101
|
Prevarskaya N, Skryma R, Shuba Y. Ion Channels in Cancer: Are Cancer Hallmarks Oncochannelopathies? Physiol Rev 2018; 98:559-621. [PMID: 29412049 DOI: 10.1152/physrev.00044.2016] [Citation(s) in RCA: 307] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genomic instability is a primary cause and fundamental feature of human cancer. However, all cancer cell genotypes generally translate into several common pathophysiological features, often referred to as cancer hallmarks. Although nowadays the catalog of cancer hallmarks is quite broad, the most common and obvious of them are 1) uncontrolled proliferation, 2) resistance to programmed cell death (apoptosis), 3) tissue invasion and metastasis, and 4) sustained angiogenesis. Among the genes affected by cancer, those encoding ion channels are present. Membrane proteins responsible for signaling within cell and among cells, for coupling of extracellular events with intracellular responses, and for maintaining intracellular ionic homeostasis ion channels contribute to various extents to pathophysiological features of each cancer hallmark. Moreover, tight association of these hallmarks with ion channel dysfunction gives a good reason to classify them as special type of channelopathies, namely oncochannelopathies. Although the relation of cancer hallmarks to ion channel dysfunction differs from classical definition of channelopathies, as disease states causally linked with inherited mutations of ion channel genes that alter channel's biophysical properties, in a broader context of the disease state, to which pathogenesis ion channels essentially contribute, such classification seems absolutely appropriate. In this review the authors provide arguments to substantiate such point of view.
Collapse
Affiliation(s)
- Natalia Prevarskaya
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| | - Roman Skryma
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| | - Yaroslav Shuba
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| |
Collapse
|
102
|
Brnardic EJ, Ye G, Brooks C, Donatelli C, Barton L, McAtee J, Sanchez RM, Shu A, Erhard K, Terrell L, Graczyk-Millbrandt G, He Y, Costell MH, Behm DJ, Roethke T, Stoy P, Holt DA, Lawhorn BG. Discovery of Pyrrolidine Sulfonamides as Selective and Orally Bioavailable Antagonists of Transient Receptor Potential Vanilloid-4 (TRPV4). J Med Chem 2018; 61:9738-9755. [PMID: 30335378 DOI: 10.1021/acs.jmedchem.8b01317] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A novel series of pyrrolidine sulfonamide transient receptor potential vanilloid-4 (TRPV4) antagonists was developed by modification of a previously reported TRPV4 inhibitor (1). Several core-structure modifications were identified that improved TRPV4 activity by increasing structural rigidity and reducing the entropic energy penalty upon binding to the target protein. The new template was initially discovered as a minor regio-isomeric side product formed during routine structure-activity relationship (SAR) studies, and further optimization resulted in highly potent compounds with a novel pyrrolidine diol core. Further improvements in potency and pharmacokinetic properties were achieved through SAR studies on the sulfonamide substituent to give an optimized lead compound GSK3395879 (52) that demonstrated the ability to inhibit TRPV4-mediated pulmonary edema in an in vivo rat model. GSK3395879 is a tool for studying the biology of TRPV4 and an advanced lead for identifying new heart failure medicines.
Collapse
|
103
|
Toktanis G, Kaya-Sezginer E, Yilmaz-Oral D, Gur S. Potential therapeutic value of transient receptor potential channels in male urogenital system. Pflugers Arch 2018; 470:1583-1596. [PMID: 30194638 DOI: 10.1007/s00424-018-2188-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/11/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Transient receptor potential (TRP) channels comprise a family of cation channels implicated in a variety of cellular processes including light, mechanical or chemical stimuli, temperature, pH, or osmolarity. TRP channel proteins are a diverse family of proteins that are expressed in many tissues. We debated our recent knowledge about the expression, function, and regulation of TRP channels in the different parts of the male urogenital system in health and disease. Emerging evidence suggests that dysfunction of TRP channels significantly contributes to the pathophysiology of urogenital diseases. So far, there are many efforts underway to determine if these channels can be used as drug targets to reverse declines in male urogenital function. Furthermore, developing safe and efficacious TRP channel modulators is warranted for male urogenital disorders in a clinical setting.
Collapse
Affiliation(s)
| | - Ecem Kaya-Sezginer
- Faculty of Pharmacy, Department of Biochemistry and Pharmacology, Ankara University, Tandogan, 06100, Ankara, Turkey
| | - Didem Yilmaz-Oral
- Faculty of Pharmacy, Department of Biochemistry and Pharmacology, Ankara University, Tandogan, 06100, Ankara, Turkey.,Faculty of Pharmacy, Department of Pharmacology, Cukurova University, Adana, Turkey
| | - Serap Gur
- Faculty of Pharmacy, Department of Biochemistry and Pharmacology, Ankara University, Tandogan, 06100, Ankara, Turkey.
| |
Collapse
|
104
|
Graversen L, Haagerup A, Andersen BN, Petersen KK, Gjørup V, Gudmundsdottir G, Vogel I, Gregersen PA. Novel TRPV4 variant causes a severe form of metatropic dysplasia. Clin Case Rep 2018; 6:1774-1778. [PMID: 30214761 PMCID: PMC6132144 DOI: 10.1002/ccr3.1598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 01/19/2023] Open
Abstract
We present a girl born with a frontal bossing, short neck, bell-shaped thorax, short limbs with prominent joints, and a tail-like coccygeal appendage. Genetic screening of TRPV4 identified a novel de novo heterozygous missense variant. We believe the variant causes the severe form of metatropic dysplasia in this patient.
Collapse
Affiliation(s)
- Lise Graversen
- Pediatrics and Adolescent MedicineCentre for Rare DiseasesAarhus University HospitalAarhusDenmark
- Department of Clinical GeneticsAarhus University HospitalAarhusDenmark
| | - Annette Haagerup
- NIDO|danmarkWest Danish HospitalHerningDenmark
- Institute of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Brian N. Andersen
- Pediatrics and Adolescent MedicineCentre for Rare DiseasesAarhus University HospitalAarhusDenmark
| | | | - Vibike Gjørup
- Department of Gynaecology and ObstetricsAarhus University HospitalAarhusDenmark
| | | | - Ida Vogel
- Department of Clinical GeneticsAarhus University HospitalAarhusDenmark
| | - Pernille A. Gregersen
- Pediatrics and Adolescent MedicineCentre for Rare DiseasesAarhus University HospitalAarhusDenmark
- Department of Clinical GeneticsAarhus University HospitalAarhusDenmark
| |
Collapse
|
105
|
Bishnoi M, Khare P, Brown L, Panchal SK. Transient receptor potential (TRP) channels: a metabolic TR(i)P to obesity prevention and therapy. Obes Rev 2018; 19:1269-1292. [PMID: 29797770 DOI: 10.1111/obr.12703] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/26/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022]
Abstract
Cellular transport of ions, especially by ion channels, regulates physiological function. The transient receptor potential (TRP) channels, with 30 identified so far, are cation channels with high calcium permeability. These ion channels are present in metabolically active tissues including adipose tissue, liver, gastrointestinal tract, brain (hypothalamus), pancreas and skeletal muscle, which suggests a potential role in metabolic disorders including obesity. TRP channels have potentially important roles in adipogenesis, obesity development and its prevention and therapy because of their physiological properties including calcium permeability, thermosensation and taste perception, involvement in cell metabolic signalling and hormone release. This wide range of actions means that organ-specific actions are unlikely, thus increasing the possibility of adverse effects. Delineation of responses to TRP channels has been limited by the poor selectivity of available agonists and antagonists. Food constituents that can modulate TRP channels are of interest in controlling metabolic status. TRP vanilloid 1 channels modulated by capsaicin have been the most studied, suggesting that this may be the first target for effective pharmacological modulation in obesity. This review shows that most of the TRP channels are potential targets to reduce metabolic disorders through a range of mechanisms.
Collapse
Affiliation(s)
- M Bishnoi
- Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, S.A.S. Nagar (Mohali), Punjab, India.,Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| | - P Khare
- Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, S.A.S. Nagar (Mohali), Punjab, India
| | - L Brown
- Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia.,School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | - S K Panchal
- Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| |
Collapse
|
106
|
Abstract
Transient Receptor Potential (TRP) channels are evolutionarily conserved integral membrane proteins. The mammalian TRP superfamily of ion channels consists of 28 cation permeable channels that are grouped into six subfamilies based on sequence homology (Fig. 6.1). The canonical TRP (TRPC) subfamily is known for containing the founding member of mammalian TRP channels. The vanilloid TRP (TRPV) subfamily has been extensively studied due to the heat sensitivity of its founding member. The melastatin-related TRP (TRPM) subfamily includes some of the few known bi-functional ion channels, which contain functional enzymatic domains. The ankyrin TRP (TRPA) subfamily consists of a single chemo-nociceptor that has been proposed to be a target for analgesics. The mucolipin TRP (TRPML) subfamily channels are found primarily in intracellular compartments and were discovered based on their critical role in type IV mucolipidosis (ML-IV). The polycystic TRP (TRPP) subfamily is a diverse group of proteins implicated in autosomal dominant polycystic kidney disease (ADPKD). Overall, this superfamily of channels is involved in a vast array of physiological and pathophysiological processes making the study of these channels imperative to our understanding of subcellular biochemistry.
Collapse
Affiliation(s)
- Amrita Samanta
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Physiology and Biophysics School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Taylor E T Hughes
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Vera Y Moiseenkova-Bell
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Physiology and Biophysics School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
107
|
Boonen B, Alpizar YA, Meseguer VM, Talavera K. TRP Channels as Sensors of Bacterial Endotoxins. Toxins (Basel) 2018; 10:toxins10080326. [PMID: 30103489 PMCID: PMC6115757 DOI: 10.3390/toxins10080326] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023] Open
Abstract
The cellular and systemic effects induced by bacterial lipopolysaccharides (LPS) have been solely attributed to the activation of the Toll-like receptor 4 (TLR4) signalling cascade. However, recent studies have shown that LPS activates several members of the Transient Receptor Potential (TRP) family of cation channels. Indeed, LPS induces activation of the broadly-tuned chemosensor TRPA1 in sensory neurons in a TLR4-independent manner, and genetic ablation of this channel reduced mouse pain and inflammatory responses triggered by LPS and the gustatory-mediated avoidance to LPS in fruit flies. LPS was also shown to activate TRPV4 channels in airway epithelial cells, an effect leading to an immediate production of bactericidal nitric oxide and to an increase in ciliary beat frequency. In this review, we discuss the role of TRP channels as sensors of bacterial endotoxins, and therefore, as crucial players in the timely detection of invading gram-negative bacteria.
Collapse
Affiliation(s)
- Brett Boonen
- Laboratory for Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, O&N1 Herestraat 49 - box 802, 3000 Leuven, Belgium.
| | - Yeranddy A Alpizar
- Laboratory for Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, O&N1 Herestraat 49 - box 802, 3000 Leuven, Belgium.
| | - Victor M Meseguer
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 San Juan de Alicante, Spain.
| | - Karel Talavera
- Laboratory for Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, O&N1 Herestraat 49 - box 802, 3000 Leuven, Belgium.
| |
Collapse
|
108
|
Wen J, Zu S, Chen Z, Daugherty SL, de Groat WC, Liu Y, Yuan M, Cheng G, Zhang X. Reduced bladder responses to capsaicin and GSK-1016790A in retired-breeder female rats with diminished volume sensitivity. Am J Physiol Renal Physiol 2018; 315:F1217-F1227. [PMID: 30019934 DOI: 10.1152/ajprenal.00198.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Literature documents an age-related reduction of bladder sensory function. Transient receptor potential vanilloid (TRPV)1 or TRPV4 channels have been implicated in bladder mechanotransduction. To investigate contributions of TRPV1 or TRPV4 to the age-related reduction of bladder sensory function, bladder responses to capsaicin (CAP; TRPV1 agonist) and GSK-1016790A (GSK; TRPV4 agonist) in retired breeder (RB; 12-15 mo) and young adult (2-3 mo) female rats were compared using multiple methods. Metabolic cage and continuous infusion cystometry [cystometrogram (CMG)] recordings revealed that RB rats exhibit larger bladder capacity and lower voiding frequency. RB rats also have a greater intravesical pressure threshold for micturition; however, the voiding contraction strength was equivalent to that in young rats. CAP (1 μM) or GSK (20 nM) administered intravesically evoked smaller changes in all CMG parameters in RB rats. In vitro, CAP (1 μM) or GSK (20 nM) evoked smaller enhancement of bladder strip contractions, while the muscarinic receptor agonist carbachol (at 100, 300, and 1,000 nM) elicited greater amplitude contractions in RB rats. Patch-clamp recording revealed smaller CAP (100 nM) induced inward currents in bladder primary sensory neurons, and Ca2+ imaging revealed smaller GSK (20 nM) evoked increases in intracellular Ca2+ concentration in urothelial cells in RB rats. These results suggest that RB rats have a decreased bladder sensory function commonly observed in elderly women, and could be used as an animal model to study the underling mechanisms. Reduced functional expression of TRPV1 in bladder afferents or reduced functional expression of urothelial TRPV4 may be associated with the diminished sensory function.
