1 μM). Adenosine had no postsynaptic effects. Taken together, our work suggests that adenosine promotes sleep by an A1 receptor-mediated inhibition of glutamatergic inputs to cortically projecting cholinergic and GABA/PV neurons. Conversely, caffeine and theophylline promote attentive wakefulness by inhibiting these A1 receptors in BF thereby promoting the high-frequency oscillations in the cortex required for attention and cognition.
Collapse
Affiliation(s)
- Chun Yang
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Harvard Medical School , Brockton, MA , USA
| | | | | |
Collapse
|
107
|
Roland JJ, Janke KL, Servatius RJ, Pang KCH. GABAergic neurons in the medial septum-diagonal band of Broca (MSDB) are important for acquisition of the classically conditioned eyeblink response. Brain Struct Funct 2013; 219:1231-7. [PMID: 24965560 DOI: 10.1007/s00429-013-0560-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 04/18/2013] [Indexed: 10/26/2022]
Abstract
The medial septum and diagonal band of Broca (MSDB) influence hippocampal function through cholinergic, GABAergic, and glutamatergic septohippocampal neurons. Non-selective damage of the MSDB or intraseptal scopolamine impairs classical conditioning of the eyeblink response (CCER). Scopolamine preferentially inhibits GABAergic MSDB neurons suggesting that these neurons may be an important modulator of delay CCER, a form of CCER not dependent on the hippocampus. The current study directly examined the importance of GABAergic MSDB neurons in acquisition of delay CCER. Adult male Sprague-Dawley rats received either a sham (PBS) or GABAergic MSDB lesion using GAT1-saporin (SAP). Rats were given two consecutive days of delay eyeblink conditioning with 100 conditioned stimulus-unconditioned stimulus paired trials. Intraseptal GAT1-SAP impaired acquisition of CCER. The impairment was observed on the first day with sham and lesion groups reaching similar performance by the end of the second day. Our results provide evidence that GABAergic MSDB neurons are an important modulator of delay CCER. The pathways by which MSDB neurons influence the neural circuits necessary for delay CCER are discussed.
Collapse
Affiliation(s)
- J J Roland
- Stress and Motivated Behavior Institute, East Orange, NJ, 07018, USA,
| | | | | | | |
Collapse
|
108
|
Henny P, Brown MTC, Micklem BR, Magill PJ, Bolam JP. Stereological and ultrastructural quantification of the afferent synaptome of individual neurons. Brain Struct Funct 2013; 219:631-40. [PMID: 23479177 PMCID: PMC3933745 DOI: 10.1007/s00429-013-0523-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 02/08/2013] [Indexed: 02/07/2023]
Abstract
Determining the number and placement of synaptic inputs along the distinct plasma membrane domains of neurons is essential for explaining the basis of neuronal activity and function. We detail a strategy that combines juxtacellular labeling, neuronal reconstructions and stereological sampling of inputs at the ultrastructural level to define key elements of the afferent ‘synaptome’ of a given neuron. This approach provides unbiased estimates of the total number and somato-dendritic distribution of synapses made with individual neurons. These organizational properties can be related to the activity of the same neurons previously recorded in vivo, for direct structure–function correlations at the single-cell level. The approach also provides the quantitative data required to develop biologically realistic models that simulate and predict neuronal activity and function.
Collapse
Affiliation(s)
- Pablo Henny
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3TH, UK,
| | | | | | | | | |
Collapse
|
109
|
Bañuelos C, LaSarge CL, McQuail JA, Hartman JJ, Gilbert RJ, Ormerod BK, Bizon JL. Age-related changes in rostral basal forebrain cholinergic and GABAergic projection neurons: relationship with spatial impairment. Neurobiol Aging 2013; 34:845-62. [PMID: 22817834 PMCID: PMC3632262 DOI: 10.1016/j.neurobiolaging.2012.06.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/15/2012] [Accepted: 06/21/2012] [Indexed: 01/31/2023]
Abstract
Both cholinergic and GABAergic projections from the rostral basal forebrain contribute to hippocampal function and mnemonic abilities. While dysfunction of cholinergic neurons has been heavily implicated in age-related memory decline, significantly less is known regarding how age-related changes in codistributed GABAergic projection neurons contribute to a decline in hippocampal-dependent spatial learning. In the current study, confocal stereology was used to quantify cholinergic (choline acetyltransferase [ChAT] immunopositive) neurons, GABAergic projection (glutamic decarboxylase 67 [GAD67] immunopositive) neurons, and total (neuronal nuclei [NeuN] immunopositive) neurons in the rostral basal forebrain of young and aged rats that were first characterized on a spatial learning task. ChAT immunopositive neurons were significantly but modestly reduced in aged rats. Although ChAT immunopositive neuron number was strongly correlated with spatial learning abilities among young rats, the reduction of ChAT immunopositive neurons was not associated with impaired spatial learning in aged rats. In contrast, the number of GAD67 immunopositive neurons was robustly and selectively elevated in aged rats that exhibited impaired spatial learning. Interestingly, the total number of rostral basal forebrain neurons was comparable in young and aged rats, regardless of their cognitive status. These data demonstrate differential effects of age on phenotypically distinct rostral basal forebrain projection neurons, and implicate dysregulated cholinergic and GABAergic septohippocampal circuitry in age-related mnemonic decline.
Collapse
Affiliation(s)
- Cristina Bañuelos
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610-0244, USA
| | | | | | | | | | | | | |
Collapse
|
110
|
Carcea I, Froemke RC. Cortical plasticity, excitatory-inhibitory balance, and sensory perception. PROGRESS IN BRAIN RESEARCH 2013; 207:65-90. [PMID: 24309251 DOI: 10.1016/b978-0-444-63327-9.00003-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Experience shapes the central nervous system throughout life. Structural and functional plasticity confers a remarkable ability on the brain, allowing neural circuits to adequately adapt to dynamic environments. This process can require selective adjustment of many excitatory and inhibitory synapses in an organized manner, in such a way as to enhance representations of behaviorally important sensory stimuli while preserving overall network excitability. The rules and mechanisms that orchestrated these changes across different synapses and throughout neuronal ensembles are beginning to be understood. Here, we review the evidence connecting synaptic plasticity to functional plasticity and perceptual learning, focusing on the roles of various neuromodulatory systems in enabling plasticity of adult neural circuits. However, the challenge remains to appropriately leverage these systems and forms of plasticity to persistently improve perceptual abilities and behavioral performance.
Collapse
Affiliation(s)
- Ioana Carcea
- Molecular Neurobiology Program, The Helen and Martin Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, Department of Physiology and Neuroscience, New York University School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University School of Medicine, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA
| | | |
Collapse
|
111
|
Abstract
Different striatal projection neurons are the origin of a dual organization essential for basal ganglia function. We have defined an analogous division of labor in the external globus pallidus (GPe) of Parkinsonian rats, showing that the distinct temporal activities of two populations of GPe neuron in vivo are underpinned by distinct molecular profiles and axonal connectivities. A first population of prototypic GABAergic GPe neurons fire antiphase to subthalamic nucleus (STN) neurons, often express parvalbumin, and target downstream basal ganglia nuclei, including STN. In contrast, a second population (arkypallidal neurons) fire in-phase with STN neurons, express preproenkephalin, and only innervate the striatum. This novel cell type provides the largest extrinsic GABAergic innervation of striatum, targeting both projection neurons and interneurons. We conclude that GPe exhibits several core components of a dichotomous organization as fundamental as that in striatum. Thus, two populations of GPe neuron together orchestrate activities across all basal ganglia nuclei in a cell-type-specific manner.
Collapse
|
112
|
Olucha-Bordonau FE, Otero-García M, Sánchez-Pérez AM, Núñez A, Ma S, Gundlach AL. Distribution and targets of the relaxin-3 innervation of the septal area in the rat. J Comp Neurol 2012; 520:1903-39. [PMID: 22134882 DOI: 10.1002/cne.23018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neural tracing studies have revealed that the rat medial and lateral septum are targeted by ascending projections from the nucleus incertus, a population of tegmental GABA neurons. These neurons express the relaxin-family peptide, relaxin-3, and pharmacological modulation of relaxin-3 receptors in medial septum alters hippocampal theta rhythm and spatial memory. In an effort to better understand the basis of these interactions, we have characterized the distribution of relaxin-3 fibers/terminals in relation to different septal neuron populations identified using established protein markers. Dense relaxin-3 fiber plexuses were observed in regions of medial septum containing hippocampal-projecting choline acetyltransferase (ChAT)-, neuronal nitric oxide synthase (nNOS)-, and parvalbumin (PV)-positive neurons. In lateral septum (LS), relaxin-3 fibers were concentrated in the ventrolateral nucleus of rostral LS and the ventral nucleus of caudal LS, with sparse labeling in the dorsolateral and medial nuclei of rostral LS, dorsal nucleus of caudal LS, and ventral portion nuclei. Relaxin-3 fibers were also observed in the septofimbrial and triangular septal nuclei. In the medial septum, we observed relaxin-3-immunoreactive contacts with ChAT-, PV-, and glutamate decarboxylase-67-positive neurons that projected to hippocampus, and contacts between relaxin-3 terminals and calbindin- and calretinin-positive neurons. Relaxin-3 colocalized with synaptophysin in nerve terminals in all septal areas, and ultrastructural analysis revealed these terminals were symmetrical and contacted spines, somata, dendritic shafts, and occasionally other axonal terminals. These data predict that this GABA/peptidergic projection modulates septohippocampal activity and hippocampal theta rhythm related to exploratory navigation, defensive and ingestive behaviors, and responses to neurogenic stressors.
