101
|
Li S, Peng X, Wang Y, Hua K, Xing F, Zheng Y, Liu W, Sun W, Wei S. The Effector AGLIP1 in Rhizoctonia solani AG1 IA Triggers Cell Death in Plants and Promotes Disease Development Through Inhibiting PAMP-Triggered Immunity in Arabidopsis thaliana. Front Microbiol 2019; 10:2228. [PMID: 31611861 PMCID: PMC6775501 DOI: 10.3389/fmicb.2019.02228] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/11/2019] [Indexed: 11/13/2022] Open
Abstract
Rhizoctonia solani, one of the most detrimental necrotrophic pathogens, causes rice sheath blight and poses a severe threat to production. Focus on the function of effectors secreted by necrotrophic pathogens during infection has grown rapidly in recent years. However, little is known about the virulence and mechanisms of these proteins. In this study, we performed functional studies on putative effectors in R. solani and revealed that AGLIP1 out of 13 putative effectors induced cell death in Nicotiana benthamiana. AGLIP1 was also demonstrated to trigger cell death in rice protoplasts. The predicted lipase active sites and signal peptide (SP) of this protein were required for the cell death-inducing ability. AGLIP1 was greatly induced during R. solani infection in rice sheath. The AGLIP1's virulence function was further demonstrated by transgenic technology. The pathogenesis-related genes induced by pathogen-associated molecular pattern and bacteria were remarkably inhibited in AGLIP1-expressing transgenic Arabidopsis lines. Ectopic expression of AGLIP1 strongly facilitated disease progression in Arabidopsis caused by the type III secretion system-defective mutant from Pseudomonas syringae pv. tomato DC3000. Collectively, these results indicate that AGLIP1 is a possible effector that plays a significant role in pathogen virulence through inhibiting basal defenses and promoting disease development in plants.
Collapse
Affiliation(s)
- Shuai Li
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xunwen Peng
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yingling Wang
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Kangyu Hua
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Fan Xing
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanyuan Zheng
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Wei Liu
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Wenxian Sun
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Songhong Wei
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
102
|
Lambein F, Travella S, Kuo YH, Van Montagu M, Heijde M. Grass pea (Lathyrus sativus L.): orphan crop, nutraceutical or just plain food? PLANTA 2019; 250:821-838. [PMID: 30719530 DOI: 10.1007/s00425-018-03084-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/21/2018] [Indexed: 05/28/2023]
Abstract
Although grass pea is an environmentally successful robust legume with major traits of interest for food and nutrition security, the genetic potential of this orphan crop has long been neglected. Grass pea (Lathyrus sativus L.) is a Neolithic plant that has survived millennia of cultivation and has spread over three continents. It is a robust legume crop that is considered one of the most resilient to climate changes and to be survival food during drought-triggered famines. The hardy penetrating root system allows the cultivation of grass pea in various soil types, including marginal ones. As an efficient nitrogen fixer, it meets its own nitrogen requirements and positively benefits subsequent crops. However, already in ancient India and Greece, overconsumption of the seeds and a crippling neurological disorder, later coined neurolathyrism, had been linked. Overemphasis of their suspected toxic properties has led to disregard the plant's exceptionally positive agronomic properties and dietary advantages. In normal socio-economic and environmental situations, in which grass pea is part of a balanced diet, neurolathyrism is virtually non-existent. The etiology of neurolathyrism has been oversimplified and the deficiency in methionine in the diet has been overlooked. In view of the global climate change, this very adaptable and nutritious orphan crop deserves more attention. Grass pea can become a wonder crop if the double stigma on its reputation as a toxic plant and as food of the poor can be disregarded. Additionally, recent research has exposed the potential of grass pea as a health-promoting nutraceutical. Development of varieties with an improved balance in essential amino acids and diet may be relevant to enhance the nutritional value without jeopardizing the multiple stress tolerance of this promising crop.
Collapse
Affiliation(s)
- Fernand Lambein
- International Plant Biotechnology Outreach, VIB, Technologiepark 122, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Silvia Travella
- International Plant Biotechnology Outreach, VIB, Technologiepark 122, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Yu-Haey Kuo
- International Plant Biotechnology Outreach, VIB, Technologiepark 122, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Marc Van Montagu
- International Plant Biotechnology Outreach, VIB, Technologiepark 122, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Marc Heijde
- International Plant Biotechnology Outreach, VIB, Technologiepark 122, 9052, Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium.
| |
Collapse
|
103
|
Derbyshire M, Mbengue M, Barascud M, Navaud O, Raffaele S. Small RNAs from the plant pathogenic fungus Sclerotinia sclerotiorum highlight host candidate genes associated with quantitative disease resistance. MOLECULAR PLANT PATHOLOGY 2019; 20:1279-1297. [PMID: 31361080 PMCID: PMC6715603 DOI: 10.1111/mpp.12841] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Fungal plant pathogens secrete effector proteins and metabolites to cause disease. Additionally, some species transfer small RNAs (sRNAs) into plant cells to silence host mRNAs through complementary base pairing and suppress plant immunity. The fungus Sclerotinia sclerotiorum infects over 600 plant species, but little is known about the molecular processes that govern interactions with its many hosts. In particular, evidence for the production of sRNAs by S. sclerotiorum during infection is lacking. We sequenced sRNAs produced by S. sclerotiorum in vitro and during infection of two host species, Arabidopsis thaliana and Phaseolus vulgaris. We found that S. sclerotiorum produces at least 374 distinct highly abundant sRNAs during infection, mostly originating from repeat-rich plastic genomic regions. We predicted the targets of these sRNAs in A. thaliana and found that these genes were significantly more down-regulated during infection than the rest of the genome. Predicted targets of S. sclerotiorum sRNAs in A. thaliana were enriched for functional domains associated with plant immunity and were more strongly associated with quantitative disease resistance in a genome-wide association study (GWAS) than the rest of the genome. Mutants in A. thaliana predicted sRNA target genes SERK2 and SNAK2 were more susceptible to S. sclerotiorum than wild-type, suggesting that S. sclerotiorum sRNAs may contribute to the silencing of immune components in plants. The prediction of fungal sRNA targets in plant genomes can be combined with other global approaches, such as GWAS, to assist in the identification of plant genes involved in quantitative disease resistance.
Collapse
Affiliation(s)
- Mark Derbyshire
- Centre for Crop and Disease ManagementCurtin UniversityPerthWestern AustraliaAustralia
| | - Malick Mbengue
- Laboratoire des Interactions Plantes Micro‐organismesINRA, CNRS, Université de ToulouseCastanet TolosanFrance
| | - Marielle Barascud
- Laboratoire des Interactions Plantes Micro‐organismesINRA, CNRS, Université de ToulouseCastanet TolosanFrance
| | - Olivier Navaud
- Laboratoire des Interactions Plantes Micro‐organismesINRA, CNRS, Université de ToulouseCastanet TolosanFrance
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes Micro‐organismesINRA, CNRS, Université de ToulouseCastanet TolosanFrance
| |
Collapse
|
104
|
Abstract
Strategies to manage plant disease-from use of resistant varieties to crop rotation, elimination of reservoirs, landscape planning, surveillance, quarantine, risk modeling, and anticipation of disease emergences-all rely on knowledge of pathogen host range. However, awareness of the multitude of factors that influence the outcome of plant-microorganism interactions, the spatial and temporal dynamics of these factors, and the diversity of any given pathogen makes it increasingly challenging to define simple, all-purpose rules to circumscribe the host range of a pathogen. For bacteria, fungi, oomycetes, and viruses, we illustrate that host range is often an overlapping continuum-more so than the separation of discrete pathotypes-and that host jumps are common. By setting the mechanisms of plant-pathogen interactions into the scales of contemporary land use and Earth history, we propose a framework to assess the frontiers of host range for practical applications and research on pathogen evolution.
Collapse
Affiliation(s)
| | - Benoît Moury
- Pathologie Végétale, INRA, 84140, Montfavet, France;
| |
Collapse
|
105
|
Suzuki SU, Sasaki A. Ecological and Evolutionary Stabilities of Biotrophism, Necrotrophism, and Saprotrophism. Am Nat 2019; 194:90-103. [DOI: 10.1086/703485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
106
|
Yu Y, Du J, Wang Y, Zhang M, Huang Z, Cai J, Fang A, Yang Y, Qing L, Bi C, Cheng J. Survival factor 1 contributes to the oxidative stress response and is required for full virulence of Sclerotinia sclerotiorum. MOLECULAR PLANT PATHOLOGY 2019; 20:895-906. [PMID: 31074170 PMCID: PMC6589728 DOI: 10.1111/mpp.12801] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sclerotinia sclerotiorum is a devastating necrotrophic fungal pathogen that infects over 400 species of plants worldwide. Reactive oxygen species (ROS) modulations are critical for the pathogenic development of S. sclerotiorum. The fungus applies enzymatic and non-enzymatic antioxidants to cope with the oxidative stress during the infection processes. Survival factor 1 was identified and characterized to promote survival under conditions of oxidative stress in Saccharomyes cerevisiae. In this research, a gene named SsSvf1 was predicted to encode a survival factor 1 homologue in S. sclerotiorum. SsSvf1 transcripts showed high expression levels in hyphae under oxidative stress. Silencing of SsSvf1 resulted in increased sensitivity to oxidative stress in culture and increased levels of intracellular ROS. Transcripts of SsSvf1 showed a dramatic increase during the initial stage of infection and the gene-silenced strains displayed reduced virulence on oilseed rape and Arabidopsis thaliana. Inhibition of plant ROS production partially restores virulence of SsSvf1 gene-silenced strains. SsSvf1 gene-silenced strains exhibited normal oxalate production, but were impaired in compound appressorium formation and cell wall integrity. The results suggest that SsSvf1 is involved in coping with ROS during fungal-host interactions and plays a crucial role in the pathogenicity of S. sclerotiorum.
Collapse
Affiliation(s)
- Yang Yu
- College of Plant ProtectionSouthwest UniversityChongqing City400715P R China
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan City430070P R China
| | - Jiao Du
- College of Plant ProtectionSouthwest UniversityChongqing City400715P R China
| | - Yabo Wang
- College of Plant ProtectionSouthwest UniversityChongqing City400715P R China
| | - Mengyao Zhang
- College of Plant ProtectionSouthwest UniversityChongqing City400715P R China
| | - Zhiqiang Huang
- College of Plant ProtectionSouthwest UniversityChongqing City400715P R China
| | - Junsong Cai
- College of Plant ProtectionSouthwest UniversityChongqing City400715P R China
| | - Anfei Fang
- College of Plant ProtectionSouthwest UniversityChongqing City400715P R China
| | - Yuheng Yang
- College of Plant ProtectionSouthwest UniversityChongqing City400715P R China
| | - Ling Qing
- College of Plant ProtectionSouthwest UniversityChongqing City400715P R China
| | - Chaowei Bi
- College of Plant ProtectionSouthwest UniversityChongqing City400715P R China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan City430070P R China
| |
Collapse
|
107
|
Ding Y, Mei J, Chai Y, Yu Y, Shao C, Wu Q, Disi JO, Li Y, Wan H, Qian W. Simultaneous Transcriptome Analysis of Host and Pathogen Highlights the Interaction Between Brassica oleracea and Sclerotinia sclerotiorum. PHYTOPATHOLOGY 2019; 109:542-550. [PMID: 30265202 DOI: 10.1094/phyto-06-18-0204-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
White mold disease caused by Sclerotinia sclerotiorum is a devastating disease of Brassica crops. Here, we simultaneously assessed the transcriptome changes from lesions produced by S. sclerotiorum on disease-resistant (R) and -susceptible (S) B. oleracea pools bulked from a resistance-segregating F2 population. Virulence genes of S. sclerotiorum, including polygalacturonans, chitin synthase, secretory proteins, and oxalic acid biosynthesis, were significantly repressed in lesions of R B. oleracea at 12 h postinoculation (hpi) but exhibited similar expression patterns in R and S B. oleracea at 24 hpi. Resistant B. oleracea induced expression of receptors potentially to perceive Sclerotinia signals during 0 to 12 hpi and deployed complex strategies to suppress the pathogen establishment, including the quick accumulation of reactive oxygen species via activating Ca2+ signaling and suppressing pathogen oxalic acid generation in S. sclerotiorum. In addition, cell wall degradation was inhibited in the resistant B. oleracea potentially to prevent the expansion of Sclerotinia hyphae. The transcriptome changes in S. sclerotiorum and host revealed that resistant B. oleracea produces strong responses against S. sclerotiorum during early infection.