Collapse
Affiliation(s)
- Jiliang Wen
- Department of Urology, the Second Hospital of Shandong University, Jinan, Shandong, Peoples Republic of China
| | - Shulu Zu
- Department of Urology, the Second Hospital of Shandong University, Jinan, Shandong, Peoples Republic of China
| | - Zhenghao Chen
- Department of Urology, the Second Hospital of Shandong University, Jinan, Shandong, Peoples Republic of China
| | - Stephanie L Daugherty
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - William C de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Yuqiang Liu
- Department of Urology, the Second Hospital of Shandong University, Jinan, Shandong, Peoples Republic of China
| | - Mingzhen Yuan
- Department of Urology, the Second Hospital of Shandong University, Jinan, Shandong, Peoples Republic of China
| | - Guanghui Cheng
- Department of Central Research Laboratory, the Second Hospital of Shandong University, Jinan, Shandong, Peoples Republic of China
| | - Xiulin Zhang
- Department of Urology, the Second Hospital of Shandong University, Jinan, Shandong, Peoples Republic of China
| |
Collapse
|
109
|
Rizopoulos T, Papadaki-Petrou H, Assimakopoulou M. Expression Profiling of the Transient Receptor Potential Vanilloid (TRPV) Channels 1, 2, 3 and 4 in Mucosal Epithelium of Human Ulcerative Colitis. Cells 2018; 7:E61. [PMID: 29914124 PMCID: PMC6025154 DOI: 10.3390/cells7060061] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Abstract
The Transient Receptor Potential (TRP) family of selective and non-selective ion channels is well represented throughout the mammalian gastrointestinal track. Several members of the Transient Receptor Potential Vanilloid (TRPV) subfamily have been identified in contributing to modulation of mobility, secretion and sensitivity of the human intestine. Previous studies have focused on the detection of TRPV mRNA levels in colon tissue of patients with inflammatory bowel disease (IBD) whereas little information exists regarding TRPV channel expression in the colonic epithelium. The aim of this study was to evaluate the expression levels of TRPV1, TRPV2, TRPV3 and TRPV4 in mucosa epithelial cells of colonic biopsies from patients with ulcerative colitis (UC) in comparison to colonic resections from non-IBD patients (control group). Immunohistochemistry, using specific antibodies and quantitative analyses of TRPV-immunostained epithelial cells, was performed in semi-serial sections of the samples. TRPV1 expression was significantly decreased whereas TRPV4 expression was significantly increased in the colonic epithelium of UC patients compared to patients in the control group (p < 0.05). No significant difference for TRPV2 and TRPV3 expression levels between UC and control specimens was detected (p > 0.05). There was no correlation between TRPV channel expression and the clinical features of the disease (p > 0.05). Further investigation is needed to clarify the role of TRPV channels in human bowel inflammatory response.
Collapse
Affiliation(s)
- Theodoros Rizopoulos
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, Rion 26504, Greece.
| | - Helen Papadaki-Petrou
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, Rion 26504, Greece.
| | - Martha Assimakopoulou
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, Rion 26504, Greece.
| |
Collapse
|
110
|
Ischemic Brain Injury Leads to Brain Edema via Hyperthermia-Induced TRPV4 Activation. J Neurosci 2018; 38:5700-5709. [PMID: 29793978 DOI: 10.1523/jneurosci.2888-17.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 01/27/2023] Open
Abstract
Brain edema is characterized by an increase in net brain water content, which results in an increase in brain volume. Although brain edema is associated with a high fatality rate, the cellular and molecular processes of edema remain largely unclear. Here, we developed an in vitro model of ischemic stroke-induced edema in which male mouse brain slices were treated with oxygen-glucose deprivation (OGD) to mimic ischemia. We continuously measured the cross-sectional area of the brain slice for 150 min under macroscopic microscopy, finding that OGD induces swelling of brain slices. OGD-induced swelling was prevented by pharmacologically blocking or genetically knocking out the transient receptor potential vanilloid 4 (TRPV4), a member of the thermosensitive TRP channel family. Because TRPV4 is activated at around body temperature and its activation is enhanced by heating, we next elevated the temperature of the perfusate in the recording chamber, finding that hyperthermia induces swelling via TRPV4 activation. Furthermore, using the temperature-dependent fluorescence lifetime of a fluorescent-thermosensitive probe, we confirmed that OGD treatment increases the temperature of brain slices through the activation of glutamate receptors. Finally, we found that brain edema following traumatic brain injury was suppressed in TRPV4-deficient male mice in vivo Thus, our study proposes a novel mechanism: hyperthermia activates TRPV4 and induces brain edema after ischemia.SIGNIFICANCE STATEMENT Brain edema is characterized by an increase in net brain water content, which results in an increase in brain volume. Although brain edema is associated with a high fatality rate, the cellular and molecular processes of edema remain unclear. Here, we developed an in vitro model of ischemic stroke-induced edema in which mouse brain slices were treated with oxygen-glucose deprivation. Using this system, we showed that the increase in brain temperature and the following activation of the thermosensitive cation channel TRPV4 (transient receptor potential vanilloid 4) are involved in the pathology of edema. Finally, we confirmed that TRPV4 is involved in brain edema in vivo using TRPV4-deficient mice, concluding that hyperthermia activates TRPV4 and induces brain edema after ischemia.
Collapse
|
111
|
Gan Y, Tu B, Li P, Ye J, Zhao C, Luo L, Zhang C, Zhang Z, Zhu L, Zhou Q. Low Magnitude of Compression Enhances Biosynthesis of Mesenchymal Stem Cells towards Nucleus Pulposus Cells via the TRPV4-Dependent Pathway. Stem Cells Int 2018; 2018:7061898. [PMID: 29765419 PMCID: PMC5932483 DOI: 10.1155/2018/7061898] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/28/2018] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stem cell- (MSC-) based therapy is regarded as a promising tissue engineering strategy to achieve nucleus pulposus (NP) regeneration for the treatment of intervertebral disc degeneration (IDD). However, it is still a challenge to promote the biosynthesis of MSC to meet the requirement of NP regeneration. The purpose of this study was to optimize the compressive magnitude to enhance the extracellular matrix (ECM) deposition towards discogenesis of MSCs. Thus, we constructed a 3D culture model for MSCs to bear different magnitudes of compression for 7 days (5%, 10%, and 20% at the frequency of 1.0 Hz for 8 hours/day) using an intelligent and mechanically active bioreactor. Then, the underlying mechanotransduction mechanism of transient receptor potential vanilloid 4 (TRPV4) was further explored. The MSC-encapsulated hybrids were evaluated by Live/Dead staining, biochemical content assay, real-time PCR, Western blot, histological, and immunohistochemical analysis. The results showed that low-magnitude compression promoted anabolic response where high-magnitude compression induced the catabolic response for the 3D-cultured MSCs. The anabolic effect of low-magnitude compression could be inhibited by inhibiting TRPV4. Meanwhile, the activation of TRPV4 enhanced the biosynthesis analogous to low-magnitude compression. These findings demonstrate that low-magnitude compression promoted the anabolic response of ECM deposition towards discogenesis for the 3D-cultured MSCs and the TRPV4 channel plays a key role on mechanical signal transduction for low-magnitude compressive loading. Further understanding of this mechanism may provide insights into the development of new therapies for MSC-based NP regeneration.
Collapse
Affiliation(s)
- Yibo Gan
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gao Tan Yan Street, Shapingba District, Chongqing 400038, China
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), 30 Gao Tan Yan Street, Shapingba District, Chongqing 400038, China
| | - Bing Tu
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gao Tan Yan Street, Shapingba District, Chongqing 400038, China
| | - Pei Li
- Department of Orthopedic Surgery, No.89 Hospital of PLA, Weifang, 261026 Shandong, China
| | - Jixing Ye
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gao Tan Yan Street, Shapingba District, Chongqing 400038, China
| | - Chen Zhao
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gao Tan Yan Street, Shapingba District, Chongqing 400038, China
| | - Lei Luo
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gao Tan Yan Street, Shapingba District, Chongqing 400038, China
| | - Chengmin Zhang
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gao Tan Yan Street, Shapingba District, Chongqing 400038, China
| | - Zetong Zhang
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gao Tan Yan Street, Shapingba District, Chongqing 400038, China
| | - Linyong Zhu
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiang Zhou
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gao Tan Yan Street, Shapingba District, Chongqing 400038, China
| |
Collapse
|
112
|
Endothelial Ca 2+ Signaling and the Resistance to Anticancer Treatments: Partners in Crime. Int J Mol Sci 2018; 19:ijms19010217. [PMID: 29324706 PMCID: PMC5796166 DOI: 10.3390/ijms19010217] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 02/06/2023] Open
Abstract
Intracellular Ca2+ signaling drives angiogenesis and vasculogenesis by stimulating proliferation, migration, and tube formation in both vascular endothelial cells and endothelial colony forming cells (ECFCs), which represent the only endothelial precursor truly belonging to the endothelial phenotype. In addition, local Ca2+ signals at the endoplasmic reticulum (ER)-mitochondria interface regulate endothelial cell fate by stimulating survival or apoptosis depending on the extent of the mitochondrial Ca2+ increase. The present article aims at describing how remodeling of the endothelial Ca2+ toolkit contributes to establish intrinsic or acquired resistance to standard anti-cancer therapies. The endothelial Ca2+ toolkit undergoes a major alteration in tumor endothelial cells and tumor-associated ECFCs. These include changes in TRPV4 expression and increase in the expression of P2X7 receptors, Piezo2, Stim1, Orai1, TRPC1, TRPC5, Connexin 40 and dysregulation of the ER Ca2+ handling machinery. Additionally, remodeling of the endothelial Ca2+ toolkit could involve nicotinic acetylcholine receptors, gasotransmitters-gated channels, two-pore channels and Na⁺/H⁺ exchanger. Targeting the endothelial Ca2+ toolkit could represent an alternative adjuvant therapy to circumvent patients' resistance to current anti-cancer treatments.