Collapse
Affiliation(s)
- Francisco E Olucha-Bordonau
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
113
|
Hawryluk JM, Ferrari LL, Keating SA, Arrigoni E. Adenosine inhibits glutamatergic input to basal forebrain cholinergic neurons. J Neurophysiol 2012; 107:2769-81. [PMID: 22357797 PMCID: PMC3362278 DOI: 10.1152/jn.00528.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 02/15/2012] [Indexed: 01/03/2023] Open
Abstract
Adenosine has been proposed as an endogenous homeostatic sleep factor that accumulates during waking and inhibits wake-active neurons to promote sleep. It has been specifically hypothesized that adenosine decreases wakefulness and promotes sleep recovery by directly inhibiting wake-active neurons of the basal forebrain (BF), particularly BF cholinergic neurons. We previously showed that adenosine directly inhibits BF cholinergic neurons. Here, we investigated 1) how adenosine modulates glutamatergic input to BF cholinergic neurons and 2) how adenosine uptake and adenosine metabolism are involved in regulating extracellular levels of adenosine. Our experiments were conducted using whole cell patch-clamp recordings in mouse brain slices. We found that in BF cholinergic neurons, adenosine reduced the amplitude of AMPA-mediated evoked glutamatergic excitatory postsynaptic currents (EPSCs) and decreased the frequency of spontaneous and miniature EPSCs through presynaptic A(1) receptors. Thus we have demonstrated that in addition to directly inhibiting BF cholinergic neurons, adenosine depresses excitatory inputs to these neurons. It is therefore possible that both direct and indirect inhibition may synergistically contribute to the sleep-promoting effects of adenosine in the BF. We also found that blocking the influx of adenosine through the equilibrative nucleoside transporters or inhibiting adenosine kinase and adenosine deaminase increased endogenous adenosine inhibitory tone, suggesting a possible mechanism through which adenosine extracellular levels in the basal forebrain are regulated.
Collapse
Affiliation(s)
- J M Hawryluk
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
114
|
Zhu J, Gu H, Yao Z, Zou J, Guo K, Li D, Gao T. The nestin-expressing and non-expressing neurons in rat basal forebrain display different electrophysiological properties and project to hippocampus. BMC Neurosci 2011; 12:129. [PMID: 22185478 PMCID: PMC3282673 DOI: 10.1186/1471-2202-12-129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 12/20/2011] [Indexed: 01/18/2023] Open
Abstract
Background Nestin-immunoreactive (nestin-ir) neurons have been identified in the medial septal/diagonal band complex (MS/DBB) of adult rat and human, but the significance of nestin expression in functional neurons is not clear. This study investigated electrophysiological properties and neurochemical phenotypes of nestin-expressing (nestin+) neurons using whole-cell recording combined with single-cell RT-PCR to explore the significance of nestin expression in functional MS/DBB neurons. The retrograde labelling and immunofluorescence were used to investigate the nestin+ neuron related circuit in the septo-hippocampal pathway. Results The results of single-cell RT-PCR showed that 87.5% (35/40) of nestin+ cells expressed choline acetyltransferase mRNA (ChAT+), only 44.3% (35/79) of ChAT+ cells expressed nestin mRNA. Furthermore, none of the nestin+ cells expressed glutamic acid decarboxylases 67 (GAD67) or vesicular glutamate transporters (VGLUT) mRNA. All of the recorded nestin+ cells were excitable and demonstrated slow-firing properties, which were distinctive from those of GAD67 or VGLUT mRNA-positive neurons. These results show that the MS/DBB cholinergic neurons could be divided into nestin-expressing cholinergic neurons (NEChs) and nestin non-expressing cholinergic neurons (NNChs). Interestingly, NEChs had higher excitability and received stronger spontaneous excitatory synaptic inputs than NNChs. Retrograde labelling combined with choline acetyltransferase and nestin immunofluorescence showed that both of the NEChs and NNChs projected to hippocampus. Conclusions These results suggest that there are two parallel cholinergic septo-hippocampal pathways that may have different functions. The significance of nestin expressing in functional neurons has been discussed.
Collapse
Affiliation(s)
- Jianhua Zhu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
115
|
Effects of Stimulation of Glutamatergic Receptors in Medial Septum on Power Spectrum Analysis of EEG in Rats. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s12595-011-0020-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
116
|
Zhang H, Lin SC, Nicolelis MAL. A distinctive subpopulation of medial septal slow-firing neurons promote hippocampal activation and theta oscillations. J Neurophysiol 2011; 106:2749-63. [PMID: 21865435 PMCID: PMC3214118 DOI: 10.1152/jn.00267.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 08/23/2011] [Indexed: 01/08/2023] Open
Abstract
The medial septum-vertical limb of the diagonal band of Broca (MSvDB) is important for normal hippocampal functions and theta oscillations. Although many previous studies have focused on understanding how MSVDB neurons fire rhythmic bursts to pace hippocampal theta oscillations, a significant portion of MSVDB neurons are slow-firing and thus do not pace theta oscillations. The function of these MSVDB neurons, especially their role in modulating hippocampal activity, remains unknown. We recorded MSVDB neuronal ensembles in behaving rats, and identified a distinct physiologically homogeneous subpopulation of slow-firing neurons (overall firing <4 Hz) that shared three features: 1) much higher firing rate during rapid eye movement sleep than during slow-wave (SW) sleep; 2) temporary activation associated with transient arousals during SW sleep; 3) brief responses (latency 15∼30 ms) to auditory stimuli. Analysis of the fine temporal relationship of their spiking and theta oscillations showed that unlike the theta-pacing neurons, the firing of these "pro-arousal" neurons follows theta oscillations. However, their activity precedes short-term increases in hippocampal oscillation power in the theta and gamma range lasting for a few seconds. Together, these results suggest that these pro-arousal slow-firing MSvDB neurons may function collectively to promote hippocampal activation.
Collapse
Affiliation(s)
- Hao Zhang
- Dept. of Neurobiology, Duke Univ. Medical Center, Durham, NC 27705, USA.
| | | | | |
Collapse
|
117
|
Zant J, Leenaars C, Kostin A, Van Someren E, Porkka-Heiskanen T. Increases in extracellular serotonin and dopamine metabolite levels in the basal forebrain during sleep deprivation. Brain Res 2011; 1399:40-8. [DOI: 10.1016/j.brainres.2011.05.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 04/12/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022]
|
118
|
Conte-Perales L, Rico AJ, Barroso-Chinea P, Gómez-Bautista V, Roda E, Luquin N, Sierra S, Lanciego JL. Pallidothalamic-projecting neurons in Macaca fascicularis co-express GABAergic and glutamatergic markers as seen in control, MPTP-treated and dyskinetic monkeys. Brain Struct Funct 2011; 216:371-86. [PMID: 21512896 DOI: 10.1007/s00429-011-0319-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
Abstract
GABAergic neurons within the internal division of the globus pallidus (GPi) are the main source of basal ganglia output reaching the thalamic ventral nuclei in monkeys. Following dopaminergic denervation, pallidothalamic-projecting neurons are known to be hyperactive, whereas a reduction in GPi activity is typically observed in lesioned animals showing levodopa-induced dyskinesia. Besides the mRNAs coding for GABAergic markers (GAD65 and GAD67), we show that all GPi neurons innervating thalamic targets also express transcripts for the isoforms 1 and 2 of the vesicular glutamate transporter (vGlut1 and vGlut2 mRNA). Indeed, dual immunofluorescent detection of GAD67 and vGlut1/2 confirmed the data gathered from in situ hybridization experiments, therefore demonstrating that the detected mRNAs are translated into the related proteins. Furthermore, the dopaminergic lesion resulted in an up-regulation of expression levels for both GAD65 and GAD67 mRNA within identified pallidothalamic-projecting neurons. This was coupled with a down-regulation of GAD65/67 mRNA expression levels in GPi neurons innervating thalamic targets in monkeys showing levodopa-induced dyskinesia. By contrast, the patterns of gene expression for both vGlut1 and vGlut2 mRNAs remained unchanged across GPi projection neurons in control, MPTP-treated and dyskinetic monkeys. In summary, both GABAergic and glutamatergic markers were co-expressed by GPi efferent neurons in primates. Although the status of the dopaminergic system directly modulates the expression levels of GAD65/67 mRNA, the observed expression of vGlut1/2 mRNA is not regulated by either dopaminergic removal or by continuous stimulation with dopaminergic agonists.
