101
|
Chouchane K, Di Zenzo G, Pitocco D, Calabrese L, De Simone C. Bullous pemphigoid in diabetic patients treated by gliptins: the other side of the coin. J Transl Med 2021; 19:520. [PMID: 34930319 PMCID: PMC8691092 DOI: 10.1186/s12967-021-03192-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Bullous pemphigoid (BP) is the most common autoimmune bullous skin disease that affects primarily patients older than 60 years. The majority of BP cases are spontaneous, but BP can also be triggered by certain drugs’ exposures. Since 2011, a growing number of observations has been reporting cases of BP in Type 2 diabetic patients. These forms have been linked to the use of a new category of anti-diabetic drugs called dipeptidyl peptidase inhibitors (DPP-4i) or gliptins, but to date, the exact pathophysiological mechanisms underlying this association are not completely elucidated. Although conventional and gliptin-associated BP are thought to share similar clinical and histopathological features, our thorough review of the most recent literature, shows that these 2 forms are quite distinct: DPP-4-i-associated BP seems to appear at an earlier age than spontaneous BP, it may manifest either as a noninflammatory or inflammatory phenotype, while the conventional form presents with a typical inflammatory phenotype. Additionally, an important distinctive histological feature was recently shown in Gliptin-associated BP: these forms may present a less significant eosinophils infiltrate in the upper dermis of peri-blister lesions compared to the skin of patients with spontaneous BP, and this seems a specific feature of the clinically non-inflammatory forms. In accordance with previous literature, we found that the direct immunofluorescence (DIF) gives identical findings in both DPP-4i-associated and conventional forms of BP which is an IgG and complement C3 deposition as a linear band at the dermal–epidermal junction in perilesional skin. Indirect immunofluorescence shows the presence of IgG circulating autoantibodies in the patient's serum which titer does not differ between spontaneous and DPP-4i-associated BP, while the specificity of these autoantibodies, may be different in spontaneous, induced non-inflammatory and induced inflammatory forms, epitope spreading phenomenon seems to play a role in determining these specificities. Further research, based on integrated epidemiological, clinical, histo-immunological and pharmacogenomic approaches, may give more insight into these forms of BP. This combined approach will allow to better define BP endotypes and to unveil the mechanism of spontaneous or drug-induced breakage of the immunotolerance to skin self-antigens.
Collapse
Affiliation(s)
- Karim Chouchane
- Whittington Health NHS Trust, Magdala Ave, London, N19 5NF, UK.
| | - Giovanni Di Zenzo
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | - Dario Pitocco
- Diabetes Care Unit, Endocrinology, University Hospital "A. Gemelli", Catholic University of the Sacred Heart, Rome, Italy
| | - Laura Calabrese
- Institute of Dermatology, University Hospital "A. Gemelli", Catholic University of the Sacred Heart, Rome, Italy.,Department of Dermatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Clara De Simone
- Institute of Dermatology, University Hospital "A. Gemelli", Catholic University of the Sacred Heart, Rome, Italy. .,Department of Dermatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
102
|
Zhang T, Tong X, Zhang S, Wang D, Wang L, Wang Q, Fan H. The Roles of Dipeptidyl Peptidase 4 (DPP4) and DPP4 Inhibitors in Different Lung Diseases: New Evidence. Front Pharmacol 2021; 12:731453. [PMID: 34955820 PMCID: PMC8696080 DOI: 10.3389/fphar.2021.731453] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/25/2021] [Indexed: 02/05/2023] Open
Abstract
CD26/Dipeptidyl peptidase 4 (DPP4) is a type II transmembrane glycoprotein that is widely expressed in various organs and cells. It can also exist in body fluids in a soluble form. DPP4 participates in various physiological and pathological processes by regulating energy metabolism, inflammation, and immune function. DPP4 inhibitors have been approved by the Food and Drug Administration (FDA) for the treatment of type 2 diabetes mellitus. More evidence has shown the role of DPP4 in the pathogenesis of lung diseases, since it is highly expressed in the lung parenchyma and the surface of the epithelium, vascular endothelium, and fibroblasts of human bronchi. It is a potential biomarker and therapeutic target for various lung diseases. During the coronavirus disease-19 (COVID-19) global pandemic, DPP4 was found to be an important marker that may play a significant role in disease progression. Some clinical trials on DPP4 inhibitors in COVID-19 are ongoing. DPP4 also affects other infectious respiratory diseases such as Middle East respiratory syndrome and non-infectious lung diseases such as pulmonary fibrosis, lung cancer, chronic obstructive pulmonary disease (COPD), and asthma. This review aims to summarize the roles of DPP4 and its inhibitors in infectious lung diseases and non-infectious diseases to provide new insights for clinical physicians.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
103
|
Schmiedl A, Wagener I, Jungen M, von Hörsten S, Stephan M. Lung development and immune status under chronic LPS exposure in rat pups with and without CD26/DPP4 deficiency. Cell Tissue Res 2021; 386:617-636. [PMID: 34606000 PMCID: PMC8595150 DOI: 10.1007/s00441-021-03522-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 09/05/2021] [Indexed: 11/26/2022]
Abstract
Dipeptidyl-peptidase IV (CD26), a multifactorial integral type II protein, is expressed in the lungs during development and is involved in inflammation processes. We tested whether daily LPS administration influences the CD26-dependent retardation in morphological lung development and induces alterations in the immune status. Newborn Fischer rats with and without CD26 deficiency were nebulized with 1 µg LPS/2 ml NaCl for 10 min from days postpartum (dpp) 3 to 9. We used stereological methods and fluorescence activated cell sorting (FACS) to determine morphological lung maturation and alterations in the pulmonary leukocyte content on dpp 7, 10, and 14. Daily LPS application did not change the lung volume but resulted in a significant retardation of alveolarization in both substrains proved by significantly lower values of septal surface and volume as well as higher mean free distances in airspaces. Looking at the immune status after LPS exposure compared to controls, a significantly higher percentage of B lymphocytes and decrease of CD4+CD25+ T cells were found in both subtypes, on dpp7 a significantly higher percentage of CD4 T+ cells in CD26+ pups, and a significantly higher percentage of monocytes in CD26- pups. The percentage of T cells was significantly higher in the CD26-deficient group on each dpp. Thus, daily postnatal exposition to low doses of LPS for 1 week resulted in a delay in formation of secondary septa, which remained up to dpp 14 in CD26- pups. The retardation was accompanied by moderate parenchymal inflammation and CD26-dependent changes in the pulmonary immune cell composition.
Collapse
Affiliation(s)
- Andreas Schmiedl
- Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625, Hannover, Germany.
| | - Inga Wagener
- Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Meike Jungen
- Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy University Hospital Erlangen and Preclinical Experimental Center (PETZ), Friedrich-Alexander-University Erlangen-Nürnberg, Bavaria, Germany
| | - Michael Stephan
- Clinic for Psychosomatics and Psychotherapy, Hannover Medical School, 30625, Hannover, Germany
| |
Collapse
|
104
|
Luk AOY, Yip TCF, Zhang X, Kong APS, Wong VWS, Ma RCW, Wong GLH. Glucose-lowering drugs and outcome from COVID-19 among patients with type 2 diabetes mellitus: a population-wide analysis in Hong Kong. BMJ Open 2021; 11:e052310. [PMID: 34670765 PMCID: PMC8529616 DOI: 10.1136/bmjopen-2021-052310] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES To investigate the association between baseline use of glucose-lowering drugs and serious clinical outcome among patients with type 2 diabetes. DESIGN Territory-wide retrospective cohort of confirmed cases of COVID-19 between January 2020 and February 2021. SETTING All public health facilities in Hong Kong. PARTICIPANTS 1220 patients with diabetes who were admitted for confirmed COVID-19. PRIMARY AND SECONDARY OUTCOME MEASURES Composite clinical endpoint of intensive care unit admission, requirement of invasive mechanical ventilation and/or in-hospital death. RESULTS In this cohort (median age 65.3 years, 54.3% men), 737 (60.4%) patients were treated with metformin, 385 (31.6%) with sulphonylureas, 199 (16.3%) with dipeptidyl peptidase-4 (DPP-4) inhibitors and 273 (22.4%) with insulin prior to admission. In multivariate Cox regression, use of metformin and DPP-4 inhibitors was associated with reduced incidence of the composite endpoint relative to non-use, with respective HRs of 0.51 (95% CI 0.34 to 0.77, p=0.001) and 0.46 (95% CI 0.29 to 0.71, p<0.001), adjusted for age, sex, diabetes duration, glycated haemoglobin (HbA1c), smoking, comorbidities and drugs. Use of sulphonylureas (HR 1.55, 95% CI 1.07 to 2.24, p=0.022) and insulin (HR 6.34, 95% CI 3.72 to 10.78, p<0.001) were both associated with increased hazards of the composite endpoint. CONCLUSIONS Users of metformin and DPP-4 inhibitors had fewer adverse outcomes from COVID-19 compared with non-users, whereas insulin and sulphonylurea might predict a worse prognosis.