Collapse
|
113
|
Marziano C, Hong K, Cope EL, Kotlikoff MI, Isakson BE, Sonkusare SK. Nitric Oxide-Dependent Feedback Loop Regulates Transient Receptor Potential Vanilloid 4 (TRPV4) Channel Cooperativity and Endothelial Function in Small Pulmonary Arteries. J Am Heart Assoc 2017; 6:JAHA.117.007157. [PMID: 29275372 PMCID: PMC5779028 DOI: 10.1161/jaha.117.007157] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Recent studies demonstrate that spatially restricted, local Ca2+ signals are key regulators of endothelium-dependent vasodilation in systemic circulation. There are drastic functional differences between pulmonary arteries (PAs) and systemic arteries, but the local Ca2+ signals that control endothelium-dependent vasodilation of PAs are not known. Localized, unitary Ca2+ influx events through transient receptor potential vanilloid 4 (TRPV4) channels, termed TRPV4 sparklets, regulate endothelium-dependent vasodilation in resistance-sized mesenteric arteries via activation of Ca2+-dependent K+ channels. The objective of this study was to determine the unique functional roles, signaling targets, and endogenous regulators of TRPV4 sparklets in resistance-sized PAs. METHODS AND RESULTS Using confocal imaging, custom image analysis, and pressure myography in fourth-order PAs in conjunction with knockout mouse models, we report a novel Ca2+ signaling mechanism that regulates endothelium-dependent vasodilation in resistance-sized PAs. TRPV4 sparklets exhibit distinct spatial localization in PAs when compared with mesenteric arteries, and preferentially activate endothelial nitric oxide synthase (eNOS). Nitric oxide released by TRPV4-endothelial nitric oxide synthase signaling not only promotes vasodilation, but also initiates a guanylyl cyclase-protein kinase G-dependent negative feedback loop that inhibits cooperative openings of TRPV4 channels, thus limiting sparklet activity. Moreover, we discovered that adenosine triphosphate dilates PAs through a P2 purinergic receptor-dependent activation of TRPV4 sparklets. CONCLUSIONS Our results reveal a spatially distinct TRPV4-endothelial nitric oxide synthase signaling mechanism and its novel endogenous regulators in resistance-sized PAs.
Collapse
Affiliation(s)
- Corina Marziano
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA.,Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Kwangseok Hong
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Eric L Cope
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Michael I Kotlikoff
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Brant E Isakson
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA.,Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Swapnil K Sonkusare
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA .,Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA.,Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
114
|
Heppner TJ, Hennig GW, Nelson MT, Vizzard MA. Rhythmic Calcium Events in the Lamina Propria Network of the Urinary Bladder of Rat Pups. Front Syst Neurosci 2017; 11:87. [PMID: 29321730 PMCID: PMC5732214 DOI: 10.3389/fnsys.2017.00087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/14/2017] [Indexed: 01/23/2023] Open
Abstract
The lamina propria contains a dense network of cells, including interstitial cells (ICs), that may play a role in bladder function by modulating communication between urothelium, nerve fibers and smooth muscle or acting as pacemakers. Transient receptor potential vanilloid 4 (TRPV4) channels allow cation influx and may be involved in sensing stretch or chemical irritation in urinary bladder. Urothelium was removed from rats (P0-Adult), cut into strips, and loaded with a Ca2+ fluorescent dye (Fluo-2 AM leak resistant or Cal 520) for 90 min (35-37°C) to measure Ca2+ events. Ca2+ events were recorded for a period of 60 seconds (s) in control and after drug treatment. A heterogeneous network of cells was identified at the interface of the urothelium and lamina propria of postnatal rat pups, aged ≤ postnatal (P) day 21, with diverse morphology (round, fusiform, stellate with numerous projections) and expressing platelet-derived growth factor receptor alpha (PDGFRα)- and TRPV4-immunoreactivity (IR). Ca2+ transients occurred at a slow frequency with an average interval of 30 ± 8.6 s. Waveform analyses of Ca2+ transients in cells in the lamina propria network revealed long duration Ca2+ events with slow upstrokes. We observed slow propagating waves of activity in the lamina propria network that displayed varying degrees of coupling. Application of the TRPV4 agonist, GSK1016790 (100 nM), increased the duration of Ca2+ events, the number of cells with Ca2+ events and the integrated Ca2+ activity corresponding to propagation of activity among cells in the lamina propria network. However, GSK2193874 (1 μM), a potent antagonist of TRPV4 channels, was without effect. ATP (1 μM) perfusion increased the number of cells in the lamina propria exhibiting Ca2+ events and produced tightly coupled network activity. These findings indicate that ATP and TRPV4 can activate cells in the laminar propria network, leading to the appearance of organized propagating wavefronts.
Collapse
Affiliation(s)
- Thomas J Heppner
- Department of Pharmacology, The Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, United States
| | - Grant W Hennig
- Department of Pharmacology, The Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, United States
| | - Mark T Nelson
- Department of Pharmacology, The Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, United States
| | - Margaret A Vizzard
- Department of Neurological Sciences, The Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, United States
| |
Collapse
|
115
|
Ladi-Seyedian SS, Nabavizadeh B, Sharifi-Rad L, Kajbafzadeh AM. Pharmacological treatments available for the management of underactive bladder in neurological conditions. Expert Rev Clin Pharmacol 2017; 11:193-204. [DOI: 10.1080/17512433.2018.1411801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Seyedeh-Sanam Ladi-Seyedian
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnam Nabavizadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Lida Sharifi-Rad
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physical Therapy, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
116
|
Abstract
This brief review assesses the role of Ca2+ signaling in lung endothelium in regulation of endothelial permeability. The disconnect between experimental and clinical outcomes to date may be due, in part, to the use of tools which yield information about aggregate permeability or Ca2+ responses in lung or in endothelial monolayers. The teaching point of this review is to “unpack the box,” i.e. consider the many potential issues which could impact interpretation of outcomes. These include phenotypic heterogeneity and resultant segment-specific permeability responses, methodologic issues related to permeability measures, contributions from Ca2+ channels in cells other than endothelium—such as alveolar macrophages or blood leukocytes), Ca2+ dynamic patterns, rather than averaged Ca2+ responses to channel activation, and the background context, such as changes in endothelial bioenergetics with sepsis. Any or all of these issues might color interpretation of permeability and Ca2+ signaling in lung.
Collapse
Affiliation(s)
- Mary I Townsley
- 12214 Department of Physiology & Cell Biology, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
117
|
Sleep promoting potential of low dose α-Asarone in rat model. Neuropharmacology 2017; 125:13-29. [DOI: 10.1016/j.neuropharm.2017.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/09/2017] [Accepted: 07/06/2017] [Indexed: 01/16/2023]
|
118
|
Lee H, Koh BH, Peri LE, Corrigan RD, Lee HT, George NE, Bhetwal BP, Xie Y, Perrino BA, Chai TC, Sanders KM, Koh SD. Premature contractions of the bladder are suppressed by interactions between TRPV4 and SK3 channels in murine detrusor PDGFRα + cells. Sci Rep 2017; 7:12245. [PMID: 28947806 PMCID: PMC5613012 DOI: 10.1038/s41598-017-12561-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 09/11/2017] [Indexed: 11/09/2022] Open
Abstract
During filling, urinary bladder volume increases dramatically with little change in pressure. This is accomplished by suppressing contractions of the detrusor muscle that lines the bladder wall. Mechanisms responsible for regulating detrusor contraction during filling are poorly understood. Here we describe a novel pathway to stabilize detrusor excitability involving platelet-derived growth factor receptor-α positive (PDGFRα+) interstitial cells. PDGFRα+ cells express small conductance Ca2+-activated K+ (SK) and TRPV4 channels. We found that Ca2+ entry through mechanosensitive TRPV4 channels during bladder filling stabilizes detrusor excitability. GSK1016790A (GSK), a TRPV4 channel agonist, activated a non-selective cation conductance that coupled to activation of SK channels. GSK induced hyperpolarization of PDGFRα+ cells and decreased detrusor contractions. Contractions were also inhibited by activation of SK channels. Blockers of TRPV4 or SK channels inhibited currents activated by GSK and increased detrusor contractions. TRPV4 and SK channel blockers also increased contractions of intact bladders during filling. Similar enhancement of contractions occurred in bladders of Trpv4 -/- mice during filling. An SK channel activator (SKA-31) decreased contractions during filling, and rescued the overactivity of Trpv4 -/- bladders. Our findings demonstrate how Ca2+ influx through TRPV4 channels can activate SK channels in PDGFRα+ cells and prevent bladder overactivity during filling.
Collapse
Affiliation(s)
- Haeyeong Lee
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA.
| | - Byoung H Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Lauren E Peri
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Robert D Corrigan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Hyun-Tai Lee
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Nikita E George
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Bhupal P Bhetwal
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Brian A Perrino
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Toby C Chai
- Department of Urology, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| |
Collapse
|
119
|
Lu T, Wang XL, Chai Q, Sun X, Sieck GC, Katusic ZS, Lee HC. Role of the endothelial caveolae microdomain in shear stress-mediated coronary vasorelaxation. J Biol Chem 2017; 292:19013-19023. [PMID: 28924052 DOI: 10.1074/jbc.m117.786152] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 09/08/2017] [Indexed: 12/31/2022] Open
Abstract
In this study, we determined the role of caveolae and the ionic mechanisms that mediate shear stress-mediated vasodilation (SSD). We found that both TRPV4 and SK channels are targeted to caveolae in freshly isolated bovine coronary endothelial cells (BCECs) and that TRPV4 and KCa2.3 (SK3) channels are co-immunoprecipitated by anti-caveolin-1 antibodies. Acute exposure of BCECs seeded in a capillary tube to 10 dynes/cm2 of shear stress (SS) resulted in activation of TRPV4 and SK currents. However, after incubation with HC067047 (TRPV4 inhibitor), SK currents could no longer be activated by SS, suggesting SK channel activation by SS was mediated through TRPV4. SK currents in BCECs were also activated by isoproterenol or by GSK1016790A (TRPV4 activator). In addition, preincubation of isolated coronary arterioles with apamin (SK inhibitor) resulted in a significant diminution of SSD whereas preincubation with HC067047 produced vasoconstriction by SS. Exposure of BCECs to SS (15 dynes/cm2 16 h) enhanced the production of nitric oxide and prostacyclin (PGI2) and facilitated the translocation of TRPV4 to the caveolae. Inhibition of TRPV4 abolished the SS-mediated intracellular Ca2+ ([Ca2+] i ) increase in BCECs. These results indicate a dynamic interaction in the vascular endothelium among caveolae TRPV4 and SK3 channels. This caveolae-TRPV4-SK3 channel complex underlies the molecular and ionic mechanisms that modulate SSD in the coronary circulation.
Collapse
Affiliation(s)
- Tong Lu
- From the Department of Cardiovascular Medicine
| | | | - Qiang Chai
- From the Department of Cardiovascular Medicine.,the Department of Physiology, Institute of Basic Medicine, Shandong Academy of Medical Science, Jinan 250062, China
| | | | - Garry C Sieck
- Department of Physiology and Biomedical Engineering, and
| | - Zvonimir S Katusic
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota 55905 and
| | - Hon-Chi Lee
- From the Department of Cardiovascular Medicine,
| |
Collapse
|
120
|
Abstract
Chronic obstructive pulmonary disease (COPD) and asthma are both common respiratory diseases that are associated with airflow reduction/obstruction and pulmonary inflammation. Whilst drug therapies offer adequate symptom control for many mild to moderate asthmatic patients, severe asthmatics and COPD patients symptoms are often not controlled, and in these cases, irreversible structural damage occurs with disease progression over time. Transient receptor potential (TRP) channels, in particular TRPV1, TRPA1, TRPV4 and TRPM8, have been implicated with roles in the regulation of inflammation and autonomic nervous control of the lungs. Evidence suggests that inflammation elevates levels of activators and sensitisers of TRP channels and additionally that TRP channel expression may be increased, resulting in excessive channel activation. The enhanced activity of these channels is thought to then play a key role in the propagation and maintenance of the inflammatory disease state and neuronal symptoms such as bronchoconstriction and cough. For TRPM8 the evidence is less clear, but as with TRPV1, TRPA1 and TRPV4, antagonists are being developed by multiple companies for indications including asthma and COPD, which will help in elucidating their role in respiratory disease.