Collapse
Affiliation(s)
- Lorena Conte-Perales
- Neurosciences Division, Center for Applied Medical Research (CIMA & CIBERNED), Pio XII Ave 55, Edificio CIMA, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
119
|
DEURVEILHER S, SEMBA K. Basal forebrain regulation of cortical activity and sleep-wake states: Roles of cholinergic and non-cholinergic neurons. Sleep Biol Rhythms 2011. [DOI: 10.1111/j.1479-8425.2010.00465.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
120
|
Röhn TA, Ralvenius WT, Paul J, Borter P, Hernandez M, Witschi R, Grest P, Zeilhofer HU, Bachmann MF, Jennings GT. A Virus-Like Particle-Based Anti-Nerve Growth Factor Vaccine Reduces Inflammatory Hyperalgesia: Potential Long-Term Therapy for Chronic Pain. THE JOURNAL OF IMMUNOLOGY 2010; 186:1769-80. [DOI: 10.4049/jimmunol.1000030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
121
|
Localization of pre- and postsynaptic cholinergic markers in rodent forebrain: a brief history and comparison of rat and mouse. Behav Brain Res 2010; 221:356-66. [PMID: 21129407 DOI: 10.1016/j.bbr.2010.11.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 11/23/2010] [Indexed: 11/23/2022]
Abstract
Rat and mouse models are widely used for studies in cognition and pathophysiology, among others. Here, we sought to determine to what extent these two model species differ for cholinergic and cholinoceptive features. For this purpose, we focused on cholinergic innervation patterns based on choline acetyltransferase (ChAT) immunostaining, and the expression of muscarinic acetylcholine receptors (mAChRs) detected immunocytochemically. In this brief review we first place cholinergic and cholinoceptive markers in a historic perspective, and then provide an overview of recent publications on cholinergic studies and techniques to provide a literature survey of current research. Next, we compare mouse (C57Bl/J6) and rat (Wistar) cholinergic and cholinoceptive systems simultaneously stained, respectively, for ChAT (analyzed qualitatively) and mAChRs (analyzed qualitatively and quantitatively). In general, the topographic cholinergic innervation patterns of both rodent species are highly comparable, with only considerable (but region specific) differences in number of detectable cholinergic interneurons, which are more numerous in rat. In contrast, immunolabeling for mAChRs, detected by the monoclonal antibody M35, differs markedly in the forebrain between the two species. In mouse brain, basal levels of activated and/or internalized mAChRs (as a consequence of cholinergic neurotransmission) are significantly higher. This suggests a higher cholinergic tone in mouse than rat, and hence the animal model of choice may have consequences for cholinergic drug testing experiments.
Collapse
|
122
|
Faraguna U, Nelson A, Vyazovskiy VV, Cirelli C, Tononi G. Unilateral cortical spreading depression affects sleep need and induces molecular and electrophysiological signs of synaptic potentiation in vivo. Cereb Cortex 2010; 20:2939-47. [PMID: 20348156 PMCID: PMC2978242 DOI: 10.1093/cercor/bhq041] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cortical spreading depression (CSD) is an electrophysiological phenomenon first described by Leao in 1944 as a suppression of spontaneous electroencephalographic activity, traveling across the cerebral cortex. In vitro studies suggest that CSD may induce synaptic potentiation. One recent study also found that CSD is followed by a non-rapid eye movement (NREM) sleep duration increase, suggesting an increased need for sleep. Recent experiments in animals and humans show that the occurrence of synaptic potentiation increases subsequent sleep need as measured by larger slow wave activity (SWA) during NREM sleep, prompting the question whether CSD can affect NREM SWA. Here, we find that, in freely moving rats, local CSD induction increases corticocortical evoked responses and strongly induces brain derived neurotrophic factor (BDNF) in the affected cortical hemisphere but not in the contralateral one, consistent with synaptic potentiation in vivo. Moreover, for several hours after CSD, large slow waves occur in the affected hemisphere during rapid eye movement sleep and quiet waking but disappear during active exploration. Finally, we find that CSD increases NREM sleep duration and SWA, the latter specifically in the affected hemisphere. These effects are consistent with an increase in synaptic strength triggered by CSD, although nonphysiological phenomena associated with CSD may also play a role.
Collapse
Affiliation(s)
| | - Aaron Nelson
- Department of Psychiatry
- Neuroscience Training Program, University of Wisconsin–Madison, Madison, WI 53719, USA
| | | | | | | |
Collapse
|
123
|
Guo ZL, Longhurst JC. Activation of reciprocal pathways between arcuate nucleus and ventrolateral periaqueductal gray during electroacupuncture: involvement of VGLUT3. Brain Res 2010; 1360:77-88. [PMID: 20836994 PMCID: PMC2962589 DOI: 10.1016/j.brainres.2010.08.102] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/28/2010] [Accepted: 08/31/2010] [Indexed: 12/21/2022]
Abstract
Electroacupuncture (EA) at the Jianshi-Neiguan acupoints (P5-P6, overlying the median nerve) attenuates sympathoexcitatory responses through activation of the arcuate nucleus (ARC) and ventrolateral periaqueductal gray (vlPAG). Activation of the ARC or vlPAG respectively leads to neuronal excitation of the both nuclei during EA. However, direct projections between these two nuclei that could participate in central neural processing during EA have not been identified. The vesicular glutamate transporter 3 (VGLUT3) marks glutamatergic neurons. Thus, the present study evaluated direct neuronal projections between the ARC and vlPAG during EA, focusing on neurons containing VGLUT3. Seven to ten days after unilateral microinjection of a rodamine-conjugated microsphere retrograde tracer (100nl) into the vlPAG or ARC, rats were subjected to EA or served as a sham-operated control. Low frequency (2Hz) EA was performed bilaterally for 30min at the P5-P6 acupoints. Perikarya containing the microsphere tracer were found in the ARC and vlPAG of both groups. Compared to controls (needle placement without electrical stimulation), c-Fos immunoreactivity and neurons double-labeled with c-Fos, an immediate early gene and the tracer were increased significantly in the ARC and vlPAG of EA-treated rats (both P<0.01). Moreover, some neurons were triple-labeled with c-Fos, the retrograde tracer and VGLUT3 in the two nuclei following EA stimulation (P<0.01, both nuclei). These results suggest that direct reciprocal projections between the ARC and vlPAG are available to participate in prolonged modulation by EA of sympathetic activity and that VGLUT3-containing neurons are an important neuronal phenotype involved in this process.
Collapse
Affiliation(s)
- Zhi-Ling Guo
- Department of Medicine, University of California, Irvine,Irvine, CA 92697, USA.
| | | |
Collapse
|
124
|
Hermanstyne TO, Kihira Y, Misono K, Deitchler A, Yanagawa Y, Misonou H. Immunolocalization of the voltage-gated potassium channel Kv2.2 in GABAergic neurons in the basal forebrain of rats and mice. J Comp Neurol 2010; 518:4298-310. [PMID: 20853508 PMCID: PMC3005293 DOI: 10.1002/cne.22457] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Kv2 voltage-gated potassium channels, Kv2.1 and Kv2.2, are important regulators of neuronal excitability in mammalian brain. It has been shown that Kv2.1 channels are expressed in virtually all neurons in the brain. However, the cellular localization of Kv2.2 has not been fully elucidated. In this article we report that Kv2.2 is highly expressed in a subset of neurons in the magnocellular preoptic nucleus (MCPO) and the horizontal limb of the diagonal band of Broca (HDB) of the basal forebrain complex, which are areas highly implicated in the regulation of cortical activity and the sleep/wake cycle. It has been shown that MCPO and HDB contain distinct populations of neurons that differ in their neurochemicals, cholinergic, glutamatergic, and gamma-aminobutyric acid (GABA)ergic neurons. Using specific immunolabeling and knockin mice in which green fluorescent protein (GFP) is expressed in GABAergic neurons, we found that Kv2.2 is abundantly expressed in a large subpopulation of the GABAergic neurons in the MCPO and HDB. These data offer Kv2.2 as a molecular target to study the role of the specific subpopulation of basal forebrain GABAergic neurons.