Collapse
Affiliation(s)
- Yijuan Ding
- 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- 2 Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jiaqin Mei
- 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- 2 Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yaru Chai
- 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- 2 Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yang Yu
- 3 College of Plant Protection, Southwest University, Chongqing 400716, China; and
| | - Chaoguo Shao
- 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Qinan Wu
- 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | | | - Yuhua Li
- 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Huafang Wan
- 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- 2 Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Wei Qian
- 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- 2 Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
108
|
Westrick NM, Ranjan A, Jain S, Grau CR, Smith DL, Kabbage M. Gene regulation of Sclerotinia sclerotiorum during infection of Glycine max: on the road to pathogenesis. BMC Genomics 2019; 20:157. [PMID: 30808300 PMCID: PMC6390599 DOI: 10.1186/s12864-019-5517-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/07/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sclerotinia sclerotiorum is a broad-host range necrotrophic pathogen which is the causative agent of Sclerotinia stem rot (SSR), and a major disease of soybean (Glycine max). A time course transcriptomic analysis was performed in both compatible and incompatible soybean lines to identify pathogenicity and developmental factors utilized by S. sclerotiorum to achieve pathogenic success. RESULTS A comparison of genes expressed during early infection identified the potential importance of toxin efflux and nitrogen metabolism during the early stages of disease establishment. The later stages of infection were characterized by an apparent shift to survival structure formation. Analysis of genes highly upregulated in-planta revealed a temporal regulation of hydrolytic and detoxification enzymes, putative secreted effectors, and secondary metabolite synthesis genes. Redox regulation also appears to play a key role during the course of infection, as suggested by the high expression of genes involved in reactive oxygen species production and scavenging. Finally, distinct differences in early gene expression were noted based on the comparison of S. sclerotiorum infection of resistant and susceptible soybean lines. CONCLUSIONS Although many potential virulence factors have been noted in the S. sclerotiorum pathosystem, this study serves to highlight soybean specific processes most likely to be critical in successful infection. Functional studies of genes identified in this work are needed to confirm their importance to disease development, and may constitute valuable targets of RNAi approaches to improve resistance to SSR.
Collapse
Affiliation(s)
| | - Ashish Ranjan
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI USA
| | - Sachin Jain
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI USA
| | - Craig R. Grau
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI USA
| | - Damon L. Smith
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI USA
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
109
|
Peyraud R, Mbengue M, Barbacci A, Raffaele S. Intercellular cooperation in a fungal plant pathogen facilitates host colonization. Proc Natl Acad Sci U S A 2019; 116:3193-3201. [PMID: 30728304 PMCID: PMC6386666 DOI: 10.1073/pnas.1811267116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cooperation is associated with major transitions in evolution such as the emergence of multicellularity. It is central to the evolution of many complex traits in nature, including growth and virulence in pathogenic bacteria. Whether cells of multicellular parasites function cooperatively during infection remains, however, largely unknown. Here, we show that hyphal cells of the fungal pathogen Sclerotinia sclerotiorum reprogram toward division of labor to facilitate the colonization of host plants. Using global transcriptome sequencing, we reveal that gene expression patterns diverge markedly in cells at the center and apex of hyphae during Arabidopsis thaliana colonization compared with in vitro growth. We reconstructed a genome-scale metabolic model for S. sclerotiorum and used flux balance analysis to demonstrate metabolic heterogeneity supporting division of labor between hyphal cells. Accordingly, continuity between the central and apical compartments of invasive hyphae was required for optimal growth in planta Using a multicell model of fungal hyphae, we show that this cooperative functioning enhances fungal growth predominantly during host colonization. Our work identifies cooperation in fungal hyphae as a mechanism emerging at the multicellular level to support host colonization and virulence.
Collapse
Affiliation(s)
- Rémi Peyraud
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de la Recherche Agronomique (INRA), CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Malick Mbengue
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de la Recherche Agronomique (INRA), CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Adelin Barbacci
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de la Recherche Agronomique (INRA), CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de la Recherche Agronomique (INRA), CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France
| |
Collapse
|
110
|
Yang X, Yang J, Wang Y, He H, Niu L, Guo D, Xing G, Zhao Q, Zhong X, Sui L, Li Q, Dong Y. Enhanced resistance to sclerotinia stem rot in transgenic soybean that overexpresses a wheat oxalate oxidase. Transgenic Res 2019; 28:103-114. [PMID: 30478526 DOI: 10.1007/s11248-018-0106-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/21/2018] [Indexed: 12/14/2022]
Abstract
Sclerotinia stem rot (SSR), caused by the oxalate-secreting necrotrophic fungal pathogen Sclerotinia sclerotiorum, is one of the devastating diseases that causes significant yield loss in soybean (Glycine max). Until now, effective control of the pathogen is greatly limited by a lack of strong resistance in available commercial soybean cultivars. In this study, transgenic soybean plants overexpressing an oxalic acid (OA)-degrading oxalate oxidase gene OXO from wheat were generated and evaluated for their resistance to S. sclerotiorum. Integration and expression of the transgene were confirmed by Southern and western blot analyses. As compared with non-transformed (NT) control plants, the transgenic lines with increased oxalate oxidase activity displayed significantly reduced lesion sizes, i.e., by 58.71-82.73% reduction of lesion length in a detached stem assay (T3 and T4 generations) and 76.67-82.0% reduction of lesion area in a detached leaf assay (T4 generation). The transgenic plants also showed increased tolerance to the externally applied OA (60 mM) relative to the NT controls. Consecutive resistance evaluation further confirmed an enhanced and stable resistance to S. sclerotiorum in the T3 and T4 transgenic lines. Similarly, decreased OA content and increased hydrogen peroxide (H2O2) levels were also observed in the transgenic leaves after S. sclerotiorum inoculation. Quantitative real-time polymerase chain reaction analysis revealed that the expression level of OXO reached a peak at 1 h and 4 h after inoculation with S. sclerotiorum. In parallel, a significant up-regulation of the hypersensitive response-related genes GmNPR1-1, GmNPR1-2, GmSGT1, and GmRAR occurred, eventually induced by increased release of H2O2 at the infection sites. Interestingly, other defense-related genes such as salicylic acid-dependent genes (GmPR1, GmPR2, GmPR3, GmPR5, GmPR12 and GmPAL), and ethylene/jasmonic acid-dependent genes (GmAOS, GmPPO) also exhibited higher expression levels in the transgenic plants than in the NT controls. Our results demonstrated that overexpression of OXO enhances SSR resistance by degrading OA secreted by S. sclerotiorum and increasing H2O2 levels, and eliciting defense responses mediated by multiple signaling pathways.
Collapse
Affiliation(s)
- Xiangdong Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jing Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yisheng Wang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Hongli He
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Lu Niu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Dongquan Guo
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Guojie Xing
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Qianqian Zhao
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xiaofang Zhong
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Li Sui
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Qiyun Li
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Yingshan Dong
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
111
|
Sang H, Chang HX, Chilvers MI. A Sclerotinia sclerotiorum Transcription Factor Involved in Sclerotial Development and Virulence on Pea. mSphere 2019; 4:e00615-18. [PMID: 30674647 PMCID: PMC6344603 DOI: 10.1128/msphere.00615-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/07/2019] [Indexed: 12/24/2022] Open
Abstract
Sclerotinia sclerotiorum is a plant-pathogenic ascomycete fungus and infects over 400 host plants, including pea (Pisum sativum L.). The fungus causes white mold on pea, and substantial yield loss is attributed to the disease. To improve white mold management, further understanding of S. sclerotiorum pathogenicity is crucial. In this study, 389 transcription factors (TFs) were mined from the complete genome sequence of S. sclerotiorum and their in planta expression patterns were determined in susceptible and partially resistant pea lines and compared to in vitro expression patterns on culture medium. One of the transcription factors was significantly induced in planta at 24 and 48 h postinfection compared to the expression in vitro This putative C6 transcription factor of S. sclerotiorum (SsC6TF1) was knocked down using a gene-silencing approach to investigate its functions in vegetative growth and sclerotial development as well as its virulence and pathogenicity in pea. While the SsC6TF1 knockdown mutants had hyphal growth rates identical to those of the wild-type strain and were capable of infection, the knockdown mutants produced no sclerotia or significantly fewer and smaller sclerotia on the culture medium and exhibited reduced virulence on both pea lines. This study profiled genome-wide expression for S. sclerotiorum transcription factors in planta and in vitro and functionally characterized a novel transcription factor, SsC6TF1, which positively regulates sclerotial development and virulence on pea. The finding provides molecular insights into S. sclerotiorum biology and interaction with pea and other economically important crops.IMPORTANCE White mold, caused by Sclerotinia sclerotiorum, is a destructive disease on important legume species such as soybean, dry bean, and pea. This study investigated expression levels of transcription factors in S. sclerotiorumin planta (pea lines) and in vitro (culture medium). One transcription factor displaying high expression in planta was found to be involved in sclerotial development and virulence on pea. This report provides a new understanding regarding transcription factors of S. sclerotiorum in development and virulence.
Collapse
Affiliation(s)
- Hyunkyu Sang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Hao-Xun Chang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
112
|
Wang Z, Bao LL, Zhao FY, Tang MQ, Chen T, Li Y, Wang BX, Fu B, Fang H, Li GY, Cao J, Ding LN, Zhu KM, Liu SY, Tan XL. BnaMPK3 Is a Key Regulator of Defense Responses to the Devastating Plant Pathogen Sclerotinia sclerotiorum in Oilseed Rape. FRONTIERS IN PLANT SCIENCE 2019; 10:91. [PMID: 30800136 PMCID: PMC6376111 DOI: 10.3389/fpls.2019.00091] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 01/21/2019] [Indexed: 05/18/2023]
Abstract
The disease caused by Sclerotinia sclerotiorum has traditionally been difficult to control, resulting in tremendous economic losses in oilseed rape (Brassica napus). Identification of important genes in the defense responses is critical for molecular breeding, an important strategy for controlling the disease. Here, we report that a B. napus mitogen-activated protein kinase gene, BnaMPK3, plays an important role in the defense against S. sclerotiorum in oilseed rape. BnaMPK3 is highly expressed in the stems, flowers and leaves, and its product is localized in the nucleus. Furthermore, BnaMPK3 is highly responsive to infection by S. sclerotiorum and treatment with jasmonic acid (JA) or the biosynthesis precursor of ethylene (ET), but not to treatment with salicylic acid (SA) or abscisic acid. Moreover, overexpression (OE) of BnaMPK3 in B. napus and Nicotiana benthamiana results in significantly enhanced resistance to S. sclerotiorum, whereas resistance is diminished in RNAi transgenic plants. After S. sclerotiorum infection, defense responses associated with ET, JA, and SA signaling are intensified in the BnaMPK3-OE plants but weakened in the BnaMPK3-RNAi plants when compared to those in the wild type plants; by contrast the level of both H2O2 accumulation and cell death exhibits a reverse pattern. The candidate gene association analyses show that the BnaMPK3-encoding BnaA06g18440D locus is a cause of variation in the resistance to S. sclerotiorum in natural B. napus population. These results suggest that BnaMPK3 is a key regulator of multiple defense responses to S. sclerotiorum, which may guide the resistance improvement of oilseed rape and related economic crops.
Collapse
Affiliation(s)
- Zheng Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ling-Li Bao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Feng-Yun Zhao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Min-Qiang Tang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Ting Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yaoming Li
- School of Agricultural Equipment Engineering, Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, China
| | - Bing-Xu Wang
- Faculty of Science, Jiangsu University, Zhenjiang, China
| | - Benzhong Fu
- College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Hedi Fang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Guan-Ying Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Jun Cao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Li-Na Ding
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ke-Ming Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Sheng-Yi Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiao-Li Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
- *Correspondence: Xiao-Li Tan,
| |
Collapse
|
113
|
Wang Z, Ma LY, Cao J, Li YL, Ding LN, Zhu KM, Yang YH, Tan XL. Recent Advances in Mechanisms of Plant Defense to Sclerotinia sclerotiorum. FRONTIERS IN PLANT SCIENCE 2019; 10:1314. [PMID: 31681392 PMCID: PMC6813280 DOI: 10.3389/fpls.2019.01314] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/20/2019] [Indexed: 05/20/2023]
Abstract
Sclerotinia sclerotiorum (Lib.) de Bary is an unusual pathogen which has the broad host range, diverse infection modes, and potential double feeding lifestyles of both biotroph and necrotroph. It is capable of infecting over 400 plant species found worldwide and more than 60 names have agriculturally been used to refer to diseases caused by this pathogen. Plant defense to S. sclerotiorum is a complex biological process and exhibits a typical quantitative disease resistance (QDR) response. Recent studies using Arabidopsis thaliana and crop plants have obtained new advances in mechanisms used by plants to cope with S. sclerotiorum infection. In this review, we focused on our current understanding on plant defense mechanisms against this pathogen, and set up a model for the defense process including three stages: recognition of this pathogen, signal transduction and defense response. We also have a particular interest in defense signaling mediated by diverse signaling molecules. We highlight the current challenges and unanswered questions in both the defense process and defense signaling. Essentially, we discussed candidate resistance genes newly mapped by using high-throughput experiments in important crops, and classified these potential gene targets into different stages of the defense process, which will broaden our understanding of the genetic architecture underlying quantitative resistance to S. sclerotiorum. We proposed that more powerful mapping population(s) will be required for accurate and reliable QDR gene identification.