Collapse
|
121
|
Goswami R, Merth M, Sharma S, Alharbi MO, Aranda-Espinoza H, Zhu X, Rahaman SO. TRPV4 calcium-permeable channel is a novel regulator of oxidized LDL-induced macrophage foam cell formation. Free Radic Biol Med 2017; 110:142-150. [PMID: 28602913 DOI: 10.1016/j.freeradbiomed.2017.06.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/27/2017] [Accepted: 06/06/2017] [Indexed: 01/03/2023]
Abstract
Cardiovascular disease is the number one cause of death in United States, and atherosclerosis, a chronic inflammatory arterial disease, is the most dominant underlying pathology. Macrophages are thought to orchestrate atherosclerosis by generating lipid-laden foam cells and by secreting inflammatory mediators. Emerging data support a role for a mechanical factor, e.g., matrix stiffness, in regulation of macrophage function, vascular elasticity, and atherogenesis. However, the identity of the plasma membrane mechanosensor and the mechanisms by which pro-atherogenic signals are transduced/maintained are unknown. We have obtained evidence that TRPV4, an ion channel in the transient receptor potential vanilloid family and a known mechanosensor, is the likely mediator of oxidized low-density lipoprotein (oxLDL)-dependent macrophage foam cell formation, a critical process in atherogenesis. Specifically, we found that: i) genetic ablation of TRPV4 or pharmacologic inhibition of TRPV4 activity by a specific antagonist blocked oxLDL-induced macrophage foam cell formation, and ii) TRPV4 deficiency prevented pathophysiological range matrix stiffness or scratch-induced exacerbation of oxLDL-induced foam cell formation. Mechanistically, we found that: i) plasma membrane localization of TRPV4 was sensitized to the increasing level of matrix stiffness, ii) lack of foam cell formation in TRPV4 null cells was not due to lack of expression of CD36, a major receptor for oxLDL, and iii) TRPV4 channel activity regulated oxLDL uptake but not its binding on macrophages. Altogether, these findings identify a novel role for TRPV4 in regulating macrophage foam cell formation by modulating uptake of oxLDL. These findings suggest that therapeutic targeting of TRPV4 may provide a selective approach to the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Rishov Goswami
- University of Maryland, Department of Nutrition and Food Science, College Park, MD 20742, USA
| | - Michael Merth
- University of Maryland, Department of Nutrition and Food Science, College Park, MD 20742, USA
| | - Shweta Sharma
- University of Maryland, Department of Nutrition and Food Science, College Park, MD 20742, USA
| | - Mazen O Alharbi
- University of Maryland, Department of Nutrition and Food Science, College Park, MD 20742, USA
| | - Helim Aranda-Espinoza
- University of Maryland, The Fischell Department of Bioengineering, College Park, MD 20742, USA
| | - Xiaoping Zhu
- University of Maryland, Department of Veterinary Medicine, College Park, MD 20742, USA
| | - Shaik O Rahaman
- University of Maryland, Department of Nutrition and Food Science, College Park, MD 20742, USA.
| |
Collapse
|
122
|
Assimakopoulou M, Pagoulatos D, Nterma P, Pharmakakis N. Immunolocalization of cannabinoid receptor type 1 and CB2 cannabinoid receptors, and transient receptor potential vanilloid channels in pterygium. Mol Med Rep 2017; 16:5285-5293. [PMID: 28849159 PMCID: PMC5647061 DOI: 10.3892/mmr.2017.7246] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/19/2017] [Indexed: 12/17/2022] Open
Abstract
Cannabinoids, as multi-target mediators, activate cannabinoid receptors and transient receptor potential vanilloid (TRPV) channels. There is evidence to support a functional interaction of cannabinoid receptors and TRPV channels when they are coexpressed. Human conjunctiva demonstrates widespread cannabinoid receptor type 1 (CB1), CB2 and TRPV channel localization. The aim of the present study was to investigate the expression profile for cannabinoid receptors (CB1 and CB2) and TRPV channels in pterygium, an ocular surface lesion originating from the conjunctiva. Semi-serial paraffin-embedded sections from primary and recurrent pterygium samples were immunohistochemically examined with the use of specific antibodies. All of the epithelial layers in 94, 78, 96, 73 and 80% of pterygia cases, exhibited CB1, CB2, TRPV1, TRPV2 and TRPV3 cytoplasmic immunoreactivity, respectively. The epithelium of all pterygia cases (100%) showed strong, mainly nuclear, TRPV4 immunolocalization. In the pterygium stroma, scattered cells demonstrated intense CB2 immunoreactivity, whereas vascular endothelial cells were immunopositive for the cannabinoid receptors and all TRPV channels. Quantitative analyses of the immunohistochemical findings in epithelial cells demonstrated a significantly higher expression level in conjunctiva compared with primary pterygia (P=0.04) for CB1, but not for CB2 (P>0.05). Additionally, CB1 and CB2 were significantly highly expressed in primary pterygia (P=0.01), compared with recurrent pterygia. Furthermore, CB1 expression levels were significantly correlated with CB2 expression levels in primary pterygia (P=0.005), but not in recurrent pterygia (P>0.05). No significant difference was detected for all TRPV channel expression levels between pterygium (primary or recurrent) and conjunctival tissues (P>0.05). A significant correlation between the TRPV1 and TRPV3 expression levels (P<0.001) was detected independently of pterygium recurrence. Finally, TRPV channel expression was identified to be significantly higher than the expression level of cannabinoid receptors in the pterygium samples (P<0.001). The differentiated expression of cannabinoid receptors in combination with the presence of TRPV channels, in primary and recurrent pterygia, imply a potential role of these cannabinoid targets in the underlying mechanisms of pterygium.
Collapse
Affiliation(s)
- Martha Assimakopoulou
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, GR‑26504 Rio, Greece
| | - Dionysios Pagoulatos
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, GR‑26504 Rio, Greece
| | - Pinelopi Nterma
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, GR‑26504 Rio, Greece
| | - Nikolaos Pharmakakis
- Department of Ophthalmology, School of Medicine, University of Patras, GR‑26504 Rio, Greece
| |
Collapse
|
123
|
Chen CK, Hsu PY, Wang TM, Miao ZF, Lin RT, Juo SHH. TRPV4 Activation Contributes Functional Recovery from Ischemic Stroke via Angiogenesis and Neurogenesis. Mol Neurobiol 2017; 55:4127-4135. [PMID: 28597396 DOI: 10.1007/s12035-017-0625-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022]
Abstract
The endothelial transient receptor potential cation channel subfamily V member 4 (TRPV4) plays a crucial role in vascular remodeling; however, TRPV4-mediated angiogenesis after ischemic neuronal death as a neurorestorative strategy has not yet been thoroughly examined. In this study, we first tested whether TRPV4 activation can improve functional recovery in rats subjected to transient brain ischemia. The possible mechanisms for TRPV4 activation-promoted functional recovery were explored. A TRPV4 agonist, 4α-phorbol 12,13-didecanoate (4α-PDD), was intravenously injected via the tail vein at 6 h and 1, 2, 3, 4 days after ischemic stroke. The treatment reduced infarct volume by almost 50% (14.7 ± 3.7 vs. 29.2 ± 6.2%; p < 0.0001) and improved functional outcomes (p = 0.03) on day 5. To explore the therapeutic mechanism, we measured endothelial nitric oxide synthase (eNOS) expression and phosphorylation, vascular endothelial growth factor A (VEGFA) signaling, and neural stem/progenitor cells (NPCs). TRPV4 activation significantly increased eNOS expression and phosphorylation (serine 1177) by more than 2-fold in the ischemic region. The expressions of VEGFA and VEGF receptor-2 were significantly higher in the treated animals, especially an increase of the proangiogenic VEGFA164a isoform while a decrease of the antiangiogenic VEGFA165b isoform. We evaluated angiogenesis by detecting microvessel density in ischemic region. Using the immunohistochemistry staining, we found that 4α-PDD treatment caused a 3.4-fold increase of microvessel density (p < 0.0001). In addition, NPC proliferation and migration in the ischemic hemisphere were increased by 3-fold and 5-fold, respectively. In conclusion, our data suggest that TRPV4 activation by 4α-PDD may improve poststroke functional improvement through angiogenesis and neurogenesis.
Collapse
Affiliation(s)
- Chun-Kai Chen
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, Collage of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Yuan Hsu
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Tzu-Ming Wang
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Zhi-Feng Miao
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ruey-Tay Lin
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Suh-Hang H Juo
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan. .,Institute of New Drug Development, China Medical University, Taichung, Taiwan. .,Brain Disease Research Center, China Medical University, Taichung, Taiwan. .,Center for Myopia and Eye Disease, China Medical University, Taichung, Taiwan.
| |
Collapse
|
124
|
Mamenko MV, Boukelmoune N, Tomilin VN, Zaika OL, Jensen VB, O'Neil RG, Pochynyuk OM. The renal TRPV4 channel is essential for adaptation to increased dietary potassium. Kidney Int 2017; 91:1398-1409. [PMID: 28187982 PMCID: PMC5429991 DOI: 10.1016/j.kint.2016.12.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/22/2016] [Accepted: 12/08/2016] [Indexed: 12/11/2022]
Abstract
To maintain potassium homeostasis, kidneys exert flow-dependent potassium secretion to facilitate kaliuresis in response to elevated dietary potassium intake. This process involves stimulation of calcium-activated large conductance maxi-K (BK) channels in the distal nephron, namely the connecting tubule and the collecting duct. Recent evidence suggests that the TRPV4 channel is a critical determinant of flow-dependent intracellular calcium elevations in these segments of the renal tubule. Here, we demonstrate that elevated dietary potassium intake (five percent potassium) increases renal TRPV4 mRNA and protein levels in an aldosterone-dependent manner and causes redistribution of the channel to the apical plasma membrane in native collecting duct cells. This, in turn, leads to augmented TRPV4-mediated flow-dependent calcium ion responses in freshly isolated split-opened collecting ducts from mice fed the high potassium diet. Genetic TRPV4 ablation greatly diminished BK channel activity in collecting duct cells pointing to a reduced capacity to excrete potassium. Consistently, elevated potassium intake induced hyperkalemia in TRPV4 knockout mice due to deficient renal potassium excretion. Thus, regulation of TRPV4 activity in the distal nephron by dietary potassium is an indispensable component of whole body potassium balance.
Collapse
Affiliation(s)
- Mykola V Mamenko
- Department of Integrative Biology and Pharmacology, the University of Texas Health Science Center at Houston, Houston, Texas, USA; Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Nabila Boukelmoune
- Department of Integrative Biology and Pharmacology, the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Viktor N Tomilin
- Department of Integrative Biology and Pharmacology, the University of Texas Health Science Center at Houston, Houston, Texas, USA; Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Oleg L Zaika
- Department of Integrative Biology and Pharmacology, the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - V Behrana Jensen
- Department of Veterinary Medicine and Surgery, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Roger G O'Neil
- Department of Integrative Biology and Pharmacology, the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Oleh M Pochynyuk
- Department of Integrative Biology and Pharmacology, the University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
125
|
Disrupting sensitization of TRPV4. Neuroscience 2017; 352:1-8. [DOI: 10.1016/j.neuroscience.2017.03.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 12/29/2022]
|
126
|
Cheung M, Bao W, Behm DJ, Brooks CA, Bury MJ, Dowdell SE, Eidam HS, Fox RM, Goodman KB, Holt DA, Lee D, Roethke TJ, Willette RN, Xu X, Ye G, Thorneloe KS. Discovery of GSK2193874: An Orally Active, Potent, and Selective Blocker of Transient Receptor Potential Vanilloid 4. ACS Med Chem Lett 2017; 8:549-554. [PMID: 28523109 DOI: 10.1021/acsmedchemlett.7b00094] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/20/2017] [Indexed: 12/16/2022] Open
Abstract
Transient Receptor Potential Vanilloid 4 (TRPV4) is a member of the Transient Receptor Potential (TRP) superfamily of cation channels. TRPV4 is expressed in the vascular endothelium in the lung and regulates the integrity of the alveolar septal barrier. Increased pulmonary vascular pressure evokes TRPV4-dependent pulmonary edema, and therefore, inhibition of TRPV4 represents a novel approach for the treatment of pulmonary edema associated with conditions such as congestive heart failure. Herein we report the discovery of an orally active, potent, and selective TRPV4 blocker, 3-(1,4'-bipiperidin-1'-ylmethyl)-7-bromo-N-(1-phenylcyclopropyl)-2-[3-(trifluoromethyl)phenyl]-4-quinolinecarboxamide (GSK2193874, 28) after addressing an unexpected off-target cardiovascular liability observed from in vivo studies. GSK2193874 is a selective tool for elucidating TRPV4 biology both in vitro and in vivo.