Collapse
Affiliation(s)
- Tracey O. Hermanstyne
- Department of Neural and Pain Sciences, University of Maryland, Baltimore, MD 21201
- Program in Neuroscience, University of Maryland, Baltimore, MD 21201
| | - Yoshitaka Kihira
- Department of Neural and Pain Sciences, University of Maryland, Baltimore, MD 21201
| | - Kaori Misono
- Department of Neural and Pain Sciences, University of Maryland, Baltimore, MD 21201
| | - Ashley Deitchler
- Department of Neural and Pain Sciences, University of Maryland, Baltimore, MD 21201
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
- Japan Science and Technology Agency, CREST, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Hiroaki Misonou
- Department of Neural and Pain Sciences, University of Maryland, Baltimore, MD 21201
- Program in Neuroscience, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
125
|
Abellán A, Vernier B, Rétaux S, Medina L. Similarities and differences in the forebrain expression of Lhx1 and Lhx5 between chicken and mouse: Insights for understanding telencephalic development and evolution. J Comp Neurol 2010; 518:3512-28. [PMID: 20589911 DOI: 10.1002/cne.22410] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We compared expression of the paralogous LIM-homeodomain genes Lhx1 and Lhx5 in the developing rostral forebrain of mouse and chicken. Both genes are expressed in similar patterns in the septum, preoptic region, and related areas of the basal telencephalon, including the medial septum/diagonal band nuclei and the medial extended amygdala. In the septum, the expression of Lhx5 and Lhx1 appears to be specifically related to the pallial septum and its derivatives in mouse and chicken, and may produce the glutamatergic neurons observed in the diagonal band/medial septum nuclei. The preoptic area expresses both Lhx1 and Lhx5 in mouse and chicken, and appears to produce gamma-aminobutyric acid (GABA)ergic, glutamatergic, and cholinergic cells for the preoptic region and basal telencephalon. In addition, in mouse and chicken Lhx5 is expressed in two extratelencephalic domains that appear to contribute Lhx5-expressing cells to the basal telencephalon, including the supraoptoparaventricular hypothalamic domain and the eminentia thalami. In contrast, there are striking differences in the pallial expression of Lhx1 and Lhx5 between mouse and chicken. Both genes are expressed in Cajal-Retzius cells, and Lhx5 is also present in most pallial sources of Cajal-Retzius cells (including the cortical hem and retrobulbar area) and in the olfactory bulbs in the mouse. In contrast, putative Cajal-Retzius cells, the retrobulbar area, and the olfactory bulb of chicken do not express the paralog genes cLhx1/cLhx5. Moreover, the cortical hem-although it expresses cLhx5-is very tiny in chicken. We discuss the consequences of these differences in Lhx1/Lhx5 expression between mouse and chicken for pallial/cortical evolution.
Collapse
Affiliation(s)
- Antonio Abellán
- Laboratory of Brain Development and Evolution, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Institut of Biomedical Research of Lleida (IRBLLEIDA), 25008 Lleida Spain
| | | | | | | |
Collapse
|
126
|
Liao F, Taishi P, Churchill L, Urza MJ, Krueger JM. Localized suppression of cortical growth hormone-releasing hormone receptors state-specifically attenuates electroencephalographic delta waves. J Neurosci 2010; 30:4151-9. [PMID: 20237285 PMCID: PMC2846621 DOI: 10.1523/jneurosci.6047-09.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/19/2010] [Accepted: 01/27/2010] [Indexed: 11/21/2022] Open
Abstract
Growth hormone-releasing hormone (GHRH) promotes non-rapid eye movement sleep (NREMS), in part via a well characterized hypothalamic sleep-promoting site. However, GHRH may also act in the cortex to influence sleep. Application of GHRH to the surface of the cortex changes electroencephalographic (EEG) delta power. GHRH and the GHRH receptor (GHRHR) mRNAs are detectable in the rat cortex, and the expression of cortical GHRHR is activity dependent. Here, we microinjected a GHRH antagonist or GHRHR small interfering RNA (siGHRHR) onto the somatosensory cortex surface in rats. The unilateral application of the GHRH antagonist ipsilaterally decreased EEG delta wave power during NREMS, but not wakefulness, during the initial 40 min after injection. Similarly, the injection of siGHRHR reduced cortical expression of GHRHR and suppressed NREMS EEG delta wave power during 20-24 h after injection. Using the fura-2 calcium imaging technique, cultured cortical cells responded to GHRH by increasing intracellular calcium. Approximately 18% of the GHRH-responsive cells were GABAergic as illustrated by glutamic acid decarboxylase-67 (GAD67) immunostaining. Double labeling for GAD67 and GHRHR in vitro and in vivo indicated that only a minority of cortical GHRHR-containing cells were GABAergic. Our data suggest that endogenous cortical GHRH activates local cortical cells to affect EEG delta wave power state-specifically. Results are also consistent with the hypothesis that GHRH contributes to local network state regulation.
Collapse
Affiliation(s)
- Fan Liao
- Sleep and Performance Research Center, Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164-6520
| | - Ping Taishi
- Sleep and Performance Research Center, Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164-6520
| | - Lynn Churchill
- Sleep and Performance Research Center, Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164-6520
| | - Marcus J. Urza
- Sleep and Performance Research Center, Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164-6520
| | - James M. Krueger
- Sleep and Performance Research Center, Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164-6520
| |
Collapse
|
127
|
Thomsen MS, Hay-Schmidt A, Hansen HH, Mikkelsen JD. Distinct neural pathways mediate α7 nicotinic acetylcholine receptor-dependent activation of the forebrain. ACTA ACUST UNITED AC 2010; 20:2092-102. [PMID: 20051354 DOI: 10.1093/cercor/bhp283] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
alpha(7) nicotinic acetylcholine receptor (nAChR) agonists are candidates for the treatment of cognitive deficits in schizophrenia. Selective alpha(7) nAChR agonists, such as SSR180711, activate neurons in the medial prefrontal cortex (mPFC) and nucleus accumbens shell (ACCshell) in rats, regions important for cognitive function. However, the neural substrates involved in these effects remain elusive. Here we identify cortically projecting cholinergic neurons in the horizontal limb of the diagonal band of Broca (HDB) in the basal forebrain (BF) as important targets for alpha(7) nAChR activation, as measured by c-Fos immunoreactivity, a marker of neuronal activation. Selective depletion of these cholinergic neurons abolishes the SSR180711-induced activation of the mPFC but not the ACCshell, demonstrating their critical importance for alpha(7) nAChR-dependent activation of the mPFC. Contrarily, selective depletion of dopaminergic neurons in the ventral tegmental area abolishes the SSR180711-induced activation of the ACCshell but not the mPFC or HDB. These results demonstrate 2 distinct neural pathways activated by SSR180711. The BF and mPFC are important for attentional function and may subserve the procognitive effects of alpha(7) nAChR agonists, whereas activation of the ACCshell is implicated in the beneficial effect of antipsychotics on the positive symptoms of schizophrenia.
Collapse
Affiliation(s)
- Morten S Thomsen
- Neurobiology Research Unit, Copenhagen University Hospital, DK2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
128
|
Ericson M, Sama MA, Yeh HH. Acute ethanol exposure elevates muscarinic tone in the septohippocampal system. J Neurophysiol 2009; 103:290-6. [PMID: 19906873 DOI: 10.1152/jn.91072.2008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The septohippocampal system has been implicated in the cognitive deficits associated with ethanol consumption, but the cellular basis of ethanol action awaits full elucidation. In the medial septum/diagonal band of Broca (MS/DB), a muscarinic tone, reflective of firing activity of resident cholinergic neurons, regulates that of their noncholinergic, putatively GABAergic, counterparts. Here we tested the hypothesis that ethanol alters this muscarinic tone. The spontaneous firing activity of cholinergic and noncholinergic MS/DB neurons were monitored in acute MS/DB slices from C57Bl/6 mice. Exposing the entire slice to ethanol increased firing in both cholinergic and noncholinergic neurons. However, applying ethanol focally to individual MS/DB neurons increased firing only in cholinergic neurons. The differential outcome suggested different mechanisms of ethanol action on cholinergic and noncholinergic neurons. Indeed, with bath-perfused ethanol, the muscarinic antagonist methyl scopolamine prevented the increase in firing in noncholinergic, but not cholinergic, MS/DB neurons. Thus, the effect on noncholinergic neuronal firing was secondary to ethanol's direct action of acutely increasing muscarinic tone. We propose that the acute ethanol-induced elevation of muscarinic tone in the MS/DB contributes to the altered net flow of neuronal activity in the septohippocampal system that underlies compromised cognitive function.
Collapse
Affiliation(s)
- Mia Ericson
- Institution for Neuroscience and Physiology, Section Psychiatry and Neurochemistry, University of Gothenburg, Goteborg, Sweden
| | | | | |
Collapse
|
129
|
Abstract
Multiple studies indicate that adenosine released in the basal forebrain during prolonged wakefulness could affect recovery sleep. It is still unclear which of adenosine receptors provide its sleep-modulating effects in the basal forebrain. We infused adenosine A1 and A2A receptors antagonists into the rat basal forebrain during sleep deprivation and compared characteristics of recovery non-rapid eye movement (non-REM) sleep (its amount and non-REM sleep delta power) after sleep deprivation, and after sleep deprivation combined with perfusion of antagonists. A1 receptor antagonist significantly reduced recovery sleep amount and delta power, whereas A2A receptor antagonist had no effect on recovery sleep. We conclude that adenosine can promote recovery non-REM sleep when acting through A1 receptors in the basal forebrain.