Collapse
|
114
|
Bahari MNA, Sakeh NM, Abdullah SNA, Ramli RR, Kadkhodaei S. Transciptome profiling at early infection of Elaeis guineensis by Ganoderma boninense provides novel insights on fungal transition from biotrophic to necrotrophic phase. BMC PLANT BIOLOGY 2018; 18:377. [PMID: 30594134 PMCID: PMC6310985 DOI: 10.1186/s12870-018-1594-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/06/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND Basal stem rot (BSR) caused by hemibiotroph Ganoderma boninense is a devastating disease resulting in a major loss to the oil palm industry. Since there is no physical symptom in oil palm at the early stage of G. boninense infection, characterisation of molecular defense responses in oil palm during early interaction with the fungus is of the utmost importance. Oil palm (Elaeis guineensis) seedlings were artificially infected with G. boninense inoculums and root samples were obtained following a time-course of 0, 3, 7, and 11 days-post-inoculation (d.p.i) for RNA sequencing (RNA-seq) and identification of differentially expressed genes (DEGs). RESULTS The host counter-attack was evidenced based on fungal hyphae and Ganoderma DNA observed at 3 d.p.i which became significantly reduced at 7 and 11 d.p.i. DEGs revealed upregulation of multifaceted defense related genes such as PR-protein (EgPR-1), protease inhibitor (EgBGIA), PRR protein (EgLYK3) chitinase (EgCht) and expansin (EgEXPB18) at 3 d.p.i and 7 d.p.i which dropped at 11 d.p.i. Later stage involved highly expressed transcription factors EgERF113 and EgMYC2 as potential regulators of necrotrophic defense at 11 d.p.i. The reactive oxygen species (ROS) elicitor: peroxidase (EgPER) and NADPH oxidase (EgRBOH) were upregulated and maintained throughout the treatment period. Growth and nutrient distribution were probably compromised through suppression of auxin signalling and iron uptake genes. CONCLUSIONS Based on the analysis of oil palm gene expression, it was deduced that the biotrophic phase of Ganoderma had possibly occurred at the early phase (3 until 7 d.p.i) before being challenged by the fungus via switching its lifestyle into the necrotrophic phase at later stage (11 d.p.i) and finally succumbed the host. Together, the findings suggest the dynamic defense process in oil palm and potential candidates that can serve as phase-specific biomarkers at the early stages of oil palm-G. boninense interaction.
Collapse
Affiliation(s)
| | - Nurshafika Mohd Sakeh
- Institute of Plantation Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
| | - Siti Nor Akmar Abdullah
- Institute of Plantation Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
- Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
| | - Redzyque Ramza Ramli
- Institute of Plantation Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
| | - Saied Kadkhodaei
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111 Iran
| |
Collapse
|
115
|
Liu L, Wang Q, Zhang X, Liu J, Zhang Y, Pan H. Ssams2, a Gene Encoding GATA Transcription Factor, Is Required for Appressoria Formation and Chromosome Segregation in Sclerotinia sclerotiorum. Front Microbiol 2018; 9:3031. [PMID: 30574138 PMCID: PMC6291475 DOI: 10.3389/fmicb.2018.03031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/23/2018] [Indexed: 12/25/2022] Open
Abstract
AMS2, amulticopy suppressor for the cpn1 (SpCENP-A) mutant, functions to specifically regulate histone genes transcription and chromosome segregation. As a cell-cycle-regulated GATA transcription factor in eukaryotic organisms, little research has been done on the role of AMS2 protein in pathogenic fungi. In Sclerotinia sclerotiorum, Ssams2 (SS1G_03252) encodes a protein which has been predicted to contain GATA-box domain. Here, Ssams2-silenced strains with significantly reduced Ssams2 gene expression levels exhibited defect in hyphal growth, hyphal branching patterns, compound appressoria differentiation and the oxalic acid production compared to the wild-type (WT) strain. By common bean leaves infection assays, we identified the role of Ssams2 in full virulence. Furthermore, the numbers of cell nucleus in the same length of mycelium in Ssams2-silenced transformants were significantly less than that in the WT strain. The expression levels of histone genes and cell cycle genes in transformants were down-regulated significantly in the RNAi strains. Taken together, our work suggests that the TF SsAMS2 is required for growth, appressoria formation, virulence, and chromosome segregation in S. sclerotiorum.
Collapse
Affiliation(s)
- Ling Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Qiaochu Wang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
116
|
A method to measure redox potential (Eh) and pH in agar media and plants shows that fungal growth is affected by and affects pH and Eh. Fungal Biol 2018; 123:117-124. [PMID: 30709517 DOI: 10.1016/j.funbio.2018.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 01/01/2023]
Abstract
The specificities of the plant environment and its effects on fungal growth are not yet fully explored. Both pH and Eh play a key role during this interaction, but are often studied independently or at different scales. We aimed at investigating whether the methods developed for the joint characterization of the pH and Eh in soil could be transposed to fungi. On artificial media, the growth of all 16 species tested significantly altered either Eh, pH or both. Measuring Eh reveals that even the species not modifying pH can have an impact on the surrounding environment. Reciprocally, fungi responded to pH and Eh parameters, both quantitatively with a decrease in colony diameter and qualitatively with colony aspect repeatedly and thoroughly modified. In infected oilseed rape plant stems, pH and Eh were significantly altered. The observed alcalinisation or acidification correlates with canker length. The joint characterization of both parameters will allow understanding the impact of fungi on their environment, and conversely of the environment on fungal growth. The availability of methods for measurement opens the prospect to study combinations of stresses, and get an understanding of the involvement of pH and Eh modifications in these interactions.
Collapse
|
117
|
ATMT transformation efficiencies with native promoters in Botryosphaeria kuwatsukai causing ring rot disease in pear. World J Microbiol Biotechnol 2018; 34:179. [PMID: 30456633 DOI: 10.1007/s11274-018-2559-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
Botryosphaeria kuwatsukai is an important fungal pathogen affecting pear fruits. However, infection processes of this fungus are still unclear. This study seeks to develop the fungal transformation of B. kuwatsukai by Agrobacterium tumefaciens-mediated transformation (ATMT), assess the reliability of appropriate vectors and examine the infection processes in vitro using a GFP labeled strain of B. kuwatsukai. To establish a highly effective transformation system in B. kuwatsukai, binary vectors containing various lengths of H3 promoters and TEF promoters fused with GFP and hygromycin B resistance gene cassettes were constructed. These cassettes were integrated into the genomic DNA of B. kuwatsukai with high transformation frequency by the ATMT method. Transformants showed strong expression of GFP and hygromycin B resistance genes in cells. Furthermore, we investigated if native promoters are more suitable to govern marker genes than other general promoters used in other filamentous fungi. The results obtained herein demonstrate that the vectors constructed in this study can be utilized with high transformation rate. Microscopic examinations also reveal that fungal hyphae undergo morphological changes during the infection process resulting in biotrophic stage of infected host cells. Our results provide genetic insights to further explore the infection processes of B. kuwatsukai.
Collapse
|
118
|
Weißbecker C, Wubet T, Lentendu G, Kühn P, Scholten T, Bruelheide H, Buscot F. Experimental Evidence of Functional Group-Dependent Effects of Tree Diversity on Soil Fungi in Subtropical Forests. Front Microbiol 2018; 9:2312. [PMID: 30356699 PMCID: PMC6189305 DOI: 10.3389/fmicb.2018.02312] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/10/2018] [Indexed: 11/13/2022] Open
Abstract
Deconvoluting the relative contributions made by specific biotic and abiotic drivers to soil fungal community compositions facilitates predictions about the functional responses of ecosystems to environmental changes, such as losses of plant diversity, but it is hindered by the complex interactions involved. Experimental assembly of tree species allows separation of the respective effects of plant community composition (biotic components) and soil properties (abiotic components), enabling much greater statistical power than can be achieved in observational studies. We therefore analyzed these contributions by assessing, via pyrotag sequencing of the internal transcribed spacer (ITS2) rDNA region, fungal communities in young subtropical forest plots included in a large experiment on the effects of tree species richness. Spatial variables and soil properties were the main drivers of soil fungal alpha and beta-diversity, implying strong early-stage environmental filtering and dispersal limitation. Tree related variables, such as tree community composition, significantly affected arbuscular mycorrhizal and pathogen fungal community structure, while differences in tree host species and host abundance affected ectomycorrhizal fungal community composition. At this early stage of the experiment, only a limited amount of carbon inputs (rhizodeposits and leaf litter) was being provided to the ecosystem due to the size of the tree saplings, and persisting legacy effects were observed. We thus expect to find increasing tree related effects on fungal community composition as forest development proceeds.
Collapse
Affiliation(s)
- Christina Weißbecker
- Department of Soil Ecology, Helmholtz-Centre for Environmental Research - UFZ, Halle, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Tesfaye Wubet
- Department of Soil Ecology, Helmholtz-Centre for Environmental Research - UFZ, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Guillaume Lentendu
- Department of Soil Ecology, Helmholtz-Centre for Environmental Research - UFZ, Halle, Germany.,Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Peter Kühn
- Chair of Soil Science and Geomorphology, University of Tübingen, Tübingen, Germany
| | - Thomas Scholten
- Chair of Soil Science and Geomorphology, University of Tübingen, Tübingen, Germany
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Martin Luther University Halle Wittenberg, Halle, Germany
| | - François Buscot
- Department of Soil Ecology, Helmholtz-Centre for Environmental Research - UFZ, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
119
|
Liang X, Rollins JA. Mechanisms of Broad Host Range Necrotrophic Pathogenesis in Sclerotinia sclerotiorum. PHYTOPATHOLOGY 2018; 108:1128-1140. [PMID: 30048598 DOI: 10.1094/phyto-06-18-0197-rvw] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Among necrotrophic fungi, Sclerotinia sclerotiorum is remarkable for its extremely broad host range and for its aggressive host tissue colonization. With full genome sequencing, transcriptomic analyses and the increasing pace of functional gene characterization, the factors underlying the basis of this broad host range necrotrophic pathogenesis are now being elucidated at a greater pace. Among these, genes have been characterized that are required for infection via compound appressoria in addition to genes associated with colonization that regulate oxalic acid (OA) production and OA catabolism. Moreover, virulence-related secretory proteins have been identified, among which are candidates for manipulating host activities apoplastically and cytoplasmically. Coupled with these mechanistic studies, cytological observations of the colonization process have blurred the heretofore clear-cut biotroph versus necrotroph boundary. In this review, we reexamine the cytology of S. sclerotiorum infection and put more recent molecular and genomic data into the context of this cytology. We propose a two-phase infection model in which the pathogen first evades, counteracts and subverts host basal defense reactions prior to killing and degrading host cells. Spatially, the pathogen may achieve this via the production of compatibility factors/effectors in compound appressoria, bulbous subcuticular hyphae, and primary invasive hyphae. By examining the nuances of this interaction, we hope to illuminate new classes of factors as targets to improve our understanding of broad host range necrotrophic pathogens and provide the basis for understanding corresponding host resistance.