Collapse
Affiliation(s)
- Andrea On Yan Luk
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong Faculty of Medicine, Hong Kong Special Administrative Region, People's Republic of China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Terry C F Yip
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong Faculty of Medicine, Hong Kong Special Administrative Region, People's Republic of China
| | - Xinge Zhang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong Faculty of Medicine, Hong Kong Special Administrative Region, People's Republic of China
| | - Alice Pik Shan Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong Faculty of Medicine, Hong Kong Special Administrative Region, People's Republic of China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong Faculty of Medicine, Hong Kong Special Administrative Region, People's Republic of China
| | - Ronald Ching Wan Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong Faculty of Medicine, Hong Kong Special Administrative Region, People's Republic of China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Grace Lai-Hung Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong Faculty of Medicine, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
105
|
Liu J, Zuo Q, Li Z, Chen J, Liu F. Trelagliptin ameliorates IL-1β-impaired chondrocyte function via the AMPK/SOX-9 pathway. Mol Immunol 2021; 140:70-76. [PMID: 34666245 DOI: 10.1016/j.molimm.2021.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 08/01/2021] [Accepted: 09/14/2021] [Indexed: 12/20/2022]
Abstract
Chondrocyte dysregulation plays a critical role in the development of osteoarthritis (OA). The pro-inflammatory cytokine interleukin-1β (IL-1β) activates chondrocytes and degrades the structural extracellular matrix (ECM). These events are the important mechanism of OA. Trelagliptin, a selective inhibitor of dipeptidyl Peptidase 4 (DPP-4) used for the treatment of type 2 diabetes mellitus (T2DM), has displayed a wide range of anti-inflammatory capacities. The effects of Trelagliptin in OA and chondrocytes have not been tested before. Here, we show that Trelagliptin mitigates IL-1β-induced production of inflammatory cytokines such as interleukin 6 (IL-6), interleukin 8 (IL-8), and tumor necrosis factor-alpha (TNF-α) in human chondrocytes. Trelagliptin ameliorates IL-1β-induced oxidative stress by reducing the generation of reactive oxygen species (ROS). Particularly, the presence of Trelagliptin prevents IL-1β-induced reduction of Acan genes and the protein Aggrecan. Moreover, we show that Trelagliptin restores IL-1β-induced reduction of SOX-9 and that the knockdown of SOX-9 abolishes the protective effects of Trelagliptin. Mechanistically, we demonstrate that AMPK is required for the amelioration of Trelagliptin on SOX-9- reduction by IL-1β. Collectively, our study demonstrates that the DPP-4 inhibitor Trelagliptin has a protective effect on chondrocyte function. Trelagliptin may have the potential role to antagonize chondrocyte-derived inflammation in OA.
Collapse
Affiliation(s)
- Jiuxiang Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Nanjing Medical University (Jiangsu Province Hospital), Nanjing, Jiangsu, 210029, China
| | - Qiang Zuo
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Nanjing Medical University (Jiangsu Province Hospital), Nanjing, Jiangsu, 210029, China
| | - Zhi Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Nanjing Medical University (Jiangsu Province Hospital), Nanjing, Jiangsu, 210029, China
| | - Jiangqi Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Nanjing Medical University (Jiangsu Province Hospital), Nanjing, Jiangsu, 210029, China
| | - Feng Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Nanjing Medical University (Jiangsu Province Hospital), Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
106
|
Roy A, Sahoo J, Narayanan N, Merugu C, Kamalanathan S, Naik D. Dipeptidyl peptidase-4 inhibitor-induced autoimmune diseases: Current evidence. World J Diabetes 2021; 12:1426-1441. [PMID: 34630898 PMCID: PMC8472501 DOI: 10.4239/wjd.v12.i9.1426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/12/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023] Open
Abstract
Dipeptidyl peptidase-4 inhibitors (DPP-4i) have an important place in the management of type 2 diabetes. The DPP-4 enzyme is ubiquitously distributed throughout the human body and has multiple substrates through which it regulates several important physiological functions. DPP-4 regulates several immune functions, including T-cell activation, macrophage function, and secretion of cytokines. Studies have reported an increase in autoimmune diseases like bullous pemphigoid, inflammatory bowel disease, and arthritis with DPP-4i use. The relationship of DPP-4i and autoimmune diseases is a complex one and warrants further research into the effect of DPP-4 inhibition on the immune system to understand the pathogenesis more clearly. Whether a particular cluster of autoimmune diseases is associated with DPP-4i use remains an important contentious issue. Nevertheless, a heightened awareness from the clinicians is required to identify and treat any such diseases. Through this review, we explore the clinical and pathophysiological characteristics of this association in light of recent evidence.
Collapse
Affiliation(s)
- Ayan Roy
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, Jodhpur 342005, India
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Jayaprakash Sahoo
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Niya Narayanan
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Chandhana Merugu
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Sadishkumar Kamalanathan
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Dukhabandhu Naik
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| |
Collapse
|
107
|
Malinee M, Pandian GN, Sugiyama H. Targeted epigenetic induction of mitochondrial biogenesis enhances antitumor immunity in mouse model. Cell Chem Biol 2021; 29:463-475.e6. [PMID: 34520746 DOI: 10.1016/j.chembiol.2021.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/04/2021] [Accepted: 08/01/2021] [Indexed: 11/25/2022]
Abstract
Considering the potential of combinatorial therapies in overcoming existing limitations of cancer immunotherapy, there is an increasing need to identify small-molecule modulators of immune cells capable of augmenting the effect of programmed cell death protein 1 (PD-1) blockade, leading to better cancer treatment. Although epigenetic drugs showed potential in combination therapy, the lack of sequence specificity is a major concern. Here, we identify and develop a DNA-based epigenetic activator with tri-arginine vector called EnPGC-1 that can trigger the targeted induction of the peroxisome proliferator-activated receptor-gamma coactivator 1 alpha/beta (PGC-1α/β), a regulator of mitochondrial biogenesis. EnPGC-1 enhances mitochondrial activation, energy metabolism, proliferation of CD8+ T cells in vitro, and, in particular, enhances oxidative phosphorylation, a feature of long-lived memory T cells. Genome-wide gene analysis suggests that EnPGC-1 and not the control compounds can regulate T cell activation as a major biological process. EnPGC-1 also synergizes with PD-1 blockade to enhance antitumor immunity and improved host survival.
Collapse
Affiliation(s)
- Madhu Malinee
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ganesh Namasivayam Pandian
- Institute of Integrated Cell Material Sciences (iCeMS), Kyoto University of Advanced Study, Kyoto, Japan.
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
108
|
Chang XM, Xiao F, Pan Q, Wang XX, Guo LX. Sitagliptin attenuates endothelial dysfunction independent of its blood glucose controlling effect. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:425-437. [PMID: 34448460 PMCID: PMC8405439 DOI: 10.4196/kjpp.2021.25.5.425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 01/11/2023]
Abstract
Although the contributions of sitagliptin to endothelial dysfunction in diabetes mellitus were previously reported, the mechanisms still undefined. Autophagy plays an important role in the development of diabetes mellitus, but its role in diabetic macrovascular complications is unclear. This study aims to observe the effect of sitagliptin on macrovascular endothelium in diabetes and explore the role of autophagy in this process. Diabetic rats were induced through administration of high-fat diet and intraperitoneal injection of streptozotocin. Then diabetic rats were treated with or without sitagliptin for 12 weeks. Endothelial damage and autophagy were measured. Human umbilical vein endothelial cells were cultured either in normal glucose or in high glucose medium and intervened with different concentrations of sitagliptin. Rapamycin was used to induce autophagy. Cell viability, apoptosis and autophagy were detected. The expressions of proteins in c-Jun N-terminal kinase (JNK)-Bcl-2-Beclin-1 pathway were measured. Sitagliptin attenuated injuries of endothelium in vivo and in vitro. The expression of microtubuleassociated protein 1 light chain 3 II (LC3II) and beclin-1 were increased in aortas of diabetic rats and cells cultured with high-glucose, while sitagliptin inhibited the over-expression of LC3II and beclin-1. In vitro pre-treatment with sitagliptin decreased rapamycin-induced autophagy. However, after pretreatment with rapamycin, the protective effect of sitagliptin on endothelial cells was abolished. Further studies revealed sitagliptin increased the expression of Bcl-2, while inhibited the expression of JNK in vivo. Sitagliptin attenuates injuries of vascular endothelial cells caused by high glucose through inhibiting over-activated autophagy. JNK-Bcl-2-Beclin-1 pathway may be involved in this process.
Collapse
Affiliation(s)
- Xin-Miao Chang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Fei Xiao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Qi Pan
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Xiao-Xia Wang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Li-Xin Guo
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| |
Collapse
|
109
|
Govender Y, Shalekoff S, Ebrahim O, Waja Z, Chaisson RE, Martinson N, Tiemessen CT. Systemic DPP4/CD26 is associated with natural HIV-1 control: Implications for COVID-19 susceptibility. Clin Immunol 2021; 230:108824. [PMID: 34391936 PMCID: PMC8360992 DOI: 10.1016/j.clim.2021.108824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/18/2021] [Accepted: 08/10/2021] [Indexed: 01/20/2023]
Abstract
The current intersection of the COVID-19 and HIV-1 pandemics, has raised concerns about the risk for poor COVID-19 outcomes particularly in regions like sub-Saharan Africa, disproportionally affected by HIV. DPP4/CD26 has been suggested to be a potential therapeutic target and a biomarker for risk in COVID-19 patients with high risk co-morbidities. We therefore evaluated soluble DPP4 (sDPP4) levels and activity in plasma of 131 HIV-infected and 20 HIV-uninfected South African individuals. Flow cytometry was performed to compare cell surface expression of DPP4/CD26 and activation markers on peripheral blood mononuclear cells of extreme clinical phenotypes. Progressors had lower specific DPP4 activity and lower frequency of CD3+ T-cells expressing CD26 than HIV-1 controllers, but more activated CD3+CD26+ T-cells. The frequency of CD26-expressing T-cells negatively correlated with HLA-DR+ and CD38+ T-cells. Divergent DPP4/CD26 expression between HIV-1 controllers and progressors may have implications for risk and treatment of COVID-19 in people living with HIV.