Collapse
|
130
|
Discharge profiles of identified GABAergic in comparison to cholinergic and putative glutamatergic basal forebrain neurons across the sleep-wake cycle. J Neurosci 2009; 29:11828-40. [PMID: 19776269 DOI: 10.1523/jneurosci.1259-09.2009] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Whereas basal forebrain (BF) cholinergic neurons are known to participate in processes of cortical activation during wake (W) and paradoxical sleep (PS or P, also called REM sleep), codistributed GABAergic neurons have been thought to participate in processes of cortical deactivation and slow-wave sleep (SWS or S). To learn the roles the GABAergic neurons might play, in relation to cholinergic and glutamatergic neurons, we juxtacellularly recorded and labeled neurons during natural sleep-wake states in head-fixed rats. Neurobiotin (Nb)-labeled cells were identified immunohistochemically as choline acetyltransferase (ChAT)+, glutamic acid decarboxylase (GAD)+, or ChAT-/GAD-. Of the latter, some were identified as glutamatergic by immunostaining of their terminals with the vesicular glutamate transporter (VGluT2). In contrast to ChAT+ neurons, which all discharged maximally during W and PS, GAD+ neurons comprised multiple sleep-wake subgroups. Some GABAergic neurons discharged maximally during W and PS, as WP-max active cells (36%), and in positive correlation with gamma electroencephalographic (EEG) activity. Some discharged maximally during SWS, as S-max active cells (28%), and in positive correlation with delta EEG activity. Others increased their discharge progressively during sleep to discharge maximally during PS, as P-max active cells (36%), and in negative association with electromyographic (EMG) activity. ChAT-/GAD- cells comprised WP-max (46%), S-max (17%), P-max (17%), and W-max active cells (14%), whose discharge was positively correlated with EMG activity. GABAergic neurons would thus play similar or reciprocal roles to other cholinergic and glutamatergic BF neurons in regulating cortical activity and muscle tone along with behavior across sleep-wake states.
Collapse
|
131
|
Baufreton J, Kirkham E, Atherton JF, Menard A, Magill PJ, Bolam JP, Bevan MD. Sparse but selective and potent synaptic transmission from the globus pallidus to the subthalamic nucleus. J Neurophysiol 2009; 102:532-45. [PMID: 19458148 PMCID: PMC2712268 DOI: 10.1152/jn.00305.2009] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 05/11/2009] [Indexed: 11/22/2022] Open
Abstract
The reciprocally connected GABAergic globus pallidus (GP)-glutamatergic subthalamic nucleus (STN) network is critical for voluntary movement and an important site of dysfunction in movement disorders such as Parkinson's disease. Although the GP is a key determinant of STN activity, correlated GP-STN activity is rare under normal conditions. Here we define fundamental features of the GP-STN connection that contribute to poorly correlated GP-STN activity. Juxtacellular labeling of single GP neurons in vivo and stereological estimation of the total number of GABAergic GP-STN synapses suggest that the GP-STN connection is surprisingly sparse: single GP neurons maximally contact only 2% of STN neurons and single STN neurons maximally receive input from 2% of GP neurons. However, GP-STN connectivity may be considerably more selective than even these estimates imply. Light and electron microscopic analyses revealed that single GP axons give rise to sparsely distributed terminal clusters, many of which correspond to multiple synapses with individual STN neurons. Application of the minimal stimulation technique in brain slices confirmed that STN neurons receive multisynaptic unitary inputs and that these inputs largely arise from different sets of GABAergic axons. Finally, the dynamic-clamp technique was applied to quantify the impact of GP-STN inputs on STN activity. Small fractions of GP-STN input were sufficiently powerful to inhibit and synchronize the autonomous activity of STN neurons. Together these data are consistent with the conclusion that the rarity of correlated GP-STN activity in vivo is due to the sparsity and selectivity, rather than the potency, of GP-STN synaptic connections.
Collapse
Affiliation(s)
- Jérôme Baufreton
- Department of Physiology, Northwestern University, 303 E. Chicago Ave, Chicago, Il 60611, USA.
| | | | | | | | | | | | | |
Collapse
|
132
|
Blutstein T, Baab PJ, Zielke HR, Mong JA. Hormonal modulation of amino acid neurotransmitter metabolism in the arcuate nucleus of the adult female rat: a novel action of estradiol. Endocrinology 2009; 150:3237-44. [PMID: 19299450 PMCID: PMC2703529 DOI: 10.1210/en.2008-1701] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 03/11/2009] [Indexed: 11/19/2022]
Abstract
Morphological plasticity in response to estradiol is a hallmark of astrocytes in the arcuate nucleus. The functional consequences of these morphological changes have remained relatively unexplored. Here we report that in the arcuate nucleus estradiol significantly increased the protein levels of the two enzymes in the glutamate-glutamine cycle, glutamine synthetase and glutaminase. We further demonstrate that these estradiol-mediated changes in the enzyme protein levels may underlie functional changes in neurotransmitter availability as: 1) total glutamate concentration in the arcuate nucleus was significantly increased and 2) microdialysis revealed a significant increase in extracellular glutamate levels after a synaptic challenge in the presence of estradiol. These data implicate the glutamate-glutamine cycle in the generation and/or maintenance of glutamate and suggest that the difference in extracellular glutamate between estradiol- and oil-treated animals may be related to an increased efficiency of the cycle enzymes. In vivo enzyme activity assays revealed that the estradiol mediated increase in glutamate-glutamine cycle enzymes in the arcuate nucleus led to an increase in gamma-aminobutyric acid and is likely not related to the increase in extracellular glutamate. Thus, we have observed two-independent effects of estradiol on amino acid neurotransmission in the arcuate nucleus. These data suggest a possible functional consequence of the well-established changes in glial morphology that occur in the arcuate nucleus in the presence of estradiol and suggest the importance of neuronal-glial cooperation in the regulation of hypothalamic functions such as food intake and body weight.
Collapse
Affiliation(s)
- Tamara Blutstein
- Program in Neuroscience, University of Maryland School of Medicine, 655 West Baltimore Street, BRB 4-027, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
133
|
Dovgan’ AV, Vlasenko OV, Maisky VA, Pilyavskii AI, Maznichenko AV. Topography of Fos-Immunoreactive and NADPH-d-Reactive Neurons in the Limbic Structures of the Basal Forebrain and in the Hypothalamus during Realization of Motivated Operant Movements in Rats. NEUROPHYSIOLOGY+ 2009. [DOI: 10.1007/s11062-009-9073-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
134
|
The basal forebrain cholinergic system is required specifically for behaviorally mediated cortical map plasticity. J Neurosci 2009; 29:5992-6000. [PMID: 19420265 DOI: 10.1523/jneurosci.0230-09.2009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The basal forebrain cholinergic system has been implicated in the reorganization of adult cortical sensory and motor representations under many, but not all, experimental conditions. It is still not fully understood which types of plasticity require the cholinergic system and which do not. In this study, we examine the hypothesis that the basal forebrain cholinergic system is required for eliciting plasticity associated with complex cognitive processing (e.g., behavioral experiences that drive cortical reorganization) but is not required for plasticity mediated under behaviorally independent conditions. We used established experimental manipulations to elicit two distinct forms of plasticity within the motor cortex: facial nerve transections evoke reorganization of cortical motor representations independent of behavioral experience, and skilled forelimb training induces behaviorally dependent expansion of forelimb motor representations. In animals that underwent skilled forelimb training in conjunction with a facial nerve lesion, cholinergic mechanisms were required for mediating the behaviorally dependent plasticity associated with the skilled motor training but were not necessary for mediating plasticity associated with the facial nerve transection. These results dissociate the contribution of cholinergic mechanisms to distinct forms of cortical plasticity and support the hypothesis that the forebrain cholinergic system is selectively required for modulating complex forms of cortical plasticity driven by behavioral experience.
Collapse
|
135
|
Freddi R, Duca P, Gritti I, Mariotti M, Vertemati M. Behavioral and degeneration changes in the basal forebrain systems of aged rats: a quantitative study in the region of the basal forebrain after levo-acetyl-carnitine treatments assessed by Abercrombie estimation. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:419-26. [PMID: 19171177 DOI: 10.1016/j.pnpbp.2008.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 12/05/2008] [Accepted: 12/28/2008] [Indexed: 11/19/2022]
Abstract
One group of six male control rats [21 months old] and one group of six male rats of the same age, singularly stored in a cage, and treated with acetyl-l-carnitine-HCl (ALCAR: 60 mg/kg/day/p.o.) for six months were tested in the spatial learning/memory Morris maze-water task and for atrophy and cell loss in seven myelo- and cytostructurally defined basal forebrain (BF) cholinergic regions [Gritti et al., 1993 J Comp Neurol 329: 438-457]. Coronal sections 25 mum thick were cut through the BF regions and processed every 200 mum for choline acetyltransferase (ChAT) immunohistochemistry. The ALCAR-treated rats had significantly shorter exit times on the Morris maze-water task test than the control rats (ANOVA-enzyme: F(1,39)=112.5, P=0.0001; sessions: F(3,39)=10.41, P=0.0001; interaction: F(3,39)=5.09, P=0.0044). Degenerative morphological changes in the BF ChAT-positive cells were observed in the control rats, but not in the treated animals, in: the diagonal band of Broca, the magnocellular preoptic nucleus, the olfactory tubercle, the substantia innominata, and the globus pallidus (ANOVA-enzyme: F(1,2)=14, P=0,0003; structures: F(6,7)=4, P=0,0018; interaction: F(6,7)=3, P=0,0043). In the diagonal band of Broca (P<0.0494) and in the magnocellular preoptic nucleus (P<0.0117) there were significantly fewer ChAT-positive neurons in the aged control rats than in the ALCAR-treated rats. These results demonstrate that in rats aged from 15 to 21 months ALCAR treatment significantly attenuated spatial learning/memory impairment on the Morris maze-water task and also importantly reduced the degeneration in size and number of cholinergic cells in the BF.