Collapse
Affiliation(s)
- Xiaofei Liang
- First author: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University; and second author: Department of Plant Pathology, University of Florida, P.O. Box 110680, Gainesville 32611-0680
| | - Jeffrey A Rollins
- First author: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University; and second author: Department of Plant Pathology, University of Florida, P.O. Box 110680, Gainesville 32611-0680
| |
Collapse
|
120
|
Robison FM, Turner MF, Jahn CE, Schwartz HF, Prenni JE, Brick MA, Heuberger AL. Common bean varieties demonstrate differential physiological and metabolic responses to the pathogenic fungus Sclerotinia sclerotiorum. PLANT, CELL & ENVIRONMENT 2018; 41:2141-2154. [PMID: 29476531 DOI: 10.1111/pce.13176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/18/2018] [Accepted: 02/20/2018] [Indexed: 06/08/2023]
Abstract
Plant physiology and metabolism are important components of a plant response to microbial pathogens. Physiological resistance of common bean (Phaseolus vulgaris L.) to the fungal pathogen Sclerotinia sclerotiorum has been established, but the mechanisms of resistance are largely unknown. Here, the physiological and metabolic responses of bean varieties that differ in physiological resistance to S. sclerotiorum are investigated. Upon infection, the resistant bean variety A195 had a unique physiological response that included reduced photosynthesis and maintaining a higher leaf surface pH during infection. Leaf metabolomics was performed on healthy tissue adjacent to the necrotic lesion at 16, 24, and 48 hr post inoculation, and 144 metabolites were detected that varied between A195 and Sacramento following infection. The metabolites that varied in leaves included amines/amino acids, organic acids, phytoalexins, and ureides. The metabolic pathways associated with resistance included amine metabolism, uriede-based nitrogen remobilization, antioxidant production, and bean-specific phytoalexin production. A second experiment was conducted in stems of 13 bean genotypes with varying resistance. Stem resistance was associated with phytoalexin production, but unlike leaf metabolism, lipid changes were associated with susceptibility. Taken together, the data supports a multifaceted, physiometabolic response of common bean to S. sclerotiorum that mediates resistance.
Collapse
Affiliation(s)
- Faith M Robison
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Marie F Turner
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, 80523, USA
| | - Courtney E Jahn
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, 80523, USA
| | - Howard F Schwartz
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jessica E Prenni
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Mark A Brick
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Adam L Heuberger
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
121
|
Xu L, Li G, Jiang D, Chen W. Sclerotinia sclerotiorum: An Evaluation of Virulence Theories. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:311-338. [PMID: 29958073 DOI: 10.1146/annurev-phyto-080417-050052] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Oxalic acid production in Sclerotinia sclerotiorum has long been associated with virulence. Research involving UV-induced, genetically undefined mutants that concomitantly lost oxalate accumulation, sclerotial formation, and pathogenicity supported the conclusion that oxalate is an essential pathogenicity determinant of S. sclerotiorum. However, recent investigations showed that genetically defined mutants that lost oxalic acid production but accumulated fumaric acid could cause disease on many plants and substantiated the conclusion that acidic pH, not oxalic acid per se, is the necessary condition for disease development. Critical evaluation of available evidence showed that the UV-induced mutants harbored previously unrecognized confounding genetic defects in saprophytic growth and pH responsiveness, warranting reevaluation of the conclusions about virulence based on the UV-induced mutants. Furthermore, analyses of the evidence suggested a hypothesis for the existence of an unrecognized regulator responsive to acidic pH. Identifying the unknown pH regulator would offer a new avenue for investigating pH sensing/regulation in S. sclerotiorum and novel targets for intervention in disease control strategies.
Collapse
Affiliation(s)
- Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Weidong Chen
- Grain Legume Genetics and Physiology Research Unit, US Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, Washington 99164, USA
- Departments of Plant Pathology and Molecular Plant Sciences Program, Washington State University, Pullman, Washington 99164, USA;
| |
Collapse
|
122
|
Liu L, Wang Q, Sun Y, Zhang Y, Zhang X, Liu J, Yu G, Pan H. Sssfh1, a Gene Encoding a Putative Component of the RSC Chromatin Remodeling Complex, Is Involved in Hyphal Growth, Reactive Oxygen Species Accumulation, and Pathogenicity in Sclerotinia sclerotiorum. Front Microbiol 2018; 9:1828. [PMID: 30131794 PMCID: PMC6090059 DOI: 10.3389/fmicb.2018.01828] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
SFH1 (for Snf5 homolog) protein, comprised in the RSC (Remodels Structure of Chromatin) chromatin remodeling complex, functions as a transcription factor (TF) to specifically regulate gene transcription and chromatin remodeling. As one of the well-conserved TFs in eukaryotic organisms, little is known about the roles of SFH1 protein in the filamentous fungi. In Sclerotinia sclerotiorum, one of the notorious plant fungal pathogens, there are nine proteins predicted to contain GATA-box domain according to GATA family TF classification, among which Sssfh1 (SS1G_01151) encodes a protein including a GATA-box domain and a SNF5 domain. Here, we characterized the roles of Sssfh1 in the developmental process and fungal pathogenicity by using RNA interference (RNAi)-based gene silencing in S. sclerotiorum. RNA-silenced strains with significantly reduced Sssfh1 RNA levels exhibited slower hyphal growth and decreased reactive oxygen species (ROS) accumulation in hyphae compared to the wild-type (WT) strain. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays demonstrated that SsSFH1 interacts with SsMSG5, a MAPK phosphatase in S. sclerotiorum. Furthermore, Sssfh1-silenced strains exhibited enhanced tolerance to NaCl and H2O2. Results of infection assays on soybean and common bean (Phaseolus vulgaris) leaves indicated that Sssfh1 is required for full virulence of S. sclerotiorum during infection in the susceptible host plants. Collectively, our results suggest that the TF SsSFH1 is involved in growth, ROS accumulation and virulence in S. sclerotiorum.
Collapse
Affiliation(s)
- Ling Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Qiaochu Wang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Ying Sun
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Gang Yu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
123
|
Müller N, Leroch M, Schumacher J, Zimmer D, Könnel A, Klug K, Leisen T, Scheuring D, Sommer F, Mühlhaus T, Schroda M, Hahn M. Investigations on VELVET regulatory mutants confirm the role of host tissue acidification and secretion of proteins in the pathogenesis of Botrytis cinerea. THE NEW PHYTOLOGIST 2018; 219:1062-1074. [PMID: 29790574 DOI: 10.1111/nph.15221] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/11/2018] [Indexed: 05/03/2023]
Abstract
The Botrytis cinerea VELVET complex regulates light-dependent development and virulence. The goal of this study was to identify common virulence defects of several VELVET mutants and to reveal their molecular basis. Growth, differentiation, physiology, gene expression and infection of fungal strains were analyzed, and quantitative comparisons of in planta transcriptomes and secretomes were performed. VELVET mutants showed reduced release of citric acid, the major acid secreted by the wild-type, whereas no significant role for oxalic acid was observed. Furthermore, a common set of infection-related and secreted proteins was strongly underexpressed in the mutants. Quantitative secretome analysis with 15 N metabolic labeling revealed a correlation of changes in protein and mRNA levels between wild-type and mutants, indicating that transcript levels determine the abundance of secreted proteins. Infection sites kept at low pH partially restored lesion expansion and expression of virulence genes by the mutants. Drastic downregulation of proteases in the mutants was correlated with incomplete degradation of cellular host proteins at the infection site, but no evidence was obtained that aspartyl proteases are required for lesion formation. The B. cinerea VELVET complex controls pathogenic differentiation by regulating organic acid secretion, host tissue acidification, gene expression and protein secretion.
Collapse
Affiliation(s)
- Nathalie Müller
- Department of Biology, Plant Pathology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Michaela Leroch
- Department of Biology, Plant Pathology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Julia Schumacher
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143, Münster, Germany
| | - David Zimmer
- Department of Biology, Computational Systems Biology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Anne Könnel
- Department of Biology, Plant Pathology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Klaus Klug
- Department of Biology, Plant Pathology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Thomas Leisen
- Department of Biology, Plant Pathology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - David Scheuring
- Department of Biology, Plant Pathology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Frederik Sommer
- Department of Biology, Molecular Biotechnology & Systems Biology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Timo Mühlhaus
- Department of Biology, Computational Systems Biology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Michael Schroda
- Department of Biology, Molecular Biotechnology & Systems Biology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Matthias Hahn
- Department of Biology, Plant Pathology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| |
Collapse
|
124
|
Veloso J, van Kan JAL. Many Shades of Grey in Botrytis-Host Plant Interactions. TRENDS IN PLANT SCIENCE 2018; 23:613-622. [PMID: 29724660 DOI: 10.1016/j.tplants.2018.03.016] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/25/2018] [Accepted: 03/31/2018] [Indexed: 05/24/2023]
Abstract
The grey mould Botrytis cinerea causes disease in more than 1000 plant species, including important crops. The interaction between Botrytis and its (potential) hosts is determined by quantitative susceptibility and virulence traits in both interacting partners, resulting in a greyscale of disease outcomes. Fungal infection was long thought to rely mainly on its capacity to kill the host plant and degrade plant tissue. Recent research has revealed that Botrytis exploits two crucial biological processes in host plants for its own success. We highlight recent findings that illustrate that the interactions between Botrytis and its host plants are subtle and we discuss the molecular and cellular mechanisms controlling the many shades of grey during these interactions.
Collapse
Affiliation(s)
- Javier Veloso
- Wageningen University, Laboratory of Phytopathology, Wageningen, The Netherlands; Department of Plant Biology, Faculty of Sciences, University of A Coruña, A Coruña, Spain
| | - Jan A L van Kan
- Wageningen University, Laboratory of Phytopathology, Wageningen, The Netherlands.
| |
Collapse
|
125
|
Sharma P, Samkumar A, Rao M, Singh VV, Prasad L, Mishra DC, Bhattacharya R, Gupta NC. Genetic Diversity Studies Based on Morphological Variability, Pathogenicity and Molecular Phylogeny of the Sclerotinia sclerotiorum Population From Indian Mustard ( Brassica juncea). Front Microbiol 2018; 9:1169. [PMID: 29922259 PMCID: PMC5996862 DOI: 10.3389/fmicb.2018.01169] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 05/14/2018] [Indexed: 11/13/2022] Open
Abstract
White mold or stem rot disease are ubiquitously distributed throughout the world and the causal organism of this disease Sclerotinia sclerotiorum (Lib.) de Bary, is known to infect over 400 plant species. Sclerotinia stem rot is one of the most devastating fungal diseases and poses a serious threat to the worldwide cultivation of oilseed Brassica including India. S. sclerotiorum pathogen usually infects the stem but in severe cases leaves and pods also affected at different developmental stages that deteriorate not only the oil quality but also causing the seed and oil yield losses up to 90% depending on the severity of the disease infestation. This study investigated the morphological and molecular characterization of pathogenic S. sclerotiorum (Lib) de Bary geographical isolates from oilseed Brassica including Brassica juncea (Indian mustard). The aim of this study was to compare isolates of S. sclerotiorum originated from different agro-climatic conditions and to analyse similarity or differences between them as well as to examine the virulence of this pathogen specifically in Brassica for the first time. The collection of S. sclerotiorum isolates from symptomatic Brassica plants was done and analyzed for morphological features, and molecular characterization. The virulence evaluation test of 65 isolates on four Brassica cultivars has shown 5 of them were highly virulent, 46 were virulent and 14 were moderately virulent. Phylogenetic analysis encompassing all the morphological features, SSR polymorphism, and ITS sequencing has shown the existence of high genetic diversity among the isolates that categorized all the isolates in three evolutionary lineages in the derived dendrogram. Further, genetic variability analysis based on sequences variation in ITS region of all the isolates has shown the existence of either insertions or deletions of the nucleotides in the ITS region has led to the interspecies variability and observed the variation were in a clade-specific manner. Together this analysis observed the existence of higher heterogeneity and genetic variability in S. sclerotiorum isolates collection and indicates the presence of clonal and sexual progenies of the pathogen in the mustard growing regions of India surveyed in this study. With a higher level of genetic variability and diversity among the S. sclerotiorum population needs robust screening approaches to identify the donor parent and utilize them in resistance breeding program for effectively counter the menace of stem rot disease in Brassica.