Collapse
Affiliation(s)
- Mui Cheung
- GlaxoSmithKline, Heart Failure
Discovery Performance Unit, Metabolic Pathways and
Cardiovascular Therapeutic Area, King of Prussia, Pennsylvania 19406, United States
| | - Weike Bao
- GlaxoSmithKline, Heart Failure
Discovery Performance Unit, Metabolic Pathways and
Cardiovascular Therapeutic Area, King of Prussia, Pennsylvania 19406, United States
| | - David J. Behm
- GlaxoSmithKline, Heart Failure
Discovery Performance Unit, Metabolic Pathways and
Cardiovascular Therapeutic Area, King of Prussia, Pennsylvania 19406, United States
| | - Carl A. Brooks
- GlaxoSmithKline, Heart Failure
Discovery Performance Unit, Metabolic Pathways and
Cardiovascular Therapeutic Area, King of Prussia, Pennsylvania 19406, United States
| | - Michael J. Bury
- GlaxoSmithKline, Heart Failure
Discovery Performance Unit, Metabolic Pathways and
Cardiovascular Therapeutic Area, King of Prussia, Pennsylvania 19406, United States
| | - Sarah E. Dowdell
- GlaxoSmithKline, Heart Failure
Discovery Performance Unit, Metabolic Pathways and
Cardiovascular Therapeutic Area, King of Prussia, Pennsylvania 19406, United States
| | - Hilary S. Eidam
- GlaxoSmithKline, Heart Failure
Discovery Performance Unit, Metabolic Pathways and
Cardiovascular Therapeutic Area, King of Prussia, Pennsylvania 19406, United States
| | - Ryan M. Fox
- GlaxoSmithKline, Heart Failure
Discovery Performance Unit, Metabolic Pathways and
Cardiovascular Therapeutic Area, King of Prussia, Pennsylvania 19406, United States
| | - Krista B. Goodman
- GlaxoSmithKline, Heart Failure
Discovery Performance Unit, Metabolic Pathways and
Cardiovascular Therapeutic Area, King of Prussia, Pennsylvania 19406, United States
| | - Dennis A. Holt
- GlaxoSmithKline, Heart Failure
Discovery Performance Unit, Metabolic Pathways and
Cardiovascular Therapeutic Area, King of Prussia, Pennsylvania 19406, United States
| | - Dennis Lee
- GlaxoSmithKline, Heart Failure
Discovery Performance Unit, Metabolic Pathways and
Cardiovascular Therapeutic Area, King of Prussia, Pennsylvania 19406, United States
| | - Theresa J. Roethke
- GlaxoSmithKline, Heart Failure
Discovery Performance Unit, Metabolic Pathways and
Cardiovascular Therapeutic Area, King of Prussia, Pennsylvania 19406, United States
| | - Robert N. Willette
- GlaxoSmithKline, Heart Failure
Discovery Performance Unit, Metabolic Pathways and
Cardiovascular Therapeutic Area, King of Prussia, Pennsylvania 19406, United States
| | - Xiaoping Xu
- GlaxoSmithKline, Heart Failure
Discovery Performance Unit, Metabolic Pathways and
Cardiovascular Therapeutic Area, King of Prussia, Pennsylvania 19406, United States
| | - Guosen Ye
- GlaxoSmithKline, Heart Failure
Discovery Performance Unit, Metabolic Pathways and
Cardiovascular Therapeutic Area, King of Prussia, Pennsylvania 19406, United States
| | - Kevin S. Thorneloe
- GlaxoSmithKline, Heart Failure
Discovery Performance Unit, Metabolic Pathways and
Cardiovascular Therapeutic Area, King of Prussia, Pennsylvania 19406, United States
| |
Collapse
|
127
|
Gebremedhin D, Zhang DX, Weihrauch D, Uche NN, Harder DR. Detection of TRPV4 channel current-like activity in Fawn Hooded hypertensive (FHH) rat cerebral arterial muscle cells. PLoS One 2017; 12:e0176796. [PMID: 28472069 PMCID: PMC5417564 DOI: 10.1371/journal.pone.0176796] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/17/2017] [Indexed: 11/18/2022] Open
Abstract
The transient receptor potential vallinoid type 4 (TRPV4) is a calcium entry channel known to modulate vascular function by mediating endothelium–dependent vasodilation. The present study investigated if isolated cerebral arterial myocytes of the Fawn Hooded hypertensive (FHH) rat, known to display exaggerated KCa channel current activity and impaired myogenic tone, express TRPV4 channels at the transcript and protein level and exhibit TRPV4-like single-channel cationic current activity. Reverse transcription polymerase chain reaction (RT-PCR), Western blot, and immunostaining analysis detected the expression of mRNA transcript and translated protein of TRPV4 channel in FHH rat cerebral arterial myocytes. Patch clamp recording of single-channel current activity identified the presence of a single-channel cationic current with unitary conductance of ~85 pS and ~96 pS at hyperpolarizing and depolarizing potentials, respectively, that was inhibited by the TRPV4 channel antagonist RN 1734 or HC 067074 and activated by the potent TRPV4 channel agonist GSK1016790A. Application of negative pressure via the interior of the patch pipette increased the NPo of the TRPV4-like single-channel cationic current recorded in cell-attached patches at a patch potential of 60 mV that was inhibited by prior application of the TRPV4 channel antagonist RN 1734 or HC 067047. Treatment with the TRPV4 channel agonist GSK1016790A caused concentration-dependent increase in the NPo of KCa single-channel current recorded in cell-attached patches of cerebral arterial myocytes at a patch potential of 40 mV, which was not influenced by pretreatment with the voltage-gated L-type Ca2+ channel blocker nifedipine or the T-type Ca2+ channel blocker Ni2+. These findings demonstrate that FHH rat cerebral arterial myocytes express mRNA transcript and translated protein for TRPV4 channel and display TRPV4-like single-channel cationic current activity that was stretch-sensitive and activation of which increased the open state probability of KCa single-channel current in these arterial myocytes.
Collapse
Affiliation(s)
- Debebe Gebremedhin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| | - David X. Zhang
- Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Medicine and, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Dorothee Weihrauch
- Department of Anesthesiology Medical College of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Nnamdi N. Uche
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - David R. Harder
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Clement Zablocki VA Medical Center, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
128
|
Scheraga RG, Southern BD, Grove LM, Olman MA. The Role of Transient Receptor Potential Vanilloid 4 in Pulmonary Inflammatory Diseases. Front Immunol 2017; 8:503. [PMID: 28523001 PMCID: PMC5415870 DOI: 10.3389/fimmu.2017.00503] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/12/2017] [Indexed: 01/01/2023] Open
Abstract
Ion channels/pumps are essential regulators of organ homeostasis and disease. In the present review, we discuss the role of the mechanosensitive cation channel, transient receptor potential vanilloid 4 (TRPV4), in cytokine secretion and pulmonary inflammatory diseases such as asthma, cystic fibrosis (CF), and acute lung injury/acute respiratory distress syndrome (ARDS). TRPV4 has been shown to play a role in lung diseases associated with lung parenchymal stretch or stiffness. TRPV4 indirectly mediates hypotonicity-induced smooth muscle contraction and airway remodeling in asthma. Further, the literature suggests that in CF TRPV4 may improve ciliary beat frequency enhancing mucociliary clearance, while at the same time increasing pro-inflammatory cytokine secretion/lung tissue injury. Currently it is understood that the role of TRPV4 in immune cell function and associated lung tissue injury/ARDS may depend on the injury stimulus. Uncovering the downstream mechanisms of TRPV4 action in pulmonary inflammatory diseases is likely important to understanding disease pathogenesis and may lead to novel therapeutics.
Collapse
Affiliation(s)
- Rachel G Scheraga
- Cleveland Clinic, Department of Pathobiology, Lerner Research Institute, Cleveland, OH, USA
| | - Brian D Southern
- Cleveland Clinic, Department of Pathobiology, Lerner Research Institute, Cleveland, OH, USA
| | - Lisa M Grove
- Cleveland Clinic, Department of Pathobiology, Lerner Research Institute, Cleveland, OH, USA
| | - Mitchell A Olman
- Cleveland Clinic, Department of Pathobiology, Lerner Research Institute, Cleveland, OH, USA
| |
Collapse
|
129
|
White JPM, Cibelli M, Urban L, Nilius B, McGeown JG, Nagy I. TRPV4: Molecular Conductor of a Diverse Orchestra. Physiol Rev 2017; 96:911-73. [PMID: 27252279 DOI: 10.1152/physrev.00016.2015] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential vanilloid type 4 (TRPV4) is a calcium-permeable nonselective cation channel, originally described in 2000 by research teams led by Schultz (Nat Cell Biol 2: 695-702, 2000) and Liedtke (Cell 103: 525-535, 2000). TRPV4 is now recognized as being a polymodal ionotropic receptor that is activated by a disparate array of stimuli, ranging from hypotonicity to heat and acidic pH. Importantly, this ion channel is constitutively expressed and capable of spontaneous activity in the absence of agonist stimulation, which suggests that it serves important physiological functions, as does its widespread dissemination throughout the body and its capacity to interact with other proteins. Not surprisingly, therefore, it has emerged more recently that TRPV4 fulfills a great number of important physiological roles and that various disease states are attributable to the absence, or abnormal functioning, of this ion channel. Here, we review the known characteristics of this ion channel's structure, localization and function, including its activators, and examine its functional importance in health and disease.
Collapse
Affiliation(s)
- John P M White
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Mario Cibelli
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Laszlo Urban
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Bernd Nilius
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - J Graham McGeown
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Istvan Nagy
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
130
|
Mihara H, Suzuki N, Muhammad JS, Nanjo S, Ando T, Fujinami H, Kajiura S, Hosokawa A, Sugiyama T. Transient receptor potential vanilloid 4 (TRPV4) silencing in Helicobacter pylori-infected human gastric epithelium. Helicobacter 2017; 22:e12361. [PMID: 27687509 PMCID: PMC5363345 DOI: 10.1111/hel.12361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/22/2016] [Accepted: 09/04/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Helicobacter pylori (HP) infection induces methylation silencing of specific genes in gastric epithelium. Various stimuli activate the nonselective cation channel TRPV4, which is expressed in gastric epithelium where it detects mechanical stimuli and promotes ATP release. As CpG islands in TRPV4 are methylated in HP-infected gastric epithelium, we evaluated HP infection-dependent changes in TRPV4 expression in gastric epithelium. MATERIALS AND METHODS Human gastric biopsy samples, a human gastric cancer cell line (AGS), and a normal gastric epithelial cell line (GES-1) were used to detect TRPV4 mRNA and protein expression by RT-PCR and Western blotting, respectively. Ca2+ imaging was used to evaluate TRPV4 ion channel activity. TRPV4 methylation status was assessed by methylation-specific PCR (MSP). ATP release was measured by a luciferin-luciferase assay. RESULTS TRPV4 mRNA and protein were detected in human gastric biopsy samples and in GES-1 cells. MSP and demethylation assays showed TRPV4 methylation silencing in AGS cells. HP coculture directly induced methylation silencing of TRPV4 in GES-1 cells. In human samples, HP infection was associated with TRPV4 methylation silencing that recovered after HP eradication in a time-dependent manner. CONCLUSION HP infection-dependent DNA methylation suppressed TRPV4 expression in human gastric epithelia, suggesting that TRPV4 methylation may be involved in HP-associated dyspepsia.