Collapse
Affiliation(s)
- Yashini Govender
- Centre for HIV & STIs, National Institute for Communicable Diseases, National Health Laboratory Service and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sharon Shalekoff
- Centre for HIV & STIs, National Institute for Communicable Diseases, National Health Laboratory Service and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Osman Ebrahim
- Department of Therapeutic Sciences, Division of Pharmacology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Ziyaad Waja
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Medical Research Council Soweto Matlosana Centre for HIV/AIDS and TB Research, South Africa
| | - Richard E Chaisson
- Johns Hopkins University Centre for AIDS Research, Baltimore, MD, United States
| | - Neil Martinson
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Medical Research Council Soweto Matlosana Centre for HIV/AIDS and TB Research, South Africa
| | - Caroline T Tiemessen
- Centre for HIV & STIs, National Institute for Communicable Diseases, National Health Laboratory Service and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
110
|
Al-Kuraishy HM, Al-Gareeb AI, Qusty N, Alexiou A, Batiha GES. Impact of Sitagliptin in Non-Diabetic Covid-19 Patients. Curr Mol Pharmacol 2021; 15:683-692. [PMID: 34477540 DOI: 10.2174/1874467214666210902115650] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/09/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE In Coronavirus disease 2019 (Covid-19), SARS-CoV-2 may use dipeptidyl peptidase 4 (DPP4) as an entry-point in different tissues expressing these receptors. DPP4 inhibitors (DPP4Is), also named gliptins like sitagliptin, have anti-inflammatory and antioxidant effects; thereby lessen inflammatory and oxidative stress in diabetic Covid-19 patients. Therefore, the present study aimed to illustrate the potential beneficial effect of sitagliptin in managing Covid-19 in non-diabetic patients. METHODS A total number of 89 patients with Covid-19 were recruited from a single-center at the time of diagnosis. The recruited patients were assigned according to the standard therapy for Covid-19 and our interventional therapy into two groups; Group A: Covid-19 patients on the standard therapy (n=40) and Group B: Covid-19 patients on the standard therapy plus sitagliptin (n=49). The duration of this interventional study was 28 days according to the guideline in management patients with Covid-19. Routine laboratory investigations, serological tests, complete blood count (CBC), C-reactive protein (CRP), D-dimer, lactate dehydrogenase (LDH), and serum ferritin were measured to observed Covid-19 severity and complications. Lung computed tomography (CT) and clinical scores were evaluated. RESULTS The present study illustrated that sitagliptin add-on standard therapy improved clinical outcomes, radiological scores, and inflammatory biomarkers than standard therapy alone in non-diabetic patients with Covid-19 (P<0.01). CONCLUSIONS Sitagliptin add-on standard therapy in managing non-diabetic Covid-19 patients may have a robust beneficial effect by modulating inflammatory cytokines with subsequent good clinical outcomes.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad. Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad. Iraq
| | - Naeem Qusty
- Medical Laboratories Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mecca. Saudi Arabia
| | | | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| |
Collapse
|
111
|
Mba IE, Sharndama HC, Osondu-chuka GO, Okeke OP. Immunobiology and nanotherapeutics of severe acute respiratory syndrome 2 (SARS-CoV-2): a current update. Infect Dis (Lond) 2021; 53:559-580. [PMID: 33905282 PMCID: PMC8095391 DOI: 10.1080/23744235.2021.1916071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) constitutes the most significant global public health challenge in a century. It has reignited research interest in coronavirus. While little information is available, research is currently in progress to comprehensively understand the general biology and immune response mechanism against SARS-CoV-2. The spike proteins (S protein) of SARS-CoV-2 perform a crucial function in viral infection establishment. ACE2 and TMPRSS2 play a pivotal role in viral entry. Upon viral entry, the released pro-inflammatory proteins (cytokines and chemokines) cause the migration of the T cells, monocytes, and macrophages to the infection site. IFNϒ released by T cells initiates a loop of pro-inflammatory feedback. The inflammatory state may further enhance with an increase in immune dysfunction responsible for the infection's progression. A treatment approach that prevents ACE2-mediated viral entry and reduces inflammatory response is a crucial therapeutic intervention strategy, and nanomaterials and their conjugates are promising candidates. Nanoparticles can inhibit viral entry and replication. Nanomaterials have also found application in targeted drug delivery and also in developing a vaccine against SARS-CoV-2. Here, we briefly summarize the origin, transmission, and clinical features of SARS-CoV-2. We then discussed the immune response mechanisms of SARS-CoV-2. Finally, we further discussed nanotechnology's potentials as an intervention strategy against SARS-CoV-2 infection. All these understandings will be crucial in developing therapeutic strategies against SARS-CoV-2.
Collapse
|
112
|
Kaneko S, Onda Y, Sakamoto S, Okada M, Anzai N. Dipeptidyl-peptidase 4 inhibitor increased and maintained platelet count in a patient with primary myelofibrosis. EJHAEM 2021; 2:551-554. [PMID: 35844718 PMCID: PMC9176032 DOI: 10.1002/jha2.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Shizuka Kaneko
- Department of Diabetes/Endocrinology/MetabolismTakatsuki Red Cross HospitalTakatsukiOsakaJapan
| | - Yoshiyuki Onda
- Department of Hematology and OncologyTakatsuki Red Cross HospitalTakatsukiOsakaJapan
| | - Soichiro Sakamoto
- Department of Hematology and OncologyTakatsuki Red Cross HospitalTakatsukiOsakaJapan
| | - Mutsumi Okada
- Department of Hematology and OncologyTakatsuki Red Cross HospitalTakatsukiOsakaJapan
| | - Naoyuki Anzai
- Department of Hematology and OncologyTakatsuki Red Cross HospitalTakatsukiOsakaJapan
| |
Collapse
|
113
|
Trocha M, Fleszar MG, Fortuna P, Lewandowski Ł, Gostomska-Pampuch K, Sozański T, Merwid-Ląd A, Krzystek-Korpacka M. Sitagliptin Modulates Oxidative, Nitrative and Halogenative Stress and Inflammatory Response in Rat Model of Hepatic Ischemia-Reperfusion. Antioxidants (Basel) 2021; 10:antiox10081168. [PMID: 34439416 PMCID: PMC8388898 DOI: 10.3390/antiox10081168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/23/2022] Open
Abstract
A possibility of repurposing sitagliptin, a well-established antidiabetic drug, for alleviating injury caused by ischemia-reperfusion (IR) is being researched. The aim of this study was to shed some light on the molecular background of the protective activity of sitagliptin during hepatic IR. The expression and/or concentration of inflammation and oxidative stress-involved factors have been determined in rat liver homogenates using quantitative RT-PCR and Luminex® xMAP® technology and markers of nitrative and halogenative stress were quantified using targeted metabolomics (LC-MS/MS). Animals (n = 36) divided into four groups were treated with sitagliptin (5 mg/kg) (S and SIR) or saline solution (C and IR), and the livers from IR and SIR were subjected to ischemia (60 min) and reperfusion (24 h). The midkine expression (by 2.2-fold) and the free 3-nitrotyrosine (by 2.5-fold) and IL-10 (by 2-fold) concentration were significantly higher and the Nox4 expression was lower (by 9.4-fold) in the IR than the C animals. As compared to IR, the SIR animals had a lower expression of interleukin-6 (by 4.2-fold) and midkine (by 2-fold), a lower concentration of 3-nitrotyrosine (by 2.5-fold) and a higher Nox4 (by 2.9-fold) and 3-bromotyrosine (by 1.4-fold). In conclusion, IR disturbs the oxidative, nitrative and halogenative balance and aggravates the inflammatory response in the liver, which can be attenuated by low doses of sitagliptin.
Collapse
Affiliation(s)
- Małgorzata Trocha
- Department of Pharmacology, Wroclaw Medical University, 50-345 Wroclaw, Poland; (T.S.); (A.M.-L.)
- Correspondence: (M.T.); (M.K.-K.)
| | - Mariusz G. Fleszar
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.G.F.); (P.F.); (Ł.L.); (K.G.-P.)
| | - Paulina Fortuna
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.G.F.); (P.F.); (Ł.L.); (K.G.-P.)
| | - Łukasz Lewandowski
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.G.F.); (P.F.); (Ł.L.); (K.G.-P.)
| | - Kinga Gostomska-Pampuch
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.G.F.); (P.F.); (Ł.L.); (K.G.-P.)
| | - Tomasz Sozański
- Department of Pharmacology, Wroclaw Medical University, 50-345 Wroclaw, Poland; (T.S.); (A.M.-L.)
| | - Anna Merwid-Ląd
- Department of Pharmacology, Wroclaw Medical University, 50-345 Wroclaw, Poland; (T.S.); (A.M.-L.)
| | - Małgorzata Krzystek-Korpacka
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.G.F.); (P.F.); (Ł.L.); (K.G.-P.)
- Correspondence: (M.T.); (M.K.-K.)
| |
Collapse
|
114
|
Ng L, Foo DCC, Wong CKH, Man ATK, Lo OSH, Law WL. Repurposing DPP-4 Inhibitors for Colorectal Cancer: A Retrospective and Single Center Study. Cancers (Basel) 2021; 13:cancers13143588. [PMID: 34298800 PMCID: PMC8306906 DOI: 10.3390/cancers13143588] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Colorectal cancer is one of the most common causes and the leading cause of cancer deaths worldwide. Its poor prognosis highlights the urgent need for more effective treatments. Repurposing approved drugs is a promising strategy as preclinical screenings can be minimized. The aim of our retrospective study was to investigate the potential of Dipeptidyl-peptidase 4 (DPP4)-inhibitors, which are safe Food and Drug Association (FDA)-approved drugs for treating diabetes, in treating CRC patients. Our findings conclude that CRC patients with diabetes and treated with DPP4-inhibitors in our hospital during 2006–2015, their 5-year prognosis following curative resection was significantly better than those treated with metformin. We further showed that their prognosis was associated with immune cell population features that associated with better prognosis, and immune cell profile is a biomarker for predicting the prognosis of DPP4-inhibitors treated CRC patients. Abstract Background: There have been studies reporting the crucial roles of Dipeptidyl-peptidase 4 (DPP4) in colorectal cancer (CRC) initiation and progression, whereas DPP4-inhibitors are safe Food and Drug Association (FDA)-approved drugs for treating diabetes. This study aims to investigate the association between DPP4-inhibitor treatment and the prognosis of CRC patients. Methods: Clinical data of CRC patients with diabetes and the prescription of DPP4-inhibitors who had undergone curative surgery in our hospital between January 2006 and December 2015 were retrieved. Their survival data and immune cell population in circulatory blood were compared to those treated with metformin. Results: The DPP4-inhibitor patient group showed a significantly better 5-year disease-free survival (median DFS = 1733 days, 95% CI = 1596 to 1870 days) when compared to the metformin group (p = 0.030, median DFS = 1382 days, 95% CI = 1246 to 1518 days). 33 out of the 92 patients in the metformin group showed recurrence whereas only 3 of the 26 patients in the DPP4-inhibitor group showed recurrence (p = 0.033). Cox regression analysis demonstrated that DPP4-inhibitor application is a favorable factor associated with a lower risk of recurrence (Hazard ratio = 0.200, p = 0.035). Furthermore, our results suggested that the immune cell profile of CRC patients is a potential biomarker for response to DPP4-inhibitor treatment. Conclusion: This study demonstrated the association of DPP4-inhibitor treatment with a better prognosis of CRC patients.
Collapse
Affiliation(s)
- Lui Ng
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; (D.C.-C.F.); (A.T.-K.M.); (O.S.-H.L.)