Collapse
Affiliation(s)
- Pankaj Sharma
- Sclerotinia Lab, ICAR, Directorate of Rapeseed and Mustard Research, Bharatpur, India
| | - Amos Samkumar
- Brassica Lab, ICAR, National Research Centre on Plant Biotechnology, New Delhi, India
| | - Mahesh Rao
- Brassica Lab, ICAR, National Research Centre on Plant Biotechnology, New Delhi, India
| | - Vijay V. Singh
- Sclerotinia Lab, ICAR, Directorate of Rapeseed and Mustard Research, Bharatpur, India
| | - Lakshman Prasad
- ICAR, Indian Agricultural Research Institute, New Delhi, India
| | - Dwijesh C. Mishra
- ICAR, Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Navin C. Gupta
- Brassica Lab, ICAR, National Research Centre on Plant Biotechnology, New Delhi, India
| |
Collapse
|
126
|
Chang H, Sang H, Wang J, McPhee KE, Zhuang X, Porter LD, Chilvers MI. Exploring the genetics of lesion and nodal resistance in pea ( Pisum sativum L.) to Sclerotinia sclerotiorum using genome-wide association studies and RNA-Seq. PLANT DIRECT 2018; 2:e00064. [PMID: 31245727 PMCID: PMC6508546 DOI: 10.1002/pld3.64] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/09/2018] [Accepted: 05/21/2018] [Indexed: 05/30/2023]
Abstract
The disease white mold caused by the fungus Sclerotinia sclerotiorum is a significant threat to pea production, and improved resistance to this disease is needed. Nodal resistance in plants is a phenomenon where a fungal infection is prevented from passing through a node, and the infection is limited to an internode region. Nodal resistance has been observed in some pathosystems such as the pea (Pisum sativum L.)-S. sclerotiorum pathosystem. In addition to nodal resistance, different pea lines display different levels of stem lesion size restriction, referred to as lesion resistance. It is unclear whether the genetics of lesion resistance and nodal resistance are identical or different. This study applied genome-wide association studies (GWAS) and RNA-Seq to understand the genetic makeup of these two types of resistance. The time series RNA-Seq experiment consisted of two pea lines (the susceptible 'Lifter' and the partially resistant PI 240515), two treatments (mock inoculated samples and S. sclerotiorum-inoculated samples), and three time points (12, 24, and 48 hr post inoculation). Integrated results from GWAS and RNA-Seq analyses identified different redox-related transcripts for lesion and nodal resistances. A transcript encoding a glutathione S-transferase was the only shared resistance variant for both phenotypes. There were more leucine rich-repeat containing transcripts found for lesion resistance, while different candidate resistance transcripts such as a VQ motif-containing protein and a myo-inositol oxygenase were found for nodal resistance. This study demonstrated the robustness of combining GWAS and RNA-Seq for identifying white mold resistance in pea, and results suggest different genetics underlying lesion and nodal resistance.
Collapse
Affiliation(s)
- Hao‐Xun Chang
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichigan
| | - Hyunkyu Sang
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichigan
| | - Jie Wang
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan
| | - Kevin E. McPhee
- Department of Plant Sciences and Plant PathologyMontana State UniversityBozemanMontana
| | - Xiaofeng Zhuang
- Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterOhio
| | | | - Martin I. Chilvers
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichigan
| |
Collapse
|
127
|
Ajengui A, Bertolini E, Ligorio A, Chebil S, Ippolito A, Sanzani SM. Comparative transcriptome analysis of two citrus germplasms with contrasting susceptibility to Phytophthora nicotianae provides new insights into tolerance mechanisms. PLANT CELL REPORTS 2018; 37:483-499. [PMID: 29290008 DOI: 10.1007/s00299-017-2244-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
Host perception of Phytophthora nicotianae switching to necrotrophy is fundamental for disease tolerance of citrus. It involves an HR-like response, strengthening of the cell wall structure and hormonal signaling. Stem rot caused by P. nicotianae is a worldwide disease of several important crops, including citrus. Given the growing awareness of chemical fungicides drawbacks, genetic improvement of citrus rootstocks remains the best alternative. However, the molecular basis underlying the successful response of resistant and/or tolerant genotypes remains poorly understood. Therefore, we performed a transcriptomic analysis to examine the differential defense response to P. nicotianae of two germplasms-tolerant sour orange (SO, Citrus aurantium) and susceptible Madam Vinous (MV, C. sinensis)-in both the biotrophic and necrotrophic phases of host-pathogen interaction. Our results revealed the necrotrophic phase as a decisive turning point, since it included stronger modulation of a number of genes implicated in pathogen perception, signal transduction, HR-like response, transcriptional reprogramming, hormone signaling, and cell wall modifications. In particular, the pathogen perception category reflected the ability of SO to perceive the pathogen even after its switch to necrotrophy, and thus to cope successfully with the infection, while MV failed. The concomitant changes in genes involved in the remaining functional categories seemed to prevent pathogen spread. This investigation provided further understanding of the successful defense mechanisms of C. aurantium against P. nicotianae, which might be exploited in post-genomic strategies to develop resistant Citrus genotypes.
Collapse
Affiliation(s)
- Arwa Ajengui
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj-Cédria, 2050, Hammam-Lif, Tunisia
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy
- Faculté des Sciences de Tunis, LR03ES03 Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar, 2092, Tunis, Tunisia
| | - Edoardo Bertolini
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Angela Ligorio
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy
| | - Samir Chebil
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj-Cédria, 2050, Hammam-Lif, Tunisia
| | - Antonio Ippolito
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy
| | - Simona Marianna Sanzani
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy.
| |
Collapse
|
128
|
Ranjan A, Jayaraman D, Grau C, Hill JH, Whitham SA, Ané J, Smith DL, Kabbage M. The pathogenic development of Sclerotinia sclerotiorum in soybean requires specific host NADPH oxidases. MOLECULAR PLANT PATHOLOGY 2018; 19:700-714. [PMID: 28378935 PMCID: PMC6638103 DOI: 10.1111/mpp.12555] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/23/2017] [Accepted: 03/29/2017] [Indexed: 05/15/2023]
Abstract
The plant membrane-localized NADPH oxidases, also known as respiratory burst oxidase homologues (RBOHs), play crucial roles in various cellular activities, including plant disease responses, and are a major source of reactive oxygen species (ROS). Sclerotinia sclerotiorum is a cosmopolitan fungal pathogen that causes Sclerotinia stem rot (SSR) in soybean. Via a key virulence factor, oxalic acid, it induces programmed cell death (PCD) in the host plant, a process that is reliant on ROS generation. In this study, using protein sequence similarity searches, we identified 17 soybean RBOHs (GmRBOHs) and studied their contribution to SSR disease development, drought tolerance and nodulation. We clustered the soybean RBOH genes into six groups of orthologues based on phylogenetic analysis with their Arabidopsis counterparts. Transcript analysis of all 17 GmRBOHs revealed that, of the six identified groups, group VI (GmRBOH-VI) was specifically and drastically induced following S. sclerotiorum challenge. Virus-induced gene silencing (VIGS) of GmRBOH-VI using Bean pod mottle virus (BPMV) resulted in enhanced resistance to S. sclerotiorum and markedly reduced ROS levels during disease development. Coincidently, GmRBOH-VI-silenced plants were also found to be drought tolerant, but showed a reduced capacity to form nodules. Our results indicate that the pathogenic development of S. sclerotiorum in soybean requires the active participation of specific host RBOHs, to induce ROS and cell death, thus leading to the establishment of disease.
Collapse
Affiliation(s)
- Ashish Ranjan
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | | | - Craig Grau
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - John H. Hill
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA50011USA
| | - Steven A. Whitham
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA50011USA
| | - Jean‐Michel Ané
- Department of BacteriologyUniversity of Wisconsin‐MadisonMadisonWI53706USA
- Department of AgronomyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Damon L. Smith
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Mehdi Kabbage
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| |
Collapse
|
129
|
Mandal S, Rajarammohan S, Kaur J. Alternaria brassicae interactions with the model Brassicaceae member Arabidopsis thaliana closely resembles those with Mustard ( Brassica juncea). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:51-59. [PMID: 29398838 PMCID: PMC5787117 DOI: 10.1007/s12298-017-0486-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 10/04/2017] [Accepted: 11/07/2017] [Indexed: 05/18/2023]
Abstract
Alternaria leaf blight, a disease of oilseed Brassicas is caused by a necrotrophic phytopathogenic fungus Alternaria brassicae. The details of its pathogenesis and defence responses elicited in the host upon infection have not been thoroughly investigated. Here, Arabidopsis accession Gre-0 was identified to be highly susceptible to A. brassicae. A comparative histopathological analysis for disease progression and plant responses to A. brassicae in Arabidopsis and Brassica juncea revealed significant similarities between the two compatible pathosystems. Interestingly, in both the compatible hosts, ROS accumulation, cell death and callose deposition correlated with the development of the disease. Based on our results we propose that Arabidopsis-Alternaria brassicae can be an apt model pathosystem since it emulates the dynamics of the pathogen interaction with its natural host- Brassicas. The existing genetic diversity in Arabidopsis can be a starting point to screen for variation in responses to Alternaria leaf blight. Furthermore, several tools available for Arabidopsis can facilitate the dissection of genetic and molecular basis of resistance.
Collapse
Affiliation(s)
- Sayanti Mandal
- Department of Genetics, University of Delhi, South Campus, New Delhi, 110021 India
| | | | - Jagreet Kaur
- Department of Genetics, University of Delhi, South Campus, New Delhi, 110021 India
| |
Collapse
|
130
|
Arfaoui A, El Hadrami A, Daayf F. Pre-treatment of soybean plants with calcium stimulates ROS responses and mitigates infection by Sclerotinia sclerotiorum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 122:121-128. [PMID: 29223021 DOI: 10.1016/j.plaphy.2017.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/15/2017] [Accepted: 11/24/2017] [Indexed: 06/07/2023]
Abstract
Considering the high incidence of white mold caused by Sclerotinia sclerotiorum in a variety of field crops and vegetables, different control strategies are needed to keep the disease under economical threshold. This study assessed the effect of foliar application of a calcium formulation on disease symptoms, oxalic acid production, and on the oxidative stress metabolism in soybean plants inoculated with each of two isolates of the pathogen that have contrasting aggressiveness (HA, highly-aggressive versus WA, weakly-aggressive). Changes in reactive oxygen species (ROS) levels in soybean plants inoculated with S. sclerotiorum isolates were assessed at 6, 24, 48 and 72 h post inoculation (hpi). Generation of ROS including hydrogen peroxide (H2O2), anion superoxide (O2-) and hydroxyl radical (OH) was evaluated. Inoculation with the WA isolate resulted in more ROS accumulation compared to the HA isolate. Pre-treatment with the calcium formulation restored ROS production in plants inoculated with the HA isolate. We also noted a marked decrease in oxalic acid content in the leaves inoculated with the HA isolate in presence of calcium, which coincided with an increase in plant ROS production. The expression patterns of genes involved in ROS detoxification in response to the calcium treatments and/or inoculation with S. Sclerotiorum isolates were monitored by RT-qPCR. All of the tested genes showed a higher expression in response to inoculation with the WA isolate. The expression of most genes tested peaked at 6 hpi, which preceded ROS accumulation in the soybean leaves. Overall, these data suggest that foliar application of calcium contributes to a decrease in oxalic acid production and disease, arguably via modulation of the ROS metabolism.
Collapse
Affiliation(s)
- Arbia Arfaoui
- Department of Plant Science, 222, Agriculture Building, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada; OMEX Agriculture Inc., 290 Agri Park Road, Oak Bluff, Manitoba, R4G 0A5, Canada.
| | | | - Fouad Daayf
- Department of Plant Science, 222, Agriculture Building, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| |
Collapse
|
131
|
Yang G, Tang L, Gong Y, Xie J, Fu Y, Jiang D, Li G, Collinge DB, Chen W, Cheng J. A cerato-platanin protein SsCP1 targets plant PR1 and contributes to virulence of Sclerotinia sclerotiorum. THE NEW PHYTOLOGIST 2018; 217:739-755. [PMID: 29076546 DOI: 10.1111/nph.14842] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/05/2017] [Indexed: 05/20/2023]
Abstract
Cerato-platanin proteins (CPs), which are secreted by filamentous fungi, are phytotoxic to host plants, but their functions have not been well defined to date. Here we characterized a CP (SsCP1) from the necrotrophic phytopathogen Sclerotinia sclerotiorum. Sscp1 transcripts accumulated during plant infection, and deletion of Sscp1 significantly reduced virulence. SsCP1 could induce significant cell death when expressed in Nicotiana benthamiana. Using yeast two-hybrid, GST pull-down, co-immunoprecipitation and bimolecular florescence complementation, we found that SsCP1 interacts with PR1 in the apoplast to facilitate infection by S. sclerotiorum. Overexpressing PR1 enhanced resistance to the wild-type strain, but not to the Sscp1 knockout strain of S. sclerotiorum. Sscp1-expressing transgenic plants showed increased concentrations of salicylic acid (SA) and higher levels of resistance to several plant pathogens (namely Botrytis cinerea, Alternaria brassicicola and Golovinomyces orontii). Our results suggest that SsCP1 is important for virulence of S. sclerotiorum and that it can be recognized by plants to trigger plant defense responses. Our results also suggest that the SA signaling pathway is involved in CP-mediated plant defense .