Collapse
Affiliation(s)
- Hiroshi Mihara
- Department of GastroenterologyGraduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan,Center for Medical Education and Career DevelopmentUniversity of ToyamaToyamaJapan
| | - Nobuhiro Suzuki
- Department of GastroenterologyGraduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| | - Jibran Sualeh Muhammad
- Department of GastroenterologyGraduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan,Department of Biological and Biomedical SciencesFaculty of Health SciencesThe Aga Khan UniversityKarachiPakistan
| | - Sohachi Nanjo
- Department of GastroenterologyGraduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| | - Takayuki Ando
- Department of GastroenterologyGraduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| | - Haruka Fujinami
- Department of GastroenterologyGraduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| | - Shinya Kajiura
- Department of GastroenterologyGraduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| | - Ayumu Hosokawa
- Department of GastroenterologyGraduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| | - Toshiro Sugiyama
- Department of GastroenterologyGraduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| |
Collapse
|
131
|
Goswami R, Cohen J, Sharma S, Zhang DX, Lafyatis R, Bhawan J, Rahaman SO. TRPV4 ION Channel Is Associated with Scleroderma. J Invest Dermatol 2017; 137:962-965. [PMID: 27889423 PMCID: PMC9936819 DOI: 10.1016/j.jid.2016.10.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/28/2016] [Accepted: 10/28/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Rishov Goswami
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Jonathan Cohen
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - Shweta Sharma
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - David X Zhang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jag Bhawan
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Shaik O Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
132
|
Sharma S, Goswami R, Merth M, Cohen J, Lei KY, Zhang DX, Rahaman SO. TRPV4 ion channel is a novel regulator of dermal myofibroblast differentiation. Am J Physiol Cell Physiol 2017; 312:C562-C572. [PMID: 28249987 DOI: 10.1152/ajpcell.00187.2016] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023]
Abstract
Scleroderma is a multisystem fibroproliferative disease with no effective medical treatment. Myofibroblasts are critical to the fibrogenic tissue repair process in the skin and many internal organs. Emerging data support a role for both matrix stiffness, and transforming growth factor β1 (TGFβ1), in myofibroblast differentiation. Transient receptor potential vanilloid 4 (TRPV4) is a mechanosensitive ion channel activated by both mechanical and biochemical stimuli. The objective of this study was to determine the role of TRPV4 in TGFβ1- and matrix stiffness-induced differentiation of dermal fibroblasts. We found that TRPV4 channels are expressed and functional in both human (HDF) and mouse (MDF) dermal fibroblasts. TRPV4 activity (agonist-induced Ca2+ influx) was induced by both matrix stiffness and TGFβ1 in dermal fibroblasts. TGFβ1 induced expression of TRPV4 proteins in a dose-dependent manner. Genetic ablation or pharmacological antagonism of TRPV4 channel abrogated Ca2+ influx and both TGFβ1-induced and matrix stiffness-induced myofibroblast differentiation as assessed by 1) α-smooth muscle actin expression/incorporation into stress fibers, 2) generation of polymerized actin, and 3) expression of collagen-1. We found that TRPV4 inhibition abrogated TGFβ1-induced activation of AKT but not of Smad2/3, suggesting that the mechanism by which profibrotic TGFβ1 signaling in dermal fibroblasts is modified by TRPV4 may be through non-Smad pathways. Altogether, these data identify a novel reciprocal functional link between TRPV4 activation and TGFβ1 signals regulating dermal myofibroblast differentiation. These findings suggest that therapeutic inhibition of TRPV4 activity may provide a targeted approach to the treatment of scleroderma.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| | - Rishov Goswami
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| | - Michael Merth
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| | - Jonathan Cohen
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland; and
| | - Kai Y Lei
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| | - David X Zhang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shaik O Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland;
| |
Collapse
|
133
|
Tsuno N, Yukimasa A, Yoshida O, Suzuki S, Nakai H, Ogawa T, Fujiu M, Takaya K, Nozu A, Yamaguchi H, Matsuda H, Funaki S, Yamanada N, Tanimura M, Nagamatsu D, Asaki T, Horita N, Yamamoto M, Hinata M, Soga M, Imai M, Morioka Y, Kanemasa T, Sakaguchi G, Iso Y. Pharmacological evaluation of novel (6-aminopyridin-3-yl)(4-(pyridin-2-yl)piperazin-1-yl) methanone derivatives as TRPV4 antagonists for the treatment of pain. Bioorg Med Chem 2017; 25:2177-2190. [PMID: 28284871 DOI: 10.1016/j.bmc.2017.02.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 01/08/2023]
Abstract
A novel series of (6-aminopyridin-3-yl)(4-(pyridin-2-yl)piperazin-1-yl) methanone derivatives were identified as selective transient receptor potential vanilloid 4 (TRPV4) channel antagonist and showed analgesic effect in Freund's Complete Adjuvant (FCA) induced mechanical hyperalgesia model in guinea pig and rat. Modification of right part based on the compound 16d which was disclosed in our previous communication led to the identification of compound 26i as a flagship compound. In this paper, we described the details about design, synthesis and structure-activity relationship (SAR) analysis at right and left part of these derivatives (Fig. 1).
Collapse
Affiliation(s)
- Naoki Tsuno
- Medicinal Chemistry Research Laboratory, Shionogi & Co., Ltd, Japan.
| | - Akira Yukimasa
- Medicinal Chemistry Research Laboratory, Shionogi & Co., Ltd, Japan
| | - Osamu Yoshida
- Medicinal Chemistry Research Laboratory, Shionogi & Co., Ltd, Japan
| | - Shinji Suzuki
- Medicinal Chemistry Research Laboratory, Shionogi & Co., Ltd, Japan
| | - Hiromi Nakai
- Medicinal Chemistry Research Laboratory, Shionogi & Co., Ltd, Japan
| | - Tomoyuki Ogawa
- Medicinal Chemistry Research Laboratory, Shionogi & Co., Ltd, Japan
| | - Motohiro Fujiu
- Medicinal Chemistry Research Laboratory, Shionogi & Co., Ltd, Japan
| | - Kenji Takaya
- Medicinal Chemistry Research Laboratory, Shionogi & Co., Ltd, Japan
| | - Azusa Nozu
- Medicinal Chemistry Research Laboratory, Shionogi & Co., Ltd, Japan
| | - Hiroki Yamaguchi
- Medicinal Chemistry Research Laboratory, Shionogi & Co., Ltd, Japan
| | | | - Satoko Funaki
- Research Laboratory for Development, Shionogi & Co., Ltd, Japan
| | - Natsue Yamanada
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd, Japan
| | - Miki Tanimura
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd, Japan
| | - Daiki Nagamatsu
- Research Laboratory for Development, Shionogi & Co., Ltd, Japan
| | - Toshiyuki Asaki
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd, Japan
| | | | - Miyuki Yamamoto
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd, Japan
| | - Mikie Hinata
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd, Japan
| | - Masahiko Soga
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd, Japan
| | - Masayuki Imai
- Global Innovation Office, Shionogi & Co., Ltd, Japan
| | - Yasuhide Morioka
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd, Japan
| | - Toshiyuki Kanemasa
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd, Japan
| | | | - Yasuyoshi Iso
- IMP Manufacturing Center, CMC R&D Division, Shionogi & Co., Ltd, Japan
| |
Collapse
|
134
|
Sakakibara A, Sakakibara S, Kusumoto J, Takeda D, Hasegawa T, Akashi M, Minamikawa T, Hashikawa K, Terashi H, Komori T. Upregulated Expression of Transient Receptor Potential Cation Channel Subfamily V Receptors in Mucosae of Patients with Oral Squamous Cell Carcinoma and Patients with a History of Alcohol Consumption or Smoking. PLoS One 2017; 12:e0169723. [PMID: 28081185 PMCID: PMC5230781 DOI: 10.1371/journal.pone.0169723] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/07/2016] [Indexed: 01/06/2023] Open
Abstract
Objectives Transient receptor potential cation channel (subfamily V, members 1–4) (TRPV1–4) are expressed in skin and neurons and activated by external stimuli in normal mucosae of all oral cavity sites. The oral cavity is exposed to various stimuli, including temperature, mechanical stimuli, chemical substances, and changes in pH, and, notably, the risk factors for oncogenic transformation in oral squamous epithelium are the same as the external stimuli received by TRPV1–4 receptors. Hence, we examined the relationship between oral squamous cell carcinoma (SCC) and TRPV1–4 expression. Materials and Methods Oral SCC patients (n = 37) who underwent surgical resection were included in this study. We investigated the expression of TRPV1–4 by immunohistochemical staining and quantification of TRPV1–4 mRNA in human oral mucosa. In addition, we compared the TRPV1–4 levels in mucosa from patients with SCC to those in normal oral mucosa. Results The receptors were expressed in oral mucosa at all sites (tongue, buccal mucosa, gingiva, and oral floor) and the expression was stronger in epithelia from patients with SCC than in normal epithelia. Furthermore, alcohol consumption and tobacco use were strongly associated with the occurrence of oral cancer and were found to have a remarkable influence on TRPV1–4 receptor expression in normal oral mucosa. In particular, patients with a history of alcohol consumption demonstrated significantly higher expression levels. Conclusion Various external stimuli may influence the behavior of cancer cells. Overexpression of TRPV1-4 is likely to be a factor in enhanced sensitivity to external stimuli. These findings could contribute to the establishment of novel strategies for cancer therapy or prevention.
Collapse
Affiliation(s)
- Akiko Sakakibara
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
- * E-mail:
| | - Shunsuke Sakakibara
- Department of Plastic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Junya Kusumoto
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Daisuke Takeda
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takumi Hasegawa
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaya Akashi
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tsutomu Minamikawa
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazunobu Hashikawa
- Department of Plastic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroto Terashi
- Department of Plastic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takahide Komori
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
135
|
Hyman AJ, Tumova S, Beech DJ. Piezo1 Channels in Vascular Development and the Sensing of Shear Stress. CURRENT TOPICS IN MEMBRANES 2017; 79:37-57. [PMID: 28728823 DOI: 10.1016/bs.ctm.2016.11.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A critical point in mammalian development occurs before mid-embryogenesis when the heart starts to beat, pushing blood into the nascent endothelial lattice. This pushing force is a signal, detected by endothelial cells as a frictional force (shear stress) to trigger cellular changes that underlie the essential processes of vascular remodeling and expansion required for embryonic growth. The processes are complex and multifactorial and Piezo1 became a recognized player only 2years ago, 4years after Piezo1's initial discovery as a functional membrane protein. Piezo1 is now known to be critical in murine embryonic development just at the time when the pushing force is first detected by endothelial cells. Murine Piezo1 gene disruption in endothelial cells is embryonic lethal and mutations in human PIEZO1 associate with severe disease phenotype due to abnormal lymphatic vascular development. Piezo1 proteins coassemble to form calcium-permeable nonselective cationic channels, most likely as trimers. They are large proteins with little if any resemblance to other proteins or ion channel subunits. The channels appear to sense mechanical force directly, including the force imposed on endothelial cells by physiological shear stress. Here, we review current knowledge of Piezo1 in the vascular setting and discuss hypotheses about how it might serve its vascular functions and integrate with other mechanisms. Piezo1 is a new important player for investigators in this field and promises much as a basis for better understanding of vascular physiology and pathophysiology and perhaps also discovery of new therapies.
Collapse
Affiliation(s)
- A J Hyman
- University of Leeds, Leeds, United Kingdom
| | - S Tumova
- University of Leeds, Leeds, United Kingdom
| | - D J Beech
- University of Leeds, Leeds, United Kingdom
| |
Collapse
|
136
|
Seth RK, Das S, Dattaroy D, Chandrashekaran V, Alhasson F, Michelotti G, Nagarkatti M, Nagarkatti P, Diehl AM, Bell PD, Liedtke W, Chatterjee S. TRPV4 activation of endothelial nitric oxide synthase resists nonalcoholic fatty liver disease by blocking CYP2E1-mediated redox toxicity. Free Radic Biol Med 2017; 102:260-273. [PMID: 27913210 PMCID: PMC5989309 DOI: 10.1016/j.freeradbiomed.2016.11.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 01/11/2023]
Abstract
NAFLD is a clinically progressive disease with steatosis, inflammation, endothelial dysfunction and fibrosis being the stages where clinical intervention becomes necessary. Lack of early biomarkers and absence of a FDA approved drug obstructs efforts for effective treatment. NAFLD progression is strongly linked to a balance between liver injury, tissue regeneration and the functioning of endogenous defense mechanisms. The failure of the defense pathways to resist the tissue damage arising from redox stress, one of the "multiple hits" in disease progression, give rise to heightened inflammation and occasional fibrosis. We introduce an endogenous defense mechanism in the liver that is mediated by TRPV4, a transient receptor potential calcium-permeable ion channel that responds to the cytotoxic liver environment and negatively regulates CYP2E1, a cytochrome p450 enzyme. Using Trpv4-/- mice and cultured primary cells, we show that TRPV4 is activated both by damage associated molecular pattern HMGB1 and collagen in diseased Kupffer cells that in turn activate the endothelial NOS (NOS3) to release nitric oxide (NO). The diffusible NO acts in a paracrine fashion in neighboring hepatocytes to deactivate the redox toxicity induced by CYP2E1. We also find that CYP2E1-mediated TRPV4 repression in late stages causes an unrestricted progression of disease. Thus, TRPV4 functions as a sensor of cell stress in the diseased fatty liver and constitutes an endogenous defense molecule, a novel concept with potential for therapeutic approaches against NAFLD, perhaps also against hepatic drug toxicity in general.