- Correspondence: (L.N.); (W.-L.L.); Tel.: +852-3917-9638 (L.N.); +852-2255-2763 (W.-L.L.)
| | - Dominic Chi-Chung Foo
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; (D.C.-C.F.); (A.T.-K.M.); (O.S.-H.L.)
| | - Carlos King-Ho Wong
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong;
| | - Abraham Tak-Ka Man
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; (D.C.-C.F.); (A.T.-K.M.); (O.S.-H.L.)
| | - Oswens Siu-Hung Lo
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; (D.C.-C.F.); (A.T.-K.M.); (O.S.-H.L.)
| | - Wai-Lun Law
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; (D.C.-C.F.); (A.T.-K.M.); (O.S.-H.L.)
- Correspondence: (L.N.); (W.-L.L.); Tel.: +852-3917-9638 (L.N.); +852-2255-2763 (W.-L.L.)
| |
Collapse
|
115
|
Bielka W, Przezak A, Pawlik A. Therapy of Type 2 Diabetes in Patients with SARS-CoV-2 Infection. Int J Mol Sci 2021; 22:ijms22147605. [PMID: 34299225 PMCID: PMC8306903 DOI: 10.3390/ijms22147605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 infection poses an important clinical therapeutic problem, especially in patients with coexistent diseases such as type 2 diabetes. Potential pathogenetic links between COVID-19 and diabetes include inflammation, effects on glucose homeostasis, haemoglobin deoxygenation, altered immune status and activation of the renin-angiotensin-aldosterone system (RAAS). Moreover, drugs often used in the clinical care of diabetes (dipeptidyl peptidase 4 inhibitors, glucagon-like peptide 1 receptor agonists, sodium-glucose cotransporter 2 inhibitors, metformin and insulin) may influence the course of SARS-CoV-2 infection, so it is very important to verify their effectiveness and safety. This review summarises the new advances in diabetes therapy and COVID-19 and provides clinical recommendations that are essential for medical doctors and for patients suffering from type 2 diabetes.
Collapse
|
116
|
Bonora BM, Avogaro A, Fadini GP. Disentangling conflicting evidence on DPP-4 inhibitors and outcomes of COVID-19: narrative review and meta-analysis. J Endocrinol Invest 2021; 44:1379-1386. [PMID: 33512688 PMCID: PMC7845283 DOI: 10.1007/s40618-021-01515-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread all over the world, becoming pandemic. Several studies have shown that diabetes mellitus (DM) is an independent risk factor that increases mortality and other adverse outcomes of coronavirus disease-19 (COVID-19). Studies have suggested that SARS-CoV-2 may bind dipeptidyl peptidase-4 (DPP4) for entering cells of the respiratory tract. Besides, DPP4 takes part in immune system regulation. Thus, DPP-4 inhibitors (DPP4i) may play a role against COVID-19. METHODS We focused on the impact of DPP4i treatment on COVID-19-related outcomes in people with DM. For this purpose, we conducted a systematic review and meta-analysis to summarize the existing evidence on this topic. RESULTS Retrospective observational studies provide inconsistent results on the association between use of DPP4i and outcomes of COVID-19. While two studies reported significantly lower mortality rates among patients with DM who received DPP4i versus those who did not, a series of other studies showed no effect of DPP4i or even worse outcomes. A meta-analysis of 7 studies yielded a neutral estimate of the risk ratio of COVID-19-related mortality among users of DPP4i (0.81; 95% CI 0.57-1.15). CONCLUSION In the absence of randomized controlled trials, observational research available so far provides inconclusive results and insufficient evidence to recommend use of DPP4i against COVID-19.
Collapse
Affiliation(s)
- B M Bonora
- Department of Medicine, University of Padova, Via Giustiniani 2, 35128, Padua, Italy
| | - A Avogaro
- Department of Medicine, University of Padova, Via Giustiniani 2, 35128, Padua, Italy
| | - G P Fadini
- Department of Medicine, University of Padova, Via Giustiniani 2, 35128, Padua, Italy.
| |
Collapse
|
117
|
Anti-inflammatory Effects of Empagliflozin and Gemigliptin on LPS-Stimulated Macrophage via the IKK/NF- κB, MKK7/JNK, and JAK2/STAT1 Signalling Pathways. J Immunol Res 2021; 2021:9944880. [PMID: 34124273 PMCID: PMC8192181 DOI: 10.1155/2021/9944880] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Background Sodium-glucose cotransporter 2 (SGLT2) and dipeptidyl peptidase-4 (DPP-4) inhibitors are glucose-lowering drugs whose anti-inflammatory properties have recently become useful in tackling metabolic syndromes in chronic inflammatory diseases, including diabetes and obesity. We investigated whether empagliflozin (SGLT2 inhibitor) and gemigliptin (DPP-4 inhibitor) improve inflammatory responses in macrophages, identified signalling pathways responsible for these effects, and studied whether the effects can be augmented with dual empagliflozin and gemigliptin therapy. Methods RAW 264.7 macrophages were first stimulated with lipopolysaccharide (LPS), then cotreated with empagliflozin, gemigliptin, or empagliflozin plus gemigliptin. We conducted quantitative RT-PCR (qRT-PCR) to determine the most effective anti-inflammatory doses without cytotoxicity. We performed ELISA and qRT-PCR for inflammatory cytokines and chemokines and flow cytometry for CD80, the M1 macrophage surface marker, to evaluate the anti-inflammatory effects of empagliflozin and gemigliptin. NF-κB, MAPK, and JAK2/STAT signalling pathways were examined via Western blotting to elucidate the molecular mechanisms of anti-inflammation. Results LPS-stimulated CD80+ M1 macrophages were suppressed by coincubation with empagliflozin, gemigliptin, and empagliflozin plus gemigliptin, respectively. Empagliflozin and gemigliptin (individually and combined) inhibited prostaglandin E2 (PGE2) release and COX-2, iNOS gene expression in LPS-stimulated RAW 264.7 macrophages. These three treatments also attenuated the secretion and mRNA expression of proinflammatory cytokines, such as TNF-α, IL-1β, IL-6, and IFN-γ, and proinflammatory chemokines, such as CCL3, CCL4, CCL5, and CXCL10. All of them blocked NF-κB, JNK, and STAT1/3 phosphorylation through IKKα/β, MKK4/7, and JAK2 signalling. Conclusions Our study demonstrated the anti-inflammatory effects of empagliflozin and gemigliptin via IKK/NF-κB, MKK7/JNK, and JAK2/STAT1 pathway downregulation in macrophages. In all cases, combined empagliflozin and gemigliptin treatment showed greater anti-inflammatory properties.
Collapse
|
118
|
Neutrophil to lymphocyte ratio is predictive of severe complications and mortality in patients with dipeptidyl peptidase-4 inhibitor-associated bullous pemphigoid: A retrospective longitudinal observational study. J Am Acad Dermatol 2021; 86:1387-1390. [PMID: 34058280 DOI: 10.1016/j.jaad.2021.05.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/24/2022]
|
119
|
Abstract
CONTEXT Obesity and type 2 diabetes are associated with chronic hyperinsulinemia, elevated plasma levels of dipeptidyl peptidase-4 (DPP4), and a pro-atherosclerotic milieu. EVIDENCE ACQUISITION PubMed search of the term "insulin and atherosclerosis," "hyperinsulinemia," "atherosclerosis," or "cardiovascular outcomes" cross-referenced with "DPP4." Relevant research and review articles were reviewed. EVIDENCE SYNTHESIS Hyperinsulinemia in the setting of insulin resistance promotes vascular inflammation, vascular smooth muscle cell growth, pathological cholesterol profile, hypertension, and recruitment of immune cells to the endothelium, all contributing to atherosclerosis. DPP4 has pleiotropic functions and its activity is elevated in obese humans. DPP4 mirrors hyperinsulinemia's atherogenic actions in the insulin resistant state, and genetic deletion of DPP4 protects rodents from developing insulin resistance and improves cardiovascular outcomes. DPP4 inhibition in pro-atherosclerotic preclinical models results in reduced inflammation and oxidative stress, improved endothelial function, and decreased atherosclerosis. Increased incretin levels may have contributed to but do not completely account for these benefits. Small clinical studies with DPP4 inhibitors demonstrate reduced carotid intimal thickening, improved endothelial function, and reduced arterial stiffness. To date, this has not been translated to cardiovascular risk reduction for individuals with type 2 diabetes with prior or exaggerated risk of cardiovascular disease. CONCLUSION DPP4 may represent a key link between central obesity, insulin resistance, and atherosclerosis. The gaps in knowledge in DPP4 function and discrepancy in cardiovascular outcomes observed in preclinical and large-scale randomized controlled studies with DPP4 inhibitors warrant additional research.
Collapse
Affiliation(s)
- Kaitlin M Love
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
120
|
Darbeheshti F, Abolhassani H, Bashashati M, Ghavami S, Shahkarami S, Zoghi S, Gupta S, Orange JS, Ochs HD, Rezaei N. Coronavirus: Pure Infectious Disease or Genetic Predisposition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1318:91-107. [PMID: 33973174 DOI: 10.1007/978-3-030-63761-3_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes novel coronavirus disease (COVID-19), is the seventh pathogenic coronavirus recently discovered in December 2019 in Wuhan, China. To date, our knowledge about its effect on the human host remains limited. It is well known that host genetic factors account for the individual differences in the susceptibility to infectious diseases. The genetic susceptibility factors to COVID-19 and its severity are associated with several unanswered questions. However, the experience gained from an earlier strain of coronavirus, SARS-CoV-1, which shows 78% genetic similarity to SARS-CoV-2 and uses the same receptor to bind to host cells, could provide some clues. It, therefore, seems possible to assemble new evidence in order to solve a potential genetic predisposition puzzle for COVID-19. In this chapter, the puzzle pieces, including virus entry receptors, immune response, and inflammation-related genes, as well as the probable genetic predisposition models to COVID-19, are discussed.