Collapse
Affiliation(s)
- Guogen Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Liguang Tang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Yingdi Gong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Yanping Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - David B Collinge
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Weidong Chen
- United States Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, WA, 99164, USA
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| |
Collapse
|
132
|
Lowe-Power TM, Hendrich CG, von Roepenack-Lahaye E, Li B, Wu D, Mitra R, Dalsing BL, Ricca P, Naidoo J, Cook D, Jancewicz A, Masson P, Thomma B, Lahaye T, Michael AJ, Allen C. Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease. Environ Microbiol 2017; 20:1330-1349. [PMID: 29215193 DOI: 10.1111/1462-2920.14020] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/29/2017] [Accepted: 12/03/2017] [Indexed: 12/20/2022]
Abstract
Ralstonia solanacearum thrives in plant xylem vessels and causes bacterial wilt disease despite the low nutrient content of xylem sap. We found that R. solanacearum manipulates its host to increase nutrients in tomato xylem sap, enabling it to grow better in sap from infected plants than in sap from healthy plants. Untargeted GC/MS metabolomics identified 22 metabolites enriched in R. solanacearum-infected sap. Eight of these could serve as sole carbon or nitrogen sources for R. solanacearum. Putrescine, a polyamine that is not a sole carbon or nitrogen source for R. solanacearum, was enriched 76-fold to 37 µM in R. solanacearum-infected sap. R. solanacearum synthesized putrescine via a SpeC ornithine decarboxylase. A ΔspeC mutant required ≥ 15 µM exogenous putrescine to grow and could not grow alone in xylem even when plants were treated with putrescine. However, co-inoculation with wildtype rescued ΔspeC growth, indicating R. solanacearum produced and exported putrescine to xylem sap. Intriguingly, treating plants with putrescine before inoculation accelerated wilt symptom development and R. solanacearum growth and systemic spread. Xylem putrescine concentration was unchanged in putrescine-treated plants, so the exogenous putrescine likely accelerated disease indirectly by affecting host physiology. These results indicate that putrescine is a pathogen-produced virulence metabolite.
Collapse
Affiliation(s)
- Tiffany M Lowe-Power
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Connor G Hendrich
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Edda von Roepenack-Lahaye
- Leibniz Institute of Plant Biochemistry, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Universität Tübingen, Tübingen, Germany
| | - Bin Li
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dousheng Wu
- Leibniz Institute of Plant Biochemistry, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Universität Tübingen, Tübingen, Germany
| | - Raka Mitra
- Department of Biology, Carleton College, Northfield, MN 55057, USA
| | - Beth L Dalsing
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Patrizia Ricca
- Leibniz Institute of Plant Biochemistry, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Universität Tübingen, Tübingen, Germany
| | - Jacinth Naidoo
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David Cook
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Amy Jancewicz
- Department of Genetics, University of Wisconsin, Madison, Madison, WI 53706, USA
| | - Patrick Masson
- Department of Genetics, University of Wisconsin, Madison, Madison, WI 53706, USA
| | - Bart Thomma
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Thomas Lahaye
- Leibniz Institute of Plant Biochemistry, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Universität Tübingen, Tübingen, Germany
| | - Anthony J Michael
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI 53706, USA
| |
Collapse
|
133
|
Biotrophy-necrotrophy switch in pathogen evoke differential response in resistant and susceptible sesame involving multiple signaling pathways at different phases. Sci Rep 2017; 7:17251. [PMID: 29222513 PMCID: PMC5722813 DOI: 10.1038/s41598-017-17248-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/23/2017] [Indexed: 12/16/2022] Open
Abstract
Infection stages of charcoal rot fungus Macrophomina phaseolina in sesame revealed for the first time a transition from biotrophy via BNS (biotrophy-to-necrotrophy switch) to necrotrophy as confirmed by transcriptional studies. Microscopy using normal and GFP-expressing pathogen showed typical constricted thick intercellular bitrophic hyphae which gave rise to thin intracellular necrotrophic hyphae during BNS and this stage was delayed in a resistant host. Results also show that as the pathogen switched its strategy of infection, the host tailored its defense strategy to meet the changing situation. Less ROS accumulation, upregulation of ROS signaling genes and higher antioxidant enzyme activities post BNS resulted in resistance. There was greater accumulation of secondary metabolites and upregulation of secondary metabolite-related genes after BNS. A total of twenty genes functioning in different aspects of plant defense that were monitored over a time course during the changing infection phases showed a coordinated response. Experiments using phytohormone priming and phytohormone inhibitors showed that resistance resulted from activation of JA-ET signaling pathway. Most importantly this defense response was more prompt in the resistant than the susceptible host indicating that a resistant host makes different choices from a susceptible host during infection which ultimately influences the severity of the disease.
Collapse
|
134
|
Wei W, Mesquita ACO, Figueiró ADA, Wu X, Manjunatha S, Wickland DP, Hudson ME, Juliatti FC, Clough SJ. Genome-wide association mapping of resistance to a Brazilian isolate of Sclerotinia sclerotiorum in soybean genotypes mostly from Brazil. BMC Genomics 2017; 18:849. [PMID: 29115920 PMCID: PMC5674791 DOI: 10.1186/s12864-017-4160-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/05/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Sclerotinia Stem Rot (SSR), caused by the fungal pathogen Sclerotinia sclerotiorum, is ubiquitous in cooler climates where soybean crops are grown. Breeding for resistance to SSR remains challenging in crops like soybean, where no single gene provides strong resistance, but instead, multiple genes work together to provide partial resistance. In this study, a genome-wide association study (GWAS) was performed to dissect the complex genetic architecture of soybean quantitative resistance to SSR and to provide effective molecular markers that could be used in breeding programs. A collection of 420 soybean genotypes were selected based on either reports of resistance, or from one of three different breeding programs in Brazil, two commercial, one public. Plant genotype sensitivity to SSR was evaluated by the cut stem inoculation method, and lesion lengths were measured at 4 days post inoculation. RESULTS Genotyping-by-sequencing was conducted to genotype the 420 soybean lines. The TASSEL 5 GBSv2 pipeline was used to call SNPs under optimized parameters, and with the extra step of trimming adapter sequences. After filtering missing data, heterozygosity, and minor allele frequency, a total of 11,811 SNPs and 275 soybean genotypes were obtained for association analyses. Using a threshold of FDR-adjusted p-values <0.1, the Compressed Mixed Linear Model (CMLM) with Genome Association and Prediction Integrated Tool (GAPIT), and the Fixed and Random Model Circulating Probability Unification (FarmCPU) methods, both approaches identified SNPs with significant association to disease response on chromosomes 1, 11, and 18. The CMLM also found significance on chromosome 19, whereas FarmCPU also identified significance on chromosomes 4, 9, and 16. CONCLUSIONS These similar and yet different results show that the computational methods used can impact SNP associations in soybean, a plant with a high degree of linkage disequilibrium, and in SSR resistance, a trait that has a complex genetic basis. A total of 125 genes were located within linkage disequilibrium of the three loci shared between the two models. Their annotations and gene expressions in previous studies of soybean infected with S. sclerotiorum were examined to narrow down the candidates.
Collapse
Affiliation(s)
- Wei Wei
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801 USA
| | | | | | - Xing Wu
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Shilpa Manjunatha
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Daniel P. Wickland
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Matthew E. Hudson
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801 USA
| | | | - Steven J. Clough
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801 USA
- United States Department of Agriculture, Agricultural Research Service, Urbana, IL 61801 USA
| |
Collapse
|
135
|
Ah-Fong AMV, Shrivastava J, Judelson HS. Lifestyle, gene gain and loss, and transcriptional remodeling cause divergence in the transcriptomes of Phytophthora infestans and Pythium ultimum during potato tuber colonization. BMC Genomics 2017; 18:764. [PMID: 29017458 PMCID: PMC5635513 DOI: 10.1186/s12864-017-4151-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/02/2017] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND How pathogen genomes evolve to support distinct lifestyles is not well-understood. The oomycete Phytophthora infestans, the potato blight agent, is a largely biotrophic pathogen that feeds from living host cells, which become necrotic only late in infection. The related oomycete Pythium ultimum grows saprophytically in soil and as a necrotroph in plants, causing massive tissue destruction. To learn what distinguishes their lifestyles, we compared their gene contents and expression patterns in media and a shared host, potato tuber. RESULTS Genes related to pathogenesis varied in temporal expression pattern, mRNA level, and family size between the species. A family's aggregate expression during infection was not proportional to size due to transcriptional remodeling and pseudogenization. Ph. infestans had more stage-specific genes, while Py. ultimum tended towards more constitutive expression. Ph. infestans expressed more genes encoding secreted cell wall-degrading enzymes, but other categories such as secreted proteases and ABC transporters had higher transcript levels in Py. ultimum. Species-specific genes were identified including new Pythium genes, perforins, which may disrupt plant membranes. Genome-wide ortholog analyses identified substantial diversified expression, which correlated with sequence divergence. Pseudogenization was associated with gene family expansion, especially in gene clusters. CONCLUSION This first large-scale analysis of transcriptional divergence within oomycetes revealed major shifts in genome composition and expression, including subfunctionalization within gene families. Biotrophy and necrotrophy seem determined by species-specific genes and the varied expression of shared pathogenicity factors, which may be useful targets for crop protection.
Collapse
Affiliation(s)
- Audrey M. V. Ah-Fong
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521 USA
| | - Jolly Shrivastava
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521 USA
| | - Howard S. Judelson
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521 USA
| |
Collapse
|
136
|
Yu Y, Xiao J, Zhu W, Yang Y, Mei J, Bi C, Qian W, Qing L, Tan W. Ss-Rhs1, a secretory Rhs repeat-containing protein, is required for the virulence of Sclerotinia sclerotiorum. MOLECULAR PLANT PATHOLOGY 2017; 18:1052-1061. [PMID: 27392818 PMCID: PMC6638210 DOI: 10.1111/mpp.12459] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 05/05/2023]
Abstract
Sclerotinia sclerotiorum is a devastating necrotrophic plant pathogen with a worldwide distribution. Cell wall-degrading enzymes and oxalic acid are important to the virulence of this pathogen. Here, we report a novel secretory protein, Ss-Rhs1, which is essential for the virulence of S. sclerotiorum. Ss-Rhs1 is believed to contain a typical signal peptide at the N-terminal and eight rearrangement hotspot (Rhs) repeats. Ss-Rhs1 exhibited a high level of expression at the initial stage of sclerotial development, as well as during the hyphal infection process. Targeted silencing of Ss-Rhs1 resulted in abnormal colony morphology and reduced virulence on host plants. Microscopic observations indicated that Ss-Rhs1-silenced strains exhibited reduced efficiency in compound appressoria formation.
Collapse
Affiliation(s)
- Yang Yu
- College of Plant ProtectionSouthwest UniversityChongqingCity400715China
| | - Jifen Xiao
- College of Plant ProtectionSouthwest UniversityChongqingCity400715China
| | - Wenjun Zhu
- College of Biology and Pharmaceutical EngineeringWuhan Polytechnic UniversityWuhanCity430023China
| | - Yuheng Yang
- College of Plant ProtectionSouthwest UniversityChongqingCity400715China
| | - Jiaqin Mei
- College of Agronomy and BiotechnologySouthwest UniversityChongqingCity400715China
| | - Chaowei Bi
- College of Plant ProtectionSouthwest UniversityChongqingCity400715China
| | - Wei Qian
- College of Agronomy and BiotechnologySouthwest UniversityChongqingCity400715China
| | - Ling Qing
- College of Plant ProtectionSouthwest UniversityChongqingCity400715China
| | - Wanzhong Tan
- College of Plant ProtectionSouthwest UniversityChongqingCity400715China
| |
Collapse
|
137
|
Zhu W, Wei W, Wu Y, Zhou Y, Peng F, Zhang S, Chen P, Xu X. BcCFEM1, a CFEM Domain-Containing Protein with Putative GPI-Anchored Site, Is Involved in Pathogenicity, Conidial Production, and Stress Tolerance in Botrytis cinerea. Front Microbiol 2017; 8:1807. [PMID: 28979251 PMCID: PMC5611420 DOI: 10.3389/fmicb.2017.01807] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/05/2017] [Indexed: 12/13/2022] Open
Abstract
We experimentally isolated and characterized a CFEM protein with putative GPI-anchored site BcCFEM1 in Botrytis cinerea. BcCFEM1 contains a CFEM (common in several fungal extracellular membrane proteins) domain with the characteristic eight cysteine residues at N terminus, and a predicted GPI modification site at C terminus. BcCFEM1 was significantly up-regulated during early stage of infection on bean leaves and induced chlorosis in Nicotiana benthamiana leaves using Agrobacterium infiltration method. Targeted deletion of BcCFEM1 in B. cinerea affected virulence, conidial production and stress tolerance, but not growth rate, conidial germination, colony morphology, and sclerotial formation. However, over expression of BcCFEM1 did not make any observable phenotype change. Therefore, our data suggested that BcCFEM1 contributes to virulence, conidial production, and stress tolerance. These findings further enhance our understanding on the sophisticated pathogenicity of B. cinerea beyond necrotrophic stage, highlighting the importance of CFEM protein to B. cinerea and other broad-host-range necrotrophic pathogens.