Collapse
Affiliation(s)
- Ratanesh K Seth
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Suvarthi Das
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Diptadip Dattaroy
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Varun Chandrashekaran
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Firas Alhasson
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | | | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Anna Mae Diehl
- Division of Gastroenterology, Duke University, Durham, NC 27707, USA
| | - P Darwin Bell
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, AL 35294, USA
| | - Wolfgang Liedtke
- Department of Neurology, Duke University School of Medicine, Durham, NC 27707, USA.
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
137
|
Seghers F, Yerna X, Zanou N, Devuyst O, Vennekens R, Nilius B, Gailly P. TRPV4 participates in pressure-induced inhibition of renin secretion by juxtaglomerular cells. J Physiol 2016; 594:7327-7340. [PMID: 27779758 DOI: 10.1113/jp273595] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/20/2016] [Indexed: 12/31/2022] Open
Abstract
KEY POINTS Increase in blood pressure in the renal afferent arteriole is known to induce an increase in cytosolic calcium concentration ([Ca2+ ]i ) of juxtaglomerular (JG) cells and to result in a decreased secretion of renin. Mechanical stimulation of As4.1 JG cells induces an increase in [Ca2+ ]i that is inhibited by HC067047 and RN1734, two inhibitors of TRPV4, or by siRNA-mediated repression of TRPV4. Inhibition of TRPV4 impairs pressure-induced decrease in renin secretion. Compared to wild-type mice, Trpv4-/- mice present increased resting plasma levels of renin and aldosterone and present a significantly altered pressure-renin relationship. We suggest that TRPV4 channel participates in mechanosensation at the juxtaglomerular apparatus. ABSTRACT The renin-angiotensin system is a crucial blood pressure regulation system. It consists of a hormonal cascade where the rate-limiting enzyme is renin, which is secreted into the blood flow by renal juxtaglomerular (JG) cells in response to low pressure in the renal afferent arteriole. In contrast, an increase in blood pressure results in a decreased renin secretion. This is accompanied by a transitory increase in [Ca2+ ]i of JG cells. The inverse relationship between [Ca2+ ]i and renin secretion has been called the 'calcium paradox' of renin release. How increased pressure induces a [Ca2+ ]i transient in JG cells, is however, unknown. We observed that [Ca2+ ]i transients induced by mechanical stimuli in JG As4.1 cells were completely abolished by HC067047 and RN1734, two inhibitors of TRPV4. They were also reduced by half by siRNA-mediated repression of TRPV4 but not after repression or inhibition of TRPV2 or Piezo1 ion channels. Interestingly, the stimulation of renin secretion by the adenylate cyclase activator forskolin was totally inhibited by cyclic stretching of the cells. This effect was mimicked by stimulation with GSK1016790A and 4αPDD, two activators of TRPV4 and inhibited in the presence of HC067047. Moreover, in isolated perfused kidneys from Trpv4-/- mice, the pressure-renin relationship was significantly altered. In vivo, Trpv4-/- mice presented increased plasma levels of renin and aldosterone compared to wild-type mice. Altogether, our results suggest that TRPV4 is involved in the pressure-induced entry of Ca2+ in JG cells, which inhibits renin release and allows the negative feedback regulation on blood pressure.
Collapse
Affiliation(s)
- François Seghers
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Cell Physiology, av. Mounier 53, box B1.53.17, B-1200, Brussels, Belgium
| | - Xavier Yerna
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Cell Physiology, av. Mounier 53, box B1.53.17, B-1200, Brussels, Belgium
| | - Nadège Zanou
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Cell Physiology, av. Mounier 53, box B1.53.17, B-1200, Brussels, Belgium
| | - Olivier Devuyst
- University of Zurich, Institute of Physiology, CH-8057, Zurich, Switzerland
| | - Rudi Vennekens
- Katholieke Universiteit Leuven, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, B-3000, Leuven, Belgium
| | - Bernd Nilius
- Katholieke Universiteit Leuven, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, B-3000, Leuven, Belgium
| | - Philippe Gailly
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Cell Physiology, av. Mounier 53, box B1.53.17, B-1200, Brussels, Belgium
| |
Collapse
|
138
|
Martínez-Rendón J, Sánchez-Guzmán E, Rueda A, González J, Gulias-Cañizo R, Aquino-Jarquín G, Castro-Muñozledo F, García-Villegas R. TRPV4 Regulates Tight Junctions and Affects Differentiation in a Cell Culture Model of the Corneal Epithelium. J Cell Physiol 2016; 232:1794-1807. [PMID: 27869310 DOI: 10.1002/jcp.25698] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 11/17/2016] [Indexed: 11/09/2022]
Abstract
TRPV4 (transient receptor potential vanilloid 4) is a cation channel activated by hypotonicity, moderate heat, or shear stress. We describe the expression of TRPV4 during the differentiation of a corneal epithelial cell model, RCE1(5T5) cells. TRPV4 is a late differentiation feature that is concentrated in the apical membrane of the outmost cell layer of the stratified epithelia. Ca2+ imaging experiments showed that TRPV4 activation with GSK1016790A produced an influx of calcium that was blunted by the specific TRPV4 blocker RN-1734. We analyzed the involvement of TRPV4 in RCE1(5T5) epithelial differentiation by measuring the development of transepithelial electrical resistance (TER) as an indicator of the tight junction (TJ) assembly. We showed that TRPV4 activity was necessary to establish the TJ. In differentiated epithelia, activation of TRPV4 increases the TER and the accumulation of claudin-4 in cell-cell contacts. Epidermal Growth Factor (EGF) up-regulates the TER of corneal epithelial cultures, and we show here that TRPV4 activation mimicked this EGF effect. Conversely, TRPV4 inhibition or knock down by specific shRNA prevented the increase in TER. Moreover, TRPP2, an EGF-activated channel that forms heteromeric complexes with TRPV4, is also concentrated in the outmost cell layer of differentiated RCE1(5T5) sheets. This suggests that the EGF regulation of the TJ may involve a heterotetrameric TRPV4-TRPP2 channel. These results demonstrated TRPV4 activity was necessary for the correct establishment of TJ in corneal epithelia and as well as the regulation of both the barrier function of TJ and its ability to respond to EGF. J. Cell. Physiol. 232: 1794-1807, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jacqueline Martínez-Rendón
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Erika Sánchez-Guzmán
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Angélica Rueda
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - James González
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Rosario Gulias-Cañizo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Guillermo Aquino-Jarquín
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Federico Castro-Muñozledo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Refugio García-Villegas
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| |
Collapse
|
139
|
Taylor L, Arnér K, Ghosh F. Specific inhibition of TRPV4 enhances retinal ganglion cell survival in adult porcine retinal explants. Exp Eye Res 2016; 154:10-21. [PMID: 27816538 DOI: 10.1016/j.exer.2016.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/05/2016] [Accepted: 11/01/2016] [Indexed: 01/03/2023]
Abstract
Signaling through the polymodal cation channel Transient Receptor Potential Vanilloid 4 (TRPV4) has been implicated in retinal neuronal degeneration. To further outline the involvement of this channel in this process, we here explore modulation of Transient Receptor Potential Vanilloid 4 (TRPV4) activity on neuronal health and glial activation in an in vitro model of retinal degeneration. For this purpose, adult porcine retinal explants were cultured using a previously established standard protocol for up to 5 days with specific TRPV4 agonist GSK1016790A (GSK), or specific antagonist RN-1734, or culture medium only. Glial and neuronal cell health were evaluated by a battery of immunohistochemical markers, as well as morphological staining. Specific inhibition of TRPV4 by RN-1734 significantly enhanced ganglion cell survival, improved the maintenance of the retinal laminar architecture, reduced apoptotic cell death and attenuated the gliotic response as well as preserved the expression of TRPV4 in the plexiform layers and ganglion cells. In contrast, culture controls, as well as specimens treated with GSK, displayed rapid remodeling and neurodegeneration as well as a downregulation of TRPV4 and the Müller cell homeostatic mediator glutamine synthetase. Our results indicate that TRPV4 signaling is an important contributor to the retinal degeneration in this model, affecting neuronal cell health and glial homeostasis. The finding that pharmacological inhibition of the receptor significantly attenuates neuronal degeneration and gliosis in vitro, suggests that TRPV4 signaling may be an interesting pharmaceutical target to explore for treatment of retinal degenerative disease.
Collapse
Affiliation(s)
- Linnéa Taylor
- Department of Ophthalmology, Lund University, SE 22184, Lund, Sweden.
| | - Karin Arnér
- Department of Ophthalmology, Lund University, SE 22184, Lund, Sweden
| | - Fredrik Ghosh
- Department of Ophthalmology, Lund University, SE 22184, Lund, Sweden
| |
Collapse
|
140
|
Tsuno N, Yukimasa A, Yoshida O, Ichihashi Y, Inoue T, Ueno T, Yamaguchi H, Matsuda H, Funaki S, Yamanada N, Tanimura M, Nagamatsu D, Nishimura Y, Ito T, Soga M, Horita N, Yamamoto M, Hinata M, Imai M, Morioka Y, Kanemasa T, Sakaguchi G, Iso Y. Discovery of novel 2′,4′-dimethyl-[4,5′-bithiazol]-2-yl amino derivatives as orally bioavailable TRPV4 antagonists for the treatment of pain: Part 1. Bioorg Med Chem Lett 2016; 26:4930-4935. [DOI: 10.1016/j.bmcl.2016.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 11/26/2022]
|
141
|
Tsuno N, Yukimasa A, Yoshida O, Suzuki S, Nakai H, Ogawa T, Fujiu M, Takaya K, Nozu A, Yamaguchi H, Matsuda H, Funaki S, Nishimura Y, Ito T, Nagamatsu D, Asaki T, Horita N, Yamamoto M, Hinata M, Soga M, Imai M, Morioka Y, Kanemasa T, Sakaguchi G, Iso Y. Discovery of novel 2′,4′-dimethyl-[4,5′-bithiazol]-2-yl amino derivatives as orally bioavailable TRPV4 antagonists for the treatment of pain: Part 2. Bioorg Med Chem Lett 2016; 26:4936-4941. [DOI: 10.1016/j.bmcl.2016.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 12/12/2022]
|
142
|
Abstract
Although many studies have demonstrated that components of the hemostatic system may be involved in signaling leading to cancer progression, the potential mechanisms by which they contribute to cancer dissemination are not yet precisely understood. Among known coagulant factors, tissue factor (TF) and thrombin play a pivotal role in cancer invasion. They may be generated in the tumor microenvironment independently of blood coagulation and can induce cell signaling through activation of protease-activated receptors (PARs). PARs are transmembrane G-protein-coupled receptors (GPCRs) that are activated by a unique proteolytic mechanism. They play important roles in vascular physiology, neural tube closure, hemostasis, and inflammation. All of these agents (TF, thrombin, PARs—mainly PAR-1 and PAR-2) are thought to promote cancer invasion and metastasis at least in part by facilitating tumor cell migration, angiogenesis, and interactions with host vascular cells, including platelets, fibroblasts, and endothelial cells lining blood vessels. Here, we discuss the role of PARs and their activators in cancer progression, focusing on TF- and thrombin-mediated actions. Therapeutic options tailored specifically to inhibit PAR-induced signaling in cancer patients are presented as well.