Collapse
Affiliation(s)
- Farzaneh Darbeheshti
- Department of Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Medical Genetics Network (MeGeNe), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| | - Mohammad Bashashati
- Division of Gastroenterology, Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), El Paso, TX, USA
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Faculty of Medicine, Katowice School of Technology, Katowice, Poland
| | - Sepideh Shahkarami
- Medical Genetics Network (MeGeNe), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Gene center, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Samaneh Zoghi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Sudhir Gupta
- Department of Medicine, Division of Basic and Clinical Immunology, University of California, Irvine, CA, USA
| | - Jordan S Orange
- Immunology, Allergy, and Rheumatology, Baylor College of Medicine and the Texas Children's Hospital, Houston, TX, USA
| | - Hans D Ochs
- School of Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
- Universal Scientific Education and Research Network (USERN), Seattle, WA, USA
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Children's Medical Center Hospital, Tehran, Iran.
| |
Collapse
|
121
|
Knura M, Garczorz W, Borek A, Drzymała F, Rachwał K, George K, Francuz T. The Influence of Anti-Diabetic Drugs on Prostate Cancer. Cancers (Basel) 2021; 13:cancers13081827. [PMID: 33921222 PMCID: PMC8068793 DOI: 10.3390/cancers13081827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/27/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
The incidences of prostate cancer (PC) and diabetes are increasing, with a sustained trend. The occurrence of PC and type 2 diabetes mellitus (T2DM) is growing with aging. The correlation between PC occurrence and diabetes is noteworthy, as T2DM is correlated with a reduced risk of incidence of prostate cancer. Despite this reduction, diabetes mellitus increases the mortality in many cancer types, including prostate cancer. The treatment of T2DM is based on lifestyle changes and pharmacological management. Current available drugs, except insulin, are aimed at increasing insulin secretion (sulfonylureas, incretin drugs), improving insulin sensitivity (biguanides, thiazolidinediones), or increasing urinary glucose excretion (gliflozin). Comorbidities should be taken into consideration during the treatment of T2DM. This review describes currently known information about the mechanism and impact of commonly used antidiabetic drugs on the incidence and progression of PC. Outcomes of pre-clinical studies are briefly presented and their correlations with available clinical trials have also been observed. Available reports and meta-analyses demonstrate that most anti-diabetic drugs do not increase the risk during the treatment of patients with PC. However, some reports show a potential advantage of treatment of T2DM with specific drugs. Based on clinical reports, use of metformin should be considered as a therapeutic option. Moreover, anticancer properties of metformin were augmented while combined with GLP-1 analogs.
Collapse
|
122
|
Rahmani-Kukia N, Abbasi A. Physiological and Immunological Causes of the Susceptibility of Chronic Inflammatory Patients to COVID-19 Infection: Focus on Diabetes. Front Endocrinol (Lausanne) 2021; 12:576412. [PMID: 33746897 PMCID: PMC7971178 DOI: 10.3389/fendo.2021.576412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has recently emerged, which was then spread rapidly in more than 190 countries worldwide so far. According to the World Health Organization, 3,232,062 global cases of COVID-19 were confirmed on April 30th with a mortality rate of 3.4%. Notably, the symptoms are almost similar to those of flu such as fever, cough, and fatigue. Unfortunately, the global rates of morbidity and mortality caused by this disease are more and still increasing on a daily basis. The rates for patients suffering from inflammatory diseases like diabetes, is even further, due to their susceptibility to the pathogenesis of COVID-19. In this review, we attempted to focus on diabetes to clarify the physiological and immunological characteristics of diabetics before and after the infection with COVID-19. We hope these conceptions could provide a better understanding of the mechanisms involved in COVID-19 susceptibility and increase the awareness of risk to motivate behavior changes in vulnerable people for enhancing the prevention. Up to now, the important role of immune responses, especially the innate ones, in the development of the worst signs in COVID-19 infection have been confirmed. Therefore, to better control patients with COVID-19, it is recommended to consider a history of chronic inflammatory diseases as well as the way of controlling immune response in these patients.
Collapse
Affiliation(s)
- Nasim Rahmani-Kukia
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
123
|
Yoon H, Sung JH, Song MJ. Effects of the Antidiabetic Drugs Evogliptin and Sitagliptin on the Immune Function of CD26/DPP4 in Th1 Cells. Biomol Ther (Seoul) 2021; 29:154-165. [PMID: 33148870 PMCID: PMC7921863 DOI: 10.4062/biomolther.2020.150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 01/20/2023] Open
Abstract
This study aimed to investigate whether the antidiabetic drugs dipeptidyl peptidase 4 (DPP4) inhibitors such as evogliptin and sitagliptin affect the membrane DPP4 (mDPP4) enzymatic activity and immune function of T helper1 (Th1) cells in terms of cytokine expression and cell profiles. The mDPP4 enzymatic activity, cytokine expression, and cell profiles, including cell counts, cell viability, DNA synthesis, and apoptosis, were measured in pokeweed mitogen (PWM)-activated CD4+CD26+ H9 Th1 cells with or without the DPP4 inhibitors, evogliptin and sitagliptin. PWM treatment alone strongly stimulated the expression of mDPP4 and cytokines such as interleukin (IL)-2, IL-10, tumor necrosis factor-alpha, interferon-gamma, IL-13, and granulocyte-macrophage colony stimulating factor in the CD4+CD26+ H9 Th1 cells. Evogliptin or sitagliptin treatment potently inhibited mDPP4 activity in a dose-dependent manner but did not affect either the cytokine profile or cell viability in PWM-activated CD4+CD26+ H9 Th1 cells. These results suggest that, following immune stimulation, Th1 cell signaling pathways for cytokine expression function normally after treatment with evogliptin or sitagliptin, which efficiently inhibit mDPP4 enzymatic activity in Th1 cells.
Collapse
Affiliation(s)
- Hyunyee Yoon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.,Protein Immunology Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Kore
| | - Ji Hyun Sung
- Flow Cytometry Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Moon Jung Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
124
|
Scheen AJ. DPP-4 inhibition and COVID-19: From initial concerns to recent expectations. DIABETES & METABOLISM 2021; 47:101213. [PMID: 33249199 PMCID: PMC7690941 DOI: 10.1016/j.diabet.2020.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/15/2020] [Indexed: 12/18/2022]
Abstract
Dipeptidyl peptidase-4 inhibitors (DPP-4is) have gained a key place in the management of type 2 diabetes mellitus (T2DM) essentially because of their good safety profile even in the frail population. DPP-4, originally known as 'T-cell antigen CD26', is expressed in many immune cells and regulates their functions, so the initial concern over the use of DPP-4is was the possible increased susceptibility to infections. Furthermore, because of the high affinity between human DPP-4 and the spike (S) receptor-binding domain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it was suspected that this virus, responsible for coronavirus disease 2019 (COVID-19), might be able to use the DPP-4 enzyme as a functional receptor to gain entry into the host. However, DPP-4is also exert anti-inflammatory effects, which could be beneficial in patients exposed to cytokine storms due to COVID-19. Yet, when observational (mostly retrospective) studies compared clinical outcomes in DPP-4i users vs non-users among diabetes patients with COVID-19, the overall results regarding the risk of progression towards more severe forms of the disease and mortality were heterogeneous, thereby precluding any definite conclusions. Nevertheless, new expectations have arisen following recent reports of significant reductions in admissions to intensive care units and mortality in DPP-4i users. However, given the limitations inherent in such observational studies, any available results should be considered, at best, as hypothetical and only suggestive of potentially substantial benefits with DPP-4is in diabetes patients with COVID-19. While the safe use of DPP-4is in COVID-19 patients appears to be an acceptable hypothesis, all such positive findings still need to be confirmed in randomized controlled trials (a few of which are currently ongoing) before any recommendations can be made for clinical practice.
Collapse
Affiliation(s)
- André J Scheen
- Division of Diabetes, Nutrition and Metabolic Disorders, CHU Liège, Liège, Belgium; Division of Clinical Pharmacology, Centre for Interdisciplinary Research on Medicines (CIRM), Liège University, Liège, Belgium.
| |
Collapse
|
125
|
Shao S, Yang Q, Pan R, Yu X, Chen Y. Interaction of Severe Acute Respiratory Syndrome Coronavirus 2 and Diabetes. Front Endocrinol (Lausanne) 2021; 12:731974. [PMID: 34690930 PMCID: PMC8527093 DOI: 10.3389/fendo.2021.731974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/17/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing a worldwide epidemic. It spreads very fast and hits people of all ages, especially patients with underlying diseases such as diabetes. In this review, we focus on the influences of diabetes on the outcome of SARS-CoV-2 infection and the involved mechanisms including lung dysfunction, immune disorder, abnormal expression of angiotensin-converting enzyme 2 (ACE2), overactivation of mechanistic target of rapamycin (mTOR) signaling pathway, and increased furin level. On the other hand, SARS-CoV-2 may trigger the development of diabetes. It causes the damage of pancreatic β cells, which is probably mediated by ACE2 protein in the islets. Furthermore, SARS-CoV-2 may aggravate insulin resistance through attacking other metabolic organs. Of note, certain anti-diabetic drugs (OADs), such as peroxisome proliferator-activated receptor γ (PPARγ) activator and glucagon-like peptide 1 receptor (GLP-1R) agonist, have been shown to upregulate ACE2 in animal models, which may increase the risk of SARS-CoV-2 infection. However, Metformin, as a first-line medicine for the treatment of type 2 diabetes mellitus (T2DM), may be a potential drug benefiting diabetic patients with SARS-CoV-2 infection, probably via a suppression of mTOR signaling together with its anti-inflammatory and anti-fibrosis function in lung. Remarkably, another kind of OADs, dipeptidyl Peptidase 4 (DPP4) inhibitor, may also exert beneficial effects in this respect, probably via a prevention of SARS-CoV-2 binding to cells. Thus, it is of significant to identify appropriate OADs for the treatment of diabetes in the context of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Shiying Shao
- Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Qin Yang
- Division of Pathology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ruping Pan
- Department of Nuclear Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefeng Yu
- Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Yong Chen
- Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
- *Correspondence: Yong Chen,
| |
Collapse
|
126
|
Abuhasira R, Ayalon-Dangur I, Zaslavsky N, Koren R, Keller M, Dicker D, Grossman A. A Randomized Clinical Trial of Linagliptin vs. Standard of Care in Patients Hospitalized With Diabetes and COVID-19. Front Endocrinol (Lausanne) 2021; 12:794382. [PMID: 35002970 PMCID: PMC8727772 DOI: 10.3389/fendo.2021.794382] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/30/2021] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE To assess the effect of linagliptin vs. standard therapy in improving clinical outcomes in patients hospitalized with diabetes and coronavirus disease 2019 (COVID-19). MATERIALS AND METHODS We did an open-label, prospective, multicenter, randomized clinical trial in 3 Israeli hospitals between October 1, 2020, and April 4, 2021. Eligible patients were adults with type 2 diabetes mellitus and a diagnosis of COVID-19. A total of 64 patients, 32 in each group, were randomized to receive linagliptin 5 mg PO daily throughout the hospitalization or standard of care therapy. The primary outcome was time to clinical improvement within 28 days after randomization, defined as a 2-point reduction on an ordinal scale ranging from 0 (discharged without disease) to 8 (death). RESULTS The mean age was 67 ± 14 years, and most patients were male (59.4%). Median time to clinical improvement was 7 days (interquartile range (IQR) 3.5-15) in the linagliptin group compared with 8 days (IQR 3.5-28) in the standard of care group (hazard ratio, 1.22; 95% CI, 0.70-2.15; p = 0.49). In-hospital mortality was 5 (15.6%) and 8 (25.0%) in the linagliptin and standard of care groups, respectively (odds ratio, 0.56; 95% CI, 0.16-1.93). The trial was prematurely terminated due to the control of the COVID-19 outbreak in Israel. CONCLUSIONS In this randomized clinical trial of hospitalized adult patients with diabetes and COVID-19 who received linagliptin, there was no difference in the time to clinical improvement compared with the standard of care. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, identifier NCT04371978.