Collapse
Affiliation(s)
- Roberta Freddi
- Complex Structure-Anatomia Patologica, A.S.L.-VCO, Via Crocetta, 28921, Verbania, Italy
| | | | | | | | | |
Collapse
|
136
|
Jackson J, Bland BH, Antle MC. Nonserotonergic projection neurons in the midbrain raphe nuclei contain the vesicular glutamate transporter VGLUT3. Synapse 2009; 63:31-41. [PMID: 18925658 DOI: 10.1002/syn.20581] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The brainstem raphe nuclei are typically assigned a role in serotonergic brain function. However, numerous studies have reported that a large proportion of raphe projection cells are nonserotonergic. The identity of these projection cells is unknown. Recent studies have reported that the vesicular glutamate transporter VGLUT3 is found in both serotonergic and nonserotonergic neurons in both the median raphe (MR) and dorsal raphe (DR) nuclei. We injected the retrograde tracer cholera toxin subunit B into either the dorsal hippocampus or the medial septum (MS) and used triple labeled immunofluorescence to determine if nonserotonergic raphe cells projecting to these structures contained VGLUT3. Consistent with previous studies, only about half of retrogradely labeled MR neurons projecting to the hippocampus contained serotonin, whereas a majority of the retrogradely labeled nonserotonergic cells contained VGLUT3. Similar patterns were observed for MR cells projecting to the MS. About half of retrogradely labeled nonserotonergic neurons in the DR contained VGLUT3. Additionally, a large number of retrogradely labeled cells in the caudal linear and interpeduncular nuclei projecting to the MS were found to contain VGLUT3. These data suggest the enigmatic nonserotonergic projection from the MR to forebrain regions may be glutamatergic. In addition, these results demonstrate a dissociation between glutamatergic and serotonergic MR afferent inputs to the MS and hippocampus suggesting divergent and/or complementary roles of these pathways in modulating cellular activity within the septohippocampal network.
Collapse
Affiliation(s)
- Jesse Jackson
- Behavioral Neuroscience Research Group, Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
137
|
Riedel A, Westerholz S, Braun K, Edwards RH, Arendt T, Härtig W. Vesicular glutamate transporter 3-immunoreactive pericellular baskets ensheath a distinct population of neurons in the lateral septum. J Chem Neuroanat 2008; 36:177-90. [PMID: 18611437 PMCID: PMC2846456 DOI: 10.1016/j.jchemneu.2008.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 06/06/2008] [Accepted: 06/07/2008] [Indexed: 10/22/2022]
Abstract
The lateral septum (LS) plays a role in the adjustment of behavioral responses according to environmental demands. This is a complex integrative process wherein a variety of modulatory systems, i.e. cholinergic, dopaminergic and serotonergic projections forming pericellular baskets around LS neurons, are involved. Recently, vesicular glutamate transporter 3 (VGLUT3)-immunoreactive (-ir) structures outlining unlabeled somata and their proximal dendrites were described in the LS. However, the vesicular transporters for acetylcholine and GABA were not or only rarely co-expressed with VGLUT3. In this study, the morphology and distribution of these VGLUT3-ir structures were systematically analyzed revealing that (1) they form distinct pericellular baskets (PBs) displaying variable shapes, (2) they are arranged in a layer-like pattern similar to the terminals of other modulatory systems, (3) beside a few exceptions (e.g., choline acetyltransferase), they are generally not or very sparsely co-localized with other neurochemical markers characterizing major neuron populations or afferent systems of the LS, i.e. calcium-binding proteins, tyrosine hydroxylase, tryptophan hydroxylase, vesicular glutamate transporters 1 (VGLUT1) and 2 (VGLUT2) and the vesicular GABA transporter. Thus, in the LS, a separate population of neurons is covered by VGLUT3-ir PBs. The distribution pattern and the lack of co-localization indicate that the VGLUT3-expressing cells of origin are located in the brainstem and that they could be pure glutamatergic projection neurons-different from the well-defined canonical VGLUT1- and VGLUT2-expressing neurons. Alternatively, they could simultaneously express VGLUT3 and second transmitter, but use different release sites inside the LS for both.
Collapse
Affiliation(s)
- Anett Riedel
- Department of Zoology/Developmental Neurobiology, Otto von Guericke University, Magdeburg, Institute of Biology, Leipziger Str. 44, Haus 91, D-39120 Magdeburg, Germany.
| | | | | | | | | | | |
Collapse
|
138
|
Kalinchuk AV, McCarley RW, Stenberg D, Porkka-Heiskanen T, Basheer R. The role of cholinergic basal forebrain neurons in adenosine-mediated homeostatic control of sleep: lessons from 192 IgG-saporin lesions. Neuroscience 2008; 157:238-53. [PMID: 18805464 PMCID: PMC3678094 DOI: 10.1016/j.neuroscience.2008.08.040] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 08/20/2008] [Accepted: 08/21/2008] [Indexed: 11/17/2022]
Abstract
A topic of high current interest and controversy is the basis of the homeostatic sleep response, the increase in non-rapid-eye-movement (NREM) sleep and NREM-delta activity following sleep deprivation (SD). Adenosine, which accumulates in the cholinergic basal forebrain (BF) during SD, has been proposed as one of the important homeostatic sleep factors. It is suggested that sleep-inducing effects of adenosine are mediated by inhibiting the wake-active neurons of the BF, including cholinergic neurons. Here we examined the association between SD-induced adenosine release, the homeostatic sleep response and the survival of cholinergic neurons in the BF after injections of the immunotoxin 192 immunoglobulin G (IgG)-saporin (saporin) in rats. We correlated SD-induced adenosine level in the BF and the homeostatic sleep response with the cholinergic cell loss 2 weeks after local saporin injections into the BF, as well as 2 and 3 weeks after i.c.v. saporin injections. Two weeks after local saporin injection there was an 88% cholinergic cell loss, coupled with nearly complete abolition of the SD-induced adenosine increase in the BF, the homeostatic sleep response, and the sleep-inducing effects of BF adenosine infusion. Two weeks after i.c.v. saporin injection there was a 59% cholinergic cell loss, correlated with significant increase in SD-induced adenosine level in the BF and an intact sleep response. Three weeks after i.c.v. saporin injection there was an 87% cholinergic cell loss, nearly complete abolition of the SD-induced adenosine increase in the BF and the homeostatic response, implying that the time course of i.c.v. saporin lesions is a key variable in interpreting experimental results. Taken together, these results strongly suggest that cholinergic neurons in the BF are important for the SD-induced increase in adenosine as well as for its sleep-inducing effects and play a major, although not exclusive, role in sleep homeostasis.
Collapse
Affiliation(s)
- A V Kalinchuk
- Laboratory of Neuroscience, Department of Psychiatry, Harvard Medical School and VA Boston Healthcare System, 1400 V.F.W. Parkway, West Roxbury, MA 02132, USA.
| | | | | | | | | |
Collapse
|
139
|
Methippara MM, Bashir T, Kumar S, Alam N, Szymusiak R, McGinty D. Salubrinal, an inhibitor of protein synthesis, promotes deep slow wave sleep. Am J Physiol Regul Integr Comp Physiol 2008; 296:R178-84. [PMID: 18971348 DOI: 10.1152/ajpregu.90765.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Previous work showed that sleep is associated with increased brain protein synthesis and that arrest of protein synthesis facilitates sleep. Arrest of protein synthesis is induced during the endoplasmic reticulum (ER) stress response, through phosphorylation of eukaryotic initiation factor 2alpha (p-eIF2alpha). We tested a hypothesis that elevation of p-eIF2alpha would facilitate sleep. We studied the effects of intracerebroventricular infusion of salubrinal (Salub), which increases p-eIF2alpha by inhibiting its dephosphorylation. Salub increased deep slow wave sleep by 255%, while reducing active waking by 49%. Delta power within non-rapid eye movement (NREM) sleep was increased, while power in the sigma, beta, and gamma bands during NREM was reduced. We found that Salub increased expression of p-eIF2alpha in the basal forebrain (BF) area, a sleep-wake regulatory brain region. Therefore, we quantified the p-eIF2alpha-immunolabeled neurons in the BF area; Salub administration increased the number of p-eIF2alpha-expressing noncholinergic neurons in the caudal BF. In addition, Salub also increased the intensity of p-eIF2alpha expression in both cholinergic and noncholinergic neurons, but this was more widespread among the noncholinergic neurons. Our findings support a hypothesis that sleep is facilitated by signals associated with the ER stress response.