Collapse
|
143
|
Zuccolo E, Dragoni S, Poletto V, Catarsi P, Guido D, Rappa A, Reforgiato M, Lodola F, Lim D, Rosti V, Guerra G, Moccia F. Arachidonic acid-evoked Ca 2+ signals promote nitric oxide release and proliferation in human endothelial colony forming cells. Vascul Pharmacol 2016; 87:159-171. [PMID: 27634591 DOI: 10.1016/j.vph.2016.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/10/2016] [Accepted: 09/10/2016] [Indexed: 02/04/2023]
Abstract
Arachidonic acid (AA) stimulates endothelial cell (EC) proliferation through an increase in intracellular Ca2+ concentration ([Ca2+]i), that, in turn, promotes nitric oxide (NO) release. AA-evoked Ca2+ signals are mainly mediated by Transient Receptor Potential Vanilloid 4 (TRPV4) channels. Circulating endothelial colony forming cells (ECFCs) represent the only established precursors of ECs. In the present study, we, therefore, sought to elucidate whether AA promotes human ECFC (hECFC) proliferation through an increase in [Ca2+]i and the following activation of the endothelial NO synthase (eNOS). AA induced a dose-dependent [Ca2+]i raise that was mimicked by its non-metabolizable analogue eicosatetraynoic acid. AA-evoked Ca2+ signals required both intracellular Ca2+ release and external Ca2+ inflow. AA-induced Ca2+ release was mediated by inositol-1,4,5-trisphosphate receptors from the endoplasmic reticulum and by two pore channel 1 from the acidic stores of the endolysosomal system. AA-evoked Ca2+ entry was, in turn, mediated by TRPV4, while it did not involve store-operated Ca2+ entry. Moreover, AA caused an increase in NO levels which was blocked by preventing the concomitant increase in [Ca2+]i and by inhibiting eNOS activity with NG-nitro-l-arginine methyl ester (l-NAME). Finally, AA per se did not stimulate hECFC growth, but potentiated growth factors-induced hECFC proliferation in a Ca2+- and NO-dependent manner. Therefore, AA-evoked Ca2+ signals emerge as an additional target to prevent cancer vascularisation, which may be sustained by ECFC recruitment.
Collapse
Affiliation(s)
- Estella Zuccolo
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Silvia Dragoni
- Department of Cell Biology, Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL London, United Kingdom
| | - Valentina Poletto
- Center for the Study of Myelofibrosis, Biotechnology Research Laboratory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paolo Catarsi
- Center for the Study of Myelofibrosis, Biotechnology Research Laboratory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Daniele Guido
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Alessandra Rappa
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Marta Reforgiato
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Francesco Lodola
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", 28100 Novara, Italy
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Biotechnology Research Laboratory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Francesco Moccia
- Department of Cell Biology, Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL London, United Kingdom.
| |
Collapse
|
144
|
Mihara H, Suzuki N, Boudaka AA, Muhammad JS, Tominaga M, Tabuchi Y, Sugiyama T. Transient receptor potential vanilloid 4-dependent calcium influx and ATP release in mouse and rat gastric epithelia. World J Gastroenterol 2016; 22:5512-5519. [PMID: 27350729 PMCID: PMC4917611 DOI: 10.3748/wjg.v22.i24.5512] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/11/2016] [Accepted: 05/04/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the expression of transient receptor potential vanilloid 4 (TRPV4) and its physiological meaning in mouse and rat gastric epithelia.
METHODS: RT-PCR and immunochemistry were used to detect TRPV4 mRNA and protein expression in mouse stomach and a rat normal gastric epithelial cell line (RGE1-01), while Ca2+-imaging and electrophysiology were used to evaluate TRPV4 channel activity. ATP release was measured by a luciferin-luciferase assay. Gastric emptying was also compared between WT and TRPV4 knockout mice.
RESULTS: TRPV4 mRNA and protein were detected in mouse tissues and RGE1-01 cells. A TRPV4-specific agonist (GSK1016790A) increased intracellular Ca2+ concentrations and/or evoked TRPV4-like current activities in WT mouse gastric epithelial cells and RGE1-01 cells, but not TRPV4KO cells. GSK1016790A or mechanical stimuli induced ATP release from RGE1-01 cells while TRPV4 knockout mice displayed delayed gastric emptying in vivo.
CONCLUSION: TRPV4 is expressed in mouse and rat gastric epithelium and contributes to ATP release and gastric emptying.
Collapse
|
145
|
Echeverry S, Rodriguez MJ, Torres YP. Transient Receptor Potential Channels in Microglia: Roles in Physiology and Disease. Neurotox Res 2016; 30:467-78. [PMID: 27260222 DOI: 10.1007/s12640-016-9632-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 05/12/2016] [Accepted: 05/18/2016] [Indexed: 12/21/2022]
Abstract
Microglia modulate the nervous system cellular environment and induce neuroprotective and neurotoxic effects. Various molecules are involved in these processes, including families of ion channels expressed in microglial cells, such as transient receptor potential (TRP) channels. TRP channels comprise a family of non-selective cation channels that can be activated by mechanical, thermal, and chemical stimuli, and which contribute to the regulation of intracellular calcium concentrations. TRP channels have been shown to be involved in cellular processes such as osmotic regulation, cytokine production, proliferation, activation, cell death, and oxidative stress responses. Given the significance of these processes in microglial activity, studies of TRP channels in microglia have focused on determining their roles in both neuroprotective and neurotoxic processes. TRP channel activity has been proposed to play an important function in neurodegenerative diseases, ischemia, inflammatory responses, and neuropathic pain. Modulation of TRP channel activity may thus be considered as a potential therapeutic strategy for the treatment of various diseases associated with alterations of the central nervous system (CNS). In this review, we describe the expression of different subfamilies of TRP channels in microglia, focusing on their physiological and pathophysiological roles, and consider their potential use as therapeutic targets in CNS diseases.
Collapse
Affiliation(s)
- Santiago Echeverry
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 # 40-62, Bogotá, Colombia
| | - María Juliana Rodriguez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 # 40-62, Bogotá, Colombia
| | - Yolima P Torres
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 # 40-62, Bogotá, Colombia.
| |
Collapse
|
146
|
Andersson KE. Potential Future Pharmacological Treatment of Bladder Dysfunction. Basic Clin Pharmacol Toxicol 2016; 119 Suppl 3:75-85. [DOI: 10.1111/bcpt.12577] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 12/23/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Karl-Erik Andersson
- Institute for Regenerative Medicine; Wake Forest University School of Medicine; Winston Salem NC USA
- Aarhus Institute for Advanced Sciences (AIAS); Aarhus University; Aarhus Denmark
| |
Collapse
|
147
|
Expression and cellular distribution of transient receptor potential vanilloid 4 in cortical tubers of the tuberous sclerosis complex. Brain Res 2016; 1636:183-192. [DOI: 10.1016/j.brainres.2016.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/27/2016] [Accepted: 02/04/2016] [Indexed: 11/24/2022]
|
148
|
Biasini F, Portaro S, Mazzeo A, Vita G, Fabrizi GM, Taioli F, Toscano A, Rodolico C. TRPV4 related scapuloperoneal spinal muscular atrophy: Report of an Italian family and review of the literature. Neuromuscul Disord 2016; 26:312-5. [PMID: 26948711 DOI: 10.1016/j.nmd.2016.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/15/2016] [Indexed: 10/22/2022]
Abstract
Scapuloperoneal spinal muscular atrophy (SPSMA) is a rare autosomal dominant disorder caused by heterozygous mutations in the transient receptor potential cation channel (TRPV4) gene, characterized by progressive scapuloperoneal atrophy and weakness. Additional features, such as vocal cord paralysis, scoliosis and/or arthrogryposis, are likely to occur. We report the first Italian family with SPSMA, harboring the c.806G>A mutation in TRPV4 gene (p. R269H). The pattern of expression was variable: the father showed a mild muscular involvement, while the son presented at birth skeletal dysplasia and a progressive course. We reinforce the concept that the disease can be more severe in the following generations. The disorder should be considered in scapuloperoneal syndromes with autosomal dominant inheritance and a neurogenic pattern. The presence of skeletal deformities strongly supports this suspicion. An early diagnosis of SPSMA may be crucial in order to prevent the more severe congenital form.
Collapse
Affiliation(s)
- F Biasini
- Department of Neurosciences, University of Messina, Messina, Italy
| | - S Portaro
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - A Mazzeo
- Department of Neurosciences, University of Messina, Messina, Italy
| | - G Vita
- Department of Neurosciences, University of Messina, Messina, Italy
| | - G M Fabrizi
- Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy; Department of Neurosciences, AOUI, Verona, Italy
| | - F Taioli
- Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy; Department of Neurosciences, AOUI, Verona, Italy
| | - A Toscano
- Department of Neurosciences, University of Messina, Messina, Italy
| | - C Rodolico
- Department of Neurosciences, University of Messina, Messina, Italy.
| |
Collapse
|
149
|
Chen X, Sun FJ, Wei YJ, Wang LK, Zang ZL, Chen B, Li S, Liu SY, Yang H. Increased Expression of Transient Receptor Potential Vanilloid 4 in Cortical Lesions of Patients with Focal Cortical Dysplasia. CNS Neurosci Ther 2016; 22:280-90. [PMID: 26842013 DOI: 10.1111/cns.12494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/10/2015] [Accepted: 11/14/2015] [Indexed: 12/13/2022] Open
Abstract
AIM Focal cortical dysplasia (FCD) represents a well-known cause of medically intractable epilepsy. Studies found that transient receptor potential vanilloid receptor 4 (TRPV4) may participate in the occurrence of seizures. This study investigated the expression patterns of TRPV4 in FCD and the cascade that regulate functional state of TRPV4 in cortical neurons. METHODS Thirty-nine surgical specimens from FCD patients and 10 age-matched control samples from autopsies were included in this study. Protein expression and distribution were detected by Western blot, immunohistochemistry, and immunofluorescence staining. Calcium imaging was used to detect the TRPV4-mediated Ca(2+) influx in cortical neurons. RESULTS (1) The protein levels of TRPV4 and of an upstream factor, protein kinase C (PKC), were markedly elevated in FCD. (2) TRPV4 staining was stronger in the dysplastic cortices of FCD and mainly observed in neuronal microcolumns and malformed cells. (3) The activation of TRPV4 was central for [Ca(2+)]i elevation in cortical neurons, and this activity of TRPV4 in cortical neurons was regulated by the PKC, but not the PKA, pathway. CONCLUSION The overexpression and altered cellular distribution of TRPV4 in FCD suggest that TRPV4 may potentially contribute to the epileptogenesis of FCD.
Collapse
Affiliation(s)
- Xin Chen
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Fei-Ji Sun
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yu-Jia Wei
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Lu-Kang Wang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhen-Le Zang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bing Chen
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Song Li
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Shi-Yong Liu
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
150
|
Bober MB, Duker AL, Carney M, Ditro CP, Rogers K, Mackenzie WG. Metatropic dysplasia is associated with increased fracture risk. Am J Med Genet A 2016; 170A:1373-6. [DOI: 10.1002/ajmg.a.37576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/19/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Michael B. Bober
- Division of Medical Genetics; Nemours/Alfred I. duPont Hospital for Children; Wilmington Delaware
| | - Angela L. Duker
- Division of Medical Genetics; Nemours/Alfred I. duPont Hospital for Children; Wilmington Delaware
| | - Megan Carney
- Division of Medical Genetics; Nemours/Alfred I. duPont Hospital for Children; Wilmington Delaware
| | - Colleen P. Ditro
- Department of Orthopaedics; Nemours/Alfred I. duPont Hospital for Children; Wilmington Delaware
| | - Kenneth Rogers
- Department of Orthopaedics; Nemours/Alfred I. duPont Hospital for Children; Wilmington Delaware
| | - William G. Mackenzie
- Department of Orthopaedics; Nemours/Alfred I. duPont Hospital for Children; Wilmington Delaware
| |
Collapse
|