Collapse
Affiliation(s)
- Ran Abuhasira
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Internal Medicine B, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel
- *Correspondence: Ran Abuhasira,
| | - Irit Ayalon-Dangur
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Internal Medicine E, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel
| | - Neta Zaslavsky
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Internal Medicine B, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel
| | - Ronit Koren
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Internal Medicine A, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| | - Mally Keller
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Internal Medicine A, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| | - Dror Dicker
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Internal Medicine D, Rabin Medical Center, Hasharon Campus, Petah Tikva, Israel
| | - Alon Grossman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Internal Medicine B, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel
| |
Collapse
|
127
|
Zhang Y, Tang LV. Overview of Targets and Potential Drugs of SARS-CoV-2 According to the Viral Replication. J Proteome Res 2021; 20:49-59. [PMID: 33347311 PMCID: PMC7770889 DOI: 10.1021/acs.jproteome.0c00526] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Indexed: 01/18/2023]
Abstract
Since the novel coronavirus pandemic, people around the world have been touched in varying degrees, and this pandemic has raised a major global health concern. As there is no effective drug or vaccine, it is urgent to find therapeutic drugs that can serve to deal with the current epidemic situation in all countries and regions. We searched drugs and response measures for SARS-CoV-2 in the PubMed database, and then updated the potential targets and therapeutic drugs from the perspective of the viral replication cycle. The drug research studies of the viral replication cycle are predominantly focused on the process of the virus entering cells, proteases, and RdRp. The inhibitors of the virus entry to cells and RdRp, such as Arbidol, remdesivir, favipiravir, EIDD-2081, and ribavirin, are in clinical trials, while most of the protease inhibitors are mainly calculated by molecular docking technology, which needs in vivo and in vitro experiments to prove the effect for SARS-CoV-2. This review summarizes the drugs targeting the viral replication process and provides a basis and directions for future drug development and reuse on the protein level of COVID-19.
Collapse
Affiliation(s)
- Yi Zhang
- Institute
of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang V. Tang
- Institute
of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
128
|
Katsiki N, Ferrannini E. Anti-inflammatory properties of antidiabetic drugs: A "promised land" in the COVID-19 era? J Diabetes Complications 2020; 34:107723. [PMID: 32900588 PMCID: PMC7448766 DOI: 10.1016/j.jdiacomp.2020.107723] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
Inflammation is implicated in the development and severity of the coronavirus disease 2019 (COVID-19), as well as in the pathophysiology of diabetes. Diabetes, especially when uncontrolled, is also recognized as an important risk factor for COVID-19 morbidity and mortality. Furthermore, certain inflammatory markers [i.e. C-reactive protein (CRP), interleukin-6 (IL-6) and ferritin] were reported as strong predictors of worse outcomes in COVID-19 positive patients. The same biomarkers have been associated with poor glycemic control. Therefore, achieving euglycemia in patients with diabetes is even more important in the era of the COVID-19 pandemic. Based on the above, it is clinically interesting to elucidate whether antidiabetic drugs may reduce inflammation, thus possibly minimizing the risk for COVID-19 development and severity. The present narrative review discusses the potential anti-inflammatory properties of certain antidiabetic drugs (i.e. metformin, pioglitazone, sitagliptin, linagliptin, vildagliptin, alogliptin, saxagliptin, liraglutide, dulaglutide, exenatide, lixisenatide, semaglutide, empagliflozin, dapagliflozin, canagliflozin), with a focus on CRP, IL-6 and ferritin.
Collapse
Affiliation(s)
- Niki Katsiki
- First Department of Internal Medicine, Diabetes Center, Division of Endocrinology and Metabolism, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | | |
Collapse
|
129
|
Ebrahimi N, Aslani S, Babaie F, Hemmatzadeh M, Hosseinzadeh R, Joneidi Z, Mehdizadeh Tourzani Z, Pakravan N, Mohammadi H. Recent findings on the Coronavirus disease 2019 (COVID-19); immunopathogenesis and immunotherapeutics. Int Immunopharmacol 2020; 89:107082. [PMID: 33068865 PMCID: PMC7547582 DOI: 10.1016/j.intimp.2020.107082] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) is responsible for recent ongoing public health emergency in the world. Sharing structural and behavioral similarities with its ancestors [SARS and Middle East Respiratory Syndrome (MERS)], SARS-CoV-2 has lower fatality but faster transmission. We have gone through a long path to recognize SARS and MERS, therefore our knowledge regarding SARS-CoV-2 is not raw. Various responses of the immune system account for the wide spectrum of clinical manifestations in Coronavirus disease-2019 (COVID-19). Given the innate immune response as the front line of defense, it is immediately activated after the virus entry. Consequently, adaptive immune response is activated to eradicate the virus. However, this does not occur in every case and immune response is the main culprit causing the pathological manifestations of COVID-19. Lethal forms of the disease are correlated with inefficient and/or insufficient immune responses associated with cytokine storm. Current therapeutic approach for COVID-19 is in favor of suppressing extreme inflammatory responses, while maintaining the immune system alert and responsive against the virus. This could be contributing along with administration of antiviral drugs in such patients. Furthermore, supplementation with different compounds, such as vitamin D, has been tested to modulate the immune system responses. A thorough understanding of chronological events in COVID-19 contributing to the development of a highly efficient treatment has not figured out yet. This review focuses on the virus-immune system interaction as well as currently available and potential therapeutic approaches targeting immune system in the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Negin Ebrahimi
- Department of International Medicine, Faculty of Medicine, Health Sciences University, Istanbul, Turkey
| | - Saeed Aslani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Babaie
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran; Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Hosseinzadeh
- Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | | | - Nafiseh Pakravan
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
130
|
Bestatin and bacitracin inhibit porcine kidney cortex dipeptidyl peptidase IV activity and reduce human melanoma MeWo cell viability. Int J Biol Macromol 2020; 164:2944-2952. [DOI: 10.1016/j.ijbiomac.2020.08.157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 01/10/2023]
|
131
|
Patel PM, Jones VA, Kridin K, Amber KT. The role of Dipeptidyl Peptidase-4 in cutaneous disease. Exp Dermatol 2020; 30:304-318. [PMID: 33131073 DOI: 10.1111/exd.14228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/21/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Dipeptidyl peptidase-4 (DPP4) is a multifunctional, transmembrane glycoprotein present on the cell surface of various tissues. It is present in multiple molecular forms including cell surface and soluble. The role of DPP4 and its inhibition in cutaneous dermatoses have been a recent point of investigation. DPP4 exerts a notable influence on T-cell biology, the induction of skin-specific lymphocytes, and the homeostasis between regulatory and effector T cells. Moreover, DPP4 interacts with a broad range of molecules, including adenosine deaminase, caveolin-1, CXCR4 receptor, M6P/insulin-like growth factor II-receptor and fibroblast activation protein-α, triggering downstream effects that modulate the immune response, cell adhesion and chemokine activity. DPP4 expression on melanocytes, keratinocytes and fibroblasts further alters cell function and, thus, has crucial implications in cutaneous pathology. As a result, DPP4 plays a significant role in bullous pemphigoid, T helper type 1-like reactions, cutaneous lymphoma, melanoma, wound healing and fibrotic disorders. This review illustrates the multifactorial role of DPP4 expression, regulation, and inhibition in cutaneous diseases.
Collapse
Affiliation(s)
- Payal M Patel
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Virginia A Jones
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Khalaf Kridin
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Kyle T Amber
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
132
|
Rezaeepoor M, Hoseini-Aghdam M, Sheikh V, Eftekharian MM, Behzad M. Evaluation of Interleukin-23 and JAKs/STATs/SOCSs/ROR-γt Expression in Type 2 Diabetes Mellitus Patients Treated With or Without Sitagliptin. J Interferon Cytokine Res 2020; 40:515-523. [PMID: 33136467 DOI: 10.1089/jir.2020.0113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The production of interleukin-23 (IL-23) and the expression levels of related genes were evaluated in type 2 diabetes mellitus patients. The correlations between them were also determined. Thirty patients without sitagliptin (sitagliptin negative; SN), 30 patients with sitagliptin (sitagliptin positive; SP), and 30 healthy controls (HCs) were recruited. The level of IL-23 in the supernatant of anti CD3-activated peripheral blood mononuclear cells (PBMCs) was assessed using enzyme-linked immunosorbent assay. The expressions of IL-23, JAK1/JAK2/TYK2, STAT1/STAT3, ROR-γt, and SOCS1/SOCS3 in PBMCs were evaluated by real-time polymerase chain reaction. The production of IL-23 and the expressions of IL-23, JAK2, STAT3, and ROR-γt were observed to be enhanced in SN patients versus HCs, while the levels were decreased in SP patients versus SN patients (P < 0.05). SOCS1 and SOCS3 expressions were lower in SN patients than HCs, and their expressions were elevated in SP patients versus SN patients (P < 0.05). In SN patients, positive correlations between the IL-23 with fasting plasma glucose and HbA1c were observed, and JAK2/STAT3/ROR-γt were positively correlated with IL-23. JAK2, STAT3, and ROR-γt were positively related to each other and were negatively related to SOCS3. Enhanced IL-23/JAK2/STAT3/ROR-γt and reduced SOCS1/SOCS3 were found in SN patients. Sitagliptin may regulate the IL-23 and related gene expression.