Collapse
Affiliation(s)
- Wenjun Zhu
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic UniversityWuhan, China
| | - Wei Wei
- Institute for Interdisciplinary Research, Jianghan UniversityWuhan, China
| | - Yayun Wu
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic UniversityWuhan, China
| | - Yang Zhou
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic UniversityWuhan, China
| | - Fang Peng
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic UniversityWuhan, China
| | - Shaopeng Zhang
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic UniversityWuhan, China
| | - Ping Chen
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic UniversityWuhan, China
| | - Xiaowen Xu
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural UniversityBeijing, China
| |
Collapse
|
138
|
Peng Q, Xie Q, Chen F, Zhou X, Zhang W, Zhang J, Pu H, Ruan Y, Liu C, Chen S. Transcriptome Analysis of Sclerotinia sclerotiorum at Different Infection Stages on Brassica napus. Curr Microbiol 2017; 74:1237-1245. [DOI: 10.1007/s00284-017-1309-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 07/13/2017] [Indexed: 12/23/2022]
|
139
|
Moellers TC, Singh A, Zhang J, Brungardt J, Kabbage M, Mueller DS, Grau CR, Ranjan A, Smith DL, Chowda-Reddy RV, Singh AK. Main and epistatic loci studies in soybean for Sclerotinia sclerotiorum resistance reveal multiple modes of resistance in multi-environments. Sci Rep 2017; 7:3554. [PMID: 28620159 PMCID: PMC5472596 DOI: 10.1038/s41598-017-03695-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/10/2017] [Indexed: 11/09/2022] Open
Abstract
Genome-wide association (GWAS) and epistatic (GWES) studies along with expression studies in soybean [Glycine max (L.) Merr.] were leveraged to dissect the genetics of Sclerotinia stem rot (SSR) [caused by Sclerotinia sclerotiorum (Lib.) de Bary], a significant fungal disease causing yield and quality losses. A large association panel of 466 diverse plant introduction accessions were phenotyped in multiple field and controlled environments to: (1) discover sources of resistance, (2) identify SNPs associated with resistance, and (3) determine putative candidate genes to elucidate the mode of resistance. We report 58 significant main effect loci and 24 significant epistatic interactions associated with SSR resistance, with candidate genes involved in a wide range of processes including cell wall structure, hormone signaling, and sugar allocation related to plant immunity, revealing the complex nature of SSR resistance. Putative candidate genes [for example, PHYTOALEXIN DEFFICIENT 4 (PAD4), ETHYLENE-INSENSITIVE 3-LIKE 1 (EIL3), and ETHYLENE RESPONSE FACTOR 1 (ERF1)] clustered into salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) pathways suggest the involvement of a complex hormonal network typically activated by both necrotrophic (ET/JA) and biotrophic (SA) pathogens supporting that S. sclerotiorum is a hemibiotrophic plant pathogen.
Collapse
Affiliation(s)
- Tara C Moellers
- Department of Agronomy, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Arti Singh
- Department of Agronomy, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Jiaoping Zhang
- Department of Agronomy, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Jae Brungardt
- Department of Agronomy, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| | - Daren S Mueller
- Department of Plant Pathology, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Craig R Grau
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| | - Ashish Ranjan
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| | - Damon L Smith
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| | - R V Chowda-Reddy
- Department of Agronomy, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Asheesh K Singh
- Department of Agronomy, Iowa State University, Ames, Iowa, 50011, United States of America.
| |
Collapse
|
140
|
Seifbarghi S, Borhan MH, Wei Y, Coutu C, Robinson SJ, Hegedus DD. Changes in the Sclerotinia sclerotiorum transcriptome during infection of Brassica napus. BMC Genomics 2017; 18:266. [PMID: 28356071 PMCID: PMC5372324 DOI: 10.1186/s12864-017-3642-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/18/2017] [Indexed: 11/17/2022] Open
Abstract
Background Sclerotinia sclerotiorum causes stem rot in Brassica napus, which leads to lodging and severe yield losses. Although recent studies have explored significant progress in the characterization of individual S. sclerotiorum pathogenicity factors, a gap exists in profiling gene expression throughout the course of S. sclerotiorum infection on a host plant. In this study, RNA-Seq analysis was performed with focus on the events occurring through the early (1 h) to the middle (48 h) stages of infection. Results Transcript analysis revealed the temporal pattern and amplitude of the deployment of genes associated with aspects of pathogenicity or virulence during the course of S. sclerotiorum infection on Brassica napus. These genes were categorized into eight functional groups: hydrolytic enzymes, secondary metabolites, detoxification, signaling, development, secreted effectors, oxalic acid and reactive oxygen species production. The induction patterns of nearly all of these genes agreed with their predicted functions. Principal component analysis delineated gene expression patterns that signified transitions between pathogenic phases, namely host penetration, ramification and necrotic stages, and provided evidence for the occurrence of a brief biotrophic phase soon after host penetration. Conclusions The current observations support the notion that S. sclerotiorum deploys an array of factors and complex strategies to facilitate host colonization and mitigate host defenses. This investigation provides a broad overview of the sequential expression of virulence/pathogenicity-associated genes during infection of B. napus by S. sclerotiorum and provides information for further characterization of genes involved in the S. sclerotiorum-host plant interactions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3642-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shirin Seifbarghi
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada.,Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - M Hossein Borhan
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Stephen J Robinson
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada. .,Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
141
|
Mukhi N, Kundu S, Kaur J. NO dioxygenase- and peroxidase-like activity of Arabidopsis phytoglobin 3 and its role in Sclerotinia sclerotiorum defense. Nitric Oxide 2017; 68:150-162. [PMID: 28315469 DOI: 10.1016/j.niox.2017.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/17/2017] [Accepted: 03/13/2017] [Indexed: 01/05/2023]
Abstract
Phytoglobin 3 appears to be ubiquitous in plants, yet there has been dearth of evidence for their potent physiological functions. Previous crystallographic studies suggest a potential NO dioxygenase like activity of Arabidopsis phytoglobin 3 (AHb3). The present work examined the in vivo function of AHb3 in plant physiology and its role in biotic stress using Arabidopsis- Sclerotinia sclerotorium pathosystem. The gene was found to be ubiquitously expressed in all plant tissues, with moderately increased expression in roots. Its expression was induced upon NO, H2O2 and biotic stress. A C-terminal tagged GFP version of the wild type protein revealed its enhanced accumulation in the guard cells. AHb3-GFP was found to be partitioned majorly into the nucleus while residual amounts were present in the cytoplasm. The loss of function AHb3 mutant exhibited reduced root length and fresh weight. AHb3 knockout lines also displayed enhanced susceptibility towards the S. sclerotiorum. Interestingly, these lines displayed enhanced ROS accumulation upon pathogen challenge as suggested by DAB staining. Furthermore, enhanced/decreased NO accumulation in AHb3 knockout/overexpression lines upon treatment with multiple NO donors suggests a potent NO dioxygenase like activity for the protein. Taken together, our data indicate that AHb3 play a crucial role in regulating root length as well as in mediating defense response against S. sclerotiorum, possibly by modulating NO and ROS levels.
Collapse
Affiliation(s)
- Nitika Mukhi
- Department of Genetics, University of Delhi South Campus, New Delhi 110021, India
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Jagreet Kaur
- Department of Genetics, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
142
|
Willbur JF, Ding S, Marks ME, Lucas H, Grau CR, Groves CL, Kabbage M, Smith DL. Comprehensive Sclerotinia Stem Rot Screening of Soybean Germplasm Requires Multiple Isolates of Sclerotinia sclerotiorum. PLANT DISEASE 2017; 101:344-353. [PMID: 30681926 DOI: 10.1094/pdis-07-16-1055-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Sclerotinia sclerotiorum population variability directly affects Sclerotinia stem rot (SSR) resistance breeding programs. In the north-central United States, however, soybean germplasm selection has often involved only a single isolate. Forty-four S. sclerotiorum isolates from Illinois, Michigan, Minnesota, Nebraska, Wisconsin, Poland, and across 11 different host species were evaluated for variation in isolate in vitro growth, in vitro oxalate production, and in planta aggressiveness on the susceptible soybean 'Williams 82'. Significant differences (P < 0.0001) were detected in isolate in planta aggressiveness, in vitro growth, and in vitro oxalate production. Furthermore, diverse isolate characteristics were observed within all hosts and locations of collection. Aggressiveness was not correlated to colony growth and was only weakly correlated (r = 0.26, P < 0.0001) to isolate oxalate production. In addition, the host or location of collection did not explain isolate aggressiveness. Isolate oxalic acid production, however, may be partially explained by the host (P < 0.05) and location (P < 0.01) of collection. Using a representative subset of nine S. sclerotiorum isolates and soybean genotypes exhibiting susceptible or resistant responses (determined using a single isolate), a significant interaction (P = 0.04) was detected between isolates and genotypes when SSR severity was evaluated. Our findings suggest that screening of S. sclerotiorum-resistant soybean germplasm should be performed with multiple isolates to account for the overall diversity of S. sclerotiorum isolates found throughout the soybean-growing regions of the United States.
Collapse
Affiliation(s)
- J F Willbur
- Department of Plant Pathology, University of Wisconsin-Madison, Madison 53706
| | - S Ding
- Department of Plant Pathology, University of Wisconsin-Madison, Madison 53706
| | - M E Marks
- Department of Plant Pathology, University of Wisconsin-Madison, Madison 53706
| | - H Lucas
- Department of Plant Pathology, University of Wisconsin-Madison, Madison 53706
| | - C R Grau
- Department of Plant Pathology, University of Wisconsin-Madison, Madison 53706
| | - C L Groves
- Department of Plant Pathology, University of Wisconsin-Madison, Madison 53706
| | - M Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison 53706
| | - D L Smith
- Department of Plant Pathology, University of Wisconsin-Madison, Madison 53706
| |
Collapse
|
143
|
Wang R, Ning Y, Shi X, He F, Zhang C, Fan J, Jiang N, Zhang Y, Zhang T, Hu Y, Bellizzi M, Wang GL. Immunity to Rice Blast Disease by Suppression of Effector-Triggered Necrosis. Curr Biol 2016; 26:2399-2411. [DOI: 10.1016/j.cub.2016.06.072] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 12/31/2022]
|
144
|
Mamidi S, Miklas PN, Trapp J, Felicetti E, Grimwood J, Schmutz J, Lee R, McClean PE. Sequence-Based Introgression Mapping Identifies Candidate White Mold Tolerance Genes in Common Bean. THE PLANT GENOME 2016; 9. [PMID: 27898809 DOI: 10.3835/plantgenome2015.09.0092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
White mold, caused by the necrotrophic fungus (Lib.) de Bary, is a major disease of common bean ( L.). WM7.1 and WM8.3 are two quantitative trait loci (QTL) with major effects on tolerance to the pathogen. Advanced backcross populations segregating individually for either of the two QTL, and a recombinant inbred (RI) population segregating for both QTL were used to fine map and confirm the genetic location of the QTL. The QTL intervals were physically mapped using the reference common bean genome sequence, and the physical intervals for each QTL were further confirmed by sequence-based introgression mapping. Using whole-genome sequence data from susceptible and tolerant DNA pools, introgressed regions were identified as those with significantly higher numbers of single-nucleotide polymorphisms (SNPs) relative to the whole genome. By combining the QTL and SNP data, WM7.1 was located to a 660-kb region that contained 41 gene models on the proximal end of chromosome Pv07, while the WM8.3 introgression was narrowed to a 1.36-Mb region containing 70 gene models. The most polymorphic candidate gene in the WM7.1 region encodes a BEACH-domain protein associated with apoptosis. Within the WM8.3 interval, a receptor-like protein with the potential to recognize pathogen effectors was the most polymorphic gene. The use of gene and sequence-based mapping identified two candidate genes whose putative functions are consistent with the current model of pathogenicity.