Collapse
Affiliation(s)
- Melvi M Methippara
- Research Service (151A3), Department of Veterans Affairs of Greater Los Angeles Healthcare System, North Hills, CA 91343, USA
| | | | | | | | | | | |
Collapse
|
140
|
Glutamatergic pallidothalamic projections and their implications in the pathophysiology of Parkinson’s disease. Neurobiol Dis 2008; 31:422-32. [DOI: 10.1016/j.nbd.2008.05.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 05/23/2008] [Accepted: 05/25/2008] [Indexed: 02/04/2023] Open
|
141
|
Lau B, Salzman CD. Noncholinergic neurons in the basal forebrain: often neglected but motivationally salient. Neuron 2008; 59:6-8. [PMID: 18614024 DOI: 10.1016/j.neuron.2008.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although noncholinergic neurons in the basal forebrain are known to contribute to cognition, their response properties in behaving animals is unclear. In this issue of Neuron, Lin and Nicolelis demonstrate that these neurons represent the motivational salience of sensory stimuli and may modulate cortical processing to direct top-down attention.
Collapse
Affiliation(s)
- Brian Lau
- Department of Neuroscience, Columbia University, 1051 Riverside Drive, Unit 87, New York, NY 10032, USA.
| | | |
Collapse
|
142
|
Rodrigo-Angulo ML, Heredero S, Rodríguez-Veiga E, Reinoso-Suárez F. GABAergic and non-GABAergic thalamic, hypothalamic and basal forebrain projections to the ventral oral pontine reticular nucleus: their implication in REM sleep modulation. Brain Res 2008; 1210:116-25. [PMID: 18407254 DOI: 10.1016/j.brainres.2008.02.095] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 02/21/2008] [Accepted: 02/26/2008] [Indexed: 12/16/2022]
Abstract
The ventral part of the oral pontine reticular nucleus (vRPO) is a demonstrated site of brainstem REM-sleep generation and maintenance. The vRPO has reciprocal connections with structures that control other states of the sleep-wakefulness cycle, many situated in the basal forebrain and the diencephalon. Some of these connections utilize the inhibitory neurotransmitter GABA. The aim of the present work is to map the local origin of the basal forebrain and diencephalon projections to the vRPO whether GABAergic or non-GABAergic. A double-labelling technique combining vRPO injections of the neuronal tracer, cholera-toxin (CTB), with GAD-immunohistochemistry, was used for this purpose in adult cats. All of the numerous CTB-positive neurons in the reticular thalamic and dorsocaudal hypothalamic nuclei were double-labelled (CTB/GAD-positive) neurons. Approximately 15%, 14% and 16% of the CTB-positive neurons in the zona incerta and the dorsal and lateral hypothalamic areas are, respectively, CTB/GAD-positive neurons. However, only some double-labelled neurons were found in other hypothalamic nuclei with abundant CTB-positive neurons, such as the paraventricular nucleus, perifornical area and H1 Forel field. In addition, CTB-positive neurons were abundant in the central amygdaline nucleus, terminal stria bed nuclei, median preoptic nucleus, medial and lateral preoptic areas, dorsomedial and ventromedial hypothalamic nuclei, posterior hypothalamic area and periventricular thalamic nucleus. The GABAergic and non-GABAergic connections described here may be the morphological pillar through which these prosencephalic structures modulate, either by inhibiting or by exciting, the vRPO REM-sleep inducing neurons during the different sleep-wakefulness cycle states.
Collapse
|
143
|
Ogren SO, Eriksson TM, Elvander-Tottie E, D'Addario C, Ekström JC, Svenningsson P, Meister B, Kehr J, Stiedl O. The role of 5-HT(1A) receptors in learning and memory. Behav Brain Res 2008; 195:54-77. [PMID: 18394726 DOI: 10.1016/j.bbr.2008.02.023] [Citation(s) in RCA: 248] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/13/2008] [Accepted: 02/13/2008] [Indexed: 12/12/2022]
Abstract
The ascending serotonin (5-HT) neurons innervate the cerebral cortex, hippocampus, septum and amygdala, all representing brain regions associated with various domains of cognition. The 5-HT innervation is diffuse and extensively arborized with few synaptic contacts, which indicates that 5-HT can affect a large number of neurons in a paracrine mode. Serotonin signaling is mediated by 14 receptor subtypes with different functional and transductional properties. The 5-HT(1A) subtype is of particular interest, since it is one of the main mediators of the action of 5-HT. Moreover, the 5-HT(1A) receptor regulates the activity of 5-HT neurons via autoreceptors, and it regulates the function of several neurotransmitter systems via postsynaptic receptors (heteroreceptors). This review assesses the pharmacological and genetic evidence that implicates the 5-HT(1A) receptor in learning and memory. The 5-HT(1A) receptors are in the position to influence the activity of glutamatergic, cholinergic and possibly GABAergic neurons in the cerebral cortex, hippocampus and in the septohippocampal projection, thereby affecting declarative and non-declarative memory functions. Moreover, the 5-HT(1A) receptor regulates several transduction mechanisms such as kinases and immediate early genes implicated in memory formation. Based on studies in rodents the stimulation of 5-HT(1A) receptors generally produces learning impairments by interfering with memory-encoding mechanisms. In contrast, antagonists of 5-HT(1A) receptors facilitate certain types of memory by enhancing hippocampal/cortical cholinergic and/or glutamatergic neurotransmission. Some data also support a potential role for the 5-HT(1A) receptor in memory consolidation. Available results also implicate the 5-HT(1A) receptor in the retrieval of aversive or emotional memories, supporting an involvement in reconsolidation. The contribution of 5-HT(1A) receptors in cognitive impairments in various psychiatric disorders is still unclear. However, there is evidence that 5-HT(1A) receptors may play differential roles in normal brain function and in psychopathological states. Taken together, the evidence indicates that the 5-HT(1A) receptor is a target for novel therapeutic advances in several neuropsychiatric disorders characterized by various cognitive deficits.
Collapse
Affiliation(s)
- Sven Ove Ogren
- Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Henny P, Jones BE. Projections from basal forebrain to prefrontal cortex comprise cholinergic, GABAergic and glutamatergic inputs to pyramidal cells or interneurons. Eur J Neurosci 2008; 27:654-70. [PMID: 18279318 PMCID: PMC2426826 DOI: 10.1111/j.1460-9568.2008.06029.x] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study was undertaken to characterize the pre- and postsynaptic constituents of the basal forebrain (BF) projection to the prefrontal cortex in the rat, and determine whether it includes glutamatergic in addition to established gamma-aminobutyric acid (GABA)ergic and cholinergic elements. BF fibres were labelled by anterograde transport using biotin dextran amine (BDA) and dual-stained for the vesicular transporter proteins (VTPs) for glutamate (VGluT), GABA (VGAT) or acetylcholine (VAChT). Viewed by fluorescence microscopy and estimated by stereology, proportions of BDA-labelled varicosities were found to be stained for VGluT2 (and not VGluT1 or 3), VGAT or VAChT (representing, respectively, approximately 15%, approximately 52% and approximately 19% within the infralimbic cortex). Each type was present in all, though commonly most densely in deep, cortical layers. Material was triple-stained for postsynaptic proteins to examine whether BDA+VTP+ varicosities might form excitatory or inhibitory synapses, respectively, labelled by postsynaptic density-95 kDA (PSD-95) or gephyrin (Geph). Viewed by confocal microscopy, a majority of BDA+/VGluT2+ varicosities were found to be apposed to PSD-95+ elements, and a majority of BDA+/VGAT+ varicosities to be apposed to Geph+ elements. Other series were triple-stained for cell marker proteins to assess whether the varicosities contacted interneurons or pyramidal cells. Viewed by confocal microscopy, BDA-labelled VGluT2+, VGAT+ and VAChT+ BF terminals were all found in contact with calbindin+ interneurons, whereas VGAT+ BF terminals were also seen in contact with parvalbumin+ interneurons and non-phosphorylated neurofilament+ pyramidal cells. Through distinct glutamatergic, GABAergic and cholinergic projections, the BF can thus influence cortical activity in a diverse manner.