Collapse
Affiliation(s)
- Mahsa Rezaeepoor
- Department of Immunology and School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mirhamed Hoseini-Aghdam
- Department of Immunology and School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Vida Sheikh
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mahdi Behzad
- Department of Immunology and School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
133
|
Abstract
Dendritic cells are a specialized subset of hematopoietic cells essential for mounting immunity against tumors and infectious disease as well as inducing tolerance for maintenance of homeostasis. DCs are equipped with number of immunoregulatory or stimulatory molecules that interact with other leukocytes to modulate their functions. Recent advances in DC biology identified a specific role for the conventional dendritic cell type 1 (cDC1) in eliciting cytotoxic CD8+ T cells essential for clearance of tumors and infected cells. The critical role of this subset in eliciting immune responses or inducing tolerance has largely been defined in mice whereas the biology of human cDC1 is poorly characterized owing to their extremely low frequency in tissues. A detailed characterization of the functions of many immunoregulatory and stimulatory molecules expressed by human cDC1 is critical for understanding their biology to exploit this subset for designing novel therapeutic modalities against cancer, infectious disease and autoimmune disorders.
Collapse
Affiliation(s)
- Sreekumar Balan
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Kristen J Radford
- Cancer Immunotherapies Laboratory, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Nina Bhardwaj
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Extramural member Parker Institute of Cancer Immunotherapy, CA, United States.
| |
Collapse
|
134
|
Sever B, Soybir H, Görgülü Ş, Cantürk Z, Altıntop MD. Pyrazole Incorporated New Thiosemicarbazones: Design, Synthesis and Investigation of DPP-4 Inhibitory Effects. Molecules 2020; 25:molecules25215003. [PMID: 33126761 PMCID: PMC7662656 DOI: 10.3390/molecules25215003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/29/2022] Open
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibition has been recognized as a promising approach to develop safe and potent antidiabetic agents for the management of type 2 diabetes. In this context, new thiosemicarbazones (2a-o) were prepared efficiently by the reaction of aromatic aldehydes with 4-[4-(1H-pyrazol-1-yl)phenyl]thiosemicarbazide (1), which was obtained via the reaction of 4-(1H-pyrazol-1-yl)phenyl isothiocyanate with hydrazine hydrate. Compounds 2a-o were evaluated for their DPP-4 inhibitory effects based on a convenient fluorescence-based assay. 4-[4-(1H-pyrazol-1-yl)phenyl]-1-(4-bromobenzylidene)thiosemicarbazide (2f) was identified as the most effective DPP-4 inhibitor in this series with an IC50 value of 1.266 ± 0.264 nM when compared with sitagliptin (IC50 = 4.380 ± 0.319 nM). MTT test was carried out to assess the cytotoxic effects of compounds 2a-o on NIH/3T3 mouse embryonic fibroblast (normal) cell line. According to cytotoxicity assay, compound 2f showed cytotoxicity towards NIH/3T3 cell line with an IC50 value higher than 500 µM pointing out its favourable safety profile. Molecular docking studies indicated that compound 2f presented π-π interactions with Arg358 and Tyr666 via pyrazole scaffold and 4-bromophenyl substituent, respectively. Overall, in vitro and in silico studies put emphasis on that compound 2f attracts a great notice as a drug-like DPP-4 inhibitor for further antidiabetic research.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey; (B.S.); (H.S.)
| | - Hasan Soybir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey; (B.S.); (H.S.)
| | - Şennur Görgülü
- Medicinal Plant, Drug and Scientific Research and Application Center, Anadolu University, 26470 Eskişehir, Turkey;
| | - Zerrin Cantürk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey;
| | - Mehlika Dilek Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey; (B.S.); (H.S.)
- Correspondence: ; Tel.: +90-222-335-0580
| |
Collapse
|
135
|
Gürcü S, Girgin G, Yorulmaz G, Kılıçarslan B, Efe B, Baydar T. Neopterin and biopterin levels and tryptophan degradation in patients with diabetes. Sci Rep 2020; 10:17025. [PMID: 33046801 PMCID: PMC7552423 DOI: 10.1038/s41598-020-74183-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/28/2020] [Indexed: 12/23/2022] Open
Abstract
This study aimed to evaluate the possible changes of neopterin, biopterin levels and tryptophan degradation in diabetes and to compare the results within diabetes groups and with healthy subjects. Diabetes mellitus patients and healthy controls were recruited the study. Patients were further subgrouped according to their drug therapy. Serum neopterin concentrations were detected by ELISA. Urinary neopterin, biopterin, serum tryptophan (Trp) and kynurenine (Kyn) levels were detected by HPLC. There was no difference between controls and diabetes patients in serum neopterin, urinary neopterin and biopterin levels (p > 0.05, all). Serum Trp and Kyn levels were significantly different in type 1 diabetes (T1DM) patients compared to controls (p < 0.05, both). Serum neopterin levels were significantly higher in type 2 diabetes patients (T2DM) compared to T1DM (p < 0.05). Urinary biopterin levels of T2DM patients using both metformin and vildagliptin were significantly higher than T1DM patients (p < 0.05). The correlations between serum neopterin and urinary neopterin, Kyn and Kyn/Trp were statistically significant in control and patient groups (p < 0.05, all). The study showed that Kyn/Trp was altered in diabetes patients due to immune modulation. On the other hand, although xenobiotic exposure may change pteridine levels, metformin and/or vildagliptin use in T2DM patients did not have any effect on the measured parameters.
Collapse
Affiliation(s)
- Sinem Gürcü
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, 90-06230, Ankara, Turkey
- Eskisehir City Hospital, Hospital Pharmacy, Eskişehir, Turkey
| | - Gözde Girgin
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, 90-06230, Ankara, Turkey
| | - Göknur Yorulmaz
- Faculty of Medicine, Department of Endocrinology, Osmangazi University, Eskişehir, Turkey
| | - Bilge Kılıçarslan
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, 90-06230, Ankara, Turkey
| | - Belgin Efe
- Faculty of Medicine, Department of Endocrinology, Osmangazi University, Eskişehir, Turkey
| | - Terken Baydar
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, 90-06230, Ankara, Turkey.
| |
Collapse
|
136
|
Singla RK, Shen B. In Silico ADMET Evaluation of Natural DPP-IV Inhibitors for Rational Drug Design against Diabetes. Curr Drug Metab 2020; 21:768-777. [PMID: 32875983 DOI: 10.2174/1389200221999200901202945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/03/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND As a metabolic and lifestyle disorder, diabetes mellitus poses a prodigious health risk. Out of the many key targets, DPP-IV is one of the very imperative therapeutic targets for the treatment of diabetic patients. METHODS In our current study, we have done the in silico simulations of ADME-T properties for naturally originated potent DPP-IV inhibitors like quinovic acid, stigmasterol, quinovic acid-3-beta-D-glycopyranoside, zygophyloside E, and lupeol. Structural topographies associated with different pharmacokinetic properties have been systematically assessed. RESULTS Glycosylation on quinovic acid is found to be noteworthy for the improvement of pharmacokinetic and toxicological properties, which leads to the prediction that zygophyloside E can be further tailored down to get the lead DPP-IV inhibitor. CONCLUSION This assessment provides useful insight into the future development of novel drugs for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China
| |
Collapse
|
137
|
Pujalte-Martin M, Rocher F, Cardot-Leccia N, Giacchero D, Borchiellini D. Immune checkpoint inhibitor-induced bullous pemphigoid: Towards a new class of drug-drug interaction? Eur J Cancer 2020; 138:122-124. [PMID: 32877796 DOI: 10.1016/j.ejca.2020.07.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/22/2020] [Indexed: 11/15/2022]
Affiliation(s)
- Marc Pujalte-Martin
- Department of Medical Oncology, Centre Antoine Lacassagne, Université Côte d'Azur, Nice, France.
| | - Fanny Rocher
- Regional Center of PharmacoVigilance, CHU Nice, Université Côte d'Azur, France
| | | | - Damien Giacchero
- Dermatology Unit, Centre Antoine Lacassagne, Université Côte d'Azur, Nice, France
| | - Delphine Borchiellini
- Department of Medical Oncology, Centre Antoine Lacassagne, Université Côte d'Azur, Nice, France
| |
Collapse
|
138
|
Masood N, Malik SS, Raja MN, Mubarik S, Yu C. Unraveling the Epidemiology, Geographical Distribution, and Genomic Evolution of Potentially Lethal Coronaviruses (SARS, MERS, and SARS CoV-2). Front Cell Infect Microbiol 2020; 10:499. [PMID: 32974224 PMCID: PMC7481402 DOI: 10.3389/fcimb.2020.00499] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
SARS CoV appeared in 2003 in China, transmitted from bats to humans via eating infected animals. It affected 8,096 humans with a death rate of 11% affecting 21 countries. The receptor binding domain (RBD) in S protein of this virus gets attached with the ACE2 receptors present on human cells. MERS CoV was first reported in 2012 in Middle East, originated from bat and transmitted to humans through camels. MERS CoV has a fatality rate of 35% and last case reported was in 2017 making a total of 1,879 cases worldwide. DPP4 expressed on human cells is the main attaching site for RBD in S protein of MERS CoV. Folding of RBD plays a crucial role in its pathogenesis. Virus causing COVID-19 was named as SARS CoV-2 due its homology with SARS CoV that emerged in 2003. It has become a pandemic affecting nearly 200 countries in just 3 months' time with a death rate of 2-3% currently. The new virus is fast spreading, but it utilizes the same RBD and ACE2 receptors along with furin present in human cells. The lessons learned from the SARS and MERS epidemics are the best social weapons to face and fight against this novel global threat.