Collapse
|
145
|
Bashi ZD, Gyawali S, Bekkaoui D, Coutu C, Lee L, Poon J, Rimmer SR, Khachatourians GG, Hegedus DD. The Sclerotinia sclerotiorum Slt2 mitogen-activated protein kinase ortholog, SMK3, is required for infection initiation but not lesion expansion. Can J Microbiol 2016; 62:836-850. [PMID: 27503454 DOI: 10.1139/cjm-2016-0091] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) play a central role in transferring signals and regulating gene expression in response to extracellular stimuli. An ortholog of the Saccharomyces cerevisiae cell wall integrity MAPK was identified in the phytopathogenic fungus Sclerotinia sclerotiorum. Disruption of the S. sclerotiorum Smk3 gene severely reduced virulence on intact host plant leaves but not on leaves stripped of cuticle wax. This was attributed to alterations in hyphal apical dominance leading to the inability to aggregate and form infection cushions. The mutation also caused loss of the ability to produce sclerotia, increased aerial hyphae formation, and altered hyphal hydrophobicity and cell wall integrity. Mutants had slower radial expansion rates on solid media but more tolerance to elevated temperatures. Loss of the SMK3 cell wall integrity MAPK appears to have impaired the ability of S. sclerotiorum to sense its surrounding environment, leading to misregulation of a variety of functions. Many of the phenotypes were similar to those observed in S. sclerotiorum adenylate cyclase and SMK1 MAPK mutants, suggesting that these signaling pathways co-regulate aspects of fungal growth, physiology, and pathogenicity.
Collapse
Affiliation(s)
- Zafer Dallal Bashi
- a Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N OX2, Canada.,b Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Sanjaya Gyawali
- a Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N OX2, Canada
| | - Diana Bekkaoui
- a Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N OX2, Canada
| | - Cathy Coutu
- a Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N OX2, Canada
| | - Leora Lee
- a Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N OX2, Canada
| | - Jenny Poon
- a Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N OX2, Canada
| | - S Roger Rimmer
- a Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N OX2, Canada
| | - George G Khachatourians
- b Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Dwayne D Hegedus
- a Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N OX2, Canada.,b Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
146
|
Kumar V, Chattopadhyay A, Ghosh S, Irfan M, Chakraborty N, Chakraborty S, Datta A. Improving nutritional quality and fungal tolerance in soya bean and grass pea by expressing an oxalate decarboxylase. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1394-405. [PMID: 26798990 PMCID: PMC11389089 DOI: 10.1111/pbi.12503] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/21/2015] [Accepted: 10/26/2015] [Indexed: 05/25/2023]
Abstract
Soya bean (Glycine max) and grass pea (Lathyrus sativus) seeds are important sources of dietary proteins; however, they also contain antinutritional metabolite oxalic acid (OA). Excess dietary intake of OA leads to nephrolithiasis due to the formation of calcium oxalate crystals in kidneys. Besides, OA is also a known precursor of β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP), a neurotoxin found in grass pea. Here, we report the reduction in OA level in soya bean (up to 73%) and grass pea (up to 75%) seeds by constitutive and/or seed-specific expression of an oxalate-degrading enzyme, oxalate decarboxylase (FvOXDC) of Flammulina velutipes. In addition, β-ODAP level of grass pea seeds was also reduced up to 73%. Reduced OA content was interrelated with the associated increase in seeds micronutrients such as calcium, iron and zinc. Moreover, constitutive expression of FvOXDC led to improved tolerance to the fungal pathogen Sclerotinia sclerotiorum that requires OA during host colonization. Importantly, FvOXDC-expressing soya bean and grass pea plants were similar to the wild type with respect to the morphology and photosynthetic rates, and seed protein pool remained unaltered as revealed by the comparative proteomic analysis. Taken together, these results demonstrated improved seed quality and tolerance to the fungal pathogen in two important legume crops, by the expression of an oxalate-degrading enzyme.
Collapse
Affiliation(s)
- Vinay Kumar
- National Institute of Plant Genome Research, New Delhi, India
| | | | - Sumit Ghosh
- National Institute of Plant Genome Research, New Delhi, India
| | - Mohammad Irfan
- National Institute of Plant Genome Research, New Delhi, India
| | | | | | - Asis Datta
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
147
|
Wang L, Liu Y, Liu J, Zhang Y, Zhang X, Pan H. The Sclerotinia sclerotiorum FoxE2 Gene Is Required for Apothecial Development. PHYTOPATHOLOGY 2016; 106:484-490. [PMID: 26756829 DOI: 10.1094/phyto-08-15-0181-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Sclerotinia sclerotiorum is a widely dispersed plant pathogenic fungus causing many diseases such as white mold, Sclerotinia stem rot, stalk rot, and Sclerotinia head rot on many varieties of broadleaf crops worldwide. Previous studies have shown that the Forkhead-box transcription factors (FOX TFs) play key regulatory roles in the sexual reproduction of some fungi. Ss-FoxE2 is one of four FOX TF family member genes in S. sclerotiorum. Based on ortholog function in other fungi it is hypothesized to function in S. sclerotiorum sexual reproduction. In this study, the role of Ss-FoxE2 in S. sclerotiorum was identified with a gene knock-out strategy. Following transformation and screening, strains having undergone homologous recombination in which the hygromycin resistance gene replaced the gene Ss-FoxE2 from the genomic DNA were identified. No difference in hyphae growth, number, and weight of sclerotia and no obvious change in virulence was observed among the wild type Ss-FoxE2 knock-out mutant and genetically complemented mutant; however, following induction of sclerotia for sexual development, apothecia were not formed in Ss-FoxE2 knock-out mutant. The Ss-FoxE2 gene expressed significantly higher in the apothecial stages than in other developmental stages. These results indicate that Ss-FoxE2 appears to be necessary for the regulation of sexual reproduction, but may not affect the pathogenicity and vegetative development of S. sclerotiorum significantly.
Collapse
Affiliation(s)
- Lu Wang
- College of Plant Sciences, Jilin University, Changchun, 130062
| | - Yanzhi Liu
- College of Plant Sciences, Jilin University, Changchun, 130062
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, 130062
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun, 130062
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, 130062
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, 130062
| |
Collapse
|
148
|
Hegedus DD, Gerbrandt K, Coutu C. The eukaryotic protein kinase superfamily of the necrotrophic fungal plant pathogen, Sclerotinia sclerotiorum. MOLECULAR PLANT PATHOLOGY 2016; 17:634-647. [PMID: 26395470 PMCID: PMC6638376 DOI: 10.1111/mpp.12321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Protein kinases have been implicated in the regulation of many processes that guide pathogen development throughout the course of infection. A survey of the Sclerotinia sclerotiorum genome for genes encoding proteins containing the highly conserved eukaryotic protein kinase (ePK) domain, the largest protein kinase superfamily, revealed 92 S. sclerotiorum ePKs. This review examines the composition of the S. sclerotiorum ePKs based on conserved motifs within the ePK domain family, and relates this to orthologues found in other filamentous fungi and yeasts. The ePKs are also discussed in terms of their proposed role(s) in aspects of host pathogenesis, including the coordination of mycelial growth/development and deployment of pathogenicity determinants in response to environmental stimuli, nutrients and stress.
Collapse
Affiliation(s)
- Dwayne D Hegedus
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada, S7N 0X2
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5A9
| | - Kelsey Gerbrandt
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada, S7N 0X2
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada, S7N 0X2
| |
Collapse
|
149
|
Zeilinger S, Gupta VK, Dahms TES, Silva RN, Singh HB, Upadhyay RS, Gomes EV, Tsui CKM, Nayak S C. Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiol Rev 2016; 40:182-207. [PMID: 26591004 PMCID: PMC4778271 DOI: 10.1093/femsre/fuv045] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/11/2015] [Accepted: 10/11/2015] [Indexed: 12/22/2022] Open
Abstract
Fungi interact with plants in various ways, with each interaction giving rise to different alterations in both partners. While fungal pathogens have detrimental effects on plant physiology, mutualistic fungi augment host defence responses to pathogens and/or improve plant nutrient uptake. Tropic growth towards plant roots or stomata, mediated by chemical and topographical signals, has been described for several fungi, with evidence of species-specific signals and sensing mechanisms. Fungal partners secrete bioactive molecules such as small peptide effectors, enzymes and secondary metabolites which facilitate colonization and contribute to both symbiotic and pathogenic relationships. There has been tremendous advancement in fungal molecular biology, omics sciences and microscopy in recent years, opening up new possibilities for the identification of key molecular mechanisms in plant-fungal interactions, the power of which is often borne out in their combination. Our fragmentary knowledge on the interactions between plants and fungi must be made whole to understand the potential of fungi in preventing plant diseases, improving plant productivity and understanding ecosystem stability. Here, we review innovative methods and the associated new insights into plant-fungal interactions.
Collapse
Affiliation(s)
- Susanne Zeilinger
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Vijai K Gupta
- Molecular Glycobiotechnology Group, Discipline of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, University of Regina, SK, Canada
| | - Roberto N Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), 14049-900 Ribeirão Preto, SP, Brazil
| | - Harikesh B Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221 005, India
| | - Ram S Upadhyay
- Department of Botany, Banaras Hindu University, Varanasi 221 005, India
| | - Eriston Vieira Gomes
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), 14049-900 Ribeirão Preto, SP, Brazil
| | - Clement Kin-Ming Tsui
- Department of Pathology and Laboratory Medicine, the University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Chandra Nayak S
- Department of Biotechnology, University of Mysore, Mysore-570001, Karnataka, India
| |
Collapse
|
150
|
Lyu X, Shen C, Fu Y, Xie J, Jiang D, Li G, Cheng J. A Small Secreted Virulence-Related Protein Is Essential for the Necrotrophic Interactions of Sclerotinia sclerotiorum with Its Host Plants. PLoS Pathog 2016; 12:e1005435. [PMID: 26828434 PMCID: PMC4735494 DOI: 10.1371/journal.ppat.1005435] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/11/2016] [Indexed: 12/28/2022] Open
Abstract
Small, secreted proteins have been found to play crucial roles in interactions between biotrophic/hemi-biotrophic pathogens and plants. However, little is known about the roles of these proteins produced by broad host-range necrotrophic phytopathogens during infection. Here, we report that a cysteine-rich, small protein SsSSVP1 in the necrotrophic phytopathogen Sclerotinia sclerotiorum was experimentally confirmed to be a secreted protein, and the secretion of SsSSVP1 from hyphae was followed by internalization and cell-to-cell movement independent of a pathogen in host cells. SsSSVP1∆SP could induce significant plant cell death and targeted silencing of SsSSVP1 resulted in a significant reduction in virulence. Through yeast two-hybrid (Y2H), coimmunoprecipitation (co-IP) and bimolecular fluorescence complementation (BiFC) assays, we demonstrated that SsSSVP1∆SP interacted with QCR8, a subunit of the cytochrome b-c1 complex of mitochondrial respiratory chain in plants. Double site-directed mutagenesis of two cysteine residues (C38 and C44) in SsSSVP1∆SP had significant effects on its homo-dimer formation, SsSSVP1∆SP-QCR8 interaction and plant cell death induction, indicating that partial cysteine residues surely play crucial roles in maintaining the structure and function of SsSSVP1. Co-localization and BiFC assays showed that SsSSVP1∆SP might hijack QCR8 to cytoplasm before QCR8 targeting into mitochondria, thereby disturbing its subcellular localization in plant cells. Furthermore, virus induced gene silencing (VIGS) of QCR8 in tobacco caused plant abnormal development and cell death, indicating the cell death induced by SsSSVP1∆SP might be caused by the SsSSVP1∆SP-QCR8 interaction, which had disturbed the QCR8 subcellular localization and hence disabled its biological functions. These results suggest that SsSSVP1 is a potential effector which may manipulate plant energy metabolism to facilitate the infection of S. sclerotiorum. Our findings indicate novel roles of small secreted proteins in the interactions between host-non-specific necrotrophic fungi and plants, and highlight the significance to illuminate the pathogenic mechanisms of this type of interaction.
Collapse
Affiliation(s)
- Xueliang Lyu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Cuicui Shen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jiatao Xie
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| |
Collapse
|