Collapse
Affiliation(s)
- Pablo Henny
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada H3A 2B4
| | | |
Collapse
|
145
|
Lin PY, Hinterneder JM, Rollor SR, Birren SJ. Non-cell-autonomous regulation of GABAergic neuron development by neurotrophins and the p75 receptor. J Neurosci 2007; 27:12787-96. [PMID: 18032650 PMCID: PMC6673298 DOI: 10.1523/jneurosci.3302-07.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 09/26/2007] [Accepted: 10/17/2007] [Indexed: 01/12/2023] Open
Abstract
Basal forebrain GABAergic and cholinergic circuits regulate the activity of cholinergic projections to the cortex and hippocampus. Because these projections influence cortical development and function, the development of basal forebrain excitatory and inhibitory neurons is critical for overall brain development. We show that the neurotransmitter phenotype of these neurons is developmentally regulated by neurotrophins and the p75 receptor. Neurotrophins (nerve growth factor and brain-derived neurotrophic factor) increased the number of both cholinergic and GABAergic neurons in neonatal basal forebrain neuron cultures from the region of the medial septum. However, the p75 receptor is required only for neurotrophin-dependent expansion of the GABAergic, not the cholinergic, population. Neurotrophin-induced GABAergic development can be rescued in p75-/- cultures by expression of a p75 rescue construct in neighboring cells or by treatment with medium collected from neurotrophin-treated wild-type cultures. Because p75 is not expressed in basal forebrain GABAergic neurons, this defines a new, non-cell-autonomous mechanism of p75 action in which ligand binding results in release of a soluble factor that modifies neurotrophin responses of nearby neurons. p75 is also required for the maintenance of basal forebrain GABAergic neurons in vivo, demonstrating that p75-mediated interactions between cholinergic and GABAergic neurons regulate the balance of excitatory and inhibitory components of basal forebrain circuits.
Collapse
Affiliation(s)
- Pao-Yen Lin
- Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, and
- Department of Psychiatry, Chang Gung Memorial Hospital–Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, County 831, Taiwan
| | - Jeanine M. Hinterneder
- Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, and
| | - Sarah R. Rollor
- Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, and
| | - Susan J. Birren
- Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, and
| |
Collapse
|
146
|
Guo ZL, Longhurst JC. Expression of c-Fos in arcuate nucleus induced by electroacupuncture: relations to neurons containing opioids and glutamate. Brain Res 2007; 1166:65-76. [PMID: 17662967 PMCID: PMC2100414 DOI: 10.1016/j.brainres.2007.06.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 06/05/2007] [Accepted: 06/11/2007] [Indexed: 10/23/2022]
Abstract
Electroacupuncture (EA) at the Neiguan-Jianshi acupoints (P5-P6, overlying the median nerve) attenuates sympathoexcitatory reflexes probably through the opioid system. The arcuate nucleus (ARC) within hypothalamus is an important brain area that produces opioid peptides. Physiological studies have demonstrated that the predominant response to EA is excitation in the ARC and that excitatory projections from the ARC to the ventrolateral periaqueductal gray during EA at P5-P6 contribute to inhibition of sympathoexcitatory cardiovascular reflexes. These data imply that ARC neurons activated by EA also may contain excitatory neurotransmitters. Thus, the present study evaluated activation of the ARC induced by EA at P5-P6, in relation to the opioid system and glutamate, by detecting c-Fos, an immediate early gene, opioid peptides and vesicular glutamate transporter 3 (VGLUT3). To enhance detection of perikarya containing the opioid peptides, colchicine (90-100 microg/kg) was administered in cats 28-30 h before EA or the sham-operated control. EA was performed at P5-P6 for 30 min. Compared to controls (n=5), c-Fos-positive cells and neurons double-labeled with c-Fos and beta-endorphin, enkephalin or VGLUT3 in the ARC were significantly increased in EA-treated cats (n=6; all P<0.05). Moreover, neurons triple-labeled with c-Fos, beta-endorphin and VGLUT3 were noted in this region following EA stimulation, but not in controls. Thus, EA at P5-P6 activates neurons in the ARC, some of which contain opioids as well as glutamate or both. The results imply that EA at P5-P6 has the potential to influence ARC neurons containing multiple neuronal substances that subsequently modulate cardiovascular function.
Collapse
Affiliation(s)
- Zhi-Ling Guo
- Susan-Samueli Center for Integrative Medicine and Department of Medicine, School of Medicine, University of California, Irvine, CA 92697, USA.
| | | |
Collapse
|
147
|
Edwards IJ, Dallas ML, Poole SL, Milligan CJ, Yanagawa Y, Szabó G, Erdélyi F, Deuchars SA, Deuchars J. The neurochemically diverse intermedius nucleus of the medulla as a source of excitatory and inhibitory synaptic input to the nucleus tractus solitarii. J Neurosci 2007; 27:8324-33. [PMID: 17670979 PMCID: PMC6673048 DOI: 10.1523/jneurosci.0638-07.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 05/25/2007] [Accepted: 06/20/2007] [Indexed: 11/21/2022] Open
Abstract
Sensory afferent signals from neck muscles have been postulated to influence central cardiorespiratory control as components of postural reflexes, but neuronal pathways for this action have not been identified. The intermedius nucleus of the medulla (InM) is a target of neck muscle spindle afferents and is ideally located to influence such reflexes but is poorly investigated. To aid identification of the nucleus, we initially produced three-dimensional reconstructions of the InM in both mouse and rat. Neurochemical analysis including transgenic reporter mice expressing green fluorescent protein in GABA-synthesizing neurons, immunohistochemistry, and in situ hybridization revealed that the InM is neurochemically diverse, containing GABAegric and glutamatergic neurons with some degree of colocalization with parvalbumin, neuronal nitric oxide synthase, and calretinin. Projections from the InM to the nucleus tractus solitarius (NTS) were studied electrophysiologically in rat brainstem slices. Electrical stimulation of the NTS resulted in antidromically activated action potentials within InM neurons. In addition, electrical stimulation of the InM resulted in EPSPs that were mediated by excitatory amino acids and IPSPs mediated solely by GABA(A) receptors or by GABA(A) and glycine receptors. Chemical stimulation of the InM resulted in (1) a depolarization of NTS neurons that were blocked by NBQX (2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonoamide) or kynurenic acid and (2) a hyperpolarization of NTS neurons that were blocked by bicuculline. Thus, the InM contains neurochemically diverse neurons and sends both excitatory and inhibitory projections to the NTS. These data provide a novel pathway that may underlie possible reflex changes in autonomic variables after neck muscle spindle afferent activation.
Collapse
Affiliation(s)
- Ian J. Edwards
- Institute of Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Mark L. Dallas
- Institute of Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sarah L. Poole
- Institute of Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Carol J. Milligan
- Institute of Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, and Solution Oriented Research for Science and Technology, Japan Science and Technology Agency, Maebashi 371-8511, Japan, and
| | - Gábor Szabó
- Department of Gene Technology and Developmental Neurobiology, Institute of Experimental Medicine, H-1450 Budapest, Hungary
| | - Ferenc Erdélyi
- Department of Gene Technology and Developmental Neurobiology, Institute of Experimental Medicine, H-1450 Budapest, Hungary
| | - Susan A. Deuchars
- Institute of Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Jim Deuchars
- Institute of Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
148
|
Chambon C, Paban V, Manrique C, Alescio-Lautier B. Behavioral and immunohistological effects of cholinergic damage in immunolesioned rats: Alteration of c-Fos and polysialylated neural cell adhesion molecule expression. Neuroscience 2007; 147:893-905. [PMID: 17601671 DOI: 10.1016/j.neuroscience.2007.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 05/16/2007] [Accepted: 05/21/2007] [Indexed: 11/19/2022]
Abstract
The aim of this study was to determine the brain structures as well as the plasticity events associated with the behavioral effects of cholinergic damage. Rats were submitted to injection of 192 IgG-saporin in the medial septum/diagonal band of Broca complex and the nucleus basalis magnocellularis. The immunohistochemical expression of c-Fos protein and PSA-NCAM (polysialylated neural cell adhesion molecule) and the behavioral performances in the nonmatching-to-position task were assessed at various post-lesion times. Thus, 3 days after injection of the immunotoxin, increased c-Fos labeling was observed in the areas of infusion, indicating these cells were undergoing some plastic changes and/or apoptotic processes. A drastic increase was observed in the number of PSA-NCAM positive cells and in their dendritic arborization in the dentate gyrus. At 7 days post-lesion, no behavioral deficit was observed in immunolesioned rats despite the drastic loss of cholinergic neurons. These neurons showed decreased c-Fos protein expression in the piriform and entorhinal cortex and in the dentate gyrus. In the latter, PSA-NCAM induction was high, suggesting that remodeling occurred, which in turn might contribute to sustaining some mnemonic function in immunolesioned rats. At 1 month, cholinergic neurons totally disappeared and behavioral deficits were drastic. c-Fos expression showed no change. In contrast, the increased PSA-NCAM-labeling observed at short post-lesion times was maintained but the plastic changes due to this molecule could not compensate the behavioral deficit caused by the immunotoxin. Thus, as the post-lesion time increases, a gradual degeneration process should occur that may contribute to mnemonic impairments. This neuronal loss leads to molecular and cellular alterations, which in turn may aggravate cognitive deficits.
Collapse
Affiliation(s)
- C Chambon
- Université d'Aix-Marseille I, Laboratoire de Neurobiologie Intégrative et Adaptative, UMR/CNRS 6149, 3 Place Victor Hugo, 13331 Marseille Cedex 03, France
| | | | | | | |
Collapse
|