Collapse
Affiliation(s)
- Nosheen Masood
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | | | | | - Sumaira Mubarik
- Department of Epidemiology and Biostatistics, School of Health Sciences, Wuhan University, Wuhan, China
| | - Chuanhua Yu
- Department of Epidemiology and Biostatistics, School of Health Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
139
|
Valencia I, Peiró C, Lorenzo Ó, Sánchez-Ferrer CF, Eckel J, Romacho T. DPP4 and ACE2 in Diabetes and COVID-19: Therapeutic Targets for Cardiovascular Complications? Front Pharmacol 2020; 11:1161. [PMID: 32848769 PMCID: PMC7426477 DOI: 10.3389/fphar.2020.01161] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022] Open
Abstract
COVID-19 outbreak, caused by severe acute respiratory syndrome (SARS)-CoV-2 coronavirus has become an urgent health and economic challenge. Diabetes is a risk factor for severity and mortality of COVID-19. Recent studies support that COVID-19 has effects beyond the respiratory tract, with vascular complications arising as relevant factors worsening its prognosis, then making patients with previous vascular disease more prone to severity or fatal outcome. Angiotensin-II converting enzime-2 (ACE2) has been proposed as preferred receptor for SARS-CoV-2 host infection, yet specific proteins participating in the virus entry are not fully known. SARS-CoV-2 might use other co-receptor or auxiliary proteins allowing virus infection. In silico experiments proposed that SARS-CoV-2 might bind dipeptidyl peptidase 4 (DPP4/CD26), which was established previously as receptor for MERS-CoV. The renin-angiotensin-aldosterone system (RAAS) component ACE2 and DPP4 are proteins dysregulated in diabetes. Imbalance of the RAAS and direct effect of soluble DPP4 exert deleterious vascular effects. We hypothesize that diabetic patients might be more affected by COVID-19 due to increased presence ACE2 and DPP4 mediating infection and contributing to a compromised vasculature. Here, we discuss the role of ACE2 and DPP4 as relevant factors linking the risk of SARS-CoV-2 infection and severity of COVID-19 in diabetic patients and present an outlook on therapeutic potential of current drugs targeted against RAAS and DPP4 to treat or prevent COVID-19-derived vascular complications. Diabetes affects more than 400 million people worldwide, thus better understanding of how they are affected by COVID-19 holds an important benefit to fight against this disease with pandemic proportions.
Collapse
Affiliation(s)
- Inés Valencia
- Vascular Pharmacology and Metabolism Group (FARMAVASM), Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigaciones Sanitarias del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Concepción Peiró
- Vascular Pharmacology and Metabolism Group (FARMAVASM), Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigaciones Sanitarias del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Óscar Lorenzo
- Laboratory of Vascular Pathology and Diabetes, FIIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain
| | - Carlos F Sánchez-Ferrer
- Vascular Pharmacology and Metabolism Group (FARMAVASM), Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigaciones Sanitarias del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Jürgen Eckel
- German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tania Romacho
- German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
140
|
Pantanetti P, Cangelosi G, Ambrosio G. Potential role of incretins in diabetes and COVID-19 infection: a hypothesis worth exploring. Intern Emerg Med 2020; 15:779-782. [PMID: 32592113 PMCID: PMC7317260 DOI: 10.1007/s11739-020-02389-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022]
Abstract
Patients with diabetes mellitus have been reported to be at a high risk of complications from SARS-CoV2 virus infection (COVID-19). In type 2 diabetes, there is a change in immune system cells, which shift from an anti-inflammatory to a predominantly pro-inflammatory pattern. This altered immune profile may induce important clinical consequences, including increased susceptibility to lung infections; and enhanced local inflammatory response. Furthermore, dipeptidyl peptidase 4 (DPP4) enzyme is highly expressed in the lung, and that it may have additional actions besides its effects on glucose metabolism, which might exert profound pro-inflammatory effects. We briefly review the impact on the inflammatory system of DPP4 for its possible detrimental effect on COVID-19 syndrome, and of DPP4 inhibitors (gliptins), currently used as glucose lowering agents, which may have the potential to exert positive pleiotropic effect on inflammatory diseases, in addition to their effects on glucose metabolism. Thanks to these ancillary effects, gliptins could potentially be "repurposed" as salutary drugs against COVID-19 syndrome, even in non-diabetic subjects. Clinical studies should be designed to investigate this possibility.
Collapse
Affiliation(s)
- Paola Pantanetti
- UO Diabetologia Asur Marche, Area Vasta 4, Via Dante Zeppilli 18, 63900, Fermo, Italy.
| | - Giovanni Cangelosi
- UO Diabetologia Asur Marche, Area Vasta 4, Via Dante Zeppilli 18, 63900, Fermo, Italy
| | - Giuseppe Ambrosio
- Division of Cardiology, School of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
141
|
Chen CF, Chien CH, Yang YP, Chou SJ, Wang ML, Huo TI, Lin CC. Role of dipeptidyl peptidase-4 inhibitors in patients with diabetes infected with coronavirus-19. J Chin Med Assoc 2020; 83:710-711. [PMID: 32349031 PMCID: PMC7493766 DOI: 10.1097/jcma.0000000000000338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The pandemic infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is widely increasing the patients affiliated with coronavirus disease 2019 (COVID-19) from last December of 2019. It is reported that the entry receptor of SARS-CoV-2 has been confirmed to be angiotensin-converting enzyme 2 (ACE2). Notably, whether the ACE-related inhibitors or drugs modulated ACE2 activity in affecting the viral activity and disease severity of SARS-CoV-2 is still an open question. Dipeptidyl peptidase-4 (DDP-4), a well-known anti-diabetic drug, has been widely used to control the glycemic condition in patients with diabetes. In this article, we are focusing on the impact of ACE inhibitors (ACEI) and DPP4 inhibitors used on SARS-CoV-2 activity and discussions about those drugs that may be related to infectious condition of COVID-19 diseases.
Collapse
Affiliation(s)
- Chun-Fan Chen
- School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Department of Internal Medicine, National Yang-Ming University Hospital, Yilan, Taiwan, ROC
| | - Chian-Hsu Chien
- School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ping Yang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shih-Jie Chou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Mong-Lien Wang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - The-Ia Huo
- School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Chih-Ching Lin
- School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Address Correspondence. Dr. Chih-Ching Lin, Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, 201, Section 2, Shi-Pai Road, Taipei 112, Taiwan, ROC. E-mail address: (C.-C. Lin)
| |
Collapse
|
142
|
Abstract
The whole world are facing the current COVID-19 pandemic, the most serious health crisis in modern times. All countries with the support of national and international agencies are making great efforts to fight this devastating pandemic with disastrous medical, economic and social consequences. This pandemic affects all people but it's serious in case of diabetes, elderly and in chronic and complicated diseases. The current work on the theme " COVID-19 and Diabetes" attempts to bring together all the data available at MENA level through medical and scientific publications. It also includes all the efforts made by the governments and the responses of associations and their efforts in this field. Even if it is admitted that diabetes with its comorbidity represents a high risk factor for severe forms and mortality, the health consequences of the epidemic, does not seem as dramatic in terms of both morbidity and mortality of COVID-19 with diabetes in the majority of MENA countries. If the crises continues longer, the supply of insulin, oral drugs, self monitoring equipment of diabetes and other tools, will be affected. To this, we must expect great difficulties in supplying food for many countries. Certainely, it is important to remember that containment and hygiene measures, associated with other factors such as the young average age of the population, the higher temperature in these countries, the differences in the immune status of populations and the role of BCG vaccine have something to do with it. All of this deserves to be studied in depth.
Collapse
|
143
|
Stoian AP, Papanas N, Prazny M, Rizvi AA, Rizzo M. Incretin-Based Therapies Role in COVID-19 Era: Evolving Insights. J Cardiovasc Pharmacol Ther 2020; 25:494-496. [DOI: 10.1177/1074248420937868] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic has led the scientific community to breach new frontiers in the understanding of human physiology and disease pathogenesis. It has been hypothesized that the human dipeptidyl peptidase 4 (DPP4) enzyme receptor may be a functional target for the spike proteins of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Since DPP4-inhibitors are currently used for the treatment of patients with type-2 diabetes (T2DM), there is currently high interest in the possibility that these agents, or incretin-based therapies (IBTs) in general, may be of benefit against the new coronavirus infection. Diabetes is associated with increased COVID-19 severity and mortality, and accumulating evidence suggests that IBTs may favorably alter the clinical course of SARS-CoV-2 infection due to their inherent mechanisms of action. Further research into prognostic variables associated with various antidiabetic treatment regimens, and in particular the IBT, in patients with T2DM affected by the COVID-19 pandemic is therefore warranted.
Collapse
Affiliation(s)
- Anca Pantea Stoian
- Diabetes, Nutrition and Metabolic Diseases Department, “Carol Davila” University of Medicine, Bucharest, Romania
| | - Nikolaos Papanas
- Diabetes Center, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, Greece
| | - Martin Prazny
- Third Department of Internal Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ali A. Rizvi
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of South Carolina, Columbia, SC, USA
| | - Manfredi Rizzo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of South Carolina, Columbia, SC, USA
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Italy
| |
Collapse
|
144
|
The MERS-CoV Receptor DPP4 as a Candidate Binding Target of the SARS-CoV-2 Spike. iScience 2020; 23:101160. [PMID: 32405622 PMCID: PMC7219414 DOI: 10.1016/j.isci.2020.101160] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
The ongoing outbreak of the novel coronavirus pneumonia COVID-19 has caused great number of cases and deaths, but our understanding about the pathogen SARS-CoV-2 remains largely unclear. The attachment of the virus with the cell-surface receptor and a cofactor is the first step for the infection. Here, bioinformatics approaches combining human-virus protein interaction prediction and protein docking based on crystal structures have revealed the high affinity between human dipeptidylpeptidase 4 (DPP4) and the spike (S) receptor-binding domain of SARS-CoV-2. Intriguingly, the crucial binding residues of DPP4 are identical to those that are bound to the MERS-CoV-S. Moreover, E484 insertion and adjacent substitutions should be most essential for this DPP4-binding ability acquirement of SARS-CoV-2-S compared with SARS-CoV-S. This potential utilization of DPP4 as a binding target for SARS-CoV-2 may offer novel insight into the viral pathogenesis and help the surveillance and therapeutics strategy for meeting the challenge of COVID-19.
Collapse
|